Cerfacs Enter the world of high performance ...

The 17 May 2018

Implementation and use of the Lattice Boltzmann Method

nasri |  

Announced
Deadline for registration: 15 days before the starting date of each training
Duration : 1 day / (6 hours)

Pre-registration

Abstract

For several years, a new method has emerged to solve flows numerically .
This approach called Lattice Boltzmann Method (LBM) is based on the resolution of the Boltzmann equation and not the Navier-Stokes ones (to notice: Navier-Stokes is an approximation of Boltzmann). LBM is based on gas kinetics theory; to obtain the macroscopic behavior of the fluid we work on a smaller physical scale (called mesoscopic) compared to conventional approaches.

This paradigm shift has several advantages. Boltzmann equations are simpler than the Navier-Stokes equations, this means a more compact solver, easier to write and maintain. Moreover arithmetic operations to be performed are local, this implies a high efficiency on parallel computers. But what makes this approach very promising for the future is its ability to handle very complex geometries without any difficulty.

This training aims to provide basic knowledge in the implementation of an LBM solver. This one day session will be devoted to explain the basic concept of the LBM, its implementation in a computer solver and to run (through practical work) simple applications on academic tests cases.
The aim is to provide a basic understanding of the LBM, which means that only isothermal low compressible flows will be presented. For the audience interested by a more advanced presentation of the LBM, CERFACS proposes an other training session presented by Pierre Sagaut (see the web).

Target participants

PhD students, engineers, researchers

Prerequisites

Basic knowledge in fluid mechanics and computational methods

 

Scientific contact : Jean-François BOUSSUGE

Fee

  • Trainees/PhDs/PostDocs : 60 €
  • CERFACS shareholders/CNRS/INRIA : 180 €
  • Public : 360 €

Program

  • Conceptual understanding of LBM
  • Derivation of the LBM equation
  • Numerical aspects of the LBM equation (stream and collide approach)
  • Implementation
    Collision operator
    Streaming operator
    Simple boundary condition
    Bounce back
    Periodic
  • Incorporate a forcing term
    Practical work
  • Study of a simple LBM solver
  • Application to academic test cases
    Poiseuille flow
    Couette flow
    Flow past a cylinder
    Lid driven cavity
    Double shear layer

Pre-registration

 

NEWS

CECI Contribution to CNRS’ “Petit Illustré” on Complex Systems (CNRS Edition)

ROGEL |  12 October 2017

CECI (Cerfacs, CNRS) and IMFT are both working on numerical modelling of the processes causing river flooding and their uncertainties. A common contribution on this subject, signed by Sophie Ricci and Hélène Roux, appears in Vol. 34 of the "Petit Illustré" collection, edited by CNRS.Read more


CERFACS was present at the European Researcher Night 2017 at Toulouse

thual |  1 October 2017

"Can we get an engine, an airplane or the entire Earth into a computer?". Such was the catchy title of the CERFACS stand  Friday September 29th, for the "European Research Night" whose theme was "Impossible". A hundred people at the "Quai des Savoirs" in Toulouse took a close interest in the...Read more

ALL NEWS