Preconditioning for linear least-squares problems

Miroslav Tůma
Institute of Computer Science
Academy of Sciences of the Czech Republic
tuma@cs.cas.cz

joint work with Rafael Bru, José Marín and José Mas

Sparse Days, Toulouse,
France, June 25-26, 2012
Outline

1. Introduction: the Problem
2. Solving the Least-Squares
3. Preconditioning the normal equations by SPD decompositions
4. Preconditioning by LU factors
5. Note on incomplete QR preconditioning
6. Conclusions
\[
\min_x \| b - Ax \|_2, \quad A \in \mathbb{R}^{m,n}, \quad m \geq n
\]
$$\min_x \| b - Ax \|_2, \ A \in R^{m,n}, \ m \geq n$$

Large and sparse (overdetermined) linear least squares
Method of choice: Preconditioned CGLS

Iterative solution techniques often weak and far from being general

Just basic algorithms, no block or hierarchical framework
Outline

1. Introduction: the Problem
2. Solving the Least-Squares
3. Preconditioning the normal equations by SPD decompositions
4. Preconditioning by LU factors
5. Note on incomplete QR preconditioning
6. Conclusions
Three main classes of general purpose preconditioning

- **Preconditioning the normal equations by SPD decompositions**
 - Based on the system $A^T Ax = A^T b$

- **LU-based strategies**
 - A approximately decomposed as LU where U is upper triangular, L is lower trapezoidal
 - LU assumed *approximate* since there are better ways to solve the problem with direct methods

- **Incomplete QR preconditioning of A**
 - A approximately decomposed as QR where R is upper triangular, Q is approximately orthogonal
Outline

1. Introduction: the Problem
2. Solving the Least-Squares
3. Preconditioning the normal equations by SPD decompositions
4. Preconditioning by LU factors
5. Note on incomplete QR preconditioning
6. Conclusions
Preconditioning the normal equations by SPD decompositions: I.

\[A^T Ax = A^T b \]

- Some information can be lost by forming \(A^T A \) unless sufficient precision is used.

- See, e.g., Benoit (1924); nice overview in Björck (1996), a lot of beautiful application papers. See also Bellavia, Gondzio, Morini, 2012.

- \(A^T A \) most often decomposed by the incomplete Cholesky algorithm.

- Often hoped to solve problems by breakdown-free Cholesky decompositions (Jennings-Ajiz, 1984; Tismenetsky, 1991; Kaporin, 1998; etc.).

- Standard approach with well-known pros and cons.
Some specific features

- **Little theory** characterizing problems where one of these methods can be better than the others.

- Iterative part implemented similarly in all CGLS schemes: without explicit multiplication $B = A^T A$.

- System matrix $A^T A$ can be formed *explicitly or implicitly* just during decomposition of $A^T A$: mentioned by Björck, 1996; used in RIF (Benzi, T., 2003).

- **Our way** to tune this approach: using the balanced incomplete decomposition BIF (Bru et al., 2008).
Balanced incomplete decomposition: I.

- Standard SPD B biconjugate decomposition (e.g., Chu, Funderlic, Golub, 1995): For an SPD matrix $B = A^T A \in \mathbb{R}^{n,n}$ find $Z, D \in \mathbb{R}^{n,n}$ such that D is diagonal and
 \[
 Z^T B Z = D
 \]

- Z can be computed as upper triangular - biconjugation can be considered as the decomposition of the matrix inverse.

- AINV, SAINV are algorithms to get the biconjugate factors Z, D taking into account sparsity and incompleteness (Benzi, Meyer, T., 1996; Benzi, Cullum, T., 2000), dense decompositions dating much more back.

Preconditioning the normal equations by SPD decompositions: IV.

Balanced incomplete decomposition: II.

\[Z^T B Z = D \iff Z^T L D L^T Z = D \iff I = Z L^T \]

Use of L^T and D computed with the use of Z: RIF (Benzi, T, 2003)

See also Cui, 2009; Cui, Hayami, Yin, 2011 for experiments with RIF derived via the Greville’s method (Greville, 1960).

\[Z^T (I - B^{-1})^{-1} Z = D \iff I = Z (Z^T + V^T), \quad V^T = Z^T + L^T \]

Use of L^T and D computed at the same time with Z: BIF (Bru et al., 2008)

- Both direct and inverse factors are computed.
- Sparse computation of both factors is reasonably cheap.
Preconditioning the normal equations by SPD decompositions: VI.

BIF versus Tismenetsky for an SPD matrix PWTK, n=217,918, nnz=5,926,171

Figure: Iteration counts for CG preconditioned by BIF and Tismenetsky/Kaporin IC versus preconditioner size for the matrix PWTK.
Preconditioning the normal equations by SPD decompositions: VII.
BIF versus Tismenetsky for an SPD matrix PWTK, $n=217,918$, $nnz=5,926,171$: II.

Figure: Preconditioner construction time for CG preconditioned by BIF and Tismenetsky/Kaporin IC versus preconditioner size for the matrix PWTK.
Preconditioning the normal equations by SPD decompositions: VIII.

BIF versus Tismenetsky for an SPD matrix PWTK, n=217,918, nnz=5,926,171: III.

Figure: Preconditioner construction time for CG preconditioned by BIF and Tismenetsky/Kaporin IC versus preconditioner size for the matrix PWTK.
Preconditioning the normal equations by SPD decompositions: IX.

- Does the power of BIF transfer into the preconditioning of normal equations?
- At least sometimes?
Preconditioning the normal equations by SPD decompositions: X.

BIF versus IC, NE, S from the animal breeding package, n=1959, m=3140

Figure: BIF versus IC, normal equations, S matrix
Preconditioning the normal equations by SPD decompositions: XI.

BIF versus IC, NE, M from the animal breeding package, n=6019, m=9397

Figure: BIF versus IC, normal equations, M matrix
Preconditioning the normal equations by SPD decompositions: XII.
BIF versus IC, NE, L from the animal breeding package, n=28254, m=17150

Figure: BIF versus IC, normal equations, L matrix
Preconditioning the normal equations by SPD decompositions: XIII.
BIF versus IC, NE, WELL1033, n=28254, m=17150

Figure: BIF versus IC, normal equations, WELL1033
Preconditioning the normal equations by SPD decompositions: XIV.

BIF versus IC, NE, ILLC1033, n=28254, m=17150

Figure: BIF versus IC, normal equations, ILLC1033
Outline

1. Introduction: the Problem
2. Solving the Least-Squares
3. Preconditioning the normal equations by SPD decompositions
4. Preconditioning by LU factors
5. Note on incomplete QR preconditioning
6. Conclusions
Preconditioning by LU factors of A: I.

\[
PA = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = \begin{pmatrix} L_1 \\ L_2 \end{pmatrix} U,
\]

- L_1U is used as a preconditioner for the normal equations and CGLS.
- That is, we apply A_1^{-1} and we do not solve least-squares in for L (Peters, Wilkinson) if we would have well-conditioned L.
- Column permutation we get implicitly by numerical pivoting.
- Less information exploited for preconditioning, hopefully less information excluded.
- In practice, rather underestimated approach.
Finding P is the critical and hard task, see also the talk of Iain Duff in Valencia.

Here just one approach from those that we tried:

- modifications of P4 (Hellermann, Rarick, 1972)
- various crash LP procedures
- matchings

Matchings, but note that in matrices with ones, minus ones and a few of additional values there is often not much to be optimized. Numerical regularity (at least) is very important.
Preconditioning by LU factors of A: II.

- A_1 should be regular, $A_2 A_1^{-1}$ should be reasonably well-conditioned.
- Here just one approach: graph-based preprocessing
- **Transversal**: set of nonzero matrix entries no two of which are in the same row or column
- An example to remind this concept for square matrices:

$$
\begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
$$
Preconditioning by LU factors of A: II.

- A_1 should be regular, $A_2A_1^{-1}$ should be reasonably well-conditioned.
- Our approach: graph-based preprocessing
- **Transversal**: set of nonzero matrix entries no two of which are in the same row or column
- An example to remind this concept for square matrices:
Weighted transversals: maximizing product of absolute value diagonal entries

\[\prod_{j=1}^{n} |a_{p(j),j}| \]

(1)

Equivalent to minimizing the sum

\[\sum_{j=1}^{n} |c_{p(j),j}|, \]

(2)

for

\[c_{ij} = \begin{cases} \log \bar{a}_j - \log |a_{ij}|, & a_{ij} \neq 0, \\ 0, & a_{ij} = 0, \end{cases} \]

(3)
Preconditioning by LU factors of A: IV.

Transversal in the rectangular case

- But we do not consider this transversal as optimal one:

\[
\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 5 & 6 \\
5 & 6 & 8
\end{pmatrix}
\]

(4)

- Enough to find large entries in rows and avoid dense submatrices.
- weights by rows (loosing the minimization property) and additional degrees of freedom (sparsity).

\[
c_{ij} = \begin{cases}
\log \bar{a}_i - \log |a_{ij}|, & a_{ij} \neq 0, \\
0, & a_{ij} = 0,
\end{cases}
\]

(5)

- Incomplete LU done by nonsymmetric balanced incomplete factorization BIF (Bru et al, 2010)
Preconditioning by LU factors of \(A \): V.
LU preconditioning by BIF versus LUSOL with threshold pivoting (version 7.0, 2008), artificial matrix derived from 2D Laplacian, \(n = m/2 \)

![Figure: LU BIF versus LUSOL for an artificial matrix.](image)
Preconditioning by LU factors of A: VI.
LU preconditioning by BIF versus LUSOL, threshold pivoting, M from breeding package.

Figure: LU BIF versus LUSOL for the M matrix, animal breeding package.
Preconditioning by LU factors of A: VII.

LU preconditioning by BIF versus LUSOL, threshold pivoting, L from breeding package.

Figure: LU BIF versus LUSOL for the L matrix, animal breeding package.
Outline

1 Introduction: the Problem
2 Solving the Least-Squares
3 Preconditioning the normal equations by SPD decompositions
4 Preconditioning by LU factors
5 Note on incomplete QR preconditioning
6 Conclusions
Incomplete QR preconditioning A: I.

- Again, can be applied both for CGLS or a nonsymmetric iterative method. Here we stick to CGLS.

- Despite a lot of attention devoted to them, incomplete QR decompositions much less understood and typically very fragile. Far from having as strong procedures as in the case of incomplete Cholesky or even incomplete LU.
Here adding just an experiment with no dropping in Q (all dropping in R) introduced by Ajiz, Jennings, 1984, popularized as CIMGS by Wang, 1993 and Wang, Gallivan, Bramley, 1997 which is equivalent to the incomplete LU/Cholesky described by Tismenetsky, 1991.

Tismenetsky decomposition seems to be very robust, but it is not cheap. New results on fast implementation of this approach for HSL under development: Scott, T., 2012.
Incomplete QR preconditioning A: II.
Incomplete QR as Tismenetsky decomposition versus SPD BIF using CGLS, Hirlam matrix from meteorological observations, m=1385270, n=452200.

Figure: Comparison of the BIF preconditioning of the normal equations with the Tismenetsky preconditioner for the matrix Hirlam.
1. Introduction: the Problem
2. Solving the Least-Squares
3. Preconditioning the normal equations by SPD decompositions
4. Preconditioning by LU factors
5. Note on incomplete QR preconditioning
6. Conclusions
Conclusions

- Three approaches to precondition CGLS considered
Conclusions

- Three approaches to precondition CGLS considered
- Reasonable robustness of BIF applied to normal equations demonstrated.
Conclusions

- Three approaches to precondition CGLS considered
- Reasonable robustness of BIF applied to normal equations demonstrated.
- LU-based decomposition of rectangular systems completed by new combinatorial preprocessing
Three approaches to precondition CGLS considered

Reasonable robustness of BIF applied to normal equations demonstrated.

LU-based decomposition of rectangular systems completed by new combinatorial preprocessing

A lot of things to be done. Preconditioned CGLS far from being really powerful.
Thank you for your attention!
Last but not least

Thank you for your attention!
Last but not least

Thank you for your attention!
Last but not least

Thank you for your attention!