
Evaluation of the Global Mean Sea Level Budget
between 1993 and 2014

Don P. Chambers1 • Anny Cazenave2,3 • Nicolas Champollion3 •

Habib Dieng2 • William Llovel4 • Rene Forsberg5 •

Karina von Schuckmann6 • Yoshihide Wada7

Received: 21 December 2015 / Accepted: 22 July 2016
� Springer Science+Business Media Dordrecht 2016

Abstract Evaluating global mean sea level (GMSL) in terms of its components—mass

and steric—is useful for both quantifying the accuracy of the measurements and under-

standing the processes that contribute to GMSL rise. In this paper, we review the GMSL

budget over two periods—1993 to 2014 and 2005 to 2014—using multiple data sets of both

total GMSL and the components (mass and steric). In addition to comparing linear trends,

we also compare the level of agreement of the time series. For the longer period

(1993–2014), we find closure in terms of the long-term trend but not for year-to-year

variations, consistent with other studies. This is due to the lack of sufficient estimates of the

amount of natural water mass cycling between the oceans and hydrosphere. For the more

recent period (2005–2014), we find closure in both the long-term trend and for month-to-

month variations. This is also consistent with previous studies.
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1 Introduction

Sea level varies on a variety of spatial and temporal scales. Regionally, fluctuations in wind

and currents can cause large deviations in sea level away from the global mean for periods

of years to decades (e.g., Miller and Douglas 2007; Sturges and Douglas 2011; Chambers

et al. 2012; Calafat and Chambers 2013; Palanisamy et al. 2015). One example of regional

sea level change, from the tide gauge at Key West, Florida, is shown in Fig. 1, compared

with an estimate of global mean sea level (GMSL) reconstructed from tide gauge records.

These large regional fluctuations, however, reflect mainly dynamical redistributions of

heat and mass in the ocean and thus should average to zero when integrated over the global

ocean. While the tide gauge network before the 1960s might not be sufficient to completely

average these effects (see Fig. 8 in Calafat et al. 2014), satellite observations of sea surface

height allow us to almost completely average out these internal variations and detect the

smaller GMSL signal. These records show that GMSL has been rising at a rate between 2.8

and 3.6 mm year-1 between January 1993 and December 2014 (90 % confidence bands),

with significant low-frequency variability superimposed (e.g., Nerem et al. 2010; Church

et al. 2013; Ablain et al. 2015).

However, in order to predict future sea level rise, it is not sufficient to just determine the

rate of rise of GMSL. One also needs to understand the mechanisms driving GMSL

variability, and how they are changing in time. The primary mechanisms leading to current

GMSL rise are: (1) water mass lost from ice sheets, glaciers, and ice caps that is gained by

the oceans (e.g., Shepherd et al. 2012; Gardner et al. 2013), (2) volume (density) change

due to thermal expansion as the oceans warm (e.g., Domingues et al. 2008; Levitus et al.

2012), and (3) changes in land water storage (e.g., Wada et al. 2012). Salinity changes due

to land ice melt, river runoff, and changes in evaporation/precipitation increase have only

second-order effects on the GMSL (e.g., Gregory and Lowe 2000). But in practice, as

observations are not exactly global, salinity changes to density should also be accounted

for when data are available. The combined effect of ocean temperature and salinity is

Fig. 1 Yearly averaged sea level change recorded by tide gauges at Key West, Florida compared to GMSL
estimate from Church and White (2011). Tide gauge is from the Permanent Service for Mean Sea Level in
Liverpool, UK
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called the steric component, with the thermal contribution denoted thermosteric, and

salinity contribution halosteric.

Because GMSL and estimates of the steric and mass components have different

uncertainties and the potential for systematic errors, one often investigates the sea level

budget to see how well it closes:

GMSL(tÞ ¼ GMSLmassðtÞ þ GMSLstericðtÞ: ð1Þ

At any particular time, t, the residual (GMSL(t) - GMSLmass(t) - GMSLsteric(t)) is

unlikely to be exactly zero due to random and short-period errors. However, over the long-

term, the residual differences should be small. When they are not, it indicates a problem in

one or more of the terms in Eq. (1).

In addition, the mass and steric components are often subdivided into the various

contributors. For mass, this includes separate estimates for contributions from the

Greenland and Antarctica ice sheets, as well as from glaciers and ice caps. Exchanges of

water mass between the oceans and the continents related to natural variability contribute

significantly to seasonal and interannual contributions (e.g., Chambers et al. 2004; Llovel

et al. 2011; Fasullo et al. 2013; Cazenave et al. 2014, Dieng et al. 2015a; Reager et al.

2016; Rietbroek et al. 2016), while storing water behind dams and extracting water from

aquifers lead to non-negligible trends in GMSL (Chao et al. 2008; Konikow 2011; Pokhrel

et al. 2012; Wada et al. 2012; Wada 2015; Dieng et al. 2015a).

Thermosteric changes are often separated into the upper ocean above 700 m, the layer

between 700 and 1000 m, and the deeper ocean (e.g., Domingues et al. 2008; Purkey and

Johnson 2010; Levitus et al. 2012). This is mainly an artifact of the older observing system,

with substantially more observations in the upper ocean so that yearly averages could be

obtained, whereas for the deeper layers, more temporal averaging is needed to extract the

trend in the thermosteric component of GMSL. The halosteric component due to salinity

changes is poorly known before the advent of the Argo observing system in the early 2000s

(e.g., Durack et al. 2013), so typically, the halosteric contribution is neglected in sea level

budget studies that include data from the 1990s (e.g., Domingues et al. 2008; Church et al.

2011). For this study, we also only consider the thermosteric sea level for the longer time

period (1993–2015) and the steric sea level for the shorter time period (2005–2014).

One way to quantify the closure of the sea level budget is computing trends in GMSL

and the various components over various periods of time, and summing these up to see if

they match within the uncertainty (e.g., Church et al. 2011, 2013). However, with the

advent of global measurements of ocean mass from the GRACE satellite mission (e.g.,

Johnson and Chambers 2013; Llovel et al. 2014) and ocean temperatures and salinity above

2000 m depth from Argo autonomous profiling floats (Llovel et al. 2014; von Schuckmann

et al. 2014), one can now look at the closure on monthly time scales since 2005 (e.g., Dieng

et al. 2015b, c for a recent review).

In this paper, we will review the closure of the sea level budget not only in terms of

trends, but also in terms of the temporal variability of GMSL and its components. We

utilize numerous estimates of GMSL from altimetry, as well as several estimates of the

mass components and thermosteric change. These data sets have slightly different temporal

sampling and filtering applied. To be consistent, we will utilize a common sampling and

filtering scheme to all data. Trends are computed over the same time periods, and

uncertainty is computed accounting for correlated signals in the residuals. We assess the

closure of the sea level budget on two different time periods: January 1993 to December
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2014 (a mixture of all measurements), and January 2005 to December 2014 (GRACE/

Argo/altimetry only).

Section 2 will discuss the specific datasets used, filtering applied, and methods used to

compute trends and uncertainty. Section 3 will summarize the level of closure of the sea

level budget for the three time periods, and Sect. 4 will discuss the results.

2 Data and Methods

2.1 Satellite Altimetry

Products from six processing groups are available for the altimetry-based sea level time

series:

1. Validation and Interpretation of Satellite Oceanographic (AVISO; http://www.aviso.

altimetry.fr/en/data/products/ocean-indicators-products/actualitesindicateurs-des-

oceansniveau-moyen-des-mersindexhtml.html);

2. University of Colorado (CU Release 5; http://sealevel.colorado.edu/).

3. National Oceanographic and Atmospheric Administration (NOAA; http://www.star.

nesdis.noaa.gov/sod/lsa/SeaLevelRise/LSA_SLR_timeseries_global.php).

4. Goddard Space Flight Center (GSFC version 2; http://podaac-ftp.jpl.nasa.gov/dataset/

MERGED_TP_J1_OSTM_OST_GMSL_ASCII_V2)

5. Commonwealth Scientific and Industrial Research Organization (CSIRO; www.cmar.

csiro.au/sealevel/sl_data_cmar.html).

6. The CCI sea level data (ftp.esa-sealevel-cci.org/Products/SeaLevel-ECV/V1_

11092012/), Ablain et al. (2015).

The first five sea level data sets are based on TOPEX/Poseidon, Jason-1 and Jason-2

data averaged over the 66�S–66�N domain, except for the CSIRO data averaged over

65�S–65�N. The CCI dataset is based primarily on TOPEX/Poseidon, Jason-1 and Jason-2,

but also includes data from the Envisat, ERS-1, and ERS-2 altimeter missions after they

have been adjusted to remove orbit error and biases relative to TOPEX/Poseidon, Jason-1

and Jason-2. For each product, a set of instrumental and geophysical corrections is applied

(details are given on the websites of each data set). In addition, the effect of glacial

isostatic adjustment (GIA) using the estimate proposed by Peltier (2004) is accounted for

in each sea level time series except for the NOAA data set. Thus, we corrected the latter for

the GIA effect, by adding 0.3 mm year-1 to the GMSL time series (Peltier 2004).

The sea level time series are obtained either by directly averaging the along-track sea

surface height data (e.g., CU) or by first gridding the unevenly distributed along-track data

and then performing grid averaging (e.g., AVISO and NOAA). In all cases, an area

weighting is applied. In addition to the geographical averaging method, other differences

exist between the GMSL data sets because of the applied geophysical and instrumental

corrections and the number of satellites considered. Discussion on these differences can be

found in Masters et al. (2012), Henry et al. (2014), and Ablain et al. (2015). Details on the

exact corrections applied to the altimetry data are detailed on the webpages of each group.

Five of the time series used in this study cover the period January 1993–December

2014, but one (the CCI product) ends in December 2013. Figure 2 shows the GMSL time

series, after removing an annual and semiannual sinusoids and smoothing with a 3-month

running mean to reduce a 60-day erroneous signal (e.g., Masters et al. 2012). At shorter

time scales (from sub-seasonal to multi-annual) significant discrepancies of several mm are
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observed between the different GMSLs, especially between 2005 and 2008, and between

mid-2010 and mid-2011, when there was a significant drop in GMSL related to changes in

water storage over Australia and South America (Fasullo et al. 2013).

2.2 Steric Sea Level

Before the early 2000s, information on the steric sea level component comes from tem-

perature data, due to the lack of global salinity data, coming primarily from expendable

bathythermographs (XBTs), some mechanical bathythermographs (MBTs) and a much

smaller number of conductivity-temperature-depth casts (CTDs) (e.g., Levitus et al. 2012;

Abraham et al. 2013). The depth ranges of these instruments are very different, with XBTs

mostly going only as deep as 700 m (although some go as deep as 1000–1500 m), while

CTDs often make measurements to the sea floor. In the beginning of the 2000s, with the

advent of the Argo program of autonomous floats (Roemmich et al. 2009), more mea-

surements are available at more regular time intervals and also more globally. The current

average density is approximately 1 float for every 3� 9 3� grid over the ocean. However,

the depth to which Argo floats reach has also changed over time, starting at 1000 m, but

now extending to 2000 m.

Computing steric sea level anomalies from these disparate data is not a trivial matter,

but many groups have done so, using different interpolation and mapping methods, as well

as different corrections for the XBT fall rate biases that have only recently been discovered

(e.g., Gouretski and Koltermann 2007; Wijffels et al. 2008). Some groups use all available

temperature data, while others restrict the estimate to only Argo data.

To quantify the steric component of GMSL change, we will consider different datasets.

For the longer period (1993–2015), we will use two that merge XBTs, MBTs, CTDs, and

Argo data, and provide the thermosteric sea level anomalies as a time series. They are:

1. NOAA data set, at https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT (Levitus

et al. 2012). The data are available as yearly averages of global mean thermosteric sea

Fig. 2 GMSL from altimetry calculated by six different centers. Annual and semi-annual sinusoids have
been estimated and removed, and a 3-month running mean filter has been applied
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level anomalies from the surface to 700 m depth, and 5-year running averages from

the surface to 2000 m depth.

2. Domingues et al. (2008) version 3.1 dataset available from http://www.cmar.csiro.au/

sealevel/thermal_expansion_ocean_heat_timeseries.html. The data are available as

global mean thermosteric sea level anomalies from the surface to 700 m depth at

yearly time steps but with a 3-year running mean filter applied.

To compare the two time series, we have applied a 3-year running mean to the NOAA

time series (Fig. 3). Although the two estimates have similar long-term trends, there are

substantial differences outside the authors’ estimated standard errors at interannual periods.

The biggest differences occur between 2000 and 2006, when the observing system is

transitioning from mainly XBTs to mainly Argo floats. It has been shown that the different

mapping techniques are highly sensitive to the mixture of the XBT/Argo data during this

transition, partly due to small, unknown biases between different instrument types (Lyman

and Johnson 2008; Lyman et al. 2010).

We use the Levitus et al. (2012) estimate of thermosteric sea level to 2000 m, available

as 5-year running means, to estimate the thermosteric component between 700 and 2000 m

depth. We reconstruct the signal between 700 and 2000 m by subtracting 5-year averages

of the Levitus et al. (2012) 0–700 m time series. Uncertainty is that reported by the authors

(after subtracting the uncertainty from 0 to 700 m assuming no correlation).

The only observations of deep thermosteric contributions are trends computed from

deep hydrographic sections (Purkey and Johnson 2010; Kouketsu et al. 2011), estimated to

be 0.11 ± 0.10 mm year-1 [uncertainty 95 % as reported by Purkey and Johnson (2010)]

between approximately 1995–2005. We assume this value represents the trend for the

entire period between 1993.0 and 2015.0.

After 2005, sufficient Argo floats are available to compute steric sea level anomalies

from only these data (von Schuckmann et al. 2014; Roemmich et al. 2015). For this study,

we utilize four different gridded datasets, providing temperature and salinity down to

2000 m depth at monthly intervals. They are:

Fig. 3 Global mean thermosteric sea level contribution for upper ocean (0–700 m) from two analyses along
with one standard error bars as computed by authors (Domingues et al. 2008; Levitus et al. 2012)
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1. The International Pacific Research Center (IPRC; http://apdrc.soest.hawaii.edu/

projects/Argo/data/Documentation/gridded-var.pdfhttp://apdrc.soest.hawaii.edu/

projects/Argo/data/gridded/On_standard_levels/index-1.html)

2. The Japan Agency for Marine-Earth Science and Technology (JAMSTEC; ftp://ftp2.

jamstec.go.jp/pub/argo/MOAA_GPV/Glb_PRS/OI/). Updated from Hosoda et al.

(2008).

3. The SCRIPPS Institution of Oceanography (SCRIPPS; http://sio-argo.ucsd.edu/RG_

Climatology.html). Updated from Roemmich et al. (2009).

4. The estimate from Karina von Schuckmann (KvS). Updated from Von Schuckmann

and Le Traon (2011).

For the IPRC, JAMSTEC, and SCRIPPS data, we computed steric sea level time series

from the surface down to 2000 m at monthly interval on a 1� 9 1� grid for the period of

January 2005 to December 2014 by integrating the density anomalies (defined as differ-

ences between the density estimate and a reference density at 0 �C and 35.16504 absolute

salinity using the equation of state of seawater TEOS10 (http://www.teos-10.org/index.

htm) at each standard depth. The KvS time series was computed using a similar

methodology more fully described in von Schuckmann et al. (2009).

The Argo-based estimates of steric sea level since 2005 show similar decadal trends, but

significantly different monthly and interannual variations (Fig. 4). Differences are of the

order of 5 mm over some periods (2005 and 2010–2011, for example), but closer to 3 mm

over other periods. The standard deviation of the differences ranges from a low of 1.5 mm

between IPRC and JAMSTEC, to 2.9 mm between Scripps and JAMSTEC. IPRC and

JAMSTEC also have the highest correlation of 0.92, while the correlation between Scripps

and JAMSTEC, while still significant, is only 0.63. See Dieng et al. (2015b, c) for a

detailed discussion on these differences.

Fig. 4 Monthly estimates of global mean steric sea level anomalies (seasonal sinusoids removed) computed
from Argo data from four processing centers
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2.3 Satellite Gravity

The GRACE mission measures the Earth gravity field every month, generally released in

terms of normalized spherical harmonic coefficients (Tapley et al. 2004), or more recently

as gridded mass concentrations, or mascons (Watkins et al. 2015). One can convert the

spherical harmonics into ocean mass variations in terms of an equivalent water thickness

using either an averaging kernel approach (e.g., Chambers et al. 2004; Johnson and

Chambers 2013), or more recently, by simply averaging the gridded mascons over the

ocean domain (Watkins et al. 2015).

We utilize both approaches in this study and also use data from the three main pro-

cessing centers—the Center for Space Research (CSR), the Helmholtz Centre Potsdam,

German Research Centre for Geosciences (GFZ), and the Jet Propulsion Laboratory (JPL).

JPL produces both spherical harmonics (SH) and mascons. Each center uses slightly dif-

ferent processing and analysis strategies, but many models and methods are similar. Thus,

while comparison of the ocean mass from the various centers is instructive for quantifying

a level of uncertainty, any systematic errors will not be obvious.

The data utilized are:

1. Averaging kernels from CSR, GFZ and JPL SH coefficients using the method described

in Johnson and Chambers (2013), available from https://dl.dropboxusercontent.com/u/

31563267/ocean_mass_orig.txt.

2. Averaging the JPL mascons (Watkins et al. 2015) over the global oceans, using an

ocean mask that extends to the coastlines. The data are available from: http://grace.jpl.

nasa.gov. Note that these data include a small signal from the global mean atmospheric

pressure over the ocean, as explained in Johnson and Chambers (2013). This has been

estimated and removed using the atmosphere model used to dealias the GRACE

gravity data.

The differences between global mean ocean mass from the three centers and between

spherical harmonics and mascons are small (Fig. 5). The biggest differences of order 5 mm

Fig. 5 Monthly estimate of global mean ocean mass anomalies (seasonal sinusoids removed) from GRACE
computed by three different processing centers based on spherical harmonics (SH) and mascons
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occur at the end and beginning of the records. The overall standard deviation of monthly

differences is 1.6 mm.

2.4 Contributions from Ice Sheets and Glaciers

We consider contributions from the largest ice sheets (Greenland and Antarctica) sepa-

rately from the glaciers and ice caps (GICs). The time series for Greenland and Antarctic

mass balance comes from, for the longer period back to 1993, the synthesis of Shepherd

et al (2012), based on surface mass balance models, synthetic aperture radar data,

altimetry, and gravimetry (available from http://imbie.org/data-downloads/). For the

shorter period since 2003, we use the estimates based only on GRACE computed by the

group at the Technical University of Denmark (Sørensen and Forsberg 2010; Barletta et al.

2013).

GIC data come from an analysis of global glacier models driven by gridded climate

observations, which has been shown to be consistent with extrapolations of in situ mass

balance measurements (Marzeion et al. 2015).

2.5 Contributions from Land Hydrology

Ignoring the contribution from glaciers on continents, which is treated separately

(Sect. 2.3), the land water contribution to sea level variation includes groundwater

depletion, water impoundments behind dams, storage loss of endorheic lakes and wetlands,

deforestation, and changes in soil moisture, permafrost and snow (i.e., natural water stores)

(Church et al. 2011). Natural water storage change mostly varies with decadal climate

variation and with insignificant trend on time periods greater than several decades (Ngo-

Duc et al. 2005; Llovel et al. 2011), but can contribute to the trend on shorter periods

(Cazenave et al. 2014). However, decomposing this signal is still a matter of significant

research and fraught with uncertainties before GRACE observations are available starting

in 2002, so we do not consider it for this study for the longer period 1993–2015.

Instead, we consider only estimates of groundwater depletion, water impoundment,

deforestation, and the loss from large endorheic lakes. The contribution of groundwater

depletion to GMSL is estimated using a flux-based method, i.e., calculating the difference

between grid-based groundwater recharge (natural recharge and return flow from irrigation

as additional recharge) and groundwater pumping (Wada et al. 2012; Wada 2015). This

method, however, overestimates groundwater depletion for humid regions of the world. In

order to correct the estimate, a global multiplicative correction factor is applied to the

original estimate. The correction factor is based on a comparison between regionally

reported groundwater depletion rates and simulated groundwater depletion rates (over 30

regions; Wada et al. 2012). An uncertainty analysis is performed with a Monte Carlo

simulation, generating 100 equiprobable realizations of groundwater recharge and 100

equiprobable realizations of groundwater pumping, thus resulting in 10,000 possible

realizations of groundwater depletion (assuming errors in groundwater recharge and

groundwater abstraction to be independent) (Wada et al. 2012).

Water impoundment behind dams including additional storage in surrounding

groundwater (through seepage) is based on the dataset of Chao et al. (2008). As this dataset

only covers the period 1900–2007, it has been updated to include recently built dams

including the Three Gorges dam and 250 other large dams up to the year 2011 (Wada et al.

2012). After the year 2011, the data are extrapolated. Deforestation rates are estimated

from three different sources, averaged, and converted into a contribution to GMSL (Wada
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et al. 2012). Wetland loss rate is estimated for USA where reported data are available, and

then extrapolated the rate to rest of the world (Wada et al. 2012). Storage loss from

endorheic basins is estimated only for the Aral and Caspian Seas (Wada et al. 2012).

2.6 Temporal Filtering and Combining Similar Data

The datasets previously discussed are provided with a range of temporal sampling, from

monthly to yearly. Moreover, some have been filtered over longer times than they are

sampled. For instance, the upper ocean thermosteric sea level estimate from Domingues

et al. (2008) is provided at yearly time steps, but has had a 3-year running mean applied.

The upper ocean thermosteric estimates from Levitus et al. (2012), on the other hand, are

yearly averages. Thus, direct averaging of the two will lead to spurious differences related

to the different smoothing applied.

Since one cannot unfilter a dataset, we are forced to utilize the longest filtering period

among the datasets in order to make the time series as uniform as possible, and reduce the

effect of unfiltered higher-frequency variability in some data. This means that yearly

sampling and a 3-year running mean filter is applied to the time series that extend back to

1993, including the altimetry (Sect. 2.1), thermosteric (Sect. 2.2), ice contributions

(Sect. 2.3), and hydrology components (Sect. 2.4). For the period 2005–2015, a monthly

average is used, but the seasonal variation is estimated and removed by fitting a sinusoid

term with annual (1 cycle per year, cpy) and semi-annual (2 cpy) frequencies using

ordinary least squares in order to focus on only the interannual and longer variations. A

3-month running mean is also applied to be consistent with the smoothing used with the

altimetry time series (Sect. 2.1).

When multiple datasets are available (e.g., altimetry GMSL, Argo thermosteric

variations, GRACE ocean mass) the time series is averaged to compute an ensemble

mean. Uncertainty is computed from the standard deviation of the residuals of the

individual time series with the ensemble mean. This is assumed to be the standard error at

each time step. For time series without multiple estimates, the uncertainty from the

authors of the data is used. The total thermosteric signal is reconstructed from the

ensemble average of the upper ocean time series (Fig. 3), the estimate from 700 to

2000 m based on Levitus et al. (2012), and the deep warming trend from Purkey and

Johnson (2010). Standard errors in each component are added assuming they are

uncorrelated by using a root-sum-square (RSS).

The satellite altimetry and GRACE observations also have a likelihood of unknown

systematic errors that will affect the trend estimate. For altimetry, this arises from drifts

and biases in the different instruments and the difficulty of detecting it through calibration

with tide gauges, which also have vertical land motion that is often poorly measured

(Mitchum 2000; Ablain et al. 2015; Watson et al. 2015). The full range of possible drift

errors has previously been estimated to be between ±0.4 mm year-1 (Mitchum 2000) and

±0.5 mm year-1 (Ablain et al. 2015). More recently, Watson et al. (2015) found a higher

possible change of 0.6 mm year-1 for the combined record. Here we use the value of

±0.6 mm year-1 to be most conservative. This uncertainty is used for all time periods,

even though Watson et al. (2015) argue it is considerably less for the Jason-1 and Jason-2

altimeters (post 2002). For GRACE, the uncertainty arises from uncertainty in the glacial

isostatic adjustment (GIA) correction and has been estimated to be ±0.3 mm year-1

(Chambers et al. 2010). These uncertainty values are added to those determined from the

internal statistics (Sect. 2.6) using an RSS.
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2.7 Fitting Trends and Computing Uncertainty

While trends do not give a complete picture of the sea level budget closure, they are a useful

tool to detect imbalance and have been frequently used as a measure of the sea level budget

closure (e.g., Church et al. 2011, 2013). We will fit a bias plus a trend (a0 ? a1t) model to each

time series using ordinary least squares (OLS). Uncertainty estimates from ordinary least

squares, however, assumes: (1) The uncertainty is proportional to the standard deviation of

the residuals about the fit, (2) the uncertainty is proportional to 1/sqrt(N), where N is the

number of points, and (3) the N points are statistically uncorrelated. In practice, these

assumptions are rarely all true. For example, by temporally smoothing data, the points are not

uncorrelated, and assumption (3) is violated. Assumption (1) is based on uncertainty arising

from internal, unmodeled variability. But if this is smaller than the standard error of the

estimate, the uncertainty in the trend will be underestimated.

There are several ways to deal with this issue and account for uncertainty properly. For

small numbers of points (\20 or so), using Monte Carlo estimates with a colored noise

model is not preferred, as it is difficult to compute the autocovariance of the data with such

limited samples. This is the case for the longer time span when we have applied a 3-year

mean filter. Instead, it is better to estimate the effective degrees of freedom (eDOF), which

is the number of statistically independent observations minus the number of model

parameters estimated (in the case of the 3-year smoothed data, it is only a bias ? trend, so

2). In the case of the 3-year smoothed data between 1993 and 2015, we assume the points

are uncorrelated after three years. The effective degrees of freedom for each data set are

given in Table 1, noting they vary because the time lengths are slightly different.

Once the eDOF is known, it is straightforward to estimate the corrected uncertainty by

rcorr ¼ rOLS

ffiffiffiffiffiffiffiffiffiffiffiffi

N

eDOF

r

; ð2Þ

Table 1 Estimated trends in GMSL and components between approximately January 1993 and December
2015

Quantity Period Trend (mm year-1) Temporal averaging Effective DOF

GMSL 1993–2015 3.19 ± 0.63a 3-year running means 5

Thermosteric

0–700 m 1992.0–2014.0 0.85 ± 0.2 3-years 5

700–2000 m 1992.0–2014.0 0.24 ± 0.07 5-years 3

Below 2000 m *1995–2005 0.11 ± 0.1 Trend only N/A

Total thermosteric *1992–*2014 1.20 ± 0.23 Sum of component trends N/A

Antarctica 1992.0–2011.0 0.22 ± 0.14 3-years 4

Greenland 1992.0–2011.0 0.37 ± 0.28 3-years 4

Glaciers/ice caps 1992.0–2013.0 0.76 ± 0.30 3-years 5

Hydrology 1992.0–2013.0 0.45 ± 0.16 3-years 5

Total mass *1992–*2013 1.8 ± 0.46

Sum of components 3.00 ± 0.52

Exact time period for each representative time series is given. Uncertainty is 90 % confidence except for the
thermosteric below 2000 m, which is 95 % as estimated by Purkey and Johnson (2010)
a Includes uncertainty in knowing systematic drifts of ±0.6 mm year-1 (added as RSS)
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where rOLS is the standard error from OLS based on the residuals and assuming N

uncorrelated observations, and rcorr is the corrected uncertainty by accounting for the

smaller number of independent observations. However, the corrected uncertainty may still

be too small, if the standard deviation of the residuals about the fit (used to scale the

covariance matrix in OLS) is smaller than the prescribed standard errors for each obser-

vation (robs). In this case, scaling the covariance matrix using the observation errors such

as in weighted least squares (WLS) is better. Thus, to fully compute the most conservative

uncertainty, we calculate both rOLS (based on the residuals to the fit) and rWLS (based on

the observation errors) and derive rcorr based on the greater of the two:

rcorr ¼
rOLS

ffiffiffiffiffiffiffiffiffiffiffiffi

N

eDOF

r

; if rOLS [rWLS

rWLS

ffiffiffiffiffiffiffiffiffiffiffiffi

N

eDOF

r

; if rWLS [rOLS

2
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3
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7

7

5

: ð3Þ

For the monthly sampled datasets between 2005 and 2015, we will use instead a Monte

Carlo simulation based on a set of 10,000 simulated time series residuals that have an

autocovariance similar to the true residuals. To do this, we use an auto-regression (AR)

model to impose correlations to an initial random time series. An AR(p) model estimates

values (y) at some time, t, based on p earlier times scaled by coefficients that had

correlation:

yðtÞ ¼ a1yðt � 1Þ þ a2yðt � 2Þ þ a3yðt � 3Þ þ � � � þ apyðt � pÞ þ eðtÞ ð4Þ

where e(t) is random noise with a prescribed variance.

The coefficients (a) are determined using the Yule-Walker algorithm, based on the one-

sided autocovariance (i.e., where negative lags are treated the same as positive lags in the

computation, assuming symmetry):

a1
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r2
e ¼ R0 �

X

p

k¼1

akRk

ð5Þ

R0 is the autocovariance at lag=0, R1 is the autocovariance at lag = 1, etc., and re is the

standard deviation of the random noise needed to match the covariance at lag = 0.

Starting from 10,000 random time series with a standard deviation equal to that of the

residuals, we derive and use the coefficients of an AR(3) model and create a 10,000

different colored noise models so that the covariance to lag-3 matches that of the original

residuals. For the monthly sampled time series from 2005 to 2015, we do not consider the

uncertainty of the observations, as the standard deviation of the residuals is higher than the

observation error for all time series (altimetry, GRACE, Argo). We then fit trends to these

simulated residuals, and the standard deviation of the 10,000 sample trends is used as one

standard error for the trend uncertainty. This will properly inflate the uncertainty to account
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for correlation in the time series. The degrees of freedom are computed from the auto-

correlation of the time series, based on dividing the full time length in months by the

decorrelation time, and rounding down. The decorrelation time is computed as twice the

lag at which the autocorrelation drops below 0.5. The effective degrees of freedom are

reduced by 6 (bias ? trend, plus the previously estimated annual/semi-annual sinusoid).

All uncertainties are scaled to 90 % confidence, assuming a two-tailed t-distribution and

accounting for the eDOF.

3 Results and Analysis

3.1 1993 to 2013

Figure 6 and Table 1 summarize the results of our assessment of the sea level budget from

January 1993 to approximately December 2013. The end date is approximate, because

several of the time series end earlier (notably the estimated from the Greenland and

Antarctica ice sheets). The majority of the data have end dates in 2013.

Based on assessment of the trends over the 20-year interval (Table 1), the sea level

budget closes within the uncertainty. The trend in GMSL is 3.19 ± 0.63 mm year-1, while

the trend in the sum of the components is 3.00 ± 0.52 mm year-1. Thus, we have con-

fidence that we understand the various contributors to GMSL rise over the last 20 years, at

least within our current ability to measure them. The largest single contributor has been

thermal expansion, explaining about 40 % of the trend (comparing relative to the sum of

all components). The upper ocean alone explains about 28 % of the trend, with about 8 %

coming from the middle layers, and 4 % from the deep ocean below 2000 m.

The contributors that combine to increase ocean mass, however, explain 60 % of the

trend. Thus, the mass component of sea level rise between 1993 and 2014 was roughly

50 % greater than thermal expansion. Of the contributors, the glaciers and ice caps outside

of Greenland and Antarctica had the largest effect (*25 % of total GMSL), hydrology the

Fig. 6 Three-year running means of GMSL from altimetry, its components, and the sum of the components
from 1993.0 to 2014.0. Uncertainty bars are one standard error as described in text
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next (*15 %), then Greenland (*12 %), and finally Antarctica (*7 %). However, the

contribution from Greenland has accelerated in recent years, as shown by several recent

studies (e.g., Shepherd et al. 2012; Schrama et al. 2014; Velicogna et al. 2014; Yi et al.

2015). This is evidenced in Fig. 6 by the increasing separation between Greenland and

Antarctica contributions. By 2010, the contribution to GMSL from Greenland has equaled

the amount estimated from hydrological sources.

Although trends agree well, the time series of GMSL from altimetry and the sum of the

components do not agree that well (Fig. 6). They disagree significantly at low frequencies.

This is likely because our hydrological estimate does not include natural climate fluctu-

ations in water cycling between the oceans and continents (Sect. 2.4). It is known that these

signals on interannual (3- to 5-year time scales) can be of order 10 mm or so (e.g., Fasullo

et al. 2013; Cazenave et al. 2014). These variations will be reflected in the GMSL estimate

from altimetry, but not in the sum of the components.

3.2 2005 to 2014

Our ability to balance the sea level budget improves significantly after 2005 (Fig. 7;

Table 2). Now, by measuring ocean mass directly from the satellite gravity measurements,

we can observe similar low-frequency variability, for example, the significant drop of

approximately 5 mm in 2011, followed by a subsequent rise of 16 mm between 2011 and

2013, followed by another 5 mm drop in late 2013 (Fig. 7). These are all related to

exchanges of water mass between the oceans and continents and have only small steric sea

level signatures. The perturbation in 2011 has been linked to anomalous rainfall over

mainly Australia, with a lesser contribution from South America (Fasullo et al. 2013).

As with the 20-year period, the sea level budget over the last 10 years closes to within

the uncertainty (Table 2). The rate in GMSL from altimetry is nearly unchanged from the

20-year estimate (3.17 ± 0.67 vs. 3.19 ± 0.63 mm year-1). Although a few recent studies

have found lower rates of GMSL over the last 10 years or so, these are affected by the

Fig. 7 Three-month running means of GMSL from altimetry, ocean mass from GRACE, and the
thermosteric component from Argo for 2005.0–2015.0 (seasonal sinusoids removed). Time series are
ensemble means and uncertainty bars are one standard error as described in text
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large interannual variability since 2011 (Cazenave et al. 2014). Earlier studies based on a

scaling of El Niño indices suggested at least 15 years of data are necessary to distinguish

longer term GMSL rise from that related to internal, natural variability (Nerem et al. 1999).

Thus, one needs to be cautious of over-interpreting small changes in trends with short

records.

The total steric contribution to GMSL is slightly smaller in the last decade than over the

20 years, while the mass component is slightly higher, although the means agree within

uncertainty. Although we do not partition the ocean mass component into individual

components from 2005 to 2014 due to limited degrees of freedom in the glacier and

hydrology data, we do compare the relative contribution of Greenland and Antarctica mass

loss (as measured by GRACE) to mean ocean mass (Fig. 8).

Over the last decade, the trend in Antarctica mass loss accounts for 3–27 % (central

value 16 %) of the trend in global ocean mass, while Greenland accounts for 21–40 %

(central value 32 %), when uncertainty is included in the possible spread. Greenland and

Antarctica now account for about for 18–43 % (central value 28 %) of total GMSL rise,

approximately the same amount as thermal expansion (25–56 %, central value 37 %). The

contribution from glaciers and hydrology make up the remaining 35 %. Compare that to

the period that includes the 1990s before the ice sheets began losing mass at an accelerated

rate, when Greenland and Antarctica accounted for only *20 % of the GMSL rate, while

glaciers and hydrology accounted for *40 %, based on the central values.

4 Conclusions

The results of this study are in agreement with previous estimates of the sea level budget

(e.g., Church et al. 2011, 2013; Llovel et al. 2014; von Schuckmann et al. 2014; Dieng

et al. 2015a, b, c). The main differences are in the slightly different time periods we study,

along with what we consider more robust uncertainty estimates. The overall conclusion is

that the sea level budget closes on both the longer (1993–2014) and shorter period

(2005–2014) within the uncertainty. This gives us high confidence in the disparate mea-

surements that go into the budget calculation. It also gives us increasing confidence that we

Table 2 Estimated trends in GMSL and components between approximately January 2005 and December
2014 and from the representative time series

Quantity Period Trend (mm year-1) Temporal averaging Effective DOF

GMSL 2005.0–2015.0 3.17 ± 0.67a 3-month running mean 10

Thermosteric

0–2000 m 2005.0–2015.0 0.86 ± 0.11 3-month running mean 10

Below 2000 m *1995–2005 0.11 ± 0.1 Trend only N/A

Total thermosteric *2005–*2015 0.97 ± 0.15 Sum of component trends N/A

Mass 2005.0–2015.0 2.11 ± 0.36b 3-month running mean 10

Sum of components 3.08 ± 0.39

Exact time period for each representative time series is given. Uncertainty is 90 % confidence except for the
thermosteric below 2000 m, which is 95 % as estimated by Purkey and Johnson (2010)
a Includes uncertainty in knowing systematic drifts of ±0.6 mm year-1 (added as RSS)
b Includes uncertainty in GIA of ±0.3 mm year-1 (added as RSS)
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can partition the sources driving the observed rise in GMSL of *3.2 mm year-1. From the

sea level budget exercise, we know that thermal expansion drives about 40 % of the signal,

with the majority of the expansion in the upper 700 m of the water column. Temperature

changes in the deeper ocean, while smaller, still contribute significantly. Of the remaining

60 %, glaciers and ice caps outside of Greenland and Antarctica contribute the most

(*25 % of total GMSL), Greenland and Antarctica ice sheets the next most (19 %), and

hydrology the next (*15 %).

Over the last decade, the contributions from Greenland and Antarctica have accelerated

considerably. Since 2005, Greenland has contributed 21 % of GMSL rise, while Antarctica

has contributed 11 %. Combined, this is nearly a third of GMSL rise, and increase of

nearly 68 % compared to the 20-year trend. The trend in GMSL over the two time intervals

is roughly the same value (*3.2 mm year-1). Thus, only by measuring the components of

GMSL separately are we able to deduce changes in the mechanisms responsible for GMSL

change, which allows us to better understand the processes.

These estimates, however, are based on the center of the possible spread of the trends.

Unfortunately, we are still limited in reducing the spread due to potential systematic error

in the observing system. The two largest uncertainties that have been documented are the

inability to constrain the drift in altimeters to better than ±0.6 mm year-1 and the GIA

uncertainty on gravimetry estimates of ocean mass (±0.3 mm year-1). As these are sys-

tematic, they will not be reduced by longer time series, unlike the error arising from

unmodeled internal variability, which is reduced by a factor of 1/sqrt(n). Thus, concerted

and continued efforts are needed to understand, measure, and correct systematic uncer-

tainty in all portions of the observing system. Although the sea level budget closes to less

than 0.2 mm year-1 (Tables 1, 2), this is just as likely to be a fortuitous cancellation of

systematic errors as a real indication of accuracy.

Finally, it is vital to continue the observations of not only GMSL, but also the steric and

mass components. Greenland and Antarctica contributions can be most directly observed

via space-based gravimetry measurements, which provide an important constraint on other

types of measurements (altimetry measurements of topography or input–output methods).

Fig. 8 Three-month running means of global mean ocean mass from GRACE, and the contributions from
Greenland and Antarctica, also measured by GRACE
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The independent Argo measurements confirm a slightly lower steric contribution, leaving

no significant change in GMSL. In addition, expansion of the Argo measurements below

2000-m depth is important, as the only information we have from the deeper ocean are

from more limited CTD casts. Although these are highly precise instruments, and deep

ocean temperature/salinity are more correlated over larger regions, the low data availability

results in uncertainty of order 50 %. Although the deep ocean is only a small contributor to

sea level rise, as more heat is sequestered into the deeper ocean due to deep water for-

mation, it may play an increasing role, considering that the volume of the deep ocean

(below 2000 m) is nearly half that of the total ocean.
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