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Abstract

The development of gas turbines towards lean combustion increases the susceptibility of the
flame to flow perturbations, and leads more particularly to a higher risk of combustion instabil-
ity. As these self-sustained oscillations may affect the performance of the combustion device
or even cause structural damage, it is very important to be able to predict this behaviour at the
design level. The methods used at present for the description of combustion instabilities are
numerous and range from powerful yet very CPU time demanding LES and DNS calculations
to low-order network models.
An intermediate method consists in solving a set of equations describing the acoustic field us-
ing a finite volume technique. This allows to take into account geometrical details that cannot
be represented by network models, but needs less time and resources than a LES calculation.
It is therefore this latter approach that has been used for conducting the present study.

This thesis discusses the impact of a non zero Mach number mean flow field on thermo-
acoustic instability. The study is based on the linearized Euler equations, which are stated in
the frequency domain in the form of an eigenvalue problem and solved using a finite volume
technique. Using the linearized Euler equations rather than the Helmholtz equation avoids
making the commonly used assumption of the mean flow being at rest, and thus allows to take
into account convection effects and their impact on the stability of the system. Among the
mechanisms that can be studied using the present approach is namely the impact of convected
entropy waves. This is especially interesting in combustion applications, where hot spots are
created in the flame zone and then transported downstream by the mean flow, where they may
interact with the acoustic field in zones of non-uniform mean flow.

In order to investigate the problem of thermo-acoustic instability for quasi-1D and 2D con-
figurations, two numerical solvers have been developed and are presented in this thesis. The
results obtained with these codes are compared to results of a Helmholtz solver, analytical mod-
els and experimental data. In order to asses the effect of the mean flow terms on the modes’
stability, an analysis of the disturbance energy budget is performed. Finally, the aspect of
the eigenmodes being non-orthogonal and thus allowing for transient growth in linearly stable
systems is adressed.

Keywords: Combustion Instability, Acoustics, Linearized Euler Equations, Mach number ef-
fects, Entropy waves, Eigenvalue Problem, Non-normality
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Résumé

L’évolution des turbines à gaz vers des régimes de combustion en mélange pauvre augmente
la sensibilité de la flamme aux perturbations de l’écoulement. Plus particulièrement, cela
augmente le risque d’apparition d’instabilités de combustion. Comme ces oscillations auto-
entretenues peuvent alors affecter le processus de combustion ou même causer des dommages
structurels, il est très important d’être capable de prédire ce phénomène au niveau de la con-
ception. Les méthodes utilisées à l’heure actuelle afin de décrire les instabilités de combustion
sont nombreuses. Elles vont des Simulations aux Grands Echelles (SGE ou, plus couramment,
LES), qui sont à la fois performantes et exigeantes en termes de mémoire et temps de calcul,
jusqu’aux codes réseaux.
Une méthode intermédiaire consiste à résoudre un système d’équations simplifiées en utilisant
des techniques de type éléments- ou volumes finis. Cela permet de prendre en compte des
détails géométriques qui ne peuvent être représentés par des modèles réseaux, tout en diminu-
ant le temps de calculs par rapport aux calculs de type LES. L’étude effectuée dans cette thèse
repose sur cette dernière approche.

Cette thèse vise à discuter l’impact d’un écoulement moyen à vitesse non négligeable sur les
instabilités thermo-acoustiques. La méthode utilisée consiste à résoudre les équations d’Euler
linéarisées, qui sont écrites dans le domaine fréquentiel sous la forme d’un problème aux
valeurs propres, et discrétisées avec un schema de type volumes finis. Comme les équations
d’Euler linéarisées ne contiennent pas l’hypothèse d’un écoulement moyen à Mach nul (à
la différence de l’équation de Helmholtz, qui est utilisée plus couramment pour décrire le
phénomène consideré), la resolution de ce système d’équations permet de tenir compte des ef-
fets causés par la convection, et de leur impact sur la stabilité des modes. Parmi les mécanismes
qui peuvent être étudiés se trouve notamment l’effet des ondes d’entropie convectées. Dans une
chambre de combustion, ces ondes sont créées dans la flamme et puis transportées vers l’aval
avec l’écoulement moyen, où elles peuvent interagir avec le champ acoustique dans des zones
d’écoulement moyen non uniforme.

Afin d’étudier le phénomène des instabilités thermo-acoustiques dans des configurations
quasi-1D et 2D, deux solveurs numériques ont été développés et sont presentés dans cette thèse.
Les résultats obtenus avec ces deux codes sont comparés à des résultats d’un solveur Helmholtz
et de modèles analytiques ainsi qu’à des données experimentales. Afin de déterminer l’effet
des termes liés à la vitesse de l’écoulement moyen sur la stabilité des modes, une analyse
de l’énergie contenue dans les perturbations est effectuée. Finalement, l’aspect de la non-
orthogonalité des modes propres, qui permet une croissance d’énergie transitoire dans un
système linéairement stable, est abordé.

Mots Clefs: Instabilité de combustion, Acoustique, Équations d’Euler linéarisées, Effets du
nombre de Mach, Ondes entropiques, Problème aux valeurs propres
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Chapter 1

Introduction

Thermoacoustic instability is a term that covers a wide range of phenomena in which acous-
tic oscillations are caused and maintained by thermal sources. The so-called ”singing flame”,
which refers to a flame producing sound when placed inside a tube of proper length, was ob-
served by Higgins as early as in 1777 [44]. Among other early studies on the subject one may
cite the works of Sondhauß, Rijke and Rayleigh [87, 89, 105]. The studies of Sondhauß exam-
ine the spontaneous excitation of acoustic oscillations that had been observed by glass blowers:
a glass tube open on one end and with a closed bulb other end may produce sound when the
bulb is heated. Rijke describes the onset of acoustic oscillations in a vertical tube that is open
on both ends and which contains a heated metal grid. This heated grid causes an upstream air
flow, that convects possible fluctuations in heat release rate. When the heat source is placed at
a quarter of the tube length from the bottom end, the heat release rate fluctuations may couple
with the acoustic field in a way as to cause self-excited oscillations.
It was Rayleigh who first stated a criterion about the possible existence of such oscillations [86]:

”If heat be given to the air at the moment of greatest condensation, or be taken from it at
the moment of greatest rarefaction, the vibration is encouraged. On the other hand, if heat be
given at the moment of greatest rarefaction, or abstracted at the moment of greatest condensa-
tion, the vibration is discouraged.”

Rayleigh’s criterion may be cast into a mathematical expression, stating that the unsteady
heat source adds energy to the acoustic field if the unsteady heat release rate q1(x, t) is in
phase with the pressure fluctuations at the location of the heat source p1(x, t). This necessary
condition for the existence of combustion instability is satisfied if∫ ∫ ∫

p1(x, t)q1(x, t)dV > 0. (1.1)

While these early works were dedicated to sound produced by thermal sources, a somewhat
opposite effect has been shown by Merkli & Thomann in 1975 [69]: They demonstrated that
the wall temperature in an acoustic resonator decreases at the locations of acoustic velocity
maxima.
Each of these two effects due to coupling between a heat source and an acoustic field can be
exploited in so-called thermoacoustic engines. Subsequently to theoretical work of Rott [90]
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INTRODUCTION

in the 1970s and 1980s, such devices have been developed in several configurations. They are
based either on the first phenomenon and use a heat source to create sound [110], or on the
latter one, using sound waves to pump heat [118]. It is also possible to combine both effects,
using a heat source to create sound waves that serve then as a source of power for a cooling
device [1]. Besides, these devices can be designed in very small dimensions, which makes
them conceivable as cooling devices in microelectronic circuits where they may remove heat
by acoustic radiation [111].

Coming back to combustion-driven oscillations, the situation is somewhat different: These
phenomena are in general rather detrimental, which is why extensive research about their ap-
pearance and avoidance is conducted.

1.1 Combustion Instabilities

1.1.1 Overview

Combustion instabilities have been observed in devices as different as blast furnaces, heating
units, gas turbines or rocket engines [123]. While the mechanisms that lead to the excitation of
acoustic oscillations are different and depend on the respective configuration, the instabilities
have the common point of being in general unexpected, undesirable and often of significant
amplitude.
One often cited example of impressing combustion instabilities is the F-1 engine, that was de-
signed in the 1950s to power the Saturn V rocket. As reported by Zinn & Lieuwen [123], this
engine ”[...] encountered instabilities with amplitudes up to 100% of the mean combustor pres-
sure, (i.e., more than 2000 psi 1)”. The difficulty of describing the phenomenon at the design
stage implicated the necessity of long and costly testing campaigns.

With the development of high performance combustion devices, in the energy supply sector
as well as in the aerospace industry, the problem of unstable combustion came into focus and
led to extensive research on the subject [12, 26, 50]. Combustion instability may occur in
a variety of configurations, each with specific characteristics. The instabilities can hence be
classified according to key criteria, such as frequency ranges, driving mechanisms or their
extent in the system. Barrère & Williams [7] distinguish in a first place three ”classes of
instabilities”:

1. instabilities that are restricted to the combustion chamber

2. instabilities that involve interaction with other parts of the system, such as feeding lines
or the device’s structure

3. instabilities that are inherent to the chemical reactants, depending for example on com-
bustion kinetics.

Even though individual cases may bear characteristics of more than one of these categories,
they give a first impression of the complexity of the problem. Concerning combustion chamber
instabilities, Barrère & Williams differentiate further between

• acoustic instabilities, characterized by the appearance of resonant acoustic modes in the
combustion chamber

1corresponds to ≈ 140 bar
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1.1. COMBUSTION INSTABILITIES

• shock instabilities involving propagating shock or detonation waves due to high combus-
tion intensity

• and fluid-dynamic instabilities, that are characterized by specific flow patterns such as
vortices.

This thesis focusses on instabilities that may occur in gas turbine combustion chambers as a
result of flame-acoustic coupling. The understanding of this kind of instabilities requires hence
knowledge about the acoustic field and the flame as a source of heat, as well as their interaction
via excitation and damping mechanisms.

1.1.2 Excitation Mechanisms

The process of thermoacoustic instabilities can be divided schematically into two parts [29]:
For one, a driving process that relates an incoming flow perturbation to a fluctuation of the
flame’s heat release rate q1. This leads subsequently to acoustic pressure perturbations. Sec-
ondly, a feedback mechanism that links perturbations in downstream regions to the flow up-
stream of the flame, which is generally based on acoustic propagation.

combustion 

acoustics 

q1 

u1 

acoustics 

u1 

flow perturbation 

Figure 1.1: Feedback Loop leading to self-sustained oscillations. q1: fluctuation of heat release rate;
u1: velocity fluctuation.

The feedback loop created this way may excite self-sustained oscillations when the pro-
cesses involved lead to a situation where the Rayleigh criterion of Eq. (1.1) is satisfied, i.e.
where the unsteady heat release rate of the flame is in phase with acoustic pressure perturba-
tions and thus enhances the perturbations. In order to asses the stability of the system, it is thus
necessary to identify the processes that link pressure and heat release rate fluctuations, in order
to be able to evaluate their phase shift.
That this is not always simple is illustrated in a review by Culick [20], where an example of
the processes leading to instability is discussed as follows: A pressure drop in the chamber at
time t allows an increased fuel mass flow through the injector. Burning at the time t + τ , the
additional fuel causes an increased heat release rate. If this surplus in heat release rate occurs
now at a moment where the pressure is reincreasing, it will enhance the pressure growth and
destabilize the system. The important issue is therefore to evaluate the time lag τ , which rep-
resents in this example the time between the injection of the fuel and the heat release due to
its combustion. This time lag is however composed of contributions resulting from separate
mechanisms: in the present example, these are the time delay due to the transport of the fuel
from the injector to the flame at a given velocity; and further a time delay due to combustion
itself, i.e. linked to vaporization, reaction kinetics, and other factors. It is hence necessary not
only to identify all processes that are involved in the combustion process, but also to determine
their characteristic time scales.
As illustrated in Fig. 1.2, a positive feedback is obtained when the total time lag is of the order

3



INTRODUCTION

t 

1 

2 

3 

p’ 

q’ 

Figure 1.2: Response of flame to pressure fluctuation with different time lags τ . The Rayleigh criterion
is satisfied if the time lag between pressure and heat release rate is −π/(2ω) < τ < π/(2ω).

of the acoustic period, or more precisely for −π/(2ω) < τ < π/(2ω). As pointed out by
Zinn & Lieuwen [123], this means that the stability of different modes is governed by different
mechanisms, in the sense that a driving process with a time scale suitable to excite one mode
does not necessarily have an impact on another mode. At the same time, a change in operating
conditions may change the time scale and thereby the effect of certain mechanisms. In the
example cited above, a change in fuel injection velocity would directly modify the time delay.
This, in turn, changes the frequencies for which positive feedback is possible.
The identification and characterisation of driving and feedback mechanisms is thus crucial for

the understanding of combustion instability. Among the key mechanims one finds the follow-
ing [11, 29, 123]:

• flame-vortex interaction:

– vortex roll-up causes rapid changes in flame surface area, which in turn leads to an
unsteady heat release rate

– fresh gas is taken along in vortex structures and ignited further downstream, causing
sudden increase in heat release rate

• flame-flame and flame-boundary interaction generates fluctuations in flame surface area
and hence in heat release rate

• flame surface wrinkling can be caused by acoustic waves impinging on the flame and
cause heat release rate fluctuations

• equivalence ratio fluctuations due to inhomogeneities in fuel composition cause unsteady
combustion

As mentioned above, this list of mechanisms is not comprehensive. A further difficulty in the
description of combustion instability lies in the fact that these mechanisms do in general not
occur separately: It is then a challenging task to identify the processes responsible of the major
contributions for a given configuration.

1.1.3 Damping Mechanisms

As a counterpart to the excitation mechanisms, a number of damping and loss mechanisms im-
pede the appearance of instabilities or limit their growth. Among the most important processes
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1.1. COMBUSTION INSTABILITIES

one finds the following [123]:

• radiation: some of the acoustic energy of resonant modes in cavities or ducts that have
open outlets propagates to the far field (cf. for example organ pipes)

• convection: in cases where a mean flow is present in the domain, it will take some of the
acoustic energy with it when leaving the system

• thermal and viscous dissipation:

– boundary layers near rigid walls lead to imperfect reflection of acoustic waves, thus
inducing loss of acoustic energy [88, 98, 123]: an acoustic wave that interacts with
the thermal and acoustic boundary layers may transform some of its energy into
vortical velocity fluctuations and entropy fluctuations.

– flow separation and vortex shedding: at sharp egdes, the separation of the flow field
from the surface and the consequential formation of vortices allows the transfer of
acoustic energy into vorticity.

• transfer of energy between acoustic modes: the combustion chamber acting as a res-
onator, combustion instability occurs in general at specific frequencies. Nonlinear mech-
anism allow the transfer of energy from the unstable mode to other modes, such as its
higher harmonics or subharmonics. This extraction of energy from the unstable mode
has thus a stabilising effect for the system.

1.1.4 Criteria for Stability

As a result of the mechanisms discussed above, instability will eventually occur if the energy
added to the system by driving mechanisms outbalances the energy lost by damping. It is hence
of interest to be able to judge under which circumstances this is the case.
The Rayleigh criterion introduced before describes the conditions under which the flame will
act as a source term. However, it is not sufficient to evaluate the stability of a system, as it
does not account for loss terms. In order to estimate if a system is stable or unstable, the actual
impact of energy sources and energy loss have to be compared.
To this end, the magnitude of the source term due to unsteady heat release rate is integrated
over the domain’s volume V and compared to the losses caused by acoustic energy flux across
the domain’s bounding surface A. Instability may then occur if the integrated source term
outweighs the energy loss, i.e. if the following inequality is satisfied [75, 82]:∫ ∫ ∫

γ − 1
γp0

p1(x, t)q1(x, t)dV >

∫ ∫
p1(x, t)u1(x, t) · ndA, (1.2)

where γ and p0 denote the heat capacity ratio and mean pressure, respectively, and p1, u1 and q1

perturbations of pressure, velocity and heat release rate. Furthermore, in cases where entropy
fluctuations s1 are susceptible to play an important role, the perturbations cannot be described
in terms of acoustic energy, but require a more general definition that has been proposed as
disturbance energy by Chu [16]. Following this approach, the flame acts as a source term if∫ ∫ ∫

T1(x, t)q1(x, t)dV > 0,

5



INTRODUCTION

i.e. if temperature fluctuations T1 and heat release rate fluctuations q1 are in phase, and not
pressure and heat release rate fluctuations as required by the Rayleigh criterion. Equivalently to
the expression of Eq. (1.2), an extended stability criterion predicts the growth of perturbations
if [75]: ∫ ∫ ∫ (T1q1

T0
− p0

rCp
s1u1 · ∇s0

)
dV >

∫ ∫
p1(x, t)u1(x, t) · ndA (1.3)

where s0 is the mean entropy, r the gas constant and Cp the heat capacity at constant pressure.
In contrast to Eq. (1.2), the source (i.e. LHS) term of the above expression also takes into
account the increase of mean entropy that occurs across the flame in combustion applications.
Yet these criteria, though of increasing complexity, do not reflect all driving and damping
mechanisms: for example, losses due to convection effects are not included in Eq. (1.2). Based
on the consideration of Myers [72] on the balance of disturbance energy, more complete ex-
pressions have therefore been derived in the last years [40, 53]. They will be discussed in
section 2.3.2.
The stability criteria stated above illustrate nevertheless that various factors are involved in the
appearance of combustion instability, and that, in order to avoid this phenomenon, one may
either increase the loss terms, or impede source mechanism. This balance is thus the basis for
developing passive [106, 112] and active [11, 27, 68] control solutions.

1.1.5 Linear and Nonlinear Mechanisms

The mechanisms that control the stability of a system can be divided in linear or non-linear
categories. Linear processes describe the behaviour of small amplitude oscillations, for which
the strength of driving and damping processes is directly proportional to the amplitude. The
onset and initial growth of instability is governed by linear processes [123], which justifies the
use of linear stability models to determine whether combustion instability will occur or not.

However, linear theory predicts unlimited exponential growth of perturbations in the case of
unstable systems, i.e. something that cannot exist in reality. As the perturbation amplitude in-
creases, non linear processes, i.e. mechanisms that are not a linear function of the perturbation
amplitude, start to govern driving and damping processes, and restrict the perturbation to a limit
cycle amplitude. These mechanisms result from non linear terms in the governing equations
of fluid dynamics, such as convective terms like (ρu∇u) in the Navier Stokes equations or the
non linear relationship between pressure and density p(t)/p0 = (ρ(t)/ρ0)γ [123]. Nonlinear
terms are of importance when the amplitude of the perturbations approaches the order of the
mean flow quantities, i.e when they exceed a threshold of about 10% of the mean flow values.

Another aspect to keep in mind is that a system that is predicted to be stable by linear theory
may be nonlinearly unstable, i.e. it is stable when subjected to small amplitude perturbations,
but may be unstable when subjected to large amplitude perturbations. This behaviour - in
general referred to as triggering - has been observed in liquid and solid fuel rockets, where
the high amplitude initial perturbations can occur due to batch-wise burning of fuel or when
solid material is ejected through the exhaust nozzle [21]. However, according to Lieuwen [62],
triggering may probably also occur in gas turbines, as a result of mechanisms driven by flame
area-fluctuations.
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1.2 Numerical Prediction of Thermoacoustic Instabilities

At present, several methods are used to describe combustion instabilities, ranging from Large
Eddy Simulations (LES) to low-order network models. They differ in the degree of mathe-
matical modelisation, geometrical simplifications, their ability to predict linear or non-linear
instability and last but not least their computational cost.
Furthermore, time-domain and frequency-domain methods are distinguished. The former re-
produce the physical processes following the order they actually take place in the system, in
stages of initial, transient and long term behaviour. In contrast to that, the latter allow to de-
scribe the system in terms of periodical effects. In computations of thermo-acoustic instability,
this is applied for example in the form of eigenmode computations, where the system is de-
scribed in terms of resonant modes. Their form, frequency of oscillation and growth rate allows
to identify patterns that are not necessarily clearly visible in a time-domain computation. The
reason is that these latter reflect the actual behaviour of the system, which is governed by one
single, more precisely the most unstable, mode. A disadvantage of eigenmode approaches is
however that they do not allow to predict the actual amplitude of the perturbations in a simple
way.

1.2.1 Large Eddy Simulations

As most elaborate method, Large Eddy Simulations (LES) solve the three-dimensional un-
steady Navier-Stokes equations, and therefore include both a solution for the mean flow field
and for the fluctuations in the sense of acoustic perturbations. Including the effects of chem-
ical reactions, turbulence, compressibility and viscosity, this method allows to capture flame
dynamics as well as flame acoustic interaction.
This method can be applied to very complex geometries and deal with a great number of flow
configurations, which allows quite a realistic representation of industrial applications. While
still limited in rocket engine calculations, LES is used successfully in the prediction of gas
turbine instability [67, 100, 121]. Large Eddy Simulations do not only predict the onset of
instability and its linear growth, but capture also non-linear mechanisms that lead to saturation
and allow thus to deduce the limit cycle amplitudes of oscillations. However, when an LES
predicts the appearance of combustion instability in a configuration, it is still a challenging
task to determine its cause and find ways to control it.
The major inconvenience of this type of computation is their huge demand in computation time
and memory, which results from the fact that not only the large scale acoustics are considered,
but also small scale phenomena such as turbulence and combustion. This means that not only
the resolution of the computational grid has to be extremely fine in order to capture all of the
considered effects, but also that the system of equations to be solved is accordingly complex.

1.2.2 Acoustic Analysis based on Linearized Equations

As an alternative to LES computations, a number of less elaborate, yet very effective methods
based on linearized equations exist. The linearisation is based on the conservation equations
for mass, momentum and energy, in which the flow variables are decomposed into expressions
for the mean flow field and small-amplitude perturbations. The conservation equations being
satisfied for the mean flow field, one may deduce a set of equations for the perturbations, con-
taining terms of first order only. These linearized equations for space-time evolution of small
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perturbations can then be solved directly in the time domain, or modified by including addi-
tional assumptions about the mode shape or temporal evolution.
As the mean flow field is not part of the solution, the relevant mean flow quantities (such as the
speed of sound) have to be determined beforehand. Besides, the interaction of the flame and
the acoustic field needs to be described by a suitable model.
Some of the aspects concerning this kind of analysis, such as different ways of spatial discreti-
sation of the computational domain, time or frequency domain approaches, or flame descrip-
tion, are adressed in the paragraphs below.

1.2.2.1 Galerkin Method

The linearization of the equations of conservation yields a system of partial differential equa-
tions for the perturbations. To solve these equations, different methods exist: one possibility is
to apply a Galerkin method, as has been discussed by Culick [20] and later by Dowling [24].
In these works, the description of the acoustic is based on an inhomogeneous wave equation
for pressure perturbations p1

∇2p1 −
1
c2

0

∂2p1

∂t2
= h, (1.4)

where c0 is the speed of sound and h denotes a source term. A boundary condition relates the
pressure gradient normal to the wall to the flux term f :

∇p1 · n = f (1.5)

To simplify the analysis, the objective is then to replace the system of partial differential equa-
tions by a system of ordinary differential equations. This is achieved by expressing the pressure
perturbations as function of the mean pressure p0 in form of a Galerkin series

p1(x, t) = p0

∞∑
n=1

ηn(t)Ψn(x), (1.6)

where the weight functions Ψn(x) form a set of orthogonal basis functions and ηn(t) describe
the time variation of amplitude of the pressure perturbation. This allows, a number of steps
later, to deduce an ordinary differential equation of the form

d2ηn
dt2

+ ω2
nηn = F (h, f). (1.7)

The challenging part of this method is to determine a set of orthogonal basis functions Ψn(x)
that are suitable to describe the system and satisfy the boundary conditions. An obvious choice
are the acoustic eigenmodes of the system. However, this ansatz is only justified if the terms
h and f are small enough to be negligible. If this is not the case, for example when the
boundaries are characterized by a complex valued impedance, the eigenmodes of the system
are not orthogonal [74] and the set of basis functions has to be determined by other means.
Nevertheless, this method provides an efficient framework for formal studies of thermoacoustic
systems. It can be used to describe the acoustic field in network models, and may be extended
to include non-linear effects by keeping higher order terms [21].
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1.2.2.2 Network Models

Ai
+ 

Ai
- 

Ai-1
+ 

Ai-1
- 

Ai+1
+ 

Ai+1
- 

Ti-1 Ti 

Figure 1.3: Description of Configurations in Terms of an Acoustic Network. A+
i , A−i : Forward and

backward travelling acoustic wave in subdomain i. Ti: Transfer Matrix between subdomains i and
i+ 1.

The basic concept of a network code is to describe the configuration to be analysed as a suc-
cession (or network) of 1D components with piecewise uniform mean flow properties (see
Fig. 1.3). Changes in geometrical or mean flow properties, e.g. variations in the domain’s
cross section, temperature increase across a flame, etc., are described as discontinuities across
which step conditions are applied in order to assure the conservation of mass, momentum and
energy. Though time domain network models exist [108], the larger part is based on a fre-
quency domain formulation [32, 82, 107]. The pressure field in each subdomain i is expressed
analytically. The solution is most commonly deduced from the homogeneous wave equation
and yields

p1i(x, t) = A+
i e

i(kx−ωt) +A−i e
i(−kx−ωt),

where k is the wave vector, ω the frequency and A+ and A− the amplitudes of down- and
upstream travelling waves. However, more complex expressions can be deduced, e.g. by bas-
ing the analysis on the linearized Euler equations [122]. The equations for the acoustic field
are then solved for each element of the network, the boundary conditions being provided by
matching conditions with the neighbouring subdomain. The discontinuities between the sep-
arate elements of the network are described by transfer matrices T , that establish relations
between the amplitudes of forward and backward travelling waves on both sides:

[
A+
i+1

A−i+1

]
= Ti

[
A+
i

A−i

]

The essential difficulty of this method is thus the correct determination of the transfer matrices
that describe all relevant non-uniformities of the configuration. This left aside, the method is
rather straightforward in its implementation and use, and therefore constitutes a valuable means
of analysis that is widely used for the description of acoustics in (research type) combustion
devices [32, 107, 122]. The system of equations solved in a network code may include the
effects of a uniform mean flow as well as flame-acoustic interaction, and can be formulated in
a way as to describe both resonant modes and responses to frequency forcing. However, this
method suffers from the drawback of being limited to rather simple geometries.
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1.2.2.3 Finite Element & Finite Volume Methods

If the acoustic field is to be computed for rather complex geometries, well suited techniques
are those combining the solution of a set of linearized equations with a finite volume or finite
element discretisation of the computational domain: This allows to represent details of the ge-
ometry, while the mesh can be conceived considerably coarser than it would be necessary for a
Large Eddy Simulation.
As viscous effects can be neglected in the description of acoustic wave propagation, the system
of equations to be solved is in general based on the linearized Euler equations. Flame acoustic
interaction is modelled using a flame transfer function. Depending on the configuration to be
analysed, the system of equations may be simplified or adapted, e.g. to yield the acoustic per-
turbation equations [33, 80], which neglect the convection of entropy and vorticity modes, or
to yield one single wave equation [78].
One noteworthy point is that solving the linearized Euler equations in the time domain leads to
numerical problems in the sense that non-physical instability waves are propagated [2]. This
can be bypassed by solving for example the acoustic perturbation equations, which are hydro-
dynamically stable [33]. When maintaining the linearized Euler equations as the system to
solve, instability may be avoided by assuming the perturbations to be harmonic in time and
passing to the frequency domain, a technique proposed by Rao & Morris [85] for wave propa-
gation problems. Another advantage of the frequency domain approach is the fact that it allows
to analyse not only the most unstable mode, but also less amplified or damped modes. As this
is of interest in the evaluation of combustion instability, various frequency domain approaches
have been proposed in this domain. They take different forms, e.g. based on the Helmholtz
equation [74] or the linearized Navier-Stokes equations [14].

This latter approach is therefore also the one adopted in this thesis: Using a finite volume
technique to discretise the computational domain, combustion instability is described by the
linearized Euler equations in the frequency domain together with a transfer function that de-
scribes the interaction of the flame with the acoustic field. Extending the work of Benoit [9]
and Nicoud et al. [74] from a Helmholtz solver to a solver for the linearized Euler equations,
the presented work allows to take into account mean flow effects and therefore contributes to
an improved prediction of combustion instability.

1.2.2.4 Description of the Flame

A key element in linear analysis of combustion instability is the description of the unsteady
behaviour of the flame and its interaction with the acoustic field. This description is based on
observations on acoustically compact flames [39, 97], which are subjected to perturbations,
e.g. of flow velocity, and whose response to these perturbations is recorded. This can be
achieved both by experiment [8, 30, 55], numerical simulation [41, 52, 116] or semi-analytical
models [96].
According to the type of method used to describe the system, the formulation of the flame
response may have the form of a transfer matrix (cf. network model, section 1.2.2.2, [38, 84])
or a flame transfer function (cf. finite volume approach, section 1.2.2.3, [77, 96]). In the
former case, the flame itself is a black box and the pressure and velocity fluctuations upstream
of the flame are linked to those downstream of the flame. In the latter case, a relation between
the acoustic velocity upstream of the flame and the unsteady heat release rate of the flame is
established. It should be noted that the two formulations are a priori not equivalent, as the flame
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transfer function does usually not include information about the acoustic pressure field [115].
A flame transfer function, which is the approach used in the study presented here, has the
general form

F(ω) =
q1(ω)/qnorm

u1,xref
(ω)/ubulk

,

where q1 is the unsteady heat release rate, u1,xref
the acoustic velocity at the reference point and

ω the angular frequency of the perturbation. The fluctuating quantities q1 and u1 are normalized
using the bulk velocity ubulk and a reference value for the mean heat release rate qnorm.
Flame transfer functions are usually expressed as complex quantities in terms of their gain and
phase. The simplest approach to describe the flame’s unsteady behaviour is therefore the n−τ -
model [18, 19], which approximates the flame transfer function in the form

F(ω) = neiωτ ,

where n, the so-called interaction index, is a measure for the intensity of the flame response and
the time lag τ describes the delay between the incoming velocity perturbation and the resulting
fluctuation in heat release rate. This description reflects hence the time-lagged behaviour of the
flame as described in section 1.1.
Beyond the rather simple n− τ -model, various expression for flame transfer functions describ-
ing specific cases exist, such as V-shaped and conical flames [96], non linear effects [25, 77],
or equivalence ratio fluctuations [93].
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1.3 Impact of the Mean Flow Field

In the description of thermoacoustic instability, an assumption that is commonly made is that
of the mean flow velocity being small enough to be considered zero. This assumption al-
lows to considerably simplify the system of equations that describes the acoustic field, and to
derive one single wave equation. However, this zero Mach number assumption may lead to
significant changes in the evaluation of the thermo-acoustic modes present in the combustion
chamber. This is especially true when the mean flow is not isentropic, which is always given
in combustion applications.
In the following, different effects of the mean flow velocity are discussed considering two main
aspects: firstly, the way it impacts on the physical mechanisms occurring in the system is ad-
dressed. A second subsection describes the consequences for the mathematical description of
the system in terms of an eigenvalue problem.

1.3.1 Driving and Damping Mechanisms

Considering acoustic phenomena in moving media, one aspect is that the flow field itself may
act as a source of sound. The way that sound is created and radiated by flow fields that contain
fluctuations or turbulence has been described in detail by Lighthill [63, 64]. Other mecha-
nisms of sound generation include interaction of flow with solid walls or inhomogeneities of
the medium, or the interaction of pairs of vortices [17, 46].
These aeroacoustic phenomena are subject to extensive research, as they are of great relevance
in predicting the noise produced by all kinds of vehicles, like for example the noise emitted by
aircraft engine exhaust jets, flows over cavities or around obstacles. For these cases, the aspect
of interest is the way the sound propagates and is perceived in the far field. The description
of the acoustic field is then based on acoustic analogies [23, 34, 71] or the linearized Euler
equations [4, 10], the noise generation due to the (turbulent) velocity field being introduced as
an aeroacoustic source term into the system of equations.
These studies are hence very different from the analysis of combustion instability, where the
acoustic field is confined and interacts with the source region, i.e. the flame. Besides, it has
been shown that the source term related to unsteady combustion is far more important than
aerodyamic sources [43], which are therefore not explicitly taken into account in the study that
follows.

Other than acting as a source, the mean flow field has an impact on the acoustic field present
in the domain, e.g. by convection, refraction or coupling with vorticity and entropy fluctua-
tions [79, 88]. Convection leads for example to losses of acoustic energy at the outlet of open
ended ducts: Ingard et al. [51] showed that for open ended ducts, the reflection coefficient R
is 0.95 when the mean flow is at rest, 5% of the wave amplitude being lost by radiation (see
also [123]). In presence of a mean flow however, the reflection coefficient is drastically reduced
to about R = 0.85 at Mach numbers as low as M = 0.05. At Mach numbers exceeding 0.4,
”[...] losses are so large that axial duct resonances are almost completely suppressed.” [51]. In
the same way, the reflection coefficient describing compact subcritical nozzles decreases with
growing mean flow mach number at the nozzle inlet, following a relation deduced by Marble
& Candel [66].
The mean flow may also enhance other damping mechanisms, such as the dissipation of acous-
tic energy at sharp edges due to vortex shedding [47, 88], which is exploited in acoustic liners:
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when a perforated plate is placed perpendicular to a planar sound wave, the harmonic pressure
difference across the plate leads to flow across the perforations, and subsequently to periodic
shedding of vortices from the edges of the perforations. This way, energy of the acoustic field
is transferred into vortical energy which is then dissipated. This mechanism, a priori also effec-
tive in quiescent media, has been found to be enhanced by a bias flow across the liner [31, 42].

Finally, an important aspect linked to the mean flow in combustion applications is the con-
vection and acceleration of entropy inhomogeneities created in the flame. Also referred to as
entropy waves or hot spots, these fluctuations are transported downstream by the mean flow.
They may interact with the acoustic field in zones of accelerated mean flow as for example in
the high pressure distributor downstream of the combustion chamber. There, the entropy spots
can partly be converted into acoustic waves, which may then propagate upstream again [22, 66],
thus closing a feedback loop between the flame and the acoustic field.
At the same time, acoustic waves generated as a result of entropy fluctuations may propagate
downstream and into the far field, thus contributing to the noise emission of the engine as
so called indirect combustion noise [5, 61], as opposed to the direct noise resulting from the
acoustic field generated by the unsteady heat release rate of the flame. The effect of accelerated
hot spots intervene hence both in combustion instability and noise emission. Therefore, this
mechanism is not negligible in combustion applications and subject to both experimental [5]
and numerical studies [61, 83].

1.3.2 Mathematical Formulation

When the acoustic field is to be described for an arbitrary mean flow field with non-zero mean
flow velocity, the appropriate set of equations to solve are the Linearized Euler Equations (cf.
section 2.1). However, when solved in the time domain, these equations account not only
for the propagation of acoustic waves, but also of that of instability waves such as Kelvin-
Helmholtz instabilities. The problematic aspect therein is that these instabilities are actually
limited in growth by viscous and non-linear effects, which are precisely the ones neglected in
the linearized Euler equations. The instability waves can therefore grow in a non-physical way
and thereby obscure the solution for the acoustic field [2]. As mentioned before, the problem
can be avoided by either modifying the system of equations, e.g. using the hydrodynamically
stable acoustic perturbation equations [33], or by solving the linearized Euler equations in the
frequency domain [85]. Yet, as a result of the structure of the linearized Euler equations, nu-
merical instability is observed also in the frequency domain in the form of odd-even decoupling
between pressure and velocity terms.

The description of thermoacoustic instabilitiy in the frequency domain requires to state the
equation in the form of an eigenvalue problem. The resulting eigenvectors are in general not
orthogonal [74], a phenomenon that is enhanced by the mean flow velocity [37]. However,
non orthogonal eigenvectors may interact in ways that lead to transient amplification, even if a
system is linearly stable [95]. This means that in configurations that are characterized by high
mean flow Mach numbers, the amplitudes of perturbations in the system might be bigger than
predicted by linear theory.
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1.4 Thesis Outline

This thesis presents a study that deals with the computation of eigenmodes in combustion
chambers using the Linearized Euler Equations in the frequency domain. To this end, a 1D and
a 2D code solving this system of equations are developed. The objective is to investigate the
impact of a non zero Mach number mean flow on the frequency of oscillation, growth rate and
form of the eigenmodes.

The document is structured as follows:

Firstly, the mathematical description of the problem is introduced in Chapter 2. This com-
prises the governing equations for the description of the acoustic field, i.e. the Linearized Euler
Equations, as well as the model used to reproduce the unsteady heat release rate of the flame
and its coupling to the acoustic field.

Subsequently, a brief overview of the techniques necessary to solve the resulting eigenvalue
problem is given in Chapter 3. This refers for one to the Arnoldi algorithm, which is the pro-
cedure used to solve the eigenvalue problem in the narrower sense. Yet, the way this algorithm
is applied, i.e. the so called shift-invert-method, requires additionally the solution of a linear
system. This is hence the second aspect to be discussed in this chapter.

Using the means introduced in these first two chapters, the problem of thermoacoustic in-
stability has been investigated separately for 1D and 2D configurations. The major difference
between these two cases is the way that the domain and equations are discretized:

1. In the 1D case, the domain is represented by a grid of equidistant points, and the equa-
tions are discretized using a central finite difference scheme for the acoustic variables and
an upwind difference scheme for entropy fluctuations. Numerical instability is avoided
by using a staggered grid formulation.

2. In the 2D case, a finite volume method is used on a mesh of unstructured tetrahedral
cells. An artificial viscosity term is introduced to suppress numerical instability.

The main aspects of the numerical description and the results obtained for different test cases
are presented in Chapters 4 and 5 concerning the 1D and 2D study, respectively.

In Chapter 6 the results obtained from the 1D solver are subjected to further analysis: the
first aspect is to determine the disturbance energy contained in the separate modes. This allows
not only to verify the accuracy of the results, but also to evaluate the origin of differences be-
tween cases with zero and non-zero Mach number mean flow. The second aspect considered is
the effect of the eigenmodes being not orthogonal, and hence their possible interaction to cause
transient growth of energy. It is shown how this effect can be evaluated in the framework of
this study as a post-processing analysis of the results of the 1D solver.

The last chapter is dedicated to the conclusions that can be drawn from this work.
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Chapter 2

Equations

The description of the acoustic field is based on the conservation equations for mass, momen-
tum and energy, which are written for perturbations of small amplitude. As discussed in Chap-
ter 1, the onset and initial growth of combustion instability may be described by linear theory.
Such a linear approximation of the acoustic equations is obtained by neglecting second- and
higher-order disturbance terms in the conservation equations. The resulting set of equations are
the Linearized Euler Equations. They constitute the basis of the study presented in this thesis
and are therefore discussed in this chapter.
Besides, the simulation of combustion instability using a system of linearized equations re-
quires the use of a model to mimic the flame-acoustic interaction. In the present study, the
time-lagged behaviour of the flame is described using an n− τ -model, which is presented in a
second section of this chapter.
Finally, it can be of some interest to evaluate the energy contained in the perturbations. To this
end, a description of the acoustic energy as well as of a more generalized disturbance energy is
included in this chapter.
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2.1 Governing Equations for the Acoustic Field

2.1.1 Linearisation of the Conservation Equations

The equations used to describe the acoustic field are derived from the conservation laws for
mass, momentum and energy. In order to derive the system of equations used for the present
study, the following hypotheses have been made:

• the medium is a gas mixture that acts as a perfect gas. Multi-species effects are neglected

• volume forces (such as gravity) are neglected

• viscous terms (molecular diffusion of momentum and heat) are neglected

With the above assumptions, the conservation equations for mass, momentum and energy
read (cf. [82]):

Dρ

Dt
= −ρ∇ · u (2.1)

ρ
Du
Dt

= −∇p (2.2)

Ds

Dt
=
rq

p
(2.3)

where ρ denotes the mean density, p the static pressure, u the velocity vector and s the en-
tropy per mass unit. The quantity r = Cp − Cv is the specific gas constant of the mixture and
q the rate of heat release per unit of volume.

The acoustic field is then commonly described in terms of perturbations of small amplitude,
that are superimposed on the mean flow field. The instantaneous values of pressure, density,
velocity vector, entropy and heat release rate are therefore decomposed into two contributions,
i.e. each of these quantities can be written as φ(x, t) = φ0(x) + φ1(x, t), where indeces 0 and
1 denote mean flow quantities and small amplitude fluctuations respectively. Introducing this
decomposition into the Eqs. (2.1) - (2.3) yields:

∂(ρ0 + ρ1)
∂t

+ (u0 + u1)∇(ρ0 + ρ1) + (ρ0 + ρ1)∇ · (u0 + u1) = 0 (2.4)

(ρ0 + ρ1)
∂(u0 + u1)

∂t
+ (ρ0 + ρ1)(u0 + u1) · ∇(u0 + u1) +∇(p0 + p1) = 0 (2.5)

∂(s0 + s1)
∂t

+ (u0 + u1)∇(s0 + s1) = r
(q0 + q1)
p0 + p1

(2.6)

The derivation of a linearized set of equations is then based on the following hypotheses:

• the perturbations are small compared to the mean flow values, i.e. p1 << p0, ρ1 << ρ0,
s1 << s0 and u1 << c0.
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• the mean flow field is not time-dependant. It may depend on space though, and does not
need to be quiescent, i.e. no assumptions are made about u0(x)

In addition to the above assumptions, the mean flow field is of course supposed to satisfy
the conservation equations, i.e. Eqs. (2.1) - (2.3) hold for p = p0, ρ = ρ0, s = s0 and u = u0:

Dρ0

Dt
= −ρ0∇ · u0 (2.7)

ρ0
Du0

Dt
= −∇p0 (2.8)

Ds0

Dt
=
rq0

p0
(2.9)

As the perturbations are assumed to be small, it is justified to apply a linear approxima-
tion and keep only perturbation terms of first order, while second and higher- order terms are
neglected. The resulting set of equations reads thus

∂ρ1

∂t
+ u0∇ρ1 + u1∇ρ0 + ρ0∇ · u1 + ρ1∇ · u0 = 0 (2.10)

ρ0
∂u1

∂t
+ ρ0u0 · ∇u1 + ρ0u1 · ∇u0 + ρ1u0 · ∇u0 +∇p1 = 0 (2.11)

∂s1

∂t
+ u0∇s1 + u1∇s0 =

rq1

p0
− rq0p1

p2
0

(2.12)

2.1.2 Quasi-1D Formulation of the Linearized Euler Equations
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Figure 2.1: Notation used for derivation of quasi-1D form of the linearized Euler equations.
S(x): cross section of the domain at position x; Γ: lateral surface of the domain between two limits x1

and x2; C(x) : contour line on the lateral surface at position x.

A part of this study is dedicated to a quasi-1D analysis. An example for a geometry that
can be considered with the quasi-1D theory is plotted in Fig. 2.1: The cross section of the
domain, noted S in the following, varies slowly and can be described as a function of the
x-direction. The equations for the acoustic field are therefore derived in their quasi 1D formu-
lation (cf. [76]). To this end, the conservation equations for mass, momentum and energy are
first stated in conservative form [94]:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (2.13)
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∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + p) = 0 (2.14)

∂

∂t
(ρs) +

∂

∂xj
(ρujs) =

q

T
(2.15)

The equations have hence the form of transport equations

∂

∂t
(ρΦ) +∇ · F(Φ) = Q (2.16)

where Φ is a conserved variable, F(Φ) the flux of Φ and Q a possible source term. The fol-
lowing shows the transformation into quasi-1D form for the general case of the above transport
equation. Yet, all steps can be applied to the conservation equations Eq. (2.13) -(2.15).
Integrating Eq. (2.16) over the domain’s volume V , one obtains∫ ∫ ∫

V

( ∂
∂t

(ρΦ) +∇ · F(Φ)
)
dV =

∫ ∫ ∫
V
QdV (2.17)

Concerning the first term on the left hand side, one may consider that the domain’s volume
is constant over time. Besides, the volume integral can be rewritten in terms of the domain’s
cross section S(x) and its extension along x, such that (cf. Fig. 2.1):∫ ∫ ∫

V

∂

∂t
(ρΦ)dV =

∂

∂t

∫ x2

x1

( ∫ ∫
S

(ρΦdS)
)
dx (2.18)

Defining a cross sectional average of the quantity ρΦ of the form

ρΦ =
1
S

∫ ∫
S
ρΦdS (2.19)

one can further rewrite Eq. (2.18) as∫ ∫ ∫
V

∂

∂t
(ρΦ)dV =

∂

∂t

∫ x2

x1

ρΦSdx. (2.20)

The second term on the left hand side of Eq. (2.17) can be converted into a surface integral
using the divergence theorem:∫ ∫ ∫

V

(
∇ · F(Φ)

)
dV =

∫ ∫
Ω

(
F(Φ)

)
ndΩ (2.21)

where Ω is the total surface of the domain. As illustrated in Fig. 2.1, it can be separated into the
inlet and outlet surface S(x1) and S(x2) and a lateral surface Γ. The normal vectors associated
to the separate surfaces are oriented outwards of the domain, i.e. aligned with the negative
x-direction for S(x1) and the positive x-direction for S(x2). The normal vector associated to
the lateral surface is noted nΓ. Equation (2.21) expands thus to∫ ∫

Ω

(
F(Φ)

)
ndΩ =

∫ ∫
Γ
F(Φ)nΓdΓ +

∫ ∫
S(x2)

Fx(Φ)dS −
∫ ∫

S(x1)
Fx(Φ)dS (2.22)

where Fx is the x-component of the flux term F . Using the definition of the surface average
Eq. (2.19), the last two terms of Eq. (2.22) can be transformed into:∫ ∫

S(x2)
Fx(Φ)dS −

∫ ∫
S(x1)

Fx(Φ)dS = Fx(Φ, x2)S(x2)−Fx(Φ, x1)S(x1) (2.23)
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Finally, Eq. (2.17) reads after these conversions:

∂

∂t

∫ x2

x1

ρΦSdx+
∫ ∫

Γ
F(Φ)nΓdΓ + Fx(Φ, x2)S(x2)−Fx(Φ, x1)S(x1) =

∫ ∫ ∫
V
QdV

(2.24)
For an infinitely thin slice of surface S, where x2 = x1 + dx, one may then write the balance

∂

∂t
ρΦS +

∫
C
F(Φ)nΓdC +

∂

∂x
Fx(Φ)S =

∫ ∫
S
QdS, (2.25)

where C denotes the contour that marks the infinitesimally thin part of the lateral surface Γ at
position x (cf. Fig. 2.1).
The expression of Eq. (2.25) allows then to deduce the quasi-1D equivalents of Eqs. (2.13) -
(2.15) by introducing Φ = 1, Φ = u and Φ = s, respectively, together with the respective
flux terms. In the following, it will be assumed that the mean value of a product equals the
product of the mean values of the factors, i.e. that ρΦ(x) = ρ(x)Φ(x) etc. This way, the
averaging permits to express all quantities as function of the x-direction only. As flux terms
depending on velocity are parallel to the surface Γ, the only contribution of the integral in C
in Eq. (2.25) concerns the flux term related to pressure in the momentum equation. Therefore,
Eqs. (2.13) - (2.15) can be transformed into

S ∂ρ
∂t

+
∂

∂x
(ρ uS) = 0 (2.26)

S ∂
∂t

(ρ u)− p∂S
∂x

+
∂

∂x
(ρ u2S + pS) = 0 (2.27)

S ∂
∂t

(ρ s) +
∂

∂x
(ρ u sS) = S q

T
(2.28)

Finally, the above equations may be written in non-conservative form (the overbars indicating
cross-sectional averaging of the quantities are omitted for clarity):

∂ρ

∂t
+

∂

∂x
(ρu) +

ρu

S
∂S
∂x

= 0 (2.29)

ρ
∂u

∂t
+ (ρu)

∂u

∂x
+
∂p

∂x
= 0 (2.30)

∂s

∂t
+ u

∂s

∂x
=

q

ρT
(2.31)

While the continuity equation contains an additional term referring to the geometry of the
domain, the momentum and energy equations are found to be the 1D restrictions of the 3D
equations Eq. (2.2) and (2.3). These equations are then linearized in the same way as the 3D
equations, and yield:

∂ρ1

∂t
+ u0

∂ρ1

∂x
+ u1

∂ρ0

∂x
+ ρ0

∂u1

∂x
+ ρ1

∂u0

∂x
+
u1ρ0

S
∂S
∂x

+
u0ρ1

S
∂S
∂x

= 0 (2.32)

ρ0
∂u1

∂t
+ ρ0u0

∂u1

∂x
+ ρ0u1

∂u0

∂x
+ ρ1u0 ·

∂u0

∂x
+
∂p1

∂x
= 0 (2.33)

∂s1

∂t
+ u0

∂s1

∂x
+ u1

∂s0

∂x
=
rq1

p0
− rq0p1

p2
0

(2.34)
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2.1.3 Entropy Expression

The objective of the present study being the analysis of configurations that include heat release,
the mean flow is not isentropic, i.e. ∇s0 6= 0, and fluctuations of entropy s1 may exist in the
domain. The commonly used relation between pressure and density fluctuations derived for
isentropic conditions, i.e. p1p0 = γ ρ1ρ0 , is hence not applicable.
In order to establish a valid relation between the quantities p1, ρ1 and s1, a suitable expression
for the entropy of the flow has thus to be found and linearized.

Taking a reference state noted with index ”ref”, the specific entropy of a fluid is defined
as [36]:

s− sref = Cv ln
(

p

pref

)
− Cp ln

(
ρ

ρref

)
(2.35)

Solved for pressure, the relation reads:

p

pref
=
(

ρ

ρref

)γ
exp

(
s− sref

Cv

)
(2.36)

Again, the flow variables p, ρ and s are decomposed into mean flow and small amplitude
perturbations. In order to obtain a linearized form of this equation, a Taylor series is developed
around the mean state, and only terms of first order in perturbation are kept:

p(ρ0 + ρ1, s0 + s1) = p(ρ0, s0) +
∂p

∂ρ

∣∣
ρ0,s0

(ρ− ρ0) +
∂p

∂s

∣∣
ρ0,s0

(s− s0) (2.37)

The partial derivatives of pressure with respect to density and entropy read:

∂p

∂ρ

∣∣
ρ0,s0

= γ
p0

ρ0
and

∂p

∂s

∣∣
ρ0,s0

=
p0

Cv
. (2.38)

Inserting Eqs. (2.38) into Eq. (2.37), a relation between pressure, entropy and density fluctua-
tions can be established:

p1

p0
= γ

ρ1

ρ0
+
s1

Cv
(2.39)

which simplifies to the isentropic relation if s1 = 0.

2.1.4 Equation of State

In the same way as the entropy equation, the state equation for a perfect gas

p = ρrT (2.40)

can be linearized for small perturbations of pressure, density and temperature. (The gas con-
stant is not subject to fluctuations.) The Taylor series developed around the mean state, keeping
terms of first order only, reads:

p(ρ0 + ρ1, T0 + T1) = p(ρ0, T0) +
∂p

∂ρ

∣∣
ρ0,T0

(ρ− ρ0) +
∂p

∂T

∣∣
ρ0,T0

(T − T0) (2.41)

with
∂p

∂ρ

∣∣
ρ0,T0

= rT0 and
∂p

∂T

∣∣
ρ0,T0

= rρ0. (2.42)

The linearized equation of state reads thus:

p1

p0
=
ρ1

ρ0
+
T1

T0
. (2.43)
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2.1.5 Wave Equation for the Acoustic Field in Quiescent Media

When the mean flow is at rest, it is possible to reduce the system of linearized equations
Eqs. (2.10) - (2.12) to a scalar wave equation. Firstly, setting u0 = 0 obviously simplifies
these equations to:

∂ρ1

∂t
+ u1∇ρ0 + ρ0∇ · u1 = 0 (2.44)

ρ0
∂u1

∂t
+∇p1 = 0 (2.45)

∂s1

∂t
+ u1∇s0 =

rq1

p0
(2.46)

Besides, using the thermodynamic relation [82]

ds = CvdT −
p

ρ2
dρ (2.47)

and the linearized state equation in the form:

dT

T
=
dp

p
− dρ

ρ
(2.48)

one may write
Ds

Dt
=
Cv
p

Dp

Dt
− Cp

ρ

Dρ

Dt
. (2.49)

As the mean flow quantities are independant of time, one obtains the following expression for
the mean entropy gradient:

∇s0 =
Cv
p0
∇p0 −

Cp
ρ0
∇ρ0 (2.50)

However, if the mean flow is assumed to be at rest, the mean pressure gradient is zero (cf.
Eq. (2.8)). Thus, the mean entropy gradient simplifies to ∇s0 = −Cp

ρ0
∇ρ0. Introducing this

relation into Eq. (2.46), and using the linearized state and entropy expressions Eqs. (2.39)
and (2.43), one may eliminate ρ1 from Eq. (2.44). The system of equations Eqs. (2.44) - (2.46)
simplifies then to:

1
γp0

∂p1

∂t
+∇ · u1 =

rq1

Cpp0
(2.51)

∂u1

∂t
+

1
ρ0
∇p1 = 0 (2.52)

Taking the time derivative of Eq. (2.51) and adding the divergence of Eq. (2.52) allows
finally to write a wave equation that describes the propagation of pressure fluctuations:

1
γp0

∂2p1

∂t2
−∇ ·

(
1
ρ0
∇p0

)
=
γ − 1
γp0

∂q1

∂t
(2.53)

It should be noted that Eq. (2.53) differs from the wave equation for stagnant fluids commonly
derived [79, 88]: it includes the effect of a mean entropy gradient, an aspect that is of impor-
tance in combustion applications.
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2.1.6 Flame Model

The interaction between the flame and the acoustic field is described using a model that allows
to account for the time lagged response of the flame to upstream flow perturbations as described
in Chapter 1. Based on the work of Crocco [18, 19], such models have been developed in vari-
ous forms and are referred to as n− τ -models.

u1 

Q1 xref 
u1 

q1(x) 

Vf 
xref 

n, 

(a) Description in terms of global un-
steady heat release rate

u1 

Q1 xref 
u1 

q1(x) 

Vf 
xref 

n, 

(b) Description in terms of local unsteady
heat release rate

Figure 2.2: Description of flame-acoustic interaction via Flame Transfer Function. u1: incoming veloc-
ity perturbation, xref : reference position; Vf : volume of the flame; Q1: global (i.e. volume integrated)
fluctuation in heat release rate; q1: local fluctuation in heat release rate (per unit volume)

The basic idea is to link the unsteady heat release emitted by the flame at time t to the
acoustic velocity at an upstream reference point xref (usually at the burner exit) at an earlier
time t − τ (see Fig. 2.2). In a global view, the system is thus confronted with a fluctuation in
heat release rate that can be written as

Q1(t) = n
Qnorm

Ubulk
u1(xref , t− τ) · nref . (2.54)

In this expression,Q1(t) denotes the fluctuating heat release rate integrated over the whole flow
domain, Qnorm a reference value for the mean heat release rate of the flame, Ubulk the bulk ve-
locity of the mean flow field and nref is a unitary vector defining the direction of the reference
velocity. The factor n is referred to as interaction index and is a measure of the strength of the
flame’s response to a perturbation, and τ is the time delay between the passage of the acoustic
perturbation at the reference position and the response of the flame. These global parameters
can be determined experimentally [28, 96].
However, introducing this kind of model into a finite volume solver requires a local formula-
tion, as the flame is resolved by the mesh, and thus all quantities - including the unsteady heat
release rate - are defined locally at each grid point. Besides, a description in terms of the global
response of the flame is only well adapted when the flame is acoustically compact, i.e. when
the acoustic wavelength is much smaller than the length of the flame, which is not always the
case. In particular, it should be noted that the parameter τ directly impacts on the phase dif-
ference between the fluctuations of pressure and heat release rate, which means that τ controls
the role of the flame as a source or a sink of acoustic energy (as stated in the Rayleigh criterion,
cf. Eq. (1.1)). For these reasons, a more general description of flame acoustic interaction in the
form of a local flame model (see Fig. 2.2(b)) is derived. In this approach, the response of the
flame is expressed in terms of the local unsteady heat release rate per unit volume q1(x, t) [74].
Expressed in a form equivalent to Eq. (2.54), the unsteady heat release rate per unit volume is
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defined locally as:

q1(x, t) = nloc(x)
qnorm

Ubulk
u1(xref , t− τ(x)) · nref . (2.55)

In this local definition, the interaction index nloc(x) and the time delay τ(x) are defined as
fields of parameters rather than as the two real numbers n and τ , that are used in the global
model Eq. (2.54). This allows hence to describe the response of the flame locally, provided
that the two parameter fields are known, which can be achieved using LES computations
[116, 117].

The link between the global and the local formulation is given by the relation between the
total unsteady heat release rate Q1(t) and the local unsteady heat release rate per unit volume
q1(x, t): ∫

Vf

q1(x, t)dV = Q1(t), (2.56)

i.e. the parameter fields nloc(x) and τ(x) have to be designed in a way that the integrated flame
response of the local model Eq. (2.55) corresponds to that of the global approach Eq. (2.54).

In this present study, the time delay is chosen as a constant value τ(x) = τ , while the local
interaction index is assumed to be constant throughout the flame region and zero everywhere
else. The local interaction index is then related to the global interaction index n by:

nloc =
nQnorm

qnormVf
in the reaction zone

nloc = 0 otherwise.
(2.57)

It should be noted here that the quantities Qnorm and qnorm are reference values employed
for scaling in Eqs. (2.54) and (2.55), and that they do not necessarily satisfy the relation
qnormVf = Qnorm. As Qnorm corresponds usually to the total heat release rate of the flame
obtained experimentally, whereas qnorm and Vf are definitions used for describing the flame in
an acoustic solver, requiring this latter relation to be fulfilled is neither convenient nor neces-
sary. Thus, in order to assure that Eq. (2.56) is satisfied, the scaling values Qnorm and qnorm

have to be maintained in Eq. (2.57).

Even though the flame is described in terms of its local response, the model expressed in
Eq. (2.55) is still a rather simplified description, as it links the unsteady heat release rate only
to fluctuation of acoustic velocity. The description can be improved by including relations
between unsteady heat release rate and acoustic pressure or fuel ratio fluctuations [49, 115].
If the flame is related to the complete acoustic field, the flame transfer function approach be-
comes equivalent to a transfer matrix formulation, that relates upstream acoustic fluctuations
to downstream acoustic fluctuations [115].
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2.2 Formulation as an Eigenvalue Problem

In order to solve the thermo-acoustic problem stated by the linearized Euler equations and the
flame related source term, the fluctuating quantitites are assumed to be harmonic in time, i.e. to
vary periodically with a complex frequency ω = ωr + iωi. The fluctuating quantities can then
be expressed in terms of an amplitude that depends on position φ̂(x) , and a temporal variation
with ω, as

φ1(x, t) = <
(
φ̂(x)e−iωt

)
, (2.58)

This expression allows to pass to a frequency domain formulation. As a result, the system of
equations can be written in the form of an eigenvalue problem.
The formulation retained for the present study is presented in its 3D as well as its quasi-1D
form in the following. Besides, the Helmholtz-equation is briefly recalled: This equation can
be used to describe thermo-acoustic instability in quiescent media and serves in this study as a
reference method.

2.2.1 Linearized Euler Equations in the Frequency Domain

In order to derive the linearized Euler equations in a frequency domain formulation, the as-
sumption of harmonic perturbations is introduced into their time domain equivalents Eq. (2.10) -
(2.12). The time derivatives of the fluctuating quantities simplify to

∂

∂t
φ1(x, t) = −iωφ̂(x)e−iωt,

so that the system of equations Eq. (2.10) - (2.12) is transformed into:

u0∇ρ̂+ û∇ρ0 + ρ0∇ · û + ρ̂∇ · u0 = iωρ̂ (2.59)

ρ0u0 · ∇û + ρ0û · ∇u0 + ρ̂u0 · ∇u0 +∇p̂ = iωρ0û (2.60)

u0∇ŝ+ û∇s0 +
rq0p̂

p2
0

− rq̂

p0
= iωŝ (2.61)

The frequency domain formulations for the linearized entropy expression and state equation
are deduced from their time domain form in Eqs. (2.39) and (2.43), respectively, and read:

p̂

p0
= γ

ρ̂

ρ0
+

ŝ

Cv
(2.62)

and
p̂

p0
=

ρ̂

ρ0
+
T̂

T0
. (2.63)

The system of equations (2.59) - (2.61) can now be transformed into an eigenvalue problem
AV = iωV , with an eigenvector V comprised of (ρ̂, û, ŝ)T . Solving for an eigenvector con-
taining this particular set of variables is a choice among several possibilities. Other options are
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for example a description in terms of fluctuating mass flux and stagnation enthalpy.
In order to derive an eigenvalue problem with the eigenvector V = (ρ̂, û, ŝ)T , p̂ and q̂ need
to be expressed as function of these three quantities. First, p̂ is eliminated from the equations
using the relation stated in Eqs. (2.62). The resulting system of equations reads:

(∇ · u0 + u0 · ∇)ρ̂+ (∇ρ0 + ρ0∇) · û = iωρ̂ (2.64)

(
∇c2

0

ρ0
+

u0 · ∇u0

ρ0
+
c2

0

ρ0
∇
)
ρ̂+(∇u0·+u0·∇)û+(γ−1)T0

(
∇p0

p0
+∇

)
ŝ = iωû (2.65)

γrq0

ρ0p0
ρ̂+∇s0 · û +

(
u0 · ∇+ (γ − 1)

q0

p0

)
ŝ− r

p0
q̂ = iωŝ (2.66)

Secondly, the amplitude of the unsteady heat release rate per unit volume q̂ is expressed
as a function of the amplitude of the acoustic velocity at a reference location ûxref

using the
n− τ -model. The frequency domain equivalent of Eq. (2.55) reads:

q̂(x) =
qnorm

Ubulk
nloc(x)e(iωτ)ûxref

· nref (2.67)

Formally, this can be written as q̂ = qûû. Introducing this expression into Eq. (2.66), one
can thus write the eigenvalue problem

AV = iωV (2.68)

with the eigenvector V = (ρ̂, û, ŝ)T and the complex eigenvalue ω = ωr + iωi. The matrix A
is a linear operator applied to the eigenvector, which reads thus:

A =


(∇ · u0 + u0 · ∇) (∇ρ0 + ρ0∇) 0(
∇c20
ρ0

+ u0·∇u0
ρ0

+ c20
ρ0
∇
)

(∇u0 ·+u0 · ∇) (γ − 1)T0

(
∇p0
p0

+∇
)

γrq0
ρ0p0

∇s0 · − r
p0
qû

(
u0 · ∇+ (γ − 1) q0p0

)
 (2.69)

The quasi-1D formulation of the problem is deduced equivalently from Eqs. (2.32) - (2.34).
The velocity vector being reduced to its component in the x-direction, the eigenvector contains
the three unknowns V = (ρ̂, û, ŝ)T . The operator matrix A corresponds to the 1D equivalent
of the 3D version, with the additional terms accounting for variations of the cross section area
S and reads:

A =


(∂u0
∂x + u0

∂
∂x + u0

S
∂S
∂x ) (∂ρ0∂x + ρ0

∂
∂x + ρ0

S
∂S
∂x ) 0(

1
ρ0

∂c20
∂x + u0

ρ0
∂u0
∂x + c20

ρ0
∂
∂x

)
(∂u0
∂x + u0

∂
∂x) (γ − 1)T0

(
1
p0
∂p0
∂x + ∂

∂x

)
γrq0
ρ0p0

∂s0
∂x −

r
p0
qû

(
u0

∂
∂x + (γ − 1) q0p0

)


(2.70)
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2.2.2 Medium at Rest: Helmholtz Equation

Introducing the assumption of harmonic perturbations as stated in Eq. (2.58) into the wave
equation (2.53) yields the inhomogeneous Helmholtz equation

∇ ·
(

1
ρ0
∇p̂
)

+
ω2

γp0
p̂ = iω

γ − 1
γp0

q̂ (2.71)

The RHS term of this equation expresses the contribution of the unsteady heat release rate q̂,
which can be linked to the amplitude of the pressure perturbation p̂ using the n− τ -model. As
the momentum equation for first order perturbations in a medium at rest (cf. Eq. (2.60)) states
that ∇p̂ = iωρ0û, the expression of Eq. (2.67) can be rewritten as function of the pressure
perturbation at a reference location xref :

q̂(x) =
qnorm

iωρxref
Ubulk

nloc(x)e(iωτ)∇p̂xref
· nref . (2.72)

After spatial discretization, equation (2.71) can then be written in the form of a quadratic
eigenvalue problem of the form [74, 101]

AV + ωBV + ω2CV = D(ω)V, (2.73)

where the eigenvector V is reduced to one single unknown, i.e. the amplitude of the pressure
perturbation V = p̂ and A, B, C and D are operator matrices that describe the impact of the
mean flow field, the boundary conditions and the source term. A detailed description of these
operator matrices can be found in Nicoud et al. [74].
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2.3 Energy of the Perturbations

In order to understand the mechanisms that lead to stability or instability of a thermo-acoustic
system, it is of some interest to evaluate the energy contained in the field of perturbations. Care
has to be taken in the description of this energy, as it is composed of second order terms in the
perturbations: by way of example, the kinetic energy density of the acoustic field is given by
the term 1

2ρ0u
2
1. It is therefore a difficult task to derive a consistent conservation law for the

energy of these perturbations, which are themselves described by first order equations.
The situation gets even more complex when entropy fluctuations and convection processes are
involved, which is the case in the present study. Then, the classic definition of acoustic energy
is not sufficient anymore, and a generalized expression for the energy of the disturbances has
to be used.
In the following, the definition of the acoustic energy for fluids at rest is briefly recalled. The
focus of this section lies however on the introduction of the generalized perturbation energy,
whose derivation is presented subsequently.

2.3.1 Acoustic Energy in Quiescent Media

The simplest case to consider is that of the acoustic field in a medium at rest and without any
sources and mean flow gradients. The governing equations are then the linearized continuity
and momentum equations that read for these conditions (cf. Eqs (2.10)-(2.11)):

1
c2

0

∂p1

∂t
+ ρ0∇ · u1 = 0 (2.74)

ρ0
∂u1

∂t
+∇p1 = 0 (2.75)

In order to derive an expression for the acoustic energy, these two equations are combined as
follows: Eq. (2.74) is multiplied by p1/ρ0 and Eq. (2.75) is multiplied by u1. The resulting
expressions are then added, resulting in (cf. [82, 88]):

∂

∂t

(
1
2
ρ0u1

2 +
1
2
p2

1

ρ0c2
0

)
+∇ · (p1u1) = 0 (2.76)

Equation (2.76) states a conservation law for the acoustic energy of the form

∂

∂t
E +∇ · F = 0 (2.77)

where the acoustic energy E is defined as

E =
1
2
ρ0u1

2 +
1
2
p2

1

ρ0c2
0

(2.78)

and the flux of acoustic energy across the system’s boundaries F reads

F = p1u1 (2.79)

Being derived from Eq. (2.74) and Eq. (2.75), these expressions are of course only valid in
situations where these latter equations are satisfied, i.e. in absense of mean flow terms, entropy
fluctuations and source terms.
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2.3.2 Generalized Disturbance Energy

For cases where mean flow terms and entropy fluctuations are not negligible, generalized ex-
pressions for disturbance energy have been derived. The study presented in Chapter 6 of this
work is based on the energy corollary by Myers [72], which describes the energy of pertur-
bations in arbitrary steady flow. Rather than deriving a conservation law for the energy of
perturbations from the continuity and momentum equation by ”algebraic manipulation” as em-
ployed in section 2.3.1, Myers derives such an expression directly from the energy equation.
This derivation is summed up here in order to introduce the terms used in the evaluation of the
disturbance energy budget in Chapter 6. Otherwise following the notation used in the reference
paper by Myers [72], the source term of the energy equation is adapted to the case considered
in this study, and viscous terms are omitted from the beginning.

Formulation of the Conservation Equations for n-th order Fluctuations

The starting point of the derivation are the conservation equations for mass, momentum and
energy for a fluid in motion:

∂ρ

∂t
+∇ · (ρu) = 0 (2.80)

∂u
∂t

+ (u · ∇)u +
1
ρ
∇p = 0 (2.81)

∂s

∂t
+ (u · ∇)s =

q

ρT
(2.82)

As mentioned before, viscous terms and body forces are neglected in these equations. This set
of equations is therefore exactly the same as that used for the derivation of the Linearized Euler
Equations shown in section 2.1 (cf. Eqs. (2.1)- (2.3)).

For the derivation of the disturbance energy corollary, these equations are then noted in
terms of specific stagnation enthalpy H and mass flux m. These quantities are defined by

H = h+
u2

2
and m = ρu, (2.83)

respectively, where h is the specific enthalpy. This latter can further be expressed in terms of
the inner energy e via

h = e+
p

ρ
(2.84)

Furthermore, the thermodynamic relations

de = Tds+
p

ρ2
dρ dp =

c2ρβT

Cp
ds+ c2dρ dT =

T

Cp
ds+

βT

ρCp
dp (2.85)

are recalled [72]. In the above expressions, β = (−∂ρ/ρ∂T )p is the coefficient of thermal
expansion. Using Eq. (2.84) together with Eq. (2.85), one may write

∇p
ρ

= ∇h− T∇s (2.86)

28



2.3. ENERGY OF THE PERTURBATIONS

Besides, the convective acceleration term (u · ∇)u is transformed using the vector identity

(u · ∇)u = (∇× u)× u +∇(
u2

2
) = ζ +∇(

u2

2
) (2.87)

with ζ = (∇× u)× u a vector that comprises the impact of the vorticity ξ = ∇× u.

Finally, the conservation equations Eqs. (2.80) - (2.82) can be rewritten in the form

∂ρ

∂t
+∇ ·m = 0 (2.88)

∂u
∂t

+ ζ +∇H − T∇s = 0 (2.89)

∂(ρs)
∂t

+∇ · (ms) = Q (2.90)

Note that, for the sake of simplicity, the source term in the energy equation is noted Q in the
following, and is related to the source term of Eq. (2.82) via Q = q

T .

In a next step, the flow quantities are expressed as a sum of a steady mean value and n-th
order fluctuations:

φ(x, t) = φ0(x) +
∞∑
n=1

δnφn(x, t) (2.91)

where Myers [72] uses the parameter δ to designate the order of magnitude of the fluctuations.

Using this decomposition, the conservation equations can then be written separately for flow
quantities of order n = 0, 1, 2, .... As the mean flow quantities are assumed to be independent
of time, the system of equations for n = 0 reads:

∇ ·m0 = 0 (2.92)

ζ0 +∇H0 − T0∇s0 = 0 (2.93)

∇ · (m0s0) = Q0 (2.94)

As mentioned before, the conservation equations for first order fluctuations correspond to a
alternative formulation of the linearized Euler equations and read:

∂ρ1

∂t
+∇ ·m1 = 0 (2.95)

∂u1

∂t
+ ζ1 +∇H1 − T0∇s1 − T1∇s0 = 0 (2.96)

∂

∂t
(ρ0s1 + ρ1s0) +∇ · (m0s1 + m1s0) = Q1 (2.97)
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Finally, the conservation laws for second order fluctuations are obtained as:

∂ρ2

∂t
+∇ ·m2 = 0 (2.98)

∂u2

∂t
+ ζ2 +∇H2 − T0∇s2 − T1∇s1 − T2∇s0 = 0 (2.99)

∂

∂t
(ρ0s2 + ρ1s1 + ρ2s0) +∇ · (m0s2 + m1s1 + m2s0) = Q2 (2.100)

The system of equations for the n-th order terms is completed by expressions that allow to
decompose the quantities (ρe) and h into a mean value and perturbations of order n. Therefore,
these quantities are expanded in Taylor series, and the relations (2.85) are used to determine
the correct expression for the involved derivatives:

ρe =ρ0e0 +
∂(ρe)
∂ρ

∣∣
0
(ρ− ρ0) +

∂(ρe)
∂s

∣∣
0
(s− s0)

+
∂2(ρe)
∂ρ2

∣∣
0

(ρ− ρ0)2

2
+
∂2(ρe)
∂ρ∂s

∣∣
0
(ρ− ρ0)(s− s0) +

∂2(ρe)
∂s2

∣∣
0

(s− s)2

2
+ ... (2.101)

i.e.
ρe =ρ0e0 + δ(h0ρ1 + ρ0T0s1)

+ δ2(h0ρ2 + ρ0T0s2 + ρ1T0s1 +
p2

1

2ρ0c2
0

+
ρ0T0s

2
1

2Cp
) +O(δ3) (2.102)

and for the specific enthalpy, one obtains

h = h0 + δ

(
p1

ρ0
+ T0s1

)
+O(δ2) (2.103)

where, as introduced with Eq. (2.91), the parameter δn denotes the order of the perturbations.

Derivation of the Energy Corollary

The expressions deduced so far are then used to derive an exact energy equation of second
order in the perturbations. This is done starting from an equation that expresses the conserva-
tion of internal and kinetic energy in absence of body forces and viscosity, and which reads

∂

∂t
(ρH − p) +∇ · (mH)− TQ = 0 (2.104)

where all terms are noted according to what has been introduced before.

The disturbance energy being expressed by an equation of second order in the perturbations,
Eq. (2.104) is decomposed into contributions of order n = 0, 1, 2, ... using the expression
Eq. (2.91). The conservation law for n = 2 reads:

∂

∂t
(ρH − p)2 +∇ · (m0H2 + m1H1 + m2H0)− T0Q2 − T1Q1 − T2Q0 = 0 (2.105)
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It is then shown that the terms of Eq. (2.105) can be arranged in such a way as to yield an
expression that involves first order terms of perturbations only, and this without any additional
assumptions. The basic steps of this transformation are given in the following.

Firstly, the second order fluctuation term (ρH − p)2 is expressed in terms of primitive
variables using Eqs. (2.83) and (2.84) and transformed according to the relation expressed in
Eq. (2.102):

(ρH − p)2 =(ρe+ ρ
u2

2
)2 = (ρe)2 +

1
2
ρ0u1

2 + ρ1u1 · u0 + ρ0u0 · u2 +
1
2
ρ2u0

2

=
p2

1

2ρ0c2
0

+
1
2
ρ0u1

2 + ρ1u1 · u0 +
ρ0T0s

2
1

2Cp
+H0ρ2 + T0(ρ0s2 + ρ1s1) + m0 · u2

(2.106)

The term (ρH − p)2 occurs in Eq. (2.105) as a derivative w.r.t. time. The objective of
the following transformation is then to arrange the different terms of Eq. (2.105) in a way
that allows to exploit the relations stated by the conservation equations for the second order
fluctuations Eqs. (2.98) - (2.100). The time derivative is therefore splitted into separate parts:
the terms that correspond to the time derivatives on the left hand side of Eqs. (2.98) - (2.100),
and a remainder. As the mean flow quantities, i.e. the quantities of order zero, are not time
dependant, this yields:

∂

∂t
(ρe+ ρ

u2

2
)2 = (H0 − T0s0)

∂ρ2

∂t
+ m0

∂u2

∂t
+ T0

∂

∂t
(ρ0s2 + ρ1s1 + ρ2s0)

+
∂

∂t

[
p2

1

2ρ0c2
0

+
1
2
ρ0u1

2 + ρ1u1 · u0 +
ρ0T0s

2
1

2Cp

] (2.107)

The four remaining terms are then summarized in the term E2:

E2 =
p2

1

2ρ0c2
0

+
1
2
ρ0u1

2 + ρ1u1 · u0 +
ρ0T0s

2
1

2Cp
(2.108)

The time derivative of Eq. (2.107) is then introduced into Eq. (2.105). After a few cumbersome
but rather straightforward transformations, one may finally rewrite this equation as:

∂E2

∂t

+(H0 − T0s0)
[
∂ρ2

∂t
+∇ ·m2

]
+m0 ·

[
∂u2

∂t
+ ζ2 +∇H2 − T0∇s2 − T1∇s1 − T2∇s0

]
+T0

[
∂

∂t
(ρ0s2 + ρ1s1 + ρ2s0) +∇ · (m0s2 + m1s1 + m2s0)−Q2

]
+∇ · (m1H1) + T1∇ · (m0s1)− T0∇ · (m1s1)−m0 · ζ2 −m2 · ζ0 − T1Q1 = 0

(2.109)

The second, third and fourth term of Eq. (2.109) are zero, as the terms in brackets correspond
exactly to the conservation equations for second order flucutating flow quantities stated in
Eqs. (2.98) - (2.100).
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Thus, the final energy balance is retained in the form:

∂E2

∂t
+∇ · [m1(H1 − T0s1) + m0T1s1]︸ ︷︷ ︸

W2

= −m1s1 · ∇T0 + m0s1 · ∇T1 + m0 · ζ2 + m2 · ζ0 + T1Q1︸ ︷︷ ︸
D2

(2.110)

Eq. (2.110) expresses hence a conservation law for the disturbance energy E2 as stated in
Eq. (2.108), with W2 the flux of disturbance energy across the domain boundaries and D2 the
source term.

Using the relations H1 = h1 + u0 · u1 and Eq. (2.103), one may further rewrite W2 in the
form:

W2 = m1

(
p1

ρ0
+ u0u1

)
+ m0T1s1 (2.111)

Furthermore, it can be shown that the vorticity terms in D2 can be simplified as follows:

ρ0u0 · ζ2 + m2 · ζ0 = ρ0u0 · (ξ1 × u1) + ρ1u1 · (ξ0 × u0)

where ξ = ∇ × u denotes the vorticity, and ζ = ξ × u. D2 is then obtained as a function of
first order terms as well and reads:

D2 = −m1s1 · ∇T0 + m0s1 · ∇T1 + ρ0u0 · (ξ1 × u1) + ρ1u1 · (ξ0 × u0) + T1Q1 (2.112)

Thus, as a result of the derivation, an exact energy corollary involving only first order per-
turbation terms is obtained. Furthermore, it is straightforward to show that Eq. (2.110) corre-
sponds to the acoustic energy balance of Eq. (2.76) as soon as mean flow velocity and entropy
fluctuations are neglected.

Expressions for Energy, Flux & Source Terms as used in the 1D Analysis

The analysis in Chapter 6 is conducted for a 1D flow, which is described by the system of
Equations (2.32) - (2.34) for constant values of cross section area S . The expressions for E2,
W2 and D2 are therefore the 1D equivalents of the terms derived above. This means that the
velocity vector u is replaced by its 1D equivalent u, and vorticity can be neglected. The source
term Q is expressed as stated in the governing system of Equations, i.e.

Q =
q

T
,

which yields for the product of first order perturbations:

T1Q1 = T1

( q
T

)
1

= T1

(
q1

T0
− q1T1

T 2
0

)
The energy corollary for a 1D flow, where viscous terms have been neglected, reads thus:

∂E2

∂t
+
∂W2

∂x
= D2 (2.113)
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with

E2 =
p2

1

2ρ0c2
0

+
ρ0u

2
1

2
+ ρ1u0u1 +

ρ0T0s
2
1

2cp0
(2.114)

W2 =
u0

ρ0
p1ρ1 + p1u1 + u2

0ρ1u1 + u0ρ0u
2
1 + ρ0u0T1s1 (2.115)

D2 =− s1ρ1u0 · ∇T0 − s1ρ0u1 · ∇T0 + s1ρ0u0 · ∇T1 + T1

(
q1

T0
− q0T1

T 2
0

)
(2.116)
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Chapter 3

Numerical Solution of Large
Eigenvalue Problems

This chapter presents some aspects of numerical linear algebra that are necessary to solve the
eigenvalue problem arising from the discretized system of equations presented in Chapter 2.
While the methods of spatial discretization are different for the 1D and 2D study and are there-
fore presented in the respective chapters, the solution of the resulting eigenvalue problem is in
both cases based on the Arnoldi method [3]. For the 1D study, this method is available as part
of the MATLABTM- environment. In the 2D solver, the Arnoldi-algorithm is directly accessed
via the software library ARPACK [60].

This chapter addresses the solution of large eigenvalue problems the way it is implemented
in the 2D solver. This comprises the use of the Arnoldi algorithm in shift-invert mode as well
as the algorithm used for the matrix inversion.
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3.1 Reducing the Size of the Eigenvalue Problem

As shown in Chapter 2, the description of thermoacoustic instabilities using the Linearized Eu-
ler Equations in the frequency domain can be expressed in the form of an eigenvalue problem.
In discretized form, this problem reads

[A][V] = iω[V], (3.1)

with [V] the discrete eigenvector that contains the unknown values of (ρ̂, û, ŝ) for each grid
point and [A] the linear operator matrix as derived in section 2.2.1. It should be noted that in
cases including an unsteady heat release rate, the operator matrix [A] depends on ω via the heat
release model as introduced in section 2.2.1.

The size m of the discrete eigenvealue problem can easily be estimated as a function of the
number of mesh points N : in the 1D case, the eigenvector contains values of three variables,
(ρ̂, û, ŝ), at each node, compared to four variables in 2D cases (ρ̂, ûx, ûy, ŝ). The overall size
of the eigenvalue problem is therefore of about m ≈ 4N for a 2D mesh with N grid points.
This implies that an accordingly large number of eigenvalues and -vectors exists. However,
only very few of these solutions are of interest, namely those that represent the low frequency
resonant modes of the configuration: these are the modes that are susceptible to be involved in
combustion instability.

Based on this consideration, the objective is hence not to solve the full eigenvalue problem
of size m ≈ 4N , but to solve an appropriate problem of considerably smaller size n, that
nevertheless allows to determine the eigenpairs of the original problem. This can be achieved
by projecting the original m-dimensional problem into a suitable lower-dimensional subspace
[113], and solve the resulting problem of lower dimension as an approximation of the original
one. This technique is used in this study in the form of a projection on a so-called Krylov
subspace, which refers to a subspace spanned by matrix-vector products of the first powers of
a matrix A and a vector b [91]:

Kn = span{b, Ab,A2b, ..., An−1b} (3.2)

As can be deduced from the above definition, the dimension of the Krylov subspace is not
fixed, but depends on n. If n denotes the steps of an iterative algorithm, the dimension of the
subspace increases hence continously as more iterations of the process are carried out.
Methods that involve a projection on a Krylov subspace exist in various forms, depending on
the characteristics of the problem to be solved. The most well known techniques for eigen-
value problems are the Lanczos algorithm, that is applicable if the matrix A is hermitian, and
the Arnoldi algorithm, that can be used with non-hermitian matrices. Furthermore, Krylov
subspace methods are also used to solve linear systems of the form Ax = b, as a part of the
conjugate gradient or GMRES (Generalized Minimal Residuals) algorithms [113].

3.1.1 The Arnoldi Iteration

In the present study, solutions of the eigenvalue problem arising from the spatial discretization
of Eq. (3.1) are determined using the Arnoldi algorithm. This method allows to project the
operator matrix [A] into a Krylov subspace following the procedure stated in Table 3.1.
Starting from a random input vector b, the algorithm generates a Krylov subspace spanned by
the vectors q, and simultaneously reduces the matrix A to a matrix Hn of upper Hessenberg
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b = arbitrary vector
q1 = b/||b||2

for n = 1, 2, 3, ...
vn = Aqn

for j = 1 to n
hjn = q∗j vn
vn = vn − hjnqj

end

hn+1,n = ||vn||2
qn+1 = vn/hn+1,n

end

Table 3.1: Algorithm of the Arnoldi Iteration (cf. [113]). * denotes the conjugate transpose.

form and dimension n × n by generating the coefficients hij . The process can be stopped
after any number of iterations n. If the number of iterations corresponds to the dimension of
the matrix A, this latter will hence be transformed into a Hessenberg matrix of the same size;
however, the objective is a partial reduction of A to a Hessenberg matrix of smaller dimension.

As can be seen in the algorithm stated in Table 3.1, the matrix A appears only in the form
of a matrix-vector product. This is a very useful feature, since in the study presented here
the matrix A corresponds to the linear operator A = [A] introduced in section 2.2.1. In the
present case, the matrix A = [A] is hence not known explicitly, but rather defined as part of a
matrix-vector product. Thus, the algorithm corresponds conveniently to the way the problem
is defined.
Each iteration of the process adds another vector qn to the basis of orthonormal vectors. These
vectors are related to each other via the coefficients hij and the matrix A as follows:

Aq1 = h11q1 + h21q2

Aq2 = h12q1 + h22q2 + h32q3 (3.3)

Aqn = h1nq1 + h2nq2 + h3nq3 + ...+ hnnqn + hn+1,nqn+1

After n iterations, the algorithm has generated n + 1 vectors q, that can be gathered in a
matrix Qn+1 = (q1; ...; qn+1), and the coefficients of a non-square Hessenberg matrix H̃n of
dimension (n+ 1)× n. Thus, the following notation holds for the relations of Eqs. (3.3):

AQn = Qn+1H̃n (3.4)

where Qn is a matrix of size m × n whose columns contain the vectors (q1; ...; qn). A square
Hessenberg matrix noted Hn can be obtained by removing the last line of H̃n, which corre-
sponds to the matrix operation [113]

Hn = Q∗nQn+1H̃n (3.5)
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where Q∗n is the conjugate transpose of Qn. Inserting Eq. (3.4) into Eq. (3.5) yields

Hn = Q∗nAQn (3.6)

i.e. the square matrix Hn contains an orthogonal projection of the matrix A on the Krylov
subspace spanned by the vectors q that constitute the matrix Qn. The relation of Eq. (3.4) can
then be reformulated in terms of the quadratic Hessenberg matrix Hn :

AQn = QnHn + hn+1,nqn+1e
T
n (3.7)

where the last term on the right hand side describes the residual, which is expressed in terms
of a matrix of rank one (see Fig. 3.1), eTn being a unitary vector.
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Figure 3.1: Reduction of matrix A to Hessenberg form

The asset of this transformation of A to Hn is the following: it has been observed that
some of the eigenvalues of the Hessenberg matrix Hn, which are referred to as Ritz values, are
very accurate approximations of the eigenvalues of the initial matrix A. This means that the
time- and memory-demanding task of computing the eigenpairs of the large matrix A can be
avoided and replaced by the computation of the eigenpairs of the much smaller matrixHn. The
eigenvalues and -vectors of this small matrix can be computed by direct methods such as the
QR algorithm [113]. In order to detect the eigenvalues of interest, the search can be directed
towards the desired area in the frequency spectrum, an aspect that will be covered lateron. The
accuracy of the approximations improves with an increasing number of iterations n: in the case
where n = m, all eigenvalues of H correspond to eigenvalues of A.
However, as usually the matrixA is not completely reduced to Hessenberg form, it is necessary
to determine which of the Ritz values are good approximates of the eigenvalues of A, and
how good an approximate they are. Such an assessment can be achieved via the following
considerations [91]: The value λni denotes the i-th eigenvector of the n×n- Hessenberg matrix
Hn, with yni the associated eigenvector of length n, such that Hny

n
i = λni y

n
i . The Ritz vector

uni is a vector of length m that approximates an eigenvector of A. It is related to yni via

uni = Qny
n
i (3.8)

One can then write

AQny
n
i = QnHny

n
i + hn+1,nqn+1e

T
ny

n
i

= Qnλ
n
i y

n
i + hn+1,nqn+1e

T
ny

n
i

(3.9)

and thus
(A− λni I)uni = hn+1,ne

T
ny

n
i qn+1 (3.10)
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where I is the unitary matrix. The pair (λi, uni ) is then a good approximation of an eigenpair
of A, if the norm of the RHS term of Eq. (3.10) is smaller than a certain threshold value.
Since |qn+1| = 1 by construction, the estimation of this residual norm is rather simple, as it
corresponds to the product of the last component of the vector yni with hn+1,n:∣∣∣∣(A− λni I)uni

∣∣∣∣
2

= hn+1,n

∣∣eTnyni ∣∣ (3.11)

Based on such an error estimation, stopping criteria for eigenvalue solvers can then be de-
rived [91, 113].

3.1.2 The Shift & Invert - Method

The eigenvalues that are found by the Arnoldi algorithm are those located at the extrema of
the frequency spectrum, i.e. either the very large eigenfrequencies or those close to zero [113].
The eigenvalue problem considered here is expressed as

[A][V] = λ[V] = iω[V],

i.e. the eigenvalues are related to the eigenfrequency by

λ = iω = −ωi + iωr.

In the considered case of acoustic eigenmodes in combustion chambers, the results of physical
interest are the first resonant modes of the configuration, i.e. the results that are characterized
by small positive values of ωr. High values of ωr correspond to higher order modes, which
contain less energy and are therefore of less interest for this analysis. The Arnoldi algorithm
should therefore be oriented towards the eigenvalues λ with smallest positive imaginary part,
which corresponds to small positive real parts of ω (see schematic view in Fig. 3.3).
However, as a result of the formulation of the problem, a large number of purely mathemat-
ical solutions with eigenfrequencies very close to zero exist. The problem is related to the
fact that the system of equations allows the presence of point-to-point instability as only first
order derivatives are considered and the system is discretized by centered schemes. The eigen-
vectors associated to these solutions reveal their non-physical character, as the distributions of
fluctuating quantities do not follow any mode shape, but are distributed randomly (with excep-
tion of the values imposed by boundary conditions). This difference between a physical and a
non-physical solution can be observed in Fig. 3.2.

(a) Non-physical Mode. f = 9.77 · 10−14 − 6.01i Hz (b) Physical Mode. f = 193.30− 1.66 · 10−3i Hz

Figure 3.2: Module of p̂(x, y) for a non-physical and a physical solution obtained by the 2D LEE solver.
Mean flow is uniform and at rest; the boundary condition p̂ = 0 is imposed on all boundaries.
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4. Code LEE 2D : méthode shift+invert 
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Figure 3.3: Schematic view of possible solutions for fr = ωr/(2π). Long markers: physical solutions.
Short markers: non-physical solutions. σ denotes a user-defined shift (or target frequency).

A way to by-pass this kind of solution and achieve convergence of the algorithm towards
the eigenvalues of physical interest is to apply the Arnoldi method to a shifted and inverted
form of the original problem. This means that the original problem

[A][V] = iω[V]

is rewritten as
[A− iσI]−1[V] = i(ω − σ)−1[V] = iµ[V] (3.12)

where σ is a target value near the eigenvalue of interest, I a unitary matrix and µ the eigenvalue
of the shifted and inverted problem.

The Arnoldi algorithm is then applied to the problem of Eq. (3.12), the search for eigenval-
ues being directed towards large values of µ. As µ is related to ω via

ω = σ + 1/µ,

this allows to obtain values for ω close to the indicated target value σ.

While making the search for eigenvalues more convenient, the use of the shift-and-invert-
method introduces a supplementary step into the solution process: Instead of the eigenvalues
of [A], the Arnoldi process has now to determine eigenvalues of [A − iσI]−1. This means
that instead of generating the matrix-vector product vn = Aqn (cf. Table 3.1), the algorithm
requires an input vector of the form vn = [A− iσI]−1qn, or in other words, a vector vn that is
solution of the linear system of equations [A− iσI]vn = qn.
Thus, in order to determine the vector vn, a linear system of equations of sizem has to be solved
at each iteration n of the algorithm. The way this is done in the present study is described in
the following section.
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3.2 Solution of Linear Systems of Equations

As described in section 3.1.2, the shift-and-invert-method that is applied to the eigenvalue
problem in the 2D LEE solver requires the solution of a linear system of equations in order
to generate the input vector for the Arnoldi algorithm. The numerous algorithms that exist to
solve linear systems of equations Ax = b can be separated into two categories:

• Direct methods must carry out the complete inversion of the matrix A in order to obtain
a solution. Furthermore, they require the matrix A to be explicitly available, i.e. in the
case where A is an operator and defined as part of a matrix vector product, an explicit
form of the matrix has to be generated first.

• By contrast, so-called iterative methods are based on matrix-vector products Aq in the
same way as the Arnoldi algorithm. They can thus be applied when the matrix itself
is not known explicitly, but the result of its product with any vector can be determined.
Besides, iterative methods allow to obtain results of good accuracy after a limited number
of iterations. This is especially advantageous when large matrices are involved and a
complete inversion of the matrix is too demanding in terms of memory and processing
time.

In the study presented here, where A is an operator matrix and hence not explicitly avail-
able and the problem is of large dimensions, the latter methods are doubtlessly better suited.
However, their use is not as straightforward as that of a direct method: The convergence of the
algorithm towards the solution depends on properties of the matrix A. In order to ensure fast
convergence, the problem has to be posed in a suitable way, which means that it usually must
be transformed in order to improve the properties of the problem’s matrix. This is achieved by
so called preconditioning, which denotes the transformation of the system Ax = b by multipli-
cation with a preconditioning matrix M on both sides into a system MAx = Mb. This leaves
the solution of the system unchanged, but modifies the system in the way that the convergence
does no longer depend on the properties of A, but on those of MA [113, 92]. However, as Y.
Saad puts it [92], ”Finding a good preconditioner [...] is often viewed as a combination of art
and science.”

Thus, for the sake of simplicity, the solver developed in the present study uses a direct
method to find the input vector required by the Arnoldi algorithm at each iteration n to solve
a shifted and inverted eigenvalue problem. The method chosen to solve the system of the
type Ax = b consists in performing an LU factorization of the matrix A and subsequently
computing the solution vector x. An algorithm designed for the solution of sparse complex
unsymmetric systems is implemented in the software package ME38 of the HSL software li-
brary [48].

3.2.1 LU Factorization

The linear system to be solved reads [A − iσI]vn = qn (cf. section 3.1.2). Firstly, in order
to be able to apply an LU factorization, the matrix [A− iσI] has to be determined explicitely.
This is achieved by applying the operator matrix [A] as derived in section 2.2.1 tom orthogonal
unitary input vectors, and substracting iσI from the result.
The LU factorization of the resulting matrix consists then in its decomposition into a lower
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and an upper triangular matrix, L and U with elements lij and uij , respectively, of the form
A = LU . This is achieved using the algorithm stated in Table 3.2 [113]:

U = A, L = I

for k = 1 to m− 1
for j = k + 1 to m

ljk = ujk/ukk
for n = k to m

ujn = ujn − ljkukn
end

end
end

Table 3.2: Algorithm of the LU Factorization (cf. [113])

As initial condition, the matrices U and L are filled with the system matrix A = [A− iσI]
and a unitary matrix I, respectively. The following steps eliminate the values of U below the
diagonal, while at the same time L is filled with elements below the diagonal.
The factorization [A − iσI] = LU being completed, the solution vector vn of the system
[A − iσI]vn = qn is computed in two steps. Denoted forward and back substitution, they
consist in rewriting the system in terms of the vector y = Uvn and solving two triangular
systems, the first for the vector y and the second for vn:

LUvn = qn

Ly = qn forward substitution (3.13)

Uvn = y back substitution

While being rather straightforward to use, this method of solving a linear system has several
drawbacks in terms of computation time and use of memory:
Solving a system of equations of sizem by a direct method requires work of the order ofO(m3)
flops [113]. Besides, additional work is necessary to generate an explicit form of the matrix
[A − iσI]. The time needed for this process is in a lot of cases the major part of the whole
computation time. However, in the present study, the limiting aspect of this direct method is not
the computation time, but the memory that is required to solve the linear system of equations:
In order to invert a matrix of size m ≈ 20000, the linear solver demands a workspace of about
2 GB. Even though processors that provide memory of this order are widely available, this
high demand in memory is unnecessary and limits the computation to relatively small cases. A
crucial step in the further development of the Linerized Euler Equation solver is therefore the
implementation of an iterative method for the solution of the linear system of equations.

3.2.2 Generalized Minimal Residuals (GMRES)

GMRES is an iterative method for the solution of linear systems of equations. This algorithm
is used in the context of the Helmholtz-solver AVSP developed at CERFACS [35, 103]. It is
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therefore conceivable to apply this method to the LEE solver as well.

The GMRES algorithm is based on the generation of a basis of orthogonal vectors using the
Arnoldi algorithm (cf. Table 3.1). The objective is then to approximate the solution of a linear
problem Ax = b at each iteration n by a vector xn that minimizes the residual rn = Axn − b.
Using the notation introduced in section 3.1.1, this minimisation problem can be expressed
in terms of the orthogonal basis Qn and the Hessenberg matrix Hn generated by the Arnoldi
algorithm [113]:
Expressing the vector xn to be found at the n-th iteration as

xn = Qny,

the problem to be solved consists in finding a vector y such that

||Axn − b|| = ||AQny − b|| = minimum (3.14)

Using Eq. (3.4), the problem is further transformed into:

||Qn+1H̃ny − b|| = minimum (3.15)

Finally, multiplication with Q∗n+1 on the left allows to write:

||H̃ny −Q∗n+1b|| = minimum (3.16)

As the Arnoldi algorithm was initialized with q1 = b/||b||, the relation Q∗n+1b = ||b||e1 with
e1 = (1, 0, 0, ...) holds. Thus, the problem consists in finding a vector y that minimizes

||H̃ny − ||b||e1|| = ||rn|| = minimum (3.17)

The size of the problem is determined by the matrix H̃n, which is of dimension (n+ 1)× n at
the n-th iteration of the Arnoldi algorithm.

Compared to direct methods, iterative methods require considerably less work to solve a
system of size m, typically of the order of O(m) to O(m2) flops [113]. More importantly
for the case studied here, however, they also drastically reduce the size of the system that is
considered, and thereby the memory necessary to store intermediate results.
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Chapter 4

Quasi-1D Study: Method and Results

In a first step, the calculation of eigenmodes as described in chapters 2 and 3 was carried out
for 1D and quasi-1D configurations. Results have been published in [76, 119].
To this end, the Linearized Euler Equations (Eqs. 2.64-2.66) are rewritten in a quasi-1D for-
mulation. The study is hence restricted to purely longitudinal modes, excluding modes with
a two- or three-dimensional spatial structure. This assumption of plane-wave configurations
implies also that only frequencies below the cut-off frequency of the duct may be considered.

The following chapter shows the mathematical formulation of the quasi-1D problem, its
numerical implementation and results obtained with this method. The presentation of the nu-
merical method used to solve the system of equation focusses on the particularities of the 1D
study, viz. the use of a central finite difference method and a staggered grid discretization.

Results are presented for three academic configurations. The first configuration to be con-
sidered consists in a tube with constant cross section connected to an isentropic nozzle. This
setup, which does not contain any entropy perturbations, shows the effects of moving and ac-
celerated mean flow on the acoustic field. As a second test case, a tube of constant cross section
containing a 1D flame will be analysed. In addition to the acoustic waves, entropy fluctuations
have to be considered in this case. Interaction of the acoustic field with the flame may be taken
into account via an unsteady heat release term based on the description in section 2.1.6. Fi-
nally, a combination of these two configurations, i.e. a tube containing a 1D flame followed by
a nozzle, will be presented. This third test case allows to capture the effect of convected hot
spots and their interaction with the acoustic field, which may occur in regions of accelerated
mean flow.

The LEE calculations show that the prediction of instabilities obtained from zero Mach
number calculations may be misleading already for Mach numbers as low as Main0 = 0.05.
Besides, the form of the modes downstream of the flame changes considerably when the con-
vection of entropy waves is taken into account.
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4.1 Numerical Implementation in 1D

The test cases considered in this chapter are 1D or quasi-1D configurations of rather basic ge-
ometry. This means that a certain number of aspects, such as vorticity perturbations or 2D
mean flow phenomena (shear layers, vortices, etc.) and their effect on the acoustic field are not
taken into account.
However, the 1D formulation allows to take into account the production and convection of en-
tropy perturbations (hot spots), as well as their interaction with the acoustic field in regions of
non-uniform mean flow, i.e. the flame region and the nozzle.

The system of equations as derived in Chapter 2 is recalled and reads:(
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The unsteady heat release term is described by an n−τ -model as introduced in section 2.1.6.
The expression for the unsteady heat release rate in the frequency domain as given by Eq. (2.67)
reads in a 1D formulation:

q̂(x) =
qt

Ubulk
nloc(x)eiωτ ûxref

(4.4)

In the above expression, the local interaction index is defined as (cf. Eq. (2.57)):

nloc(x) = n
δf

Ubulk
qt

γ
γ−1 p0 for xf − δ

2 < x < xf + δ
2 ;

nloc(x) = 0 otherwise
(4.5)

with xf the position of the flame and δf the length of the flame zone.

4.1.1 Discretization in 1D: Finite Difference Method

For the one-dimensional study, the system of partial differential equations described by Eqs. (4.1) -
(4.3) is discretized using the finite difference method. A general way to obtain the expression
of the approximation for the gradient is to develop Φ(x+ ∆x) in a Taylor series around x [45]:

Φ(x+ ∆x) = Φ(x) + ∆xΦx(x) +
(∆x)2

2
Φxx(x) +

(∆x)3

6
Φxxx(x) + ...

Φ(x+ ∆x)− Φ(x)
∆x

= Φx(x) +O(∆x) (4.6)

This Taylor series development then allows to evaluate the truncation error O(∆xn), with
n ∈ N being the order of the finite difference approximation. In the case of the forward
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difference quotient of Eq. (4.6), this error is of the order of ∆x, the approximation hence of
first order.
Instead of using information about the quantity Φ at a position x and a downstream position
x+ ∆x as in the forward difference quotient, one may also use a backward formulation:

Φ(x−∆x) = Φ(x)−∆xΦx(x) +
(∆x)2

2
Φxx(x)− (∆x)3

6
Φxxx(x) + ...

Φ(x)− Φ(x−∆x)
∆x

= Φx(x) +O(∆x) (4.7)

From a combination of the forward and backward formulation results the central finite differ-
ence formulation for the gradient:

Φ(x+ ∆x)− Φ(x−∆x) = 2∆xΦx(x) +
(∆x)3

3
Φxxx(x) + ...

Φ(x+ ∆x)− Φ(x−∆x)
2∆x

= Φx(x) +O(∆x)2 (4.8)

As indicated by Eq. (4.8), the central finite difference approximation is of higher accuracy, the
truncation error being of second order in ∆x.

The scheme used to discretize a system of equations should correspond to its physical prop-
erties [45]: isotropic phenomena should be discretized by a centered scheme, i.e. a scheme that
does not have a preferential direction. For the discretization of the quasi-1D linearized Euler
equations stated in Eqs. (4.1) - (4.3), two different schemes are used in the present study: In or-
der to account for the fact that acoustic waves travel upstream as well as downstream, gradients
of fluctuating velocity and density are approximated with central finite differences. Entropy
fluctuations only being convected downstream, an upwind finite difference scheme is used for
this quantity.
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4.1.2 Staggered Grid Method

As described above, the system of equations Eqs. (4.1) - (4.3) is discretized using a central
finite difference scheme for the acoustic quantities. However, in the discretized form of the
system, the individual equations are decoupled, in the sense that separate solutions for the odd
and even grid points exist. This decoupling is then observerd in the solutions in the form of
the point-to-point instability shown in Fig. 4.1: The solutions for the amplitude of the fluctu-
ating quantities do not follow sine-functions as expected, but oscillate between two sinusoidal
envelope curves - one being the solution for the odd, the other for the even grid points. The
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Figure 4.1: Point-to-point oscillation in the first eigenmode

reason of this behaviour can be understood by having a look on the set of equations that is
being solved in one of the most simplified cases (see Fig. 4.2). This configuration consists in a
tube filled with a uniform medium at rest. The boundary conditions for the acoustic field were
chosen to û = 0 at the inlet x = 0 and ρ̂ = 0 at the outlet x = L. Entropy fluctuations are not
considered in this case.



ˆ u (0)  0



ˆ (L)  0

0 L x 


u0  0

T0  const.

Figure 4.2: Simple Configuration in 1D

For this case, the system of equations (4.1) - (4.3) simplifies to the following two equations:

ρ0
∂û

∂x
= iωρ̂ (4.9)

c2
0

ρ0

∂ρ̂

∂x
= iωû (4.10)

These are the two equations that are commonly used to obtain the Helmholtz-equation. How-
ever, the method used for this study consists in solving the two equations as part of an eigen-
value problem.
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The spatial discretization of the calculation domain is realised as a grid of equidistant points
along the x-axis.
The ’standard’ discretization method consists in defining the unknown quantities (û and ρ̂) at
the grid points. The use of a central finite difference expression for both unknowns leads to the
situation shown in Fig. 4.3: via Eq. (4.9), the value of ρ̂ at point i is linked to the gradient of
û at this point. This gradient is expressed by a central finite difference approximation, i.e. as
a function of û at points i − 1 and i + 1. The values of û at points i − 1 and i + 1, in turn,
are related to the gradient of ρ̂ at the respective locations via Eq. (4.10). These gradients of ρ̂
are once again expressed by central finite difference quotients involving the values of û at the
neighbouring points, and so on.
As a result, there is no link between neighbouring values of the unknown quantities ρ̂ and û,
but only between the values at every second grid point. This is what allows the appearance of
the two envelope curves in the solution (see Fig. 4.1), one being the result for even grid points,
the other one for the odd grid points.

Figure 4.3: Node based discretization in 1D

There are several methods that allow to avoid this kind of oscillations, like using an upwind
finite difference scheme, introducing an artificial viscosity term or using a staggered grid dis-
cretization. The latter technique has the advantage of not introducing any numerical viscosity,
which is why it has been used in the present study.
In a 1D framework, the implementation of a staggered grid method is rather simple: instead of
defining both ρ̂ and û at the grid points, one of the quantities (here: û) is defined in between
two points. The values of û at the grid points not being directly part of the problem any more,
they have to be interpolated using the values at the ’cell centers’ when needed.

Figure 4.4: Staggered Grid in 1D

Using the staggered grid method, the discretization of Eqs.(4.9) and (4.10) using central
finite differences for both ρ̂ and û leads to the configuration shown in Fig. 4.4. As neighbouring
values of the unknown quantities are linked now, the formation of the point-to-point oscillations
is prevented and smooth sine-functions are obtained for the distributions of ρ̂(x) and û(x).
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4.2 Results of the 1D Study

The following sections present the results that were obtained for several academic configura-
tion using the method described above.
Numerical errors due to insufficient grid resolution may be excluded, as grid convergence has
been obtained for all calculations. The computational grids used to discretize the domain con-
sist of around 1000 to 5000 points, depending on the configurations. As the grid nodes are
supposed to be equidistant, local mesh refinement (for example in the flame zone in configura-
tion II) is not possible. In such cases, the mesh has to be refined globally.
As only longitudinal modes are considered in the following section, the height of the ducts
being considered in the different configurations is not specified.

4.2.1 Configuration I: Nozzle Flow

The first configuration to be analysed consists in a tube of lengthLc with constant cross section,
which is connected to an isentropic nozzle of length L− Lc (cf. Fig. 4.5). The nozzle may be
unchoked or choked and therefore of convergent or convergent-divergent shape, respectively.

Figure 4.5: Configuration I

The mean flow in the chamber is uniform and characterised by its static pressure pin0 , static
temperature T in0 and the mean flow Mach number M in

0 . The main geometric and mean flow
parameters used for the following calculations are gathered in Table 4.1.

L(m) Lc (m) p0 (Pa) T0 (K) γ r (J/kgK)
1.0 0.9 101325 300 1.4 287

Table 4.1: Parameters used for the calculations

The mean flow field inside the nozzle is described by an analytical distribution of the mean
flow Mach number of the form:

M0(x) = M in
0 + (Mout

0 −M in
0 )
(
x− Lc
L− Lc

)3

(4.11)

In this equation, M in
0 is the mean flow Mach number at the nozzle inlet, i.e. the Mach

number of the chamber flow; and Mout
0 is the Mach number that is imposed at position x = L.

When an outlet Mach number greater than 1 is imposed, the nozzle flow is choked with the
throat being located at xth. All other flow quantities are deduced using the classical isentropic
nozzle flow equations.
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The boundary conditions for the acoustic field have to be defined in a way that all waves enter-
ing the domain are specified.
In the case of a subsonic configuration with a non zero mean flow velocity, the computational
domain contains two downstream travelling waves, i.e an acoustic wave and a convected en-
tropy wave, and one upstream travelling acoustic wave. It is therefore necessary to specify
two boundary conditions for the downstream travelling waves at the inlet boundary, and one
boundary condition for the upstream travelling wave at the outlet boundary.
However, if the nozzle is choked and the flow therefore supersonic at the outlet section, it is not
necessary or meaningful to define an outlet boundary condition, as downstream of the throat no
upstream travelling acoustic wave exists. In this case, the boundary condition for the resonant
acoustic field is set by the flow conditions at the nozzle throat.

In the configuration to be considered, the boundary conditions at the inlet x = 0 were set
to û(0) = 0 and ŝ(0) = 0. As the mean flow is isentropic throughout the domain, Eq. (4.3)
reduces to

u0
∂ŝ

∂x
= iωŝ

leading to the result that ŝ(x) = 0 for the whole domain. The system of equations to solve is
therefore reduced to Eqs. (4.1) and (4.2), describing a purely acoustic configuration.
For the case of a subsonic nozzle, the boundary condition at the outlet x = L is set to p̂(L) = 0.

4.2.1.1 Reference Method: Helmholtz Solver

In order to validate the results obtained by solving the eigenvalue problem of Eqs. (4.1) and (4.2)
and to asses the effect of taking into account the mean flow Mach number, the configuration of
Fig. 4.5 has been analysed with a second method.
This method consists in solving the eigenvalue problem resulting from the Helmholtz equation,
i.e. an equation assuming the mean flow to be at rest. This equation is solved for the part of
the domain where this zero Mach number assumption is reasonable, which is the case in the
part upstream of the nozzle (0 ≤ x ≤ Lc). The influence of the nozzle on the acoustic field is
represented by a complex impedance, that is imposed as outlet boundary condition at x = Lc.
The problem to be solved reads hence:

∇ · (c2
0∇p̂) + ω2p̂ = 0 inside the domain;

∇p̂ = 0 on the boundary x = 0
Z = iωp̂/(c0∇p̂) on the boundary x = Lc

(4.12)

The set of equations Eq. (4.12) is solved by the CERFACS-developed code AVSP, which uses
a central finite volume discretization on unstructured triangular grids [74]. The impedance Z
describing the nozzle downstream of the domain outlet is determined numerically, using the
technique described in the following.

Numerical Calculation of the Nozzle Impedance:

The tool ”NOZZLE” developed at CERFACS [57] computes the impedance at the inlet
of non-compact isentropic nozzles, requiring information about the mean flow conditions, the
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ZoutletZnozzle ZthroatZnozzle
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(a) subsonic nozzle
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supersonic
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(b) choked nozzle

Figure 4.6: Computation of the impedance at the nozzle inlet as function of the impedance at its outlet
(subsonic case) or its throat (supersonic case).

form of the nozzle and an acoustic outlet condition (see Fig. 4.6).
The code solves the linearized Euler equations for purely acoustic configurations, i.e. the set
of equations Eqs. (4.1) and (4.2). Eq. (4.3) is not relevant, as the mean flow is assumed to be
isentropic, and the convection of entropy waves is not taken into account.
However, unlike the LEE solver described so far, the code NOZZLE does not solve these
equations in the form of an eigenvalue problem, but rather as a linear system of equations:

[A]
[
p̂
û

]
− iω

[
p̂
û

]
= 0

The equations are discretized using an upwind finite difference scheme, in a way that the fluc-
tuations at each grid point n are expressed in terms of their downstream neighbouring value
(see Fig. 4.6), in the form

[Dn]
[
ûn
p̂n

]
=
[
fu(ûn−1)
fp(p̂n−1)

]
with [Dn] a 2×2-matrix and fu, fp expressions that result from discretizing Eqs. (4.1) and (4.2)
(see detailed description in [59]).
In order to solve the systems of equations, a value for the (real valued) frequency ω and an
outlet boundary condition have to be set. Starting with the point n = 1 at the domain outlet,
the code determines then the impedance Z = p̂/(ρ0c0û) at the domain inlet.

The outlet boundary conditions used by the code NOZZLE correspond to those that are used
by the LEE solver that is to be validated: For subsonic nozzles, the outlet boundary condition
is set to p̂ = 0 in both codes. In the case where the nozzle is choked, the tool described here
uses the impedance at the troat Zth as outlet boundary condition:

Zth =
2du0
dx − iω

(γ − 1)du0
dx − iω

(4.13)

The impedance at the nozzle inlet determined by the code NOZZLE depends on the eigenfre-
quency ω. Therefore, a frequency sweep is carried out and the impedance Z is determined for
all values of ω in the interval of interest. This concerns frequencies in a range from f = 0Hz
to f = 1500Hz in steps of ∆f ≈ 0.3 Hz.
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4.2.1.2 Case with Unchoked Nozzle

ZnozzleZout ZoutZin Zin

LEE solver Helmholtz solver NOZZLE

(a) LEE solver: Computational domain in-
cludes nozzle

ZnozzleZout ZoutZin Zin

LEE solver Helmholtz solver NOZZLE

(b) Helmholtz solver: Nozzle is replaced
by a boundary condition that reflects its
impedance.

Figure 4.7: Computational domain of LEE and Helmholtz solver.

In a first time, results for the case of an unchoked nozzle are presented. The Mach number
at the outlet is set to Mout

0 = 0.9, whereas for the Mach number at the inlet several values are
considered, i.e. M in

0 = 0.01; 0.1; 0.2; 0.3; 0.4. The results for the complex eigenfrequencies
obtained for the first mode using the Linearized Euler Equations and the Helmholtz-Equation
respectively are gathered in Table 4.2.
The relative error between the results is defined with reference to the arithmetic mean of the
two values

ε =
2(φLEE − φHelmholtz)
φLEE + φHelmholtz

and noted εRe and εIm for the real and imaginary part respectively.

The difference in real frequency between the computations based on the Linearized Euler
Equations and the Helmholtz equations being due to the fact that the latter neglects the mean
flow velocity, it can be assessed by the following consideration: The first eigenmode of the
configuration is composed of a downstream and an upstream travelling wave. When the mean
flow is at rest, both waves traverse the combustion chamber of length Lc at the speed of sound
c0, leading to equal transit times in the downstream and upstream direction of t+ = t− =
Lc/c0. The frequency of oscillation of this first mode can then be found to

f0 =
1
T

=
1

t+ + t−
=

c0

2Lc
=
c0

λ

The same reasoning applied to a meanflow at mean velocity u0 leads to different propagation
times for the downstream and upstream travelling waves:

t+ =
Lc

c0 + u0
=

Lc
c0(1 +M0)

and t− =
Lc

c0 − u0
=

Lc
c0(1−M0)

This leads to an estimate for the resonance frequency of

f ≈ 1
t+ + t−

=
c0(1−M2

0 )
2Lc
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M in
0 f (Hz) LEE f (Hz) Helmholtz εRe (%) εIm (%) εRe, theor. (%)

0.01 187.39− 0.29i 187.39− 0.29i 0.0 0.0 0.0
0.10 180.65− 2.80i 182.33− 2.88i 0.9 2.8 1.0
0.20 173.62− 5.41i 180.30− 5.80i 3.8 6.9 4.1
0.30 163.92− 7.90i 178.83− 9.00i 8.7 13.0 9.4
0.40 151.15− 10.30i 177.51− 12.84i 16.0 22.0 17.4

Table 4.2: Frequency of first eigenmode for subsonic nozzle.

The relative error between these two frequencies can then be expressed as function of the
mean flow Mach number M0:

εRe,theor. =
2(f0 − f)
f0 + f

=
2M2

0

(2−M2
0 )

(4.14)

The error in real frequency estimated this way is noted in the last column of Table 4.2.

At very low Mach number, the frequencies computed by the Linearized Euler Equation
solver and by the Helmholtz solver are, as expected, the same. For growing Mach numbers
in the part upstream of the nozzle, both methods predict a decrease in real and imaginary
frequency. However, as the assumption of a mean flow at rest is not fulfilled anymore, the
differences between the Helmholtz solver and the LEE solver become considerable. The error
in real frequency is very well estimated using the term εRe, theor., which predicts closely the
difference observed between the two computations.
As no sources of acoustic energy are present in the domain, the eigenmodes of this configu-
ration are marginally stable when the mean flow is at rest (i.e. ωi = 0), or damped when the
the mean flow Mach number is not zero (i.e. ωi < 0). This increasing damping rate can be
explained by losses at the boundaries. The acoustic flux across the domains boundaries can be
expressed as [13]

F = (û+
u0

ρ0c2
0

p̂)(p̂+ ρ0u0û) (4.15)

As in the presented case, the boundary conditions read û = 0 and p̂ = 0 at inlet and outlet
respectively, the flux of acoustic energy across the boundaries is zero when u0 = 0. For in-
creasing values of u0, the losses at the boundaries increase, leading to higher damping rates.

The spatial shape of this first eigenmode is shown in Fig. 4.8 for low and high inlet Mach
number. Module and phase of the pressure fluctuations computed by the LEE solver are com-
pared to those predicted by the Helmholtz solver. This latter, of course, does not allow to
describe the structure of the mode inside the nozzle, i.e. results are limited to x ≤ Lc.
As expected, the results of the two codes agree very well for the case where the Mach num-
ber inside the domain is negligible (Fig. 4.8 (a) and (b)). At M in

0 = 0.4, the distribution
of |p̂(x)| computed by the Helmholtz solver still follows closely that computed by the LEE
solver, considerable differences being only visible in the vicinity of the nozzle inlet. However,
the Helmholtz solver fails to capture the linear decrease in phase that is predicted by the LEE
solver.

54



4.2. RESULTS OF THE 1D STUDY

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

 x  (m)

(a) |p̂|(x) at M in
0 = 0.01

0 0.2 0.4 0.6 0.8 1
!0.5

0

0.5

1

1.5

2

2.5

3

3.5

 x  (m)

(b) arg(p̂(x)) at M in
0 = 0.01

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

 x  (m)

(c) |p̂(x)| at M in
0 = 0.4

0 0.2 0.4 0.6 0.8 1
!0.(

0

0.(

1

1.(

2

2.(

3

3.(

 x  (m)

(d) arg(p̂(x)) at M in
0 = 0.4

Figure 4.8: Structure of the first eigenmode for the configuration with subsonic nozzle. : LEE
solver ◦ : Helmholtz solver

4.2.1.3 Case with Choked Nozzle

M in
0 f (Hz) LEE f (Hz) Helmholtz εRe (%) εIm (%) εRe, theor. (%)

0.01 187.69− 0.14i 187.70− 0.15i 0.0 6.7 0.0
0.10 180.77− 1.35i 182.51− 1.44i 1.0 6.5 1.0
0.20 173.30− 2.54i 180.08− 2.85i 3.8 11.5 4.1
0.30 163.10− 3.55i 177.98− 4.31i 8.7 19.3 9.4
0.40 149.77− 4.31i 175.88− 5.74i 16.0 28.5 17.4

Table 4.3: Frequency of first eigenmode for choked nozzle configuration.

Subsequently to the subsonic nozzle case, the configuration of described in section 4.2.1 is
analyzed for a case where the nozzle is choked. The outlet Mach number is now set to Mout

0 =
1.1, while the values for the inlet Mach number remain at M in

0 = 0.01; 0.1; 0.2; 0.3; 0.4.
The results obtained with the LEE solver and the method based on Helmholtz calculations as
described in section 4.2.1.1 together with the relative errors of Eqs. (4.2.1.2) and (4.14) are
gathered in Table 4.3.

As mentioned before, the Linearized Euler Equation solver takes into account the whole
domain, including the supersonic part downstream of the nozzle. This means that no boundary
condition needs to be set at the domain outlet, as the acoustically resonant domain is restricted
by the nozzle throat. In order to verify if this boundary condition is correctly captured by the
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Figure 4.9: Reflection Coefficient computed by the tool ”Nozzle” corresponding to the impedance
boundary condition imposed at x = Lc for the Helmholtz computations.

: M in
0 = 0.01 : M in

0 = 0.1 : M in
0 = 0.2 ◦ : M in
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code, calculations have been carried out with the domain being extended beyond x = L. As
expected, this modification in the supersonic part of the domain did not have an impact on the
resonant frequencies, confirming that the position and impact of the sonic nozzle throat is well
represented.

The results gathered in Table 4.3 confirm those presented for the case with a subsonic noz-
zle. For a mean flow virtually at rest the two methods predict again the same result. Besides,
the evolution of the values εRe and εIm with increasing inlet Mach number is very similar to
that of the unchoked nozzle computations. Again, the error in real frequency is well estimated
by the term εRe, theor. of Eq. (4.14).

Compared to the results obtained for the configuration with subsonic nozzle, the first eigen-
mode is less damped when the nozzle is choked. This observation is confirmed by the reflection
coefficient R = (Z − 1)/(Z + 1) equivalent to the boundary impedance represented by the
nozzles. (The values of Z have been determined using the tool ”Nozzle” described in sec-
tion 4.2.1.1). Module and argument of the reflection coefficient are illustrated in Fig. 4.9 for
the different Mach numbers at the nozzle inlet that are used in the calculation, and for the sub-
sonic as well as for the choked case. While the choked and unchoked nozzles tend to similar
values for the reflection coefficient at high frequencies, their behaviour at low frequencies is
quite different. At the frequency of the first eigenmode, i.e. at f ≈ 180Hz, the reflection coef-
ficient of the choked nozzles remains above |R| = 0.8 even for the highest inlet Mach number,
while that of the unchoked nozzle drops to |R| ≈ 0.65 for M in

0 = 0.4.
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4.2.1.4 Comparison to Analytical Solutions

For the simple configuration considered here, a semi-analytical solution can be obtained for the
part of the configuration upstream of the nozzle, while the nozzle itself can be expressed as an
impedance.
As the mean flow in this part of the configuration is uniform and entropy perturbations are not
considered, the equations describing the acoustic perturbations read

p̂(x) = A+exp(ik+x) +A−exp(−ik−x) (4.16)

and

û(x) =
1

ρ0c0

[
A+exp(ik+x)−A−exp(−ik−x)

]
(4.17)

withA+ andA− the amplitudes and k+ and k− the wavenumbers of the forward and backward
travelling waves respectively.
The inlet boundary condition û(x = 0) imposes A+ = A−. The impedance imposed as outlet
boundary condition at x = Lc establishes a relation between pressure and velocity fluctuations
of the form Z = p̂/(ρ0c0û), such that the following dispersion relation can be derived:

exp(ik+x) + exp(−ik−x) = Z
[
exp(ik+x)− exp(−ik−x)

]
(4.18)

The equivalent impedance of the nozzle is determined numerically using the method de-
scribed in section 4.2.1.1. As mentioned there, the impedance is frequency-dependant, i.e.
Z = Z(ω). This means that the dispersion relation Eqn. (4.18) has to be solved iteratively,
adjusting the value of Z(ω) at every iteration.
Solving Eq. (4.18) with a numerically calculated impedance for non compact nozzles is equiva-
lent to solving the Linearized Euler Equations equations for the complete domain. At the same
time, the results of the Helmholtz calculations can be verified by solving the dispersion rela-
tion Eq. (4.18) while assuming the mean flow to be at rest, which means that k+ = k− = ω/c0.

The results of this comparison are presented in Table 4.4. As expected, the eigenfrequen-
cies computed by the Helmholtz solver, which were obtained using the numerically calculated
impedance Z(ω), are the same as those obtained by solving Eq. (4.18).
Comparing the results of the LEE solver to those of Eq. (4.18), one finds good agreement for
the values of real frequency. However, for the imaginary frequency the values predicted by the
two methods differ by about 6 − 7%. This can be explained as follows: The computation of
the equivalent impedance is based on an upwind finite difference scheme. However, this kind
of numerical scheme is dissipative, and may induce damping behaviour. In contrast to that, the
LEE solver uses a central finite difference scheme, and predicts thus slightly smaller damping
rates.

Finally, one may solve Eq. (4.18) with an analytically calculated value for the impedance.
Using the compact nozzle assumption, i.e. assuming the length of the nozzle to be small
compared to the acoustic wavelength, the reflection coefficient of an isentropic nozzle can be
expressed as function of the inlet Mach number of the nozzle [66]:

R =
1− 1

2(γ − 1)M
1 + 1

2(γ − 1)M
(4.19)
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M in
0 f (Hz) Helmholtz f (Hz) Eq. (4.18) at M = 0 εRe (%) εIm (%)

0.01 187.70− 0.15i 187.69− 0.15i 0.0 0.0
0.10 182.51− 1.44i 182.51− 1.44i 0.0 0.0
0.20 180.08− 2.85i 180.08− 2.85i 0.0 0.0
0.30 177.98− 4.31i 178.01− 4.31i 0.0 0.0
0.40 175.88− 5.74i 175.88− 5.74i 0.0 0.0

M in
0 f (Hz) LEE f (Hz) Eq. 4.18 at M 6= 0 εRe (%) εIm (%)

0.01 187.69− 0.14i 187.68− 0.15i 0.0 6.7
0.10 180.77− 1.35i 180.79− 1.42i 0.0 5.1
0.20 173.30− 2.54i 173.33− 2.71i 0.0 6.5
0.30 163.10− 3.55i 163.10− 3.83i 0.0 7.6
0.40 149.77− 4.31i 149.84− 4.64i 0.0 7.4

Table 4.4: Comparison with semi-analytical solution, numerical impedance

M in
0 R Z f (Hz) LEE f (Hz) of Eq. (4.18) at M 6= 0 εRe (%) εIm (%)

0.01 0.997 500.0 187.69− 0.14i 192.86− 0.12i 2.7 15.4
0.10 0.968 50.0 180.77− 1.35i 190.76− 1.21i 5.4 10.9
0.20 0.938 25.0 173.30− 2.54i 184.43− 2.35i 6.2 7.8
0.30 0.907 16.7 163.10− 3.55i 173.96− 3.33i 6.4 6.4
0.40 0.878 12.5 149.77− 4.31i 159.49− 4.07i 6.3 5.7

Table 4.5: Resonant frequencies obtained analytically using compact nozzle assumption

or in terms of impedance

Z = −R+ 1
R− 1

=
2

(γ − 1)M
(4.20)

The real valued reflection coefficient and impedance obtained from Eqs. (4.19) and (4.20) are
noted in Table 4.5, together with the eigenfrequencies computed from Eq. (4.18) using this
impedance. It should be noted that the reflection coefficients calculated using the compact
nozzle assumption are the low frequency limit of the numerically determined curves plotted in
Fig. 4.9 (c).
Comparing the results obtained by the LEE solver to those obtained analytically using the
compact nozzle assumption, two aspects can be observed: As the latter calculations neglect the
length of the nozzle, and thereby underpredict the overall length of the domain, they tend to
overpredict the resonance frequency. At the same time, the mean flow in the chamber being
taken into account, the trend towards lower real frequencies with increasing mean flow velocity
is well captured.
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4.2.2 Configuration II: 1D Flame

Figure 4.10: Configuration II

As second configuration, a tube of length L with constant cross section, which contains a
1D-flame of thickness δf at position xf , is considered (see Fig. 4.10).
The mean flow field is imposed via an analytical distribution of static temperature of the form:

T0(x) =
T out0 + T in0

2
+
T out0 − T in0

2
tanh

(
3
x− xf
δf/2

)
(4.21)

The conservation laws for mass flux, momentum and total temperature provide the conditions

ρ0u0 = const.

p0 + ρ0u
2
0 = const.

and
q0 = ρ0u0CpdTt0/dx.

The flow field is then entirely defined by the choice of inlet pressure pin0 , temperature T in0 ,
Mach number Min

0 and a temperature step T out0 − T in0 . The mean flow parameters used for the
computations are gathered in Table 4.6.

pin0 (Pa) T in0 (K) T out0 (K) γ r (J/kgK) L (m) xf/L

101325 300 1200 1.4 287 1 0.5

Table 4.6: Parameters used for the calculations

As for the configuration of section 4.2.1, two boundary conditions have to be set at the inlet,
and one at the outlet, in order to provide information about the waves entering the domain.
The conditions at the domain inlet are set to ŝ = 0 and û = 0, while at the domain outlet p̂ = 0
is imposed. Thus, as in the first configuration, no entropy fluctuations are entering the domain.
However, in this second configuration, entropy fluctuations are created in the flame zone and
then convected downstream.

The results of the calculations carried out with the LEE solver are validated using a semi-
analytical model presented by Dowling [24], which solves the problem for the limit case
δf → 0. This method is described in the following section.
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4.2.2.1 Validation via Semi-Analytical Solution
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Figure 4.12: Description of the system as used in the reference model [24]: an infinitely thin flame sheet
separates unburnt and burnt gas. Entropy waves are not present upstream of the flame.

For the limit case of a infinitely thin flame front, the problem can be solved semi-analytically
(cf. [24]). The domain is split into two subdomains with uniform isentropic meanflow, which
are seperated by the flame at position x = xf . In the following, these two subdomains are
noted with index u for the part upstream of the flame filled with unburnt gas and with index b
for the part downstream of the flame filled with burnt gas (see Fig. 4.12).
The solution for density, velocity and entropy fluctuations can be determined by calculating the
amplitudes of the waves that are present in the two subdomains, i.e. the amplitudes of right-
going acoustic wave, left-going acoustic wave and entropy wave in the unburnt gas A+

u , A−u
and Eu and in the burnt gas A+

b , A−b and Eb.
The inlet boundary condition ŝ(0) = 0 imposes directly that Eu = 0, as no entropy can be
created upstream of the flame. The other amplitudes can then be calculated from the remaining
two boundary conditions and three step conditions that need to be satisfied at the flame sheet.
The boundary conditions at x = 0 and x = L are expressed as impedances:

Zu =
p̂

ρ0c0û

∣∣∣
x=0

(4.22)

Zb =
p̂

ρ0c0û

∣∣∣
x=L

(4.23)

The jump conditions are derived from the conservation equations for mass, momentum and
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energy and impose a relation between the conditions on both sides of the infinitely thin flame[
ρ0û+ u0ρ̂

]
x=xf ,u

=
[
ρ0û+ u0ρ̂

]
x=xf ,b

(4.24)

[
p̂+ 2ρ0u0û+ u2

0ρ̂
]
x=xf ,u

=
[
p̂+ 2ρ0u0û+ u2

0ρ̂
]
x=xf ,b

(4.25)

[
(CpT0 +

1
2
u2

0)(ρ0û+ u0ρ̂) + ρ0u0(CpT̂ + u0û)
]
x=xf ,u

=
[
(CpT0 +

1
2
u2

0)(ρ0û+ u0ρ̂) + ρ0u0(CpT̂ + u0û)
]
x=xf ,b

+ Q̂

(4.26)

The amplitudes of fluctuating pressure, velocity and density can then be expressed in terms
of harmonic waves:

p̂(x) = A+eik
+x +A−e−ik−x (4.27)

û(x) =
1

ρ0u0

[
A+eik

+x −A−e−ik−x
]

(4.28)

ŝ(x) = Eeiksx (4.29)

where the wavenumbers associated to forward acoustic, backward acoustic and entropy
waves are noted k+ = ω

c0(1+M) , k− = ω
c0(1−M) and ks = ω

u0
respectively.

The amplitudes of density and temperature fluctuations can be derived to (cf. Eqs. (2.39)
and (2.43))

ρ̂ =
p̂

c2
0

− ρ0E
Cp

eiksx

T̂ = T0

(γ − 1
ρ0c2

0

p̂+
E
Cp
eiksx

)
and the unsteady heat release rate reads

Q̂ =
γp0

γ − 1
nejωτ û

∣∣∣
x=xf ,u

Introducing the above expressions for the fluctuating quantities into Eqs. (4.22) - (4.26), the
equations may be rewritten in the form

X


A+
u

A−u
A+
b

A−b
ρbc

2
b

Cp
Ebeiksxf

 = 0, (4.30)
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with X a 5× 5 matrix :

X =


(1 +Mu)eik

+
u xf (Mu − 1)e−ik

−
u xf −(1 +Mb) cucb e

ik+
b xf −(Mb − 1) cucb e

−ik−b xf Mb
cu
cb

(1 +Mu)2eik
+
u xf (Mu − 1)2e−ik

−
u xf −(1 +Mb)2eik

+
b xf −(Mb − 1)2e−ik

−
b xf M2

b

X3,1 X3,2 X3,3 X3,4 M3
b /2

1− Zu 1 + Zu 0 0 0
0 0 (1− Zb)eik

+
b L (1 + Zb)e−ik

−
b L 0


(4.31)

with

X3,1 = cu
cb

(
(1 +Mu)

[
Mu + 1

γ−1 +M2
u/2
]

+ 1
γ−1ne

iωτ
)
eik

+
u xf

X3,2 = cu
cb

(
(1−Mu)

[
Mu − 1

γ−1 −M
2
u/2
]
− 1

γ−1ne
iωτ
)
e−ik

−
u xf

X3,3 = −(1 +Mb)
[
Mb + 1

γ−1 +M2
b /2
]
eik

+
b xf

X3,4 = −(1−Mb)
[
Mb − 1

γ−1 −M
2
b /2
]
e−ik

−
b xf

(4.32)

Equation (4.30) has a non trivial solution when the matrixX is singular. Hence, by requiring
detX = 0, a dispersion relation can be obtained, whose complex roots are the semi-analytical
solutions for ω.

4.2.2.2 Case without Unsteady Heat Release Rate: q̂ = 0

Firstly, the configuration is analyzed without an unsteady heat release rate. The flame does
hence not interact directly with the acoustic field. However, entropy fluctuations are created in
the flame zone and then convected downstream, which may have an impact on the form of the
acoustic modes and the loss of disturbance energy at the domain outlet.

The calculations of configuration of Fig. 4.10 are carried out with the flow parameters and
boundary conditions as summarized in section 4.2.2. In the LEE computations, the flame zone
covers a length of δf = 0.05L, δf = 0.10L or δf = 0.15L, respectively (cf Eq. (4.21)). The re-
sults obtained by the LEE solver are compared to those of the semi-analytical model presented
in section 4.2.2.1, which solves the problem for the limit case of an infinitely thin flame.

In addition to that, for the particular case where the mean temperatures of burnt and unburnt
gases are related by a factor T0,b/T0,u = 4 (which is given here, cf. Table 4.6), an analytical
solution can be found under the assumptions that the mean flow is at rest and the flame is in-
finitely thin [54]. As described in section 4.2.2.1, the configuration is split into two subdomains
upstream and downstream of the flame. Assuming continuity in mass, momentum and energy
across the flame leads to following the jump conditions:[

û
]
x=xf ,u

=
[
û
]
x=xf ,b

(4.33)

[
p̂
]
x=xf ,u

=
[
p̂
]
x=xf ,b

(4.34)

62



4.2. RESULTS OF THE 1D STUDY

These are equivalent of Eqs. (4.24) - (4.26) for the case where the mean flow is at rest
and fluctuations in heat release rate are not considered. The passage from Eqs. (4.24) - (4.26)
to the zero mean flow equivalents however is not straightforward and is derived in detail in [24].

Expressing pressure and velocity fluctuations in terms of harmonic waves as in Eqs. (4.27)
and (4.28), and neglecting mean flow and entropy fluctuations, Kaufmann et al. [54] derive the
following dispersion relation:

Λ =
Γ− 1
Γ + 1

= e2ikuxf
R1 −R2e

−3ikuxf

1−R1R2eikuxf
(4.35)

with Γ = ρ0,bc0,b

ρ0,uc0,u
the ratio of mean density times sound speed of burnt to unburnt gases,

ku = ω/c0,u the wavenumber in the unburnt gases, and R1 and R2 the reflection coefficients
at inlet and outlet respectively.

In the case presented here, the boundary conditions û(x = 0) and p̂(x = L) imply that the
reflection coefficients at the domain inlet and outlet are R1 = 1 and R2 = −1 respectively.
Introducing R1 and R2 into Eq. (4.35), one finds:

Λ = e2ikuxf
1 + e−3ikuxf

1 + eikuxf
=
e

3
2
ikuxf + e−

3
2
ikuxf

e
1
2
ikuxf + e−

1
2
ikuxf

Λ cos
(

1
2
kuxf

)
= cos

(
3
2
kuxf

)
= 4 cos3

(
1
2
kuxf

)
− 3 cos

(
1
2
kuxf

)
The resonant frequencies are thus the solutions of the following expression:

cos
(
kuxf

2

)[
cos2

(
kuxf

2

)
− 3

4
− Λ

4

]
= 0 (4.36)

The authors separate the results then into two families, being solutions of the left and right
factor of Eq. (4.36) respectively. It is pointed out that the modes which are solution of the left
hand side term represent the half wave mode of the part of the duct upstream of the flame (and
its harmonics). These modes have velocity nodes at the location of the flame, and can therefore
not be excited using the n− τ -model of Eq. (4.4).
As at M = 0 the pressure is constant across the flame, the density decreases by factor 4 across
the flame, while the speed of sound increases by factor 2. Thus, one finds Γ = 1

3 and Λ = 2
3 .

The real valued frequencies of the first three modes can then be determined to:

f1 =
2c0,u

xf
cos−1

(√
2/3
)

= 136.04Hz

f2 =
πc0,u

xf
= 347.19Hz

f3 =
2c0,u

xf
cos−1

(
−
√

2/3
)

= 588.34Hz

The first and third mode are hence results of the right hand term of Eq. (4.36), while the second
mode is due to the left hand term, therefore being one of the modes with a velocity node at the
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δf → 0 δf = 0.05L δf = 0.10L δf = 0.15L
semi-analytical solver 1D LEE solver

of section 4.2.2.1
M in

0 = 0.001
1 136.04− 0.26i 136.01− 0.24i 137.51− 0.15i 138.34− 0.15i
2 347.19− 0.23i 347.31− 0.23i 347.33− 0.23i 347.36− 0.23i
3 558.34− 0.26i 561.64− 0.15i 565.47− 0.14i 569.29− 0.13i

M in
0 = 0.15

1 121.43− 48.49i 123.35− 50.52i 126.41− 52.54i 129.80− 54.25i
2 325.04− 35.52i 324.41− 34.06i 323.57− 33.88i 322.85− 33.77i
3 538.48− 50.89i 552.43− 44.84i 559.71− 36.02i 562.38− 29.10i

Table 4.7: Eigenfrequencies of first three modes at M in
0 = 0.001 and M in

0 = 0.15

location of the flame.

Table 4.7 shows the first three eigenfrequencies of the configuration obtained by the semi-
analytical method of section 4.2.2.1 and by the LEE solver for three values of flame length
δf at a very low and a high Mach number at the domain inlet. The computations at very low
inlet Mach number reproduce very well the analytical results of Kaufmann et al., predicting
marginally stable modes at the correct frequencies. The modes are all expected to be neither
amplified nor damped when the mean flow is at rest, as in this case the acoustic flux across the
inlet and outlet boundaries is defined as F = p̂û and equals zero due to the boundary condi-
tions that are imposed. Besides, as fluctuations in heat release rate are not considered here, the
flame does not generate any amplification or damping.
When the mean flow in the domain is at a higher Mach number (here: M in

0 = 0.15), all modes
are damped. This is due to the fact that loss terms at the boundaries do now play an important
role, while still no source of acoustic energy is present. In contrast to the computations for the
mean flow being virtually at rest, the length of the flame zone does now slightly modify the
results, especially the growth rates. This aspect is discussed in more detail later on. The re-
sults found by the LEE solver tend however towards those found by the semi-analytical method
when the length of the flame is decreased.

The evolution of the complex eigenfrequencies of the first three modes with increasing
Mach number at the domain inlet are shown in Fig. 4.13. The plot contains both results of the
semi-analytical model of section 4.2.2.1, which assumes a flame length of δf → 0, and of the
1D LEE solver, with this parameter being set to δf = 0.05. The semi-analytical model and
the LEE computations predict both a trend towards slightly lower real frequencies and stronger
damping with increasing Mach number. The differences between the results obtained by the
two methods increase with the mean flow Mach number, and concern especially the imaginary
frequencies of the first and third mode.

The structure of the third eigenmode of this configuration is shown in Fig. 4.14 at low and
high inlet Mach numbers. For M in

0 = 0.001 and M in
0 = 0.15, module and phase of pressure,

velocity and entropy fluctuations are plotted.
The figures show that the mean flow speed does not have an important effect on the struc-
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Figure 4.13: Eigenfrequencies of the first three modes obtained by semi-analytical method and LEE
solver. •: δf → 0 � :δf = 0.05L

ture of the mode upstream of the flame. However, the mode shape changes clearly within the
flame region and downstream of the flame. The most noticeable change can be observed in
the distribution of fluctuating entropy (see Fig. 4.14 (e)). When the mean flow is at rest, these
fluctuations are confined to the flame zone. In contrast to that, the computation with a non
zero mean flow velocity predicts their convection towards the outlet of the domain. The pres-
ence of the entropy fluctuations downstream of the flame, together with the fact that the flame
accelerates the mean flow to about twice its speed at the inlet, does then in turn modify the
distributions of pressure and velocity fluctuations.

The impact of the mean flow speed is also visible in the evolution of the phase of the
fluctutating quantities (see Fig. 4.14 (b), (d), (f)). When the mean flow is at rest, the argument
of the complex quantities p̂ and ŝ is constant along x at zero or ±π and at ±π/2 for û ,
with steps at the respective node positions. At non zero Mach number however, the phase
is not piecewise constant anymore. This difference can be illustrated by coming back to the
definitions of p̂, û and ŝ as defined in Eqs. (4.27) - (4.29):

p̂(x) = A+eik
+x +A−e−ik−x

û(x) =
1

ρ0c0

[
A+eik

+x −A−e−ik−x
]

ŝ(x) = Eeiksx

Replacing the complex wavenumbers k in the above expressions by their respective definitions
yields:

p̂(x) = A+ei
ωr+iωi

c+u
x +A−e−i

ωr+iωi
c−u

x = A+e−
ωi

c+u
xei

ωr
c+u

x +A−e
ωi

c−u
xe−i

ωr
c−u

x (4.37)

û(x) = =
1

ρ0c0

[
A+e−

ωi
c+u

xei
ωr

c+u
x −A−e

ωi
c−u

xe−i
ωr

c−u
x
]

(4.38)
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Figure 4.14: Structure of the third eigenmode at low and high Mach numbers as obtained numerically
by the LEE solver for δf = 0.05L. Normalization is such that p̂(x = 0) = 1.

: M in
0 = 0.001, f = 561.64− 0.15i Hz : M in

0 = 0.15, f = 552.43− 44.84i Hz.

and
ŝ(x) = Eei

ωr+iωi
u

x = Ee−
ωi
u
xei

ωr
u
x (4.39)

Using this notation allows to identify module and phase of the fluctuating quantities more
clearly. At zero Mach number, the eigenfrequencies observed here are purely real, and the
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boundary conditions impose that A+ = A−. The pressure perturbation reads hence

p̂ = A+
(
ei

ωr
c
x + e−i

ωr
c
x
)

i.e. module and phase read

|p̂(x)| = 2A+ cos
(ωr
c
x
)

and arg(p̂)(x) = ±π

However, as soon as the mean flow velocity is non zero, this simplifications are not possible
anymore, which precludes finding analytical expressions for module and phase for pressure
and velocity perturbations. For the entropy perturbations however, one finds

|ŝ(x)| = Ee−
ωi
u
x and arg(ŝ)(x) =

ωr
u
x

The phase of the entropy perturbations is hence supposed to increase linearly with ωr
u , which

can easily be verified in Fig. 4.14(e): with fr = 552.4Hz and a mean flow velocity downstream
of the flame of u = 234.1m/s, the phase curve should increase with ωr

u = 14.8 1
m . As the phase

passes from arg(ŝ) = −π at x ≈ 0.62 to arg(ŝ) = 0 at x ≈ 0.83, the actual slope of the curve
is ≈ π

0.21m = 15.0 1
m , which corresponds well to the expected result.

Using the expressions of Eqs. (4.27) - (4.29) recalled above, one may also recover the factors
A+, A− and E as

A+ =
1
2

[
p̂(x) + ρ0c0û(x)

]
e−ik

+x (4.40)

A− =
1
2

[
p̂(x)− ρ0c0û(x)

]
eik
−x (4.41)

E = ŝ(x)e−iksx (4.42)

It should be noted that these factors are deduced from harmonic wave solutions that are valid in
isothermal, isobaric flow conditions. Their interpretation is hence meaningful only in the parts
of the flow outside of the flame.
In these regions upstream and downstream of the flame, the factorsA+,A− and E are supposed
to be constant. This is effectively the case, as shown in Fig. 4.15, where these factors are plotted
for the eigenvectors atM in

0 = 0.001 (left) andM in
0 = 0.15 (right) of Fig. 4.14. When the mean

flow is virtually at rest, the entropy factor is zero outside of the flame, but negligible even in
the part of the flow where entropy is present. The coefficients A+ and A− attributed to the
forward and backward travelling acoustic wave have the same amplitude, which is a result of
the boundary conditions at inlet and outlet.
For zero Mach number limit, the coefficients A+ and A− can be understood as the amplitudes
of the characteristic waves, as ωi = 0 for the corresponding eigenmode. However, in general,
the characteristic wave amplitudes read |A+e

− ωi
c(1+M)

x|, |A−e
ωi

c(1−M)
x| and |Ee−

ωi
u
x|. This

means that the amplitudes of the characteristic waves are - unlike the factors A+ and A− - not
constant in the zones outside of the flame, as soon as the eigenmode is amplified or damped.
The same behaviour can be observed for the convected entropy wave at non zero Mach number:
Fig. 4.14(e) shows that |ŝ| increases downstream of the flame, which may give the misleading
impression that entropy perturbations could be produced downstream of the flame. This being
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not the case of course, the factor E is well constant outside of the flame (Fig. 4.15(e)). Finally,
on may recover the temporal signal of the entropy perturbations that reads

s′(x, t) = <(ŝ(x)e−iωt) = <(Eeωi(t− x
u

)e−iωr(t− x
u

))

This expression illustrates how entropy perturbations are expressed as part of a damped mode:
The maximum amplitude of s′(x, t) is expected to be constant downstream of the flame, while
a damped mode induces a decay in amplitude during the convection time from an upstream to
a downstream position, which is in turn compensated by an increase in space of |ŝ|.
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Figure 4.15: Structure of the third eigenmode in terms of pre-exponential factors A+, A−
and E as defined in Eqs (4.40) - (4.42).
left: M in

0 = 0.001, f = 561.64− 0.15i Hz right: M in
0 = 0.15, f = 552.43− 44.84i Hz.
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Impact of Boundary Conditions
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Figure 4.16: Eigenfrequencies of the first three modes obtained by semi-analytical method and LEE
solver for boundary conditions ”no acoustic flux”. •: δf → 0 � :δf = 0.05L

The results presented in Fig. 4.16 show that an increasing mean flow Mach number leads to
higher damping rates for the observed eigenmodes. One reason for this is the loss of acoustic
energy by its transport out of the domain, an aspect that can be influenced by the choice of
boundary conditions: The same computations as those shown so far can be carried out with
boundary conditions that set the flux of acoustic energy at the domain inlet and outlet to zero
(cf. Eq. (4.15)). The boundary condition at the inlet reads then û+ u0

ρ0c20
p̂ = 0, that at the outlet

p̂+ ρ0u0û = 0.
However, entropy fluctuations may still leave the domain at the domain outlet, i.e. losses of
disturbance energy cannot be completely avoided.

The results for the complex eigenfrequencies found by the LEE solver and the semi-analytical
method for these boundary conditions are plotted in Fig. 4.16 for mean flow Mach numbers in-
creasing from M in

0 = 0.001 to M in
0 = 0.15. Again, good agreement between the two methods

is obtained. As for the initial set of boundary conditions, a trend towards slightly lower real
frequencies and more stable modes is predicted for increasing mean flow Mach numbers.
Compared to the computations with the boundary conditions that allow a flux of acoustic en-
ergy across the inlet and outlet borders, the damping rates predicted for a given inlet Mach
number are lower now (cf. Fig 4.13). This confirms the idea that the losses of disturbance
energy are lower, as they are only due to entropy terms. However, the impact is not the same
on the three modes: While the second mode is significantly less damped now, the changes in
damping rates for the first and third mode are much smaller.

These observations are discussed in more detail in Chapter 6, where an analysis of the
disturbance energy contained in the different modes is carried out for this configurations.
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Impact of the Flame Thickness
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Figure 4.17: Impact of the flame length on the eigenfrequency. •: δf → 0; �: δf = 0.05L O: δf =
0.10L : δf = 0.15L

As has been mentioned before (cf. Table 4.7), the length of the flame zone may have an
impact on the eigen frequency. In order to evaluate this effect, the eigenfrequencies of the first
three modes of the configuration shown in Fig. 4.10 have been computed using the infinitely
thin flame assumption and the 1D LEE solver for δf = 0.05L, δf = 0.10L and δf = 0.15L.
The results are plotted in Fig. 4.17. One observes that the impact of an increasing flame length
is not the same for the three modes: the real frequency of the first mode is little affected at low
Mach number, whereas at higher Mach number increasing flame thickness leads to higher real
frequencies. For the third mode, this trend towards higher real frequencies can be observed
both at high and low Mach number, whereas the second mode shows a slight decrease in real
frequency with increasing δf . In the same way, the damping rate at a given mean flow speed
is found to slightly increase with δf for the first mode, left unchanged for the second and
decreases for the third mode.
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The reason why the second mode is left almost unchanged when the flame thickness is varied is
due to the fact that this mode contains a velocity node and a pressure maximum at the position
of the flame. The mode being thus nearly symmetric with respect to the flame position, a
symmetric change in mean flow conditions has very little effect on its structure. This is however
not the case for the first and third mode, where the change in mean flow conditions impacts
(slightly) on the structure of the mode. This in turn may change the decay rate, as the damping
is (among others) due to losses of disturbance energy at the domain boundaries, i.e. on the
amplitudes of pressure, velocity and entropy perturbations at those positions. This illustrates
that the impact of a change of δf depends largely on the spatial structure of the mode at the
position of the flame and can therefore not be predicted in a general way.
The situation becomes even more complex when heat release rate fluctuations are taken into
account using the n − τ - model of Eq. (4.4): As this model links the source term q̂ to the
acoustic velocity at a point immediately upstream of the flame ûxref

, a change in δf not only
leads to small changes in the mode’s structure, but shifts the location of the reference point
xref . If the flame is placed near to a velocity node, i.e. in a zone where the gradient of |û(x)|
is strong, a small shift of xref leads to important differences in ûxref

and therefore q̂. For the
configuration being considered here, this applies to the second mode: unlike in the case where
q̂ 6= 0, this mode is expected to be susceptible on changes in δf as soon as fluctuations in heat
release rate are considered.
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4.2.2.3 Case with Unsteady Heat Release Rate: q̂ 6= 0

δf → 0 δf = 0.05L δf = 0.10L δf = 0.15L
semi-analytical solver 1D LEE solver

of section 4.2.2.1
M in

0 = 0.001
1 92.56− 7.51i 91.27− 7.86i 94.24− 7.62i 95.02− 7.66i
2 347.12− 0.08i 360.69 + 6.70i 374.48 + 15.64i 383.13 + 23.01i
3 582.50 + 53.10i 581.84 + 54.46i 580.22 + 51.23i 579.48 + 42.30i

M in
0 = 0.15

1 70.94− 47.61i 70.91− 45.87i 71.15− 44.96i 70.70− 44.02i
2 325.04− 9.49i 337.45− 4.50i 350.03 + 1.42i 359.09 + 6.14i
3 565.30− 7.55i 598.56− 56.56i 614.19− 137.54i 689.37− 99.24i

Table 4.8: First three modes at M in
0 = 0.001 and M in

0 = 0.15

The configuration of Fig. 4.10 is now analyzed including an unsteady heat release rate. This
term is modeled as function of the acoustic velocity at a reference point immediately upstream
of the flame, as described in section 4.1. The parameters of the heat release model of Eq. 4.4
are set to n = 3 and τ = 0.5 ms in the following. The mean flow parameters remain those of
Table 4.6.

As before, the results of the LEE solver are compared to those of the semi-analytical model
described in section 4.2.2.1. The results obtained by the two methods for complex eigen fre-
quencies of the first three modes at very low and high inlet velocity are gathered in Table 4.8.
Besides, the evolution of the eigenfrequencies between the two values M in

0 = 0.001 and
M in

0 = 0.15 is plotted in Fig. 4.18 for the infinitely thin flame computations and the LEE
computations with δf = 0.05L.

The results obtained by the two methods show overall good agreement. At low Mach num-
ber, both the semi-analytical model and the LEE solver predict now the first mode as stable, and
the third mode as unstable. However, for the second mode the length of the flame zone has an
impact on the result even at low Mach numbers, which is due to its spatial structure: Comparing
the complex frequencies of this mode obtained by the semi-analytical model at M in

0 = 0.001
to that obtained without the unsteady heat release term (cf. Tab. 4.7), the observation that the
second mode cannot be excited using the present heat release model is confirmed. As this
mode contains a velocity node at the middle of the domain, i.e. at the position of the flame, the
unsteady heat release rate computed by Eq. (4.4) equals zero. However, this is only strictly true
for the infinitely thin flame computations. If the flame covers a certain length, the velocity is
not strictly zero, and thus an unsteady heat release term occurs. This explains why this second
mode is particularly sensitive to changes in flame thickness.

The third mode now being unstable at low Mach number indicates that the flame acts as a
source of disturbance energy, i.e. the phase shift between pressure and heat release rate fluctu-
ations is such that the Rayleigh criterion is satisfied. At the same time, the energy losses at low
Mach number are small enough in order not to outbalance the energy gain due to the unsteady
heat release rate. As shown in Fig. 4.18, this is not the case at high Mach number: for the three
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Figure 4.18: Eigenfrequencies of the first three modes obtained by semi-analytical method and LEE
solver. •: δf → 0 � :δf = 0.05L

modes shown here, the computations predict again a general trend towards more stable modes
with increasing mean flow velocity, This indicates that the loss terms, among others due to flux
of disturbance energy across the domain borders, outbalance the source terms related to the
flame. A detailed analysis of these mechanisms is presented in Chapter 6.

The structure of the third eigenmode is shown in Fig. 4.19. Similarly to the computations
without unsteady heat release rate (cf. Fig. 4.14), the impact of the mean flow speed is espe-
cially visible in the flame zone and downstream of the flame.

The unsteady heat release rate in the flame zone leads to a modified distribution of entropy
compared to the case without unsteady heat release rate: At low Mach number, this quantity
is non zero throughout the flame zone, with very steep gradients at its beginning and end. Be-
sides, the amplitude of the entropy fluctuations is now underpredicted at low Mach number.
Similarly, the curve of |û(x)| shows a much stronger impact of the flame than in the case with-
out unsteady heat release rate, both at low and high Mach number.
Furthermore, the phase of the pressure and velocity perturbations is not constant along x any-
more at low Mach number, but one observes rather an opposite behaviour between the low and
high Mach number case: in the parts of the domain where the phase of the pressure signal in-
creases for M0 = 0.001 it decreases for M0 = 0.15. This might be related to the growth rates,
which are of similar values for the two Mach numbers, but with opposite signs: ωi = 54.5s−1

at M0 = 0.001, whereas ωi = −56.5s−1 at M0 = 0.15.
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(e) |ŝ(x)|

0 0.2 0.4 0.6 0.8 1
!4

!3

!2

!1

0

1

2

3

4

 x  (m)

(f) arg(ŝ(x))

Figure 4.19: Structure of the 3rd Eigenmode at low and high Mach numbers for δf = 0.05L.
: M in

0 = 0.001, f = 581.84 + 54.46i Hz; : M in
0 = 0.15, f = 598.56− 56.56i Hz
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Impact of the Parameters of the n− τ -model
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Figure 4.20: Frequency shift between results at M in
0 = 0.15 and M in

0 = 0.001: f0.15 − f0.001.
∆: n = 0; ◦ : n = 1; •: n = 2; *: n = 3; ×: n = 4; : n = 5. For each n, the time delay τ varies from
τ = 0ms to τ = 2.6ms with ∆τ = 0.2ms in direction of the arrows (starting from τ = 0ms indicated
by the solid line). For M in

0 = 0, the eigenfrequency is real valued and equals 347.19 Hz.

In the following, the impact of the parameters n and τ used in the unsteady heat release
model on the complex eigenfrequency is discussed . Therefore, the eigenfrequency of the sec-
ond mode of the configuration is computed at M in

0 = 0.001 and M in
0 = 0.15 for values of n

ranging from 0 to 5, and values for τ increasing from τ = 0ms to τ = 2.6ms. In order to save
computational time, the frequencies are computed using the semi-analytical model described
in section 4.2.2.1. As shown before, the results obtained by the 1D LEE solver and the semi-
analytical model are very similar when the flame is short.
In this parameter study, the two sets of boundary conditions introduced before are considered:
the simple boundary conditions that impose û = ŝ = 0 at the inlet and p̂ = 0 at the outlet,
and the set of boundary conditions that blocks the acoustic flux by setting û + u0

ρ0c20
p̂ = ŝ = 0

at the inlet and p̂ + ρ0u0û = 0 at the outlet. The results are finally presented in Fig. 4.20 in
the form of the shift in frequency between the result at M in

0 = 0.15 and M in
0 = 0.001, i.e.

f0.15 − f0.001.
As mentioned before, at M in

0 = 0 the second mode of the considered configuration contains
a velocity node at the x = 0.5L, i.e. at the position of the (infinitely thin) flame. For a mean
flow at rest, this mode can hence not be influenced by the n− τ -model used here and has a real
valued frequency of f = 347.19Hz for all values of n and τ . The results shown in Fig. 4.20
indicate hence in how the eigenfrequency at M in

0 = 0.15 differs from this ”fix point” as a
function of the parameters n and τ and the boundary conditions.

The results show that it is not possible to predict the eigen frequency at non zero Mach
number from the zero Mach number result: the way the frequency changes depends strongly
on n, τ and the boundary conditions, without following a predictable pattern. For the simple set
of boundary conditions (Fig. 4.20(a)), the high Mach number result has a lower real frequency
in all cases (∆fr < 0 for all n and τ ). However, the imaginary frequency can change from
fi = 0 at M in

0 = 0 to both negative and positive values, i.e. the initially marginally stable

76



4.2. RESULTS OF THE 1D STUDY

mode can become both stable or unstable when the mean flow velocity is taken into account.
In the case shown here, only n = 1 leads to a shift towards a stable mode for all values of τ
considered; for higher values of n, the mode will eventually become unstable when τ is high
enough (τ > 1.4ms for n = 2 and τ > 0.8ms for n = 5).
In the case where the boundary conditions were set to block the acoustic flux (Fig. 4.20(b)), the
shift in real frequency can be either negative or positive. More importantly however, the imag-
inary frequency as well can change towards both positive and negative values. Even though a
shift towards an unstable mode occurs only for one value of n, the problem that the behaviour
at higher Mach number cannot be predicted from a zero Mach number computation persists.
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4.2.3 Configuration III: 1D Flame followed by Isentropic Nozzle

Ma  ,  p  , T
in      in     in
0        0       0 

flame nozzle

f xx xthLc0

Figure 4.21: Configuration III

Finally, the configurations presented in sections 4.2.1 and 4.2.2 are combined in a third con-
figuration, which consists in a tube of constant cross section that contains a 1D flame, followed
by an isentropic nozzle (see Fig. 4.21).
The mean flow is described by a temperature distribution as in Eq. (4.21) for the part 0 < x <
Lc and by a Mach number distribution as in Eq. (4.11) for the nozzle. As the mean flow accel-
erates across the flame, the Mach number at the inlet of the nozzle can be estimated to about
twice the value at the inlet of the domain.
The main parameters of the computation are presented in Table 4.9. Keeping the main param-
eters of the previous test cases, the temperature downstream of the flame is set to T = 1200 K,
and the Mach number at the outlet of the nozzle is Mout

0 = 1.1. The flame is linked to the
acoustic field via the unsteady heat release model of Eq. (4.4) with the parameters n = 3 and
τ = 0.5ms.

L(m) Lc (m) xf (m) δf/L n τ pin0 (Pa) T in0 (K) γ r (J/kgK)
1.1 1.0 0.5 0.05 3 0.5 ms 101325 300 1.4 287

Table 4.9: Parameters used for the calculations

The boundary conditions at the inlet are set to û = 0 and ŝ = 0, whereas the outlet is defined
by the sonic nozzle throat: As no waves can travel upstream as soon as the flow is supersonic,
none of the unknown quantities may be imposed at a supersonic outlet.
Computations are carried out for three inlet Mach numbers: M in

0 = 0.001, M in
0 = 0.05 and

M in
0 = 0.10. The frequencies and mode shapes of the first eigenmode of this configuration

are indicated in Table 4.10 and Fig. 4.23. The results show that the mode is unstable when the
mean flow at rest, and gets stable as the mean flow Mach number increases. This means that
at low Mach number, the unsteady heat release term adds energy to the system, while at higher
Mach number losses exceed any energy input. These losses can be due to convection, or result
from the unsteady heat release rate: The Rayleigh criterion states that this term acts as a source
term if the maximum heat release rate occurs simultaneously with a pressure maximum in the
flame region; whereas it acts as a energy sink if the maximum heat release rate coincides with
a pressure minimum. In the following, the results obtained for this third configuration are used
to evaluate if the Rayleigh criterion is satisfied.
The flame model stated in Eq. (4.4) links the unsteady heat release rate q̂(x) to the acoustic
velocity perturbation at a reference position immediately upstream of the flame ûxref

. This can
be written compactly as

q̂ = αûxref
eiωτ
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Figure 4.22: Structure of the unsteady heat release rate at different Mach numbers.
α refers to the value α = nγp0

δf (γ−1) determined using the pressure upstream of the flame.
: Main0 = 0.001 : Main0 = 0.05 : Main0 = 0.10

where α = nγp0
δf (γ−1) is a real valued quantity, that depends on x only via the mean pressure

p0. This means that |q̂(x)| is constant across the flame zone for low Mach numbers, as p0 is
constant in this case, and decreases slightly at higher Mach numbers, as the mean pressure
drops across the flame. This is illustrated in Fig. 4.22, which shows module and phase of the
unsteady heat release rate. The phase of the unsteady heat release rate can further be verified
using the connection to the acoustic pressure. As

q̂ = αûxref
eiωτ = α|ûxref

|e(i arg(ûxref
))eiωrτe−ωiτ ,

the phase of the unsteady heat release rate is given as

arg(q̂) = arg(ûxref
) + ωrτ.

Figure 4.23 shows that the phase of the acoustic velocity at the reference position is of about
1.5 for the three Mach numbers. Using τ = 0.5ms and the frequencies indicated in Table 4.10,
it can be shown that the above relation is satisfied for the three cases discussed here.

As described in the Chapter 1, the Rayleigh criterion is satisfied if the perturbations of
pressure and heat release rate are in phase at the position of the flame, i.e. if the phase differ-
ence between heat release rate and pressure fluctuations ∆φ = φq − φp in the flame zone is
comprised between

−π
2

(+2π n) < ∆φ <
π

2
(+2π n).

As the time delay τ is set to a constant value, the phase of q̂ is constant across the flame
as plotted in Fig. 4.22(b). The phase of p̂ varies across the flame (see Fig. 4.23(b)); it is
approximated using the value that covers the larger part of the flame zone.
The values for the phase of pressure and heat release rate fluctuations and the resulting phase
difference determined for the three Mach numbers are indicated in Table 4.10. The phase
difference is of ≈ 3

2π for M in
0 = 0.05; slightly higher than this at M in

0 = 0.001 and slightly
lower at M in

0 = 0.10. This estimation suggests thus that the flame is feeding energy into
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M in
0 = 0.001 M in

0 = 0.05 M in
0 = 0.10

Frequency [Hz] 249.13 + 19.15i 203.21− 1.20i 175.72− 26.28i
arg(ûxref ) 1.5 1.5 1.5
φq = arg(q̂) 2.3 2.1 2.0
φp = arg(p̂) −2.9 -2.5 -1.8

∆φ = φq − φp 5.2 4.6 3.8
impact energy input neutral energy loss

Table 4.10: Estimation of Rayleigh criterion: The flame is feeding energy to the system if−π2 (+2π n) <
∆φ < π

2 (+2π n), and extracting energy if π2 (+2π n) < ∆φ < 3π
2 (+2π n)

the system in the case where M in
0 = 0.001 and extracting energy for M in

0 = 0.10, while
in the intermediate case at M in

0 = 0.05 the phase lag between pressure and heat release rate
fluctuations is such that the Rayleigh term should be neutral.
This simple evaluation matches very well the actual growth rates of the modes, which indicate
the mode to be unstable at low Mach number, marginally stable at the intermediate Mach
number and stable at the highest Mach number. This shows that the difference in growth rate at
low and high Mach numbers is not only caused by losses due to convection, but the contribution
of the unsteady heat release term may change as the Mach number is varied.
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Figure 4.23: Structure of the eigenmode at low and medium Mach numbers.
: M in

0 = 0.001,f = 249.13 + 19.15i Hz; : M in
0 = 0.05, f = 203.21− 1.20i Hz;

: M in
0 = 0.10, f = 175.72− 26.28i Hz
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Chapter 5

2D Study: Method and Results

Subsequently to the study of eigenmodes in quasi-1D configurations, the approach described
in chapters 2 and 3 is extended to 2D cases. The eigenvalue problem stated in Eq. (2.68) is now
solved using a finite volume technique on unstructured grids. In addition to acoustic and en-
tropy waves that could be observed in the 1D study, a 2D formulation also allows for vorticity
waves to occur and be convected with the mean flow.

This chapter presents firstly the main aspects of the numerical implementation of the Lin-
earized Euler Equations into a finite volume solver. Alongside an overview of the discretization
techniques applied to gradient and divergence terms, the boundary conditions that can be ap-
plied are described. Furthermore, the concept of artificial viscosity and its use in order to avoid
spurious waves is introduced.

Secondly, results obtained for several academic test cases as well as the respective validation
methods are presented. As first test case, the computation of the 1D flame configuration has
been reconducted with the 2D solver, which allowed to show the equivalence of the 1D and the
2D solver for the Linearized Euler Equations. Subsequently, an isentropic nozzle configuration
is presented. The results of the 2D LEE solver are in this case validated by a time domain
flow solver. Details of the validation approach are presented together with the results of this
test case. Finally, the 2D LEE solver is applied to a configuration for which experimental data
is available: the Continously Variable Resonance Combustor studied at Purdue University. In
addition to a comparison with the experimental results, the results obtained by the 2D LEE
solver are compared to results of a Helmholtz solver.
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5.1 Numerical Implementation in 2D

For the two-dimensional solver, the Linearized Euler Equations are discretized using a finite
volume approach on unstructured triangular grids. This method, originally chosen for the de-
velopment of the LES solver AVBP [15], has been taken over during the implementation of a
first acoustic code that solves the Helmholtz-equation (AVSP, [9]), and is now applied to the
Linearized Euler Equation solver.
The use of unstructured grids allows an efficient representation of complex geometries and
flow fields, which is of major importance for the simulation of industrial configurations: the
grid can easily be refined in zones of steep gradients in flow parameters such as the flame or
injection zones, while it may be coarsened in regions of relatively uniform flow.
However, the use of unstructured grids impedes the use of higher order numerical schemes
when applying a Finite Volume discretization. The scheme used for the present solver is of
second order accuracy.

5.1.1 Discretization in 2D: Finite Volume Method

The finite volume discretization of the governing equations can be realized in different ways
(see Fig. 5.1): In the cell centered approach (Fig. 5.1(a)), the variables are defined at the centers
of the grid cells, who themselves serve as control volumes, whereas in a vertex centered ap-
proach (Fig. 5.1(b)) the variables are defined at the nodes and the control volume is constituted
by a so-called dual cell, that is delimited by the center points of the surrounding cells.
In the present study, the discretization of flow quantities is based on a cell-vertex formulation
as used in AVBP (Fig. 5.1c). In this approach, the grid cells serve as control volume, with the
variables being stored at the nodes. This latter formulation differs hence from the former two in
the sense that the variables are not defined at the center of the control volume anymore, but at its
corner points. As a result, this formulation is closely related to the finite element method [58].
For the Helmholtz solver AVSP, the finite element formulation which is equivalent to the finite
volume formulation used in the code has been derived in [101].
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Figure 5.1: Different approaches of finite volume discretization. A, B: nodes. f: cell face. Grey shaded
area: control volume. Black markers: Location where variables are stored.

In the following, the formulation used for the two basic operators used in the LEE solver,
i.e. gradient and divergence operator, are presented.
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5.1.1.1 Calculation of Gradients

Gradients of a quantity Φ are assumed to be constant over one cell. The value for the gradient
of Φ in a cell is calculated using the values of that quantity at the surrounding vertices. The
passage of this cell-defined gradient to a value defined at the grid nodes is achieved via a so-
called scatter operation (cf. [15]).

The approximation of the gradient of a scalar quantity Φ for the cell Ωj is defined as a mean
value over the cell area SΩj . Using the gradient theorem, this definition reads:

~∇Φ
∣∣
Ωj
≈ 1
SΩj

∫ ∫
Ωj

~∇ΦdS =
1
SΩj

∮
∂Ωj

Φ~ndx (5.1)

with SΩj the surface of the cell, ∂Ωj its circumference and ~n the vector normal to the cell
boundary. In discretised form, the above expression is transformed into a sum over the cells
faces:

~∇Φ
∣∣
Ωj

=
1
SΩj

nface∑
i=1

Φi ~nidSi (5.2)

with Φi being the mean value of Φ on face i, ni the vector normal to face i and dSi its length.
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Figure 5.2: Triangular Element

For a triangular grid cell Ωj as shown in Fig. 5.2, Eq. 5.2 reads:

~∇Φ
∣∣
Ωj

=
1
SΩj

[Φf1~nf1Lf1 + Φf2~nf2Lf2 + Φf3~nf3Lf3] (5.3)

The mean values of Φ on each face, Φfi
, are defined as arithmetic mean of the values of Φ at

the two adjacent nodes, i.e.

Φf1 =
1
2

(Φ2 + Φ3)

Φf2 =
1
2

(Φ1 + Φ3)

Φf3 =
1
2

(Φ1 + Φ2)

(5.4)

The cell-based value for the gradient ~∇Φ
∣∣
Ωj

can then be expressed in terms of the nodal val-
ues of Φ by introducing the above relations Eq. (5.4) into Eq. (5.3). Further simplification is
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achieved by using the following relation that is satisfied for any triangle:

~nf1Lf1 + ~nf2Lf2 + ~nf3Lf3 = 0 (5.5)

The gradient of Φ at cell Ωj is finally obtained to

~∇Φ
∣∣
Ωj

= − 1
2 SΩj

[Φ1~nf1Lf1 + Φ2~nf2Lf2 + Φ3~nf3Lf3] (5.6)

In a second step, this cell-defined gradient is transformed into a node-based value: To this
end, the value determined in each cell Ωj is distributed to the vertices surrounding this cell
via a scatter operation (see Fig. 5.3). Each node receives contributions of all the cells it is
surrounded by, such that the value for the node-based gradient can be seen as a mean value of
the gradient for the dual cell.
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Figure 5.3: Scatter operation

5.1.1.2 Calculation of the Divergence

The calculation of the divergence operator is carried out in the same way, i.e. by first determin-
ing a cell-based value which is then scattered to the nodes. The definition of a mean value of
the divergence at cell Ωj for a given quantity ~Φ (which is now a quantity in vector form) can
hence be stated by using the divergence theorem as follows:

∇ · ~Φ
∣∣
Ωj
≈ 1
SΩj

∫ ∫
Ωj

∇ · ~ΦdS =
1
SΩj

∮
∂Ωj

~Φ · ~ndx (5.7)

where, again, SΩj is the surface of the cell, ∂Ωj its circumference and ~n the vector normal to
the cell boundary. In discretized form, the cell based divergence reads

∇ · ~Φ
∣∣
Ωj

=
1
SΩj

nface∑
i=1

~Φi · ~nidSi (5.8)

Equivalently to what has been derived for the gradient, for a triangular cell Eq. (5.8) can be
expressed in termes of nodal values as follows:

∇ · ~Φ
∣∣
Ωj

= − 1
2 SΩj

[
~Φ1 · ~nf1Lf1 + ~Φ2 · ~nf2Lf2 + ~Φ3 · ~nf3Lf3

]
(5.9)
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This expression can then be further developed by expressing the vectors ~Φ and ~n in terms of
their separate components. After having determined the mean value for the grid cells, the nodal
values of the divergence are obtained via a scatter operation as shown in Fig. 5.3.

5.1.2 Domain Borders and Boundary Conditions

u0 A+ 

E 

V 

A- 



ˆ u   0



ˆ u ||  0wall: inlet outlet , 

Figure 5.4: Boundary Conditions for 2D solver: Defining the incoming waves: A+, A−: down- and
upstream travelling acoustic waves; E: entropy wave; V : vorticity wave.

At the boundaries of the domain information about the incoming waves has to be specified. In
the present case, three types of waves have to be taken into account, namely acoustic, entropy
and vorticity waves [56]. The incoming waves are defined at each boundary using Dirichlet
conditions, i.e. the values required for the unknown variables of the vector V = (ρ̂, ûx, ûy, ŝ)T

are directly imposed at the boundary nodes. The number of conditions to be imposed on each
boundary depends on its character, i.e. on the way that waves are reflected or may enter or
leave the domain (see Fig. 5.4): For instance, at a boundary that represents a mean flow inlet,
information about the downstream travelling acoustic wave as well as about entropy and vor-
ticity waves has to be provided. In contrast to that, a mean flow outlet allows only the upstream
travelling acoustic wave to enter the domain, while entropy and vorticity waves are convected
out of the domain, which means that only one boundary condition is required.
The boundary conditions implemented in the 2D solver impose conditions on the vector of
unknowns (ρ̂, ûx, ûy, ŝ)T as follows:

• Inlet ”Velocity Node”: All inlet boundary conditions specify that neither entropy nor
vorticity waves may enter the domain. Suppressing entropy waves at the domain inlet is
achieved by imposing

ŝ = 0.

In order to prevent vorticity waves from entering the domain, the component of fluctuat-
ing velocity parallel to the inlet cross section is imposed to zero, i.e.:

û‖ = 0.

Finally, the ”velocity node” inlet sets the component of fluctuating velocity normal to
the wall to zero, i.e.

û⊥ = 0

As a result, the vector of fluctuating velocity û = û‖ + û⊥ is completely cancelled at
this inlet.
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• Inlet ”Pressure Node”: As introduced above, entropy and vorticity waves are sup-
pressed at flow inlets by imposing

û‖ = 0 and ŝ = 0.

As can be deduced from Eq. (2.62), a pressure node can then be imposed by setting

ρ̂ = 0

as third inlet boundary condition.

• Inlet ”Constant Flow Rate”: Again, the two conditions suppressing entropy and vor-
ticity waves are maintained:

û‖ = 0 and ŝ = 0.

A constant flow rate at the inlet of the domain relates velocity and density fluctuations:
ṁ1 = (ρu)1 = 0, which reads, when expressed in the frequency domain formulation,
ρ0û + u0ρ̂ = 0 with u the velocity vector. As the mass flow rate across the inlet section
is defined as normal to this section, this expression can be rewritten as ρ0û⊥+u0⊥ ρ̂ = 0.
This condition can then be implemented by expressing the fluctuating density as function
of the velocity perturbations:

ρ̂ = −|û⊥|ρ0

|u0⊥ |
with |u0⊥ | = u0 · n and |û⊥| = û · n

where n is the vector normal to the inlet cross section.

• Outlet ”Pressure Node”: This boundary conditions represents an outlet that is open
to the atmosphere, which impedes pressure fluctuations. At a flow outlet, vorticity and
entropy waves are convected out of the domain. Thus, entropy fluctuations are not neces-
sarily zero. A pressure node establishes therefore a relation between density and entropy
fluctuations (cf. Eq. (2.39)):

ρ̂ = − ρ0

Cp
ŝ

• Outlet ”Supersonic”: When the mean flow is supersonic at the outlet section no waves
may enter the domain. Therefore, none of the variables (ρ̂, ûx, ûy, ŝ)T must be imposed.

• Wall: As boundary condition for the acoustic field, a wall impedes velocity fluctuations
normal to the wall. At the same time, velocity fluctuations in wall-tangential direction
are allowed (’slip walls’), as the system of equations neglects viscous effects. As for the
entropy and vorticity waves, it is not necessary to impose any conditions: these waves
are convected with the meanflow, and may thus neither enter nor leave across a wall.
The condition imposed in the code reads hence:

û⊥ = 0 i.e. û = û‖ = û− û⊥ = û− (û · n) · n
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5.1.3 Artificial Viscosity

As already discussed in section 4.1.2, the system of equations to be solved permits the appear-
ance of point-to-point instability. In the 1D solver, this problem was avoided by discretising
the equations on a so-called staggered grid. However, the implementation of a staggered grid
formulation is much more complex for a two- or three-dimensional unstructured grid than for
a one-dimensional grid of equidistant points: As in the 1D case, variables of fluctuating den-
sity and entropy are stored at the cell centers, while the velocity fluctuations are defined at the
faces (see Fig. 5.5). The velocity vector is expressed in terms of face-normal and tangential
components and depends thus on the form and alignment of the grid cell. The formulation of
the velocity at each cell is therefore not straightforward and requires the solution of a separate
system of equations [65].

  

! 

r 
u 

n

! 

ˆ " 

ˆ s 

# 

$ 
% 
& 

' 
( 

  

! 

r 
u 

t

  

! 

r 
u 

n

  

! 

r 
u 

t

  

! 

r 
u 

n
  

! 

r 
u 

t

Figure 5.5: Schematic View of Staggered Grid Formulation in 2D

An alternative to the staggered grid formulation consists in the use of an artificial viscosity
term. The introduction of a term that contains 2nd or 4th order derivatives into the system of
equations to be solved prevents the appearance of point-to-point instability, as a relation be-
tween neighbouring grid points is established.
The introduction of an artificial viscosity term in an otherwise inviscid problem is certainly not
without controversy. This method therefore has to be used with caution, in order to not modify
the behaviour of the system. The approach is nonetheless justified, as the presented study is
concerned with resonant modes rather than acoustic propagation. Unlike in propagation prob-
lems, where waves may traverse distances much larger than their wavelength, the wavelengths
of the resonant eigenmodes considered in this study are of the same order as the dimensions
of the computational domain. Errors due to the introduction of an artificial viscosity term are
therefore small enough so as to not be prohibitive for the presented analysis.

The artificial viscosity for the 2D Euler Equation solver has been adapted from the formula-
tion used in the LES solver AVBP (code developed at CERFACS [15, 109]). This formulation
provides two viscosity operators: a 2nd order operator that smoothes strong gradients, and a
4th order operator that dissipates high-frequency spurious waves (”wiggles”). In AVBP, several
sensors are used to determine the areas of the flow field where artificial viscosity needs to be
applied. In most cases, a blend of 2nd and 4th order artificial viscosity is then used.
As the problem of point-to-point instability in the Euler Equation solver is not locally confined
but concerns the whole domain, a 4th order artificial viscosity term will be introduced uni-
formly throughout the domain. In addition to that, a 2nd order artificial viscosity term may be
used.
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5.1.3.1 2nd order Operator

The artificial viscosity term added to the equation of the quantity Φ at node n is denoted dΦAV
n .

The 2nd order operator computes at first a contribution dΦAV
k for each of the vertices k of the

cells Ωj that surround the node n (cf. Fig. 5.6). The operator is defined as [15]:

dΦAV
k = −ε2

1
Nv

VΩj

∆tΩj

(ΦΩj − Φk) (5.10)

with Nv the number of vertices per cell (i.e. Nv = 3 for triangular cells as used in this
study), VΩj the volume of cell Ωj and ΦΩj and Φk the values of the quantity Φ for the cell Ωj

and the vertex k, respectively. Furthermore, ∆tΩj is a cell-defined time step, that represents the
time required for an acoustic wave to traverse the cell, i.e. it is defined as the ratio of the cells
characteristic length and the mean propagation speed in the cell. Finally, ε2 is a user-defined
factor that controls the amplitude of the artificial viscosity term.

Based on the values determined for all vertices k surrounding the node n, the contribu-
tion of the artificial viscosity at node n is then calculated as the sum of the values found for
surrounding vertices:

dΦAV
n =

Nv=3∑
k=1

dΦAV
k (5.11)
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Figure 5.6: Stencil for 2nd order Artificial Viscosity Operator

The way the operator is defined leads to the use of a three-point stencil centered around the
node n: The values Φk at the vertices surrounding n require the use of the value of Φ at the
node n (see Fig.5.6). The right hand side term of Eq. (5.11) contains thus contributions of Φ at
the vertices k around the node n, and the node n itself. This can be illustrated by developing
the definition of Eq. (5.11) for a simple example: For a uniform 1D mesh with a cell size of
∆x, Eq. (5.11) for a node n surrounded by the vertices k = n− 1 and k = n+ 1 reads:
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dΦAV
n = dΦAV

n−1 + dΦAV
n+1

=
(
−1

2
∆x

∆tΩj

ε2

)[(
Φn−1 + Φn

2
− Φn−1

)
+
(

Φn+1 + Φn

2
− Φn+1

)]
=
(

1
2

∆x
∆tΩj

ε2

)[
Φn−1 − 2Φn + Φn+1

2

]
The 2nd order artificial viscosity operator has thus the form of a second order derivative in a

central finite difference formulation. Establishing a link between neighbouring grid points, the
problem of point-to-point instability can be handled by introducing such a term in the system
of equations. However, the impact of the artificial term can be minimized by increasing the
order of the operator to a fourth order derivative.

5.1.3.2 4th order Operator

The formulation of the 4th order term uses the same technique as the 2nd order operator and
computes at first contributions at all the vertices k surrounding node n. The value at node n is
then computed as the sum of these vertex defined values:

dΦAV
n =

Nv∑
k=1

dΦAV
k (5.12)

with the vertex based values being defined as:

dΦAV
k = ε4

1
Nv

VΩj

∆tΩj

[
~∇Φ
∣∣
Ωj
· (~xΩj − ~xk)− (ΦΩj − Φk)

]
(5.13)

As introduced before, the term Nv denotes the number of vertices per cell, VΩj the volume of
cell Ωj , ΦΩj and Φk the values of the quantity Φ for the cell Ωj and the vertex k, respectively,
∆tΩj a cell-defined time step and ε4 the user-defined amplitude of the artificial viscosity term.

In addition to these terms that also occur in the 2nd order operator, the 4th order operator
uses the gradient of the quantity Φ at the cell Ωj , noted here ~∇Φ

∣∣
Ωj

. The key aspect in the
definition of the fourth order artificial viscosity operator is now the fact that there are two ways
to obtain this value: either directly in the way explained in section 5.1.1.1, i.e. based on the
values of Φ at the vertices surrounding the cell Ωj . The second option is to determine the
gradient at a given cell in an ”indirect” manner, by averaging the values of that gradient ~∇Φ
that has been computed for the surrounding vertices beforehand. The difference between the
two approaches is explained using a 1D mesh of equidistant grid points as shown in Fig. 5.7:

Starting from the values of Φ at the nodes, a cell averaged value of the gradient can be
determined immediately. Via a scatter operation, this gradient is redistributed to the nodes.
Finally, a cell averaged gradient can then again be obtained by a supplementary averaging step.
Following the scheme displayed in Fig 5.7, a ”direct” definition of the gradient of Φ for the cell
Ω−1 reads:

~∇Φ
∣∣
Ω−1

=
Φk − Φk−1

∆x
(5.14)
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Figure 5.7: Stencil for 4th order Artificial Viscosity Operator

In contrast to that, the ”indirect” method leads to:

~∇Φ
∣∣
Ω−1

=
1
2
~∇Φ
∣∣
k−1

+
1
2
~∇Φ
∣∣
k

=
1
2

(
1
2
~∇Φ
∣∣
Ω−2

+
1
2
~∇Φ
∣∣
Ω−1

)
+

1
2

(
1
2
~∇Φ
∣∣
Ω−1

+
1
2
~∇Φ
∣∣
Ω+1

)
=

1
2

(
Φk−1 − Φk−2

2∆x
+

Φk − Φk−1

2∆x

)
+

1
2

(
Φk − Φk−1

2∆x
+

Φk+1 − Φk

2∆x

)
=

Φk+1 + Φk − Φk−1 − Φk−2

4∆x

(5.15)

Finally, in order to compute the artificial viscosity term at the node n, the operator uses the
gradients of the two cells adjacent to this node (cf. Eq. (5.12)). This means that in addition to
the gradient at cell Ω−1, the value at cell Ω+1 is required:

~∇Φ
∣∣
Ω+1

=
Φk+2 + Φk+1 − Φk − Φk−1

4∆x
(5.16)

As a result of these repeated gather and scatter operations, the 4th order operator uses a
stencil of 5 points centered around the node n. For a 1D mesh of equidistant points, the artificial
viscosity term for node n is obtained to:

dΦAV
n = ε4

∆x
16∆t

(Φn−2 − 4Φn−1 + 6Φn − 4Φn+1 + Φn+2) (5.17)

which corresponds to a fourth order derivative.

5.1.3.3 Introduction of the Artificial Viscosity Term into the System of Equations

The artificial viscosity operator is applied to each of the components of the discrete eigenvector
Vn = (ρ̂, û, ŝ)Tn , allowing to compute a term dVAVn for each grid point n. This term is then
introduced into the system of equations (2.64) - (2.66). The discrete formulation reads then:

[A]n[V]n +
1
Vn
dVAVn = iω[V]n (5.18)

with [A]n the linear operator matrix as derived in chapter 2.2.1 and Vn the volume associated
to node n i.e. the volume of the dual cell around this node.
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5.1.3.4 Amplitude of the Artificial Viscosity Term

The amplitude of the artificial viscosity terms is controlled by the factors ε2 and ε4. These
parameters must be set in a way that two key criteria are satisfied:
On the one hand, the artificial viscosity term needs to be big enough to attenuate the point-
to-point oscillations. On the other hand, the term must not have an influence on the overall
behaviour of the solution, i.e. the growth rates of the eigenmodes must not be changed.
While the precise values of ε2 and ε4 may differ from case to case, their order of magnitude can
be evaluated by considering a 1D configuration. (For the sake of simplicity, terms containing
mean flow gradients are not taken into account in this example):
When a 4th order artificial viscosity term is applied to the fluctuating density dρ̂AV and intro-
duced into the continuity equation, this equation reads:

ρ
∂û

∂x
+ u

∂ρ̂

∂x
+

1
dx
dρ̂AV︸ ︷︷ ︸

term AV

= iωρ̂︸︷︷︸
term RHS

(5.19)

One may now have a closer look on the separate terms of this equation and compare their
respective order of magnitude. This is done in the following for artificial viscosity term and
the right hand side term, which are both function of ρ̂(x). Considering a harmonic perturbation
of the quantity ρ̂(x), i.e. a sine-function ρ̂(x) = sin(kx), one may develop the two terms as
follows: Expressing ω as ω = kc, the RHS term can be replaced by

iωρ̂ = ikcsin(kx)).

The artificial viscosity term corresponds to a fourth order derivative, such that:

dρ̂AV = ε4
∆x

16∆t
(∆x)4 ∂

4ρ̂

∂x4
= ε4

|u+ c|
16

(∆x)4 ∂
4ρ̂

∂x4
.

In the above equation, the ratio of characteristic length scale to characteristic time scale ∆x/∆t
is replaced by the propagation speed |u+ c|. For a sinusoidal distribution ρ̂(x) = sin(kx), the
artificial viscosity term can thus be expressed as

1
dx
dρ̂AV =

1
∆x

ε4
|u+ c|

16
(∆x)4k4sin(kx).

One may deduce from these considerations that the physical terms of Eq. (5.19), i.e. the
RHS term, is proportional to k∆x, while the artificial viscosity term is proportional to (k∆x)4.
This means that the scaling of physical to artificial terms depend on the wavelength of the con-
sidered modes, and the way they are resolved by the grid (see Fig. 5.8):

• The low frequency eigenmodes that are correct solutions of the system of equations fol-
low sine-distribution of the form ρ̂(x) = sin(kx), with wavenumbers k of the order
k ≈ nπ

L , n = 1, 2, 3, ... and L the length of the domain. The domain is discretized by
N gridpoints separated by ∆x, such that L ≈ N∆x, and hence k ≈ nπ

N∆x . The fac-
tor k∆x is therefore proportional to nπ

N . In order to correctly capture the n-th mode,
nπ
N << 1 must be satisfied. The artificial viscosity term scaling by (k∆x)4 ≈ (nπN )4, its
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influence can be considered negligible for the first n modes. However, for higher order
modes which are less well discretized by a given mesh and for whom nπ

N << 1 does
not hold anymore, the artificial viscosity term will cause errors. This means that for one,
the shape of the respective mode will change slightly, and what is more important, the
predicted growth rate will be found to be more stable than it should be.

• In this sense, a point-to-point oscillation can be compared to a mode of very high fre-
quency: if they are considered as waves with a wavelength of λ = 2∆x (cf. Fig. 5.8),
the factor k∆x is found to k∆x = 2π

λ ∆x = π. The artificial viscosity term, weighted
with (k∆x)4, becomes then the preponderant term.
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x
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  2x

(b)

Figure 5.8: Eigenmode and spurious wave

Thus, the formulation of the artificial viscosity term as a fourth order derivative means that
structures of short wavelengths are more affected than those with big wavelengths. Besides,
it is possible to control the amplitude of the artificial viscosity term and the waves on which
it will act by adjusting the factor ε4. As its value may depend on the case that is considered
(flow parameters, quality of the mesh, etc.) it is not possible to determine an universal optimum
value. However, the above considerations allow to ensure that the artificial viscosity term is
small enough in order to be negligible for the calculation of the first eigenmodes: Using the
expressions derived for the artificial viscosity term and the physical RHS term of Eq. (5.19),
one may determine the value of ε4 that leads to the two terms being equally large:

ε4
|u+ c|
16∆x

(k∆x)4 = (k∆x)
c

∆x
.

Using the considerations about the wavelength and resolution of physical and spurious
waves, one may thus deduce a minimal and maximal order of magnitude for ε4 (assuming
that M << 1, i.e. |c+ u| ≈ |c|):

• for k∆x = 2π
λ ∆x = 2π

N as required for physical modes, one finds a maximum value of
ε4 = 16N3

(2π)3
. An artificial viscosity term of this amplitude will affect modes discretized

with N gridpoints such that λ = N∆x (see Fig. 5.8(a))

• for k∆x = π, which characterizes spurious waves, one finds the minimum value ε4 =
16
π3 . In order to affect point-to-point oscillations, the artificial viscosity should thus be of
this order of magnitude.
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5.2 Results of the 2D Study

The following sections present the results that have been obtained with the 2D LEE solver
implemented according to the description of section 5.1. The results for the different test
configurations are validated by the 1D solver of Chapter 4, a time domain flow solver and
experimental data, respectively.

5.2.1 Configuration I: 1D Flame

As a first test case, the 1D-flame configuration presented in the 1D study is computed with the
2D LEE solver. This way, the results of section 4.2.2 serve as reference for the 2D computa-
tions.
The computations of the 1D solver are carried out on a grid of 1000 equidistant points, which
corresponds to a uniform cell size of ∆x = 0.001 m. In contrast to that, the 2D domain is
discretized using about 8700 triangular cells, the mesh being refined in the flame zone (see
Fig. 5.9). For the 2D mesh, a cell size of about ∆x = 0.001 m is only reached in the flame
zone, whereas near the boundaries the mesh is coarser with a cell size of the order of ∆x = 0.01
m.

Figure 5.9: Mesh used for the 2D computation. Marker: reference point for n− τ -model at x = 0.47.

The mean flow field, flame model parameters and boundary conditions correspond to those
of section 4.2.2: at the domain inlet, pressure and temperature amount to pin0 = 101325 Pa
and T in0 = 300 K, respectively. At x = 0.5L, a flame covering a zone of δf = 0.05L heats
the flow up to T out0 = 1200 K. Computations have been carried out for inlet Mach numbers
of M in

0 = 0.001 and M in
0 = 0.15. The resulting distributions of Mach number, pressure and

Temperature are displayed in Fig. 5.10.
The parameters of the flame model are set to the values n = 3 and τ = 0.5 ms. Finally, the
boundary conditions that are imposed read

(ûx +
u0

ρ0c2
0

)
∣∣
x=0

= 0 , ûy
∣∣
x=0

= 0 and ŝ
∣∣
x=0

= 0

at the domain inlet, whereas the outlet is defined by

(p̂+ ρ0uuû)
∣∣
x=L

= 0.

For the computations with the 2D solver, spurious point-to-point oscillations are suppressed by
the use of 4th order artificial viscosity. As described in section 5.1.3.4, the amplitude of this
term is set to a value that ensures that only spurious wiggles are affected, while the eigenmodes
are left unchanged. In this computation, 2th order artificial viscosity is not used.

The comparison between the 2D and the 1D solver is illustrated for the results of the third
eigenmode of the domain. The eigenfrequencies obtained for this mode by the two codes are
noted in Table 5.1.

The results of the 1D and 2D solvers show very good agreement: The real frequencies de-
termined by the 2D solver are virtually the same as those computed by the 1D solver. The
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Figure 5.10: Mean flow field of the 1D flame configuration. : M in
0 = 0.001; : M in

0 = 0.15

f (Hz) 1D Solver f (Hz) 2D Solver
Ma = 0.001 582.0 + 55.1i 581.9 + 54.0i
Ma = 0.15 540.6− 19.5i 539.2− 20.7i

Table 5.1: 3rd mode at δf = 0.05L at low and high Mach . Comparison of 1D and 2D solver.

growth rates predicted by the 2D solver are slightly more stable than those predicted by the 1D
solver. This is probably due to the coarser discretization of the computational domain in the
2D computation.

A comparison of the mode shapes obtained with the 1D and 2D solver is shown in Fig. 5.11.
The spatial distribution of the modules of pressure, velocity and entropy fluctuations is shown
for the case where the mean flow velocity is close to zero.
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Figure 5.11: Mode shape at M0 = 0.001. Solid Line: 1D solver. Circles: 2D solver

Again, the predictions of the 1D and 2D code are virtually the same. As illustrated in
Fig. 5.11(c), the entropy fluctuations are more or less restricted to the flame zone when the
mean flow velocity is very low. Their spatial distribution involves steep gradients on both
sides of the flame zone, that have to be captured appropriately. The convected entropy waves
are structures with a wavelength much shorter than the acoustic wavelength, by a factor that
corresponds to the mean flow mach number λe/λac = u/c = M . This emphasizes that
especially at low Mach numbers, discretization is an important issue.
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5.2.2 Configuration II: Nozzle Flow

As a second test case for the 2D LEE solver, the flow through a tube connected to a choked
isentropic nozzle is investigated [120]. A flame and therefore entropy fluctuations are not
considered here, which allows to discretize the domain with a coarser mesh. The domain has
a total length of L = 2m and is discretized using about 2800 triangular cells, the mesh being
refined around the nozzle throat (see Fig. 5.12).
The mean flow field of this configuration is determined numerically. The mean flow Mach
number at the domain inlet is of about M in

0 = 0.11. After an acceleration in the nozzle, the
flow reaches M = 1 at the nozzle throat and is supersonic across the complete outlet section.
The distribution of mean Mach number, temperature and pressure along the x-direction are
shown in Fig. 5.13. It should be noted that the walls of the configuration are described by
boundary conditions that allow a tangential velocity component (’slip walls’). The boundary
layers are hence not taken into account, which is reflected by the coarse mesh in that region.

Figure 5.12: Mesh used for the computation of a choked nozzle flow.
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Figure 5.13: Mean flow field

5.2.2.1 Validation of 2D Computations using the Code AVBP

The results obtained by the LEE solver are validated by time domain computations carried out
with the flow solver AVBP [15] . This code provides the possibility to solve the compress-
ible Euler equations on unstructured grids. The approach used for comparison of the results
between the two codes is the following:

1. The mean flow field is determined using the time domain solver.

2. Based on the mean flow field determined by the time domain flow solver, the LEE
solver computes resonant frequencies, growth rates and mode shapes of the first reso-
nant modes.

3. At the same time, the frequencies of the resonant modes are determined using the time
domain flow solver. To this end, the flow field has to be excited in a suitable way. One
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possibility is to run the calculation imposing a perturbation on one single node in the
region upstream of the nozzle throat, e.g. an increased value for mean pressure. Another
option is to excite the field at its inlet boundary, adding a time-periodic signal of small
amplitude to one of the inlet conditions. This time-periodic signal is composed of a sum
ofN sinusoids covering the frequency range to be investigated, i.e. a finite Fourier series
with a sufficiently small fundamental frequency f0 and harmonics of equal amplitude ε
up to the maximum frequency of interest fmax = Nf0, of the form

φ(xinlet, t) = φ0(xinlet, t)
(
1 + ε

N∑
n=1

sin(2πnf0t)
)

The perturbation needs to be of small amplitude, so that the error due to disturbing the
boundary condition can be considered negligible.
In order to determine the resonant frequencies of the domain, it is then sufficient to cap-
ture the temporal evolution of a flow variable, e.g. pressure or velocity, at a suitable
location. Those are the areas where the flucuations in the respective quantities are ex-
pected to be maximal. Adapted positions are indicated in the mode shapes determined by
the LEE solver. The temporal evolution of these quantities contains information about
the frequencies that respond to the excitation. These frequencies can then be determined
by applying a Fourier transform to the respective result signal.

4. Finally, the time domain solver is used to verify the growth rate of one of the modes com-
puted by the LEE solver. As the flow field of the time domain flow solver is dominated
by the least damped mode, only the growth rate of this latter can be determined. To this
end, the distribution of fluctuating quantities at an initial time t0 = 0 is reconstructed
from the mode shape and resonant frequency determined by the LEE solver (step 2). As
introduced in section 2.2, the expression that links the frequency domain and the time
domain fields reads φ1(x, t) = <(φ̂(x)e−iωt). The field φ1(x, t0) being determined this
way, it is superimposed to the mean flow as initial perturbation of small amplitude ε, such
that φ(x, t0) = φ0(x) + εφ1(x, t0). As the frequency domain LEE solver does not give
any information about the amplitude of the perturbations, an arbitrary but small value for
ε, of the order of 1-5% of the mean flow values, is applied.
Starting the time domain computation with this initial field, the decay rate of the mode
that is investigated can directly be determined by following the temporal evolution of the
perturbation.

In order to realize this comparison and interaction of a time-domain flow solver and a frequency-
domain code for acoustics, the boundary conditions used in the two codes have to be compati-
ble.
At the outlet, the supersonic mean flow sets the boundary condition for both the time domain
and frequency domain solvers. As no information can travel upstream in a supersonic flow, it
is not meaningful to impose any boundary values at the outlet. This means also that for the
acoustic solver, the domain is implicitly restricted to the part upstream of the nozzle throat.
Even though the part of the domain downstream of the nozzle throat is included in the compu-
tation, it does not have an influence on the results for the resonant frequencies.
At the inlet, the time domain solver requires information about the mass flow rate ṁ(t) that
enters the domain. In terms of acoustic variables, fixing the mass flow rate means suppressing
any fluctuations of that quantity, i.e. ṁ1 = (ρu)1 = 0. As no entropy fluctuations are supposed
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to enter the domain, this corresponds to a boundary condition for the acoustic solver that sets
the acoustic flux to zero, i.e. u0ρ̂+ ρ0û = 0.
In order to capture the resonant frequencies of the domain and to verify the growth rate of
a mode (steps 3 and 4), the boundary conditions of the time-domain flow solver have to be
reflecting for acoustic waves. This issue is adressed in the solver AVBP by the use of charac-
teristic boundary conditions (NSCBC [81]).

5.2.2.2 Application to the Frequency Domain Results

Based on the mean flow field described above, the results for the steps 2-4 are the following:

Step 2:

The values obtained by the 2D LEE solver for the complex eigenfrequencies of the first
three modes are gathered in Table 5.2. As no source terms for acoustic energy are present in
the domain, but acoustic energy is convected outside of the domain, all modes are damped.

f (Hz) (domain Fig. 5.12) f (Hz) (extended domain)
1 132.79− 7.50i 132.74− 7.42i
2 259.31− 17.60i 259.32− 17.53i
3 375.36− 35.93i 375.38− 35.85i

Table 5.2: First Eigenvalues obtained by the 2D LEE solver

These results have been checked by a second computation, for which the domain was ex-
tended by 0.5m beyond the initial outlet (see Table 5.2, right column). As this extension is
situated beyond the sonic nozzle throat, it may not have an influence on the resonant frequen-
cies of the domain. The results obtained for the extended domain being virtually the same as
those of the initial computation, they confirm that the passage to supersonic flow is correctly
captured by the solver.

Step 3:

The resonant frequencies of the domain are then computed by the time domain flow solver.
The excitation of the flow field is achieved by adding the small amplitude signal described
above to the mass flow rate at the inlet. The response is captured by recording the pressure
signal near the domain inlet, as all modes feature a pressure maximum at this position. After
the mean pressure is substracted from the signal, a discrete Fourrier transform is carried out,
yielding the result displayed in Fig. 5.14.

The resonant frequencies of the domain determined this way are of f1 = 131 Hz, f2 =
259 Hz and f3 = 379 Hz. These values correspond very well to those determined by the LEE
solver. The high damping rates for the higher order modes are reflected in the Fourier transform
plottet in Fig. 5.14 by less pronounced peaks for the 2nd and 3rd mode.
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Figure 5.14: Discrete Fourier Transform of the pressure signal at the domain inlet. Maximum response
is obtained at the frequencies f1 = 131Hz, f2 = 259Hz, f3 = 379Hz.

Step 4:

Finally, the damping rate of the least damped mode is verified by the time-domain flow
solver. In this case, this is the first longitudinal mode of the configuration, whose shape is
illustrated via |ρ̂(x)| in Fig. 5.15.

(a) Module |ρ̂(x)|

(b) Phase arg(ρ̂(x))

Figure 5.15: Spatial structure of the first eigenmode.

The mode being superimposed to the mean flow field, the pressure signal is again recorded
at the domain inlet, i.e. at a point of maximum pressure. Fitting an envelope curve of the form
eωit to this signal allows to deduce the damping rate (see Fig. 5.16).

The first mode has a cycle increment of ζ = exp(2πωi
ωr

) − 1 = −0.299, meaning that the
amplitude of the perturbation decreases by about 30% per period. Thus, the signal is damped
after very few oscillations, which limits the precision of the damping rate determined this way.
The value deduced from the flow solver is of fi ≈ −8.5 Hz, which is still in good agreement
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Figure 5.16: Temporal evolution of pressure signal at domain inlet for first eigenmode.

with the value predicted by the LEE solver.
Besides, the fact that the pressure signal at the inlet follows very neatly a function of the form
cos (ωrt)eωit indicates that the first mode that is introduced as initial condition oscillates with-
out irregularities. This way, the transfer of the field of fluctuating quantities from the LEE
solver to the time domain flow solver confirms the mode shape that has been determined.

The results found by the time domain solver show hence overall good agreement with those
of the LEE solver, confirming that all relevant terms are correctly taken into account.
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5.2.3 Configuration III

The third test case for the 2D LEE solver is based on the CVRC (Continuously Variable Res-
onance Combustor) experiment conducted at Purdue University [104, 122], which allows to
compare the results of the LEE computations to measured frequencies and mode shapes. Be-
sides, the configuration is computed with the Helmholtz solver AVSP, showing the differences
between a zero and a non zero Mach number approach.
The basic setup being that shown in Fig. 5.17, the CVRC experiment can be adjusted to various
forms in terms of geometries, fuels and operating conditions: the length of the oxidizer tube
and the combustion chamber as well as the devices that determine the inlet boundary condition
can be varied; besides, both gaseous and liquid fuel may be used. The conditions that are the
basis for the computations are those used by Sisco et al. [104] and are summarized in the fol-
lowing.

Figure 5.17: Schematic view of the Configuration

Figure 5.17 shows a schematic view of the configuration: The setup is composed of an
oxidizer tube that leads into the combustion chamber, the fuel being injected shortly upstream
of the combustion chamber inlet. Downstream, the configuration ends in a short sonic nozzle.
The characteristics of these three main components are gathered in Table 5.3:

Oxidizer Tube
Length Diameter Cross section

9.2 ” = 23.37 10−2m 0.81” = 2.05 10−2m 3.3 10−4 m2

Chamber
Length Diameter Cross section

15.0 ” = 38.10 10−2m 1.77” = 4.50 10−2m 15.9 10−4 m2

Nozzle
Length Cross section at throat

0.35 ” = 0.89 10−2m 3.4 10−4 m2

Table 5.3: Main parameters of the geometry

As the LEE solver is designed for handling 2D configurations only, all calculations are car-
ried out on the 2D planar equivalent of this 3D radial geometry.

The boundary conditions of the configuration are characterized as follows:

• inlet: from the designs available for the inlet of the oxidizer tube, two have been retained
for the presented comparison: the acoustically open inlet, that produces a pressure node
at the inlet position, and the choked inlet, that defines a constant mass flow rate
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• outlet: the outlet is defined acoustically by the sonic nozzle throat. However, the nozzle
being short, it may be represented by a condition that produces a velocity node at the
chamber outlet

5.2.3.1 Experimental Data and Mean Flow Conditions

The mean flow conditions are characterised by the following experimental settings [104]:

• the oxidizer consists of 42% by weight of oxygen gas, and 58% by weight of water
vapour; the mass flow rate is of ṁoxi = 0.53 kg/s

• the fuel is the kerosene-based JP-8, with a mass flow rate of ṁfuel = 0.08 kg/s

• the nominal oxidizer-to-fuel ratio is of 6.2, the combustion efficiency of 90%

• the pressure in the combustion chamber and oxidizer tube is of ca. 2.6 MPa

Using this information, the conditions describing the unburnt and burnt gas that are relevant
for the computations with the Helmholtz solver and the LEE solver can be deduced. The
parameters retained for the computations are gathered in Table 5.4:

ṁu [kg/s] Tu [K] pu [MPa] ρu [kg/m3] Ru [J/(kg K)] γu cu [m/s] uu [m/s] Mu

0.53 871.4 2.58 8.791 336.8 1.210 595.9 183.14 0.307

ṁb [kg/s] Tb [K] pb [MPa] ρb [kg/m3] Rb [J/(kg K)] γb cb [m/s] ub [m/s] Mb

0.61 2717.8 2.59 2.435 389.8 1.184 1120.0 157.85 0.141

Table 5.4: Parameters of unburnt (index u) & burnt (index b) gas

The parameters gathered in Table 5.4 allow to generate a simplified mean flow field for the
computations with the Helmholtz and LEE solver. According to Sisco et al. [104], the flame
can be assumed to be situated at around 3.8 cm downstream of the chamber inlet. The mean
flow field is thus set up in a way that the transition from cold to hot gas conditions occurs at
that position. Temperature, density, pressure, speed of sound and gas constant are prescribed in
a very simple manner as function of the x-position only. While the Helmholtz solver assumes
u = 0 throughout the whole domain, the LEE solver requires in addition information about a
velocity field. It should be noted that the velocity of the hot gas in the combustion chamber is
smaller than the velocity of the cold gas in the oxidizer tube. This results from the change in
cross section, which decreases the flow velocity at the passage from the oxidizer tube into the
chamber. The acceleration of the flow caused by the flame is not sufficient to compensate for
the area change.

5.2.3.2 Computation with the Helmholtz Solver AVSP

Firstly, the configuration described above is computed with the Helmholtz solver AVSP. This
code solves the problem stated by Eq. (2.71) for a mean flow that is considered to be at rest.
As this condition is not satisfied near the choked outlet of the configuration, the nozzle is
not included in the computational domain. Instead, its effect is described by an appropriate
boundary condition.
The boundaries of the domain are described by the following conditions:
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• choked inlet: The choked inlet is represented by a real valued impedance:
This condition impedes fluctuations in mass flow rate, i.e. ṁ1 = (ρu)1 = 0, or in other
terms, ρ0u1 = −ρ1u0. At the same time, no entropy fluctuations are present, such that
p1 = c2

0ρ1. From that, one may deduce an impedance Z:

Z =
p1

ρ0c0u1
=

p1

−u0c0ρ1
=

c2
0ρ1

−u0c0ρ1
= − c0

u0

• open inlet: The open inlet is represented by a pressure node boundary condition

• walls: All walls impose a zero velocity perpendicular to the wall, while tangential ve-
locity is admitted

• outlet: The choked outlet is represented by a complex impedance at the position of the
chamber outlet, the nozzle itself being not included in the computational domain. The
impedance is computed using the tool ”NOZZLE” described in section 4.2.1.1. The
effect of the choked nozzle is shown in Figure 5.18 in terms of its reflection coefficient.
For the frequency spectrum of interest, the reflection coefficient of the nozzle is very
close to |R| = 1, i.e. the nozzle acts very much like a velocity node boundary condition.
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Figure 5.18: Reflection Coefficient of the Choked Outlet Nozzle

5.2.3.3 Computation with the 2D LEE Solver

Secondly, the configuration is analyzed with the 2D LEE solver. As mentioned above, this
requires an appropriate description of the velocity field. While the distribution of density,
pressure, temperature, speed of sound and gas constant can be described as function of x-
position only, this is not possible for the velocity field. Attention has to be paid to the aspect
that flow may enter or leave the domain only at the correct positions, i.e. that wall normal
velocity components vanish at all solid boundaries. Otherwise, losses due to convection of
acoustic energy might considerably change the growth rate and presumably also the shape of
the mode. The velocity field is thus function of x- and y-position, even though it still a very
simple description: For the present calculations, the velocity in x-direction corresponds to the
field shown in Fig. 5.19, while the velocity in y-direction is neglected. The velocity field of
Fig. 5.19 is generated based on the flow velocities of cold gas in the oxidizer tube and hot gas
in the chamber, and ensures that the mass flow rate is constant across area changes. This leads
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Figure 5.19: Velocity in x-direction

to the deceleration at the chamber inlet, and the acceleration towards the nozzle at the chamber
exit. As indicated by Fig. 5.19, the LEE computations are first carried out for the same domain
as used for the Helmholtz computations, i.e. the nozzle is not included in the computational
domain.

The boundary conditions used for the LEE computations correspond to those imposed by the
Helmholtz solver. As convection is taken into account, three conditions have to be imposed at
inflow boundaries, and one condition at outflow boundaries. In the present case, the boundaries
are described by the conditions below:

• choked inlet: as described above, the choked inlet impedes fluctuations of mass flow
rate, i.e. ṁ1 = (ρu)1 = 0. The mean flow is considered to be 1D at this position, such
that the choked inlet condition is imposed as

ûx = −u0,x

ρ0
ρ̂.

Vorticity waves are suppressed at the inlet by imposing ûy = 0. Besides, no entropy
fluctuations are assumed to enter the domain, i.e. ŝ = 0.

• open inlet: As for the Helmholtz solver, the open inlet is described in terms of a pressure
node. In terms of the unknowns of the 2D problem, this corresponds to imposing ρ̂ = 0,
ûy = 0 and ŝ = 0

• outlet: The outlet is represented by a node of acoustic velocity ûx = 0 at the position of
the nozzle inlet

• walls: The wall boundary condition inhibits velocity perturbations normal to the wall,
but allows tangential velocity fluctuations. No condition is imposed for entropy fluctua-
tions. This condition allows to describe a solid wall provided that the mean flow velocity
field is imposed correctly, i.e. that convection across the wall is not possible.

5.2.3.4 Comparison of Results

In the following, the results of the 2D LEE solver are compared to those of the Helmholtz
solver AVSP as well as those obtained in the experimental campaign. The modes of interest
in this configuration are those with high pressure fluctuations inside the chamber (”chamber
modes”); modes that are characterized by high amplitudes of pressure fluctuations in the oxi-
dizer tube while the level of pressure perturbation inside the chamber is low are not considered.
Experimental data is available for the first of these chamber modes. It is therefore this mode
that is discussed in the following.
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Experiment Helmholtz solver LEE solver
1375 / 1390 Hz 1423.64− 27.55i Hz 1382.62− 68.85i Hz

Table 5.5: Eigenfrequency of the first chamber mode, choked inlet
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Figure 5.20: Comparison of results for choked inlet: : LEE solver : Helmholtz solver. Sym-
bols: experiment. Position x = 0 marks the inlet of the chamber.

Firstly, the results obtained for the choked inlet boundary condition are presented. The
frequencies obtained experimentally from two measurements as well as those predicted by the
two numerical tools are gathered in Table 5.5.

As flame acoustic interaction is not taken into account here, the Helmholtz solver as well
as the LEE solver predict damped modes, while the first chamber mode is observed to be un-
stable in the experiments. Yet, the real frequency of the first chamber mode is captured with
acceptable accuracy by the two codes. The LEE solver predicts a slightly lower frequency of
oscillation than the Helmholtz solver. This observation is in agreement with the observations
made in the 1D study between zero and non zero Mach number computations. In the present
case, the LEE solver predicts the frequency of the first chamber mode quite exactly (at least
within the experimental uncertainty), while the Helmholtz solver overpredicts it by about 3%.

Figure 5.20 shows a comparison of the mode shape of the first chamber mode as obtained
from the 2D LEE solver, the Helmholtz solver and the experiments, i.e. the modulus and phase
of the fluctuating pressure as observed along the axis of the oxidizer tube and the chamber. Both
codes predict very similar mode shapes, which are in good agreement with the experimental
results. Unlike the result of the Helmholtz solver, the mode shape predicted by the LEE solver
is characterized by a noticeable step at the position where the flame is imposed, i.e. at around
x = 0.038m. This suggests that the LEE computations are rather sensitive to the description of
the mean flow field.
The phase of the pressure signal as predicted by the LEE solver is in good agreement with the
experimental data. The result of the Helmholtz solver is very similar to that of the LEE solver
in the chamber part of the configuration, i.e. for x > 0. However, the Helmholtz solver does
not correctly predict the overall phase difference between the inlet of the oxidizer tube and the
chamber inlet. The results of the LEE solver show a better agreement with the measurements
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Experiment Helmholtz solver LEE solver
1440/1450 Hz 1517.33− 6.13i Hz 1501.42− 79.97i Hz

Table 5.6: Eigenfrequency of the first chamber mode, open inlet
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Figure 5.21: Comparison of results for open inlet: : LEE solver : Helmholtz solver. Symbols:
experiment

in this part of the configuration.
The second set of results concerns the case where the inlet is acoustically open, i.e. corre-

sponding to a pressure node at the inlet of the oxidizer tube. The frequencies obtained for the
first chamber mode under these conditions are noted in Table 5.6.

In this case, the boundary conditions are set in a way that only very little losses of acoustic
energy are accounted for in the Helmholtz calculation: The inlet boundary condition p̂ = 0
impedes flux of acoustic energy, and the outlet nozzle acting very much as a velocity node,
losses are small here, too. As a result, the mode determined by the Helmholtz solver has a
imaginary frequency close to zero. The LEE computation takes into account loss of acoustic
energy due to convection effects, and predicts thus a mode with a higher damping rate.
Again, both codes allow to capture the real frequency of the first chamber mode with acceptable
accuracy. Similarly to what is observed for the case with choked inlet, the real frequencies
predicted by the LEE solver are slightly lower than those predicted by the Helmholtz solver,
and thereby closer to the measured result.

Figure 5.21 shows the modulus and phase of the pressure fluctuations in oxidizer tube and
combustion chamber. In this case, the amplitude of the pressure perturbations determined by
the two codes differ considerably in the zone of the chamber inlet around x = 0, and are less
well capturing the experimental results: Those latter predict a continously high level of pres-
sure perturbations from the second half of the oxidizer tube to the part near the chamber inlet,
whereas the computational results obtained by both codes contain a pressure node in this zone.
Concerning the phase of the pressure perturbations, it is predicted as piecewise constant by the
Helmholtz solver. In contrast to that, the LEE results are in better agreement with the experi-
ment. It should be noted here that capturing the phase of the pressure perturbation correctly is
an important part of thermo-acoustic calculations: The phase difference between fluctuations
in pressure and heat release rate at the position of the flame impacts on the role of the flame-
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acoustic interaction as a source or sink of acoustic energy.

The following focusses on the results of the LEE solver. In order to evaluate the sensitivity
of its results on boundary conditions, the description of both inlet and outlet are modified. The
eigenfrequencies and mode shapes are then compared to those obtained in the above sections.

Variation of the Outlet Boundary Condition

Subsequently to the LEE computations carried out without the outlet nozzle as described so
far, the domain is extended to include the nozzle. The following shows the results of the LEE
solver from computations with and without the outlet nozzle. This comparison is carried out
for the configuration with choked inlet, i.e. the inlet boundary is described by the conditions
ûx = −ux,0

ρ0
ρ̂, ûy = 0 and ŝ = 0. The outlet is then either described by imposing a node of

acoustic velocity at the nozzle inlet in the case where the nozzle itself is not included in the
computational domain. In the case where the nozzle is part of the domain, the acoustic bound-
ary condition is defined by the sonic nozzle throat.
Changing the description of the domain outlet leads to a slight change in eigenfrequency pre-
dicted by the LEE solver. Without the nozzle, an eigenfrequency of f = 1382.62− 68.85i Hz
was obtained, whereas the computation including the nozzle predicts a frequency of f =
1368.10 − 139.33i Hz. The modified description impacts thus above all the damping rate,
while the frequency of oscillation is only little affected.
The shape of the first chamber mode as obtained by the LEE solver for the two descriptions
of the outlet is shown in Fig. 5.22. Reflecting the limited impact observed in the frequency of
oscillation, the distribution of |p̂(x)| is virtually unchanged. However, the phase of the pressure
perturbation is modified in the second part of the chamber. While the computations without the
nozzle predict a decrease from arg(p̂) = 0 to arg(p̂) = −π, the computations that include the
nozzle predict rather an increase. Nevertheless, the two descriptions predict a constant phase
at +/−π near the outlet. However, as experimental results are not available for this part of the
configuration, an assessment of this observation is not possible.
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Figure 5.22: Results of LEE solver for different outlet boundary descriptions. : LEE computation
including the outlet nozzle : LEE computation without the outlet nozzle. Symbols: experiment
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Variation of the Inlet Boundary Condition
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Figure 5.23: Comparison of results for closed inlet: : LEE solver with ŝ = 0 at the inlet. :
LEE solver with Ĥ = 0 at the inlet. Symbols: experiment

Finally, the inlet boundary condition is modified in order to reach an improved description
of a choked inlet. While the condition that imposes a constant mass flow rate is obviously
maintained, the assumption that no entropy waves may enter the domain is dismissed. In the
case of a choked nozzle as an inlet boundary, the upstream travelling acoustic wave interacts
with the shock that defines the inlet. Though, this interaction allows the creation of entropy
waves [61], which are then convected by the flow downstream. While this aspect is negligible
in a Helmholtz solver, where convection effects are not taken into account, it may be of impor-
tance in a LEE solver.
Therefore, the condition that no entropy waves may enter the domain is replaced by a condi-
tion that imposes a constant total enthalpy at the inlet [104]. This means that the expression
ŝ = 0 is replaced by Ĥ = CpT̂ + uxû0x = 0, while all other conditions at inlet and outlet are
left unchanged. Imposing a constant total enthalpy Ĥ = 0 corresponds to imposing a entropy
perturbation of the form ŝ = − 1

T0

(
p̂
ρ0

+ uxû0x

)
.

The results show only a very small impact of this modified boundary condition: The fre-
quency of the first chamber mode changes from f = 1368.10− 139.33i Hz for the case where
the constant entropy boudary condition ŝ = 0 was used, to f = 1376.94 − 139.29i Hz when
the total enthalpy was imposed to Ĥ = 0. Accordingly, modulus and phase of the pressure
perturbation are virtually unchanged (see Fig. 5.23).
Nevertheless, the constant total enthalpy boundary condition leads to entropy fluctuations en-
tering the domain, as can be seen in Fig. 5.24. The plots show that |ŝ| is clearly non zero at the
domain inlet when this boudary condition is used. However, the level of entropy fluctuations
decreases very quickly along the oxidizer tube, and reaches about zero at the chamber inlet at
x = 0 (see Fig. 5.24(a)). The situation is then very similar to the one created by the boundary
condition that imposes ŝ = 0 at the inlet, in the sense that all entropy perturbations present in
the domain originate from the flame. As can be observed in Fig. 5.24, modulus and phase of
the entropy perturbations are virtually the same for the two computations downstream of the
flame (the phase of ŝ is not plotted in the oxidizer tube part x < 0 for the boundary condition
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!0.2 !0.1 0 0.1 0.2 0.3 0.4
!200

!150

!100

!50

0

50

100

150

200

 x  (m)
(b) arg(ŝ)

Figure 5.24: Comparison of module and phase of entropy perturbation for the two inlet boundary con-
ditions: : LEE solver with ŝ = 0 at the inlet. : LEE solver with Ĥ = 0 at the inlet.

imposing ŝ = 0 at the inlet (solid line), as the modulus of ŝ is zero in this zone).

The observation of this decaying curve for |ŝ(x)| for a mode that is damped disagrees with
what is expected to result from Eq. (4.39). That latter equation predicts an increasing envelope
curve for convected hot spots in damped configurations, as the perturbations present at a down-
stream position have been released from the flame at an earlier time, when the overall level
of perturbation was higher (cf. Fig. 4.14). The results shown in Fig. 5.24 do hence not satisfy
Eq. (4.39) in the sense that the amplitude of the convected entropy hot spots E is not constant in
uniform flow regions. The reason for this is the introduction of an artificial viscosity term into
the system of equations, which is acting as a damping term on oscillations of small wavelength.
As the wavelength of the entropy waves is much smaller than that of the acoustic waves, scaling
by a factor λe/λac ≈ M , the former are susceptible to be affected by artificial viscosity while
the considerations of section 5.1.3.4 ensure that the acoustic waves are left unchanged.
Even though this behaviour seems undesirable at a first view, it can be used to recover the
decay of the amplitude of entropy waves on their way downstream that occurs in realistic sys-
tems. This damping is caused by dissipation, which is not taken into account in the system
of equations solved in this study. The artificial viscosity term that was introduced to stabilize
the system of equations from a numerical point of view could thus be adjusted to represent the
physical impact of viscosity on convected entropy.
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Chapter 6

Extended Analysis of Results

In the following chapter, the results obtained with the 1D LEE solver presented in chapter 4 are
further analyzed. The objective is to discuss in more detail the mechanisms that occur in the
system and their impact on its stability.
To this end, the eigenfrequencies and eigenmodes obtained from the 1D LEE solver are studied
in postprocessing evaluations. In separate sections, the following two aspects are discussed:
In a first time, the budget of disturbance energy that can be attributed to a given eigenmode is
analyzed. Reconstructing the temporal evolution of the amplitudes of the fluctuating quantities
allows to assess the processes that lead to energy gain or loss in the system. By separately
evaluating flux terms at the boundaries and several source terms, the impact of boundary con-
ditions, mean flow parameters and flame-acoustic interaction can be assessed.
In a second time, the issue of the system being non normal is discussed. It is shown how the fact
that the eigenvectors obtained from the preceding computation are in general not orthogonal
may lead to short term energy growth in the system.
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6.1 Balance of Disturbance Energy Budget

In this section, the modes that have been computed by the 1D LEE solver as presented in Chap-
ter 4 are evaluated in terms of the energy they contain. This analysis allows to better understand
the origin of differences between zero and non zero Mach number mean flow computations,
and the mechanisms that lead to stable or instable modes.

Descriptions of the energy of acoustic perturbations exist in various forms, the definitions
being derived for different applications: among the most known works are those of Cantrell &
Hart [13] who state an acoustic energy definition for irrotational flows at uniform entropy. This
description is later extended by Morfey [70] to be applicable to arbitrary uniform flows. How-
ever, when it comes to configurations that include combustion processes, the energy term must
be extended from the purely acoustic energy to a more general definition of disturbance energy,
which takes into account entropy fluctuations. Equations for such a generalized energy term
have been derived by Chu [16] and Pierce [79] for mean flows at rest and later by Myers [72]
for arbitrary steady flows. The corollary for disturbance energy derived by Myers [72] has later
been extended by Karimi et al. [53] to include combustion terms. This definition of energy con-
tained in disturbances is of course closely linked to the Rayleigh criterion stated in Chapter 1,
which describes the conditions under which combustion instability may occur. Starting from
the expression given by Rayleigh [87], the description of the source term in thermo-acoustic
configurations has since been discussed and extended (e.g. [16, 75, 40]).

6.1.1 Mathematical Formulation

The study presented here is based on the energy corollary by Myers [72] and extended by
Karimi et al. [53] as derived in section 2.3.2. It is recalled that this energy balance reads:

∂E2

∂t
+
∂W2

∂x
= D2 (6.1)

with E2 the first-order disturbance energy density, W2 the first-order disturbance energy flux
vector and D2 the dissipation rate of first-order disturbance energy per unit volume. For an
inviscid flow where vorticity can be neglected, these terms read (cf. section 2.3.2):

E2 =
p2

1

2ρ0c2
0

+
ρ0u

2
1

2
+ ρ1u0u1 +

ρ0T0s
2
1

2cp0
(6.2)

W2 =
u0

ρ0
p1ρ1 + p1u1 + u2

0ρ1u1 + u0ρ0u
2
1 + ρ0u0T1s1 (6.3)

D2 = −s1(ρ1u0 + ρ0u1)
dT0

dx
+ s1ρ0u0

dT1

dx
+ T1

(
q1

T0
− q0T1

T 2
0

)
(6.4)

The above expressions show that the situation is considerably more complex when Mach num-
ber effects are taken into account: 8 out of the 14 terms contained in the definitions of E2, W2

and D2 are related to the mean flow velocity. Furthermore, it should be noted that the term D2

is composed of five different contributions, which may act both as source or sink terms. The
contributions are evaluated separately lateron, and therefore noted as D2,1 to D2,5:

D2 = −s1ρ1u0
dT0

dx︸ ︷︷ ︸
D2,1

−s1ρ0u1
dT0

dx︸ ︷︷ ︸
D2,2

+s1ρ0u0
dT1

dx︸ ︷︷ ︸
D2,3

+T1
q1

T0︸ ︷︷ ︸
D2,4

−q0T
2
1

T 2
0︸ ︷︷ ︸

D2,5

(6.5)
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The terms D2,1 and D2,3 depend directly on the mean flow velocity and describe hence effects
linked to the convection of perturbations. D2,1 can be added to D2,2 to give (−s1m1dT0/dx),
with m1 the fluctuating mass flow rate, This term expresses thus an interaction of entropy
fluctuations s1 with mass flow rate fluctuations m1 in regions of varying mean temperature
dT0/dx, such as the flame. D2,4 and D2,5 express the contribution of the fluctuating and the
mean heat release rate, respectively.

Using the eigenvectors computed by the 1D LEE solver, the temporal signals of pressure,
velocity and entropy fluctuations can be reconstructed by re-establishing the harmonic wave-
forms they represent. The relation φ′(x, t) = <(φ̂(x) exp(−iωt)) gives this temporal form
from the mode shape φ̂(x) = |φ̂(x)| exp(i arg φ(x)) and complex frequency ω. Based there-
upon, the separate terms of Eq. (6.2) to (6.4) can be computed. This reconstruction of the
disturbance energy balance allows for one to verify the accuracy of the numerical results, in
the sense that a closed balance corroborates the eigenmodes found by the LEE solver. Besides,
the computation of the individual terms of the energy balance allows to identify the role of each
term and thereby judge the importance of separate mechanisms.

The expression for the disturbance energy of Eq. (6.1) is then integrated in time over one
period of oscillation T and in space over the domains volume V , which yields:∫

V
E2dx

∣∣
t=T
−
∫
V
E2dx

∣∣
t=0

+
∫
T
W2dt

∣∣
x=L
−
∫
T
W2dt

∣∣
x=0
−
∫
V

∫
T
D2dxdt = 0 (6.6)

In the following, a compact notation will be used, where angle brackets < · > denote the
time integration from t = 0 to t = T and the overbar · stands for the space integration from
x = 0 to x = L. Setting the energy density initially contained in the domain as a reference
value to Et=0

2 = 1, one obtains the scaled balance:

Et=T2 + [< W2 >]x=L
x=0 −< D2 > = 1 (6.7)

This integrated balance states hence that the amount of energy contained in the domain after
one period of oscillation,Et=T2 , differs from the initial valueEt=0

2 = 1 by the amount of energy
lost at the boundaries during this time [< W2 >]x=L

x=0 and by the amount of energy added by the
source term < D2 >. This integrated balance is furthermore directly related to the notion of
stability of the modes, in the sense that an unstable mode is characterised by increasing energy
density Et=T2 − 1 > 0. More precisely, Et=T2 = exp (2ωiT ) holds for each of the modes,
and thus Et=T2 > 1 for an unstable mode with ωi > 0, and Et=T2 < 1 for a stable mode with
ωi < 0.
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6.1.2 Results for a 1D Configuration

Figure 6.1: Configuration used for the analysis of the disturbance energy budget.

The analysis of the budget of disturbance energy is carried out for the quasi 1D configura-
tion introduced in section 4.2.2. The flame covers a rather big length of δf = 0.15L here, in
order to avoid problems due to insufficient discretization: some of the source terms exist only
inside the flame region, which makes it important to well capture this zone. However, the grid
being composed of a series of equidistantly spaced points, it is not possible to refine locally.
Therefore, a good tradeoff between reasonable number of grid points and sufficient precision
requires a long flame.

6.1.2.1 Case without Unsteady Heat Release Rate: q̂ = 0

At first, the configuration is analyzed without the unsteady heat release rate, i.e. the results
of section 4.2.2.2 are revisited. As has been mentioned in that section, an interesting aspect
in this configuration is the impact of losses of disturbance energy across the domain’s borders
and their evolution with growing Mach number: depending on the formulation of the boundary
conditions, a flux of acoustic energy may or may not occur at the domain inlet and outlet, which
can have considerable effects on the modes’ growth rates.

The computation is therefore conducted with the two sets of the boundary conditions intro-
duced in chapter 4, i.e. the set of ”simple” boundary conditions, that allow acoustic flux across
the domain boundaries; and the set of boundary conditions that block the acoustic flux at inlet
and outlet, while however allowing entropy fluctuations to be convected out of the domain. The
conditions are recalled here and read as follows:

• ”simple” boundary conditions:

x = 0 : û = 0 and ŝ = 0
x = L : p̂ = 0 (6.8)

• ”no acoustic flux” boundary conditions:

x = 0 : û+ u0

ρ0c20
p̂ = 0 and ŝ = 0

x = L : p̂+ ρ0u0û = 0 (6.9)
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(a) Boundary Conditions that allow acoustic flux,
cf. Eqs. (6.8)
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(b) Boundary Conditions that impede acoustic flux,
cf. Eqs. (6.9)

Figure 6.2: Frequencies of the first three eigenmodes for M in
0 = 0.01 to M in

0 = 0.15; δf = 0.15L

’simple’ BC ’no acoustic flux’ BC
M in

0 = 0.01 1 138.52− 1.43i 138.52− 1.11i
2 347.26− 2.30i 347.28− 0.67i
3 569.23− 1.35i 569.23− 1.15i

M in
0 = 0.15 1 129.80− 54.25i 135.75− 41.16i

2 322.86− 33.79i 323.87− 11.22i
3 562.38− 29.10i 559.31− 27.27i

Table 6.1: Frequencies of the first three eigenmodes at M in
0 = 0.01 and M in

0 = 0.15 , cf. Fig. 6.2

The evolution of the eigenfrequencies of the first three modes with increasing inlet Mach
number is plotted for both sets of boundary conditions in Fig. 6.2, and the values obtained at the
highest and lowest Mach number considered here are regrouped in Table 6.1. The plots shown
in Fig. 6.2 correspond to the results presented in Fig. 4.13 for the boundary conditions allowing
acoustic flux, and to those presented in Fig. 4.16 for the boundary conditions impeding acoustic
flux. However, in difference to the case discussed in section 4.2.2.2, the flame covers a larger
zone in the configuration discussed here, with δf = 0.15L instead of δf = 0.05L.
As discussed in section 4.2.2.2, the modes are all marginally stable when the mean flow is
at rest and tend towards stable modes when the mean flow velocity increases. This indicates
that loss and source terms are balanced or zero at low Mach number, whereas the losses out-
weigh the gain at higher mean flow speed. At the same time, the damping rates obtained at
M in

0 = 0.15 are higher when acoustic flux across the boundaries is allowed, an issue that is
especially noticeable for the second mode (cf. Fig. 6.2(a)), which has been explained by higher
losses at the domain inlet and outlet than in the case where acoustic flux is prohibited.

It is therefore the second mode of this configuration that is analysed in the following, with
the separate terms of the integrated energy balance of Eq. (6.7) being computed for the two
types of boundary conditions, each time at low and high Mach number.
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’simple’ BC ’no acoustic flux’ BC

M in
0 = 0.01 M in

0 = 0.15 M in
0 = 0.01 M in

0 = 0.15

f [Hz] 347.26− 2.30i 322.86− 33.79i 347.28− 0.67i 323.87− 11.22i

Et=T2 0.92 0.27 0.98 0.65

[< W2 >]x=Lx=0 0.05 2.12 0.00 1.70

< D2 > -0.02 1.40 -0.02 1.36∑
cf. Eq. (6.7) 0.99 0.99 1.00 0.99

Table 6.2: Terms of time and space integrated disturbance energy balance Eq. (6.7) for the 2nd eigen-
mode at low and high Mach number
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(a) Boundary Conditions that allow acoustic flux,
cf. Eqs. (6.8)
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(b) Boundary Conditions that impede acoustic flux,
cf. Eqs. (6.9)

Figure 6.3: 2nd eigenmode: Terms of the time and space integrated disturbance energy balance Eq. (6.7)
for M in

0 = 0.01 to M in
0 = 0.15. 2 Et=T2 : space integrated energy density after one period of

oscillation, O [< W2 >]x=Lx=0 : time integrated flux of energy density at inlet and outlet, 3< D2 >:
time and space integrated source term

The results obtained from this computation are gathered in Table 6.2. First of all, it should
be noted that the integrated balance of Eq. (6.7) is satisfied for all the cases: The sum of all
terms adds up to one, the error of 1% being acceptable. Secondly, it can easily be verified that
the value of disturbance energy contained in the domain after one period of oscillation, Et=T2 ,
reflects the growth rate of the corresponding mode. In all cases, the relation

Et=T2 = exp (2ωiT ) = exp(
4πfi
fr

)

is satisfied. As all modes are stable, the energy after one period of oscillation is smaller than
the reference value at t = 0 that was set to Et=0

2 = 1.
The results of Table 6.2 confirm that at low Mach number, the two sets of boundary conditions
are equivalent and produce the same effect: the flux term as well as the source term are close to
zero, leading to marginally stable modes. At higher Mach number, both flux and source terms
are non zero, as they contain terms linked to the mean flow speed (cf. Eqs. (6.3) and (6.4)).
However, while the source term at M in

0 = 0.15 reaches about the same value irrespective of

116



6.1. BALANCE OF DISTURBANCE ENERGY BUDGET

’simple’ BC ’no acoustic flux’ BC

M in
0 = 0.01 M in

0 = 0.15 M in
0 = 0.01 M in

0 = 0.15

f [Hz] 569.23− 1.35i 562.38− 29.10i 569.23− 1.15i 559.31− 27.27i

Et=T2 0.97 0.52 0.97 0.54

[< W2 >]x=Lx=0 0.00 1.68 0.00 1.71

< D2 > -0.03 1.23 -0.03 1.28∑
cf. Eq. (6.7) 1.00 0.97 1.00 0.97

Table 6.3: Terms of time and space integrated disturbance energy balance Eq. (6.7) for the 3rd eigen-
mode at low and high Mach number

the boundary conditions (< D2 > = 1.40 and < D2 > = 1.36 for simple and no acoustic flux
conditions respectively), the value for the acoustic energy flux is considerably different for the
two sets of boundary conditions.
An interesting aspect can be observed when comparing the flux of disturbance energy across
the domain boundaries for the two sets of boundary conditions: In the case where acoustic
energy flux is not allowed across the boundaries, the flux term of Eq. (6.3) is reduced to its last
component, the integrated term reading

[< W2 >]x=L
x=0 =

∫ t=T

t=0
(ρ0u0T1s1)x=L dt.

Even though the loss of disturbance energy is in this case only due to entropy hot spots being
convected out of the domain, the value of [< W2 >]x=L

x=0 is rather high, reaching about 80%
of the flux term that is observed when using the ”simple” boundary conditions. This suggests
that damping effects due to losses of disturbance energy by convection of hot spots out of the
domain can be considerable.

For a more detailed picture, the evolution of the different terms of the integrated energy
balance of Eq. (6.7) with growing Mach number are shown in Fig. 6.3. The plots show that
in agreement with the continuous decrease in ωi, the energy term evolves smoothly towards
lower values of Et=T2 with higher Mach number. At the same time, both flux and source term
increase with the Mach number. However, this increase is not necessarily proportional to the
mean flow velocity as has been shown in [119]. The important factor is that flux and source
terms evolve in the same way. It can be noticed from Fig. 6.3 that the observations made for
M in

0 = 0.15 in Table 6.2 are valid for the complete span of mean flow Mach numbers: in all
cases, the source term is only little influenced by the boundary conditions, whereas the flux at
the boundaries is reduced significantly when acoustic energy flux across the domain limits is
prohibited by the boundary conditions.

However, the choice of boundary conditions does not always have an impact on the damping
rate: As shown in Fig. 6.2, the third mode is virtually not influenced by the set of boundary
conditions that are chosen. The growth rate, i.e. the rate of change in energy density, is about
the same for the simple as for the flux-blocking boundary conditions. The individual terms
of the energy balance are gathered in Table 6.3. They indicate that for the third mode, not
only the source term, but also the flux term is little influenced by the boundary conditions.
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cf. Eqs. (6.8)
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(b) Boundary Conditions that impede acoustic flux,
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Figure 6.4: 3rd eigenmode: Terms of the time and space integrated disturbance energy balance Eq. (6.7)
for M in

0 = 0.01 to M in
0 = 0.15. 2 Et=T2 : space integrated energy density after one period of

oscillation, O [< W2 >]x=Lx=0 : time integrated flux of energy density at inlet and outlet, 3< D2 >:
time and space integrated source term

This observation is underlined by Fig. 6.4, that shows a nearly identical evolution of flux and
source terms with Mach number for the two sets of boundary conditions. As mentioned before,
the observation that the flux term is only little affected by a change in boundary conditions
suggests that the loss of disturbance energy at the domain’s boundaries is essentially caused by
convection of entropy perturbations, and that this aspect should thus be taken into account in
the description of thermo-acoustic instability.
For a better understanding of the difference between the second and the third mode, the shapes
of these two modes at M in

0 = 0.15 are plotted in Fig. 6.5 for both boundary conditions. The
figure shows that the shape of the second mode (Fig. 6.5(a) ,(c), (e)) is much more influenced by
the choice of boundary conditions than that of the third mode (Fig. 6.5(b) ,(d), (f)). The values
of |p̂| and |û| at the domain outlet differ considerably for the two sets of boundary conditions
for the second mode, indicating the flux of acoustic energy is clearly non zero if permitted by
the boundary conditions. Besides, the losses due to flux of acoustic energy are accompanied
by higher losses due to convection of entropy in the case of the second mode.
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Figure 6.5: Comparison of Modeshape at high Mach numberM in
0 = 0.15 for the two types of boundary

conditions. Left column: 2nd mode. Right Column: 3rd mode. Normalisation is such that |p̂(0)| = 1.
: Boundary Conditions that impede acoustic flux, cf. Eqs. (6.9) ;
: Boundary Conditions that allow acoustic flux, cf. Eqs. (6.8)

119



EXTENDED ANALYSIS OF RESULTS

6.1.2.2 Case with Unsteady Heat Release Rate: q̂ 6= 0

In the following section, the source term of Eq. (6.4) is analysed in more detail. To this end, the
configuration of Fig. 6.1 is studied now including an unsteady heat release rate. The parameters
of the unsteady heat release model are set to n = 1 and τ = 0.5ms, and the flame covers a
zone of δf = 0.15L. In terms of boundary conditions the present computations are carried out
imposing û = ŝ = 0 at the inlet and p̂ = 0 at the outlet.
The parameters being chosen this way, the eigenfrequencies of the second mode evolve from
unstable to stable when the Mach number is increased (see Fig. 6.6).
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Figure 6.6: Eigenfrequency of the 2nd mode for n = 1, τ = 0.5ms, and δf = 0.15L.

The shape of this mode at M in
0 = 0.01 and M in

0 = 0.15 is plotted in Fig. 6.7. One observes
that pressure and velocity fluctuations are only little influenced by the change in mean flow ve-
locity, while the entropy fluctuations are significantly stronger. This suggests that convection
of entropy outside of the domain has a strong stabilizing effect on the mode at M in

0 = 0.15. At
the same time of course acoustic flux contributes to energy losses at the boundaries when the
Mach number is not zero.

The separate contributions to the integrated energy balance of Eq. (6.7) corresponding to
these two and intermediate Mach numbers are given in Table 6.4 and plotted in Fig. 6.8. As
in the case without unsteady heat release rate, the term [< W2 >]x=L

x=0 is zero when the mean
flow is at rest and increases with the mean flow speed. Again, this increase is not linear or
even monotone - at M in

0 = 0.14 the flux is slightly smaller than at M in
0 = 0.13. This is due

to the fact that the flux term is composed of several products of fluctuating quantities, that are
each assumed to be harmonic in time. For a phase shift of π/2 between two of these signals,
the time integral of their product is zero. This means that the value of the integrated flux term
depends not only on the mean flow velocity and amplitude of the perturbations, but also on the
relations between the separate quantities, and is therefore not straightforward to predict. The
same is of course the case for the source term, which evolves with the mean flow Mach number
in a way similar to the flux term. As shown in Fig. 6.8, the source term is however clearly non
zero at low Mach number, leading to an unstable mode. At about M in

0 = 0.1, the loss term
becomes more important than the source term, leading to a stable mode.
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Figure 6.7: Structure of the 2nd Eigenmode at low and high Mach numbers.
: Main0 = 0.01 (f = 360.4 + 13.8iHz) : Main0 = 0.15 (f = 336.8− 9.3iHz).

When fluctuations in heat release rate are involved, all the five source terms of Eq. (6.4) con-
tribute to the energy balance. It can then be of interest to evaluate the different terms separately
in order to get information about their order of magnitude and the nature of their contribution.
This includes the overall impact of a term as either a source or a sink term as well as the spatial
distribution of the separate source terms and of course the evolution of the separate terms with
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Min
0 = 0.01 Min

0 = 0.05 Min
0 = 0.10 Min

0 = 0.15

f [Hz] 360.4 + 13.8i 356.8 + 6.8i 348.9− 1.2i 336.8− 9.3i

Et=T2 1.62 1.27 0.96 0.71

[< W2 >]x=Lx=0 0.07 0.50 1.34 1.80

< D2 > 0.69 0.82 1.33 1.53

< D2,1 > =
∫ ∫

(−s1ρ1u0dT0/dx)dxdt -0.01 0.21 0.90 1.18

< D2,2 > =
∫ ∫

(−s1ρ0u1dT0/dx)dxdt 0.10 0.07 0.07 0.08

< D2,3 > =
∫ ∫

(s1ρ0u0dT1/dx)dxdt 0.02 0.28 0.81 0.99

< D2,4 > =
∫ ∫

(T1q1/T0)dxdt 0.66 0.47 -0.08 -0.23

< D2,5 > =
∫ ∫

(−q0T 2
1 /T

2
0 )dxdt -0.07 -0.21 -0.37 -0.49

Table 6.4: Active Flame: Terms of time and space integrated disturbance energy balance Eq. (6.7),
separate contributions of source term: cf. Eq (6.4)
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Figure 6.8: 2nd eigenmode: Terms of the time and space integrated disturbance energy balance Eq. (6.7)
for M in

0 = 0.01 to M in
0 = 0.15. 2 Et=T2 : space integrated energy density after one period of

oscillation, O [< W2 >]x=Lx=0 : time integrated flux of energy density at inlet and outlet, 3< D2 >:
time and space integrated source term

the mean flow velocity.
The integrated values of the different source terms for M in

0 = 0.01; 0.05; 0.10 and 0.15 are
summarized in Table 6.4. These figures show that at low Mach number, the contribution due
to unsteady heat release rate, i.e. < D2,4 > is by far the most important - during one cycle of
oscillation it generates about 66% of the energy initially contained in the system and therefore
accounts almost entirely for the mode being unstable. This term reminds in its construction of
the Rayleigh criterion (see chapter 1) and has been shown to be the equivalent of the Rayleigh
term in cases where entropy fluctuations are considered [75].
The only other term not involving the mean flow velocity is < D2,2 >, which describes the
interaction of entropy fluctuations s1 with velocity fluctuations u1 in regions of varying mean
entropy dT0/dx. However, in the case presented here, this term contributes considerably less
to the energy balance at low Mach number than the unsteady heat release term.
The remaining terms are directly related to u0 and are therefore only of importance at non zero
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Figure 6.9: Spatial distribution of the time integrated source term < D2(x) > with increasing mean
flow Mach number.

Mach number: < D2,1 > and < D2,3 > describe effects due to the convection of entropy fluc-
tuations. < D2,1 > can thereby be combined with< D2,2 > to give

∫ ∫
(−s1m1dT0/dx)dxdt,

with m1 being fluctuations in flow rate. Finally, < D2,5 > describes the contribution of the
mean heat release rate, which is itself defined as q0 = ρ0u0cpdTt,0/dx. By definition, the term
< D2,5 > is always negative, i.e. the mean heat release of the flame has a stabilizing effect.

The values in Table 6.4 indicate that the integrated values of the source terms that depend on
u0 effectively get more important with the mean flow Mach number. The increasing stabilizing
effect of the mean heat release term is thereby outbalanced by the energy gain due to< D2,1 >
and< D2,3 >, which leads to an overall increasing source term. At the same time, the unsteady
heat release term inverses its behaviour and contributes as a sink term at M in

0 = 0.10 and 0.15.

In order to illustrate these observations, the spatial distribution of the time- (but not space-)
integrated source term < D2(x) > is plotted in Fig. 6.9, and that of the separate contributions
< D2,1(x) > to < D2,5(x) > in Table 6.5 for M in

0 = 0.01; 0.05; 0.10 and 0.15.
As first aspect, the plots underline that only one of the source terms, namely < D2,3(x) >, is
non zero outside of the flame, the others being related to either the mean temperature gradient
or the unsteady heat release rate. As this term < D2,3(x) > accounts for the convection of
entropy perturbations, it is represented by structures downstream that get smaller in scale with
decreasing Mach number: entropy perturbations have a wavelength that is related to those
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of the acoustic waves by λe/λac ≈ u/c = M , i.e. at low convection velocity they lead to
structures far smaller than the acoustic wave length.
As a second aspect, one may note that all the separate terms except < D2,5(x) > get locally
negative for at least one of the Mach numbers, meaning that the terms may act as a source term
in one location and as a sink term in another. This effect is especially present for the unsteady
heat release term, which inverses its overall role from a source of disturbance energy at low
Mach number to a sink term at high Mach number, while locally still contributing as a source
term.
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Table 6.5: Active Flame: Terms of time and space integrated disturbance energy balance Eq. (6.7),
separate contributions of source term: cf. Eq (6.4)
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6.2 Assessing Non-normal Effects

The following section addresses the aspect of the non orthogonality of eigenvectors of the
system, and is included here in the form of an article. This work has been carried out in co-
operation with co-authors from SNECMA, UM2 and TUM and presented at the ”International
Workshop on Non-Normal and Nonlinear Effects in Aero- and Thermoacoustics” held on May,
17th -21st, at TU Munich, Germany. An updated version is in preparation for submission to
”Physics of Fluids”.

The objective of this work is to show the possibility and effects of non normal interaction
in thermoacoustic systems. The chapters presented before show how these systems can be
described in terms of eigenmodes based on linear theory, which allows to judge their stability.
However, if the eigenvectors are not orthogonal, they may interact in a way that short term
transient growth may occur even if the system is found to be linearly stable. This effect can
be illustrated by superimposing two vectors - either orthogonal or not orthogonal - that are
decaying in amplitude, and by following the temporal evolution of their sum (see Fig. 6.10):
If the vectors that are superimposed are orthogonal and decay in amplitude, the result vector
will also decay in amplitude. However, if the vectors are not orthogonal, the vector resulting
from their superposition may initially increase in amplitude, even though the separate vectors
decrease. On the long run, of course, the result vector will exhibit decreasing behaviour as
well.

Figure 6.10: Temporal evolution of vectors resulting from linear combination of linearly stable vectors.
: vectors at t = 0 ; : vectors at t > 0. Left: orthogonal case - individual vectors and result

vector of linear combination decay. Right: non orthogonal case - individual vectors decay, but result
vector of linear combination grows transiently.

Nevertheless, this short term transient growth can be of interest: It indicates that even in a
linearly stable system, perturbation amplitudes may be higher than predicted by linear theory.
Strong perturbations however might have devastating effects on the system or trigger non lin-
ear instability. In this sense, the analysis of non normal effects allows to evaluate the limits of
linear analysis: Even if the eigenvalue approach does not allow to predict the actual amplitude
of perturbations, nor does the present study take into account non linear effects, the observation
of strong transient growth may point out potential problems, i.e. situations where the use of
linear theory alone might not be sufficient anymore.

The theory of non normal interaction, initially developed in the domain of classical fluid
mechanics [114, 95], has only recently been adapted to the field of thermoacoustics [6, 73, 99].
In these studies, the system is typically described as a first order system in a time domain
formulation of the form

du
dt

+Au = 0,
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where u is a state vector of fluctuating quantities and A a system matrix, that allow to ex-
press the conservation equations. Using a Galerkin technique as described by Culick [20] and
expanding the fluctuating quantities as series of orthogonal basis functions allows to obtain a
matrix A, whose size corresponds to the number of basis functions that are used. The analysis
of the degree of non-normality of the system is then based on a singular value decomposition
of the matrix A.
The problem is that for geometrically complex configurations that include heat release and may
present non trivial boundary conditions, it is not straightforward to find such a set of orthogonal
basis functions that satisfy all conditions. This is why in the following study, the analysis of
non normal effects is carried out using a novel approach, which is based on the eigenvectors of
the system. Using finite volume techniques, eigenvectors can be computed for very complex
configurations [42, 102], but have in turn been shown to be non orthogonal [74].

The paper that follows describes how the theory of non normal interaction can be applied
to the numerically computed eigenvectors of the system. The transient growth of energy in the
system is analysed based on results of the 1D LEE solver using the configurations described
before in sections 4.2.2 and 4.2.3. Special attention is put on the description of Mach number
effects and the impact of flame-acoustic interaction. A link to the disturbance energy con-
siderations of section 6.1 is established by showing that the definition of an energy term that
describes the strength of the perturbations is a crucial step in this kind of analysis.
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In this paper, the theory of non-normal interaction is applied to eigenmodes of a ther-
moacoustic system that include mean flow effects. When the mean flow is taken into ac-
count, the energy associated to the eigenmodes contains not only contributions of the
acoustic field, but also those of convected entropy and vorticity modes. The notion of max-
imum transient energy growth is therefore extended from an energy expression based on
the classical acoustic energy to a form based on the generalized disturbance energy.
The approach is applied to a 1D configuration that consists in a duct including a 1D flame
followed by a choked isentropic nozzle. It is shown that for such a case it is essential to
include the contribution of entropy perturbations in the calculation of the optimal initial
perturbation and the maximum transient energy growth.

1 Introduction

Over the last decades, thermoacoustic instabilities have been the subject of intense research activity
with the aim to better understand and eventually predict/avoid them at the design level. Except when
the equations are solved in the time domain (e.g. when Large Eddy Simulation is used), the analysis
most often relies on a modal approach, where the first eigenmodes/eigenfrequencies of the thermoa-
coustic system are sought for. Since these modes are not orthogonal in general because of boundary
conditions and/or flame coupling [17], the associated frequencies only provide information about the
long term evolution of the system, which is linearly stable if and only if all its modes are damped. How-
ever, if non-normality is present, linear modes may interact and transient energy growth can be ob-
served even for stable systems. This effect was demonstrated theoretically by Balasubramanian & Su-
jith [2] who translated ideas initially developed for classical fluid mechanics [13, 22, 26].
The maximum energy growth that can appear depends only on the thermoacoustic system of interest.
Calling U the state vector (typically the components of U are the fields of acoustic density, pressure and
velocity), the relevant equations for describing the time evolution of the perturbations read formally:

∂U

∂t
+A (U ) = 0, (1)

where A is a differential operator which is linear when linear thermoacoustics is considered. Eq. (1) is
nothing but a set of partial differential equations which can be reduced to a set of ordinary differential
equations when an appropriate discretization method is used. The thermoacoustic system of interest is
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then represented by a first order dynamical system which reads:

du

d t
+Au = 0, (2)

where u is the discretized counterpart of U . If Eq. (2) is obtained from Eq. (1) using a Galerkin tech-
nique, i.e. by expanding the fluctuating quantities as series of orthogonal basis functions [5], the vector
u contains the weights of those basis functions. On the other hand, if a finite difference/finite volume
technique is used, u contains the nodal values of the state vector U . Of course, the square matrix A de-
pends on the discretization technique, both in its size and structure. Typically, a Galerkin method pro-
duces a dense matrix of small size, as the expansion requires usually only few basis functions (e.g.: [16]).
In difference to that, a finite volume approach produces a large but sparse matrix (e.g.: [19]).
In any case, some of the characteristics of the thermoacoustic system can be studied by analyzing the
matrix A instead of the differential operator A . Notably, the maximum transient energy growth at time
t , G(t ), is related to the largest singular value of the exponential matrix exp(−At ) [22]. This property
was used in several recent studies in order to quantify the non-normal effects in simple thermoacoustic
systems such as the Rijke tube [2] or a laminar diffusion flame [1]. This allowed assessing the maximum
transient growth Gmax = max[G(t )], the maximum value being taken over all the possible values of t .
Unfortunately, we believe that this approach based on a Singular Value Decomposition (SVD) of the
matrix A is not very suitable for complex systems for two main reasons:

1. time delay: In practical cases, the flame response to upstream acoustic perturbations is time
lagged, the time delay τ being potentially related to several fluid mechanics and/or chemical pro-
cesses relevant to the flame unsteadiness. In thermo-acoustic simulations based on linearized
equations this time lag behaviour has to be included explicitely in the system of equations via the
flame model. As a consequence, the system cannot be described by Eq. (1), but an expression of
the form

∂U

∂t
+A (U (t ))+B (U (t −τ)) = 0, (3)

must be used instead. Unfortunately, generalizing the SVD approach described above to Eq. (3) is
not straightforward and may involve additional simplifications like assuming the time delay τ to
be small compared to the first mode’s period [16].

2. boundary conditions: if the Galerkin method is used to degrade Eq. (1) into Eq. (2), the knowl-
edge of an orthogonal set of basis functions which meet the actual boundary conditions of the
thermoacoustic problem is required. Because they convey useful information about the config-
uration, the acoustic eigenmodes are good candidates (e.g.: [5]) for this purpose. Unfortunately,
they are not orthogonal as soon as the boundary conditions correspond to a finite, complex val-
ued impedance [17], a situation which is not rare. If a finite difference/finite volume type of ap-
proach is used instead for degrading Eq. (1), the size of the discretized problem, Eq. (2), is large
(typical finite volume grids contain 105 −106 elements) so that performing a SVD in order to as-
sess G(t ) may be CPU demanding. Thus, maximizing G(t ) over all the values of time t to obtain
Gmax might not be affordable in practice.

Recently, Selimefendigil et al. [23] proposed a method to handle delayed systems and overcome the first
issue mentioned. In their view, Eq. (3) is recast into an equivalent non-delayed problem for which the
pseudospectra can be computed. The concept of pseudospectra (first mentioned by Landau [11]) was
introduced by Trefethen [25] in order to quantify the sensitivity of eigenvalues to uncertainties/ per-
turbations in the data or discretization. The property exploited by Selimefendigil et al. [23] is that the
geometry of pseudospectra can be used to obtain a lower bound of Gmax (Kreiss theorem). Still, comput-
ing pseudospectra becomes very CPU demanding when the size of the problem increases so that this
approach does not address the second issue mentioned. Besides, as far as the authors know, analyzing
the pseudospectra can only give information about the maximum transient growth and not about the
shape of the optimal perturbation.
The first objective of this paper is to assess a strategy which is potentially suitable for assessing non-
normal effects in 3D complex configurations and not CPU demanding. It relies heavily on the knowl-
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edge of the first few thermoacoustic eigenmodes of the system of interest. Indeed, even if non-normality
is present and eigenmodes only provide information about the long term evolution, they convey rele-
vant information about the system. For example, their individual stability dictates the overall stability
of the system if non-linear effects are not considered. Numerical strategies have been proposed in the
past in order to compute such modes by solving an Helmholtz type of equation with a forcing term
representing the flame [9, 17, 24]. The view considered in this paper was initially proposed by Schmid &
Henningson [22] for investigating classical fluid mechanics configurations. It consists in looking for the
optimal perturbation (the one which generates the largest transient growth) in the linear space spanned
by the thermoacoustics modes. In other words, assessing the non-normality effect appears as a post-
processing of the results of the classical modal characterization of the configuration. As we will demon-
strate, this is virtually done at no additional cost. Of course, since only a finite number of eigenmodes
are considered, all the possible perturbations cannot be generated by combining these modes and only
a lower bound of Gmax can be obtained. However, since the eigenmodes convey a lot of information
regarding the system of interest, it is expected that keeping only a few of them is sufficient to obtain a
reasonable assessment of the maximum transient growth. The same idea justifies the Galerkin methods
where often only a few (of order 10 say) basis functions are necessary to reach good accuracy. How-
ever, contrary to the Galerkin method, the orthogonality of the modes is not required in the present
approach so that the method is also suitable for complex 3D configurations with finite valued bound-
ary impedance.

All the previous studies dealing with non-normal effects in thermoacoustic systems relied on the zero
mean flow assumption although the effect of the approximation M ' 0 is not well understood [6] and
the neglected convective terms may introduce additional non-normality [7]. In the case of a premixed
1D flame, only a moderate non-normal effect was found in the literature [2], the maximum transient
energy growth (Gmax) being close to 7. The second objective of this paper is then to investigate if larger
values of Gmax can be observed when the baseline flow is not assumed at rest. In this case, the evolution
of the perturbations are described by the Linearized Euler Equations instead of a simple Helmholtz
equation for the acoustic pressure. Also, the state vector contains one more component (the density or
entropy say) on top of the acoustic pressure and velocity fields. Thus this situation is quite different from
what has been considered so far in the literature and the presented analysis also serves as an illustration
of the flexibility of the method and its ability to handle complex situations.

The formalism of the method is detailed in sections 2.2 and 2.3 in the case of a generic 3D thermoa-
coustic system written under the zero Mach number assumption and described in section 2.1. In this
case, the state vector contains only the acoustic pressure and velocity fields and non-trivial boundary
conditions (finite, complex valued impedance) can be considered. The formalism is then extended in
section 2.4 to the case where the perturbations are obtained from the LEE and the state vector contains
one more component. The method is then illustrated by analyzing the simple case of a 1D flame sta-
bilized within a straight duct. Note however that this situation is more complex than several previous
studies since a) a time delayed n-τ type of model is used for describing the acoustic-flame coupling
and b) complex boundary conditions are applied at the boundaries of the duct. The corresponding re-
sults are discussed in section 3 where the maximum transient growth related to two types of energies is
considered, i.e. the classical acoustic energy and the energy of the fluctuations.

2 Formalism

2.1 The thermoacoustic model

The phenomenon of thermoacoustic instability results from a coupling between combustion processes
and the acoustic eigenmodes of the configuration (among many others: [12]). Assuming vanishing
Mach number for the mean flow, this coupling can be modeled in the linear regime by the following
wave equation :

1

γ(x)p0

∂2p ′(x, t )

∂t 2 +∇· 1

ρ0(x)
~∇p ′(x, t ) = γ(x)−1

γ(x)p0

∂q ′(x, t )

∂t
, (4)
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where p ′(x, t ) stands for the acoustic pressure at position x and time t ; γ(x) and ρ0(x) are the time aver-
aged isentropic coefficient and density of the fluid; p0 is the homogeneous background pressure.
Eq. (4) states that heat release fluctuations q ′(x, t ) may influence the acoustics in the domain. It is com-
mon practice to model the feedback effect, viz. the influence of acoustic fluctuations on combustion,
via an n −τ type of model [3, 4, 21]. This model assumes that the heat release fluctuations are propor-
tional to the time-lagged velocity fluctuations at a reference point located upstream of the flame:

q ′(~x, t ) = qtot

ubulk
Hq (x) u′(xr e f , t −τ) ·nr e f , (5)

where Hq (x) is the amplitude of the flame response and can be related to the parameter n of n − τ-
models [19], τ(x) is the time delay and nr e f is a unit vector. Assuming time-harmonic perturbations of
pulsation ω, one may write p ′(x, t ) = ℜ(

p̂(x)e−iωt
)

and q ′(~x, t ) = ℜ(
q̂(x)e−iωt

)
. The acoustic field can

then be expressed in terms of eigenmodes that are solution of a Helmholtz equation written for the
complex amplitude of pressure p̂:

γ(x)p0∇·
(

1

ρ0(x)
~∇p̂(x)

)
+ω2p̂(x) = qtot

iωρr e f ubulk
Hq (x) e iωτ(x) ~∇p̂(xr e f ) ·nr e f (6)

As the problem has been written in frequency domain, the reflection of low frequency waves at the
boundaries can be handled easily with a complex valued impedance at the boundary, noted Z . The
appropriate boundary condition to impose to p̂ takes the following form:

~∇p̂(x) ·nBC − i
ω

c0(x)Z (ω)
p̂(x) = 0, (7)

where nBC is a unit vector normal to the boundary and c0(x) is the speed of sound. Solving the eigen-
problem given by Eq. (6) and Eq. (7) allows to determine the thermoacoustic pressure eigenmodes p̂(x),
and their corresponding eigenfrequencies ω. The velocity eigenmodes û(x) can then be deduced using
the linearised Euler equation written in the frequency domain for time harmonic fluctuations:

iωρ0 û(x) =~∇p̂(x). (8)

2.2 Non-orthogonality of the eigenfunction

Non-normality arises from the fact that the thermoacoustic eigenmodes are not orthogonal. Thus, it is
important to specify how orthogonality is defined or, equivalently, what is the appropriate inner prod-
uct. The formalism used throughout this paper is therefore stated in the following.
An acoustic perturbation is defined as a vector composed of pressure and velocity fluctuations p ′ and
u′ that are assumed to be harmonic in time. This allows to write:

v ′(x, t ) =
[

p ′(x, t )
u′(x, t )

]
=

[ ℜ(p̂(x)e−iωt )
ℜ(û(x)e−iωt )

]
=ℜ(v̂(x)e−iωt ) (9)

where the vector v̂(x) contains the complex amplitudes of pressure and velocity fluctuations, this latter
being composed of three components û(x) = (ûx (x), ûy (x), ûz (x)) and ω = ωr + iωi is a complex fre-
quency.
The following considerations are set in the complex space, i.e. the return to a real valued vector is
dropped. The solutions of the thermoacoustic system are considered in the form of complex valued
vectors

v(x, t ) = v̂(x)e−iωt = v̂(x)e−iωr t eωi t with v̂(x) =
[

p̂(x)
û(x)

]
=


p̂(x)

ûx (x)
ûy (x)
ûz (x)

 (10)

a complex eigenvector.
Considering v1(x, t ) and v2(x, t ) two complex vectors that are solution of Eqs. (6), (7) and (8), a weighted
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inner product can be defined as follows:〈
v1(x, t )

∣∣∣v2(x, t )
〉

W
=

∫
V

(
v1(x, t )H W v2(x, t )

)
dV (11)

with v1(x, t )H = v̂(x)H e iωr t eωi t the conjugate transpose of v1(x, t ), V the volume of the domain that is
considered and W a weight matrix.
If W is the identity matrix I , the inner product defined in Eq. (11) applied to an eigenvector v̂(x) yields
simply its L2-norm: 〈

v̂(x)
∣∣∣v̂(x)

〉
I
=

∫
V

v̂ H (x)I v̂(x)dV = ||v̂(x)||22
By defining the matrix W in an appropriate way, the product of Eq. (11) can be linked to an equivalent
of the acoustic energy associated to the mode v(x) = v̂(x)e−iωt . For an eigenvector v̂(x) as defined in
Eq. (10), a weight matrix

Wac =



1
2γp0(x)

u0x

2c2
0

u0y

2c2
0

u0z

2c2
0

u0x

2c2
0

ρ0(x)
2 0 0

u0y

2c2
0

0 ρ0(x)
2 0

u0z

2c2
0

0 0 ρ0(x)
2

 (12)

allows to define an equivalent acoustic energy of the form:

Eac (t ) =
〈

v(x, t )
∣∣∣v(x, t )

〉
Wac

=
∫

V

(
v̂(x)H e iωr t eωi t Wac v̂(x)e−iωr t eωi t

)
dV

= e2ωi t
∫

V

(
1

2γp0(x)
|p̂(x)|2 + ρ0(x)

2
|û(x)|2 + |p̂(x)|

c0(x)2 |u0(x) · û(x)|
)

dV

(13)

The term Eac (t ) is a real valued energy that is defined based on complex quantities. It shares the same
coefficients as the classical acoustic energy. Still, it differs from the latter in the sense that the classical
acoustic energy is based on the real parts of the complex signals and will hence be noted Eac,ℜ(t ) in the
following:

Eac,ℜ(t ) =
∫

V

(
1

2γp0(x)
p ′(x, t )2 + ρ0(x)

2
u′(x, t )2 + p ′(x, t )

c0(x, t )2 u0(x) ·u′(x, t )

)
dV (14)

Please note that the energy terms of Eq. (13) and (14) do not follow the same temporal evolution. The
term of Eq. (13) is defined in a way as to describe the energy of a linear combination of several modes,
which inhibits time averaging over one period of oscillation. Complete equivalence between the terms
of Eq. (13) and (14) may be established by time averaging. However, in the present case the short term
transient behaviour is to be evaluated. Therefore, it does not make sense to introduce a time average.

The orthogonality of the eigenmodes can now be discussed using the inner product introduced in
Eq. (11) together with the weight matrix of Eq. (12). The projection of v̂1(x) onto v̂2(x) can be expressed
analytically and leads (after some algebra) to the following equation:

〈
v̂1

∣∣∣v̂2

〉
Wac

= 1

2

1

ω1 −ω∗
2

[∫
S

1

ρ0

(
p̂1

~∇p̂∗
2

ω∗
2

− p̂∗
2

~∇p̂1

ω1

)
dS + i

∫
V

γ−1

γp0

(
p̂1q̂∗

2 + p̂∗
2 q̂

)
dV

]
, (15)

where S and V denote the surface and the volume of the domain and ∗ stands for complex conjugates.
(The dependency of the complex variables on x is omitted for clarity, and the mean flow speed is ne-
glected.)
The expression of Eq. (15) is an extension of the result by Nicoud et al. [17], who were considering only
pressure fluctuations in their analysis of the eigenmodes’ orthogonality, instead of the complete mode
structure composed of pressure and velocity terms. Eq. (15) shows that two eigenmodes v̂1 and v̂2 are
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orthogonal when a) boundary impedances are trivial , i.e. they correspond to pressure or velocity nodes
with p̂ = 0 or ~∇p̂ = 0 respectively; and b) no heat release fluctuations occur (q̂ = 0). However the con-
ditions for orthogonality will most probably never be met in an actual experimental setup, so that non-
normality should be considered as the rule for practical thermoacoustic systems.
As a consequence, even if all the eigenmodes are found stable (ωi < 0) there is a possibility for the equiv-
alent acoustic energy of Eq. (13) to exhibit a transient growth before it eventually vanishes as predicted
by the linear modal analysis. The amplitude of the acoustic fluctuations may become significant during
this transient phase and the linear assumption is possibly not valid anymore. In particular, it has been
shown [20] that gain and phase of the flame transfer function may depend significantly on the ampli-
tude of the velocity fluctuations. This is the reason why non-normality is sometimes related to complex
effects such as non-linear triggering [2].
The focus of the present study is however limited to the assessment of non-normality effects in complex
configurations and non-linearity is not considered.

2.3 The maximum possible amplification

For complex time-dependant signals of pressure and velocity q(x, t ), a maximum possible amplification
Gac (t ) can be defined as

Gac (t ) = max
Eac (t )

Eac (0)
= max

q(x,0)6=0

〈
q(x, t )

∣∣∣q(x, t )
〉

Wac〈
q(x,0)

∣∣∣q(x,0)
〉

Wac

(16)

This quantity should be thought of as the upper bound of the envelop of the equivalent acoustic energy.
Starting from any perturbation with a unit energy norm, the equivalent acoustic energy term will always
remain smaller than or equal to this coefficient: Eac (t ) < Gac (t ), ∀t . Still, there is no reason why the
optimal perturbation, which maximizes Eac at time t1, should also maximize Eac at time t2 6= t1, thus
the envelop.
Schmidt & Henningson [22] provide a procedure to assess this maximum possible amplification for
complex signals q(x, t ) that can be expressed as a linear combination of m complex eigenmodes:

q(x, t ) =
m∑

j=1
k j v̂ j (x)e−iω j t (17)

This expansion of q(x, t ) as a linear combination of eigenmodes can be rewritten in a compact matrix
notation as

q(x, t ) = V̂ (x)e−iΩt k (18)

where the j th column of the matrix V̂ (x) contains the complex valued eigenvector v̂ j (x), the diagonal
matrix Ω = diag(ω1,ω2, ...,ωm) contains the complex frequencies of the m eigenvectors used for the
expansion and the vector k stores the coefficients k j of the linear combination Eq. (17).
Introducing Eq. (18) into the definition of the equivalent acoustic energy of Eq. (13), one obtains:

E m
ac (t ) =

〈
q(x, t )

∣∣∣q(x, t )
〉

Wac

=
∫

V
q(x, t )H Wac q(x, t )dV

=
∫

V

(
e−iΩt k

)H V̂ (x)H Wac V̂ (x)e−iΩt kdV

= (
e−iΩt k

)H Mac
(
e−iΩt k

)
(19)

where the matrix M contains the inner products of the m selected eigenvectors:

Mac =
∫

V

(
V̂ (x)H Wac V̂ (x)

)
dV =

〈
V̂ (x)

∣∣∣V̂ (x)
〉

Wac
(20)
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The element kl of this matrix reads:

M kl
ac =

∫
V

(
v̂k (x)H Wac v̂l (x)

)
dV (21)

Since
〈
·
∣∣∣ ·〉

Wac
is an inner product, Mac is a positive Hermitian matrix so that its Cholesky decomposi-

tion exists and yields the square matrix Fac of size m such that F H
ac Fac = Mac . Introducing the decom-

position of Mac into the acoustic energy term of Eq. (19) one obtains:

E m
ac (t ) = (

Fac e−iΩt k
)H (

Fac e−iΩt k
)

(22)

This equation shows that Eac (t ) is nothing but the L2-norm of the vector Fac e−iΩt k. Note that in differ-
ence to the energy term defined for one single mode (Eq. (13)), the equivalent acoustic energy term for
a superposition of several modes is function not only of ωi , but also of ωr (via the matrixΩ).
Finally, noting that the Cholesky factor Fac is not singular, the maximum possible amplification at time
t takes the following form:

Gm
ac (t ) = max

E m
ac (t )

E m
ac (0)

= max
‖Fac e−iΩt k‖2

2

‖Fac k‖2
2

= max
Fac k

‖Fac e−iΩt F−1
ac Fac k‖2

2

‖Fac k‖2
2

(23)

By definition, this quantity is the L2-norm of the operator Fac e−iΩt F−1
ac . In other words, the maximum

amplification at time t is given by the largest singular value of Fac e−iΩt F−1
ac . The optimal initial pertur-

bation is given by the corresponding right singular vector of Fac e−iΩt F−1
ac .

On the LHS of Eq. (23), the superscript m indicates that this expression gives the maximum energy
amplification at time t for all the perturbations which can be obtained by combining the m selected
eigenvectors (this notation is sufficient if one assumes that the m vectors selected correspond to the m
lowest eigenfrequencies). In the same way, the maximum transient growth, which can be obtained by
combining these m eigenvectors, can be obtained by maximizing Gm

ac (t ) over time and shall be noted:

Gm
max,ac = max

t
Gm

ac (t ). (24)

In the case where the eigenmodes are orthogonal and all damped, the matrices Mac and Fac are
both diagonal. Then, Eq. (23) shows that the maximum growth rate equals unity (because Fac e−iΩt F−1

ac
reduces to e−iΩt ) as it is expected when non-normality is not present. As a last comment, we stress the
fact that the singular value decomposition is performed on a matrix of size m (which is the number of
eigenmodes used to generate the signal), making the above approach computationally inexpensive.

2.4 Extension to non isentropic modes

When the LEE equations are solved instead of the Helmholtz equation for pressure only, the thermoa-
coustic modes contain one more component, in the presented case the fluctuating entropy. Any mode
can thus be represented with the following compact notation :

v(x, t ) = v̂(x)e−iωt = v̂(x)e−iωr t eωi t with v̂(x) =
 p̂(x)

û(x)
ŝ(x)

=


p̂(x)

ûx (x)
ûy (x)
ûz (x)
ŝ(x)

 (25)

To describe the energy contained in this kind of modes, the corollary for disturbance energy derived
by Myers [15] and extended by Karimi et al. [10] is appropriate. Thus, instead of the classical acoustic
energy of Eq. (14), the following term should be used to determine the total energy of the disturbances:

Etot ,ℜ =
∫

V

(
1

2γ(x)p0
p ′(x, t )2 + ρ0(x)

2
u′(x, t )2 + ρ0(x)T0(x)

2Cp (x)
s′(x, t )2 +ρ′(x, t )u0(x) ·u′(x, t )

)
dV (26)
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The weight matrix Wtot that relates the inner product of Eq. (11) to a complex based equivalent of the
total disturbance energy of Eq. (26) reads

Wtot =



1
2γp0

u0x

2c2
0

u0y

2c2
0

u0z

2c2
0

0
u0x

2c2
0

ρ0
2 0 0 −ρ0u0x

2Cp
u0y

2c2
0

0 ρ0
2 0 −ρ0u0y

2Cp
u0z

2c2
0

0 0 ρ0
2 −ρ0u0z

2Cp

0 −ρ0u0x
2Cp

−ρ0u0y

2Cp
−ρ0u0z

2Cp

ρ0T0
2Cp


(27)

The resulting energy term reads then

Etot (t ) =
〈

v(x, t )
∣∣∣v(x, t )

〉
Wtot

= e2ωi t
∫

V

(
1

2γp0
|p̂|2 + ρ0

2
|û|2 + ρ0T0

2Cp
|ŝ|2 +

(
p̂

c2
0

− ρ0

Cp
ŝ

)
|u0 · û|

)
dV

(28)

where the dependencies on x were omitted for clarity.
The energy term based on complex quantities (Eq. (28)) is formally equivalent to the one based on real
valued quantities (Eq. (26)), as the last term of the RHS integral can be rewritten using the linearized
state equation

ρ̂ = p̂

c2
0

− ρ0

Cp
ŝ.

It can be shown [8] that the matrix Wtot defined in Eq. (27) is definite positive as long as the local mean
flow Mach number is smaller than a critical value, more precisely if M a =p

u0 ·u0/c0 < 1/γ. Since this
condition is well satisfied for practical combustion systems, the following integral:〈

v̂1(x)
∣∣∣v̂2(x)

〉
Wtot

=
∫

V

(
v̂1(x)H Wtot v̂2(x)

)
dV (29)

defines an inner product. Thus, the analytical development described in section 2.3 remains valid in
the non-isentropic case and the maximum growth at time t can be written as:

Gm
tot (t ) = max

E m
tot (t )

E m
tot (0)

= max
Ftot k

‖Ftot e−iΩt F−1
tot Ftot k‖2

2

‖Ftot k‖2
2

= ‖Ftot e−iΩt F−1
tot‖2

2 (30)

where the Cholesky factorisation of the matrix

Mtot =
∫

V

(
V̂ (x)H Wtot V̂ (x)

)
dV = F H

tot Ftot

has been introduced. This decomposition obviously exists when Wtot is symmetric positive definite,
i.e. when M a < 1/γ [8]. It might also exist even if the latter condition is not met locally, in a chocked
nozzle say, where the local mean Mach number is obviously greater than the critical value. This is due to
the volume integral in the definition of Mtot , which allows some compensation between low and large
Mach number regions. Similarly to the isentropic case of section 2.3, the maximum energy at time t is
given by the largest singular value of Ftot e−iΩt F−1

tot and the corresponding initial perturbation is given
by the right principal singular vector. Besides, the maximum transient growth which can be obtained
by combining m eigenvectors is:

Gm
max,tot = max

t
Gm

tot (t ). (31)

As in the isentropic case of section 2.3, we may remark that :

• Eq. (30) produces Gm
max,tot = 1 when the eigenmodes are orthogonal and damped,

• the requested SVD is still to be made on a matrix of size m, thus not very CPU-demanding
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The theoretical results established in sections 2.3 and 2.4 are now used to study an academic configu-
ration where Mach number effects are present.

3 Results

3.1 Configuration

Figure 1: The numerical setup to assess non-normality with non-zero mean flow (from Nicoud and
Wieczorek [19]).

L (m) Lc (m) xthroat (m) x f (m) δ f (m) γ r (S.I)
1.1 1.0 1.0863 0.5 0.15 1.4 287

p in
0 (Pa) T in

0 = Tu (K) Tb (K) M in
0 M out

0 xref (m)
101325 300 1200 0.05 1.5 0.42

Table 1: Main physical parameters used for configuration of Fig. 1.

The numerical setup consists in a constant cross section duct of length Lc with a 1D flame of charac-
teristic thickness δ f located at x = x f and connected to a nozzle of length L −Lc (see Fig. 1). The mean
flow is assumed isentropic except in the flame region and is constructed from analytical expressions
of the temperature profile in the combustion chamber and the Mach number distribution in the isen-
tropic nozzle (see Eqs. (4.3) and (4.1) in [19]). The mean flow is then entirely determined by the choice
of three independent inlet quantities (for example p in

0 , T in
0 , M in

0 ), the outlet Mach number M out
0 and

relevant geometrical parameters δ f , x f , Lc , xthroat and L.
The mean profiles depicted in Fig. 2 correspond to the numerical values gathered in Table 1 and used
throughout the course of this study. Tu and Tb are the temperature of unburnt and burnt gas respec-
tively. Note that in the presented case, the gain of the flame transfer function Hq of Eq. (5) is set to zero,
i.e. unsteady heat release is not considered. However, there is still interaction of the acoustic field with
the heat source, as acoustic perturbations generate entropy waves in the flame zone, which are then
convected downstream and may in turn create acoustic waves in the nozzle.

(a) Mach number (b) Static pressure (Pa) (c) Static temperature (K)

Figure 2: Mean flow fields for the configuration of Fig. 1.

The first eigenmodes of the configuration are computed following the procedure described in [19]
where the Linearized Euler Equations written in the frequency space are discretized on a staggered
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mesh. The first three modes are displayed in Fig. 3 where the modulus of the complex amplitudes of
pressure, velocity and entropy are plotted.

(a) Mode 1 at 59.−8.3i Hz (b) Mode 2 at 169.6−9.4i Hz (c) Mode 3 at 231.7−4.3i Hz

Figure 3: The first 3 modes in the configuration of Fig. 1. : |p̂(x)|; : |û(x)|; : |ŝ(x)|.
The fluctuating quantities are scaled by γp0, c0 and 10×Cv respectively.

3.2 Transient Energy Growth & Optimal Initial Perturbation

Based on the first six eigenmodes obtained from solving the Linearized Euler Equations, the optimal
initial perturbation and the transient energy growth that it may cause are then determined. These quan-
tities are calculated using the two approaches introduced in section 2, i.e. the transient energy growth
based on the classical acoustic energy Gm

ac (t ) as noted in Eq. (23), and the transient energy growth based
on the total disturbance energy Gm

tot (t ) as in Eq. (30).
As the configuration allows for the presence of entropy fluctuations, the optimal initial perturbation
may include acoustic and entropy fluctuations in both cases (see Fig. 5). The difference between Gm

ac (t )
and Gm

tot (t ) consists in the fact that the contribution of entropy fluctuations to the energy term are con-
sidered negligible in the former approach, whereas they are taken into account in the latter.

The temporal evolution of the terms G6
ac (t ) and G6

tot (t ) is shown in Fig. 4. In this plot, the time is
scaled by the period of the first eigenmode which has a frequency of f1 = 59.−8.3i Hz (cf. Fig. 3(a)); the
possible transient energy growth is plotted using a log-scale.
It is obvious that the two quantities behave very differently, their maximal values being G6

max,ac ≈ 6000
and G6

max,tot ≈ 6. In both cases, however, the maximum possible amplification is reached at a reduced
time of t ′max ≈ 0.5, i.e. after half a period of the first mode. It should also be noted that the two ap-
proaches lead to similar results at very low Mach numbers, with values of Gm

max,tot ≈Gm
max,ac ≈ 1.

0 1 2 3 4 510!2
10!1
100
101
102
103
104

t′ = t/T1

Figure 4: Temporal evolution of the maximum possible amplification as obtained from the first six
eigenmodes. G6

ac (t ); G6
tot (t ). Time is scaled by the period of the first eigenmode

t ′ = t
T1

with f1 = 59.−8.3i Hz.
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(a) optimal perturbation for G6
ac(0)
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(b) optimal perturbation for G6
tot(0)

Figure 5: Spatial distribution of the optimal initial perturbation at t = 0: p ′(x, t ); u′(x, t );
s′(x, t ). The fluctuating quantities are scaled by γp0, c0 and Cv respectively.
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(a) optimal perturbation for G6
ac(tmax )
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(b) optimal perturbation for G6
tot(tmax )

Figure 6: Spatial distribution of the optimal perturbation at t = tmax . p ′(x, t ); u′(x, t );
s′(x, t ). The fluctuating quantities are scaled by γp0, c0 and Cv respectively.

The optimal initial perturbations that allow to obtain the maximum possible amplifications G6
ac (t ) and

G6
tot (t ) are shown in Fig. 5 for t = 0. Figure 6 shows the same perturbations at the moment of maximum

possible amplification, i.e. at t = tmax .
In the optimal initial perturbation obtained using the total energy approach (see Fig. 5(b)), fluctuations
of entropy, pressure and velocity are equally present. At the time of maximum growth t = tmax, the en-
tropy contribution to the disturbance energy term Etot has increased significantly, although the acous-
tic mode persists (see Fig. 6(b)). The situation is rather different for the optimal perturbation computed
based on the acoustic energy only. At the initial time, the optimal perturbation contains mainly en-
tropy fluctuations, the acoustic contribution being virtually zero (see Fig. 5(a)). However, at t = tmax the
entropy fluctuations have decreased, while the acoustic part has increased significantly (see Fig. 6(a)).
This means that energy has been transferred from entropy towards acoustic fluctuations. However, as
entropy fluctuations were not taken into account in the computation of the energy term, this also means
that energy term Eac appears to be enormously amplified as it passes from an initial value close to zero
to a non-zero value at t = tmax .
This observation is consistent with the fact that a large value of G6

max,ac is observed in Fig. 4, while the
value of G6

max,tot is a lot smaller.

To better understand the physical background of the difference between Gm
max,ac and Gm

max,tot , the
convergence of these quantities with respect to the number of eigenmodes m used for the analysis is
displayed in Fig. 7.
From Fig. 7(a) one may conclude that the maximum transient amplification is well predicted with only
5-6 modes, when the total energy of the disturbances is considered. Adding more modes to the analysis
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(a) Evolution of the maximum possible ampli-
fication terms:
◦-symbols: Gm

max,tot ; ×-symbols: Gm
max,ac

1 2 3 4 5 6 7 8 9 1010!8
10!7
10!6
10!5
10!4
10!3
10!2
10!1
100

m

(b) Contribution of the acoustic energy to the
optimal initial perturbation for Gm

max,ac .
◦-symbols: σ(t = 0); ×-symbols: σ(t = tmax )

Figure 7: Convergence in terms of the number of eigenmodes m used for the analysis.

does not have a huge impact on the result for Gm
max,tot . By contrast, for the growth rate based on the

acoustic energy Gm
max,ac convergence is hardly reached when 10 modes are used. It seems as if the values

of Gm
max,ac can still increase for larger numbers of eigenmodes.

This observation is confirmed by Fig. 7(b), which shows the contribution of acoustic fluctuations to the
optimal initial perturbation for computations based on the acoustic energy (cf. Figs. 5(a) and 6(a)). For
this plot, the value σ(t ) has been defined as the ratio of acoustic energy to total disturbance energy:

σ(t ) = Eac (t )

Etot (t )
, (32)

where Eac (t ) and Etot (t ) are the terms defined in Eq. (13) and (28) respectively. Values of σ(t ) close to
one indicate hence preponderance of acoustic fluctuations and negligible influence of entropy fluctu-
ations, while values of σ(t ) near zero denote huge contributions of entropy fluctuations in the signal.
For the optimal perturbation corresponding to Gm

max,ac at t = 0, the contribution of the acoustic energy
to the total energy clearly tends to zero for increasing m (◦-symbols). At the same time, the contribution
of acoustic energy to the perturbation at t = tmax remains of the same order of magnitude (×-symbols).
The acoustic transient growth Gm

ac (t ) = maxEac (t )/Eac (0) is hence virtually unlimited for increasing val-
ues of m, as Eac (tmax ) does not decrease in the same way as Eac (0).
This behaviour is possible since the entropy mode of fluctuations can feed the acoustic mode when
the mean flow is accelerated [14]. Another path from entropy to acoustic was discussed by Nicoud and
Poinsot [18] in the case where the thermal diffusivity is not zero. The very large value of G6

max,ac dis-
played in Fig. 4 is just and only the consequence of these physical phenomena. In other words, non-
normality effects cannot be characterized by the acoustic transient growth when either mean flow or
thermal diffusivity are present; the total transient growth based on the complete energy of the fluctua-
tions should be used instead.

4 Conclusion

This article evaluates non-normal effects for a system that contains both a source of entropy fluctua-
tions and a zone of accelerated mean flow. Rather than using a singular value decomposition approach,
the determination of the maximum transient energy growth and the corresponding initial perturbation
are based on an expansion in eigenmodes. These modes are obtained by solving the Linearized Euler
Equations using a finite volume technique, a method that allows to take into account mean flow effects
and is at the same time suitable for complex geometries.
It is shown that the eigenmodes of thermo-acoustic configurations are, in general, not orthogonal,
which allows for a transient growth of disturbance energy. However, it is pointed out that for the analy-
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sis of non-normal effects of such a configuration the definition of the norm, or equivalently the proper
choice of the energy term, is crucial. Two approaches are presented in this paper, the first one being
based on an energy term that is equivalent to the classic acoustic energy; the second one being based
on the total disturbance energy and therefore including the contribution of entropy fluctuations. It is
shown that the use of the acoustic energy concept may cause misleading results in configurations that
include mean flow effects: When the energy of entropy fluctuations is neglected in the analysis, any en-
ergy transfer from entropy to acoustic fluctuations will lead to spurious values for transient (acoustic)
energy growth.
For the presented configuration, a linear combination of five to six eigenmodes is sufficient to deter-
mine the maximum possible amplification and the optimal initial perturbation. A maximum possible
amplification of G6

max,tot ≈ 6 is found for a case with a moderate mean flow speed and where unsteady
heat release is not taken into account.
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Chapter 7

Conclusion and Perspectives

The objective of this work is to contribute to an improved prediction of thermo-acoustic insta-
bility in gas turbine combustion chambers. A challenging aspect of the numerical description
of this kind of phenomena is to reach a compromise between a realistic representation of com-
plex configurations and a rapid yet correct prediction of their behaviour. This thesis follows
therefore the strategy of solving a simplified system of acoustic equations using a finite volume
technique: this allows to take into account complex geometries and mean flow configurations,
while the computational time remains rather low compared to LES.
The present thesis extends prior work undertaken at CERFACS in this domain: Based on ex-
perience that has been gained during the development of a Helmholtz solver, this work is con-
cerned with the developement of a code that solves the linearized Euler equations and therefore
allows to take into account the impact of the mean flow velocity on the acoustic field. The scope
of this work is thus twofold:

• First, the impact of the mean flow velocity on the resonant frequencies, growth rates
and shape of the acoustic modes present in the domain is addressed. This includes an
evaluation of different source and loss terms and their contribution to the energy balance
at different operating conditions - such as losses due to convection that become more
pronounced as the mean flow velocity increases, or unsteady heat release, that may act
as source or sink term depending on flow conditions.

• Secondly, it is discussed how the mathematical description of the system is affected when
mean flow terms are retained. This concerns the system of equations itself, that must be
suitable to describe thermo-acoustic instability in non zero Mach number mean flow;
and furthermore any problems and particularities that occur during the solution of this
system of equations.

The first issue has primarily been covered using a Quasi-1D solver for the linearized Euler
equations. This tool, developed using the software Matlab, was a first step towards the realiza-
tion of the finite volume code developed subsequently. Intended as a means to get to know the
particularities of the mathematical system, it showed to be very useful for parametric studies
on simple test cases in order to investigate Mach number effects. The main results of this study
can be summarized as follows:

• The frequency of oscillation of the resonant modes tends to decrease with increasing
Mach number, an effect that originates from the change in propagation velocity of down-
stream and upstream travelling acoustic waves. While this effect is small in simple duct
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configurations, it can become considerable as the situation gets more complex, e.g. when
flames and nozzles are involved.

• The growth rate of the modes may considerably change due to the mean flow velocity.
Among the most important effects in simplified configurations are losses caused by con-
vection of disturbance energy outwards and the stabilizing effect of the flame’s mean
heat release rate. Another aspect is the role of the flame’s unsteady heat release rate
that may change from driving to damping and vice versa as the mean flow configuration
changes.

The effects of the mean flow on the growth rate being non negligible even at small Mach num-
bers, the findings indicate that the knowledge of the correct mean flow field is essential in order
to fully exploit the potential of a linearized Euler equation solver.

The second issue of this study concerning the mathematical description and solution of the
system has mainly been dealt with in the context of the 2D solver. The development of this code
allowed to demonstrate the feasibility of the proposed concept, but also showed the constraints
associated to it. The most noteworthy observations are the following:

• The discretized system of equations allows for point-to-point instability. As means to
avoid this phenomenon, two approaches have been studied: a staggered grid discretiza-
tion in 1D, and the introduction of an artificial viscosity term in the more complex context
of the 2D solver. The results of the 2D solver show that in the context of this study, which
is concerned with resonance rather than with propagation of acoustic waves over large
distances, the use of artificial viscosity does not negatively impact the results.

• The discretized eigenvalue problem that results from the frequency domain formulation
of the linearized Euler equations has a large number of non-physical solutions. In par-
ticular, non-physical eigenvalues with a norm of virtually zero complicate the task of
locating the correct solutions using an iterative eigenvalue solver based on the Arnoldi
algorithm: this algorithm is designed to determine a small number of eigenvalues of a
large problem, with the solutions being those eigenfrequencies located at the extrema
of the frequency spectrum. This method will hence converge towards the non-physical
solutions close to zero, or alternatively to the high frequency modes that are of less in-
terest in the context of this study. At the same time, the first non-zero solutions that are
actually sought for are left aside. In order to direct the Arnoldi algorithm towards the
solutions of interest, it is therefore applied to the shifted and inverted problem. However,
this requires an additional inversion of a large matrix (or equivalently the solution of a
large linear system of equations).

This latter issue being rather complex, it is the point where further development is most
urgently required in order for the method to be applicable to real scale configurations: So far,
the finite volume solver is limited to relatively simple 2D configurations as the parts of the
code required for the shift and invert method are implemented in a way that is not suitable for
very large problems. Two aspects have to be addressed in particular: firstly, the solution of the
large linear system should be dealt with using an iterative method rather than the direct one
implemented at present. Secondly, the use of parallel computation, an issue not addressed in
this study, may contribute to handle more complex problems.
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Another issue needing improvement arises from the non-physical solutions that are permit-
ted by the system of equations. Even though the use of the shift and invert method allows to
avoid those close to zero, it has been found that non-physical solutions may exist at higher
frequencies and need to be distinguished from resonant modes of the chamber efficiently.

Finally, an efficient application of the linearized Euler equation solver requires - in addition
to a correct mean flow field - an appropriate description of the flame acoustic interaction as
well as of the boundary conditions for the acoustic field. Even though in the present study
these issues are addressed satisfyingly for academic test cases, more complex applications
might require improvement, such as the use of an extended flame model or boundary conditions
representing arbitrary impedances.
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