!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt !MNH_LIC for details. version 1. ! $Source: /srv/cvsroot/MNH-VX-Y-Z/src/MNH/ini_modeln.f90,v $ $Revision: 1.3.2.4.2.5.2.8.2.9.2.6.2.4 $ $Date: 2015/11/26 15:04:08 $ !----------------------------------------------------------------- ! ####################### MODULE MODI_INI_MODEL_n ! ####################### ! INTERFACE ! SUBROUTINE INI_MODEL_n(KMI,HLUOUT,HINIFILE,HINIFILEPGD) ! INTEGER, INTENT(IN) :: KMI ! Model index CHARACTER (LEN=*), INTENT(IN) :: HLUOUT ! name for output-listing ! of nested models CHARACTER (LEN=28), INTENT(IN) :: HINIFILE ! name of CHARACTER (LEN=28), INTENT(IN) :: HINIFILEPGD ! END SUBROUTINE INI_MODEL_n ! END INTERFACE ! END MODULE MODI_INI_MODEL_n ! ###################################################### SUBROUTINE INI_MODEL_n(KMI,HLUOUT,HINIFILE,HINIFILEPGD) ! ###################################################### ! !!**** *INI_MODEL_n* - routine to initialize the nested model _n !! !! PURPOSE !! ------- ! The purpose of this routine is to initialize the variables ! of the nested model _n. ! !!** METHOD !! ------ !! The initialization of the model _n is performed as follows : !! - Memory for arrays are then allocated : !! * If turbulence kinetic energy variable is not needed !! (CTURB='NONE'), XTKET, XTKEM and XTKES are zero-size arrays. !! * If dissipation of TKE variable is not needed !! (CTURBLEN /='KEPS'), XEPST, XEPSM and XREPSS are zero-size arrays. !! * Memory for mixing ratio arrays is allocated according to the !! value of logicals LUSERn (the number NRR of moist variables is deduced). !! * The latitude (XLAT), longitude (XLON) and map factor (XMAP) !! arrays are zero-size arrays if Cartesian geometry (LCARTESIAN=.TRUE.) !! * Memory for reference state without orography ( XRHODREFZ and !! XTHVREFZ) is only allocated in INI_MODEL1 !! * The horizontal Coriolis parameters (XCORIOX and XCORIOY) arrays !! are zero-size arrays if thinshell approximation (LTHINSHELL=.TRUE.) !! * The Curvature coefficients (XCURVX and XCURVY) arrays !! are zero-size arrays if Cartesian geometry (LCARTESIAN=.TRUE.) !! * Memory for the Jacobian (ZJ) local array is allocated !! (This variable is computed in SET_GRID and used in SET_REF). !! - The spatial and temporal grid variables are initialized by SET_GRID. !! - The metric coefficients are computed by METRICS (they are using in !! the SET-REF call). !! - The prognostic variables and are read in initial !! LFIFM file (in READ_FIELD) !! - The reference state variables are initialized by SET_REF. !! - The temporal indexes of the outputs are computed by SET_OUTPUT_TIMES !! - The large scale sources are computed in case of coupling case by !! INI_CPL. !! - The initialization of the parameters needed for the dynamics !! of the model n is realized in INI_DYNAMICS. !! - Then the initial file (DESFM+LFIFM files) is closed by FMCLOS. !! - The initialization of the parameters needed for the ECMWF radiation !! code is realized in INI_RADIATIONS. !! - The contents of the scalar variables are overwritten by !! the chemistry initialization subroutine CH_INIT_FIELDn when !! the flags LUSECHEM and LCH_INIT_FIELD are set to TRUE. !! This allows easy initialization of the chemical fields at a !! restart of the model. !! !! EXTERNAL !! -------- !! FMLOOK : to retrieve a logical unit number associated with a file !! FMREAD : to read a LFIFM file !! FMFREE : to release a logical unit number !! SET_DIM : to initialize dimensions !! SET_GRID : to initialize grid !! METRICS : to compute metric coefficients !! READ_FIELD : to initialize field !! FMCLOS : to close a FM-file !! SET_REF : to initialize reference state for anelastic approximation !! INI_DYNAMICS: to initialize parameters for the dynamics !! INI_TKE_EPS : to initialize the TKE !! SET_DIRCOS : to compute the director cosinus of the orography !! INI_RADIATIONS : to initialize radiation computations !! CH_INIT_CCS: to initialize the chemical core system !! CH_INIT_FIELDn: to (re)initialize the scalar variables !! INI_DEEP_CONVECTION : to initialize the deep convection scheme !! CLEANLIST_ll : deaalocate a list !! !! IMPLICIT ARGUMENTS !! ------------------ !! !! Module MODD_PARAMETERS : contains declaration of parameter variables !! JPHEXT : Horizontal external points number !! JPVEXT : Vertical external points number !! !! Module MODD_MODD_DYN : contains declaration of parameters !! for the dynamics !! Module MODD_CONF : contains declaration of configuration variables !! for all models !! NMODEL : Number of nested models !! NVERB : Level of informations on output-listing !! 0 for minimum prints !! 5 for intermediate level of prints !! 10 for maximum prints !! !! Module MODD_REF : contains declaration of reference state !! variables for all models !! Module MODD_FIELD_n : contains declaration of prognostic fields !! Module MODD_LSFIELD_n : contains declaration of Larger Scale fields !! Module MODD_GRID_n : contains declaration of spatial grid variables !! Module MODD_TIME_n : contains declaration of temporal grid variables !! Module MODD_REF_n : contains declaration of reference state !! variables !! Module MODD_CURVCOR_n : contains declaration of curvature and Coriolis !! variables !! Module MODD_BUDGET : contains declarations of the budget parameters !! Module MODD_RADIATIONS_n:contains declaration of the variables of the !! radiation interface scheme !! Module MODD_STAND_ATM : contains declaration of the 5 standard !! atmospheres used for the ECMWF-radiation code !! Module MODD_FRC : contains declaration of the control variables !! and of the forcing fields !! Module MODD_CH_MNHC_n : contains the control parameters for chemistry !! Module MODD_DEEP_CONVECTION_n: contains declaration of the variables of !! the deep convection scheme !! !! !! !! !! Module MODN_CONF_n : contains declaration of namelist NAM_CONFn and !! uses module MODD_CONF_n (configuration variables) !! Module MODN_LUNIT_n : contains declaration of namelist NAM_LUNITn and !! uses module MODD_LUNIT_n (Logical units) !! Module MODN_DYN_n : contains declaration of namelist NAM_DYNn and !! uses module MODD_DYN_n (control of dynamics) !! Module MODN_PARAM_n : contains declaration of namelist NAM_PARAMn and !! uses module MODD_PARAM_n (control of physical !! parameterization) !! Module MODN_LBC_n : contains declaration of namelist NAM_LBCn and !! uses module MODD_LBC_n (lateral boundaries) !! Module MODN_TURB_n : contains declaration of namelist NAM_TURBn and !! uses module MODD_TURB_n (turbulence scheme) !! Module MODN_PARAM_RAD_n: contains declaration of namelist NAM_PARAM_RADn !! !! REFERENCE !! --------- !! Book2 of documentation (routine INI_MODEL_n) !! !! !! AUTHOR !! ------ !! V. Ducrocq * Meteo France * !! !! MODIFICATIONS !! ------------- !! Original 10/06/94 !! Modification 17/10/94 (Stein) For LCORIO !! Modification 20/10/94 (Stein) For SET_GRID and NAMOUTN !! Modification 26/10/94 (Stein) Modifications of the namelist names !! Modification 10/11/94 (Lafore) allocatation of tke fields !! Modification 22/11/94 (Stein) change the READ_FIELDS call ( add !! pressure function !! Modification 06/12/94 (Stein) add the LS fields !! 12/12/94 (Stein) rename END_INI in INI_DYNAMICS !! Modification 09/01/95 (Stein) add the turbulence scheme !! Modification Jan 19, 1995 (J. Cuxart) add the TKE initialization !! Jan 23, 1995 (J. Stein ) remove the condition !! LTHINSHELL=T LCARTESIAN=T => stop !! Modification Feb 16, 1995 (I.Mallet) add the METRICS call and !! change the SET_REF call (add !! the lineic mass) !! Modification Mar 10, 1995 (I. Mallet) add the COUPLING initialization !! June 29,1995 (Ph. Hereil, J. Stein) add the budget init. !! Modification Sept. 1, 1995 (S. Belair) Reading of the surface variables !! and parameters for ISBA (i.e., add a !! CALL READ_GR_FIELD) !! Modification 18/08/95 (J.P.Lafore) time step change case !! 25/09/95 (J. Cuxart and J.Stein) add LES variables !! and the diachronic file initialization !! Modification Sept 20,1995 (Lafore) coupling for the dry mass Md !! Modification Sept. 12, 1995 (J.-P. Pinty) add the initialization of !! the ECMWF radiation code !! Modification Sept. 13, 1995 (J.-P. Pinty) control the allocation of the !! arrays of MODD_GR_FIELD_n !! Modification Nove. 17, 1995 (J.Stein) control of the control !! !! March 01, 1996 (J. Stein) add the cloud fraction !! April 03, 1996 (J. Stein) unify the ISBA and TSZ0 cases !! Modification 13/12/95 (M. Georgelin) add the forcing variables in !! the call read_field, and their !! allocation. !! Mai 23, 1996 (J. Stein) allocate XSEA in the TSZ0 case !! June 11, 1996 (V. Masson) add XSILT and XLAKE of !! MODD_GR_FIELD_n !! August 7, 1996 (K. Suhre) add (re)initialization of !! chemistry !! Octo. 11, 1996 (J. Stein ) add XSRCT and XSRCM !! October 8, 1996 (J. Cuxart, E. Sanchez) Moist LES diagnostics !! and control on TKE initialization. !! Modification 19/12/96 (J.-P. Pinty) add the ice parameterization and !! the precipitation fields !! Modification 11/01/97 (J.-P. Pinty) add the deep convection !! Nov. 1, 1996 (V. Masson) Read the vertical grid kind !! Nov. 20, 1996 (V. Masson) control of convection calling time !! July 16, 1996 (J.P.Lafore) update of EXSEG file reading !! Oct. 08, 1996 (J.P.Lafore, V.Masson) !! MY_NAME and DAD_NAME reading and check !! Oct. 30, 1996 (J.P.Lafore) resolution ratio reading for nesting !! and Bikhardt interpolation coef. initialization !! Nov. 22, 1996 (J.P.Lafore) allocation of LS sources for nesting !! Feb. 26, 1997 (J.P.Lafore) allocation of "surfacic" LS fields !! March 10, 1997 (J.P.Lafore) forcing only for model 1 !! June 22, 1997 (J. Stein) add the absolute pressure !! July 09, 1997 (V. Masson) add directional z0 and SSO !! Aug. 18, 1997 (V. Masson) consistency between storage !! type and CCONF !! Dec. 22, 1997 (J. Stein) add the LS field spawning !! Jan. 24, 1998 (P.Bechtold) change MODD_FRC and MODD_DEEP_CONVECTION !! Dec. 24, 1997 (V.Masson) directional z0 parameters !! Aug. 13, 1998 (V. Ducrocq P Jabouille) // !! Mai. 26, 1998 (J. Stein) remove NXEND,NYEND !! Feb. 1, 1999 (J. Stein) compute the Bikhardt !! interpolation coeff. before the call to set_grid !! April 5, 1999 (V. Ducrocq) change the DXRATIO_ALL init. !! April 12, 1999 (J. Stein) cleaning + INI_SPAWN_LS !! Apr. 7, 1999 (P Jabouille) store the metric coefficients !! in modd_metrics_n !! Jui. 15,1999 (P Jabouille) split the routines in two parts !! Jan. 04,2000 (V. Masson) removes the TSZ0 case !! Apr. 15,2000 (P Jabouille) parallelization of grid nesting !! Aug. 20,2000 (J Stein ) tranpose XBFY !! Jui 01,2000 (F.solmon ) adapatation for patch approach !! Jun. 15,2000 (J.-P. Pinty) add C2R2 initialization !! Nov. 15,2000 (V.Masson) use of ini_modeln in prep_real_case !! Nov. 15,2000 (V.Masson) call of LES routines !! Nov. 15,2000 (V.Masson) aircraft and balloon initialization routines !! Jan. 22,2001 (D.Gazen) update_nsv set NSV_* var. for current model !! Mar. 04,2002 (V.Ducrocq) initialization to temporal series !! Mar. 15,2002 (F.Solmon) modification of ini_radiation interface !! Nov. 29,2002 (JP Pinty) add C3R5, ICE2, ICE4, ELEC !! Jan. 2004 (V.Masson) externalization of surface !! May 2006 Remove KEPS !! Apr. 2010 (M. Leriche) add pH for aqueous phase chemistry !! Jul. 2010 (M. Leriche) add Ice phase chemistry !! Oct. 2010 (J.Escobar) check if local domain not to small for NRIMX NRIMY !! Nov. 2010 (J.Escobar) PGI BUG , add SIZE(CSV) to init_ground routine !! Nov. 2009 (C. Barthe) add call to INI_ELEC_n !! Mar. 2010 (M. Chong) add small ions !! Apr. 2011 (M. Chong) correction of RESTART (ELEC) !! June 2011 (B.Aouizerats) Prognostic aerosols !! June 2011 (P.Aumond) Drag of the vegetation !! + Mean fields !! July 2013 (Bosseur & Filippi) Adds Forefire !! P. Tulet Nov 2014 accumulated moles of aqueous species that fall at the surface !! JAn. 2015 (F. Brosse) bug in allocate XACPRAQ !! Dec 2014 (C.Lac) : For reproducibility START/RESTA !! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1 !--------------------------------------------------------------------------------- ! !* 0. DECLARATIONS ! ------------ USE MODE_ll USE MODD_ARGSLIST_ll, ONLY : LIST_ll USE MODE_IO_ll USE MODE_FM USE MODE_FMREAD USE MODE_TYPE_ZDIFFU ! USE MODD_NSV USE MODD_PARAMETERS USE MODD_CST USE MODD_CONF USE MODD_DUST USE MODD_DYN USE MODD_DYNZD USE MODD_FRC USE MODD_REF USE MODD_SERIES, ONLY: LSERIES USE MODD_TIME USE MODD_TURB_CLOUD, ONLY: NMODEL_CLOUD, CTURBLEN_CLOUD,XCEI USE MODD_NESTING USE MODD_PASPOL USE MODD_DRAGTREE USE MODD_METRICS_n USE MODD_DYN_n USE MODD_DYNZD_n USE MODD_FIELD_n USE MODD_PAST_FIELD_n USE MODD_MEAN_FIELD_n USE MODD_MEAN_FIELD USE MODD_ADV_n USE MODD_LSFIELD_n USE MODD_GRID_n USE MODD_GRID, ONLY: XLONORI,XLATORI USE MODD_TIME_n USE MODD_REF_n USE MODD_FRC_n USE MODD_CURVCOR_n USE MODD_DIM_n USE MODD_BUDGET USE MODD_RADIATIONS_n USE MODD_SHADOWS_n USE MODD_PARAM_RAD_n, ONLY : CLW, CAER, CAOP USE MODD_VAR_ll, ONLY : IP, NPROC ! USE MODD_STAND_ATM, ONLY : XSTROATM, XSMLSATM, XSMLWATM, XSPOSATM, XSPOWATM USE MODD_CH_MNHC_n, ONLY : LUSECHEM, LUSECHAQ, LUSECHIC, LCH_INIT_FIELD, & CCHEM_INPUT_FILE, LCH_CONV_LINOX, & XCH_TUV_DOBNEW, LCH_PH USE MODD_CH_PH_n USE MODD_CH_AEROSOL, ONLY : LORILAM USE MODD_CH_AERO_n, ONLY : XSOLORG,XMI USE MODD_PARAM_KAFR_n USE MODD_PARAM_MFSHALL_n USE MODD_DEEP_CONVECTION_n USE MODD_OUT_n USE MODD_BIKHARDT_n USE MODD_NUDGING_n, ONLY : LNUDGING USE MODD_DIAG_FLAG, ONLY : LCHEMDIAG USE MODD_CLOUD_MF_n USE MODD_NSV ! USE MODD_ELEC_n, ONLY : XCION_POS_FW, XCION_NEG_FW USE MODD_LUNIT_n USE MODD_CONF_n USE MODD_GET_n USE MODD_TURB_n USE MODD_CTURB USE MODD_LBC_n USE MODD_PASPOL_n ! ! USE MODI_GATHER_ll USE MODI_INI_BUDGET USE MODI_INI_SW_SETUP USE MODI_SET_GRID USE MODI_METRICS USE MODI_UPDATE_METRICS USE MODI_READ_FIELD USE MODI_SET_REF USE MODI_INI_DYNAMICS USE MODI_INI_TKE_EPS USE MODI_SET_DIRCOS USE MODI_INI_CPL USE MODI_INI_RADIATIONS USE MODI_INI_RADIATIONS_ECMWF USE MODI_CH_INIT_FIELD_n USE MODI_INI_DEEP_CONVECTION USE MODI_INI_BIKHARDT_n USE MODI_INI_ONE_WAY_n USE MODI_GET_SIZEX_LB USE MODI_GET_SIZEY_LB USE MODI_INI_SPAWN_LS_n USE MODI_INI_AIRCRAFT_BALLOON USE MODI_UPDATE_NSV USE MODI_INI_ELEC_n USE MODI_INI_MICRO_n USE MODI_INI_LG USE MODI_SURF_SOLAR_GEOM USE MODI_SUNPOS_n USE MODI_INI_SURF_RAD USE MODI_MNHGET_SURF_PARAM_n USE MODI_MNHREAD_ZS_DUMMY_n USE MODI_INIT_GROUND_PARAM_n USE MODI_INI_AIRCRAFT_BALLOON USE MODI_INI_SURFSTATION_n USE MODI_INI_POSPROFILER_n USE MODI_CH_INIT_JVALUES USE MODI_CH_AER_MOD_INIT ! USE MODD_PARAM_n USE MODE_MODELN_HANDLER USE MODE_SPLITTINGZ_ll , ONLY : GET_DIM_EXTZ_ll USE MODI_TEMPORAL_DIST USE MODI_INI_AEROSET1 USE MODI_INI_AEROSET2 USE MODI_INI_AEROSET3 USE MODI_INI_AEROSET4 USE MODI_INI_AEROSET5 USE MODI_INI_AEROSET6 ! #ifdef MNH_FOREFIRE USE MODD_FOREFIRE USE MODD_FOREFIRE_n USE MODI_INIT_FOREFIRE_n #endif USE MODI_INI_LES_N USE MODI_GOTO_SURFEX USE MODI_INI_SERIES_N ! Eddy fluxes ! Ajout PP USE MODD_DEF_EDDY_FLUX_n ! for VT and WT fluxes USE MODD_DEF_EDDYUV_FLUX_n ! FOR UV USE MODD_LATZ_EDFLX USE MODD_ADVFRC_n USE MODD_RELFRC_n USE MODD_2D_FRC ! USE MODE_MPPDB USE MODD_IBM_PARAM_n ! IMPLICIT NONE ! !* 0.1 declarations of arguments ! ! INTEGER, INTENT(IN) :: KMI ! Model Index CHARACTER (LEN=*), INTENT(IN) :: HLUOUT ! name for output-listing ! of nested models CHARACTER (LEN=28), INTENT(IN) :: HINIFILE ! name of ! the initial file CHARACTER (LEN=28), INTENT(IN) :: HINIFILEPGD ! !* 0.2 declarations of local variables ! INTEGER :: JSV ! Loop index INTEGER :: IRESP ! Return code of FM routines INTEGER :: ININAR ! File management variable INTEGER :: IMASDEV ! version of MESOHN in the input file INTEGER :: ILUOUT ! Logical unit number of output-listing CHARACTER(LEN=2) :: YDIR ! Type of the data field in LFIFM file INTEGER :: IGRID ! C-grid indicator in LFIFM file INTEGER :: ILENCH ! Length of comment string in LFIFM file CHARACTER (LEN=100) :: YCOMMENT!comment string in LFIFM file CHARACTER (LEN=16) :: YRECFM ! Name of the desired field in LFIFM file INTEGER :: IIU ! Upper dimension in x direction (local) INTEGER :: IJU ! Upper dimension in y direction (local) INTEGER :: IIU_ll ! Upper dimension in x direction (global) INTEGER :: IJU_ll ! Upper dimension in y direction (global) INTEGER :: IKU ! Upper dimension in z direction REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZJ ! Jacobian LOGICAL :: GINIDCONV ! logical switch for the deep convection ! initialization LOGICAL :: GINIRAD ! logical switch for the radiation ! initialization ! ! TYPE(LIST_ll), POINTER :: TZINITHALO2D_ll ! pointer for the list of 2D fields ! which must be communicated in INIT TYPE(LIST_ll), POINTER :: TZINITHALO3D_ll ! pointer for the list of 3D fields ! which must be communicated in INIT ! INTEGER :: IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU ! dimensions of the INTEGER :: IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2 ! West-east LB arrays INTEGER :: IISIZEYF,IJSIZEYF,IISIZEYFV,IJSIZEYFV ! dimensions of the INTEGER :: IISIZEY4,IJSIZEY4,IISIZEY2,IJSIZEY2 ! North-south LB arrays INTEGER :: IINFO_ll ! Return code of //routines INTEGER :: IIY,IJY INTEGER :: IIU_B,IJU_B INTEGER :: IIU_SXP2_YP1_Z_ll,IJU_SXP2_YP1_Z_ll,IKU_SXP2_YP1_Z_ll ! REAL, DIMENSION(:,:), ALLOCATABLE :: ZCO2 ! CO2 concentration near the surface REAL, DIMENSION(:,:), ALLOCATABLE :: ZSEA ! sea fraction REAL, DIMENSION(:,:), ALLOCATABLE :: ZTOWN ! town fraction REAL, DIMENSION(:,:), ALLOCATABLE :: ZBARE ! bare soil fraction ! REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZDIR_ALB ! direct albedo REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSCA_ALB ! diffuse albedo REAL, DIMENSION(:,:), ALLOCATABLE :: ZEMIS ! emissivity REAL, DIMENSION(:,:), ALLOCATABLE :: ZTSRAD ! surface temperature !------------------------------------------ ! Dummy pointers needed to correct an ifort Bug REAL, DIMENSION(:), POINTER :: DPTR_XZHAT REAL, DIMENSION(:), POINTER :: DPTR_XBMX1,DPTR_XBMX2,DPTR_XBMX3,DPTR_XBMX4 REAL, DIMENSION(:), POINTER :: DPTR_XBMY1,DPTR_XBMY2,DPTR_XBMY3,DPTR_XBMY4 REAL, DIMENSION(:), POINTER :: DPTR_XBFX1,DPTR_XBFX2,DPTR_XBFX3,DPTR_XBFX4 REAL, DIMENSION(:), POINTER :: DPTR_XBFY1,DPTR_XBFY2,DPTR_XBFY3,DPTR_XBFY4 CHARACTER(LEN=4), DIMENSION(:), POINTER :: DPTR_CLBCX,DPTR_CLBCY INTEGER, DIMENSION(:,:,:), POINTER :: DPTR_NKLIN_LBXU,DPTR_NKLIN_LBYU,DPTR_NKLIN_LBXV,DPTR_NKLIN_LBYV INTEGER, DIMENSION(:,:,:), POINTER :: DPTR_NKLIN_LBXW,DPTR_NKLIN_LBYW,DPTR_NKLIN_LBXM,DPTR_NKLIN_LBYM REAL, DIMENSION(:,:,:), POINTER :: DPTR_XCOEFLIN_LBXU,DPTR_XCOEFLIN_LBYU REAL, DIMENSION(:,:,:), POINTER :: DPTR_XCOEFLIN_LBXV,DPTR_XCOEFLIN_LBYV REAL, DIMENSION(:,:,:), POINTER :: DPTR_XCOEFLIN_LBXW,DPTR_XCOEFLIN_LBYW REAL, DIMENSION(:,:,:), POINTER :: DPTR_XCOEFLIN_LBXM,DPTR_XCOEFLIN_LBYM REAL, DIMENSION(:,:,:), POINTER :: DPTR_XLBXUM,DPTR_XLBYUM,DPTR_XLBXVM,DPTR_XLBYVM REAL, DIMENSION(:,:,:), POINTER :: DPTR_XLBXWM,DPTR_XLBYWM,DPTR_XLBXTHM,DPTR_XLBYTHM REAL, DIMENSION(:,:,:), POINTER :: DPTR_XLBXTKEM,DPTR_XLBYTKEM REAL, DIMENSION(:,:,:,:), POINTER :: DPTR_XLBXSVM,DPTR_XLBYSVM REAL, DIMENSION(:,:,:,:), POINTER :: DPTR_XLBXRM,DPTR_XLBYRM REAL, DIMENSION(:,:,:), POINTER :: DPTR_XZZ REAL, DIMENSION(:,:,:), POINTER :: DPTR_XLSUM,DPTR_XLSVM,DPTR_XLSWM,DPTR_XLSTHM,DPTR_XLSRVM REAL, DIMENSION(:,:,:), POINTER :: DPTR_XLSUS,DPTR_XLSVS,DPTR_XLSWS,DPTR_XLSTHS,DPTR_XLSRVS ! !------------------------------------------------------------------------------- ! !* 0. PROLOGUE ! -------- ! NULLIFY(TZINITHALO2D_ll) NULLIFY(TZINITHALO3D_ll) ! !* 1. RETRIEVE LOGICAL UNIT NUMBER ! ---------------------------- ! CALL FMLOOK_ll(HLUOUT,HLUOUT,ILUOUT,IRESP) CLUOUT = HLUOUT CINIFILE=HINIFILE CINIFILEPGD=HINIFILEPGD ! CALL FMREAD(HINIFILE,'MASDEV',HLUOUT,'--',IMASDEV,IGRID,ILENCH,YCOMMENT,IRESP) !------------------------------------------------------------------------------- ! !* 2. END OF READING ! -------------- !* 2.1 Read number of forcing fields ! IF (LFORCING) THEN ! Retrieve the number of time-dependent forcings. YRECFM='FRC' YDIR='--' CALL FMREAD(HINIFILE,YRECFM,HLUOUT,YDIR,NFRC,IGRID,ILENCH,YCOMMENT,IRESP) IF ( (IRESP /= 0) .OR. (NFRC <=0) ) THEN WRITE(ILUOUT,'(A/A)') & "INI_MODEL_n ERROR: you want to read forcing variables from FMfile", & " but no fields have been found by FMREAD" !callabortstop CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP) CALL ABORT STOP 1 END IF END IF ! ! Modif PP for time evolving adv forcing IF ( L2D_ADV_FRC ) THEN ! Retrieve the number of time-dependent forcings. WRITE(ILUOUT,FMT=*) "INI_MODEL_n ENTER ADV_FORCING" YRECFM='NADVFRC1' YDIR='--' CALL FMREAD(HINIFILE,YRECFM,HLUOUT,YDIR,NADVFRC,IGRID,ILENCH,YCOMMENT,IRESP) IF ( (IRESP /= 0) .OR. (NADVFRC <=0) ) THEN WRITE(ILUOUT,'(A/A)') & "INI_MODELn ERROR: you want to read forcing ADV variables from FMfile", & " but no fields have been found by FMREAD" !callabortstop CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP) CALL ABORT STOP 1 END IF WRITE(ILUOUT,*) 'NADVFRC = ', NADVFRC END IF ! IF ( L2D_REL_FRC ) THEN ! Retrieve the number of time-dependent forcings. WRITE(ILUOUT,FMT=*) "INI_MODEL_n ENTER REL_FORCING" YRECFM='NRELFRC1' YDIR='--' CALL FMREAD(HINIFILE,YRECFM,HLUOUT,YDIR,NRELFRC,IGRID,ILENCH,YCOMMENT,IRESP) IF ( (IRESP /= 0) .OR. (NRELFRC <=0) ) THEN WRITE(ILUOUT,'(A/A)') & "INI_MODELn ERROR: you want to read forcing REL variables from FMfile", & " but no fields have been found by FMREAD" !callabortstop CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP) CALL ABORT STOP 1 END IF WRITE(ILUOUT,*) 'NRELFRC = ', NRELFRC END IF !* 2.2 Checks the position of vertical absorbing layer ! IKU=NKMAX+2*JPVEXT ! YRECFM = 'ZHAT' ALLOCATE(XZHAT(IKU)) YDIR='--' CALL FMREAD(HINIFILE,YRECFM,HLUOUT,YDIR,XZHAT,IGRID,ILENCH,YCOMMENT,IRESP) IF (XALZBOT>=XZHAT(IKU) .AND. LVE_RELAX) THEN WRITE(ILUOUT,FMT=*) "INI_MODEL_n ERROR: you want to use vertical relaxation" WRITE(ILUOUT,FMT=*) " but bottom of layer XALZBOT(",XALZBOT,")" WRITE(ILUOUT,FMT=*) " is upper than model top (",XZHAT(IKU),")" !callabortstop CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP) CALL ABORT STOP END IF IF (LVE_RELAX) THEN IF (XALZBOT>=XZHAT(IKU-4) ) THEN WRITE(ILUOUT,FMT=*) "INI_MODEL_n WARNING: you want to use vertical relaxation" WRITE(ILUOUT,FMT=*) " but the layer defined by XALZBOT(",XALZBOT,")" WRITE(ILUOUT,FMT=*) " contains less than 5 model levels" END IF END IF DEALLOCATE(XZHAT) ! !* 2.3 Compute sizes of arrays of the extended sub-domain ! CALL GET_DIM_EXT_ll('B',IIU,IJU) IIU_ll=NIMAX_ll + 2 * JPHEXT IJU_ll=NJMAX_ll + 2 * JPHEXT ! initialize NIMAX and NJMAX for not updated versions regarding the parallelism ! spawning,... CALL GET_DIM_PHYS_ll('B',NIMAX,NJMAX) ! NRR=0 NRRL=0 NRRI=0 IF (CGETRVT /= 'SKIP' ) THEN NRR = NRR+1 END IF IF (CGETRCT /= 'SKIP' ) THEN NRR = NRR+1 NRRL = NRRL+1 END IF IF (CGETRRT /= 'SKIP' ) THEN NRR = NRR+1 NRRL = NRRL+1 END IF IF (CGETRIT /= 'SKIP' ) THEN NRR = NRR+1 NRRI = NRRI+1 END IF IF (CGETRST /= 'SKIP' ) THEN NRR = NRR+1 NRRI = NRRI+1 END IF IF (CGETRGT /= 'SKIP' ) THEN NRR = NRR+1 NRRI = NRRI+1 END IF IF (CGETRHT /= 'SKIP' ) THEN NRR = NRR+1 NRRI = NRRI+1 END IF IF (NVERB >= 5) THEN WRITE (UNIT=ILUOUT,FMT='("THERE ARE ",I2," WATER VARIABLES")') NRR WRITE (UNIT=ILUOUT,FMT='("THERE ARE ",I2," LIQUID VARIABLES")') NRRL WRITE (UNIT=ILUOUT,FMT='("THERE ARE ",I2," SOLID VARIABLES")') NRRI END IF ! !* 2.3 Update NSV and floating indices for the current model ! ! CALL UPDATE_NSV(KMI) ! !------------------------------------------------------------------------------- ! !* 3. ALLOCATE MEMORY ! ----------------- ! ! * Module IBM IF (LIBM) ALLOCATE(XRHODJ2(IIU,IJU,IKU,4)) ; XRHODJ2 = 0.0 IF (LIBM) ALLOCATE(XIBM_LS(IIU,IJU,IKU,7)) ; XIBM_LS = 0.0 IF (LIBM) ALLOCATE(XIBM_PT(IIU,IJU,IKU,15)) ; XIBM_PT = 0.0 IF (LIBM) ALLOCATE(XIBM_BU(IIU,IJU,5)) ; XIBM_BU = 0.0 IF (LIBM) ALLOCATE(XIBM_GT(IIU,IJU,IKU)) ; XIBM_GT = 0.0 IF (LIBM) ALLOCATE(XIBM_SV1(IIU,IJU)) ; XIBM_SV1 = 0.0 IF (LIBM) ALLOCATE(XIBM_SV2(IIU,IJU)) ; XIBM_SV2 = 0.0 IF (LIBM) ALLOCATE(XIBM_SV3(IIU,IJU)) ; XIBM_SV3 = 0.0 IF (LIBM) ALLOCATE(XIBM_SV4(IIU,IJU)) ; XIBM_SV4 = 0.0 IF (LIBM) ALLOCATE(XIBM_SV5(IIU,IJU)) ; XIBM_SV5 = 0.0 IF (LIBM) ALLOCATE(XIBM_SV6(IIU,IJU)) ; XIBM_SV6 = 0.0 IF (LIBM) ALLOCATE(XRECYCL_IND(IIU,IJU,2)) ; XRECYCL_IND = 0.0 IF (LIBM) ALLOCATE(NSAV_RECYCL1(8,NPROC)) ; NSAV_RECYCL1 = 0 IF (LIBM) ALLOCATE(NSAV_RECYCL2(8,NPROC)) ; NSAV_RECYCL2 = 0 ! !* 3.1 Module MODD_FIELD_n ! IF (LMEAN_FIELD) THEN ! MEAN_COUNT = 0 ! ALLOCATE(XUM_MEAN(IIU,IJU,IKU)) ; XUM_MEAN = 0.0 ALLOCATE(XVM_MEAN(IIU,IJU,IKU)) ; XVM_MEAN = 0.0 ALLOCATE(XWM_MEAN(IIU,IJU,IKU)) ; XWM_MEAN = 0.0 ALLOCATE(XTHM_MEAN(IIU,IJU,IKU)) ; XTHM_MEAN = 0.0 ALLOCATE(XTEMPM_MEAN(IIU,IJU,IKU)) ; XTEMPM_MEAN = 0.0 ALLOCATE(XTKEM_MEAN(IIU,IJU,IKU)) ; XTKEM_MEAN = 0.0 ALLOCATE(XPABSM_MEAN(IIU,IJU,IKU)) ; XPABSM_MEAN = 0.0 ! ALLOCATE(XU2_MEAN(IIU,IJU,IKU)) ; XU2_MEAN = 0.0 ALLOCATE(XV2_MEAN(IIU,IJU,IKU)) ; XV2_MEAN = 0.0 ALLOCATE(XW2_MEAN(IIU,IJU,IKU)) ; XW2_MEAN = 0.0 ALLOCATE(XTH2_MEAN(IIU,IJU,IKU)) ; XTH2_MEAN = 0.0 ALLOCATE(XTEMP2_MEAN(IIU,IJU,IKU)) ; XTEMP2_MEAN = 0.0 ALLOCATE(XPABS2_MEAN(IIU,IJU,IKU)) ; XPABS2_MEAN = 0.0 ! END IF ! IF (CUVW_ADV_SCHEME(1:3)=='CEN') THEN ALLOCATE(XUM(IIU,IJU,IKU)) ALLOCATE(XVM(IIU,IJU,IKU)) ALLOCATE(XWM(IIU,IJU,IKU)) ALLOCATE(XDUM(IIU,IJU,IKU)) ALLOCATE(XDVM(IIU,IJU,IKU)) ALLOCATE(XDWM(IIU,IJU,IKU)) IF (CCONF == 'START') THEN XUM = 0.0 XVM = 0.0 XWM = 0.0 XDUM = 0.0 XDVM = 0.0 XDWM = 0.0 END IF END IF ! ALLOCATE(XUT(IIU,IJU,IKU)) ; XUT = 0.0 ALLOCATE(XVT(IIU,IJU,IKU)) ; XVT = 0.0 ALLOCATE(XWT(IIU,IJU,IKU)) ; XWT = 0.0 ALLOCATE(XTHT(IIU,IJU,IKU)) ; XTHT = 0.0 ALLOCATE(XRUS(IIU,IJU,IKU)) ; XRUS = 0.0 ALLOCATE(XRVS(IIU,IJU,IKU)) ; XRVS = 0.0 ALLOCATE(XRWS(IIU,IJU,IKU)) ; XRWS = 0.0 ALLOCATE(XRUS_PRES(IIU,IJU,IKU)); XRUS_PRES = 0.0 ALLOCATE(XRVS_PRES(IIU,IJU,IKU)); XRVS_PRES = 0.0 ALLOCATE(XRWS_PRES(IIU,IJU,IKU)); XRWS_PRES = 0.0 ALLOCATE(XRTHS(IIU,IJU,IKU)) ; XRTHS = 0.0 ALLOCATE(XRTHS_CLD(IIU,IJU,IKU)); XRTHS_CLD = 0.0 IF (CTURB /= 'NONE') THEN ALLOCATE(XTKET(IIU,IJU,IKU)) ALLOCATE(XRTKES(IIU,IJU,IKU)) ALLOCATE(XRTKEMS(IIU,IJU,IKU)); XRTKEMS = 0.0 ALLOCATE(XWTHVMF(IIU,IJU,IKU)) ALLOCATE(XDYP(IIU,IJU,IKU)) ALLOCATE(XTHP(IIU,IJU,IKU)) ALLOCATE(XTR(IIU,IJU,IKU)) ALLOCATE(XDISS(IIU,IJU,IKU)) ALLOCATE(XLEM(IIU,IJU,IKU)) XTKEMIN=XKEMIN ELSE ALLOCATE(XTKET(0,0,0)) ALLOCATE(XRTKES(0,0,0)) ALLOCATE(XWTHVMF(0,0,0)) ALLOCATE(XDYP(0,0,0)) ALLOCATE(XTHP(0,0,0)) ALLOCATE(XTR(0,0,0)) ALLOCATE(XDISS(0,0,0)) ALLOCATE(XLEM(0,0,0)) END IF IF (CTOM == 'TM06') THEN ALLOCATE(XBL_DEPTH(IIU,IJU)) ELSE ALLOCATE(XBL_DEPTH(0,0)) END IF IF (LRMC01) THEN ALLOCATE(XSBL_DEPTH(IIU,IJU)) ELSE ALLOCATE(XSBL_DEPTH(0,0)) END IF ! ALLOCATE(XPABSM(IIU,IJU,IKU)) ; XPABSM = 0.0 ALLOCATE(XPABST(IIU,IJU,IKU)) ; XPABST = 0.0 ! ALLOCATE(XRT(IIU,IJU,IKU,NRR)) ; XRT = 0.0 ALLOCATE(XRRS(IIU,IJU,IKU,NRR)) ; XRRS = 0.0 ALLOCATE(XRRS_CLD(IIU,IJU,IKU,NRR)); XRRS_CLD = 0.0 ! IF (CTURB /= 'NONE' .AND. NRR>1) THEN ALLOCATE(XSRCT(IIU,IJU,IKU)) ALLOCATE(XSIGS(IIU,IJU,IKU)) ELSE ALLOCATE(XSRCT(0,0,0)) ALLOCATE(XSIGS(0,0,0)) END IF ! IF (NRR>1) THEN ALLOCATE(XCLDFR(IIU,IJU,IKU)) ELSE ALLOCATE(XCLDFR(0,0,0)) END IF ! ALLOCATE(XSVT(IIU,IJU,IKU,NSV)) ; XSVT = 0. ALLOCATE(XRSVS(IIU,IJU,IKU,NSV)); XRSVS = 0. ALLOCATE(XRSVS_CLD(IIU,IJU,IKU,NSV)); XRSVS_CLD = 0.0 ! IF (LPASPOL) THEN ALLOCATE( XATC(IIU,IJU,IKU,NSV_PP) ) XATC = 0. ELSE ALLOCATE( XATC(0,0,0,0)) XATC = 0. END IF ! !* 3.2 Module MODD_GRID_n and MODD_METRICS_n ! IF (LCARTESIAN) THEN ALLOCATE(XLON(0,0)) ALLOCATE(XLAT(0,0)) ALLOCATE(XMAP(0,0)) ELSE ALLOCATE(XLON(IIU,IJU)) ALLOCATE(XLAT(IIU,IJU)) ALLOCATE(XMAP(IIU,IJU)) END IF ALLOCATE(XXHAT(IIU)) ALLOCATE(XDXHAT(IIU)) ALLOCATE(XYHAT(IJU)) ALLOCATE(XDYHAT(IJU)) ALLOCATE(XZS(IIU,IJU)) ALLOCATE(XZSMT(IIU,IJU)) ALLOCATE(XZZ(IIU,IJU,IKU)) ALLOCATE(XZHAT(IKU)) ALLOCATE(XDIRCOSZW(IIU,IJU)) ALLOCATE(XDIRCOSXW(IIU,IJU)) ALLOCATE(XDIRCOSYW(IIU,IJU)) ALLOCATE(XCOSSLOPE(IIU,IJU)) ALLOCATE(XSINSLOPE(IIU,IJU)) ! ALLOCATE(XDXX(IIU,IJU,IKU)) ALLOCATE(XDYY(IIU,IJU,IKU)) ALLOCATE(XDZX(IIU,IJU,IKU)) ALLOCATE(XDZY(IIU,IJU,IKU)) ALLOCATE(XDZZ(IIU,IJU,IKU)) ! !* 3.3 Modules MODD_REF and MODD_REF_n ! IF (KMI == 1) THEN ALLOCATE(XRHODREFZ(IKU),XTHVREFZ(IKU)) END IF ALLOCATE(XRHODREF(IIU,IJU,IKU)) ALLOCATE(XTHVREF(IIU,IJU,IKU)) ALLOCATE(XEXNREF(IIU,IJU,IKU)) ALLOCATE(XRHODJ(IIU,IJU,IKU)) IF (CEQNSYS=='DUR' .AND. LUSERV) THEN ALLOCATE(XRVREF(IIU,IJU,IKU)) ELSE ALLOCATE(XRVREF(0,0,0)) END IF ! !* 3.4 Module MODD_CURVCOR_n ! IF (LTHINSHELL) THEN ALLOCATE(XCORIOX(0,0)) ALLOCATE(XCORIOY(0,0)) ELSE ALLOCATE(XCORIOX(IIU,IJU)) ALLOCATE(XCORIOY(IIU,IJU)) END IF ALLOCATE(XCORIOZ(IIU,IJU)) IF (LCARTESIAN) THEN ALLOCATE(XCURVX(0,0)) ALLOCATE(XCURVY(0,0)) ELSE ALLOCATE(XCURVX(IIU,IJU)) ALLOCATE(XCURVY(IIU,IJU)) END IF ! !* 3.5 Module MODD_DYN_n ! CALL GET_DIM_EXT_ll('Y',IIY,IJY) IF (L2D) THEN ALLOCATE(XBFY(IIY,IJY,IKU)) ELSE ALLOCATE(XBFY(IJY,IIY,IKU)) ! transposition needed by the optimisition of the ! FFT solver END IF CALL GET_DIM_EXT_ll('B',IIU_B,IJU_B) ALLOCATE(XBFB(IIU_B,IJU_B,IKU)) CALL GET_DIM_EXTZ_ll('SXP2_YP1_Z',IIU_SXP2_YP1_Z_ll,IJU_SXP2_YP1_Z_ll,IKU_SXP2_YP1_Z_ll) ALLOCATE(XBF_SXP2_YP1_Z(IIU_SXP2_YP1_Z_ll,IJU_SXP2_YP1_Z_ll,IKU_SXP2_YP1_Z_ll)) ALLOCATE(XAF(IKU),XCF(IKU)) ALLOCATE(XTRIGSX(3*IIU_ll)) ALLOCATE(XTRIGSY(3*IJU_ll)) ALLOCATE(XRHOM(IKU)) ALLOCATE(XALK(IKU)) ALLOCATE(XALKW(IKU)) ALLOCATE(XALKBAS(IKU)) ALLOCATE(XALKWBAS(IKU)) ! IF ( LHORELAX_UVWTH .OR. LHORELAX_RV .OR. & LHORELAX_RC .OR. LHORELAX_RR .OR. LHORELAX_RI .OR. LHORELAX_RS .OR. & LHORELAX_RG .OR. LHORELAX_RH .OR. LHORELAX_TKE .OR. & ANY(LHORELAX_SV) ) THEN ALLOCATE(XKURELAX(IIU,IJU)) ALLOCATE(XKVRELAX(IIU,IJU)) ALLOCATE(XKWRELAX(IIU,IJU)) ALLOCATE(LMASK_RELAX(IIU,IJU)) ELSE ALLOCATE(XKURELAX(0,0)) ALLOCATE(XKVRELAX(0,0)) ALLOCATE(XKWRELAX(0,0)) ALLOCATE(LMASK_RELAX(0,0)) END IF ! ! Additional fields for truly horizontal diffusion (Module MODD_DYNZD$n) IF (LZDIFFU) THEN CALL INIT_TYPE_ZDIFFU_HALO2(XZDIFFU_HALO2) ELSE CALL INIT_TYPE_ZDIFFU_HALO2(XZDIFFU_HALO2,0) ENDIF ! !* 3.6 Larger Scale variables (Module MODD_LSFIELD$n) ! ! ! upper relaxation part ! ALLOCATE(XLSUM(IIU,IJU,IKU)) ; XLSUM = 0.0 ALLOCATE(XLSVM(IIU,IJU,IKU)) ; XLSVM = 0.0 ALLOCATE(XLSWM(IIU,IJU,IKU)) ; XLSWM = 0.0 ALLOCATE(XLSTHM(IIU,IJU,IKU)) ; XLSTHM = 0.0 IF ( NRR > 0 ) THEN ALLOCATE(XLSRVM(IIU,IJU,IKU)) ; XLSRVM = 0.0 ELSE ALLOCATE(XLSRVM(0,0,0)) END IF ! ! lbc part ! IF ( L1D) THEN ! 1D case ! NSIZELBX_ll=0 NSIZELBXU_ll=0 NSIZELBY_ll=0 NSIZELBYV_ll=0 NSIZELBXTKE_ll=0 NSIZELBXR_ll=0 NSIZELBXSV_ll=0 NSIZELBYTKE_ll=0 NSIZELBYR_ll=0 NSIZELBYSV_ll=0 ALLOCATE(XLBXUM(0,0,0)) ALLOCATE(XLBYUM(0,0,0)) ALLOCATE(XLBXVM(0,0,0)) ALLOCATE(XLBYVM(0,0,0)) ALLOCATE(XLBXWM(0,0,0)) ALLOCATE(XLBYWM(0,0,0)) ALLOCATE(XLBXTHM(0,0,0)) ALLOCATE(XLBYTHM(0,0,0)) ALLOCATE(XLBXTKEM(0,0,0)) ALLOCATE(XLBYTKEM(0,0,0)) ALLOCATE(XLBXRM(0,0,0,0)) ALLOCATE(XLBYRM(0,0,0,0)) ALLOCATE(XLBXSVM(0,0,0,0)) ALLOCATE(XLBYSVM(0,0,0,0)) ! ELSEIF( L2D ) THEN ! 2D case ! NSIZELBY_ll=0 NSIZELBYV_ll=0 NSIZELBYTKE_ll=0 NSIZELBYR_ll=0 NSIZELBYSV_ll=0 ALLOCATE(XLBYUM(0,0,0)) ALLOCATE(XLBYVM(0,0,0)) ALLOCATE(XLBYWM(0,0,0)) ALLOCATE(XLBYTHM(0,0,0)) ALLOCATE(XLBYTKEM(0,0,0)) ALLOCATE(XLBYRM(0,0,0,0)) ALLOCATE(XLBYSVM(0,0,0,0)) ! CALL GET_SIZEX_LB(HLUOUT,NIMAX_ll,NJMAX_ll,NRIMX, & IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU, & IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2) ! IF ( LHORELAX_UVWTH ) THEN NSIZELBX_ll=2*NRIMX+2*JPHEXT NSIZELBXU_ll=2*NRIMX+2*JPHEXT ALLOCATE(XLBXUM(IISIZEXFU,IJSIZEXFU,IKU)) ALLOCATE(XLBXVM(IISIZEXF,IJSIZEXF,IKU)) ALLOCATE(XLBXWM(IISIZEXF,IJSIZEXF,IKU)) ALLOCATE(XLBXTHM(IISIZEXF,IJSIZEXF,IKU)) ELSE NSIZELBX_ll=2*JPHEXT ! 2 NSIZELBXU_ll=2*(JPHEXT+1) ! 4 ALLOCATE(XLBXUM(IISIZEX4,IJSIZEX4,IKU)) ALLOCATE(XLBXVM(IISIZEX2,IJSIZEX2,IKU)) ALLOCATE(XLBXWM(IISIZEX2,IJSIZEX2,IKU)) ALLOCATE(XLBXTHM(IISIZEX2,IJSIZEX2,IKU)) END IF ! IF (CTURB /= 'NONE') THEN IF ( LHORELAX_TKE) THEN NSIZELBXTKE_ll=2* NRIMX+2*JPHEXT ALLOCATE(XLBXTKEM(IISIZEXF,IJSIZEXF,IKU)) ELSE NSIZELBXTKE_ll=2*JPHEXT ! 2 ALLOCATE(XLBXTKEM(IISIZEX2,IJSIZEX2,IKU)) END IF ELSE NSIZELBXTKE_ll=0 ALLOCATE(XLBXTKEM(0,0,0)) END IF ! IF ( NRR > 0 ) THEN IF (LHORELAX_RV .OR. LHORELAX_RC .OR. LHORELAX_RR .OR. LHORELAX_RI & .OR. LHORELAX_RS .OR. LHORELAX_RG .OR. LHORELAX_RH & ) THEN NSIZELBXR_ll=2* NRIMX+2*JPHEXT ALLOCATE(XLBXRM(IISIZEXF,IJSIZEXF,IKU,NRR)) ELSE NSIZELBXR_ll=2*JPHEXT ! 2 ALLOCATE(XLBXRM(IISIZEX2,IJSIZEX2,IKU,NRR)) ENDIF ELSE NSIZELBXR_ll=0 ALLOCATE(XLBXRM(0,0,0,0)) END IF ! IF ( NSV > 0 ) THEN IF ( ANY( LHORELAX_SV(:)) ) THEN NSIZELBXSV_ll=2* NRIMX+2*JPHEXT ALLOCATE(XLBXSVM(IISIZEXF,IJSIZEXF,IKU,NSV)) ELSE NSIZELBXSV_ll=2*JPHEXT ! 2 ALLOCATE(XLBXSVM(IISIZEX2,IJSIZEX2,IKU,NSV)) END IF ELSE NSIZELBXSV_ll=0 ALLOCATE(XLBXSVM(0,0,0,0)) END IF ! ELSE ! 3D case ! ! CALL GET_SIZEX_LB(HLUOUT,NIMAX_ll,NJMAX_ll,NRIMX, & IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU, & IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2) CALL GET_SIZEY_LB(HLUOUT,NIMAX_ll,NJMAX_ll,NRIMY, & IISIZEYF,IJSIZEYF,IISIZEYFV,IJSIZEYFV, & IISIZEY4,IJSIZEY4,IISIZEY2,IJSIZEY2) ! ! check if local domain not to small for NRIMX NRIMY ! IF ( CLBCX(1) /= 'CYCL' ) THEN IF ( NRIMX+2*JPHEXT .GE. IIU ) THEN WRITE(*,'(A,I8,A/A,2I8,/A)') "Processor=", IP-1, & " :: INI_MODEL_n ERROR: ( NRIMX+2*JPHEXT >= IIU ) ", & " Local domain to small for relaxation NRIMX+2*JPHEXT,IIU ", & NRIMX+2*JPHEXT,IIU ,& " change relaxation parameters or number of processors " !callabortstop CALL ABORT STOP END IF END IF IF ( CLBCY(1) /= 'CYCL' ) THEN IF ( NRIMY+2*JPHEXT .GE. IJU ) THEN WRITE(*,'(A,I8,A/A,2I8,/A)') "Processor=", IP-1, & " :: INI_MODEL_n ERROR: ( NRIMY+2*JPHEXT >= IJU ) ", & " Local domain to small for relaxation NRIMY+2*JPHEXT,IJU ", & NRIMY+2*JPHEXT,IJU ,& " change relaxation parameters or number of processors " !callabortstop CALL ABORT STOP END IF END IF IF ( LHORELAX_UVWTH ) THEN NSIZELBX_ll=2*NRIMX+2*JPHEXT NSIZELBXU_ll=2*NRIMX+2*JPHEXT NSIZELBY_ll=2*NRIMY+2*JPHEXT NSIZELBYV_ll=2*NRIMY+2*JPHEXT ALLOCATE(XLBXUM(IISIZEXFU,IJSIZEXFU,IKU)) ALLOCATE(XLBYUM(IISIZEYF,IJSIZEYF,IKU)) ALLOCATE(XLBXVM(IISIZEXF,IJSIZEXF,IKU)) ALLOCATE(XLBYVM(IISIZEYFV,IJSIZEYFV,IKU)) ALLOCATE(XLBXWM(IISIZEXF,IJSIZEXF,IKU)) ALLOCATE(XLBYWM(IISIZEYF,IJSIZEYF,IKU)) ALLOCATE(XLBXTHM(IISIZEXF,IJSIZEXF,IKU)) ALLOCATE(XLBYTHM(IISIZEYF,IJSIZEYF,IKU)) ELSE NSIZELBX_ll=2*JPHEXT ! 2 NSIZELBXU_ll=2*(JPHEXT+1) ! 4 NSIZELBY_ll=2*JPHEXT ! 2 NSIZELBYV_ll=2*(JPHEXT+1) ! 4 ALLOCATE(XLBXUM(IISIZEX4,IJSIZEX4,IKU)) ALLOCATE(XLBYUM(IISIZEY2,IJSIZEY2,IKU)) ALLOCATE(XLBXVM(IISIZEX2,IJSIZEX2,IKU)) ALLOCATE(XLBYVM(IISIZEY4,IJSIZEY4,IKU)) ALLOCATE(XLBXWM(IISIZEX2,IJSIZEX2,IKU)) ALLOCATE(XLBYWM(IISIZEY2,IJSIZEY2,IKU)) ALLOCATE(XLBXTHM(IISIZEX2,IJSIZEX2,IKU)) ALLOCATE(XLBYTHM(IISIZEY2,IJSIZEY2,IKU)) END IF ! IF (CTURB /= 'NONE') THEN IF ( LHORELAX_TKE) THEN NSIZELBXTKE_ll=2*NRIMX+2*JPHEXT NSIZELBYTKE_ll=2*NRIMY+2*JPHEXT ALLOCATE(XLBXTKEM(IISIZEXF,IJSIZEXF,IKU)) ALLOCATE(XLBYTKEM(IISIZEYF,IJSIZEYF,IKU)) ELSE NSIZELBXTKE_ll=2*JPHEXT ! 2 NSIZELBYTKE_ll=2*JPHEXT ! 2 ALLOCATE(XLBXTKEM(IISIZEX2,IJSIZEX2,IKU)) ALLOCATE(XLBYTKEM(IISIZEY2,IJSIZEY2,IKU)) END IF ELSE NSIZELBXTKE_ll=0 NSIZELBYTKE_ll=0 ALLOCATE(XLBXTKEM(0,0,0)) ALLOCATE(XLBYTKEM(0,0,0)) END IF ! IF ( NRR > 0 ) THEN IF (LHORELAX_RV .OR. LHORELAX_RC .OR. LHORELAX_RR .OR. LHORELAX_RI & .OR. LHORELAX_RS .OR. LHORELAX_RG .OR. LHORELAX_RH & ) THEN NSIZELBXR_ll=2*NRIMX+2*JPHEXT NSIZELBYR_ll=2*NRIMY+2*JPHEXT ALLOCATE(XLBXRM(IISIZEXF,IJSIZEXF,IKU,NRR)) ALLOCATE(XLBYRM(IISIZEYF,IJSIZEYF,IKU,NRR)) ELSE NSIZELBXR_ll=2*JPHEXT ! 2 NSIZELBYR_ll=2*JPHEXT ! 2 ALLOCATE(XLBXRM(IISIZEX2,IJSIZEX2,IKU,NRR)) ALLOCATE(XLBYRM(IISIZEY2,IJSIZEY2,IKU,NRR)) ENDIF ELSE NSIZELBXR_ll=0 NSIZELBYR_ll=0 ALLOCATE(XLBXRM(0,0,0,0)) ALLOCATE(XLBYRM(0,0,0,0)) END IF ! IF ( NSV > 0 ) THEN IF ( ANY( LHORELAX_SV(:)) ) THEN NSIZELBXSV_ll=2*NRIMX+2*JPHEXT NSIZELBYSV_ll=2*NRIMY+2*JPHEXT ALLOCATE(XLBXSVM(IISIZEXF,IJSIZEXF,IKU,NSV)) ALLOCATE(XLBYSVM(IISIZEYF,IJSIZEYF,IKU,NSV)) ELSE NSIZELBXSV_ll=2*JPHEXT ! 2 NSIZELBYSV_ll=2*JPHEXT ! 2 ALLOCATE(XLBXSVM(IISIZEX2,IJSIZEX2,IKU,NSV)) ALLOCATE(XLBYSVM(IISIZEY2,IJSIZEY2,IKU,NSV)) END IF ELSE NSIZELBXSV_ll=0 NSIZELBYSV_ll=0 ALLOCATE(XLBXSVM(0,0,0,0)) ALLOCATE(XLBYSVM(0,0,0,0)) END IF END IF ! END OF THE IF STRUCTURE ON THE MODEL DIMENSION ! ! IF ( KMI > 1 ) THEN ! it has been assumed that the THeta field used the largest rim area compared ! to the others prognostic variables, if it is not the case, you must change ! these lines ALLOCATE(XCOEFLIN_LBXM(SIZE(XLBXTHM,1),SIZE(XLBXTHM,2),SIZE(XLBXTHM,3))) ALLOCATE( NKLIN_LBXM(SIZE(XLBXTHM,1),SIZE(XLBXTHM,2),SIZE(XLBXTHM,3))) ALLOCATE(XCOEFLIN_LBYM(SIZE(XLBYTHM,1),SIZE(XLBYTHM,2),SIZE(XLBYTHM,3))) ALLOCATE( NKLIN_LBYM(SIZE(XLBYTHM,1),SIZE(XLBYTHM,2),SIZE(XLBYTHM,3))) ALLOCATE(XCOEFLIN_LBXU(SIZE(XLBXUM,1),SIZE(XLBXUM,2),SIZE(XLBXUM,3))) ALLOCATE( NKLIN_LBXU(SIZE(XLBXUM,1),SIZE(XLBXUM,2),SIZE(XLBXUM,3))) ALLOCATE(XCOEFLIN_LBYU(SIZE(XLBYUM,1),SIZE(XLBYUM,2),SIZE(XLBYUM,3))) ALLOCATE( NKLIN_LBYU(SIZE(XLBYUM,1),SIZE(XLBYUM,2),SIZE(XLBYUM,3))) ALLOCATE(XCOEFLIN_LBXV(SIZE(XLBXVM,1),SIZE(XLBXVM,2),SIZE(XLBXVM,3))) ALLOCATE( NKLIN_LBXV(SIZE(XLBXVM,1),SIZE(XLBXVM,2),SIZE(XLBXVM,3))) ALLOCATE(XCOEFLIN_LBYV(SIZE(XLBYVM,1),SIZE(XLBYVM,2),SIZE(XLBYVM,3))) ALLOCATE( NKLIN_LBYV(SIZE(XLBYVM,1),SIZE(XLBYVM,2),SIZE(XLBYVM,3))) ALLOCATE(XCOEFLIN_LBXW(SIZE(XLBXWM,1),SIZE(XLBXWM,2),SIZE(XLBXWM,3))) ALLOCATE( NKLIN_LBXW(SIZE(XLBXWM,1),SIZE(XLBXWM,2),SIZE(XLBXWM,3))) ALLOCATE(XCOEFLIN_LBYW(SIZE(XLBYWM,1),SIZE(XLBYWM,2),SIZE(XLBYWM,3))) ALLOCATE( NKLIN_LBYW(SIZE(XLBYWM,1),SIZE(XLBYWM,2),SIZE(XLBYWM,3))) END IF ! ! allocation of the LS fields for vertical relaxation and numerical diffusion IF( .NOT. LSTEADYLS ) THEN ! ALLOCATE(XLSUS(SIZE(XLSUM,1),SIZE(XLSUM,2),SIZE(XLSUM,3))) ALLOCATE(XLSVS(SIZE(XLSVM,1),SIZE(XLSVM,2),SIZE(XLSVM,3))) ALLOCATE(XLSWS(SIZE(XLSWM,1),SIZE(XLSWM,2),SIZE(XLSWM,3))) ALLOCATE(XLSTHS(SIZE(XLSTHM,1),SIZE(XLSTHM,2),SIZE(XLSTHM,3))) ALLOCATE(XLSRVS(SIZE(XLSRVM,1),SIZE(XLSRVM,2),SIZE(XLSRVM,3))) ! ELSE ! ALLOCATE(XLSUS(0,0,0)) ALLOCATE(XLSVS(0,0,0)) ALLOCATE(XLSWS(0,0,0)) ALLOCATE(XLSTHS(0,0,0)) ALLOCATE(XLSRVS(0,0,0)) ! END IF ! allocation of the LB fields for horizontal relaxation and Lateral Boundaries IF( .NOT. ( LSTEADYLS .AND. KMI==1 ) ) THEN ! ALLOCATE(XLBXTKES(SIZE(XLBXTKEM,1),SIZE(XLBXTKEM,2),SIZE(XLBXTKEM,3))) ALLOCATE(XLBYTKES(SIZE(XLBYTKEM,1),SIZE(XLBYTKEM,2),SIZE(XLBYTKEM,3))) ALLOCATE(XLBXUS(SIZE(XLBXUM,1),SIZE(XLBXUM,2),SIZE(XLBXUM,3))) ALLOCATE(XLBYUS(SIZE(XLBYUM,1),SIZE(XLBYUM,2),SIZE(XLBYUM,3))) ALLOCATE(XLBXVS(SIZE(XLBXVM,1),SIZE(XLBXVM,2),SIZE(XLBXVM,3))) ALLOCATE(XLBYVS(SIZE(XLBYVM,1),SIZE(XLBYVM,2),SIZE(XLBYVM,3))) ALLOCATE(XLBXWS(SIZE(XLBXWM,1),SIZE(XLBXWM,2),SIZE(XLBXWM,3))) ALLOCATE(XLBYWS(SIZE(XLBYWM,1),SIZE(XLBYWM,2),SIZE(XLBYWM,3))) ALLOCATE(XLBXTHS(SIZE(XLBXTHM,1),SIZE(XLBXTHM,2),SIZE(XLBXTHM,3))) ALLOCATE(XLBYTHS(SIZE(XLBYTHM,1),SIZE(XLBYTHM,2),SIZE(XLBYTHM,3))) ALLOCATE(XLBXRS(SIZE(XLBXRM,1),SIZE(XLBXRM,2),SIZE(XLBXRM,3),SIZE(XLBXRM,4))) ALLOCATE(XLBYRS(SIZE(XLBYRM,1),SIZE(XLBYRM,2),SIZE(XLBYRM,3),SIZE(XLBYRM,4))) ALLOCATE(XLBXSVS(SIZE(XLBXSVM,1),SIZE(XLBXSVM,2),SIZE(XLBXSVM,3),SIZE(XLBXSVM,4))) ALLOCATE(XLBYSVS(SIZE(XLBYSVM,1),SIZE(XLBYSVM,2),SIZE(XLBYSVM,3),SIZE(XLBYSVM,4))) ! ELSE ! ALLOCATE(XLBXTKES(0,0,0)) ALLOCATE(XLBYTKES(0,0,0)) ALLOCATE(XLBXUS(0,0,0)) ALLOCATE(XLBYUS(0,0,0)) ALLOCATE(XLBXVS(0,0,0)) ALLOCATE(XLBYVS(0,0,0)) ALLOCATE(XLBXWS(0,0,0)) ALLOCATE(XLBYWS(0,0,0)) ALLOCATE(XLBXTHS(0,0,0)) ALLOCATE(XLBYTHS(0,0,0)) ALLOCATE(XLBXRS(0,0,0,0)) ALLOCATE(XLBYRS(0,0,0,0)) ALLOCATE(XLBXSVS(0,0,0,0)) ALLOCATE(XLBYSVS(0,0,0,0)) ! END IF ! ! !* 3.7 Module MODD_RADIATIONS_n (except XOZON and XAER) ! ! NSWB_MNH = 6 ALLOCATE(XSW_BANDS (NSWB_MNH)) ALLOCATE(XZENITH (IIU,IJU)) ALLOCATE(XAZIM (IIU,IJU)) ALLOCATE(XALBUV (IIU,IJU)) ALLOCATE(XDIRSRFSWD(IIU,IJU,NSWB_MNH)) ALLOCATE(XSCAFLASWD(IIU,IJU,NSWB_MNH)) ALLOCATE(XFLALWD (IIU,IJU)) ! IF (CRAD /= 'NONE') THEN ALLOCATE(XSLOPANG(IIU,IJU)) ALLOCATE(XSLOPAZI(IIU,IJU)) ALLOCATE(XDTHRAD(IIU,IJU,IKU)) ALLOCATE(XDIRFLASWD(IIU,IJU,NSWB_MNH)) ALLOCATE(XDIR_ALB(IIU,IJU,NSWB_MNH)) ALLOCATE(XSCA_ALB(IIU,IJU,NSWB_MNH)) ALLOCATE(XEMIS (IIU,IJU)) ALLOCATE(XTSRAD (IIU,IJU)) ; XTSRAD = 0.0 ALLOCATE(XSEA (IIU,IJU)) ALLOCATE(XZS_XY (IIU,IJU)) ALLOCATE(NCLEARCOL_TM1(IIU,IJU)) ALLOCATE(XSWU(IIU,IJU,IKU)) ALLOCATE(XSWD(IIU,IJU,IKU)) ALLOCATE(XLWU(IIU,IJU,IKU)) ALLOCATE(XLWD(IIU,IJU,IKU)) ALLOCATE(XDTHRADSW(IIU,IJU,IKU)) ALLOCATE(XDTHRADLW(IIU,IJU,IKU)) ALLOCATE(XRADEFF(IIU,IJU,IKU)) ELSE ALLOCATE(XSLOPANG(0,0)) ALLOCATE(XSLOPAZI(0,0)) ALLOCATE(XDTHRAD(0,0,0)) ALLOCATE(XDIRFLASWD(0,0,0)) ALLOCATE(XDIR_ALB(0,0,0)) ALLOCATE(XSCA_ALB(0,0,0)) ALLOCATE(XEMIS (0,0)) ALLOCATE(XTSRAD (0,0)) ALLOCATE(XSEA (0,0)) ALLOCATE(XZS_XY (0,0)) ALLOCATE(NCLEARCOL_TM1(0,0)) ALLOCATE(XSWU(0,0,0)) ALLOCATE(XSWD(0,0,0)) ALLOCATE(XLWU(0,0,0)) ALLOCATE(XLWD(0,0,0)) ALLOCATE(XDTHRADSW(0,0,0)) ALLOCATE(XDTHRADLW(0,0,0)) ALLOCATE(XRADEFF(0,0,0)) END IF IF (CRAD == 'ECMW') THEN ALLOCATE(XSTROATM(31,6)) ALLOCATE(XSMLSATM(31,6)) ALLOCATE(XSMLWATM(31,6)) ALLOCATE(XSPOSATM(31,6)) ALLOCATE(XSPOWATM(31,6)) ALLOCATE(XSTATM(31,6)) ELSE ALLOCATE(XSTROATM(0,0)) ALLOCATE(XSMLSATM(0,0)) ALLOCATE(XSMLWATM(0,0)) ALLOCATE(XSPOSATM(0,0)) ALLOCATE(XSPOWATM(0,0)) ALLOCATE(XSTATM(0,0)) END IF ! !* 3.8 Module MODD_DEEP_CONVECTION_n ! IF (CDCONV /= 'NONE' .OR. CSCONV == 'KAFR') THEN ALLOCATE(NCOUNTCONV(IIU,IJU)) ALLOCATE(XDTHCONV(IIU,IJU,IKU)) ALLOCATE(XDRVCONV(IIU,IJU,IKU)) ALLOCATE(XDRCCONV(IIU,IJU,IKU)) ALLOCATE(XDRICONV(IIU,IJU,IKU)) ALLOCATE(XPRCONV(IIU,IJU)) ALLOCATE(XPACCONV(IIU,IJU)) ALLOCATE(XPRSCONV(IIU,IJU)) ! diagnostics IF (LCH_CONV_LINOX) THEN ALLOCATE(XIC_RATE(IIU,IJU)) ALLOCATE(XCG_RATE(IIU,IJU)) ALLOCATE(XIC_TOTAL_NUMBER(IIU,IJU)) ALLOCATE(XCG_TOTAL_NUMBER(IIU,IJU)) ELSE ALLOCATE(XIC_RATE(0,0)) ALLOCATE(XCG_RATE(0,0)) ALLOCATE(XIC_TOTAL_NUMBER(0,0)) ALLOCATE(XCG_TOTAL_NUMBER(0,0)) END IF IF ( LDIAGCONV ) THEN ALLOCATE(XUMFCONV(IIU,IJU,IKU)) ALLOCATE(XDMFCONV(IIU,IJU,IKU)) ALLOCATE(XPRLFLXCONV(IIU,IJU,IKU)) ALLOCATE(XPRSFLXCONV(IIU,IJU,IKU)) ALLOCATE(XCAPE(IIU,IJU)) ALLOCATE(NCLTOPCONV(IIU,IJU)) ALLOCATE(NCLBASCONV(IIU,IJU)) ELSE ALLOCATE(XUMFCONV(0,0,0)) ALLOCATE(XDMFCONV(0,0,0)) ALLOCATE(XPRLFLXCONV(0,0,0)) ALLOCATE(XPRSFLXCONV(0,0,0)) ALLOCATE(XCAPE(0,0)) ALLOCATE(NCLTOPCONV(0,0)) ALLOCATE(NCLBASCONV(0,0)) END IF ELSE ALLOCATE(XPRCONV(0,0)) ALLOCATE(XPACCONV(0,0)) ALLOCATE(XPRSCONV(0,0)) END IF ! IF ((CDCONV == 'KAFR' .OR. CSCONV == 'KAFR') & .AND. LSUBG_COND .AND. LSIG_CONV) THEN ALLOCATE(XMFCONV(IIU,IJU,IKU)) ELSE ALLOCATE(XMFCONV(0,0,0)) ENDIF ! IF ((CDCONV == 'KAFR' .OR. CSCONV == 'KAFR') & .AND. LCHTRANS .AND. NSV > 0 ) THEN ALLOCATE(XDSVCONV(IIU,IJU,IKU,NSV)) ELSE ALLOCATE(XDSVCONV(0,0,0,0)) END IF ! ALLOCATE(XCF_MF(IIU,IJU,IKU)) ; XCF_MF=0.0 ALLOCATE(XRC_MF(IIU,IJU,IKU)) ; XRC_MF=0.0 ALLOCATE(XRI_MF(IIU,IJU,IKU)) ; XRI_MF=0.0 ! !* 3.9 Local variables ! ALLOCATE(ZJ(IIU,IJU,IKU)) ! !* 3.10 Forcing variables (Module MODD_FRC) ! IF (KMI == 1) THEN IF ( LFORCING ) THEN ALLOCATE(TDTFRC(NFRC)) ALLOCATE(XUFRC(IKU,NFRC)) ALLOCATE(XVFRC(IKU,NFRC)) ALLOCATE(XWFRC(IKU,NFRC)) ALLOCATE(XTHFRC(IKU,NFRC)) ALLOCATE(XRVFRC(IKU,NFRC)) ALLOCATE(XTENDTHFRC(IKU,NFRC)) ALLOCATE(XTENDRVFRC(IKU,NFRC)) ALLOCATE(XGXTHFRC(IKU,NFRC)) ALLOCATE(XGYTHFRC(IKU,NFRC)) ALLOCATE(XPGROUNDFRC(NFRC)) ELSE ALLOCATE(TDTFRC(0)) ALLOCATE(XUFRC(0,0)) ALLOCATE(XVFRC(0,0)) ALLOCATE(XWFRC(0,0)) ALLOCATE(XTHFRC(0,0)) ALLOCATE(XRVFRC(0,0)) ALLOCATE(XTENDTHFRC(0,0)) ALLOCATE(XTENDRVFRC(0,0)) ALLOCATE(XGXTHFRC(0,0)) ALLOCATE(XGYTHFRC(0,0)) ALLOCATE(XPGROUNDFRC(0)) END IF IF ( LFORCING ) THEN ALLOCATE(XWTFRC(IIU,IJU,IKU)) ALLOCATE(XUFRC_PAST(IIU,IJU,IKU)) ; XUFRC_PAST = XUNDEF ALLOCATE(XVFRC_PAST(IIU,IJU,IKU)) ; XVFRC_PAST = XUNDEF ELSE ALLOCATE(XWTFRC(0,0,0)) ALLOCATE(XUFRC_PAST(0,0,0)) ALLOCATE(XVFRC_PAST(0,0,0)) END IF END IF ! ---------------------------------------------------------------------- ! IF (L2D_ADV_FRC) THEN WRITE(ILUOUT,*) 'L2D_ADV_FRC IS SET TO', L2D_ADV_FRC WRITE(ILUOUT,*) 'ADV FRC WILL BE SET' ALLOCATE(TDTADVFRC(NADVFRC)) ALLOCATE(XDTHFRC(IIU,IJU,IKU,NADVFRC)) ; XDTHFRC=0. ALLOCATE(XDRVFRC(IIU,IJU,IKU,NADVFRC)) ; XDRVFRC=0. ELSE ALLOCATE(TDTADVFRC(0)) ALLOCATE(XDTHFRC(0,0,0,0)) ALLOCATE(XDRVFRC(0,0,0,0)) ENDIF IF (L2D_REL_FRC) THEN WRITE(ILUOUT,*) 'L2D_REL_FRC IS SET TO', L2D_REL_FRC WRITE(ILUOUT,*) 'REL FRC WILL BE SET' ALLOCATE(TDTRELFRC(NRELFRC)) ALLOCATE(XTHREL(IIU,IJU,IKU,NRELFRC)) ; XTHREL=0. ALLOCATE(XRVREL(IIU,IJU,IKU,NRELFRC)) ; XRVREL=0. ELSE ALLOCATE(TDTRELFRC(0)) ALLOCATE(XTHREL(0,0,0,0)) ALLOCATE(XRVREL(0,0,0,0)) ENDIF ! !* 4.11 BIS: Eddy fluxes allocation ! IF ( LTH_FLX ) THEN ALLOCATE(XVTH_FLUX_M(IIU,IJU,IKU)) ; XVTH_FLUX_M = 0. ALLOCATE(XWTH_FLUX_M(IIU,IJU,IKU)) ; XWTH_FLUX_M = 0. IF (KMI /= 1) THEN ALLOCATE(XRTHS_EDDY_FLUX(IIU,IJU,IKU)) XRTHS_EDDY_FLUX = 0. ENDIF ELSE ALLOCATE(XVTH_FLUX_M(0,0,0)) ; XVTH_FLUX_M = 0. ALLOCATE(XWTH_FLUX_M(0,0,0)) ; XWTH_FLUX_M = 0. END IF ! IF ( LUV_FLX) THEN ALLOCATE(XVU_FLUX_M(IIU,IJU,IKU)) ; XVU_FLUX_M = 0. IF (KMI /= 1) THEN ALLOCATE(XRVS_EDDY_FLUX(IIU,IJU,IKU)) XRVS_EDDY_FLUX = 0. ENDIF ELSE ALLOCATE(XVU_FLUX_M(0,0,0)) ; XVU_FLUX_M = 0. END IF ! !* 3.11 Module MODD_ICE_CONC_n ! IF ( (CCLOUD == 'ICE3'.OR.CCLOUD == 'ICE4') .AND. & (CPROGRAM == 'DIAG '.OR.CPROGRAM == 'MESONH')) THEN ALLOCATE(XCIT(IIU,IJU,IKU)) ELSE ALLOCATE(XCIT(0,0,0)) END IF ! !* 3.12 Module MODD_TURB_CLOUD ! IF (.NOT.(ALLOCATED(XCEI))) ALLOCATE(XCEI(0,0,0)) IF (KMI == NMODEL_CLOUD .AND. CTURBLEN_CLOUD/='NONE' ) THEN DEALLOCATE(XCEI) ALLOCATE(XCEI(IIU,IJU,IKU)) ENDIF ! !* 3.13 Module MODD_CH_PH_n ! IF (LUSECHAQ.AND.(CPROGRAM == 'DIAG '.OR.CPROGRAM == 'MESONH')) THEN IF (LCH_PH) THEN ALLOCATE(XPHC(IIU,IJU,IKU)) IF (NRRL==2) THEN ALLOCATE(XPHR(IIU,IJU,IKU)) ENDIF ENDIF ALLOCATE(XACPRAQ(IIU,IJU,NSV_CHAC/2)) XACPRAQ(:,:,:) = 0. ENDIF ! !------------------------------------------------------------------------------- ! !* 4. INITIALIZE BUDGET VARIABLES ! --------------------------- ! IF ( CBUTYPE /= "NONE" .AND. NBUMOD == KMI ) THEN CALL INI_BUDGET(ILUOUT, HLUOUT,XTSTEP,NSV,NRR, & LNUMDIFU,LNUMDIFTH,LNUMDIFSV, & LHORELAX_UVWTH,LHORELAX_RV, LHORELAX_RC,LHORELAX_RR, & LHORELAX_RI,LHORELAX_RS,LHORELAX_RG, LHORELAX_RH,LHORELAX_TKE, & LHORELAX_SV,LVE_RELAX,LCHTRANS,LNUDGING,LDRAGTREE, & CRAD,CDCONV,CSCONV,CTURB,CTURBDIM,CCLOUD ) END IF ! !------------------------------------------------------------------------------- ! ! !* 5. INITIALIZE INTERPOLATION COEFFICIENTS ! CALL INI_BIKHARDT_n (NDXRATIO_ALL(KMI),NDYRATIO_ALL(KMI),KMI) ! !------------------------------------------------------------------------------- ! !* 6. INITIALIZE GRIDS AND METRIC COEFFICIENTS ! ---------------------------------------- ! CALL SET_GRID(KMI,HINIFILE,HLUOUT,IIU,IJU,IKU,NIMAX_ll,NJMAX_ll, & XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, & XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, & NXOR_ALL(KMI),NYOR_ALL(KMI),NXEND_ALL(KMI),NYEND_ALL(KMI), & NDXRATIO_ALL(KMI),NDYRATIO_ALL(KMI), & CLBCX,CLBCY, & XTSTEP,XSEGLEN, & XLONORI,XLATORI,XLON,XLAT, & XXHAT,XYHAT,XDXHAT,XDYHAT, XMAP, & XZS,XZZ,XZHAT,LSLEVE,XLEN1,XLEN2,XZSMT, & ZJ, & TDTMOD,TDTCUR,NSTOP,NOUT_TIMES,NOUT_NUMB) ! CALL METRICS(XMAP,XDXHAT,XDYHAT,XZZ,XDXX,XDYY,XDZX,XDZY,XDZZ) ! !* update halos of metric coefficients ! ! CALL UPDATE_METRICS(CLBCX,CLBCY,XDXX,XDYY,XDZX,XDZY,XDZZ) ! ! CALL SET_DIRCOS(CLBCX,CLBCY,XDXX,XDYY,XDZX,XDZY,TZINITHALO2D_ll, & XDIRCOSXW,XDIRCOSYW,XDIRCOSZW,XCOSSLOPE,XSINSLOPE ) ! ! grid nesting initializations IF ( KMI == 1 ) THEN XTSTEP_MODEL1=XTSTEP END IF ! NDT_2_WAY(KMI)=4 ! !------------------------------------------------------------------------------- ! !* 7. INITIALIZE DATA FOR JVALUES AND AEROSOLS ! IF ( LUSECHEM .OR. LCHEMDIAG ) THEN IF ((KMI==1).AND.(CPROGRAM == "MESONH".OR.CPROGRAM == "DIAG ")) & CALL CH_INIT_JVALUES(TDTCUR%TDATE%DAY, TDTCUR%TDATE%MONTH, & TDTCUR%TDATE%YEAR, ILUOUT, XCH_TUV_DOBNEW) ! IF (LORILAM) THEN CALL CH_AER_MOD_INIT ELSE IF (.NOT.(ASSOCIATED(XSOLORG))) ALLOCATE(XSOLORG(0,0,0,0)) IF (.NOT.(ASSOCIATED(XMI))) ALLOCATE(XMI(0,0,0,0)) ENDIF ELSE IF (.NOT.(ASSOCIATED(XMI))) ALLOCATE(XMI(0,0,0,0)) IF (.NOT.(ASSOCIATED(XSOLORG))) ALLOCATE(XSOLORG(0,0,0,0)) END IF ! !------------------------------------------------------------------------------- ! !* 8. INITIALIZE THE PROGNOSTIC FIELDS ! -------------------------------- ! CALL MPPDB_CHECK3D(XUT,"INI_MODEL_N-before read_field::XUT",PRECISION) CALL READ_FIELD(HINIFILE,HLUOUT,IMASDEV, IIU,IJU,IKU,XTSTEP, & CGETTKET,CGETRVT,CGETRCT,CGETRRT,CGETRIT,CGETCIT, & CGETRST,CGETRGT,CGETRHT,CGETSVT,CGETSRCT,CGETSIGS,CGETCLDFR, & CGETBL_DEPTH,CGETSBL_DEPTH,CGETPHC,CGETPHR,CUVW_ADV_SCHEME, & NSIZELBX_ll,NSIZELBXU_ll,NSIZELBY_ll,NSIZELBYV_ll, & NSIZELBXTKE_ll,NSIZELBYTKE_ll, & NSIZELBXR_ll,NSIZELBYR_ll,NSIZELBXSV_ll,NSIZELBYSV_ll, & XUM,XVM,XWM,XDUM,XDVM,XDWM, & XUT,XVT,XWT,XTHT,XPABST,XPABSM,XTKET,XRTKEMS, & XRT,XSVT,XCIT,XDRYMASST, & XSIGS,XSRCT,XCLDFR,XBL_DEPTH,XSBL_DEPTH,XWTHVMF,XPHC,XPHR, & XLSUM,XLSVM,XLSWM,XLSTHM,XLSRVM, & XLBXUM,XLBXVM,XLBXWM,XLBXTHM,XLBXTKEM, & XLBXRM,XLBXSVM, & XLBYUM,XLBYVM,XLBYWM,XLBYTHM,XLBYTKEM, & XLBYRM,XLBYSVM, & NFRC,TDTFRC,XUFRC,XVFRC,XWFRC,XTHFRC,XRVFRC, & XTENDTHFRC,XTENDRVFRC,XGXTHFRC,XGYTHFRC, & XPGROUNDFRC, XATC, & NADVFRC,TDTADVFRC,XDTHFRC,XDRVFRC, & NRELFRC,TDTRELFRC,XTHREL,XRVREL, & XVTH_FLUX_M,XWTH_FLUX_M,XVU_FLUX_M, & XRUS_PRES,XRVS_PRES,XRWS_PRES,XRTHS_CLD,XRRS_CLD,XRSVS_CLD, & LIBM,XIBM_LS) ! !------------------------------------------------------------------------------- ! ! !* 9. INITIALIZE REFERENCE STATE ! --------------------------- ! ! CALL SET_REF(KMI,HINIFILE,HLUOUT, & XZZ,XZHAT,ZJ,XDXX,XDYY,CLBCX,CLBCY, & XREFMASS,XMASS_O_PHI0,XLINMASS, & XRHODREF,XTHVREF,XRVREF,XEXNREF,XRHODJ ) ! !------------------------------------------------------------------------------- ! !* 10.1 INITIALIZE THE TURBULENCE VARIABLES ! ----------------------------------- ! IF ((CTURB == 'TKEL').AND.(CCONF=='START')) THEN CALL MPPDB_CHECK3D(XUT,"INI_MODEL_N-before ini_tke_eps::XUT",PRECISION) CALL INI_TKE_EPS(CGETTKET,XTHVREF,XZZ, & XUT,XVT,XTHT, & XTKET,TZINITHALO3D_ll ) CALL MPPDB_CHECK3D(XUT,"INI_MODEL_N-after ini_tke_eps::XUT",PRECISION) END IF ! ! !* 10.2 INITIALIZE THE LES VARIABLES ! ---------------------------- ! CALL INI_LES_n ! !------------------------------------------------------------------------------- ! !* 11. INITIALIZE THE SOURCE OF TOTAL DRY MASS Md ! ------------------------------------------ ! IF((KMI==1).AND.LSTEADYLS) THEN XDRYMASSS = 0. END IF ! !------------------------------------------------------------------------------- ! !* 12. INITIALIZE THE MICROPHYSICS ! ---------------------------- ! IF (CELEC == 'NONE') THEN CALL INI_MICRO_n(ILUOUT) ! !------------------------------------------------------------------------------- ! !* 13. INITIALIZE THE ATMOSPHERIC ELECTRICITY ! -------------------------------------- ! ELSE CALL INI_ELEC_n(ILUOUT, CELEC, CCLOUD, HLUOUT, CINIFILE, & XTSTEP, XZZ, & XDXX, XDYY, XDZZ, XDZX, XDZY ) ! WRITE (UNIT=ILUOUT,& FMT='(/,"ELECTRIC VARIABLES ARE BETWEEN INDEX",I2," AND ",I2)')& NSV_ELECBEG, NSV_ELECEND ! IF( CGETSVT(NSV_ELECBEG)=='INIT' ) THEN XSVT(:,:,:,NSV_ELECBEG) = XCION_POS_FW(:,:,:) ! Nb/kg XSVT(:,:,:,NSV_ELECEND) = XCION_NEG_FW(:,:,:) ! XSVT(:,:,:,NSV_ELECBEG+1:NSV_ELECEND-1) = 0.0 ELSE ! Convert elec_variables per m3 into elec_variables per kg of air DO JSV = NSV_ELECBEG, NSV_ELECEND XSVT(:,:,:,JSV) = XSVT(:,:,:,JSV) / XRHODREF(:,:,:) ENDDO END IF END IF ! !------------------------------------------------------------------------------- ! !* 14. INITIALIZE THE LARGE SCALE SOURCES ! ---------------------------------- ! IF ((KMI==1).AND.(.NOT. LSTEADYLS)) THEN CALL MPPDB_CHECK3D(XUT,"INI_MODEL_N-before ini_cpl::XUT",PRECISION) CALL INI_CPL(HLUOUT,NSTOP,XTSTEP,LSTEADYLS,CCONF, & CGETTKET, & CGETRVT,CGETRCT,CGETRRT,CGETRIT, & CGETRST,CGETRGT,CGETRHT,CGETSVT,LCH_INIT_FIELD, & NSV,NIMAX_ll,NJMAX_ll, & NSIZELBX_ll,NSIZELBXU_ll,NSIZELBY_ll,NSIZELBYV_ll, & NSIZELBXTKE_ll,NSIZELBYTKE_ll, & NSIZELBXR_ll,NSIZELBYR_ll,NSIZELBXSV_ll,NSIZELBYSV_ll, & XLSUM,XLSVM,XLSWM,XLSTHM,XLSRVM,XDRYMASST, & XLBXUM,XLBXVM,XLBXWM,XLBXTHM,XLBXTKEM,XLBXRM,XLBXSVM, & XLBYUM,XLBYVM,XLBYWM,XLBYTHM,XLBYTKEM,XLBYRM,XLBYSVM, & XLSUS,XLSVS,XLSWS,XLSTHS,XLSRVS,XDRYMASSS, & XLBXUS,XLBXVS,XLBXWS,XLBXTHS,XLBXTKES,XLBXRS,XLBXSVS, & XLBYUS,XLBYVS,XLBYWS,XLBYTHS,XLBYTKES,XLBYRS,XLBYSVS ) CALL MPPDB_CHECK3D(XUT,"INI_MODEL_N-after ini_cpl::XUT",PRECISION) END IF ! IF ( KMI > 1) THEN ! Use dummy pointers to correct an ifort BUG DPTR_XBMX1=>XBMX1 DPTR_XBMX2=>XBMX2 DPTR_XBMX3=>XBMX3 DPTR_XBMX4=>XBMX4 DPTR_XBMY1=>XBMY1 DPTR_XBMY2=>XBMY2 DPTR_XBMY3=>XBMY3 DPTR_XBMY4=>XBMY4 DPTR_XBFX1=>XBFX1 DPTR_XBFX2=>XBFX2 DPTR_XBFX3=>XBFX3 DPTR_XBFX4=>XBFX4 DPTR_XBFY1=>XBFY1 DPTR_XBFY2=>XBFY2 DPTR_XBFY3=>XBFY3 DPTR_XBFY4=>XBFY4 DPTR_CLBCX=>CLBCX DPTR_CLBCY=>CLBCY ! DPTR_XZZ=>XZZ DPTR_XZHAT=>XZHAT DPTR_XLSUM=>XLSUM DPTR_XLSVM=>XLSVM DPTR_XLSWM=>XLSWM DPTR_XLSTHM=>XLSTHM DPTR_XLSRVM=>XLSRVM DPTR_XLSUS=>XLSUS DPTR_XLSVS=>XLSVS DPTR_XLSWS=>XLSWS DPTR_XLSTHS=>XLSTHS DPTR_XLSRVS=>XLSRVS ! DPTR_NKLIN_LBXU=>NKLIN_LBXU DPTR_XCOEFLIN_LBXU=>XCOEFLIN_LBXU DPTR_NKLIN_LBYU=>NKLIN_LBYU DPTR_XCOEFLIN_LBYU=>XCOEFLIN_LBYU DPTR_NKLIN_LBXV=>NKLIN_LBXV DPTR_XCOEFLIN_LBXV=>XCOEFLIN_LBXV DPTR_NKLIN_LBYV=>NKLIN_LBYV DPTR_XCOEFLIN_LBYV=>XCOEFLIN_LBYV DPTR_NKLIN_LBXW=>NKLIN_LBXW DPTR_XCOEFLIN_LBXW=>XCOEFLIN_LBXW DPTR_NKLIN_LBYW=>NKLIN_LBYW DPTR_XCOEFLIN_LBYW=>XCOEFLIN_LBYW DPTR_NKLIN_LBXM=>NKLIN_LBXM DPTR_XCOEFLIN_LBXM=>XCOEFLIN_LBXM DPTR_NKLIN_LBYM=>NKLIN_LBYM DPTR_XCOEFLIN_LBYM=>XCOEFLIN_LBYM ! CALL INI_SPAWN_LS_n(NDAD(KMI),XTSTEP,KMI, & DPTR_XBMX1,DPTR_XBMX2,DPTR_XBMX3,DPTR_XBMX4,DPTR_XBMY1,DPTR_XBMY2,DPTR_XBMY3,DPTR_XBMY4, & DPTR_XBFX1,DPTR_XBFX2,DPTR_XBFX3,DPTR_XBFX4,DPTR_XBFY1,DPTR_XBFY2,DPTR_XBFY3,DPTR_XBFY4, & NDXRATIO_ALL(KMI),NDYRATIO_ALL(KMI), & DPTR_CLBCX,DPTR_CLBCY,DPTR_XZZ,DPTR_XZHAT, & LSLEVE,XLEN1,XLEN2, & DPTR_XLSUM,DPTR_XLSVM,DPTR_XLSWM,DPTR_XLSTHM,DPTR_XLSRVM, & DPTR_XLSUS,DPTR_XLSVS,DPTR_XLSWS,DPTR_XLSTHS,DPTR_XLSRVS, & DPTR_NKLIN_LBXU,DPTR_XCOEFLIN_LBXU,DPTR_NKLIN_LBYU,DPTR_XCOEFLIN_LBYU, & DPTR_NKLIN_LBXV,DPTR_XCOEFLIN_LBXV,DPTR_NKLIN_LBYV,DPTR_XCOEFLIN_LBYV, & DPTR_NKLIN_LBXW,DPTR_XCOEFLIN_LBXW,DPTR_NKLIN_LBYW,DPTR_XCOEFLIN_LBYW, & DPTR_NKLIN_LBXM,DPTR_XCOEFLIN_LBXM,DPTR_NKLIN_LBYM,DPTR_XCOEFLIN_LBYM ) ! DPTR_XLBXUM=>XLBXUM DPTR_XLBYUM=>XLBYUM DPTR_XLBXVM=>XLBXVM DPTR_XLBYVM=>XLBYVM DPTR_XLBXWM=>XLBXWM DPTR_XLBYWM=>XLBYWM DPTR_XLBXTHM=>XLBXTHM DPTR_XLBYTHM=>XLBYTHM DPTR_XLBXTKEM=>XLBXTKEM DPTR_XLBYTKEM=>XLBYTKEM DPTR_XLBXRM=>XLBXRM DPTR_XLBYRM=>XLBYRM DPTR_XLBXSVM=>XLBXSVM DPTR_XLBYSVM=>XLBYSVM CALL INI_ONE_WAY_n(NDAD(KMI),CLUOUT,XTSTEP,KMI,1, & DPTR_XBMX1,DPTR_XBMX2,DPTR_XBMX3,DPTR_XBMX4,DPTR_XBMY1,DPTR_XBMY2,DPTR_XBMY3,DPTR_XBMY4, & DPTR_XBFX1,DPTR_XBFX2,DPTR_XBFX3,DPTR_XBFX4,DPTR_XBFY1,DPTR_XBFY2,DPTR_XBFY3,DPTR_XBFY4, & NDXRATIO_ALL(KMI),NDYRATIO_ALL(KMI),NDTRATIO(KMI), & DPTR_CLBCX,DPTR_CLBCY,NRIMX,NRIMY, & DPTR_NKLIN_LBXU,DPTR_XCOEFLIN_LBXU,DPTR_NKLIN_LBYU,DPTR_XCOEFLIN_LBYU, & DPTR_NKLIN_LBXV,DPTR_XCOEFLIN_LBXV,DPTR_NKLIN_LBYV,DPTR_XCOEFLIN_LBYV, & DPTR_NKLIN_LBXW,DPTR_XCOEFLIN_LBXW,DPTR_NKLIN_LBYW,DPTR_XCOEFLIN_LBYW, & DPTR_NKLIN_LBXM,DPTR_XCOEFLIN_LBXM,DPTR_NKLIN_LBYM,DPTR_XCOEFLIN_LBYM, & CCLOUD, LUSECHAQ, LUSECHIC, & DPTR_XLBXUM,DPTR_XLBYUM,DPTR_XLBXVM,DPTR_XLBYVM,DPTR_XLBXWM,DPTR_XLBYWM, & DPTR_XLBXTHM,DPTR_XLBYTHM, & DPTR_XLBXTKEM,DPTR_XLBYTKEM, & DPTR_XLBXRM,DPTR_XLBYRM,DPTR_XLBXSVM,DPTR_XLBYSVM ) END IF ! ! !------------------------------------------------------------------------------- ! !* 15. INITIALIZE THE SCALAR VARIABLES ! ------------------------------- ! IF (LLG .AND. LINIT_LG .AND. CPROGRAM=='MESONH') & CALL INI_LG(XXHAT,XYHAT,XZZ,XSVT,XLBXSVM,XLBYSVM) ! !* 16. BUILT THE GENERIC OUTPUT NAME ! ---------------------------- ! WRITE(COUTFILE,'(A,".",I1,".",A)') CEXP,KMI,TRIM(ADJUSTL(CSEG)) WRITE(CFMDIAC, '(A,".",I1,".",A)') CEXP,KMI,TRIM(ADJUSTL(CSEG))//'.000' IF (CPROGRAM=='MESONH') THEN IF ( NDAD(KMI) == 1) CDAD_NAME(KMI) = CEXP//'.1.'//CSEG IF ( NDAD(KMI) == 2) CDAD_NAME(KMI) = CEXP//'.2.'//CSEG IF ( NDAD(KMI) == 3) CDAD_NAME(KMI) = CEXP//'.3.'//CSEG IF ( NDAD(KMI) == 4) CDAD_NAME(KMI) = CEXP//'.4.'//CSEG IF ( NDAD(KMI) == 5) CDAD_NAME(KMI) = CEXP//'.5.'//CSEG IF ( NDAD(KMI) == 6) CDAD_NAME(KMI) = CEXP//'.6.'//CSEG IF ( NDAD(KMI) == 7) CDAD_NAME(KMI) = CEXP//'.7.'//CSEG IF ( NDAD(KMI) == 8) CDAD_NAME(KMI) = CEXP//'.8.'//CSEG END IF ! !------------------------------------------------------------------------------- ! !* 17. INITIALIZE THE PARAMETERS FOR THE DYNAMICS ! ------------------------------------------ ! CALL INI_DYNAMICS(HLUOUT,XLON,XLAT,XRHODJ,XTHVREF,XMAP,XZZ,XDXHAT,XDYHAT, & XZHAT,CLBCX,CLBCY,XTSTEP, & LVE_RELAX,LVE_RELAX_GRD,LHORELAX_UVWTH,LHORELAX_RV, & LHORELAX_RC,LHORELAX_RR,LHORELAX_RI,LHORELAX_RS,LHORELAX_RG, & LHORELAX_RH,LHORELAX_TKE,LHORELAX_SV, & LHORELAX_SVC2R2,LHORELAX_SVC1R3,LHORELAX_SVELEC,LHORELAX_SVLG, & LHORELAX_SVCHEM,LHORELAX_SVAER,LHORELAX_SVDST,LHORELAX_SVSLT, & LHORELAX_SVPP,LHORELAX_SVCS,LHORELAX_SVCHIC, & #ifdef MNH_FOREFIRE LHORELAX_SVFF, & #endif XRIMKMAX,NRIMX,NRIMY, & XALKTOP,XALKGRD,XALZBOT,XALZBAS, & XT4DIFU,XT4DIFTH,XT4DIFSV, & XCORIOX,XCORIOY,XCORIOZ,XCURVX,XCURVY, & XDXHATM,XDYHATM,XRHOM,XAF,XBFY,XCF,XTRIGSX,XTRIGSY,NIFAXX,NIFAXY,& XALK,XALKW,NALBOT,XALKBAS,XALKWBAS,NALBAS, & LMASK_RELAX,XKURELAX,XKVRELAX,XKWRELAX, & XDK2U,XDK4U,XDK2TH,XDK4TH,XDK2SV,XDK4SV, & LZDIFFU,XZDIFFU_HALO2, & XBFB,XBF_SXP2_YP1_Z ) ! !------------------------------------------------------------------------------- ! !* 18. SURFACE FIELDS ! -------------- ! !* 18.1 Radiative setup ! --------------- ! IF (CRAD /= 'NONE') THEN IF (CGETRAD =='INIT') THEN GINIRAD =.TRUE. ELSE GINIRAD =.FALSE. END IF CALL INI_RADIATIONS(HINIFILE,HLUOUT,GINIRAD,TDTCUR,TDTEXP,XZZ, & XDXX, XDYY, & XSINDEL,XCOSDEL,XTSIDER,XCORSOL, & XSLOPANG,XSLOPAZI, & XDTHRAD,XDIRFLASWD,XSCAFLASWD, & XFLALWD,XDIRSRFSWD,NCLEARCOL_TM1, & XZENITH,XAZIM, & TDTRAD_FULL,TDTRAD_CLONLY, & TZINITHALO2D_ll, & XRADEFF,XSWU,XSWD,XLWU, & XLWD,XDTHRADSW,XDTHRADLW ) ! IF (GINIRAD) CALL SUNPOS_n(XZENITH,PAZIMSOL=XAZIM) CALL SURF_SOLAR_GEOM (XZS, XZS_XY) ! ALLOCATE(XXHAT_ll (IIU_ll)) ALLOCATE(XYHAT_ll (IJU_ll)) ALLOCATE(XZS_ll (IIU_ll,IJU_ll)) ALLOCATE(XZS_XY_ll (IIU_ll,IJU_ll)) ! CALL GATHERALL_FIELD_ll('XY',XZS,XZS_ll,IRESP) CALL GATHERALL_FIELD_ll('XY',XZS_XY,XZS_XY_ll,IRESP) CALL GATHERALL_FIELD_ll('XX',XXHAT,XXHAT_ll,IRESP) CALL GATHERALL_FIELD_ll('YY',XYHAT,XYHAT_ll,IRESP) XZS_MAX_ll=MAXVAL(XZS_ll) ELSE XAZIM = XPI XZENITH = XPI/2. XDIRSRFSWD = 0. XSCAFLASWD = 0. XFLALWD = 300. ! W/m2 XTSIDER = 0. END IF ! ! CALL INI_SW_SETUP (CRAD,NSWB_MNH,XSW_BANDS) ! ! ! 18.1.1 Special initialisation for CO2 content ! CO2 (molar mass=44) horizontally and vertically homogeneous at 360 ppm ! XCCO2 = 360.0E-06 * 44.0E-03 / XMD ! ! !* 18.2 Externalized surface fields ! --------------------------- ! ALLOCATE(ZCO2(IIU,IJU)) ZCO2(:,:) = XCCO2 ! ALLOCATE(ZDIR_ALB(IIU,IJU,NSWB_MNH)) ALLOCATE(ZSCA_ALB(IIU,IJU,NSWB_MNH)) ALLOCATE(ZEMIS (IIU,IJU)) ALLOCATE(ZTSRAD (IIU,IJU)) ! IF (IMASDEV>=46) THEN CALL FMREAD(HINIFILE,'SURF',HLUOUT,'--',CSURF,IGRID,ILENCH,YCOMMENT,IRESP) ELSE CSURF = "EXTE" END IF ! ! IF (CSURF=='EXTE' .AND. (CPROGRAM=='MESONH' .OR. CPROGRAM=='DIAG ')) THEN ! ouverture du fichier PGD IF ( LEN_TRIM(CINIFILEPGD) > 0 ) THEN CALL FMOPEN_ll(CINIFILEPGD,'READ',HLUOUT,0,2,NVERB,ININAR,IRESP,OPARALLELIO=.FALSE.) IF (IRESP/=0) THEN WRITE(ILUOUT,FMT=*) "INI_MODEL_n ERROR TO OPEN THE FILE CINIFILEPGD=",CINIFILEPGD WRITE(ILUOUT,FMT=*) "CHECK YOUR NAMELIST NAM_LUNITn" !callabortstop CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP) CALL ABORT STOP ENDIF ELSE ! case after a spawning CINIFILEPGD = HINIFILE END IF ! CALL GOTO_SURFEX(KMI,.TRUE.) !* initialization of surface CALL INIT_GROUND_PARAM_n ('ALL',SIZE(CSV),CSV,ZCO2, & XZENITH,XAZIM,XSW_BANDS,ZDIR_ALB,ZSCA_ALB, & ZEMIS,ZTSRAD ) ! IF (SIZE(XEMIS)>0) THEN XDIR_ALB = ZDIR_ALB XSCA_ALB = ZSCA_ALB XEMIS = ZEMIS XTSRAD = ZTSRAD CALL MNHGET_SURF_PARAM_n (PSEA=XSEA) END IF ELSE !* fields not physically necessary, but must be initialized IF (SIZE(XEMIS)>0) THEN XDIR_ALB = 0. XSCA_ALB = 0. XEMIS = 1. XTSRAD = XTT XSEA = 1. END IF END IF IF (CSURF=='EXTE' .AND. (CPROGRAM=='SPAWN ')) THEN ! ouverture du fichier PGD CALL FMOPEN_ll(CINIFILEPGD,'READ',HLUOUT,0,2,NVERB,ININAR,IRESP,OPARALLELIO=.FALSE.) IF (IRESP/=0) THEN WRITE(ILUOUT,FMT=*) "INI_MODEL_n ERROR TO OPEN THE FILE CINIFILEPGD=",CINIFILEPGD WRITE(ILUOUT,FMT=*) "CHECK YOUR NAMELIST NAM_LUNIT2_SPA" !callabortstop CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP) CALL ABORT STOP ENDIF ENDIF ! !* special case after spawning in prep_real_case IF (CSURF=='EXRM' .AND. CPROGRAM=='REAL ') CSURF = 'EXTE' ! DEALLOCATE(ZDIR_ALB) DEALLOCATE(ZSCA_ALB) DEALLOCATE(ZEMIS ) DEALLOCATE(ZTSRAD ) ! DEALLOCATE(ZCO2) ! ! !* in a RESTART case, reads surface radiative quantities in the MESONH file ! IF (CRAD == 'ECMW' .AND. CGETRAD=='READ') THEN CALL INI_SURF_RAD(HINIFILE, CLUOUT, XDIR_ALB, XSCA_ALB, XEMIS, XTSRAD) END IF ! ! !* 18.3 Mesonh fields ! ------------- ! IF (CPROGRAM/='REAL ') CALL MNHREAD_ZS_DUMMY_n(CINIFILEPGD) ! !------------------------------------------------------------------------------- ! !* 19. INITIALIZE THE PARAMETERS FOR THE PHYSICS ! ----------------------------------------- ! IF (CRAD == 'ECMW') THEN ! !* get cover mask for aerosols ! IF (CPROGRAM=='MESONH' .OR. CPROGRAM=='DIAG ') THEN ALLOCATE(ZSEA(IIU,IJU)) ALLOCATE(ZTOWN(IIU,IJU)) ALLOCATE(ZBARE(IIU,IJU)) IF (CSURF=='EXTE') THEN CALL GOTO_SURFEX(KMI,.TRUE.) CALL MNHGET_SURF_PARAM_n(PSEA=ZSEA,PTOWN=ZTOWN,PBARE=ZBARE) ELSE ZSEA (:,:) = 1. ZTOWN(:,:) = 0. ZBARE(:,:) = 0. END IF ! CALL INI_RADIATIONS_ECMWF (HINIFILE,HLUOUT, & XZHAT,XPABST,XTHT,XTSRAD,XLAT,XLON,TDTCUR,TDTEXP, & CLW,NDLON,NFLEV,NFLUX,NRAD,NSWB,CAER,NAER,NSTATM, & XSTATM,ZSEA,ZTOWN,ZBARE,XOZON, XAER,XDST_WL, LSUBG_COND ) ! DEALLOCATE(ZSEA,ZTOWN,ZBARE) ALLOCATE (XAER_CLIM(SIZE(XAER,1),SIZE(XAER,2),SIZE(XAER,3),SIZE(XAER,4))) XAER_CLIM(:,:,:,:) =XAER(:,:,:,:) ! END IF ELSE ALLOCATE (XOZON(0,0,0)) ALLOCATE (XAER(0,0,0,0)) ALLOCATE (XDST_WL(0,0,0,0)) ALLOCATE (XAER_CLIM(0,0,0,0)) END IF ! ! ! IF (CDCONV /= 'NONE' .OR. CSCONV == 'KAFR') THEN IF (CGETCONV=='INIT') THEN GINIDCONV=.TRUE. ELSE GINIDCONV=.FALSE. END IF ! ! commensurability between convection calling time and time step ! XDTCONV=XTSTEP*REAL( INT( (MIN(XDTCONV,1800.)+1.E-10)/XTSTEP ) ) XDTCONV=MAX( XDTCONV, XTSTEP ) IF (NVERB>=10) THEN WRITE(ILUOUT,*) 'XDTCONV has been set to : ',XDTCONV END IF CALL INI_DEEP_CONVECTION (HINIFILE,HLUOUT,GINIDCONV,TDTCUR, & NCOUNTCONV,XDTHCONV,XDRVCONV,XDRCCONV, & XDRICONV,XPRCONV,XPRSCONV,XPACCONV, & XUMFCONV,XDMFCONV,XMFCONV,XPRLFLXCONV,XPRSFLXCONV,& XCAPE,NCLTOPCONV,NCLBASCONV, & TDTDCONV, CGETSVCONV, XDSVCONV, & LCH_CONV_LINOX, XIC_RATE, XCG_RATE, & XIC_TOTAL_NUMBER, XCG_TOTAL_NUMBER ) END IF ! !------------------------------------------------------------------------------- ! ! !* 19. ALLOCATION OF THE TEMPORAL SERIES ! --------------------------------- ! IF (LSERIES .AND. CPROGRAM/='DIAG ') CALL INI_SERIES_n ! !------------------------------------------------------------------------------- ! ! !* 20. (re)initialize scalar variables ! ------------------------------- ! ! IF ( LUSECHEM .OR. LCHEMDIAG ) THEN IF (CPROGRAM=='MESONH'.AND.CCONF=='RESTA') LCH_INIT_FIELD =.FALSE. IF (CPROGRAM=='MESONH'.OR. CPROGRAM=='DIAG ' .OR. CPROGRAM=='IDEAL ') & CALL CH_INIT_FIELD_n(KMI, ILUOUT, NVERB) END IF ! !------------------------------------------------------------------------------- ! !* 22. UPDATE HALO ! ----------- ! ! CALL UPDATE_HALO_ll(TZINITHALO3D_ll,IINFO_ll) CALL UPDATE_HALO_ll(TZINITHALO2D_ll,IINFO_ll) CALL CLEANLIST_ll(TZINITHALO3D_ll) CALL CLEANLIST_ll(TZINITHALO2D_ll) ! ! !------------------------------------------------------------------------------- ! !* 23. DEALLOCATION ! ------------- ! DEALLOCATE(ZJ) ! DEALLOCATE(XSTROATM) DEALLOCATE(XSMLSATM) DEALLOCATE(XSMLWATM) DEALLOCATE(XSPOSATM) DEALLOCATE(XSPOWATM) ! !------------------------------------------------------------------------------- ! !* 24. BALLOON and AIRCRAFT initializations ! ------------------------------------ ! CALL INI_AIRCRAFT_BALLOON(HINIFILE,CLUOUT,XTSTEP, TDTSEG, XSEGLEN, NRR, NSV, & IKU,CTURB=="TKEL" , & XLATORI, XLONORI ) ! !------------------------------------------------------------------------------- ! !* 25. STATION initializations ! ----------------------- ! CALL INI_SURFSTATION_n(CLUOUT,XTSTEP, TDTSEG, XSEGLEN, NRR, NSV, & CTURB=="TKEL" , & XLATORI, XLONORI ) ! !------------------------------------------------------------------------------- ! !* 26. PROFILER initializations ! ------------------------ ! CALL INI_POSPROFILER_n(CLUOUT,XTSTEP, TDTSEG, XSEGLEN, NRR, NSV, & CTURB=="TKEL", & XLATORI, XLONORI ) ! !------------------------------------------------------------------------------- ! !* 28. Prognostic aerosols ! ------------------------ ! CALL INI_AEROSET1 CALL INI_AEROSET2 CALL INI_AEROSET3 CALL INI_AEROSET4 CALL INI_AEROSET5 CALL INI_AEROSET6 #ifdef MNH_FOREFIRE ! !------------------------------------------------------------------------------- ! !* 29. FOREFIRE initializations ! ------------------------ ! ! Coupling with ForeFire if resolution is low enough !--------------------------------------------------- IF ( LFOREFIRE .AND. 0.5*(XXHAT(2)-XXHAT(1)+XYHAT(2)-XYHAT(1)) < COUPLINGRES ) THEN FFCOUPLING = .TRUE. ELSE FFCOUPLING = .FALSE. ENDIF ! Initializing the ForeFire variables !------------------------------------ IF ( LFOREFIRE ) THEN CALL INIT_FOREFIRE_n(KMI, ILUOUT, IP & , TDTCUR%TDATE%YEAR, TDTCUR%TDATE%MONTH, TDTCUR%TDATE%DAY, TDTCUR%TIME, XTSTEP) END IF #endif END SUBROUTINE INI_MODEL_n