
Sparse symmetric preconditioners for dense linear systems in

electromagnetism

B. Carpentieri∗† I.S. Duff∗‡ L. Giraud∗ M. Magolu monga Made§

CERFACS Technical Report TR/PA/01/35

Abstract

We consider symmetric preconditioning strategies for the iterative solution of dense

complex symmetric non-Hermitian systems arising in computational electromagnetics. In

particular we report on the numerical behaviour of the classical Incomplete Cholesky

factorization as well as some of its recent variants and consider also well known factorized

approximate inverses. We illustrate the difficulties that those techniques encounter on

the linear systems under consideration and give some clues to explain their disappointing

behaviour. We propose two symmetric preconditioners based on Frobenius-norm minimization

that use a prescribed sparsity pattern. The numerical and computational efficiency of the

proposed preconditioners are illustrated on a set of model problems arising both from academic

and from industrial applications.

Keywords: Preconditioning techniques, Frobenius-norm minimization method, factorized

approximate inverse, Incomplete Cholesky factorization, nonzero pattern selection strategies,

electromagnetic scattering applications.

AMS subject classification: 65F10, 65F50, 65N38, 65R20, 78A45, 78A50, 78-08

1 Introduction

In electromagnetism calculations, finding the scattered wave of a given incident field on a scattering
obstacle requires the solution of a linear system of equations. Such analysis, relying on Maxwell’s
equations, is required in the simulation of many industrial processes coming from antenna design
to absorbing materials, electromagnetic compatibility, and so on. Recently the Boundary Element
Method (BEM) has been successfully employed in the numerical solution of this class of problems,
proving to be an effective alternative to common discretization schemes like Finite Element
Methods (FEM’s), Finite Difference Methods (FDM’s) or Finite Volume Method (FVM’s). The
idea of BEM is to shift the focus from solving a partial differential equation defined on a closed or
unbounded domain to solving a boundary integral equation over the finite part of the boundary.
The discretization by BEM results in linear systems with dense complex matrices. The coefficient
matrix can be symmetric non-Hermitian in the Electric Field Integral Equation formulation (EFIE),
or unsymmetric in the Combined Field Integral Equation formulation (CFIE) (see [27] for further
details). The unknowns are associated with the edges of an underlying mesh on the surface of
the object. With the advent of parallel processing, this approach has become viable for large

∗CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse Cedex, France
†The work of this author was supported by I.N.D.A.M. (Rome, Italy) under a grant (Borsa di Studio per l’estero,

Provvedimento del Presidente del 30 Aprile 1998)
‡Also at RAL, Oxfordshire, England
§Université Libre de Bruxelles, Faculté des Sciences Appliquées , Service de Metrologie Nucléaire, CPI 165/84,

50, av. F.D. Roosevelt, B-1050 BRUXELLES

1

problems and the typical problem size in the electromagnetics industry is continually increasing.
Nevertheless, nowadays, many problems can no longer be solved by parallel out-of-core direct
solvers as they require too much memory, CPU and disk resources and iterative solvers appear
as a viable alternative. Here we will only consider cases where the matrix is symmetric because
EFIE usually gives rise to linear systems that are more difficult to solve with iterative methods.
Another motivation to focus only on EFIE formulation is that it does not require any restriction
on the geometry of the scattering obstacle as CFIE does and in this respect is more general.

Thus, in this paper, we are concerned with symmetric preconditioning of linear systems of
equations of the form

Ax = b, (1)

where the coefficient matrix A = [aij] is dense, complex, symmetric and non-Hermitian, and
arises from the discretization of boundary integral equations in electromagnetism. When iterative
methods are used for the solution of (1), preconditioning plays a key role. Earlier works [1, 10]
showed that sparse approximate inverse methods based on Frobenius-norm minimization give rise
to effective and robust preconditioners. However, the preconditioners considered in these papers
were not symmetric and consequently might not have fully exploited all the characteristics of the
linear system. To complete these earlier studies, we now investigate implicit and explicit symmetric
preconditioners, with an emphasis again on approximate inverse techniques.

In Section 2, we consider different approaches to construct symmetric preconditioners. More
precisely in Section 2.1 we introduce some strategies for building symmetric preconditioners based
on Frobenius-norm minimization. In the later sections, we briefly present more classical techniques
like a factorized approximate inverse preconditioner namely AINV [6, 7, 9] and FSAI [20], and
incomplete Cholesky factorization [24]. In Section 3, we study the numerical behaviour of those
preconditioners on a set of model problems representative of real calculations in electromagnetics
applications. In particular, we give some clues to explain the poor behaviour of some of them. We
conclude this paper with some remarks in Section 4.

2 Symmetric preconditioning for dense problems

In this section we consider different methods which compute symmetric preconditioners of both
implicit and explicit type for the iterative solution of the linear system (1). All the preconditioners
are computed using as input Ã, a sparse approximation of the dense coefficient matrix A.
Several heuristics can be used for defining the sparsity pattern for Ã based either on algebraic
considerations [1] or on using information from the underlying mesh [10]. In the following, we
only consider a geometric approach, which is the only one that can be efficiently implemented in a
parallel fast multipole environment [11]. In BEM calculations, each equation is associated with one
edge of the mesh and the pattern of Ã is defined as follows: for each edge we select all those edges
within a sufficiently large sphere centered on that edge that defines its geometric neighbourhood.
By using a suitable size for this sphere and because of the rapid decay of the Green’s functions,
we hope to include the most relevant contributions from A in the approximate matrix Ã.

2.1 Frobenius-norm minimization methods

A natural way to compute an explicit preconditioner is based on Frobenius-norm minimization [3,
4, 5, 16]. The idea is to compute the sparse approximate inverse as the matrix M which minimizes
‖I −MA‖F (or ‖I −AM‖F for right preconditioning) subject to certain sparsity constraints. The
Frobenius norm is usually chosen since it allows the decoupling of the constrained minimization
problem into n independent linear least-squares problems, one for each column of M (when
preconditioning from the right) or row of M (when preconditioning from the left).

2

The independence of these least-squares problems follows immediately from the identity:

‖I − MA‖2
F = ‖I − AMT ‖2

F =

n∑

j=1

‖ej − Amj•‖
2
2 (2)

where ej is the jth canonical unit vector and mj• is the column vector representing the jth row of
M .
In the case of right preconditioning, the analogous relation

‖I − AM‖2
F =

n∑

j=1

‖ej − Am•j‖
2
2 (3)

holds, where m•j is the column vector representing the jth column of M . Clearly, there is
considerable scope for parallelism in this approach. By construction, the sparse approximate
inverse computed is not guaranteed to be symmetric, and usually is not, even if a symmetric
pattern is imposed on M . This fact prevents the use of symmetric Krylov solvers.

In this section we consider two possible symmetrization strategies for Frobenius-norm
minimization using a prescribed pattern for the preconditioner based on geometric information.
Similarly to the procedure used to define Ã, for each edge we select all those edges within a
sufficiently large sphere that defines our geometric neighbourhood. By using a suitable size for
this sphere, we hope to include the most relevant contributions to the inverse and consequently to
obtain an effective sparse approximate inverse. For those preconditioners, we select a smaller sphere
than the one used to define Ã. Consequently we compute less nonzeros than the number retained
in the sparse approximation of A (we refer to [10] for the complete and detailed description). If
MFrob denotes the unsymmetric matrix resulting from the minimization (2), the first strategy
simply averages its off-diagonal entries. That is

MAver−Frob =
MFrob + MT

Frob

2
. (4)

An alternative way to construct a symmetric sparse approximate inverse is to only compute the
lower triangular part, including the diagonal, of the preconditioner. The nonzeros calculated are
reflected with respect to the diagonal and are used to update the right-hand sides of the subsequent
least-squares problems involved in the construction of the remaining columns of the preconditioner.
More precisely, in the computation of the k-th column of the preconditioner, the entries mik for
i < k are set to mki that are already available and only the lower diagonal entries are computed.
The entries mki are then used to update the right-hand sides of the least-squares problems which
involve the remaining unknowns mik, for k ≥ i. The least-squares problems are as follows:

min‖ẽj − Âm̃•j‖
2
2 (5)

where êj = ej −
∑

k<j â•kmkj , m̃ = {mkj}k≥j and Â = Ã(•, k), for all k < j. In the following,
this preconditioner is referred to as MSym−Frob. It should be noted that the preconditioner built
using this approach does not any more minimize any Frobenius norm and it might be sensitive to
the ordering of columns. In addition, if m denotes the number of nonzeros entries in MSym−Frob,
this methods only computes (m+n)/2 nonzeros. Thus the overall computational complexity for the
construction of MSym−Frob can be considerably smaller than for MAver−Frob as the least-squares
problems are usually solved by QR factorizations whose complexity is of the order of the square
in the number of unknowns and linear in the number of equations.

2.2 Classical symmetric preconditioners

2.2.1 Factorized sparse approximate preconditioners

An alternative way to construct a symmetric sparse approximate inverse is to compute it in
factorized form. In this paper we consider two classical techniques, the first constructs an

3

approximation of the inverse of the factors using an Ã-biconjugation process [9] and the other
one a Frobenius-norm minimization technique [19].

If the matrix Ã can be written in the form LDU where L is unit lower triangular, D is diagonal
and U is unit upper triangular, then its inverse can be decomposed as Ã−1 = U−1D−1L−1 =
ZD−1W T where Z = U−1 and W = L−T are unit triangular. Factorized sparse approximate
inverse techniques compute sparse approximations Z̄ ≈ Z and W̄ ≈ W , so that the resulting
preconditioner will be M = Z̄D̄−1W̄ T ≈ Ã−1, for D̄ ≈ D.

In the approach known as AINV the triangular factors are computed by means of two sets
of Ã-biconjugate vectors {zi}

n
i=1, {wi}

n
i=1, such that wT

i Ãzj = 0 if and only if i 6= j. Then,
introducing the matrices Z = [z1, z2, ...zn], and W = [w1, w2, ...wn], the relation

W T ÃZ = D =

p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...
0 0 . . . pn

holds, where pi = wT
i Ãzi 6= 0 , and the inverse is equal to

Ã−1 = ZD−1W T =

n∑

i=1

ziw
T
i

pi

.

The two sets of Ã-biconjugate vectors are computed by means of a (two-sided) Gram-Schmidt
orthogonalization process with respect to the bilinear form associated with Ã. In exact arithmetic
this process can be completed if and only if Ã admits a LU factorization. AINV does not require a
pattern prescribed in advance for the approximate inverse factors, and sparsity is preserved during
the process, by discarding elements having magnitude smaller than a given positive threshold.

An alternative approach was proposed by Kolotilina and Yeremin in a series of papers
([20],[21],[22] and [23]). This approach, known as FSAI , approximates Ã−1 by the factorization
GT G, where G is a sparse lower triangular matrix approximating the inverse of the lower triangular
Cholesky factor, L̃, of Ã. This technique has obtained good results on some difficult problems and
is suitable for parallel implementation, but it requires an a priori prescription for the sparsity
pattern for the approximate factors. Minimizing ||I−GL̃||2F can be accomplished without knowing
the Cholesky factor L̃ by solving the normal equations

{GL̃L̃T }ij = L̃T
ij , (i, j) ∈ SL̃ (6)

where SL̃ is a lower triangular nonzero pattern for G. Equation (6) can be replaced by

{ḠÃ}ij = Iij , (i, j) ∈ SL̃ (7)

where Ḡ = D̃−1G and D̃ is the diagonal of L̃. Then, each row of Ḡ can be computed independently
by solving a small linear system. The preconditioned linear system has the form

GÃGT = D̃ḠÃḠT D̃.

The matrix D̃ is not known and is generally chosen so that the diagonal of GÃGT is all ones.

2.2.2 Incomplete Cholesky factorization

In this section we consider another classical symmetric preconditioner, that is the incomplete
Cholesky factorization normally denoted by IC. We assume that the standard IC factorization
matrix M of Ã is given in the following form

M = LDLT , (8)

4

where D and L stand for, respectively, the diagonal matrix and the unit lower triangular matrix
whose entries are computed by means of the algorithm given in Figure 1. The set F of fill-in entries
to be kept is given by

F = { (k, i) | lev(lk,i) ≤ ` } ,

where integer ` denotes a user specified maximal fill-in level. The level lev(lk,i) of the coefficient
lk,i of L is defined by:

Initialization

lev(lk,i) =

0 if lk,i 6= 0 or k = i

∞ otherwise
Factorization

lev(lk,i) = min { lev(lk,i) , lev(li,j) + lev(lk,j) + 1 } .

The resulting preconditioner is usually denoted by IC(`). Alternative strategies that dynamically
discard fill-in entries are summarized in [29].

Compute D and L

Initialization phase

di,i = ãi,i , i = 1, 2, · · · , n

li,j = ãi,j , i = 2, · · · , n , j = 1, 2, · · · , i − 1

Incomplete factorization process

do j = 1, 2, · · · , n − 1

do i = j + 1, j + 2, · · · , n

di,i = di,i −
l2
i,j

dj,j

li,j =
li,j

dj,j

do k = i + 1, i + 2, · · · , n

if (i, k) ∈ F lk,i = lk,i − li,j lk,j

end do

end do

end do

Figure 1: Incomplete factorization algorithm - M = LDLT .

3 Numerical experiments

To study the numerical behaviour of the preconditioners described in the previous section, we
consider a set of test examples representative of calculations in electromagnetics applications.
Those tests examples are defined by:

Example 1: a cylinder with a hollow inside, a matrix of order n = 1080, see Figure 2(a);

Example 2: a cylinder with a break on the surface, a matrix of order n = 1299, see Figure 2(b);

5

Example 3: a satellite, a matrix of order n = 1701, see Figure 2(c);

Example 4: a parallelepiped, a matrix of order n = 2016, see Figure 2(d); and

Example 5: a sphere, a matrix of order n = 2430, Figure 2(e).

We mention that, for physical consistency, we have set the frequency of the incident wave so that
there are about ten discretization points per wavelength [2].

We investigate the behaviour of the preconditioners when used to accelerate restarted
GMRES [30] and symmetric QMR [17]. For all the numerical experiments with GMRES we
use the implementation described in [15]. In each case, we take as the initial guess x0 = 0, and
the right-hand side is such that the exact solution of the system is known. We perform different
tests with different known solutions, observing identical results. The stopping criterion in all cases
just consists in reducing the original residual by 10−5 that then can be related to a norm-wise
backward error. In all the tables, the symbol “-” means that convergence is not obtained after 500
iterations. All the numerical experiments are performed in double precision complex arithmetic on
a SGI Origin 2000 and the number of iterations reported in this paper are for right preconditioning.

In order to illustrate the trend in the behaviour of these preconditioners, we first show in Table 1
the number of iterations required to compute the solution on Example 2. All the preconditioners
are computed using the same sparse approximation of the original matrix and all have roughly the
same number of nonzeros entries. In Table 1 we give the number of iterations for both GMRES
and SQMR that actually also corresponds to the number of matrix-vector products that is the
most time consuming part of the algorithms. Nevertheless, it should be noted that for the other
parts of the algorithms the coupled two term recurrences of SQMR is much cheaper than the
orthogonalization and least-squares solution involved in GMRES. From a memory point of view,
SQMR is also much less demanding; if we used the same memory workspace for GMRES as for
SQMR, the largest restart would be 5.

Example 2 - Density of Ã = 3.18% - Density of M = 1.99%
Precond. GMRES(30) GMRES(80) GMRES(∞) SQMR
MFrob 57 43 43 *
MAver−Frob 59 44 44 34
MSym−Frob 60 46 46 41
IC(0) - 238 117 128
AINV - - - -
FSAI - - - -

Table 1: Number of iterations using both symmetric and unsymmetric preconditioners and Krylov
methods on a test example.

Frobenius-norm minimization type methods can deliver a good rate of convergence compared
to standard IC, while the results observed with factorized approximate inverses are disappointing.
We intend, in the following sections, to understand the numerical behaviour of these methods
on electromagnetic problems, identifying some potential causes of failure and proposing possible
strategies to enhance their performance.

3.1 Possible causes of failure of factorized approximate inverses

One potential difficulty with the factorized approximate inverse method AINV is the tuning of
the threshold parameter that controls the fill-in in the inverse factors. For a typical example we
display in Figure 3 the sparsity pattern of of A−1 (a) and L−1 (b), the inverse of its Cholesky
factor, where all the entries smaller than 5.0 × 10−2 have been dropped after a symmetric scaling

6

such that maxi |aji| = maxi |`ji| = 1. The location of the large entries in the inverse matrix exhibit
some structure. In addition, only a very small number of its entries have large magnitude compared
to the others that are much smaller. This fact has been successfully exploited to define various
a priori pattern selection strategies for Frobenius norm minimization preconditioners [1, 10] in a
non-factorized form. On the contrary, the inverse factors can be totally unstructured as shown
in Figure 3 (b). In this case, the a priori selection of a sparse pattern for the factors can be
extremely hard as no real structures are revealed, preventing the use of techniques like FSAI . In
Figure 4 we plot the magnitude of the entries in the first column of A−1 and L−1 with respect to
their row index. Those plots indicate that any dropping strategy, either static or dynamic, may
be very difficult to tune as it can easily discard relevant information and potentially lead to a very
poor preconditioner. Selecting too small a threshold would retain too many entries and lead to
a fairly dense preconditioner. A larger threshold would yield a sparser preconditioner but might
discard too many entries of moderate magnitude that are important for the preconditioner. For
those problems, finding the appropriate threshold to enable a good trade-off between sparsity and
numerical efficiency is challenging and very problem-dependent.

3.2 Numerical experiments with incomplete Cholesky factorization

In Table 2, we display the number of iterations using an incomplete Cholesky factorization
preconditioner on Example 3. The reported behaviour is representative of what was observed
on the other test examples. We show results for increasing values of the density for the sparse
approximation of A as well as various levels of fill-in. The general trend is that increasing the
fill-in generally produces a much more robust preconditioner than IC(0) applied to a denser sparse
approximation of the original matrix. Moreover, IC(`) with ` ≥ 1 might deliver a good rate of
convergence if the coefficient matrix is not too sparse.

Example 3

Density of Ã = 2.97 %
IC(level) Density of M GMRES(30) GMRES(50) SQMR
IC(0) 2.97 % – 300 154
IC(1) 5.70 % 239 131 102
IC(2) 8.27 % 173 95 80

Density of Ã = 4.05 %
IC(level) Density of M GMRES(30) GMRES(50) SQMR
IC(0) 4.05 % – – 207
IC(1) 7.90 % 80 50 54
IC(2) 11.39 % 39 33 33

Density of Ã = 5.03 %
IC(level) Density of M GMRES(30) GMRES(50) SQMR
IC(0) 5.03 % – – 205
IC(1) 9.75 % 100 75 58
IC(2) 13.94 % 24 24 21

Density of Ã = 6.05 %
IC(level) Density of M GMRES(30) GMRES(50) SQMR
IC(0) 6.05 % – – 173
IC(1) 12.03 % 75 48 50
IC(2) 17.07 % 19 19 18

Table 2: Number of iterations varying the sparsity level of Ã and the level of fill-in on Example 3.

7

However, on indefinite problems the numerical behaviour of IC can be fairly chaotic. In Table 3
we show the number of iterations for Example 5. As in the previous table, the preconditioner is
computed from a sparse approximation of the dense coefficient matrix. Different values of density
in the sparsified matrix are considered and various levels of fill-in are allowed in the factors. The
factorization of a very sparse approximation (up to 2 %) of the coefficient matrix can be stable and
deliver a good rate of convergence, especially if at least one level of fill-in is retained. For higher
values of density for the approximation of A, the factors may become very ill-conditioned and
consequently the preconditioner is very poor. This behaviour has been already observed on sparse
real indefinite systems, see for instance [12]. As an attempt for a possible remedy, following [25, 26],

we apply IC(`) to a perturbation of Ã by a complex diagonal matrix, more specifically, we use

Ãτ = Ã + i τh∆r , (9)

where ∆r = diag(Re(A)) = diag(Re(Ã)), and τ stands for a nonnegative real parameter, while

h = n− 1

d with d = 3 (the space dimension). (10)

The intention is to move the eigenvalues of the preconditioned system along the imaginary axis
and thus avoid a possible eigenvalue cluster close to zero.

In Table 4, we show the number of SQMR iterations for different values of τ , the shift parameter,
and various level of fill-in in the preconditioner. Although it is not easy to tune and its effect is
difficult to predict, a small diagonal shift can help to compute a more stable factorization, and in
some cases the performance of the preconditioner can significantly improve.

In Figures 5, 6 and 7, we illustrate the effect of this shift strategy on the eigenvalue distribution
of the preconditioned matrix. For each value of the shift parameter τ , we display κ(L), the
condition number of the computed L factor, and the number of iterations required by SQMR. The
eigenvalues are scattered all over the complex plane when no shift is used, whereas they look more
clustered when a shift is applied. A clustered spectrum of the preconditioned matrix is usually
considered as a desirable property for a fast convergence of Krylov solvers. However, for incomplete
factorizations the condition number of the factors plays a more important role than the eigenvalue
distribution on the rate of convergence of the Krylov iterations.
One possibility for constructing a robust shifted IC factorization would be to implement an auto-
tuned strategy. This would consist in incrementing the value of the shift and computing a new
incomplete factorization if the condition number of the current factor is too large. Such a procedure
might be very time consuming; for this reason we do not explore it further here.

8

Density of Ã = 1.00 %
IC(level) Density of M GMRES(30) GMRES(50) SQMR
IC(0) 1.00 % – – –
IC(1) 1.92 % 148 127 63
IC(2) 3.04 % 92 86 48

Density of Ã = 2.01 %
IC(level) Density of M GMRES(30) GMRES(50) SQMR
IC(0) 2.00 % – – –
IC(1) 4.17 % – – –
IC(2) 6.71 % – – 145

Density of Ã = 3.00 %
IC(level) Density of M GMRES(30) GMRES(50) SQMR
IC(0) 3.00 % – – –
IC(1) 6.62 % – – –
IC(2) 10.68 % 362 125 77

Density of Ã = 3.99 %
IC(level) Density of M GMRES(30) GMRES(50) SQMR
IC(0) 3.99 % – – –
IC(1) 8.95 % – – –
IC(2) 14.21 % 58 49 46

Density of Ã = 5.00 %
IC(level) Density of M GMRES(30) GMRES(50) SQMR
IC(0) 5.00 % – – –
IC(1) 11.60 % – – –
IC(2) 18.16 % 49 44 31

Density of Ã = 6.01 %
IC(level) Density of M GMRES(30) GMRES(50) SQMR
IC(0) 6.01 % – – –
IC(1) 14.09 % – – –
IC(2) 21.57 % 44 41 27

Table 3: Number of iterations varying the sparsity level of Ã and the level of fill-in on Example 5.

9

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5

Figure 2: Mesh associated with test examples

10

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Density = 8.75%

(a) Sparsity pattern of sparsified(A−1)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Density = 29.39%

(b) Sparsity pattern of sparsified(L−1)

Figure 3: Sparsity patterns of the inverse of A (on the left) and of the inverse of its lower triangular
factor (on the right), where all the entries whose relative magnitude is smaller than 5.0× 10−2 are
dropped. The test problem, representative of the general trend, is a small sphere.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Column of A−1

M
ag

ni
tu

de
 o

f t
he

 e
nt

rie
s

in
 th

e
1s

t r
ow

 o
f A

−
1

(a) Histogram of the magnitude of the
entries of the first column of A−1

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Histogram of the magnitude of the
entries in the first column of the inverse of

a factor of A

Figure 4: Histograms of the magnitude of the entries of one column of A−1 and its lower triangular
factor. A similar behaviour has been observed for all the other columns. The test problem,
representative of the general trend, is a small sphere.

11

Example 1 - Density of Ã = 5.03%

IC(level) Density of M
τ

0.0 0.1 0.3 0.5 0.7 0.9 1.1
IC(0) 5.0% – – 318 193 133 130 120
IC(1) 16.9% – – 313 161 117 104 95
IC(2) 32.3% – – 275 138 121 90 99

Example 3 - Density of Ã = 2.97%

IC(level) Density of M
τ

0.0 0.1 0.3 0.5 0.7 0.9 1.1
IC(0) 3.0% 154 309 – 334 254 247 224
IC(1) 7.1% 102 197 439 436 272 244 237
IC(2) 11.3% 80 264 – 334 327 243 224

Example 5 - Density of Ã = 3.99%

IC(level) Density of M
τ

0.0 0.1 0.3 0.5 0.7 0.9 1.1
IC(0) 4.0% – – – – – – –
IC(1) 11.7% – – – – – – –
IC(2) 19.0% 25 77 279 – – – –

Table 4: Number of SQMR iterations varying the shift parameter for various level of fill-in in IC.

12

−1 0 1 2 3 4 5 6

x 10
4

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

Real axis

Im
ag

in
ar

y
ax

is

(a) τ = 0.0 - κ(L) = 526284 - SQMR iter.
= +500

−2000 −1500 −1000 −500 0 500 1000
−1000

0

1000

2000

3000

4000

5000

Real axis

Im
ag

in
ar

y
ax

is

(b) τ = 0.1 - κ(L) = 134975 - SQMR iter.
= +500

−1600 −1400 −1200 −1000 −800 −600 −400 −200 0 200
−150

−100

−50

0

50

100

150

Real axis

Im
ag

in
ar

y
ax

is

(a) τ = 0.3 - κ(L) = 9608 - SQMR iter. =
313

−50 0 50 100 150 200 250 300
−150

−100

−50

0

50

100

150

200

Real axis

Im
ag

in
ar

y
ax

is

(b) τ = 0.5 - κ(L) = 2165 - SQMR iter. =
161

−50 0 50 100 150 200 250
−150

−100

−50

0

50

100

Real axis

Im
ag

in
ar

y
ax

is

(c) τ = 0.7 - κ(L) = 777 - SQMR iter. =
117

−50 0 50 100 150 200 250
−100

−80

−60

−40

−20

0

20

40

60

80

100

Real axis

Im
ag

in
ar

y
ax

is

(d) τ = 0.9 - κ(L) = 434 - SQMR iter. =
104

−50 0 50 100 150 200 250
−100

−80

−60

−40

−20

0

20

40

60

80

Real axis

Im
ag

in
ar

y
ax

is

(c) τ = 1.1 - κ(L) = 261 - SQMR iter. = 95

−50 0 50 100 150 200 250
−100

−80

−60

−40

−20

0

20

40

60

80

Real axis

Im
ag

in
ar

y
ax

is

(d) τ = 1.3 - κ(L) = 183 - SQMR iter. = 94

Figure 5: The spectrum of the matrix preconditioned with IC(1), the condition number of L and
the number of iterations with SQMR for various values of the shift parameter τ . The test problem
is Example 1.

13

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y
ax

is

(a) τ = 0.0 - κ(L) = 526284 - SQMR iter.
= +500

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y
ax

is

(b) τ = 0.1 - κ(L) = 134975 - SQMR iter.
= +500

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y
ax

is

(a) τ = 0.3 - κ(L) = 9608 - SQMR iter. =
313

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y
ax

is

(b) τ = 0.5 - κ(L) = 2165 - SQMR iter. =
161

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y
ax

is

(c) τ = 0.7 - κ(L) = 777 - SQMR iter. =
117

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y
ax

is

(d) τ = 0.9 - κ(L) = 434 - SQMR iter. =
104

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y
ax

is

(c) τ = 1.1 - κ(L) = 261 - SQMR iter. = 95

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y
ax

is

(d) τ = 1.3 - κ(L) = 183 - SQMR iter. = 94

Figure 6: The eigenvalue distribution on the square [-1, 1] of the matrix preconditioned with IC(1),
the condition number of L and the number of iterations with SQMR for various values of the shift
parameter τ . The test problem is Example 1.

14

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y
ax

is

(a) τ = 0.0 - κ(L) = 526284 - SQMR iter.
= +500

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y
ax

is

(b) τ = 0.1 - κ(L) = 134975 - SQMR iter.
= +500

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y
ax

is

(a) τ = 0.3 - κ(L) = 9608 - SQMR iter. =
313

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y
ax

is

(b) τ = 0.5 - κ(L) = 2165 - SQMR iter. =
161

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y
ax

is

(c) τ = 0.7 - κ(L) = 777 - SQMR iter. =
117

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y
ax

is

(d) τ = 0.9 - κ(L) = 434 - SQMR iter. =
104

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y
ax

is

(c) τ = 1.1 - κ(L) = 261 - SQMR iter. = 95

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y
ax

is

(d) τ = 1.3 - κ(L) = 183 - SQMR iter. = 94

Figure 7: The eigenvalue distribution on the square [-0.3, 0.3] of the matrix preconditioned with
IC(1), the condition number of L and the number of iterations with SQMR for various values of
the shift parameter τ . The test problem is Example 1.

15

3.3 Study of symmetric Frobenius-norm minimization type

preconditioners

In Table 5, we show the numerical behaviour of the different Frobenius-norm minimization type
preconditioners, both symmetric and unsymmetric. We compare the unsymmetric preconditioner
MFrob and the two symmetric preconditioners MAver−Frob and MSym−Frob. The column entitled

“Relative Flops” displays the ratio
σQR(M)

σQR(MFrob)
, where the σQR(M) represents the number

of floating-point operations required by the sequence of QR factorizations used to build the
preconditioner M , that is either M = MAver−Frob or M = MSym−Frob. In this table, it can
be seen that MAver−Frob almost always requires less iterations than MSym−Frob that imposes the
symmetry directly and consequently only computes half of the entries. Since MSym−Frob computes
less entries the associated values in the column “Relative Flops” are all less than one and close
to a third in all cases. On the hardest test cases (Examples 1 and 3) the combination SQMR
and MAver−Frob needs less than half the iterations of MFrob with GMRES(30) and is only very
slightly less efficient than MFrob and GMRES(80). On the less difficult problems, SQMR plus
MAver−Frob converges between 21 and 37 % faster than GMRES(80) plus MFrob and between 31
and 43 % faster than GMRES(30) plus MFrob. MSym−Frob, that only computes half of the entries
of the preconditioner, has a poor convergence behaviour on the hardest problems and is slightly less
efficient than MAver−Frob on the other problems when used with SQMR. Nevertheless, we should
mention that, for the sake of comparison, those preliminary results have been performed using
the set of parameters for the density of Ã and M that were the best for MFrob and consequently
nearly optimal for MAver−Frob; the performance of MSym−Frob might be improved as shown by the
results depicted in Table 6. Nevertheless, those first experiments reveal the remarkable robustness
of SQMR when used in combination with a symmetric preconditioner. This combination generally
outperforms GMRES even for large restarts.

The best alternative for significantly improving the behaviour of MSym−Frob is to enlarge

significantly the density of Ã and only marginally increase the density of the preconditioner. In
Table 6, we show the number of iterations observed with this strategy that consists in using a
density of Ã that is three times larger than that for MSym−Frob; we recall that for MAver−Frob

and MFrob a density of Ã twice as large as that of the preconditioner is usually the best trade-off
between computing cost and numerical efficiency. It can be seen that MSym−Frob is slightly better
than MAver−Frob (as in Table 5) but it is less expensive to build. In this table, we consider the
same values for σQR(MFrob) as those in Table 5 to evaluate the ratio “Relative Flops”.

To illustrate the effect of the densities of Ã and of the preconditioners, we performed experiments
with preconditioned SQMR, where the preconditioners are built by using either the same sparsity
pattern for Ã or a two, three or five times denser pattern for Ã. We report in Tables 7 and 8
respectively the number of SQMR iterations for MSym−Frob, and for MAver−Frob respectively. In
these tables, MSym−Frob always requires more iterations than MAver−Frob for the same values of

density for Ã and for the preconditioner, but its computation costs about a fourth flops for each
test.

Because the construction of MSym−Frob is dependent on the ordering selected, a natural
question concerns the sensitivity of the quality of the preconditioner to this. In particular in [14],
it is shown that the numerical behaviour of IC is very much dependent on the ordering and a
similar study and comparable conclusion with AINV is described in [8]. In Table 9, we display
the number of iterations with SQMR, selecting the same density parameters as those used for
the experiments reported in Table 9, but using different orderings to permute the original pattern
of MSym−Frob. More precisely we consider the reverse Cuthil-MacKee ordering [13] (RCM), the
minimum degree [18, 31] ordering (MD), the spectral nested dissection ordering [28] (SND) and
lastly we reorder the matrix by putting the denser rows and columns first (DF). It can be seen that
MSym−Frob is not too sensitive to the ordering and none of the tested orderings appears superior
to the others.

16

Example 1 - Density of Ã = 10.13% - Density of M = 5.03%
Precond. GMRES(30) GMRES(80) GMRES(∞) SQMR Relative Flops
MFrob 108 60 60 * 1.00
MAver−Frob 171 79 79 74 1.00
MSym−Frob – – 301 – 0.25

Example 2 - Density of Ã = 3.17% - Density of M = 1.99%
Precond. GMRES(30) GMRES(80) GMRES(∞) SQMR Relative Flops
MFrob 57 43 43 * 1.00
MAver−Frob 59 44 44 34 1.00
MSym−Frob 60 46 39 41 0.28

Example 3 - Density of Ã = 4.72% - Density of M = 2.35%
Precond. GMRES(30) GMRES(80) GMRES(∞) SQMR Relative Flops
MFrob 89 57 57 * 1.00
MAver−Frob 122 63 63 58 1.00
MSym−Frob 318 135 91 102 0.29

Example 4 - Density of Ã = 2.08% - Density of M = 1.04%
Precond. GMRES(30) GMRES(80) GMRES(∞) SQMR Relative Flops
MFrob 58 48 48 * 1.00
MAver−Frob 59 47 47 30 1.00
MSym−Frob 63 51 51 33 0.30

Example 5 - Density of Ã = 1.25% - Density of M = 0.62%
Precond. GMRES(30) GMRES(80) GMRES(∞) SQMR Relative Flops
MFrob 35 33 33 * 1.00
MAver−Frob 35 34 34 24 1.00
MSym−Frob 51 38 38 32 0.31

Table 5: Number of iterations on the test examples using the same pattern for the preconditioners.

Example Density GMRES(30) GMRES(80) GMRES(∞) SQMR Relative Flops

1 Ã =11.98% 172 68 68 67 0.40
M = 6.10 %

2 Ã = 5.94% 56 41 41 33 0.30
M = 2.04 %

3 Ã =11.01% 88 57 57 56 0.66
M = 3.14 %

4 Ã = 2.08% 56 50 50 32 0.47
M = 1.19 %

5 Ã = 1.98% 33 33 33 15 0.34
M = 0.62 %

Table 6: Number of iterations for MSym−Frob combined with SQMR using 3 times more nonzeros

in Ã than in the preconditioner.

4 Conclusions

In this work we have investigated the use of symmetric preconditioners for the solution of symmetric
non-Hermitian complex linear systems in electromagnetics applications. The motivations are

17

Example 1
Percentage density of M

Density strategy
1 2 3 4 5 6 7 8 9 10

Same – – – – – 180 150 118 105 55
2.0 times – – – – – 67 56 48 91 42
3.0 times – – – – 393 55 52 47 74 39
5.0 times – – – – 346 53 50 45 56 39

Table 7: Number of iterations of SQMR with MSym−Frob with different values for the density of
M using the same pattern for A and larger patterns. The test problem is Example 1.

Example 1
Percentage density of M

Density strategy
1 2 3 4 5 6 7 8 9 10

Same – – – 336 78 55 55 45 38 40
2.0 times – – 426 105 81 50 48 43 43 44
3.0 times – 426 293 113 92 49 45 36 35 35
5.0 times – 315 248 114 80 44 38 37 37 35

Table 8: Number of iterations of SQMR with MAver−Frob with different values for the density of
M using the same pattern for A and larger patterns. The test problem is Example 1.

Example Density Original RCM MD SND DF

1 Ã =11.98% 67 93 93 75 87
M = 6.10 %

2 Ã = 5.94% 33 41 40 40 44
M = 2.04 %

3 Ã =11.01% 56 51 68 73 77
M = 3.14 %

4 Ã = 2.08% 32 42 40 39 39
M = 1.19 %

5 Ã = 1.98% 15 26 25 26 23
M = 0.62 %

Table 9: Number of iterations of SQMR with MSym−Frob with different orderings.

twofold, first to reflect the symmetry of the original matrix in the associated preconditioner, second
to use a symmetric Krylov solver that might be cheaper than GMRES iterations; since, with an
unsymmetric preconditioner, GMRES appears to be the most efficient iterative method [10].

The classical IC preconditioner exhibits a rather poor and chaotic behaviour. It appears that
this disappointing behaviour is due to the ill-conditioning of the computed factors. The use of a
shift in some cases improved this situation but its effect is difficult to predict.

The classical factorized approximate inverses namely AINV and FSAI , that are also
appropriate candidates, only show poor convergence behaviour. We present some clues to explain
that disappointing behaviour. Although no numerical experiments are reported, we have tried
both re-ordering and shift strategies but without success to improve their convergence rate.

18

Both MAver−Frob and MSym−Frob appear to be efficient and robust. Through numerical
experiments, we have shown that MSym−Frob was not too sensitive to column ordering while
MAver−Frob is totally insensitive. In addition MAver−Frob is straightforward to parallelize even
though it requires more flops for its construction. It would probably be the preconditioner of choice
in a parallel distributed fast multipole environment but possibilities for parallelizing MSym−Frob

also exist although they are more complex to implement. Finally, the major benefit of these two
preconditioners is the remarkable robustness they exhibit when used in conjunction with SQMR.

References

[1] G. Alléon, M. Benzi, and L. Giraud. Sparse approximate inverse preconditioning for dense
linear systems arising in computational electromagnetics. Numerical Algorithms, 16:1–15,
1997.

[2] A. Bendali. Approximation par elements finis de surface de problemes de diffraction des ondes
electro-magnetiques. PhD thesis, Université Paris VI , 1984.

[3] M.W. Benson. Iterative solution of large scale linear systems. Master’s thesis, Lakehead
University, Thunder Bay, Canada, 1973.

[4] M.W. Benson and P.O. Frederickson. Iterative solution of large sparse linear systems arising
in certain multidimensional approximation problems. Utilitas Mathematica, 22:127–140, 1982.

[5] M.W. Benson, J. Krettmann, and M. Wright. Parallel algorithms for the solution of certain
large sparse linear systems. Int J. of Computer Mathematics, 16, 1984.

[6] M. Benzi. A Direct Row-projection Method for Sparse Linear Systems. PhD thesis, Department
of Mathematics, North Carolina State University, Raleigh, NC, 1993.

[7] M. Benzi, C.D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for the
conjugate gradient method. SIAM J. Scientific Computing, 17:1135–1149, 1996.

[8] M. Benzi, D.B. Szyld, and A. van Duin. Orderings for incomplete factorization preconditioning
of nonsymmetric problems. SIAM J. Scientific Computing, 20:1652–1670, 1999.

[9] M. Benzi and M. Tůma. A sparse approximate inverse preconditioner for nonsymmetric linear
systems. SIAM J. Scientific Computing, 19:968–994, 1998.

[10] B. Carpentieri, I. S. Duff, and L. Giraud. Sparse pattern selection strategies for robust
frobenius-norm minimization preconditioners in electromagnetism. Numerical Linear Algebra
with Applications, 7(7-8):667–685, 2000.

[11] B. Carpentieri, I.S. Duff, L. Giraud, and G. Sylvand. Combining fast multipole techniques
and an approximate inverse preconditioner for large parallel electromagnetics calculations.
Technical Report in preparation, CERFACS, Toulouse, France.

[12] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices.
Journal of Computational and Applied Mathematics, 86:387–414, 1997.

[13] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In
Proceedings 24th National Conference of the Association for Computing Machinery, Brandon
Press, New Jersey, pages 157–172. Brandon Press, New Jersey, 1969.

[14] I.S. Duff and G.A. Meurant. The effect of ordering on preconditioned conjugate gradient.
BIT, 29:635–657, 1989.

19

[15] V. Frayssé, L. Giraud, and S. Gratton. A set of GMRES routines for real and complex
arithmetics. Tech. Rep. TR/PA/97/49, CERFACS, 1997.

[16] P.O. Frederickson. Fast approximate inversion of large sparse linear systems. Math. Report 7,
Lakehead University, Thunder Bay, Canada, 1975.

[17] R.W. Freund and N.M. Nachtigal. An implementation of the QMR method based on coupled
two-term recurrences. SIAM J. Scientific Computing, 15(2):313–337, 1994.

[18] J. George and J.W.H. Liu. The evolution of the minimum degree ordering algorithm. SIAM
Review, 31:1–19, 1989.

[19] L.Yu. Kolotilina. Explicit preconditioning of systems of linear algebraic equations with
dense matrices. J. Sov. Math., 43:2566–2573, 1988. English translation of a paper first
published in Zapisli Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo im.
V.A. Steklova AN SSSR 154 (1986) 90-100.

[20] L.Yu Kolotilina and A.Yu. Yeremin. Factorized sparse approximate inverse preconditionings.
I: Theory. SIAM J. Matrix Analysis and Applications, 14:45–58, 1993.

[21] L.Yu Kolotilina and A.Yu. Yeremin. Factorized sparse approximate inverse preconditionings.
II: Solution of 3D FE systems on massively parallel computers. Int J. High Speed Computing,
7:191–215, 1995.

[22] L.Yu Kolotilina, A.Yu. Yeremin, and A.A. Nikishin. Factorized sparse approximate inverse
preconditionings. III: Iterative construction of preconditioners. Zap. Nauchn. Semin. POMI,
248:17–48, 1998.

[23] L.Yu Kolotilina, A.Yu. Yeremin, and A.A. Nikishin. Factorized sparse approximate inverse
preconditionings. IV: Simple approaches to rising efficiency. Technical report, 1998. Final
version of 10 November, 1998.

[24] J.A. Meijerink and H.A. van der Vorst. An iterative solution method for linear systems of
which the coeffcient matrix is a symmetric m-matrix. Mathematics of Computation, 31:148–
162, 1977.

[25] M. Magolu monga Made. Incomplete factorization based preconditionings for solving the
Helmholtz equation. Int. Journal for Numerical Methods in Engineering, 50(5):1077–1101,
2001.

[26] M. Magolu monga Made, R. Beauwens, and G. Warzee. Preconditioning of discrete helmholtz
operators perturbed by a diagonal complex matrix. Communications in Numerical Methods
in Engineering, 11:801–817, 2000.

[27] A.F. Peterson, S.L. Ray, and R. Mittra. Computational Methods for Electromagnetics. IEEE
Press, 1997.

[28] A. Pothen, H. D. Simon, and K. P. Liou. Partitioning sparse matrices with eigenvectors of
graphs. SIAM J. Matrix Analysis and Applications, 11(3):430–452, 1990.

[29] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, New York, 1996.

[30] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Scientific and Statistical Computing, 7:856–869, 1986.

[31] W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations by optimally
ordered triangular factorization. Proc. of the IEEE, 55:1801–1809, 1967.

20

