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Abstract
In this report we describe a comparison of different algorithms for solv-
ing nonlinear optimization problems with simple bounds on the variables.
Moreover, we would like to come out with an assessment of the optimization
library DOT used in the optimization suite OPTALIA at Airbus for this
kind of problems.
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Introduction

0.1 Aim of the study

Airbus is using an optimization library called Design Optimization Tools
(DOT) to perform the minimizations occurring in aircraft design. DOT is
mainly based on line search techniques and the purpose of this study is to
compare it with more recent line search solvers and with other solvers based
on different approaches such as trust region and interior point method. In
this work, we focus on the case where function and gradient are available,
but where the Hessian of the problem, when needed, has to be approximated
using e.g. quasi-Newton updates.
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0.2 Short outline

In Chapter 1 can be found a description of the mathematical background
of the considered bound-constrained optimization problem. In Chapter 2
we describe the algorithms implemented in the considered solvers together
with their main properties. The methodology we followed in this compari-
son is described in Chapter 3. Particular attention is paid on the choice of
a relevant set of test cases and on the use of unified stopping criteria. In
Chapter 4, the performance profiles associated with the numerical experi-
ments are presented, and some conclusions on the behavior of the different
codes are drawn.

In these experiments, we have set up an testing environment which is
very easy to adapt to solve generally constrained optimization problems
when the solver is already implemented. Thus, we made some additional
experiments with two of the solvers that are also able to solve optimization
problems with general constraints. The results of this comparison are given
in Appendix A.

1 Mathematical Background

In this report, we describe a comparison of different well-known algorithms
for solving nonlinear optimization problems with simple bounds on the vari-
ables.

1.1 Bound-constrained optimization problem

Problem statement
The bound-constrained optimization problem can be written as

minx∈Rn f(xi)
subject to li ≤ xi ≤ ui

(1)

where f is a nonlinear function with n variables, li and ui are representing
vectors of lower and upper bounds on the variables xi.

Feasible set and active set
The bound-constrained optimization problem (1) is a special case of the

constrained optimization problem considered e.g. in (Nocedal and Wright,
1999), (Gill et al., 1981) and (Fletcher, 1987). Here the constraint set, or
feasible set, is

C = {xi ∈ Rn|xi − li ≥ 0, ui − xi ≥ 0}. (2)

x ∈ Rn is called a feasible point for the optimization problem if xi ≥ li and
xi ≤ ui.
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An index i is called active if xi − li = 0 or ui − xi = 0, what means that
the i-th component of x lays on its lower or upper bound, respectively. The
index i is called inactive if the strict inequalities xi − li > 0 and ui − xi > 0
are satisfied. The active set at x, which is denoted by A(x), consists of the
active indices,

A(x) = {i|xi − li = 0 or ui − xi = 0}. (3)

A component xi for which li = xi = ui satisfies both equations and is called
a fixed variable. The set of inactive indices is denoted by I(x). Components
xi for which i ∈ I(x) are called free variables.

In some methods the reduced gradient and the reduced Hessian matrix
are used, which contains, respectively, first and second order derivative in-
formation of f with respect to the free variables. The reduced gradient
∇Rf(x) has components

[∇Rf(x)]i =

{
0, if i ∈ A(f)
[∇f(x)]i, otherwise.

(4)

The reduced Hessian ∇2
Rf(x) has entries

[∇2
Rf(x)]ij =

{
0, if i ∈ A(f) or j ∈ A(f)
[∇2f(x)]ij , otherwise.

(5)

Criticality measure
In the unconstrained case, the necessary condition for optimality at x∗

is
∇f(x∗) = 0 (6)

and the Hessian ∇2f(x∗) is positive semidefinite if f is twice continuously
differentiable. Condition (6) is called first order necessary condition and a
point satisfying that condition is called a critical point.

In the bound-constrained case there must be used a different measure
for criticality which has to incorporate the bounds. We then get following
extension of (6)

∇f(x∗)−
n∑

i=1

(λ∗i∇x(x∗i − li) + µ∗i∇x(ui − x∗i )) = 0 (7)

with

λ∗i ≥ 0 and µ∗i ≥ 0,

(x∗i − li) ≥ 0 and (ui − x∗i ) ≥ 0, (8)
λ∗i (x

∗
i − li) = 0 and µ∗i (ui − x∗i ) = 0.

3



Equations (7) and (8) together are known as the Karush-Kuhn-Tucker (KKT)
conditions and λ, µ ∈ Rn are called the Lagrange multipliers of the prob-
lem. These conditions can be expressed in dependency on the value of xi.
In fact, if li ≤ xi ≤ ui it follows that λi = 0 = µi and therefore it has
to be [∇f(x)]i = 0. If xi = li < ui it follows that µi = 0 and therefore
[∇f(x)]i = λi ≥ 0. Finally from xi = ui > li follows λi = 0 and it must be
[∇f(x)]i = −µi ≤ 0. Gathered these three cases, one can see that the KKT
conditions from (7) and (8) are equivalent to

[∇f(x∗)]i = 0, when li < x∗i < ui

[∇f(x∗)]i ≥ 0, when x∗i = li (9)
[∇f(x∗)]i ≤ 0, when x∗i = ui.

These conditions correspond exactly to the definition of the projected gradi-
ent at the solution point x∗. The projected gradient ∇Cf(x) is the mapping
from the feasible set C into Rn with components

[∇Cf(x)]i =


[∇f(x)]i, if li < xi < ui,
min{0, [∇f(x)]i}, if xi = li
max{0, [∇f(x)]i}, if xi = ui.

(10)

It is defined that x∗ is a critical point for the bound-constrained opti-
mization problem if

∇Cf(x∗) = 0. (11)

If f is twice Lipschitz continuously differentiable and x∗ is a solution of
the bound-constrained optimization problem, the reduced Hessian ∇2

Rf(x∗)
in (5) is positive semidefinite. This is called the second order necessary con-
dition for optimality.

The following statement provides an alternative characterization of a
critical measure for bound-constrained optimization problems. If f is con-
tinuously differentiable, then a point x∗ ∈ C is a critical point for the bound-
constrained optimization problem if and only if

x∗ = PC(x∗ − λ∇f(x∗)) (12)

for all λ ≥ 0 where PC(x) denotes the projection of x onto C. The ith
component of the operator PC(x) is

[PC(x)]i =


li, if xi ≤ li,
xi, if li < xi < ui,
ui, if xi ≥ ui.

(13)
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2 Brief Description of the methods

All methods in the tests use either a line search or a trust region framework
to guarantee global convergence to a local solution. Lancelot B is using trust
region method. The other solvers DOT, L-BFGS-B, TN-BC and IPOPT
are using line search methods where IPOPT uses a primal dual interior
point filter line search method. In this Chapter, the main features of these
globalisation approaches are presented and we show how they are combined
in the considered solvers.

2.1 Algorithmic components of trust region methods

In the trust region algorithmic strategy the information known about the
objective function f is used to construct a model function mk whose be-
haviour near the current point xk is similar to that of the actual f . The
search for a minimizer of mk is restricted to some region around xk, called
the trust region. This is the region where the model mk can be trusted
because the model may not be a good approximation of f for x∗ far from
xk.

A step in the bound-constrained case is found by solving the subproblem

mins mk(s)
subject to ‖s‖ ≤ ∆k and l ≤ xk + s ≤ u,

(14)

where ∆k > 0 is a scalar called the trust region radius which is varied as
the iteration proceeds. In general ‖ · ‖ is defined to be the Euclidean norm,
but it may also be elliptical or box-shaped. In the latter case it is defined
by the l∞-norm and this yields the equivalent subproblem

mins mk(s)
subject to max(l − xk,∆ke) ≤ s ≤ min(u− xk,∆ke),

(15)

where e is the unit vector.
The model mk is usually defined as a quadratic function of the form

mk(s) = fk +∇fT
k s +

1
2
sT Bks, (16)

where fk and ∇fk are the function and gradient values at the current point
xk and sk = xk+1−xk denotes the step. The matrix Bk is either the Hessian
∇2fk or an approximation to it.

If the model is generally reliable, producing good steps and accurately
predicting the behaviour of the objective function along these steps, the size
of the trust region is steadily increased to allow longer steps to be taken.
If the solution of the subproblem does not produce a sufficient decrease in
f , it can be concluded that the model is an inadequate representation of
the objective function over the current trust region, so it has to be shrinked
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and the subproblem has to be solved again. In general, the step direction
changes whenever the size of the trust region is altered (Nocedal and Wright,
1999).

Generalized Cauchy point
The minimization of the quadratic model (16) within the feasible box

and the trust region is usually done in two stages. In the first stage it
has to be obtained the so called generalized Cauchy point. This point is
very important in order to satisfy the global convergence theory of bound-
constrained trust region methods. Thus, convergence of the algorithm to a
point at which the projected gradient is zero can be guaranteed provided
the value of the quadratic model at the end of the iteration is no larger
than that at the generalized Cauchy point. A detailed convergence analysis
can be found in (Conn et al., 1988a). The generalized Cauchy point xC

k is
defined as the first local minimizer of

mk(P(xk − tgk, l, u)) (17)

within the trust region. That is, xC
k is the first local minimizer of the

quadratic model along the piecewise linear arc defined by projecting the
steepest descent direction onto the feasible region, subject to the trust region
constraint.

Somehow surprising, it is not necessary that the generalized Cauchy
point be calculated exactly. To guarantee convergence it is sufficient to
identify an adequate approximation to such a point. Different strategies can
be found in (Burke et al., 1990), (Calamai and Moré, 1987) and (Moré, 1988).

In the second stage of the minimization of (16) it is attempted to further
reduce the model. This is done by minimizing the model function within the
subspace where those variables which lie on their bounds at the generalized
Cauchy point are fixed. Then it can be tried to reduce the quadratic model
by changing the values of the remaining free variables while restricting them
to the trust region bound and the feasible set C. This may be done using
either a direct or an iterative method.

Trust region basic algorithm
The first issue to establish this algorithm is how to choose the trust

region radius ∆k at each iteration. This choice is based on the agreement of
the model function mk and the objective function f at the previous iteration
as measured by the ratio

ρk =
f(xk)− f(xk + sk)

f(xk)−mk(sk)
(18)

where the numerator is called the actual reduction and the denominator is
the predicted reduction. So, if there is good agreement between the model
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mk and the function f over this step (ρk ≈ 1), then it is safe to increase ∆k

for the next iteration. If ρk is positive but not close to 1, the trust region is
not altered. But, if the agreement is poor (ρk small or negative), then ∆k

is decreased. In the case, ρk is negative, the new objective value f(xk + sk)
is greater than the current value f(xk) and the current step sk can not be
accepted. The algorithm can be written as in (Conn et al., 2000)

Initialize x0 ∈ C,∆0 and the constants η1, η2, γ1, γ2

for k = 1, ...,maxit do
Define a model mk in C ∩ Bk

Obtain sk by sufficiently reducing mk such that xk + sk ∈ C ∩ Bk

Evaluate ratio ρk

if ρk ≥ η1 then
xk+1 = xk + sk {Update solution}

else
xk+1 = xk

end if
if ρk ≥ η2 then

∆k+1 ∈ [∆k,∞) {Update trust region radius}
else if ρk ∈ [η1, η2) then

∆k+1 ∈ [γ2∆k,∆k]
else

∆k+1 ∈ [γ1∆k, γ2∆k]
end if
k := k + 1

end for

Algorithm 1: Trust region method

where 0 < η1 < η2 < 1 and 0 < γ1 < γ2 < 1.

Solver: Lancelot B
This solver is written by Nicholas I. M. Gould, Andrew Conn and Philippe

L. Toint and it is developed to solve unconstrained, bound-constrained and
generally constrained optimization problems. It must be remarked, that it
is not free for commercial use.

If generally constraint problems are to be solved, Lancelot B uses a se-
quential augmented Lagrangian method within a trust region framework. In
the bound-constrained case there is no need to build up a Lagrangian and
Lancelot B reduces to a trust region truncated Newton method. That is,
Algorithm 1 is used to ensure global convergence to a local minimum. For
solving the quadratic subproblem, the generalized Cauchy point as described
above is computed and a truncated Newton method is used to further re-
duce the model in the subspace. Truncated Newton methods compute an
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approximate solution of the Newton equations by using an iterative tech-
nique. Lancelot B uses conjugate gradient method and truncates the inner
algorithm before the solution of the subproblem is reached. Three differ-
ent stopping criteria for the conjugate gradient algorithm are implemented.
This is, (i) the norm of the reduced gradient is less than some small value
depending on the required accuracy of the overall problem, (ii) one or more
of the free variables in the subspace violates one of the bounds or the trust
region and (iii) a large number of iterations has been taken.

In Lancelot B, some useful adjustments are made to the theoretical al-
gorithms described above and some interesting options are provided. Some
of them are described below.

It is possible to choose between the Euclidean and the infinity norm of
the trust region. If the default, a box-shaped trust region, is used there will
be build up an intersection of the feasible box and the trust region. That
means, the two constraints are replaced by the ”box” constraints

max(l, xk −∆k) ≡ lk ≤ x ≤ uk ≡ min(u, xk + ∆k) (19)

for all components i = 1, 2, ..., n of the vectors l, x and u. This can lead to a
better generalized Cauchy point because the default definition forces the line
minimization to cease at the first point at which the trust region boundary
is encountered. So, in the intersection (19) further progress is possible along
the boundary of the trust region.

As default the exact generalized Cauchy point described above is com-
puted. But Lancelot B can also, as an option, compute the approximation
suggested by (Moré, 1988). Let γ > 0, 0 < β < 1 and 0 < σ < 1. Then it is
to choose the approximation x(ti), where ti is of the form γβms and where
ms is the smallest nonnegative integer for which

mk(xk(l)) ≤ mk(xk) + σg(xk)T (xk(l)− xk)
and ‖xk(t)− xk‖ ≤ β∆k.

(20)

It has to be noticed that the generalized Cauchy point may not satisfy
the first of these both equations. Thus there is a possibility of different
behaviour for algorithms using the exact or the approximate generalized
Cauchy points.

Lancelot B provides an option to approximate first and second order
information. As default, the exact gradient and the exact Hessian are used
because it is strongly recommended to use of exact derivative information
whenever they are available. Different updating formula can be chosen to
approximate the second derivatives. The B.F.G.S. update scheme writes

Bk+1 = Bk +
yky

T
k

yT
k sk
− Bksks

T
k Bk

sT
k Bksk

, (21)

8



where sk = xk+1 − xk is the step, yk = gk+1 − gk is the change in the
gradients and rk ≡ yk − Bksk. The update is only performed if the new
approximation can be ensured to be positive definite otherwise they are
skipped. Other options are the P.S.B. update

Bk+1 = Bk +
rks

T
k + skr

T
k

sT
k sk

− rT
k sksks

T
k

(sT
k sk)2

(22)

and the Symmetric Rank-one (SR1) update

Bk+1 = Bk +
rkr

T
k

rT
k sk

. (23)

which are two examples of updates that allow indefinite approximations of
the Hessian.

Further information of the methods and the implemented algorithm can
be found in (Conn et al., 1993), (Conn et al., 1988b) and (Conn et al.,
1988a).

2.2 Algorithmic components of line search methods

At the beginning of this section, some algorithms and components of algo-
rithms mainly used in line search methods are described. Afterwards, we
show for each considered line search solver how these components are com-
bined and which modifications were made. Projected Newton method in
algorithm 4 is not used in one of the considered solvers but it is mentioned
for better understanding the algorithms that follow that one.

In the line search strategy, the algorithm chooses a direction dk and
searches along this direction from the current iterate xk for a new iterate
xk+1 = xk + αkdk with a sufficiently lower function value f(xk+1). The
choice of step length α in the bound-constrained case is similar to the un-
constrained case. If xk + dk violates one of the bounds, there is to compute
the largest µk ∈ (0, 1) such that xk + µkdk is feasible. The ideal choice
to give a substantial reduction of f would be the global minimizer of the
one-dimensional problem

min
0<α≤µk

f(xk + αdk). (24)

Subspace minimization
There are many ways to obtain a new search direction. In Newton, quasi-

Newton and truncated Newton algorithms for bound-constrained optimiza-
tion, it is usual to obtain the direction dk as an (approximate) minimizer of
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the subproblem (Moré and Wright, 1993)

min∇fT
k d +

1
2
dT Bkd (25)

subject to
di = 0, i ∈ Ak (26)

where Ak is the active set and Bk is the Hessian matrix of f at xk or an
approximation to it. All variables in the active set are fixed during this
iteration. This subproblem can be expressed in terms of the free variables
by noting that it is equivalent to the unconstrained problem

min∇RfT
k w +

1
2
wT BkRw (27)

subject to
w ∈ Rmk (28)

where mk is the number of free variables, BkR is the reduced version of
Bk by taking those rows and columns whose indices correspond to the free
variables and ∇Rfk is the reduced gradient at xk.

Inexact line search
In general the one-dimensional problem to obtain the step length α is

not solved exactly. Requiring an accurate minimizer is generally wasteful
of function and gradient evaluations. More practical strategies perform an
inexact line search to identify a step length that achieves adequate reductions
in f .

Some line search algorithms try out a sequence of values for α and stop
when certain conditions are satisfied. Generally, this is done in two stages:
Firstly, a bracketing phase to find an interval that contains feasible and
desirable step lengths. Secondly, in a bisection or interpolation phase is
computed a good step length within the given interval.

A popular criterion for a suitable αk ∈ (0, µk) is to require αk to satisfy
the sufficient decrease condition

f(xk + αkdk) ≤ f(xk) + c1αk∇f(xk)T dk (29)

and the curvature condition

|∇f(xk + αdk)T dk| ≤ c2 |∇f(xk)T dk| (30)

where c1 and c2 are two constants with 0 < c1 < c2 < 1. The sufficient
decrease condition guarantees that f(xk+1) < f(xk), while the curvature
condition requires that αk is not to far from a minimizer of φ(α).

The sufficient decrease condition is sometimes called the Armijo condi-
tion and the sufficient decrease and curvature conditions together are known
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as the Wolfe conditions.

If the line search algorithm chooses its candidate step lengths by using
a so-called backtracking approach, it is possible to use just the sufficient
decrease condition to terminate the line search procedure. In its basic form,
backtracking proceeds as follows

Choose ᾱ > 0, ρ and c1 ∈ (0, 1)
Set α← ᾱ
repeat

α← ρα
until f(xk + αdk) ≤ f(xk) + c1α∇f(xk)T dk

Terminate with αk = α.

Algorithm 2: Backtracking line search

The backtracking approach ensures either that the selected step length
αk is some fixed value (the initial choice ᾱ), or else that it is short enough
to satisfy the sufficient decrease condition but not too short. Further infor-
mation can be found in (Nocedal and Wright, 1999).

Active set method
The active set of x is A(x) = {i|xi = li or ui = xi} as stated before in

Chapter 1. Active set methods aim to predict the active set at the solution
A(x∗) using suitably chosen disjoint sets A(x) ⊆ {1, 2, ..., n}. Once, A is
given, an active set method will aim to solve the problem

min f(x)
subject to xi = li or xi = ui, i ∈ A.

(31)

In fact, this statement describes an unconstrained optimization problem over
the variables (xi) where i /∈ A.

But the prediction A can be incorrect, of course, and active set methods
have to adjust the set as the iteration proceeds either by adding variables
that violate one of their bounds or removing those for which further progress
is predicted. At each iteration at most one variable is added to or dropped
from the active set. This can be a serious disadvantage in large problems
if the active set at the starting point is quite different from that at the
solution. The worst case is to visit each of the 3n possible active sets before
the optimal one is discovered (Gould et al., 2005, page 311).

Consequently, further investigations have led to algorithms that allow
radical changes of the active set at each iteration (Moré and Wright, 1993).
A prototypical method for that is gradient projection method described be-
low.
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Gradient Projection method
The gradient projection method can be viewed as an extension of the

steepest descent algorithm to bound-constrained problems.
Given a current iterate xk the new iterate is

xk+1 = P(xk − τ∇f(xk)), (32)

where τ is a step length parameter given by some line search scheme. The
algorithm of the gradient projection method can be written as in (Vogel,
2002):

Initialization
for k = 1, ...,maxit do

pk := −∇f(xk) {negative gradient}
Test for termination
τk := arg minτ>0 f(P(xk + τpk)) {projected line search}
xk+1 := P(xk + τkpk) {update solution}
k := k + 1

end for

Algorithm 3: Gradient projection method

To obtain step length τ in step 3 of the algorithm, the exact projected
line search can be replaced by an inexact projected line search. For bound-
constrained problems in (Kelley, 1999) the sufficient decrease condition for
line searches is expressed as

f(x(τ))− f(x) ≤ −α

τ
‖x− x(τ)‖2, (33)

where for τ > 0 is defined

x(τ) = P(x− τ∇f(x)). (34)

The parameter α is usually set to 10−4 (Dennis and Schnabel, 1996).

Once the active set has been identified, the gradient projection method
behaves like the steepest descent method on the inactive variables. This
results in a asymptotically linear convergence rate.

To improve this rate, second order information have to be incorporated
as in the following method.

Projected Newton method
In a projected Newton method, the descent direction p = −∇f(x) is

replaced by the projected Newton direction, s = −HR(x)−1∇f(x) where
HR(x) denotes the reduced Hessian as in (5). The algorithm will be locally
quadratically convergent if the active set can be correctly identified. The
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algorithm of the projected Newton method can be written as in (Vogel,
2002):

Initialization
for k = 1, ...,maxit do

gk := ∇f(xk) {gradient}
Test for termination
Identify active set Ak

HR := reduced Hessian at xk

s := −H−1
R gk {projected Newton step}

τk := arg minτ>0 f(P(xk + τs)) {projected line search}
xk+1 := P(xk + τks) {update solution}
k := k + 1

end for

Algorithm 4: Projected Newton method

In the same manner, any approximation to the Hessian, or respectively
its inverse, can be used instead of the exact Hessian in this method. It would
then be called projected quasi-Newton method.

Gradient Projection - Reduced Newton method

Each iteration of this method has two stages. The computations in the
first stage are identical to those carried out in a gradient projection iteration
(see Algorithm 3 above). The second stage can be viewed as the application
of Newton’s method restricted to the free variables. The algorithm of the
gradient projection-reduced Newton method can be written as in (Vogel,
2002):
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Initialization
for k = 1, ...,maxit do

— Gradient Projection Stage —
pGP := −∇f(xk) {negative gradient}
Test for termination
τGP := arg minτ>0 f(P(xk + τpGP )) {projected line search}
xGP

k := P(xk + τGP pGP )
— Reduced Newton Stage —

Identify active set A(xGP
k )

gR := reduced gradient at xGP
k

HR := reduced Hessian at xGP
k

s := −H−1
R gR {subspace min.: reduced Newton step}

τRN := arg minτ>0 f(P(xGP
k + τs)) {projected line search}

xk+1 := P(xGP
k + τRNs) {update solution}

k := k + 1
end for

Algorithm 5: Gradient Projection-Reduced Newton method

As before in Algorithm 4, any approximation to the Hessian, or respec-
tively its inverse, can be used instead of the exact Hessian. It would then
be called Gradient Projection-Reduced quasi-Newton method.

Gradient Projection CG method

If the problems are large scaled, it is sometimes not feasible to solve the
linear system Hs = −g in the subspace minimization of Algorithm 5 directly.
In this case, an alternative is to apply an iterative method like conjugate
gradient (CG) method to this system. In this context, CG can be viewed as
a tool with which the subspace minimization problem can be solved iterately
instead of as a linear solver. Thus, for each outer iteration, there is an inner
iteration loop making use of the conjugate gradient method that computes
the new search direction. The algorithm of the gradient projection CG
method can be written as

14



Initialization
for k = 1, ...,maxit do

— Gradient Projection Stage —
pGP := −∇f(xk) {negative gradient}
Test for termination
τGP := arg minτ>0 f(P(xk + τpGP )) {projected line search}
xGP

k := P(xk + τGP pGP )
— Conjugate Gradient Stage —

Qk(p) = f(xGP
k ) + pT∇f(xGP

k ) + 1
2pT HGP

k p {build quadratic model}
Identify active set A(xGP

k )
minQk(p) s.t. pi = 0, i ∈ A(xGP

k ) {subspace min.: CG method}
for j = 1, ...,maxcg do

Compute conjugate gradient step
Test for insufficient decrease in Qk

if Test is true then
τCG := arg minτ>0 f(P(xGP

k + τpj)) {projected line search}
x := P(xGP

k + τCGpj) {interim solution}
if A(x) = A(xGP

k ) then
Resume CG iterations

else
Terminate CG iterations

end if
end if

end for
xk+1 := x {update solution}
k := k + 1

end for

Algorithm 6: Gradient Projection CG method

Several modifications can be made to the algorithm to increase its effi-
ciency. One possibility is to take more than one iteration in the gradient
projection stage. This is cost effective if either the gradient projection steps
significantly decrease the functional f or the active set changes rapidly. To
quantify this, let xGP

k,j denote the jth iterate in the projected gradient stage.
One stops the iteration if either

f(xGP
k,j−1)− f(xGP

k,j ) ≤ γ max
i<j

f(xGP
k,i−1)− f(xGP

k,i ) (35)

with γ > 0 is fixed, or
A(xGP

k,j ) = A(xGP
k,j−1). (36)

The first condition is called insufficient decrease condition and is also used
in the CG stage of the algorithm (Vogel, 2002).
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Solver: DOT
This software is developed by Vanderplaats Research & Development,

Inc. It can be used to solve unconstrained, bound-constrained and generally
constrained optimization problems. It contains two methods DOT-BFGS
and DOT-FR that solve problems with simple bounds on the variables.
Both methods are based on a line search and differ only in the way the
search direction is found.

DOT-BFGS uses an unconstrained quasi-Newton method to obtain the
search direction. An approximation H to the inverse of the Hessian matrix is
created. In this case, the matrix is updated by using a BFGS formula. The
new search direction s is obtained by computing the matrix-vector-product

sk+1 = −Hk+1∇f(xk). (37)

DOT-FR uses an unconstrained Fletcher-Reeves conjugate gradient method
to obtain the search direction. This method is very simple and requires only
very little computer storage because it needs neither the Hessian nor an
approximation to it. The search direction is computed as

sk+1 = −∇f(xk) + βsk (38)

with

β =
|∇f(xk)|2

|∇f(xk−1)|2
. (39)

After computing the unconstrained search direction s it is to check
whether some components of s violate the bounds. A component si is set
to zero if its corresponding variable xi is at one of their bounds and the
component si points outside the feasible box. The line search along the
corrected direction is done by quadratic or cubic interpolation depending
on the amount of information available. More information is given in some
detail in DOT User’s Manual (Vanderplaats, 1995) and in (Vanderplaats,
1984).

Solver: L-BFGS-B
This software is written by Richard H. Byrd, Peihuang Lu, Jorge No-

cedal, Ciyou Zhu and it was especially developed to solve bound-constrained
optimization problems.

L-BFGS-B is a limited memory quasi-Newton method that uses the Gra-
dient Projection-Reduced quasi-Newton method stated in Algorithm 5 to
obtain a new search direction. To approximate second order information, a
limited memory BFGS matrice represented in the compact form described
by (Byrd et al., 1994) is used. The limited memory BFGS matrices require
only a small amount of computer storage because at every iterate xk the algo-
rithm stores only a small number of correction pairs {si, yi}, i = k−1, ...k−m
where

sk = xk+1 − xk, yk = gk+1 − gk. (40)
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These correction pairs contain information about the curvature of the func-
tion, and in conjunction with the BFGS formula, define the limited memory
iteration matrix Hk.

Once obtained the matrix, the linear system in the subspace minimiza-
tion step of the algorithm is solved by a direct primal method based on
the Sherman-Morisson-Woodbury formula (Golub and Loan, 1989). The
obtained path will be truncated if violating one or more bounds. The line
search is performed by means of the routine by (Moré and Thuente, 1994)
which tries to enforce the Wolfe conditions by a sequence of polynomial
interpolations. Since step lengths greater than one may be tried, the max-
imum step length is defined as the step to the closest bound along the
current search direction. More details about method and implementation of
L-BFGS-B can be found in (Byrd et al., 1995) and (Zhu et al., 1997).

Solver: TN-BC
This software is written by Stephen G. Nash and it is especially developed

to solve bound-constrained optimization problems.
TN-BC is based on a line search with a classical active set strategy for

treating the bounds. TN-BC is a truncated-Newton method that uses the
Gradient Projection CG method stated in Algorithm 6 to obtain a new
search direction. But it computes only an approximation to the Newton
direction because it is truncated before the solution to the subspace mini-
mization problem is obtained. More about truncated Newton methods in
general can be found in (Nash, 2000).

The conjugate gradient inner algorithm is preconditioned by a scaled
two-step limited memory BFGS method with Powell’s restarting strategy
used to reset the preconditioner periodically. A detailed description of the
preconditioner may be found in (Nash, 1985).

Since the Hessian matrix with exact second derivative information is
oftentimes not given, the Hessian vector product Hkv for a given v required
by the inner conjugate gradient algorithm is obtained by finite differencing:

∇2f(xk)v ≈
∇f(xk + hv)−∇f(xk)

h
(41)

where h = (1 + ‖xk‖2)
√

ε, and ε is the relative machine precision. Each ma-
trix vector product requires one gradient evaluation, since ∇f(xk) is already
available as the right-hand side of the linear system.

The line search is performed using the iteration described by (Gill and
Murray, 1979). It is based on cubic interpolation and is terminated when
the strong Wolfe conditions are satisfied.

More detailed information of the method and the algorithm can be found
in (Nash, 1984a) and (Nash, 1984b).
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2.3 Algorithmic components of primal-dual interior point
methods

The standard formulation of a linear programming problem is often called
the primal and it is of the form

min cT x s.t. Ax = b, x ≥ 0, (42)

where c and x are vectors in Rn, b is a vector in Rm and A is an m × n
matrix. The dual of the standard form linear programming problem can be
written as

max bT y s.t. s = c−AT y ≥ 0. (43)

The optimality conditions for (x, y, s) to be a primal dual solution are again
the Karush-Kuhn-Tucker conditions

AT y + s− c = 0
Ax− b = 0 (44)

XSe = 0
(x, s) ≥ 0,

where X = diag(x1, x2, ..., xn), S = diag(s1, s2, ..., sn) and e is the unit
vector. In the terminology of generally constrained optimization, the vec-
tors y and s are Lagrange multipliers for the constraints Ax = b and the
bounds x ≥ 0. A vector (x∗, y∗, s∗) solves this KKT-system if and only if x∗

solves the primal problem and (y∗, s∗) solves the dual problem. The vector
(x∗, y∗, s∗) is then called a primal-dual solution.

Primal-dual interior point methods can be thought of as a variant of
Newton’s method applied to the system of equations formed by the first
three optimality conditions. Further details can be found in (Wright, 1997)
and (Moré and Wright, 1993).

Solver: IPOPT
This software is written by Andreas Wächter and he developed a primal-

dual interior point algorithm with a filter line search. He considers a primal-
dual barrier method to solve nonlinear unconstrained, bound-constrained
and generally constrained optimization problems. As a barrier method the
proposed algorithm computes approximate solutions for a sequence of barrier
problems

min
x∈Rn

φµ(x) = f(x)− µ
∑
i∈IL

ln(xi − li)− µ
∑
i∈IU

ln(ui − xi)

subject to c(x) = 0, (45)
where IL = {i : li 6= − inf} and IU = {i : ui 6= inf}
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for a decreasing sequence of barrier parameters µ converging to zero. Equiva-
lently, this can be interpreted as applying a homotopy method to the primal-
dual equations,

∇f(x) +∇c(x)y − s = 0
c(x) = 0 (46)

XSe− µe = 0,

with the homotopy parameter µ, which is driven to zero. Further informa-
tion e.g. in (Byrd et al., 1998) and (Gould et al., 2000).
If li = ui for a variable, this component of x is fixed to this value for all
function evaluations and removed from the problem statement. Of course, in
the case with only simple bounds on the variables, the constraint condition
c(x) = 0 is already satisfied.

The method used by IPOPT computes an approximate solution to the
barrier problem stated above for a fixed value of µ. Then the barrier pa-
rameter is decreased and it is continued to solve the next barrier problem
from the approximate solution of the previous one. A short outline of the
algorithm is stated below:

Initialization
for k = 1, ...,maxit do

Check for convergence
Compute the search direction
Backtracking line search
Accept the trial point
Augment the filter if necessary
Increase k

end for

Algorithm 7: Outline of IPOPT algorithm

Further details of the algorithm and the method can be found in (Wächter
and Biegler, 2006).

IPOPT needs for running the BLAS and LAPACK routines and at least
two subroutines from the Harwell library. In the forthcoming tests it is run
with the freely available Harwell subroutines MA27 and MC19.

3 Methodology

Optimization methods are in general difficult to compare ”on the paper”,
that means, one can’t find the best solver only by reading the paper of the
algorithm. This leads directly to the consequence that tests had to be made
to get a fair comparison of the different solvers.
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An important fact for a fair comparison is to use the same information of
the function for all solvers. To consider a special type of problem where no
exact Hessian matrix is given, it is only taken use of the function value and
the exact first derivatives. The solvers either approximate second derivative
information or don’t need them at all.

A further important question for the test was the choice of the param-
eters. For that, default values for all methods are used because one would
suppose that they are adjusted by the developer to work best with most of
the test cases.

Yet another important point was the use of the same stopping criteria
for all solvers. This will be discussed in more detail in the next section.

3.1 Used stopping criteria

In this experiments, for solving the problem successfully, the condition

‖P(x∗ −∇f(x∗))− x∗‖∞ ≤ ε, (47)

where ε is the required accuracy, had to be satisfied.
A problem was not successfully solved if the projected gradient did not

reach the demanded accuracy for one of the following reasons. Firstly, the
solver itself terminates the run and reports an error during solving the prob-
lem. In this case, no solution was found or the presented solution was com-
pletely wrong. The second case is also reported by the solver that the run
was terminated because the next iterate generated by the algorithm was too
close to the current iterate to be recognized as distinct. This occurs, if the
solver is quite near the solution but is unable to meet the demanded accu-
racy of the projected gradient. It is sometimes said, the solver is ”stuck”
because it cannot make further progress towards the solution.

Additionally, two termination criteria - limits for iteration number and
time - were set. They are stopping the optimization process from outside,
are defined by the user. In these experiments, the codes were run with
a maximum iteration limit of 100000 and a CPU time limit of 1800s. If
these values are exceeded, the problem will be considered as not successfully
solved.

The projected gradient as stopping criterion was already used in L-
BFGS-B and Lancelot B. In the solvers DOT, TN-BC and IPOPT the
unscaled projected gradient was to implement.

3.2 Testing environment

In the experiments the CUTEr test environment was used to compare the
considered optimization software. CUTEr is a testing environment for opti-
mization and linear algebra solvers and it contains a large collection of test
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problems in SIF (standard input format). It provides ready-to-use inter-
faces to existing solvers (e.g. L-BFGS-B and IPOPT) and it is possible to
create new interfaces. This was done for DOT and TN-BC. In all cases the
algorithms of the solvers were not included in the test environment and had
to be implemented.

Lancelot B provides already an own interface to decode and run test
problems written in SIF.

3.3 Test case statistics

CUTEr provides 128 bound constrained problems and 76 out of them were
used for the experiments. Two test cases were removed from the test set
because they could not be solved by all considered solvers. 50 test cases were
excluded because two ore more of the codes solved the problem in 0.00s so
that no comparison of them was possible. We assume, these problems are
too small or too easy to solve.

The number of variables of the remaining test cases varied from 3 to
15625. The type of the objective function was quadratic in 32 cases, a sum
of squares in 19 cases and the remaining 25 cases were of other type.

The origin of the test cases was academic in 37 cases, so they have been
constructed specifically by researchers to test one or more algorithms. In 26
cases, the problem is part of a modelling exercise where the actual value of
the solution is not used in a practical application. In 13 cases the origin is a
real application, so the solution of the problem is or has been used in a real
application for purposes other than testing algorithms.

3.4 Performance profiles

For the comparisons in the next chapters we made use of the Dolan-Moré
performance profiles (Dolan and Moré, 2001). Given a test set P contain-
ing np problems and ns solvers, these profiles provide a way to graphically
present the comparison of quantities tp,s (such as required computing time
or number of function evaluations to solve problem p by solver s) obtained
for each problem and each solver. For this, the performance ratio for a
problem p and a solver s is defined as

rp,s :=
tp,s

min{tp,s : 1 ≤ s ≤ ns}
. (48)

If solver s for problem p leads to a failure rp,s := 2 ∗max{tp,s : 1 ≤ s ≤ ns}
is defined. Then,

ρs(τ) :=
1
np

size{p ∈ P : rp,s ≤ τ} (49)

21



is the fraction of the test problems which were solved by solver s within a
factor τ ≥ 1 of the performance obtained by the best solver. The function
ρs is the (cumulative) distribution function for the performance ratio. The
performance plots present ρs for each solver s as a function of τ . In this
work, a logarithmic scale is used for the τ -axis. That means,

ρs(τ) :=
1
np

size{p ∈ P : log2(rp,s) ≤ τ} (50)

is plotted in the performance profiles in the following chapters.

4 Results and conclusions

Two runs with different required accuracies as stopping criterion were done.
Firstly, tests requiring moderate accuracy were made. Secondly, the same
test problems were run again but a higher accuracy was required. Thirdly,
another run with the same test problems but with a completely different
stopping criterion has been considered. In this case, the iterations were
terminated after a certain number of function plus gradient evaluations in
order to imply the fact that the evaluations of function and gradient could
be very expensive. The aim of this experiment was to see how much each
solver was able to reduce the function value after a maximum cost of 70
evaluations. Finally, a last experiment was done to compare the different
solvers on a model function of a real Airbus problem.

4.1 Experiment with low accuracy

In this experiment, the infinity norm of the projected gradient of the objec-
tive function must be reduced below 10−3. The results of this testing can
be seen in Table 1.

Solver CPU time Nbr.funct.+grad.evaluations
DOT-BFGS 0 8
DOT-FR 0 7
L-BFGS-B 37 17
TN-BC 19 3
Lancelot B SR1 14 49
Lancelot B BFGS 5 39
Lancelot B PSB 13 53
IPOPT 0 0

Table 1: Results with required low accuracy
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Figure 1: Results in terms of CPU time

Figure 2: Results in terms of function+gradient evaluations
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In Table 1 can be seen that L-BFGS-B was the fastest solver in 37 of
the test cases and that IPOPT and both methods of DOT have a very
bad performance in terms of CPU time. In terms of function and gradient
evaluations, Lancelot B outperforms the other methods. The version which
uses PSB update solved 53 of the test cases with the lowest number of
evaluations. Obviously, Lancelot B takes advantage of trust region method
in which it is sufficient to compute the function value only once per iteration
in contrast to line search method where it is necessary to compute it several
times during the search for the step length.

4.2 Experiment with high accuracy

In this experiment, every run was terminated when the infinity norm of the
projected gradient of the objective function was reduced below 10−5.

Solver CPU time Nbr.funct.+grad.evaluations
DOT-BFGS 0 2
DOT-FR 0 1
L-BFGS-B 28 9
TN-BC 16 1
Lancelot B SR1 19 49
Lancelot B BFGS 9 38
Lancelot B PSB 13 48
IPOPT 1 0

Table 2: Results with required high accuracy

Table 2 shows nearly the same picture as the experiment with required
low accuracy. L-BFGS-B performs again best in terms of CPU time and
Lancelot B needs again the smallest number of function and gradient evalu-
ations more often than other methods to solve the problems of the test set.
This time, the version using SR1 update is slighly better than that using
PSB update.
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Figure 3: Results in terms of CPU time

Figure 4: Results in terms of function+gradient evaluations
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4.3 Case of failure due to demanded accuracy

Here, we describe for which reasons each solver failed to solve the complete
set of test problems. In Table 3, the number of failures are counted and
displayed as a comparison of the two different required accuracies. The
term ”error” stands for failures of the solver itself, for example errors in
line search. The term ”stuck” stands for a lack of accuracy because in this
case the solver was in the near of the solution but didn’t manage to reduce
the projected gradient at that point to get the required accuracy. In both
cases the solver itself stopped the iteration with one of these messages. Ter-
mination by user means that we have chosen the both limits for maximum
iteration count and CPU time limit. Although, we thought of a quite gen-
erous choice of these limits with an iteration limit at 100000 and CPU time
limit at 1800 seconds, the solvers might have solved the problem afterwards
exactly.

Low accuracy 10−3 High accuracy 10−5

Termination by solver by user by solver by user
For reason error / stuck maxit / CPU error / stuck maxit / CPU
DOT-BFGS 0 / 5 0 / 8 0 / 26 1 / 24
DOT-FR 0 / 6 0 / 1 0 / 34 8 / 1
L-BFGS-B 1 / 8 1 / 0 2 / 14 8 / 0
TN-BC 3 / 2 2 / 1 6 / 4 2 / 2
Lancelot B SR1 0 / 0 0 / 0 0 / 1 0 / 1
Lancelot B BFGS 0 / 2 3 / 2 0 / 2 4 / 5
Lancelot B PSB 0 / 0 0 / 0 0 / 0 0 / 2
IPOPT 8 / 0 3 / 6 4 / 0 0 / 0

Table 3: Case of failure

Naturally, less failures occured when lower accuracy was required. Often-
times, the problem was solved before the errors could occur. The interesting
fact of the table is that some solvers had more differences between the two
runs than others. Namely must be said that Lancelot B in general had
nearly no problems to solve all test cases in an accurate way. Especially
with PSB update, the solver had only two times exceeded the CPU time
limit with required high accuracy in comparison with no failure for required
low accuracy. Nearly the same results were obtained using SR1 update.

4.4 Experiment with maximum cost 70

Here, another experiment with an extra implemented stopping criterion was
done. The run of a solver was terminated if a sum of 70 function and gradient
evaluations or the former stopping criterion 10−5 was reached. As result,
the lowest function values were observed.
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Solver lowest function value
DOT-BFGS 8
DOT-FR 9
L-BFGS-B 10
TN-BC 4
Lancelot B SR1 39
Lancelot B BFGS 35
Lancelot B PSB 39
IPOPT 8

Table 4: Results with maximum cost 70

Figure 5: Results in terms of function value

It can be seen in Table 4 that the winner of test cases is again Lancelot
B. It solved the most test cases with lowest function value compared to the
others. In the corresponding Figure 5 can be seen that also the other solvers
are not far away of being the best. Both DOT methods perform not bad
in this type of experiment. But it should be mentioned that for instance at
τ = 2 they solved 75% of the test cases reaching only twice the best function
value. In this experiment, TN-BC performed worst.

Besides, out of Figure 5 can’t be drawn conclusions about the robustness
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of the solvers because this performance profile concentrates on the first part
and was truncated after τ = 5. What means, it can be only seen the
improvements of the solvers in five times the best function value.

4.5 Experiment with Airbus model function

Another experiment was done to compare the different solvers on a model
function which describes a problem which is originally considered at Air-
bus. The function describes a model of a coaction of physical draw and lift
in an aerodynamical manner. The model function which was to minimize
contained two variables and is depicted on Figure 6.

Figure 6: Model function of an aerodynamical problem

The problem is constrained by the given box

l =

(
−2.5
−2.5

)
≤ x ≤

(
2.5
2.5

)
= u.

To compare the considered solvers, a starting point had to be selected. In the
first run, the arbitrary point x0 = (0.0, 0.0) was used as starting point. The
required accuracy of the projected gradient at the solution was 10−5. Results
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in terms of final function values, CPU time (for the model function without
real CFD calculations) and the sums of function and gradient evaluations
are displayed in Table 5.

Solver final f value nbr.func+grad.eval. Time
DOT-BFGS 21.6895 44 14.40 s
DOT-FR 21.6895 49 14.67 s
L-BFGS-B 24.8152 4 1.40 s
TN-BC 21.6895 46 9.66 s
Lancelot B SR1 20.5656 40 6.19 s
Lancelot B BFGS 24.8152 104 13.06 s
Lancelot B PSB 21.6895 40 5.36 s
IPOPT 21.6895 25 6.13 s

Table 5: Results of aerodynamical model function

In Table 5 is to be seen that the solvers converged to different local
minima so that a direct comparison is not possible. For this reason, we
chose another starting point x0 = (−2.0,−1.0) which lies closer to the global
minimum x∗ = (−2.3,−0.6). This time, all solvers converged to the same
minimum.

Solver final f value nbr.func+grad.eval. Time
DOT-BFGS 20.5656 66 18.83 s
DOT-FR 20.5656 64 18.45 s
L-BFGS-B 20.5656 38 4.76 s
TN-BC 20.5656 35 7.20 s
Lancelot B SR1 20.5656 35 4.56 s
Lancelot B BFGS 20.5656 31 4.05 s
Lancelot B PSB 20.5656 31 4.14 s
IPOPT 20.5656 37 8.31 s

Table 6: Results of aerodynamical model function second run

Table 6 shows that in terms of function plus gradient evaluations all
solvers performed nearly the same, except for both DOT methods which
needed the double amount of evaluations. In terms of CPU time it shows the
same picture, but it can be said that Lancelot B and L-BFGS-B outperform
the other solvers.

4.6 Conclusions

We have compared 8 solvers and variations for bound-constrained optimiza-
tion problems. The comparisons were made using a model function provided
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by Airbus and a set of 76 test problems taken out of the CUTEr test collec-
tion. We have considered two accuracy requirements on the solution (low
and high accuracy), and we have compared the solvers in terms of number
of function plus gradient evaluations as well as in terms of CPU time. We
believe that function and gradient evaluation counts are especially of inter-
est in situations were then CPU cost is large, as it may be the case at Airbus
when 3D simulations are involved.

Our experiments show very different behaviours of the compared solvers.
The trust region based solver Lancelot B is clearly the best of the considered
solvers, both for CPU time and number of function and gradient evaluations.
It is the most robust solver too, since it can solve more than 95% of the test
cases within the given time and iteration limits.

To compare the line search based solvers we have to consider two cases:
low and high accuracy is requested. For high accuracy, L-BFGS-B is faster
and more robust than DOT. For low accuracy, it turns out that L-BFGS-B
is still faster but DOT is more robust and solved 90% of the test cases within
the limits.

In terms of function and gradient evaluations, the interior point method
IPOPT is slightly faster than DOT and slower than L-BFGS-B. The IPOPT
code solved more problems, that means, it is at the end more robust than
DOT and L-BFGS-B.

TN-BC is faster than IPOPT and DOT and has about the same robust-
ness as IPOPT.

A Experiment with generally constrained optimiza-
tion problems

In addition to the main target of this work about solving bound-constrained
optimization problems as described in the previous chapters, we had also a
closer look to optimization problems with more general constraints because
these problems are also of interest in the optimization framework of solving
problems in aircraft design at Airbus. But this is to be seen as a preliminary
work which needs further investigation.

In this Appendix, we describe the comparison of the two already imple-
mented solvers IPOPT and Lancelot B which can handle general constraints.

A.1 Problem statement

The optimization problem with general constraints can be written as

min
x∈Rn

f(xi) (51)
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subject to
ci(x) = 0, i ∈ E and ci(x) ≤ 0, i ∈ I (52)

where f is a nonlinear function with n variables and c denotes the constraint
functions of the problem. The components of c are either inequality con-
straints for each i in the index set I or represent equality constraints for
each i in the index set E .

Constraints in general can be of different nature. This definition includes
the case where only simple bounds are on the variables. Further, constraints
can be linear functions and smooth or non-smooth nonlinear functions.

A.2 Solvers

The solvers considered in these experiments are IPOPT and Lancelot B.
Both are freely available for academic use and the source code is also avail-
able. IPOPT uses a primal-dual interior point method and was compiled
with the freely available Harwell subroutines MA27 and MC19. Second order
information was approximated by limited memory BFGS update as in the
previous experiments. Lancelot B uses a sequential augmented Lagrangian
method to solve problems with general constraints and was run with the
SR1 update which seemed to perform best in the previous tests. More infor-
mation about the algorithms can be found in (Wächter and Biegler, 2006)
and (Conn et al., 1991).

In addition, we planned to consider the optimization tool DOT in this
experiment because the target of this work was the comparison of other codes
to the methods in DOT. This could be not managed in the given time-frame
for different reasons. Firstly, the tool DOT needs a huge amount of memory
so that it solves only a few problems of the test set without encountering
memory problems. This is the main reason wherefore it was not possible to
consider DOT in the comparison for the moment. A second reason is, that
in two of the three provided methods for solving optimization problems with
general constraints (SLP and SQP), the stopping criterion is only based on
stagnation of the function values and not on optimality. It is necessary to
put more time and effort to implement an objective criterion for terminating
a run successfully.

A.3 Methodology

Stopping criteria
Unfortunatly, the stopping criteria of the two considered methods IPOPT

and LANCELOT B were also not directly comparable, but these codes are
really checking optimality using a KKT system. For both methods their
default termination rules were taken in the experiments. The default ter-
mination tolerance for IPOPT, a residual of the interior point system, had
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to met 10−8, whereas the infinity norms of the projected gradient and the
constraints, used by Lancelot B, had to be equal or below 10−5.

In addition, a CPU time limit of 1 hour and an iteration count limit of
10000 were imposed for the test.

Test case statistics
The test cases used for this comparison are taken out of the CUTEr col-

lection (Gould et al., 2003). In both codes, problems with general inequality
constraints of the form

dl ≤ d(x) ≤ du (53)

are reformulated into equality constraints by adding slack variables dl ≤ s ≤
du and replacing the inequality constraints by

d(x)− s = 0. (54)

For the numerical experiment, initially all 731 test cases which have
linear or nonlinear constraints but not only simple bounds on the variables
were considered. The problems vary in size from n = 2 to 123200 variables
and from m = 1 to 123200 constraints (after introduction of slack variables).
For problems with variable size, the default was taken.

After running all test problems, 29 test cases were excluded for which
the final values of the objective functions were not close in an attempt to
avoid comparisons of runs to different local solutions. Those problems were
discarded from a performance plot for which

fmax − fmin

1 + max{|fmax|, |fmin|}
> 10−1, (55)

where fmax is the bigger and fmin is the smaller final objective function
value of the two methods. If one or both solvers terminated with an error
message, there was paid no attention to the function values whether they
were different or not.

Finally, 71 test problems could not be solved by both solvers for different
reasons but they were not removed from the performance profile.

A.4 Results and conclusions

In Table 7 can be seen the number of test cases where one of the solver was
faster (for CPU time) or needed less evaluations than the other one. It is
also counted if both had the same time or number of evaluations.

Solver CPU time Nbr.funct.+grad.evaluations
Lancelot B SR1 231 260
IPOPT 271 236

Table 7: Results with generally constrained problems
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Figure 7: Results in terms of CPU time

Figure 8: Results in terms of function+gradient evaluations
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The two Figures 7 and 8 show that Lancelot performs better for the test
set in terms of function and gradient evaluations than IPOPT and in terms
of CPU time IPOPT performs better than Lancelot B. In Table 7 can be
seen that the difference between the two methods is not that big. Lancelot
B solved 231 test cases fastest and for 271 problems IPOPT was faster. In
260 cases Lancelot B needed less function and gradient evaluations and in
236 problems this was the case for IPOPT.

About robustness of the solvers can be said that Lancelot B solved about
70% of the test cases where IPOPT solved only 64% of the test cases success-
fully. This leads to the question, why couldn’t they solve all 567 problems
of the test set. In Table 8 is listed for what reasons the methods didn’t solve
the problems.

Termination by solver by user
for reason stuck / NaN / other maxit / CPU
Lancelot B SR1 70 / 3 / 17 45 / 38
IPOPT 3 / 3 / 100 59 / 37

Table 8: Case of failure

Lancelot B terminated for 173 and IPOPT terminated for 202 problems
not successfully. In some cases, the solvers failed to converge within the user
defined time or iteration limit. In some other cases, the solvers aborted the
run itself due to different reasons. Lancelot B could make no progress to
reach the required accuracy in 70 cases. IPOPT was stuck only in 3 cases.
In 17 problems Lancelot B aborted because it could not further reduce the
constraint norm during the run and assumed the problems maybe infeasible.
IPOPT solved 7 of these problems successfully but stated possible infeasibil-
ity for one of it. The 100 test problems which IPOPT terminated for other
reasons can be separated in three parts. In 17 cases, IPOPT was not able
to start the optimization process because there were too few degress of free-
dom (more equality constraints than free variables) but Lancelot B solved
10 of them successfully. For 4 problems, IPOPT converged to a stationary
point for infeasibility. In the restoration phase, IPOPT is minimizing the
constraint violation and tries to further improve feasibility. In 79 test cases,
this stage could not be completed successfully by the algorithm.

Conclusions
Again, Lancelot B scores well at this comparison. It performs better than

IPOPT in terms of number of function plus gradient evaluations. IPOPT
performs better in terms of CPU time but at the end, Lancelot B is more
robust than IPOPT because it is able to solve more test problems in the
given time and iteration limits. Further, the biggest part of Lancelot’s un-
solved problems are due to the required accuracy. So, if high accuracy was
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not that important, the outcome of Lancelot would be even better.

The next step of this study will consist in implementing a unified stop-
ping criteria of the considered solvers to ensure a better comparability of
the methods. To give the opportunity to run DOT with all generally con-
strained test problems of CUTEr, the whole testing environment could be
installed on a bigger machine. We would also like to make a realistic soft-
ware comparison in the Airbus OPTALIA optimization suite.
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2 Backtracking line search . . . . . . . . . . . . . . . . . . . . . 11
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