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Introduction

The underground is made of a mix of earth and rock through which water
infiltrates and circulates. This circulation is modelled by potential flows in a
porous medium. These flows, which velocity field is the gradient of a potential,
are encountered in fluid mechanics when the vorticity (curl of the velocity) can
be neglected. This is the case of slow subsurface flows at scales which are large
in front of the size of the gravels.

Figure 2.1: Water table in contact with a river or a lake [NASA GSFC, by
Hailey King].

Basic notions of ground water hydraulics are presented in this chapter with the
help of simple examples which are representative of more complex subsurface
problems. Only slow flows, that is with low Reynolds numbers, in isotropic
and homogeneous porous media are considered.

The hydraulic head of porous media is presented with the Bernoulli equation
derived out the laminar Navier-Stokes equations. Since the velocity of flows in
water media is small, the hydraulic head is approximated by the piezometric
height. The Darcy law, which postulate a linear relation between the discharge
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velocity and the head loss, is presented on the simple example of the confined
aquifer flowing in a single direction. The generalization of the Darcy law to
three dimensional flows in homogeneous porous media shows that the head
can be viewed as the potential of the discharge velocity. By applying the mass
conservation, one shows that the head loss satisfies the Laplace equation.

Understanding the nature of the boundary conditions used to solve this Laplace
equation is one of the key points of this chapter. Several examples are pre-
sented.

1 Head loss

The one-dimensional Darcy law is presented here. It states that the discharge
velocity of a flow in a porous media is proportional to the lineic head loss.

1.1 Bernoulli equation

We take as starting point the laminar incompressible Navier-Stokes equations

div U = 0 ,
∂U

∂t
+ U · grad U = F − 1

ρ
grad p+ ν∆U , (2.1)

where the volume forces F = −g ez = −grad (g z) are due to gravity.

L

M2

M1

U

dM

Figure 2.2: Stream L of a laminar flow.

Let us consider a stream line L going from a point M1 to a point M2. By
using the relation

U · grad U =
1
2

grad U2 + rot U ∧ U (2.2)

and the relation (rot U ∧ U) · dM = rot U · (U ∧ dM) = 0, one can derive the
“Bernoulli equation”∫

L
grad H · dM =

1
g

∫
L

(
−∂U
∂t

+ ν∆U
)
· dM , (2.3)
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where H is the “hydraulic head” defined by the relation

H =
p

ρ g
+ z +

1
2 g
U2 . (2.4)

By integrating from the left hand side of the Bernoulli equation (2.3), one gets

H(M2) = H(M1)−
∫
L

(
1
g

∂U

∂t
+ J

)
· dM , J =

1
g

(−ν∆U) . (2.5)

The term J is the lineic head loss due to viscous friction.

In this chapter, we only consider flows such that the acceleration term ∂
∂tU +

U ·grad U is neglectable in front of the viscous force term ν∆U (low Reynolds
numbers flows). This is the case for subsurface flow in porous media. For such
flow, on can write

H ∼ p

ρ g
+ z , H(M2)−H(M1) ∼ −

∫
L
J · dM . (2.6)

1.2 Averaged head

TThe fluid particules of an undergroundwater in a porous medium follow
complex trajectories between gravels. Let us consider a family of trajectories
forming a tube of sections A(s) around a mean trajectory L parametrized by
its curvilinear coordinate s (Figure 2.3).

U

L

s

es

A′(s) < A(s)

A′(s) ⊂ A(s)

Figure 2.3: Tube of trajectories in a porous medium.

Since the medium is “porous”, the fluid only crosses a section A′(s) smaller
that A(s). If A′(s) and A(s) are, respectively, the area of these two sections,
we denote by m = A′/A ≤ 1 the “porosity” of the medium.
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One denotes by Q(s) the volumetric flow, or “seeping discharge”, in the di-
rection es, where es is the unit vector tangent to the trajectory L, and one
defines it by

Q(s) =
∫∫
A′
U · es dS . (2.7)

The “discharge velocity” U is then defined by the relation

U(s) =
Q(s)
A(s)

=
1

A(s)

∫∫
A′
U · es dS . (2.8)

We note that the real velocity of the fluid is, in average, greater than this
discharge velocity since A′(s) < A(s).

The averaged hydraulic head of the section A(s) is defined by

H(s) ∼ 1
A′

∫∫
A′

(
p

ρ g
+ z

)
dS =

P∗(s)
ρ g

= h∗ , (2.9)

where P∗(s) is the “piezometric pressure” and h∗(s) the “piezometric height”.

impervious

impervious

0
z

p− pa

ρ g

h∗ = z +
p

ρg

pa/(ρ g)

z

lake

lake

aquifer

Figure 2.4: Piezometric height h∗ = p
ρ g + z in an aquifer.

This piezometric height the altitude that would reach the water in a well,
open to the atmospheric pressure, relatively to a plane located at the distance
pa/(ρg) below the (arbitrary) geographic zero z = 0 (see Figure 2.4). In some
books dealing with hydraulics, a gage is taken on the pressure scale in order
to have pa = 0. We do not make this choice in this presentation.

On One defines the “averaged lineic head loss” J by the relation

J(s) =
1
A′

∫∫
A′
J · es dS , (2.10)
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which thus satisfies, for a stationary flow, the relation

dH

ds
(s) = −J(s) . (2.11)

1.3 1D Darcy law

One considers a slow quasi-1D flow obtained by following a tube of trajectories
in a porous media. If the section of this tube is large compared to the size of
the porous medium gravels or cracks, one can, from experimental observations,
model the head loss of this by the one dimensional Darcy which reads

J(s) =
U(s)
Kp(s)

=⇒ U(s) = −Kp(s)
dH

ds
(s) , (2.12)

where Kp is the “hydraulic conductivity” of the medium. This quantity has the
dimension of a velocity. For instance, one can choose Kp = 20 m/day for water
seeping in fine sand and Kp = 2 km/day for water flowing between gravels.
The “intrinsic permeability” coefficient K0 = Kp ν/g is often considered to
characterize a porous medium since it only depends of its geometric properties.
The porous media is homogeneous if Kp is independent of space.

0
z

p− pa

ρ g

pa/(ρ g)

H1 = z1 +
pa

ρg

z1

H2 = z2 +
pa

ρg

z2

H(s)
H1 −H2

U(s)

L
A(s)

s1

s2
confined aquifer

lake

z

impervious

impervious

lake

Figure 2.5: Head profile H(s).

As a first application example of the Darcy law, we consider the stationary
flow by an aquifer confined in an impervious medium (for instance rock) and
flowing between two lakes (Figure 2.5) of respective altitudes z1 > z2. One
denotes A(s) the section of the gallery in which the fluid is flowing. The mass
conservation implies that the discharge Q = A(s)U(s) is constant. The model
leads to the system of equations

d

ds
(AU) = 0 , U = −Kp

dH

ds
. (2.13)
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In order to solve these equations, one must consider two boundary conditions
which are here

H(s1) = H1 , H(s2) = H2 , (2.14)

where s1 and s2 are the curvilinear coordinates at the two lakes.

If the porous medium is homogeneous (constant Kp) and the section A(s) is
constant, the solution is

H(s) = H1 +
H1 −H2

s1 − s2
(s− s2) , U = −Kp

H1 −H2

s1 − s2
. (2.15)

2 Porous media

In a general porous media, one can define the “discharge velocity” in every
point x = (x, y, z) in space, provided one looks at a scales larger than the one of
gravels or cracks. Staying at these large scales, we denote, from now on, by U
the “discharge velocity” and we ignore the “actual velocity”. Contrarily to the
actual velocity, the curl of the discharge velocity vanishes, the vorticity terms,
associated with the walls boundary layers, being relegated in the modeling of
the head losses. The flow is thus potential at large scales, which is traced back
by the Dary law.

2.1 3D Darcy law

We only consider low Reynolds flows, that is such that the acceleration term
∂
∂tU + U · grad U can be neglected in the Navier-Stokes equations which then
read

div U = 0 , grad
(
p

ρ g
+ z

)
=

1
g

(ν∆U) ⇐⇒ grad H = −J , (2.16)

where H = p
ρ g + z is the hydraulic head and J = 1

g (−ν∆U) the lineic head
loss vector due to the viscous friction.

We now settle at a “macroscopical” spatial scale, large in front of the porous
medium gravels and the cracks size which defines the “microscopic” scale.
henceforth, we denote by U the “discharge velocity” obtained by spatially
averaging, at the macroscopic scale, the “real velocity” which we ignore from
now on, excepted for saying that it is locally more intense at the microscopic
scale.

The discharge velocity also satisfies div U = 0. On the other hand, the lineic
head loss vector averaged at the macroscopic scale, that we henceforth denote
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by J while ignoring the lineic head loss vector at the microscopic scale, is not
linked to the velocity U by a Laplacian as it was the cas for its microscopic
scale. Experimental observations allow to express it with the help of the
tridimensional (3D) Darcy law which reads

J(x, t) =
1

Kp(x, t)
U(x, t) , (2.17)

where Kp is the hydraulic conductivity of the porous medium. The modelling
of anisotropic medium can be obtained by replacing 1/Kp by an order two
tensor (a matrix). This case will not be considered in this presentation.

We henceforth denote by H the “averaged hydraulic head” defined by

H =
p

ρ g
+ z , (2.18)

where p henceforth denotes the averaged pressure at the macroscopic scale.

div U = 0 , U = −Kp grad H . (2.19)

When the porous medium is homogeneous (constant Kp), which we assume
from now on, the elimination of the velocity U between the two relations
div U = 0 and U = −Kp grad H leads to the Laplace equation

∆H = 0 , H =
p

ρ g
+ z . (2.20)

Since the Laplace equation is elliptic, one needs to specify boundary conditions
on the whole border of the studied domain.

Trajectories are thus orthogonal to the iso-H surfaces (Figure 2.6). One shows
that if one can draw a circle in a “case” bounded by two iso-H and two
trajectories, one can draw a circle in each of the others “cases”. This property
leads to a graphical solution of the Laplace equation with the “circle method”.

U

iso−
H

Figure 2.6: Orthogonality between the iso-H and the trajectories.



2. POROUS MEDIA 9

2.2 Confined flows

We consider a stationary flow in an isotropic and homogeneous medium and we
suppose here that the subsurface flow is confined between impervious bound-
aries or surface water layer such as a lake or a river.

At the interface between the aquifer and the impervious boundaries, the nor-
mal velocity vanished. The boundary conditions on the interface are thus

grad H · n =
∂H

∂n
= 0 / interface . (2.21)

These are “Neumann” boundary conditions for the elliptic problem ∆H = 0.

Since trajectories are crossing the interface between the surface water layer
and the aquifer, the head must be continuous. The boundary conditions on
this interface are thus

H = Hi / interface , (2.22)

where Hi is the head of the surface water layer at the interface. These are
“Dirichlet” boundary conditions for the elliptic problem ∆H = 0.

dam

H1

H = H1
∂H

∂n
= 0 H = H2

∂H/∂z = 0
pa/(ρ g) x

H1 = z1 +
pa

ρg
H2 = z2 +

pa

ρg

z1

z

Zf
U

iso−
H

z2

0 impervious

lake lake

Figure 2.7: Iso-H (solid lines) and trajectories (dot-dashed lines) of a ground-
water flow under a dam.

As an example, let’s consider the groundwater flow under an impervious dam
surrounded by two lakes which free surfaces are at the respective altitudes
z1 and z2 (see Figure 2.7). We suppose that the lakes are at rest so that
their pressure are hydrostatic and their head constant. We assume that an
impervious bottom is located at the altitude z = Zf with Zf constant.

We suppose that the aquifer is bounded at the bottom by a horizontal im-
pervious medium and that the problem is invariant by a translation in the



10 CHAPTER 2. POTENTIAL FLOWS

y direction (2D flow). The flow is seeping from the first lake, with a head
equal to H1 = z1 + pa/(ρ g), to the second lake at a head equal to H2 =
z2 + pa/(ρ g) < H1.

We must thus solve ∆H = 0 with the Dirichlet condition H = H1 or H = H2,
at the bottom of the lakes, and with the Neuman conditions ∂H

∂n = 0 on all
the impervious interfaces.

Accurate solutions of this problem are obtained through numerical simulations,
the literature on solving elliptic problem being very large. But graphical meth-
ods, developed at the time when computers where not available, are helpful
to get a first hint of the solution. This is the case of the “circle method” that
can be applied for two-dimensional geometries (see Figure 2.7).

2.3 Unconfined flows

We now consider that an aquifer whose upper part is unconfined and whose
lower part is delimited by an impervious boundary of equation z = Zf . The
free surface, located inside the porous medium, is called the “water-table”
and the aquifer is said to be “phreatic”. We ignore here the capillarity layer
which separates the fluid and the dry porous media and we suppose that the
water-table is a surface on which the pressure is the atmospheric pressure pa.
We consider, in this presentation, that Zf is constant.

The existence of this water-table leads to a new boundary conditions. Indeed,
the location of this surface, which we denote by the equation z = Zf +h(x, y),
is unknown. In order to find this new function, two boundary conditions
instead of one are imposed at this interface, which read

∂H

∂n
= 0 , H = Zf + h(x, y) +

pa
ρ g

/ interface z = Zf + h(x, y), (2.23)

since no flow is crossing the stationary water-table and the pressure is equal
to the atmospheric pressure. We thus see that the water-table is made of
trajectories.

As an example, we consider the flow in a phreatic aquifer between two lakes
at rest which free surface are at the respective altitudes z1 and z2. The water
flows in a porous dam bounded by the planes x = 0 and z = zb(x). (see
Figure 2.8). The boundary conditions ∂H

∂n on the impervious interface and the
boundary conditions H = H1 and H = H2 at the interfaces with the lakes are
easy to understand. The location of the water-table z = Zf +h(x) is obtained
by solving the whole family of trajectories starting from the condition H = H1

on the Oz axis and choosing the one which starts at z = z1.
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∂H/∂n = 0

H1 = z1 +
pa

ρg

H2 = z2 +
pa

ρg

x

z1

z

z2

H = zb(x) +
pa

ρg

pa/(ρ g)
H

=
H

2

H
=

H
1

U

z = Zf + h(x)
A

B

0

H = Zf + h(x) +
pa

ρg

Zf

z
b (x)

lake

lake

Figure 2.8: Iso-H (solid lines) and trajectories (dot-dashed lines) of in a
phreatic aquifer between two lakes.

The peculiarity of this problem is the fact that there must a “seeping face”,
represented by the non zero line AB in Figure 2.8. This face is in contact
with the atmosphere and fluid is emerging out of it and trickling down along
it. Indeed, the is no reason that the trajectory coming from z = z1 on the Oz
axis cut the oblique dam surface in a point A equal to the point B, excepted
for a very particular value of z1. Along the AB line, the boundary condition
is H = zb(x) +pa/(ρ g) since the pressure is equal to the atmospheric pressure
pa.

3 Subsurface flows

We apply the Darcy law to the case of artesian aquifers and wells. For phreatic
water tables, the Dupuit approximation enables the modelling of free surfaces
with small slopes.

3.1 Artesian well

On denote by “artesian aquifer” and aquifer confined between two impervious
media. We consider here an artesian aquifer is fed by its contact with a lake
at head H0. We suppose that the fluid is initially at rest so that its head is
also equal to H0 every where.

We then dig a well at some point far from the lake. If the head in the aquifer
is strong enough, the fluid will go up naturally along the well up to the land
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surface or beyond. In that case, one says that the well is “artesian”. There is
no need pumping to get the water out of such a well.

impervious

impervious

H(r)

r

z

0

h0

Hp

rp

lake

artesian aquifer

H0

r0

S(r)

Figure 2.9: Depression curve S(r) for an artesian well.

We suppose that the artesian aquifer is confined between two horizontal im-
pervious plane separated by a distance h0 (see Figure 2.9). We suppose that
the well is a vertical cylinder of radius rp which can absorb the water out of
the whole thickness h0 of the layer.

When a discharge flux Q is allowed in the well, the head is no longuer constant
and we assume a radial distribution H(r) where r is the distance to the well
axis. The boundary condition ∂H

∂z = 0 is thus satisfied on the impervious
interfaces.

One must then solve the Laplace equation

∆H =
1
r

∂

∂r

(
r
∂H

∂r

)
= 0 (2.24)

which leads to ∂H
∂r = C/r where the integration constant C must be expressed

in function of Q. Using the Darcy law U = −Kp grad H = −Kp
∂H
∂r er and

integrating the flow discharge on a cylinder of radius r and of height h0, one
finds C = Q/(2πKp h0).

One then deduces the “depression curve” S(r) defined by the “Thiem equa-
tion”

S(r) = H0 −H(r) =
Q

2π T
Ln

(
r0
r

)
, T = Kp h0 , (2.25)

where r0 is the distance between the well and the lake. One also deduces a
relation between the flow discharge of the well and the head Hp at the center
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of the well which reads

Sp = H0 −Hp =
Q

2π T
Ln

(
r0
rp

)
. (2.26)

3.2 Dupuit approximation

We consider a phreatic aquifer is contained between a horizontal impervious
plane of equation z = Zf and its water-table surface of equation z = Zf +
h(x, y). On this water-table surface the pressure is equal to the atmospheric
pressure pa, which is equivalent to say that the head H(x, y, z) = z + p/(ρ g)
is equal to H = Zf + h(x, y) + pa/(ρ g) for z = Zf + h(x, y). Between these
two surfaces, the discharge velocity is given by the Darcy law U(x, y, z) =
−Kp grad H(x, y, z).

∂H/∂n = 0 x

Zf

z

pa/(ρ g)

H = Zf + h +
pa

ρg

h(x, y)

0

UH

z = Zf + h(x, y)

lake

Figure 2.10: Dupuit approximation valid for nearly vertical iso-H.

The “Dupuit approximation” applies to configurations where the slope of the
water-table is small enough to consider that the iso-H are vertical (figure
2.10). In that case we have

H(x, y, z) ∼ H(x, y) = Zf + h(x, y)+
pa
ρ g

, (2.27)

by applying the the boundary condition at the surface. The discharge velocity
U = −Kp grad h is then equal approximatively to the horizontal velocity
UH = −Kp grad h.

The lineic flow discharge vector, integrated from the bottom of equation z =
Zf , to the water-table of equation z = Zf +h, is then approximatively equal to
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q = h UH . By integrating the equation div U = 0 from z = Zf to z = Zf + h
and by writing that the velocity normal to these boundaries vanishes, one
shows that div q = 0.

By denoting U and V the two components of U , the equations of a stationary
flow obtained under the Dupuit approximation are the two equations div q = 0
and UH = −Kp grad h, which reads

∂

∂x
(h U) +

∂

∂y
(h V ) = 0 , U = −Kp

∂h

∂x
, V = −Kp

∂h

∂y
. (2.28)

If the porous medium is homogeneous (constant Kp), which we assume here,
the square of the height h is solution of the horizontal Laplace equation(

∂2

∂x2
+

∂2

∂y2

)
h2 = 0 . (2.29)

3.3 Applications and limitations

As an example of the application for the Dupuit approximation, we first con-
sider a phreatic aquifer flowing from a lake to a prismatic ditch (Figure 2.11).
We assume that the bottom previous interface is the horizontal plane z = Zf
with Zf constant.

H(x)

z

x
0

U(x)

x0

H0

h0 is
o
−

H h(x)

is
o
−

H

Zf

pa/(ρ g)

Hp

He

Dupuit approximation non valid

impervious

lake

Figure 2.11: Flow towards a prismatic ditch in a phreatic aquifer.

We denote by q the lineic flow discharge of the ditch in the y direction. We
assume that the lake is at the load H0 and we denote by x0 its distance from
the ditch. We denote by h0 be the distance between the impervious plane and
the free surface of the lake. We thus have H0 = Zf + h0 + pa

ρ g .
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By comparing with the solutions of the the exact equations, it can be shown
that the Dupuit approximation is everywhere valid excepted near the ditch
where the discharge velocity U can no longer be considered as horizontal.

For the points where the Dupuit hypothesis is valid, the load is equal to
H = h+ pa/(ρ g) equations (2.28) read

d

dx
[U(x)h(x)] = 0 , U(x) = −Kp

dH

dx
(x) = −Kp

dh

dx
(x) (2.30)

and can be integrated, imposing a symmetry x→ −x, into

h2
0 − h2(x) =

2 q
Kp
|x0 − x| . (2.31)

One then deduces the head Hp at the ditch obtained in the framework of the
Dupuit approximation. Even though this approximation is not valid close to
the well, this value of Hp can be used to determine the level of the water in
the ditch by saying that z = Zf +hp = Hp− pa/(ρ g) is the altitude of its free
surface. The solution obtained with the Dupuit approximation put forwards
the existence of a “seeping face” so that the water-table does not coincide with
the free surface of the ditch water.

H(r)

z

r0

Ur(r)

r0

He

h0

h(r)

H0

is
o
−

H

is
o
−

H

pa/(ρ g)

Hp

Zf

Dupuit approximation non valid

impervious

Figure 2.12: Velocity U = Ur er of a phreatic aquifer around vertical and
cylindrical well.

If we now replace the ditch by a vertical and cylindrical well (figure 2.12)
in which a flow discharge Q is pumped out, the radial discharge velocity Ur(r)
and the head H(r) only depend of the radius r. For the points where the
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Dupuit approximation is valid, one has H = Zf + h and the equations (2.28)
read

d

dr
[r Ur(r)h(r)] = 0 , Ur(r) = −Kp

dH

dr
(r) = −Kp

dh

dr
(r) . (2.32)

By integrating these equations, one obtains

h2
0 − h2(r) =

Q

πKp
Ln

(
r0
r

)
. (2.33)

FORMULAS

Head loss

Hydraulic head :

H =
p

ρ g
+ z +

1
2 g
U2 ∼ p

ρ g
+ z .

Averaged Navier-Stokes équations :

div U = 0 , grad H = −J .

Porous media

Darcy law:

J(x, t) =
1

Kp(x, t)
U(x, t) .

Slow flows:

div U = 0 , U = −Kp grad H .

Homogeneous porous media:

∆H = 0 , H =
p

ρ g
+ z .
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Impervious boundary conditions:

∂H

∂n
= 0 .

Free surface boundary conditions:

∂H

∂n
= 0 , H = Zf + h+

pa
ρ g

/ interface z = Zf + h(x) .

Subsurface flows

Artesian well:

S(r) = H0 −H(r) =
Q

2π T
Ln

(
r0
r

)
, T = Kp h0 .

Dupuit approximation:

H(x, y, z) ∼ H(x, y) = Zf + h(x, y)+
pa
ρ g

.

Dupuit and discharge:

U = −Kp
∂h

∂x
, V = −Kp

∂h

∂y
,

∂

∂x
(h U) +

∂

∂y
(h V ) = 0 .

Homogeneous Dupuit: (
∂2

∂x2
+

∂2

∂y2

)
h2 = 0 .

Prismatic ditch:

h2
0 − h2(x) =

2 q
Kp
|x0 − x| .
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Cylindrical well:

h2
0 − h2(r) =

Q

πKp
Ln

(
r0
r

)
.

EXERCISES

See exercices in French language in the book:

O. THUAL, Hydrodynamique de l’Environnement, Éditions de l’École Poly-
technique, 2010.

or at http://thual.perso.enseeiht.fr/xsee


