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Introduction

The goal of this chapter is to give an overview of the turbulence models which
describe, from the engineering point of view, the friction of a walls on a flow.

This presentation of turbulence modelling is oriented towards the introduction
of the empiric relations which express the turbulent friction coefficients as a
function of global parameters of the flow, such as the average velocity and the
section of the pipe (hydraulics in closed ducts) or the channel (open channel
flows).

Simple notions on the decomposition between mean fields and turbulent fluc-
tuations are given. By taking the average of transport equations or of the
Navier-Stokes equations, the notions of turbulent fluxes and turbulence diffu-
sivity are introduced. The mixing length model, which is helpful in a lot of
engineering applications dealing with fluid mechanics, is explicited.

Figure 3.1: Turbulent flow at the exit of marine wharf.

In the vicinity of a wall, such as the bottom of a channel flow or the inside
boundaries of a pipe, the mixing length is the product of the distance to the
wall and the Von Karman constant which value comes out of experiments.
This robust law lead to identification of logarithm profiles for the velocity in
the vicinity of the wall. The cases of smooth or rough boundaries are com-
pared. They are limit cases of the “Moody diagram” which plot, for general
roughnesses, the turbulent friction coefficient as a function of the Reynolds
number and the dimensionless roughness.
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1 Turbulence modelling

The decomposition of a turbulent field as the sum of its mean and its fluctu-
ations enables to define the notion of turbulent fluxes as being the mean of
the fluctuation products. One then parametrizes theses fluxes as functions of
the mean fields with the help of coefficients such as the turbulent diffusivity
or the turbulent viscosity.

1.1 Mean and fluctuations

When a flow is turbulent, any field B(x, t) (velocity components, pressure,
temperature ...) is fluctuating in space and time on a large variety of scales.

Thus, one tries to decompose B as the sum of a mean field B which varies at
the large space and time scales of interest (for instance for the engineer) and a
rapidly fluctuating field B′ which represents the motion of the smaller scales.

One considers the signal b(t) = B(x, t) measured at a given point x. Its Fourier
transform b̂(ω), defined by

b(t) =
∫
IR
b̂(ω)e−i ω t dω ⇐⇒ b̂(ω) =

1
2π

∫
IR
b(t)ei ω t dt , (3.1)

leads to the power spectrum EB(ω) = 1
2 |b̂(ω)|2 where ω is the frequency .

A more exact definition of the power spectrum must be found in turbulence
books ([?], [?]). Similarly, the three dimensional field b(x) = B(x, t) measured
at a given time t can be decomposed in Fourier modes through the relations

b(x) =
∫∫∫

IR3
b̂(K)eiK·x dK3 ⇐⇒ b̂(K) =

1
(2π)3

∫∫∫
IR3

b(x)e−iK·x dx3 , (3.2)

which lead to the power spectrum EB(K) = 1
2

∫∫
‖K‖=K |b̂(K)|2 dS as a function

of the wave number K = ‖K‖ and thus of the length scales.

B′
B

B log EB

B B′
B

′′
a) b)

log(K) or log(ω)

Figure 3.2: a) Decomposition B = B +B′ in mean field and turbulent fluctu-
ations. b) Power spectrum of B.
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These spectra show the repartition of the signal power as a function of the
time and space scales (Figure 3.2).

When considering the Brownian fluctuations B
′′

(at the molecular scales) of
the field B, one can see (Figure 3.2b) a spectral gap between the continuum
mechanics scales (B + B′) and the molecular scales (B

′′
). The separation

between these two scales is thus well defined.

Such a spectral gap between the large scales (B) and the turbulent scales (B′)
is seldom present. Nevertheless, one assume that it is however possible to
perform the decomposition

B(x, t) = B(x, t) +B′(x, t) , (3.3)

and that the average operator owns nice properties such as B = B and B′ = 0.
One thus has B1B2 = B1B2 + B′1B

′
2. One also assumes ∂B

∂t = ∂B
∂t and

∂B
∂xi

= ∂B
∂xi

. One says that B is the “Reynolds average” of B.

1.2 Turbulent flux

If a flow is turbulent, one decomposes its velocity U = U +U ′ into the sum of
the mean and fluctuating vector fields. We consider here only incompressible
flow and one has thus div U = 0 and div U = 0.

The field B is a “passive scalar” convected by the velocity field U if it obeys
to the equation

∂B

∂t
+ U · grad B = kB ∆B , (3.4)

where kB is a molecular diffusion coefficient. Using the properties of the
average operator and the relation div U = 0, the average of this equation is

∂B

∂t
+ div (U B) =

∂B

∂t
+ U · grad B = kB ∆B − div (U ′B′) . (3.5)

The quantity FBt = U ′B′ is the “turbulent flux”.

Similarly, the incompressible Navier-Stokes equation can be averaged, leading
to

div U = 0 ,
∂

∂t
U+U ·grad U = −1

ρ
grad p−grad (g z)+ν ∆U−divR , (3.6)

where g is the gravity and R the “Reynolds tensor” defined by its components

Rij = U ′i U
′
j , (3.7)
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where Ui denotes the three components of U .

A typical spectrum E(K) of the kinetic energy k = 1
2U

′2 = 1
2tr R of a turbulent

flow is represented on Figure 3.3. One can find in turbulence books ([?], [?])
the derivation of the E(K) = C ε3/2K−5/3 law of the “Kolmogorov spectrum”,
where CK is the “Kolmogorov constant” , valid between the scales K0, where
the energy is injected with the rate ε, and the dissipative scales Kd, where it
is dissipated at the same rate, can be found in turbulence books ([?], [?]).

CK ε2/3K−5/3

log Kε
ε

ε

log E(K)
U

K0 Kd

U ′

Figure 3.3: Example of a kinetic energy spectrum E(K) and decomposition
U = U + U ′.

The turbulence modelling problem is to express products such as U ′i B′ or
U ′i U

′
j , which are named “double correlations”, as a function of the mean fields.

Order one models propose expressions of turbulent fluxes such as FBt or R as
functions of the mean fields B and U or of their gradients.

1.3 Turbulent viscosity

Nearly all the turbulent models starts with the empirical law

FBt = −kBt grad B ⇐⇒ U ′B′ = −kBt grad B , (3.8)

where kBt is called the “turbulent diffusivity” of B. The averaged convection
equation for B is thus

∂B

∂t
+ U · grad B = div

[
(kB + kBt) grad B

]
. (3.9)

Similarly, the turbulent modelling of the Reynolds tensor R as a function of
the average components U i assumes the empirical law

Rij = −2 νt dij +
2
3
k δij ⇐⇒ R = −2 νt d+

2
3
k I , (3.10)
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where the “turbulent kinetic energy” k is defined by

k =
1
2

tr R =
1
2

(
U ′21 + U ′22 + U2

3

)
, (3.11)

and the components of the “deformation rate tensor” d are dij = 1
2

(
∂Ui
∂xj

+ ∂Uj

∂xi

)
.

The quantity νt is called the “turbulent viscosity”.

For i 6= j, this law reads

U ′iU
′
j = −νt

(
∂U i
∂xj

+
∂U j
∂xi

)
= −2 νt dij . (3.12)

The expression of the diagonal components i = j takes into account the in-
compressibility constraint tr d = div U = 0.

Most of the time, the turbulent diffusion coefficient kBt and the turbulent
viscosity νt are chosen as equal.

For a parallel flow U = u(z) ex, the only non trivial component of this model
is

u′w′ = −νt
∂u

∂z
. (3.13)

2 Velocity profiles

The mixing length model is a turbulent parametrization often used in appli-
cations. Near the walls, it allows to compute the logarithmic velocity profiles
taking into account the smooth or rough nature of the surface.

2.1 Mixing length

A very simple turbulent model is obtained by choosing a constant turbulent
viscosity νt. This model can give realistic results when the turbulent fields
are homogeneous in space. This is not the case of the wakes of obstacles or of
the vicinity of boundaries such as the bottom of a river or the boundaries of
a pipe. More complex turbulent models are thus required for such cases.

The mixing length model is used to describe inhomogeneous turbulence. Its
assumes that the turbulent viscosity reads

νt = l2m

√
2 d : d , (3.14)

where d : d = tr (d · d) = dij dji = dij dij is the sum of the squares of all the
components of the (symmetric) deformation rate tensor d (we have used here
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a) b)

U

δ

Uc)

Figure 3.4: Mixing length values: a) mixing layer, lm ∼ 0.07 δ. b) round jet,
lm ∼ 0.075 δ. c) plane wake, lm ∼ 0.16 δ.

the Einstein convention which consists in summing the repeated indices i and
j). The quantity lm(x, t), is called the “mixing length”. It must be fitted as a
function of the flow geometry. For instance, it is the order of the thenth of the
thickness δ(x) for a mixing layer, a jet, or a turbulent wake (see Figure 3.4).

For the parallel flow U = u(z) ex, the mixing length model leads to

νt = l2m

∣∣∣∣∂u∂z
∣∣∣∣ , u′w′ = −l2m

∣∣∣∣∂u∂z
∣∣∣∣ ∂u∂z . (3.15)

Near a wall, experiments observations show that

lm = κ z , κ = 0.41 , (3.16)

where κ is the “Von Karman constant” (figure 3.5).

z

x

u(z)
lm

lm

0

Figure 3.5: Mixing length near a wall: lm = κ z with κ = 0.41.

The mixing length model can be compared to the expression ν ∼ lmol umol of
the molecular velocity where lmol is the free mean path of the molecules and
umol their typical velocity. Indeed, one can write νt = lm um where um ∼
lm
√

2 d : d, which reads um ∼ lm
∣∣∣∂u∂z ∣∣∣ for a parallel flow. The length lm can
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be seen as the free mean path of small vortexes and um as their characteristic
velocities.

2.2 Flat bottom

Let us consider the layer of thickness R of a turbulent flow above a flat bottom.
One assumes that the flow is forced by a constant pressure gradient ∂p

∂x = −G,
in a gravity field −g ez.

u(z)
0

z

x

R

τ∗

τ(z)

zvisq

zlogez ks

Figure 3.6: Free surface flow on a smooth or rough bottom.

Saying that the averaged velocity U = u(z) ex satisfies the Reynolds averaged
Navier-Stokes equations read

0 = −1
ρ

∂p

∂x
+

∂

∂z

(
ν
∂u

∂z
− u′w′

)
0 = −1

ρ

∂p

∂z
− g − ∂

∂z

(
w′w′

)
. (3.17)

One denotes by τ the tangential stress τ(z) = ρ
(
ν ∂u
∂z − u′w′

)
and τ∗ = τ(0)

its value at z = 0. One thus has 0 = −1
ρ
∂p
∂x + 1

ρ
∂τ
∂z . Since ∂p

∂x = −G is constant
∂τ
∂z = −G is so. One then deduces the relation

τ(z) = τ∗ −G z , (3.18)

where τ∗ = τ(0) is so far unknown.. One denotes by u∗ the “friction velocity”
defined by τ∗ = ρ u2

∗. The mixing length turbulence model u′w′ = −l2m |∂u∂z |
∂u
∂z

thus leads to (
ν + l2m

∣∣∣∣∂u∂z
∣∣∣∣) ∂u∂z = u2

∗ −
G

ρ
z . (3.19)

The integration of this equation will allow the determination of the velocity
profile u(z) whose expression depends on the match with the bottom boundary
conditions.



2. VELOCITY PROFILES 9

2.3 Logarithmic profiles

One supposes that τ(z) ∼ τ∗ = ρ u2
∗ is nearly constant in the layer z ∈ [0, R],

and thus R � τ∗/G. Assuming the law lm = κ z, where κ = 0.41 is the Von
Karman constant, the equations read(

ν + κ2 z2

∣∣∣∣∂u∂z
∣∣∣∣) ∂u∂z = u2

∗ . (3.20)

z

zvisq = 11ν/u∗

R

u(z)

a) b)0

z

ks
z0 = ks/33

R

u(z)

0

Figure 3.7: Boundary layer over a flat bottom: a) Smooth regime. b) rough
regime.

One says that the bottom is “smooth” if there is a boundary layer z ∈ [0, zvis]
in which the molecular viscosity ν is dominant with respect with the turbulent
viscosity νt = lm

∣∣∣∂u∂z ∣∣∣. This hypothesis can be stated as lm = 0 in this layer.

In that case, the equations ν ∂u
∂z = u2

∗ with u(0) = 0 leads to

u(z)
u∗

=
u∗ z

ν
. (3.21)

One says that the bottom is “rough” if there is a layer z ∈ [0, z0] in which the
velocity u(z) is zero. If ks is the mean height of the roughness, experiment
observations show that

z0 = ks/33 . (3.22)

The “smooth” or “rough” nature of the bottom depend on ks and ν but also
of the turbulent flow through its friction velocity u∗. Indeed, experimental
observations shows that the criteria for the smooth and rough regime are
respectively

u∗ ks
ν

< 5 ,
u∗ ks
ν

> 70 . (3.23)

When the dimensionless number u∗ ks/ν is between 5 and 70, the regime is
neither smooth nor rough and the boundary layer analysis is more complex.
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When z is sufficiently large, the molecular viscosity ν is negligible in front of
the turbulent viscosity and the equation read

κ2 z2

∣∣∣∣∂u∂z
∣∣∣∣ ∂u∂z = u2

∗ . (3.24)

In this case, the velocity profile read

u

u∗
=

1
κ

ln
(
z

δ

)
+ ζ , (3.25)

where the two constants δ and C represent in fact a single integration constant
− 1
κ ln(δ) + C which is the only one degree of freedom of the velocity profile

family.

When the bottom is smooth, experimental observations show that the loga-
rithmic profile matches with the viscous profile at zvis defined by

zvis = 11
ν

u∗
. (3.26)

The velocity profile of the logarithmic layer is thus

usth(z)
u∗

=
1
κ

ln
(
u∗ z

ν

)
+ 5.2 =

1
κ

ln
(

z

δsth

)
+ ζsth , (3.27)

with δsth = ν/u∗ and ζsth = 11− ln(11)/κ = 5.2.

When the bottom is rough, experimental observations show how the logarith-
mic profile matches with the zero velocity profile at z0 with ks = 33 z0. The
velocity profile of the logarithmic layer is thus

urgh(z)
u∗

=
1
κ

ln
(
z

ks

)
+ 8.5 =

1
κ

ln

(
z

δrgh

)
+ ζrgh , (3.28)

with δrgh = ks and ζrgh = ln(33)/κ = 8.5.

3 Moody diagram

By averaging the logarithmic velocity profiles that we have determined on the
layer of thickness R � τ∗/G, one can link the friction force to the averaged
velocity of the flow. The Moody diagram extend this relatioon to the cas of the
walls which nature is intermediary between the smooth and rough limit cases.
By linking the friction forces to the lineic head loss in a pipe, one gets a model
usefull for the applications, which can be completed by the parametrizations
of the singular head losses.
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3.1 Average friction

We consider the velocity profil u/u∗ = 1
κ ln(z/δ) + ζ, with (δ, ζ) = (δsth, ζsth)

in the smooth case and (δ, ζ) = (δrgh, ζrgh) in the rough case. We then define
the average velocity of the layer z ∈ [0, R] by the relation U = 1

R

∫ R
0 u dz.

If zvis/R, in the smooth case, and z0/R, in the rough case, are small enough,
one can write

U

u∗
=

1
R

∫ R

0

u

u∗
dz =

1
κ

ln
(
R

δ

)
+ ζ − 1

κ
, (3.29)

neglecting the integral on [0, zvis] in the smooth case and [0, z0] in the rough
case and the primitive (z/δ) ln(z/δ)−(z/δ) of the function ln(z/δ) respectively
at z = zvis and z = z0.

For practical studies, it is useful to look at the relation between the vertically
averaged velocity U and the tangential stress τ∗. A dimensionless analysis
leads to the relation τ∗ = 1

2 Cf ρU
2 where Cf is a dimensionless coefficient,

called “drag coefficient”, which can depend on U , R and of other parameter
of the flow such as ν or ks.

Very often, the “friction coefficient” λ, defined by the relation λ = 4 Cf , is
preferred. Using the definition of the friction velocity u∗ from the relation
τ∗ = ρ u2

∗, the relation between τ∗ and U or, equivalently, between u∗ and U ,
reads

τ∗ =
1
8
λ ρU2 ⇐⇒ U

u∗
=
√

8
λ
. (3.30)

It is also common to define the “hydraulic diameter” DH = 4 R associated to
the considered domain z ∈ [0, R]. With these definitions, the relation between
the friction coefficient λ and the velocity U now reads

1√
λ

= a log10

(
DH

δ

)
+ b , (3.31)

where a = ln(10)/(κ
√

8) = 2.0 and b = [ζ − (1 + ln 4)/κ]/
√

8.

Using the expression (δrgh, ζrgh) = (ks, 8.5) for the rough regime and (δsth, ζsth) =
(ν/u∗, 5.2) for the smooth regime, the friction coefficients of both regimes re-
spectively read

1√
λru

= −2.0 log10

(
Ru

αf

)
, Ru =

ks
DH

(3.32)

with 2.0 log10(αf ) = brgh = [ζrgh − (1 + ln 4)/κ]/
√

8 = 0.9 and

1√
λsth

= −2.0 log10

(
βf

Re
√
λsth

)
, Re =

U DH

ν
, (3.33)
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with 2.0 log10

(
βf/
√

8
)

= bsth = [ζsth−(1+ln 4)/κ]/
√

8 = −0.2. The Reynolds
number Re and the number Ru are two dimensionless numbers. The numerical
values of the coefficients coming out of this analysis are (αf , βf ) = (2.8, 2.2).

Contrarily to κ and thus a = 2.0, the coefficients (αf , βf ) depend on the
geometry of the flow which can be confined in a pipe of mundane section or
own a free surface in a chanel of mundane section. One has to estimate these
coefficients with models of the type of the one that we have just presented in
the case of a flat bottom or to measure them experimentally. Typical values
are αf ∈ [2, 4] and βf ∈ [0, 6]

104 106 108
10!2

10!1

104 106 108
10!2

10!1

λ

Re
Ru = 10−4

Ru = 10−2

Ru = 10−1

Ru = 10−3 λ =
96
Re

λ

Ru = 10−4

Ru = 10−2

Ru = 10−1

Ru = 10−3

a) b)

Laminaire

Turbulent

Rugueux

Lisse

λ =
64
Re

Laminaire Rugueux

Lisse

Turbulent

Re

Figure 3.8: Moody diagram for the Colebrook formula. a) Flows in pipes with
(αf , βf ) = (3.7, 2.51). b) Open channel flows with (αf , βf ) = (3, 2.5).

For “intermediate regimes”, which are neither smooth nor rough, these formula
are completed by the Colebrook formula which reads

1√
λ

= −2.0 log10

(
Ru

αf
+

βf

Re
√
λ

)
. (3.34)

For confined flows in pipes, the choice (αf , βf ) = (3.7, 2.51) is very common.

In this las case, the Haaland formula 1√
λ

= −1.8 log10

[
6.9
Re +

(
Ru
3.7

)1.11
]
, which

has the advantage to be explicit, only depart by 2% of the Colebrook one.

A very common set of values for open channel flows is (αf , βf ) = (3, 2.5),
particularily valid for channels with trapezoid sections. The choice (αf , βf ) =
(3, 3.4) is preferred for large sections.

The dependency of λ(Re,Ru) with respect to Re and Ru constitutes the
“Moody diagram” which shown on Figure 3.8. At low Reynolds, when the
flow is laminar, one finds the analytic relation λ = 64/Re for the circular



3. MOODY DIAGRAM 13

10!4 10!3 10!2 10!1
10!2

10!1

10!4 10!3 10!2 10!1
10!2

10!1

λ = φM
S
Ru

1/
3

λ = 1/
[−2 log 10

(R
u/

αf
)]
2

a) b)

λ λ

10−4 10−3 10−2 10−1
Ru 10−4 10−3 10−2 10−1

Ru

λ = φM
S
Ru

1/
3

λ = 1/
[−2 log 10

(R
u/

αf
)]
2

Figure 3.9: Comparison between the function λ(Ru) of the Colebrook formula
at large Re and the Manning- Strickler parametrization λ = φMS Ru

1/3 with
φMS = 0.2. a) αf = 3.7 , b) αf = 3.

Poiseuille flow and λ = 96/Re for the plane Poiseuille flow on a tilted plane.
Between the laminar and the fully turbulent regime, a “transitional regime” is
observed with a friction coefficient λ which can be growing on a small interval
with Re at fixed Ru.

Rough regimes are obtained in the limit of large Reynolds numbers Re such
that λ only depends on Ru. The function λ(Ru) for infinite Re is shown on
Figure 3.9 for αf = 3.7 et αf = 3. For the values Ru ∈ [10−4, 10−1] that are
useful for practical applications, this function can be replaced by the Manning-
Strickler parametrization λ = φMS Ru

1/3, where the value φMS = 0.2 can be
chosen for the two considered values.

3.2 Hydraulic in pipes

The use of the Moody diagram is very common to model the flows confined
in pipes. One first writes the incompressible and turbulent Navier-Stokes
equations under the form

div U = 0 ,
∂U

∂t
+ U · grad U = −1

ρ
grad p− grad (g z) +

1
ρ

div τ , (3.35)

where τ = ρ(2 ν d − R) and d are respectively the Reynolds averages of the
viscous and turbulent stress tensor and of the deformation rate tensor. One
considers a current line L going from the point M1 toward the point M2. Using
the identity U · grad U = 1

2 grad U
2 + rot U ∧ U , one shows the “Bernoulli
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A(s) U

L

s

es

τ∗
M1

M2

n

P(s)

Figure 3.10: Flow in a pipe.

relation”

H(M2)−H(M1) =
∫
L

grad H · dM = −
∫
L

(
1
g

∂U

∂t
+ J

)
· dM , (3.36)

where J = − 1
ρ g div (τ) and where H is the “hydraulic head” defined by the

relation
H(x, t) =

p

ρ g
+ z +

1
2 g
U

2
. (3.37)

The term 1
g
∂U
∂t is the lineic head loss due to the instationarity of the flow while

J is the lineic head loss due to the viscous and turbulent friction.

α
U2

2g

0

pf − pa

ρ g

l

J l

pa/(ρ g)a)

z

Zf

H

b)

A(s)

s

n

P (s)

Figure 3.11: Flow confined in a pipe. a) Section A and wet perimeter P .
b) Représentation de la charge moyenne Hcharge where pa is the atmospheric
pressure.

For fluid flows filling the whole volume of a pipe, called “loaded flows”, one
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defines the hydraulic radius RH(s) = A(s)/P (s) as the ratio between the area
A(s) of the section A(s) and its “wet perimeter” P (s) of its boundary P(s)
(see Figure 3.11a). One denotes by z = Zf (s) the equation of the pipe axis L
and pf (s) the average pressure on this axis.

In a lot of cases, one notices that Reynolds averaged pressure is hydrostatic.
In this cas, the quantity p

ρ g + z = pf

ρ g +Zf is constante in a section normal to
the axis. The hydraulic head averaged on such a section then reads

H(s) =
pf (s)
ρ g

+ Zf (s) + α(s)
U2(s)

2 g
. (3.38)

where the averaged velocity U(s) and the coefficient α(s) are defined by the
relations

U(s) =
1

A(s)

∫∫
A(s)

U · es dS , α(s) =
1

U2(s)
1

A(s)

∫∫
A(s)

U2 dS . (3.39)

One defines the averaged lineic head loss J(s) due to the friction by the relation

J(s) =
1

A(s)

∫∫
A(s)

J · es dS = − 1
ρ g

1
A(s)

∫∫
A(s)

div τ · es dS . (3.40)

One then defines the averaged mean shear constraint τ∗(s) applied by the fluid
on the wall by the relation

τ∗(s) = − 1
P (s)

∫
P(s)

es · τ · ndl , (3.41)

where n is the unit vector normal to the wall of the pipe pointing towards the
exterior.

One now assumes that the turbulence of the flow is stationary and fully devel-
oped and that the shape of the pipe varies slowly as a function of s (gradually
varied flow).

One then notices that the velocity profile U is nearly flat, such that the coef-
ficient α(s) is close to the value α = 1 and that the unit vector es is nearly
constant on a section A(s). The “gradually varying flow” hypothesis implies,
in particular, that ∂

∂s(es ·τ ·es) is neglectable. The application of the divergence
theorem on a small portion of the pipe the leads to the important relation

τ∗(s) = ρ g RH(s) J(s) . (3.42)

The parametrization of the mean friction τ∗(s) as a function of U(s), DH(s),
Re(s) = U(s)DH(s)/ν et Ru(s) = ks/DH(s) is equivalent to the parametriza-
tion of the averaged lineic head loss J(s), which is summed up by the relations
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For stationnary ( ∂∂t = 0), turbulent (α ∼ 1) and gradually varying (τs =
ρ g RH J) flows, one can then write

H =
pf
ρ g

+Zf +
U2

2g
,

dH

ds
= −J , J = λ(Re,Ru)

U2

2 g DH
. (3.43)

These relations, where λ is coming out the Moody diagram is a first step in
the computation of a pipe network.

3.3 Singular head loss

To compute the head losses in a pipe network, one must also take into account,
in addition to the slowly variable in space duct parts, singularities such as the
sharp widenings, the bends and other singularities of the network. The head
then undergoes a sharp decrease that one models by a signular head loss that
must be parametrized for each geometries. One often expresses the singular
head loss under form

∆H = Kg
U2

2 g
= Kg

Q2

2 g A2
, (3.44)

where U and A are respectively the velocity and the section upstream of
the singularity, Kg the singular head loss coefficient and Q = U A the flow
discharge.

U1 U2

A2

A1

p1

p1

p1

p2

U2U1

b)a)

Figure 3.12: a) Singular head loss un a sharp widening. b) No singular head
loss in a sharp narrowing.

In the case of a sharp widening, one can give an estimation of the singular head
loss by assuming that the fluid pressure in the recirculation zone is approxi-
matively equal to the entrance pression p1. In this cas, a global momentum
budget (Euler theorem) on a domain including the singularity leads to

ρU2
1 A1 + p1A2 = ρU2

2 A2 + p2A2 . (3.45)

One deduces of this the singular head loss

∆H =
(U2 − U1)2

2 g
= Kg

U2
1

2 g
avec Kg =

(
1− A1

A2

)2

. (3.46)
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In the case of a section sharpening, one can consider that the singular head
loss is not neglectable.

In the case of a bend of radius of curvature ρc and of deviation ϕ, one can

use the formula Kg = ϕ
π/2

[
0.131 + 1.847

(
2ρc

DH

)−3.5
]

for the singular head loss

coefficient.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2ϕ

ρc

DH

π Kg

2 ϕ

ρc
DH

Figure 3.13: Singular head loss in a bend.

FORMULAS

Turbulence modelling

Mean and fluctuations:

B = B +B′ , U = U + U ′ .

Turbulent diffusion:

∂B

∂t
+ U · grad B = kB ∆B − div (U ′B′) , FBt = U ′B′ = −kBt grad B .

Reynolds tensor:

div U = 0 ,
∂

∂t
U + U · grad U = −1

ρ
grad p− grad (g z) + ν ∆U − divR .
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Turbulent viscosity:

Rij = U ′i U
′
j = −2 νt dij +

2
3
k δij , k =

1
2

tr R =
1
2

(
U ′21 + U ′22 + U2

3

)
.

Velocity profiles

Mixing length:

νt = l2m

√
2 d : d .

Parallel flow:

u′w′ = −νt
∂u

∂z
, νt = l2m

∣∣∣∣∂u∂z
∣∣∣∣ .

Von Karman law:

lm = κ z , κ = 0.41 .

Flat bottom:

τ(z) = ρ

(
ν + κ2 z2

∣∣∣∣∂u∂z
∣∣∣∣) ∂u∂z = τ∗ −Gz ∼ τ∗ , τ∗ = ρ u2

∗ .

Smooth of rough:

u∗ ks
ν

< 5 , zvis = 11
ν

u∗
,

u∗ ks
ν

> 70 , z0 = ks/33 .

usth
u∗

=
1
κ

ln
(
u∗ z

ν

)
+ 5.2 ,

urgh
u∗

=
1
κ

ln
(
z

ks

)
+ 8.5 .

Moody diagram

Friction coefficients:

τ∗ =
1
2
Cf ρU

2 =
1
8
λ ρU2 .
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Smooth bottom:

1√
λsth

= −2.0 log10

(
βf

Re
√
λ

)
, Re =

U DH

ν
.

Rough bottom:

1√
λrgh

= −2.0 log10

(
Ru

αf

)
, Ru =

ks
DH

.

Colebrook formula:

1√
λ

= −2.0 log10

(
Ru

αf
+

βf

Re
√
λ

)
.

Confined hydraulics

Averaged hydraulic load:

H(s) =
pf (s)
ρ g

+ Zf (s) + α(s)
U2(s)

2 g
.

Stationary flow:

dH

ds
= −J avec H =

pf
ρ g

+ Zf +
U2

2g
, J = λ(Re,Ru)

U2

2 g DH
.

Gradually varying flow:

τ∗(s) = ρ g RH(s) J(s) .

Singular head loss:

∆H = Kg
U2

2 g
= Kg

Q2

2 g A2
.
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EXERCISES

See exercices in French language in the book:

O. THUAL, Hydrodynamique de l’Environnement, Éditions de l’École Poly-
technique, 2010.

or at http://thual.perso.enseeiht.fr/xsee


