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2 CHAPTER 4. OPEN CHANNEL FLOWS

Introduction

The objective of this chapter is to present the basic models which describe open
channel flows. Such flows are “gradually varied” the size of these sections are
small compared to the chararcteristic scales of variation of their slope. We
only consider here stationary flows under the “gradual variation” hypothesis.

Figure 4.1: The Amazon seen from space. Photo NASA.

The concept of “hydraulic head” for open channel flow is presented on the
Bernoulli equation derived from the Navier-Stokes equations. The equation
for the hydraulic head along the channel in the stationary case is written
and applied to the case of a flow over an obstacle when the friction can be
neglected. The concepts of “super-critical” and “sub-critical” flows, depending
on the Froude number, are presented of this example.

Considerations on boundary conditions explain the advent of hydraulic jumps.
The discontinuity equations for these hydraulic jumps are presented in a simple
manner. The turbulent friction of the bottom on the channel is modelled
through a Manning-Strickler parametrization, which is very common for open
channel flow engineer approach. The description of the “back water curves” is
given in the case of this parametrization and the notions of “normal height”
and “critical height” are used to classify these curves.
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1 Hydraulic head

The Bernoulli equation leads naturally to the notion of hydraulic head. One
cas then average it on the section of a channel and define the notion of lineic
head loss along its axis.

1.1 Bernoulli equation

We start by considering the incompressible and turbulent Navier-Stokes equa-
tions

div U = 0 ,
∂U

∂t
+ U · grad U = F − 1

ρ
grad p+ ν∆U − divR , (4.1)

in which ρ is the constant mass density and R is the Reynolds stress tensor,
defined by Rij = U ′i U

′
j where the components U ′i are the velocity turbulent

fluctuations. The fields U and p of these equations are the “Reynolds aver-
aged” velocity and pressure that we omit to denote by U and p for simplicity.
We assume that the volume forces F = −g ez = −grad (g z) are due to gravity.

A(s)
U

L

s

es

M1

M2

Figure 4.2: Streamline L in an open channel flow.

Let us consider a stream line L going from a point M1 to a point M2. By
using the relation

U · grad U =
1
2

grad U2 + rot U ∧ U , (4.2)

one can derive the “Bernoulli equation”∫
L

grad H · dM =
1
g

∫
L

(
−∂U
∂t

+ ν∆U − divR
)
· dM , (4.3)

where H is the “hydraulic head” defined by the relation

H =
p

ρ g
+ z +

1
2 g

U2 . (4.4)
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By integrating from M1 to M2, the Bernoulli equation reads

H(M2) = H(M1)−
∫
L

(
1
g

∂U

∂t
+ J

)
· dM , J =

1
g

(−ν∆U + divR) . (4.5)

The term 1
g
∂U
∂t is the lineic head loss which vanishes for stationary regimes

that are considered here. The term J is the lineic head loss due to viscous and
turbulent frictions.

1.2 Geometric parameters

Given an open channel flow, on can consider the family of sections A(s) which
follow a streamline L, parametrised by the curvilinear coordinate s (see Fig-
ure 4.3). We denote by P(s) the part of the boundary of the section A(s)
which is in contact with the inner surface of the channel of width L(s). For
each section A(s), one can define its area A(s), the perimeter P (s) of P(s),
that one denotes by “wet perimeter” and the width L(s), that one denotes by
“top width”.

A(s)

L(s)

hH(s) h(s)
P (s) A(s)
P(s)

Figure 4.3: Section A(s), wet perimeter P (s), top width L(s), maximal depth
h(s) and hydraulic depth hH(s).

One then define the “hydraulic radius”RH(s), the “hydraulic diameter”DH(s)
and the “hydraulic height” hH(s) by the relations

RH(s) =
A(s)
P (s)

, DH(s) = 4 RH(s) , hH(s) =
A(s)
L(s)

. (4.6)

The hydraulic height hH(s) is not necessarily equal to the true height h(s)
which is defined as being the greatest distance between the bottom and the
free surface. But in most practical applications, the approximation h ∼ hH is
assumed.

When the section of the channel is a rectangle of height h and of length L
with L � h, one has RH = h and hH = h. Numerous typical sections, such
as trapezoids, can be considered to describe open channels.
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1.3 Averaged head

In numerous applications, open channel flows can be described by quantities
averaged on the section A(s) of area A(s).

For a given abscissa s, the volumetric flux Q(s) and the averaged velocity U(s)
are defined by the relation

Q(s) =
∫∫
A
U · es dS = A(s) U(s) =⇒ U(s) =

1
A(s)

∫∫
A
U · es dS . (4.7)

The averaged hydraulic head is defined by

H(s) =
1

A(s)

∫∫
A

(
p

ρ g
+ z +

U2

2g

)
dS =

P∗(s)
ρ g

+ α(s)
U2(s)

2g
, (4.8)

where P∗ and α are defined by

P∗(s) =
1

A(s)

∫∫
A

(p+ ρ g z) dS , α(s) =
1

U2(s)
1

A(s)

∫∫
A
U2 dS . (4.9)

One has α = 1 when the velocity field U is constant on the section A. For
turbulent flows, the velocity profile is flat and α is nearly close to one.

The quantity P∗(s) can be called the “averaged piezometric pressure”. When
the local pressure p can be considered as hydrostatic, which is often the case for
open channel flows, the local piezometric pressure p∗ = p+ρ g z is everywhere
equal to the averaged piezometric pressure P∗. This is the case when the
flow is “gradually varied”, that is when the variation scale of the fields in
the s direction is large compared to the scale of the sections. We make this
hypothesis for the flows of this chapter.

l

0

z

α
U2

2g

pa/(ρ g)

J l

h

Zf

H H

Figure 4.4: Averaged head H = paa

ρ g + Zf + h+ αU
2

2 g and lineic head loss J .
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We denote by z = Zf (s) the equation of the deepest point (figure 4.4) and we
denote I(s) = −Z ′f (x), with an abuse of language, the “slope of the channel”.
If I(s) is small, this definition meets the notion of slope with respect to the
horizontal and on can, furthemore, consider than h(s) is close to the depth
of the channel measured on a vertical axis. We make this hypothesis for the
channels of this chapter. With all these hypotheses (α ∼ 1, I � 1, gradually
varied), the averaged head reads

H(s) =
pa
ρ g

+ Zf (s) + h(s) + α(s)
U2(s)

2 g
. (4.10)

When averaging the Bernoulli equation in the stationary case ∂U
∂t = 0, one

obtains

H(s2)−H(s1) = −
∫ s2

s1
J(s) ds , J(s) =

1
A(s)

∫∫
A
J · es dS . (4.11)

By deriving with respect to s2, the lineic head loss J(s) satisfies the relation

dH

ds
= −J . (4.12)

2 Specific head and impulsion

The stationary equations are reduced to a single ordinary differential equation
for the water height. In the absence of friction, le specific head is conserved
through an obstacle. Le jump conditions through a hydraulic jump are ex-
plicited.

2.1 Stationary equations

We consider an open channel flow which is stationary ( ∂∂t = 0), turbulent
(α ∼ 1), with a small slope (I � 1) and gradually varied. The equilibrium
equation reads

dH

ds
= −J , H =

pa
ρ g

+ h+ Zf +
U2

2g
, (4.13)

where J is the lineic head loss which must be parameterized as a function of
h and U with the help of a turbulence model.

To simplify the following presentation, we assume that the mirror width L is
constant and the hydraulic height hH can be replaced byt the depth h. One
then has hH = h, A = LhH = Lh and Q = AU = LhU where Q is the



2. SPECIFIC HEAD AND IMPULSION 7

discharge rate. One then define the lineic discharge rate q = Q/L = hU
which is then constant for the stationnary flows considered here.

With these hypotheses, the expression of the hydraulic head read

H(s) = h(s) +
q2

2 g h2(s)
+ Zf (s) +

pa
ρ g

. (4.14)

By denoting I = −Z ′f (s) the slope of the bottom, the equilibrium equation
(4.13) reads

dh

ds
=

I − J
1− Fr2

, Fr =
U√
g h

=
q

g1/2 h3/2
, (4.15)

where the dimensionless number Fr, called the “Froude number”, appears.
On thus define the “critical height” hc by the relation par la relation

hc =

(
q2

g

)1/3

=⇒ Fr =
(
hc
h

)3/2

. (4.16)

2.2 Flow over an obstacle

As a first example of application of the equilibrium equation (4.15), we con-
sider a bottom of equation z = Zf (s) such that Zf is a constant excepted on
a obstacle of finite extend and of small slope. In this case, s can be chosen as
the horizontal x coordinate. For instance, one can consider a Gaussian shaped
obstacle by choosing Zf (s) = a exp

(
− s2

2σ2

)
where a is small in front of σ.

x

h + Zf

hc + Zf

z

h1

h2

hL

hR
hc

Figure 4.5: Curves z = h(x) + Zf (x).

If the horizontal extension of the obstacle is not too big, one can consider
that the lineic head loss J ∼ 0 is negligible compared to I. The equilibrium
equation (4.15) reads

dh

ds
=

I(s)
1− (h/hc)−3

=⇒
[
1− (h/hc)−3

] dh
ds

= I = −dZf
ds

. (4.17)

Since hc is considered as constant on the studied part of the channel, this
differential equation can be integrated into h(s) + 1

2h
3
c/h

2(s) = H0 − Zf (s)
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where H0 is an integration constant. One finds back the head conservation

H = h(s) +
U(s)2

2 g
+
pa
ρ g

+ Zf (s) =⇒ H0 = H − pa
ρ g

. (4.18)
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Figure 4.6: a) Dimensionless specific head E(q,h)hc
= h

hc
+ 1

2

(
h
hc

)−2
with hc =

q2/3 g−1/3. b) Possible free surface profiles.

One then defines the “specifici head” by the relations

E(q, h) = h+
U2

2 g
= h+

q2

2 g h2
= h+

1
2
h3
c

h2
. (4.19)

where H0 is an integration constant. The specific head E(h), is drawn on
Figure 4.6. For a given flow rate q, it is minimum for hc with E(q, hc) = 3

2 hc.
For H0 − Zf ≥ Ec, there exists two solutions h1 and h2 to the equation
E(q, h) = H0 − Zf . These two solutions are called “conjugate heights for the
specific head”.

At the point s where h < hc, and thus Fr > 1, the flow is said to be “super-
critical”. When h > hc, and thus Fr < 1, the flow is say to be “sub-critical”.
It is “critical” at the point where h = hc and thus Fr = 1.

Figure 4.6b shows all the curves z = Zf (s) + h(s) where h(s) are all the solu-
tions of the equation E [q, h(s)] = H0 − Zf (s) for fixed q with all the possible
values of H0. The dashed lines corresponds to non physical curves, since they
cannot cross the obstacle.

When the flow is everywhere sub-critical (h > hc), the free surface height
decreases when passing over the obstacle. When the the flow is everywhere
super-critical, the free surface varies the other way. There is only one curve
which goes from sub-critical to super-critical. For this curve the flow is critical
at the summit of the obstacle.
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2.3 Hydraulic jumps

One observes, in natural flows, that the free surface height can jump abruptly
from hL < hc to hR > hc through stationary “hydraulic jump”. Such an
hydraulic jump allows the matching with a downstream boundary condition.

Figure 4.7: Stationary hydraulic jump.

The discontinuity relation for the hydraulic jumps are obtained from a mass
and momentum budget. Let us denote (hL, UL) the height and velocity at the
left of the hydraulic jump and (hR, UR) the corresponding quantities at the
right.

For the stationary case that is considered here, the mass conservation law says
that the lineic discharge flux q = U h is constant, which reads

UL hL = UR hR = q . (4.20)

Since the pressure is supposed hydrostatic on both side of the jump, a mo-
mentum budget on a small domain including the discontinuity leads to

hL U
2
L +

1
2
g h2

L = hR U
2
R +

1
2
g h2

R . (4.21)

By eliminating UL and UR, one writes this relation under the form

I(q, hL) = I(q, hR) , (4.22)

where the “impulse function” I(q, h) is defined by

I(q, h) = hU2 +
1
2
g h2 =

q2

h
+

1
2
g h2 =

g

h

(
h3
c +

1
2
h3
)
. (4.23)

The two heights hL and hR are called “conjugated heigths for the impulsion”.
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Figure 4.8: a) Dimensionless impulse function I(q,h)hc
=
(
h
hc

)−1
+ 1

2

(
h
hc

)2
with

hc = q2/3 g−1/3. b) Hydraulic jump.

For q fixed, the minimum of I is reached for h = hc. Since Fr = (hc/h)3/2, one
sees then(Figure 4.8) that the flow is and supercritical (Fr > 1) on one side
of the jump subcritical (Fr < 1) on the other. Consideration on the energy
dissipation implies that the Froude number decreased when following the flow
direction.

3 Backwater curves

One shows that the mean friction is proportional to the lineic head loss. Both
quantities are then jointly modelled, for example with the Manning-Strickler
parametrization. The classification of the backwater curves is useful to de-
scribe the stationary solutions.

3.1 Friction and head loss

The lineic head loss due to the friction of the flow on the bottom is defined
with

J(s) =
1

A(s)

∫∫
A(s)

J · es dS . (4.24)

Coming back the turbulent Navier-Stokes equations (4.1), on can write

J =
1
g

(−ν∆U + divR) = − 1
ρ g

div (τ) , τ = ρ
(
2 ν d−R

)
, (4.25)

where τ is the stress tensor of the viscous and turbulent forces and d the
deformation rate tensor.
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Figure 4.9: Shear stress τ∗ applied by the flow on the walls of the wet perimeter
P .

One considers an open channel flow of wet perimeter P . We denote by τ∗ the
mean shear stress applied by the fluid on the wall and defined by

1
P (s)

∫
P(s)

es · τ · n dl = −τ∗(s) , (4.26)

where n is the unit vector normal the bottom (Figure 4.9). When the flow is
gradually varying, one can assume that∫∫

A

∂

∂s

(
es · τ · es

)
dS ∼ 0 . (4.27)

The application of the divergence theorem to the tensor τ , integrated on a
small channel volume of infinitesimal length ds, then leads, by using the defi-
nitions (4.24) and (4.25) of J and J , to the important equality

τ∗ = ρ g RH J , RH =
A

P
. (4.28)

Thanks to this relation, a parametrization of the shear stress τ∗ gives a parametriza-
tion of the lineic head loss J .

3.2 Strickler coefficient

The dimensional analysis expressing the tangential shear stress τ∗ as a function
of the mean velocity U , the hydraulic diameter DH , the kinematic viscosity
ν, the characteristic size of the roughness ks, leads to

τ∗ =
1
8
λ(Re,Ru) ρU2 , (4.29)

where the Reynolds number Re and Ru are defined by

Re =
U DH

ν
, Ru =

ks
DH

. (4.30)
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The relations τ∗ = ρ g RH J between J and τ∗ and DH = 4RH between the
hydraulic diameter DH and the hydraulic radius RH then implies

J = λ (Re,Ru)
U2

2 g DH
. (4.31)

For turbulent open flow channel the Reynolds number is high for pratical
applications and the bottom can thus be considered as rough. In this case,
the friction parameter λ can be parametrized by the Manning-Strickler formula
which reads

λ = φMS Ru
1/3 . (4.32)

For practical studies in open channel flows, the value φMS = 0.1 is relevant
when choosing ks = d50, where d50 is the median of the distribution spectrum
of the sediment sizes. Another approach, very common in hydraulics, consists
in considering directly the Strickler number Ks which links J to U and RH
through the formula

U = KsR
2
3
H J

1
2 . (4.33)

When comparing the definition of Ks with the definition of φMS , one obtains
the relation Ks = g1/2 φ

−1/2
MS 211/6 k

−1/6
s .

For instance, one will choose Ks = 75 m1/3s−1 for a concrete made open
channel and Ks = 30 m1/3s−1 for a river with irregular bottom.

3.3 Backwater curves

We now consider the stationary flow momentum equation

dh

ds
=

I − J
1− Fr2

, I = −dZf
ds

, (4.34)

when I > 0. Contrarily to the case of the localized obstacle J is not negligible
on the channel length under study. The solutions h(s) of this equation are the
“backwater curves” which give the response of the free surface water to the
bottom shape Zf (s) and to a downstream boundary condition.

We consider the simple case of rectangular channel section of width L large
compared to the depth h. This hypothesis impliesRH = A/(L+h) ∼ A/L = h.

We suppose here that the lineic head loss J is parametrized by the Manning-
Strickler formula U = Ks h

2/3 J1/2 which can be written in the following form

J = I

(
h

hn

)−10/3

, hn =

(
q2

I K2
s

)3/10

, (4.35)
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where hn is called the “normal height”. We notice that this height depends
on the slope I while the “critical height” hc, defined by

Fr2 =
(
hc
h

)3

, hc =

(
q2

g

)1/3

, (4.36)

is independent of I. With these definitions of hn and of hc, the stationary
momentum equation reads

dh

ds
= F(h) = I

1− (h/hn)−10/3

1− (h/hc)−3
. (4.37)
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Figure 4.10: Function F(h) and associated back water curves h(s). a) Weak
slope regime hc < hn with type M curves. b) Strong slope regime hn < hc
with S curves.

For a given lineic flux q, the normal height hn(I), defined by I = J , and the
critical height hc, defined by Fr = 1, are important quantities which can be
compared to each other in order to characterize to flow at every location. At
the points where hc < hn, the flow is in a “weak slope” regime. The “strong
slope” regime is obtained for hn < hc.

The transition between a strong slope regime and a weak slope regime is
obtained at a point where the slope I is equal to the “critical slope” Ic defined
by the relation hn(Ic) = hc.

Only boundary condition h(s0) = h0 imposed somewhere downstream or up-
stream the considered reach (subdivision of the channel) is sufficient to de-
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termine the “backwater curve” h(s). This name comes from the downstream
conditions case by also applies for the upstream case.

Depending on the position of h(s0) = h0 compared to both hn and hc, one ob-
tains increasing or decreasing backwater curves which are denoted by (M1,M2,M3)
in the case of a week slope regime and (S1, S2, S3) in the case of a strong slope
regime (figure 4.10).

The drawing of these backwater curves show that singularities appears when
Fr becomes equal to 1. On can observe the appearance of a hydraulic jump
before reaching the singularity Fr = 1. The position of such stationary hy-
draulic jumps provide a new degree of freedom to the system when both an
upstream and a downstream boundary conditions are imposed.

ha
hn

hc

M1

M2

h1
hahn

hc S1
S2

a) b)

M2

Figure 4.11: Slope changes and associated backwater curves. a) Weak slope
regime. b) Strong slope example with hydraulic jump.

As an example of application of this backwater concept, let us consider a flow
in a weak slope regime (hc < hn) with a transition to a horizontal flat bottom
(Figure 4.11a). If the boundary condition h = ha, with hc < ha, is imposed
downstream of this transition point (for instance with a lake of big size), one
can compute the backwater curves which are of the M2 type for hc < ha < hn
and of the M1 type for hn < ha. In the cas of a strong slope (figure 4.11b),
one sees that a hydraulic jump must appear so that the free surface profile
can match with the downwards boundary condition h = ha if hc < ha.

When the slopes vanishes (I = 0) or is negative (I < 0), one can define new
backwater curves (C1 and C2 for I = 0, A1 and A2 for I < 0) by using an
argument similar to the case of positive slope from Equation (4.34).
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FORMULAS

Hydraulic head

Local head:

H =
p

ρ g
+ z +

1
2 g
U2 .

Geometric parameter:

RH =
A

P
, DH = 4 RH , hH =

A

L
.

Averaged head:

H(s) =
pa
ρ g

+ h(s) + Zf (s) + α(s)
U2(s)

2 g
.

Specific head and impulsion

Lineic head loss:

dH

ds
= −J , H =

pa
ρ g

+ h+ Zf +
U2

2g
.

Equilibrium equation:

q = U h ,
dh

ds
=

I − J
1− Fr2

, Fr =
U√
g h

.

Specific charge:

E(q, h) = h+
U2

2 g
= h+

1
2
h3
c

h2
, hc =

(
q2

g

)1/3

.
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Sationary hydraulic jump:

UL hL = UR hR = q , hL U
2
L +

1
2
g h2

L = hR U
2
R +

1
2
g h2

R .

Impulse function:

I(q, hL) = I(q, hR) avec I(q, h) = hU2 +
1
2
g h2 =

g

h

(
h3
c +

1
2
h3
)
.

Backwater curves

Friction:

J = − 1
A

∫∫
A

1
ρ g

div (τ) · es da , τ∗ = − 1
P

∫
P
es · τ · n dl .

Coefficient λ:

τ∗ =
1
8
λ(Re,Ru) ρU2 , Re =

U DH

ν
, Ru =

ks
DH

.

Head loss :

τ∗ = ρ g RH J =⇒ J = λ (Re,Ru)
U2

2 g DH
.

Strickler coefficient:

U = KsR
2
3
H J

1
2 .

Backwater curves:

dh

ds
= F(h) = I

1− (h/hn)−10/3

1− (h/hc)−3
, hc =

(
q2

g

)1/3

, hn =

(
q2

I K2
s

)3/10

.
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EXERCISES

See exercices in French language in the book:

O. THUAL, Hydrodynamique de l’Environnement, Éditions de l’École Poly-
technique, 2010.

or at http://thual.perso.enseeiht.fr/xsee


