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Introduction

Open channel flows often come in the investigation and intervention scope of
the environment engineer. Very often, the water layer depth is weak compared
to the horizontal extension of the observed phenomena. This is the case for
flows in rivers or channels and of the ground runoff.

One restrains here to channels which section is a rectangle of top width L
large compared to the depth, but the generalization to channels with variable
sections can be done without difficulties.

The transition from turbulent Navier-Stokes equations is tackled by using the
Leibnitz formula. A series of approximations allowing to neglect one or several
terms of the Saint-Venant equations is presented.

Figure 5.1: The Garonne in floods. Photo CNRS

The kinematic flood wave approximation is then used for its hydraulic rele-
vance and its simplicity in the illustration of the method of characteristics.
The exemple of the expansion wave eases the understanding of the notion
of invariant carried by the characteristic velocity. The computation of the
propagation velocity of a shock from the global formulation of the model is
explicited.
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1 Navier-Stokes equations with a free surface

We present here the two-dimensional incompressible and turbulent Navier-
Stokes equations with a bottom and a free surface. The choice of a set of
units representative of the pertinent orders of magnitudes enables to write
this model under a dimensionless form.

1.1 Two-dimensional Navier-Stokes equations
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Figure 5.2: Tilted channel with a flat bottom.

Let consider a two-dimensional flow on a tilted plane making an angle γ with
the horizontal. By choosing the Ox axe to be parallel to the tilted plane, one
denotes by (ex, ez) the unit vectors of the (x, z) plan. The gravity vector then
reads g = g sin γ ex−g cos γ ez. One considers that the fluid is incompressible
and denotes by ρ its constant mass density. One chooses the axes origin at
the bottom so the z = 0 be the tilted plane equation.

When the flow is turbulent, the model of the incompressible Navier-Stokes
equations with turbulent viscosity reads, in Reynolds average,

div U = 0
∂U

∂t
+ U · grad U = −grad

(
p

ρ
+

2
3
k

)
+ g + div [(ν + νt)d] , (5.1)

where ν is the kinematic molecular viscosity, νt the turbulent viscosity, d the

average strain tensor, k = 1
2U
′2 the turbulent kinetic energy where U ′ is the

turbulent fluctuation of the velocity field around its average. For simplicity,
the notations U , p and d are used for the Reynolds means rather than U ,
p or d. In the two-dimensional case which is studied here, one denotes by
U(x, z, t) = u(x, z, t) ex + w(x, z, t) ez the velocity field and p(x, z, t) the
pressure field.

One assumes that the turbulent viscosity νt is constant for z ≥ zlim(x, t) where
zlim is the top of a bottom boundary layer which empirical adjustment is part
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of the present model. The consideration of a more complex turbulent model
would lead to the same Saint-Venant equations than those which are about to
be derived, but the presentation of this derivation would have been heavier.
One supposes than ν is negigible in front of νt in the upper layer, which allows
to write there the Navier-Stokes equations under the form

∂u

∂x
+
∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂pt

∂x
+ g sin γ + νt ∆u

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂pt

∂z
− g cos γ + νt ∆w , (5.2)

where pt = p+ 3
2 ρ k is the “turbulent pressure”.

1.2 Flow boundary conditions

One assumes that the free surface equation reads F (x, z, t) = z − h(x, t) =
0, which exclude deformations of the breaking type. The normal n =
grad F/‖grad F‖ to the surface is proportional to the vector grad F =
−∂h

∂x ex + ez. The kinematic boundary condition dF
dt = 0 then reads

∂h

∂t
+ u

∂h

∂x
= w for z = h(x, t) . (5.3)

The dynamic boundary condition on the free surface expresses the continuity
of the surface forces. If one assumes that the fluid (water) is in touch with a
perfect fluid (air) of constant pressure pa, it reads

σt · n = −pa n for z = h(x, t) , (5.4)

where σt(x, z, t) is the “turbulent stress tensor”

σt = −pt I + 2 ρ νt d ,

with d(x, z, t) =

 ∂u
∂x

1
2

(
∂u
∂z + ∂w

∂x

)
1
2

(
∂u
∂z + ∂w

∂x

)
∂w
∂z

 . (5.5)

The settlement of the boundary conditions at z = zlim necessitates a matching
with the bottom boundary layer. A very simple model consists in considering
that zlim is very small and to impose the boundary conditions:

w = 0 et ex · σt · ez = τ∗ pour z = 0 , (5.6)

where τ∗ is the shear stress applied by the fluid on the wall. The stress τ∗ must
then be modelled as a function of the velocity, of the height as well as other
parameters such as the molecular viscosity ν of the fluid or the characteristic
height ks of the bottom roughnesses.
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1.3 Model dimensionless form

One chooses to put in a dimensionless form the Navier-Stokes equations with
the following unit system:

x = L0 x
+, z = h0 z

+, t =
L0

U0
t+,

u = U0 u
+, w = U0

h0

L0
w+ and pt = ρ g′ h0 p

+
t , (5.7)

where L0 is a horizontal length scale, h0 is a vertical length scale, U0 a longitu-
dinal velocity scale and g′ = g cos γ a constant close to g when γ is small. The
dimensionless fields depend on dimensional variables through relations of the
type u(x, z, t) = U0 u

+(x+, z+, t+). A simple calculus enables to then obtain
a dimensionless model which reads

∂u+

∂x+
+
∂w+

∂z+
= 0

∂u+

∂t+
+ u+∂u

+

∂x+
+ w+∂u

+

∂z+
= − 1

Fr2

∂p+
t

∂x+
+

tan γ
ε Fr2

+
1
εRt

∆+u+

ε2
(
∂w+

∂t+
+ u+∂w

+

∂x+
+ w+∂w

+

∂z+

)
= − 1

Fr2

∂p+
t

∂z+
− 1
Fr2

+
ε

Rt
∆+w+

with ∆+ = ε2
∂2

∂x+2
+

∂2

∂z+2
(5.8)

and where the four dimensionless number contributing in these equations are

ε =
h0

L0
, F r =

U0√
g′ h0

, Rt =
h0 U0

νt
and tan γ . (5.9)

The Froude number Fr is the ratio between the characteristic velocity U0 of
the flow and a velocity c0 =

√
g′ h0 which happens to be the propagation

velocity of waves in a shallow medium (see below). The “Friction Reynolds
number” Rt = h0 U0/νt, which is frankly smaller than the molecular Reynolds
numbers h0 U0/ν or L0 U0/ν, measures the magnitude of the turbulent fric-
tion compared to the other forces. At last, ε is small for flows which are
shallow compared to the horizontal considered scales. One sees that the conti-
nuity equation (mass conservation) does not exhibit any of these dimensionless
numbers.

The dimensionless boundary conditions on the free surface read

1
Rt

∂u+

∂z+
+

ε

Fr2

(
p+

t − p+
a

) ∂h+

∂x+
+
ε2

Rt

(
∂w+

∂x+
− 2

∂u+

∂x+

∂h+

∂x+

)
= 0 ,

− 1
Fr2

(p+
t − p+

a ) +
ε2

Rt

(
−∂u

+

∂z+

∂h+

∂x+
+ 2

∂w+

∂z+

)
− ε3

Rt

∂w+

∂x+

∂h+

∂x+
= 0
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and
∂h+

∂t+
+ u+ ∂h+

∂x+
= w+ for z+ = h+(x+, t+) . (5.10)

The dimensionless boundary conditions at the bottom read

∂u+

∂z+
+
∂w+

∂x+
=
Rt tan γ
Fr2

τ+
∗ et w+ = 0 for z+ = 0 , (5.11)

where one has chosen to put the shear stress τ∗ in the dimensionless form

τ∗(x, t) = ρ g′ h0 tan γ τ+
∗ (x+, t+) . (5.12)

2 Derivation of the Saint-Venant equations

The Saint-Venant equations are obtained by integrating in the vertical direc-
tion the turbulent Navier-Stokes equations, assuming that the depth is weak
in front of the variation scale of the phenomena in the direction of the flow.
Complementary approximations can be discussed by studying the order of
magnitude of other parameters such as the bottom slope, the mean velocity
or still the turbulence intensity.

2.1 Classification of the approximations

One is interested in the case of shallow layers of fluid, which is traduced by
ε � 1. Table 5.1 lists the various approximations which lead to non trivial
solutions, assuming that all the dimensionless fields u+, w+, h+, p+

t and τ+
∗

remain of order 1 when all or part of the dimensionless parameters ε, tan γ,
1/Rt or Fr go to zero. This hypothesis is not neutral and the performed unit
choices, for example for τ∗, are justified afterwards by studying the models
obtained by such or such approximation.

All these approximations lead to

∂p+
t

∂z+
= −1 with p+

t = p+
a for z+ = h+(x+, t+). (5.13)

The turbulent pressure is thus hydrostatic. Coming back to field with dimen-
sions, one can then write

pt(x, z, t) = pa − ρ g′ [z − h(x, t)] . (5.14)

One will henceforth replace pt by its value as a function of h in the equations.
The remaining boundary conditions read, at the dominant order of all the
approximations,

∂h

∂t
+ u

∂h

∂x
= w and

∂u

∂z
= 0 for z = h ,
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tan γ � ε tan γ = O(ε) tan γ = O(1)

Fr2 = O(1)

1
Rt � ε

Saint-Venant
no slope

no friction

Saint-Venant

no friction

1
Rt = O(ε)

Saint-Venant
no slope

Saint-Venant
equations
full terms

1
Rt = O(1) Kinematic

flood waves
Fr2 = O(ε)

1
Rt = O(1)

Diffusive
kinematic

flood waves

Table 5.1: Approximations in the ε� 1 case.

w = 0 and ρ νt
∂u

∂z
= τ∗ for z = 0 . (5.15)

The approximations of Table 5.1 differentiate from each others in the projec-
tion of the momentum equation on the ex direction. For the “full Saint-Venant
Equations approximation” obtained for ε� 1, Fr2 = O(1), tan γ = O(ε) and
1/Rt = O(ε), all the terms of the momentum equation are of the same order
of magnitude and one has

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −g′∂h

∂x
+ g I + νt

∂2u

∂z2
, (5.16)

with g′ = g cos γ and I = sin γ. For other approximations, the friction term
νt

∂2u
∂z2 or the gravity forcing g I can be negligible. For the diffusive kinematic

flood waves approximation, the first member, traducing the acceleration, is
negligible in front of the other terms. These latter are all three of the same
order for the “diffusive kinematic flood wave” approximation, the pressure
term −g′ ∂h

∂x being negligible for the “kinematic flood wave” approximation.

2.2 Models integrated on the fluid layer

One defines the fluid layer longitudinal velocity U(x, t) by the relation

U(x, t) =
1

h(x, t)

∫ h(x,t)

0
u(x, z, t) dz . (5.17)
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To integrate from 0 to h(x, t) the model equations, it is necessary to use the
Leibnitz formula

d

ds

∫ b(s)

a(s)
f(s, z) dz =

∫ b(s)

a(s)

∂f

∂s
(s, z) dz +

db

ds
(s) f [s, b(s)]− da

ds
(s) f [s, a(s)]

valid for all integrable and derivable function f(s, z) and all interval [a(s), b(s)]
which boundaries vary with s.

The integration on the vertical of the continuity equation leads to

∫ h(x,t)

0

∂u

∂x
(x, z, t) dz +

∫ h(x,t)

0

∂w

∂z
(x, z, t) dz = 0 . (5.18)

By applying the Leibnitz formula and by integrating ∂w
∂z , on deduces from it

∂

∂x

∫ h(x,t)

0
u(x, z, t) dz−u[x, h(x, t), t]

∂h

∂x
(x, t)+w[x, h(x, t), t]−w(x, 0, t) = 0 .

By using the boundary conditions w = 0 for z = 0 and ∂h
∂t + u∂h

∂x = w for z =
h(x, t) and by using the definition of U(x, t), the mass conservation equation
integrated on the section finally reads

∂

∂x
(hU) +

∂h

∂t
= 0 . (5.19)

By using the relation U · grad u = div (U u) in the momentum equation, one
obtains

∂u

∂t
+
∂(uu)
∂x

+
∂(w u)
∂z

= −g′ ∂h
∂x

+ g I + νt
∂2u

∂z2
. (5.20)

By using the Leibnitz formula, one then obtains

∂

∂t

∫ h

0
u dz − ∂h

∂t
u|z=h +

∂

∂x

∫ h

0
u2 dz − ∂h

∂x
u2|z=h +

[
wu

]z=h

z=0
=

−g′ h ∂h
∂x

+ g I h+ νt

[
∂u

∂z

]z=h

z=0
. (5.21)

By using the the boundary conditions, among which ρ νt
∂u
∂z = τ∗ for z = 0,

and the definition of U , one obtains

∂(U h)
∂t

+
∂

∂x

∫ h

0
u2 dz + g′ h

∂h

∂x
= gh sin γ − τ∗

ρ
. (5.22)
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2.3 Saint-Venant equations

One seeks to obtain a model which only involves the U(x, t) and h(x, t) fields.
There thus only remains to express

∫ h
0 u

2 dz and τ∗ as functions of these fields.
For this, one resorts to experimental observations, the empirical modelling
effort being, on more time, necessary. A first modelling consists in writing,
through a dimensional analysis, that∫ h

0
u2 dz = α U2 h . (5.23)

Since the flow is turbulent, u(z) is nearly constant on a big part of the layer
and one can assume α = 1.

For the modelling of the bottom shear τ∗, one defines the dimensionless quan-
tity Cf (h, U) by the dimensional relation

τ∗ =
1
2
Cf (h, U) ρU |U | . (5.24)

A crude model consists in considering that Cf , called the “Chezy coefficient”,
is constant. A model very often used in open chanel hydraulics is the Manning-
Strickler formula which reads under one of these forms

Cf (h) =
2 g

K2
s h

1/3
or Cf (h) =

ΦMS

4

(
ks

4h

)1/3

, (5.25)

where Ks is the “Strickler number” (in m1/3 s−1), ks is the bottom rugosity
and ΦMS a dimensionless number which can be chosen of the ordre ΦMS = 0.2.
One deduces from this that Ks = g1/2 φ

−1/2
MS 211/6 k

−1/6
s .

Eventually, the Saint-Venant equations read

∂h

∂t
+ U

∂h

∂x
= −h ∂U

∂x
,

∂U

∂t
+ U

∂U

∂x
+ g′

∂h

∂x
= g I − Cf

2
U |U |
h

, (5.26)

where Cf (h, U) models the wall friction, g′ ∂h
∂x represents the pressure gradient

and g I is the projection of the gravity in the x direction.

In the case of the Manning-Strickler parameterization that we will use from
now on, the momentum equation is put under the form

∂U

∂t
+ U

∂U

∂x
+ g′

∂h

∂x
= g

(
I − U |U |

K2
s h

4/3

)
. (5.27)
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3 Flood waves dynamics

The notion of wave is often linked to the linear dynamics of a medium described
by a small perturbations models around an equilibrium state. But the notion
of wave can also be extended to the nonlinear case by denoting by this name
any recognizable signal which moves with an identifiable velocity. The theory
of characteristics provides a rigourous framework to define the trajectories
along which the information propagates. One settles here in the framework
of the diffusive or non diffusive kinematic flood wave approximation (voir
tableau 5.1).

3.1 Linear dynamics

One considers first of all the “kinematic flood wave approximation” obtained
for ε� 1, 1

Rt = O(1),Fr2 = O(1) and tan γ = O(1). It reads

∂h

∂t
+

∂

∂x
(U h) = 0 and 0 = g I − 1

2
Cf

U |U |
h

. (5.28)

One chooses the Manning-Strickler model and is interested in regimes such
that U ≥ 0. One then obtains the “Strickler relation”

U(h) = Ks I
1/2 h2/3 . (5.29)

By carrying over in the continuity equation, the kinematic flood wave approx-
imation reads

∂h

∂t
+

∂

∂x

(
Ks I

1/2 h5/3
)

=
∂h

∂t
+

5U(h)
3

∂h

∂x
= 0 . (5.30)

One then considers an equilibrium state (hn, Un) where hn and Un are constant
satifying Un = Ks I

1/2 h
2/3
n . One sets

h = hn + h̃ and U = Un + Ũ (5.31)

and one assumes that h̃ and Ũ are small perturbations of the equilibrium. By
carrying over in the model and neglecting the order two terms, the linearized
model reads

∂h̃

∂t
+

5Un

3
∂h̃

∂x
= 0 . (5.32)

A small “bulge” h̃(x, t) is thus convected with a velocity equal to 5/3 of the
one of the mean flow (see figure 5.3a). This bulge is, for example, a weak flood
on a river which slope is not negligible.
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Figure 5.3: Solution h̃(x, t) a) of the nondiffusive kinematic flood wave (kn =
0), b) of the kinematic flood wave (kn 6= 0).

When the river slope as well as its velocity become weaker, one can consider
the “diffusive flood wave” model obtained for ε � 1, 1

Rt = O(1), Fr2 = O(ε)
and tan γ = O(ε). This model reads

∂h

∂t
+

∂

∂x
(U h) = 0 and 0 = −g′ ∂h

∂x
+ g I − 1

2
Cf

U |U |
h

. (5.33)

The (hn, Un) equilibrium satisfies the same Strickler relation than for the pre-
vious model, but a small perturbation h̃ now satisfies

∂h̃

∂t
+

5Un

3
∂h̃

∂x
= kn

∂2h̃

∂x2
with kn =

Un hn

2 tan γ
. (5.34)

The supplementary term effect will be to diminish the flood amplitude by
diffusing it. If the initial condition h̃(x, t0) is a gaussian of standard deviation
l0 and of maximum amplitude h̃m, the solution is the gaussian

h̃(x, t) = h̃m
l0
l(t)

exp

[
−

(x− 5 Un
3 t)2

2 l2(t)

]
, l2(t) = l20 + 2 kn (t− t0) , (5.35)

of increasing standard deviation l(t) and of decreasing maximum amplitude
(see figure 5.3b).

3.2 Nonlinear dynamics

One is now interested in the nonlinear dynamics of the non diffusive kinematic
flood wave approximation which is written under the form

∂h

∂t
+ λ(h)

∂h

∂x
= 0 (5.36)
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with λ(h) = 5
3U(h) and U(h) = Ks I

1/2 h2/3. One qualifies “characteristic” a
curve C of equation x = xC(t) satisfying the ordinary differential equation

ẋ = λ[h(x, t)] , (5.37)

where h(x, t) is a solution of the partial differential equation. This solution
then satisfies(

dh

dt

)
C

= 0 with
(
d

dt

)
C

=
∂

∂t
+ ẋC(t)

∂

∂x
. (5.38)

Put differently, the value hC(t) = h[xC(t), t] “measured along the curve C”
is constant. One says that h is a “Riemann invariant” of the system. This
constant is, for instance, hC = h(a, 0) if xC(0) = a, when C goes through the
point (x, t) = (a, 0), or else hC = h(0, τ) if xC(τ) = 0, when C goes throught
the point (x, t) = (0, τ). Since h is constant along these “curves” and λ(h)
only depends on h, the characteristics are straight lines.

x

t C

τ

a0

C

hi(a)

hl(τ) Di

Dl

Figure 5.4: Examples of characteristics C going through (a, 0) or (0, τ) in the
(x, t) plane. Influence domains Di and Dl of, respectively, initial and boundary
conditions.

If one is given an initial condition hi(a) such that h(x, 0) = hi(x) for x ≥ 0 and
a boundary condition hl(τ) such that h(0, t) = hl(t) for t ≥ 0, the solution
h(x, t) is obtained by eliminating, respectively, a or else τ from one of the
systems{

x− a = λ(h) t
h = hi(a)

or else
{
x = λ(h) (t− τ)
h = hl(τ)

, (5.39)

depending wheter one is in the initial conditions influence domain Di or of the
boundary conditions Dl.

The graphical resolution of these implicit equations is done by drawing the
characteristic lines x = a + λ[hi(a)] t starting from the initial conditions or
else the characteristic lines x = λ[hl(τ)](t − τ) starting from the boundary
conditions.
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Figure 5.5a represents such a drawing starting form an increasing initial con-
dition. Since h is increasing along characteristics which diverges when t in-
creases, one sees that the horizontal extension grows, the amplitude remaining
constant as shown on Figure 5.5b.
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0
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b)a)

x

t

x

h

hi(a)

t = 0

t→∞

Figure 5.5: Expansion. a) Characteristic lines in the (x, t) plane and initial

profile hi(a) = hn + ∆h
2

[
1 + tanh

(
a
l0

)]
. b) Evolution of the profile h(x, t).

Figure 5.6a represents such a drawing starting from a decreasing initial condi-
tion. Since h is constant along converging characteristics when t increases, one
sees that the horizontal extension decreases, the amplitude remaining constant
as shown on Figure 5.6b. Beyond the first time tc where the characteristics
cross, the continuous model of the kinematic flood waves is no longer valid.
Very often, this singularity traduces physical phenomena in which the fields
vary on very short distances and are called “shocks” in compressible aerody-
namics or “jumps” here.

3.3 Jumps of the flood wave model

One can try to model these jumps with discontinuous functions h(x, t). For
this, it is nessecary to formulate a model richer than the considered partial
differential equation. Such a model is obtained through a global formulation
of the global mass conservation which postulates that the relation

d

dt

∫ x2

x1

h dx+ [q(h)]x2
x1

= 0 with q′(h) = λ(h) (5.40)

is true on the whole fixed interval [x1, x2] of the considered spatial domain.

One denotes by xc(t) the position of a moving shock and [[h]] = hR − hL the
discontinuity of h through the shock where hR = h[x+

c (t), t] is the value at its
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Figure 5.6: Shock. a) Characteristic lines in the (x, t) plan and initial profile

hi(a) = hn + ∆h
2

[
1− tanh

(
a
l0

)]
. b) Evolution of the profile h(x, t).

right and hL = h[x−c (t), t] is the value at its left. The Leibnitz formula enables
to write

d

dt

∫ x2

x1

h dx =
d

dt

[∫ x−c (t)

x1

h dx+
∫ x2

x+
c (t)

h dx

]

=
∫ x−c (t)

x1

∂h

∂t
dx+

∫ x2

x+
c (t)

∂h

∂t
dx+ ẋc(t)hL(t)− ẋc(t)hR(t)

=
∫ x−c (t)

x1

∂h

∂t
dx+

∫ x2

x+
c (t)

∂h

∂t
dx−W [[h]] , (5.41)

where W (t) = ẋc(t) is the velocity of the shock. Furthermore, one can write

[q]x2
x1

= q[h(x2, t)]− q[h(x1, t)] = [q]x
−
c

x1
+ [q]x2

x+
c
− q[hL(t)] + q[hR(t)]

= [q]x
−
c

x1
+ [q]x2

x+
c

+ [[q]] . (5.42)

By summing Equations (5.41) and (5.42) and applying the local budget (5.36)
on the intervals [x1, xc[ and ]xc, x2], one finds that the velocity of the shock is

W (t) = [[q(h)]]/[[h]] with W (t) = ẋc(t) , (5.43)

the values on both sides of the shock being known thanks to the characteristics.
In the case of the kinematic flood wave approximation, one has q(h) = U h
with U = Ks

√
I h2/3. One can thus write the jump condition under the form[[

h(U −W )
]]

= 0 . (5.44)
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FORMULAS

Free surface Navier-Stokes equations

With turbulent viscosity:

div U = 0
∂U

∂t
+ U · grad U = −1

ρ
grad pt + g + div [(ν + νt)d] .

Boundary conditions:

∂h

∂t
+ u

∂h

∂x
= w , σt · n = −pa n / z = h(x, t) .

Dimensionless numbers:

ε =
h0

L0
, F r =

U0√
g′ h0

, Rt =
h0 U0

νt
et tan γ .

Derivation of the Saint-Venant equations

Hydrostatic pressure:

pt(x, z, t) = pa − ρ g′ [z − h(x, t)] .

Momentum:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −g′∂h

∂x
+ g I + νt

∂2u

∂z2
.

Bottom shear:

τ∗ =
1
2
Cf (h, U) ρU |U | .
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Saint-Venant equations:

∂h

∂t
+ U

∂h

∂x
= −h ∂U

∂x
,

∂U

∂t
+ U

∂U

∂x
+ g′

∂h

∂x
= g I − Cf

2
U |U |
h

.

Manning-Strickler parameterisation:

Cf =
2 g

K2
s h

1/3
=⇒ ∂U

∂t
+ U

∂U

∂x
+ g′

∂h

∂x
= g

(
I − U |U |

K2
s h

4/3

)
.

Flood wave dynamics

Diffusive flood waves:

∂h

∂t
+

∂

∂x
(U h) = 0 and 0 = −g′ ∂h

∂x
+ g I − 1

2
Cf

U |U |
h

.

Flood waves:

∂h

∂t
+ λ(h)

∂h

∂x
= 0 , λ(h) =

5
3
U(h) , U(h) = Ks I

1/2 h2/3 .

Characteristics: (
dh

dt

)
C

= 0 ,

(
d

dt

)
C

=
∂

∂t
+ ẋC(t)

∂

∂x
.

Jump relations:

d

dt

∫ x2

x1

h dx+ [q(h)]x2
x1

= 0 =⇒ ẋc(t) = W (t) = [[q(h)]]/[[h]] .

EXERCISES

See exercices in French language in the book:

O. THUAL, Hydrodynamique de l’Environnement, Éditions de l’École Poly-



FORMULAIRE 17

technique, 2010.

or at http://thual.perso.enseeiht.fr/xsee


