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Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique
42 avenue Coriolis – 31057 Toulouse Cedex 1 – France
Tél : +33 5 61 19 31 31 – Fax : +33 5 61 19 30 00
http://www.cerfacs.fr – e-mail: secretar@cerfacs.fr

https://cerfacs.fr
secretar@cerfacs.fr




Contents

1 Introduction 5

2 Analysis of Euler equations 7
2.1 Introduction and some reminders on numerical schemes . . . . . . . . . . . . . 7

2.1.1 Consistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Lax theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Hyperbolic aspect of the Euler’s equations . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Preliminary comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Hyperbolic system of equations . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Strong and weak solutions of the Euler’s equations . . . . . . . . . . . . . . . . 12
2.3.1 The method of characteristics and the strong solution . . . . . . . . . . 12
2.3.2 An example of the limited approach based on characteristics: Burgers’

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Strong and weak solution . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Non uniqueness of the weak solution . . . . . . . . . . . . . . . . . . . . 16
2.3.5 Riemann problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Numerical schemes built from mathematical considerations 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Some consequences of non linearity . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Analysis of differences between mean of variables and mean of flux for a
centered convection scheme . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 The Jameson’s artificial dissipation . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Default of the approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Upwind schemes for Euler equations 21
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Flux Vector Splitting schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Schemes based on the Riemann’s solver . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Basic first order scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Riemann problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.3 From the Riemann’s problem to numerical flux integration . . . . . . . 25
4.3.4 The Godunov’s scheme for a scalar equation . . . . . . . . . . . . . . . . 27

Page 3 of 49



4.4 Approximate Riemann solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.1 Roe scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 Entropy correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Second order schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.1 Variable extrapolation or MUSCL approach . . . . . . . . . . . . . . . . 33
4.5.2 Flux extrapolation or non-MUSCL approach . . . . . . . . . . . . . . . 36
4.5.3 Total Variation Diminishing (TVD) . . . . . . . . . . . . . . . . . . . . 36
4.5.4 Flux reconstruction method: TVD scheme . . . . . . . . . . . . . . . . . 37
4.5.5 Variable reconstruction method: TVD scheme . . . . . . . . . . . . . . . 39

4.6 Extension to 2-D Euler flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 Time integration methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion 47

Bibliography 49

Page 4 of 49



Chapter 1

Introduction

This document follows the one on CFD basic concepts1. In particular, none of the notations
will be recalled. The Navier Stokes equations are written in the following conservative form:

∂tρ+∇.(ρ~u) = 0
∂t(ρ~u) +∇.(ρ~u⊗ ~u) +∇p−∇.τ = 0

∂t(ρE) +∇.
(
~u(ρE + p)

)
= ∇. (~uτ + λ∇T )

(1.1)

where τ = µ(∇~u+∇~uT )− 2µ
3

I∇.~u and λ =
Cpµ

Pr
.

Under physical assumptions, the Navier Stokes equations are established with an integral
formulation and this integral formulation is the basis of the finite volume approach which is
chosen for the numerical discretization. Without any loss of generality, let Ω be the space on
which the Navier Stokes equations are integrated; one obtains from Eq. 1.1:

∂

∂t

(∫
Ω
ρdω

)
+
∫
∂Ω
ρ~u.~nds = 0

∂

∂t

(∫
Ω
ρ~udω

)
+
∫
∂Ω
ρ(~u⊗ ~u+ pI)~nds =

∫
∂Ω
τ~nds

∂

∂t

(∫
Ω
ρEdω

)
+
∫
∂Ω

(
(ρE + p)~u.~nds

)
=

∫
∂Ω

(~uτ.~n+ λ∇T.~n) ds

(1.2)

Eq. 1.2 is decomposed in three terms:

• The right hand sides are devoted to diffusion fluxes at mesh interface.

• The left hand sides of the equation are devoted to convection and time terms.

In practice, in a CFD code, one uses one scheme for the convection term, another one for the
diffusion flux and finally a third one for the time step. The equations with a null diffusion
term are called the Euler’s equations. They are obtained formally by taking a null viscosity

1CFD e-Learning, Mesh and discretization, G. Puigt and H. Deniau, 2010, Edition 1.0
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µ = 0 or equivalently an infinite Reynolds number. They are written:

∂

∂t

(∫
Ω
ρdω

)
+
∫
∂Ω
ρ~u.~nds = 0

∂

∂t

(∫
Ω
ρ~udω

)
+
∫
∂Ω
ρ(~u⊗ ~u+ pI)~nds = 0

∂

∂t

(∫
Ω
ρEdω

)
+
∫
∂Ω

(
(ρE + p)~u.~nds

)
= 0.

(1.3)

The Euler’s equations are the model problem for the establishment and the analysis of numer-
ical schemes devoted to convection flux integrals. The analysis of the Euler equations will be
the basis of the current document.
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Chapter 2

Analysis of Euler equations

2.1 Introduction and some reminders on numerical schemes

Proposal, test and validation of numerical schemes are possible through a formalism pro-
posed by mathematicians. This formalism has been presented in another CFD course on
the e-learning web page. In this document, our attention is focused on the treatment of the
convection flux at the interface between two finite volumes.

2.1.1 Consistence

Theorem 2.1.1. A numerical scheme is said consistent if the truncation error between the
discretized and continuous equations tends to zero when the spatial steps δx, δy, δz and the
temporal one δt tend to 0. In other words, a scheme is said consistent if the discretized equations
tend to the continuous ones when the spatial and temporal discretization steps tend to zero.

2.1.2 Stability

Theorem 2.1.2. Let und (d meaning discrete) be a discrete solution at time nδt for an exact
solution ue. The temporal evolution problem is said stable if the error εn at time nδt defined
by εn = und − ue is uniformly limited:

lim
n→∞

|εn| ≤ K ∀t = nδt.

In other words, a numerical scheme must not increase perturbations during the time steps.
In practice, stability is analyzed by introducing harmonics like û exp(i(kx − ωt)) in the

scheme expression; to have convergence of the computation, the amplification factor must be
lower than 1.

2.1.3 Convergence

Theorem 2.1.3. A numerical scheme is convergent if the numerical solution tends to the
exact solution when both time and space steps tens to zero.:

lim
n→∞

|εn| = 0 quand ∆x, ∆y, ∆z, ∆t tend to 0 at t, x, y, z fixed.

Remark 2.1.4. The main difference between convergence and consistence is the application
of the method to a solution or not. Therefore, both formalisms are not equivalent!
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2.1.4 Lax theorem

Theorem 2.1.5 (Lax’s Theorem). For a well-posed linear problem (with a unique solution
which depends continuously of input data) with boundary conditions and a consistent discretiza-
tion, stability is a necessary and sufficient condition for convergence.
This means that:

Stability + Consistence =⇒ Convergence

2.1.5 Other considerations

Even if the mathematical formalism is quite clear, a consistent and stable numerical scheme
only induces no-crash during the iterations process and does not guarantee that the numerical
solution will efficiently represent the physical solution. The guarantee of convergence to the
”good solution” needs the complementary notions of dissipation and dispersion for a numerical
scheme.

Remark 2.1.6. Dissipation and dispersion will not be addressed in this document.

2.2 Hyperbolic aspect of the Euler’s equations

2.2.1 Preliminary comments

The principle of the finite volume technique is to define an averaged solution over each control
volume. As a consequence, the discrete solution is discontinuous at each mesh interface, even if
the exact solution is continuous. The only theoretical case for which a solution is continuous is
the constant solution. During simulations, due to round off of real representation on computers,
the numerical approximation can lead to small variations of the conservative quantities and
finally, the ”converged” solution is roughly continuous and in practice piecewise constant. The
principle of the finite volume approach is therefore to approximate a solution by a piecewise
constant solution over each elementary volume. This is the most important point to tackle
about the convection schemes and this point will be addressed in the following sections.

2.2.2 Hyperbolic system of equations

Remark 2.2.1. In the following, we will prove that the Euler’s equations are hyperbolic: the
Jacobian matrix A = ∂F/∂U is invertible with real eigenvalues and eigenvectors. The hy-
perbolic aspect of the equations has a strong consequence: a perturbation at time t will only
influence the flow at time t′ > t. Mathematically, the hyperbolic status plays an important
role: it justifies that the converged solution can become discontinuous, even for a smooth initial
solution. Taking into account the discontinuity will be addressed by the Rankine Hugoniot’s
relations which characterize the jumps of the solution. Rankine Hugoniot relations will finally
be the key point in the definition of numerical schemes.
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Let us consider the one-dimension Euler’s equations written for a perfect gas in a compact
form:

∂U

∂t
+
∂F (U)
∂x

= 0, (2.1)

with U = (ρ, ρu, ρE)T and F (U) = (ρu, ρu2 + p, ρuH)T where E = e + u2/2 is the specific
total energy, H = E+p/ρ is the specific total enthalpy, e is the specific internal energy (linked
with the temperature e = CvT with Cv heat capacity at constant volume) and p = ρRT =
(γ−1)ρe = ρRe/Cv is the pressure. Eq. 2.1 is the conservative form of Euler’s equations and U
is called conservative variable. In this section, we assume that the flux F can be differentiated.

Theorem 2.2.2. Let A = ∂F/∂U be the Jacobian matrix of the F with respect to the conser-
vative variables which define U :

A =


0 1 0

γ − 3
2

u2 (3− γ)u γ − 1

u

(
(γ − 1)u2 − γE

)
γE − 3

2
(γ − 1)u2 γu

 . (2.2)

Proof. The first line of the matrix is easily obtained, considering ρ, ρu and ρE as independent
variables. The question concerns therefore the last two lines of A. The solution consists in an
expression of p as a function of ρ, ρu and ρE. One knows that:

p = ρRT = ρ
R

Cv
e = (γ − 1)ρe = (γ − 1)

(
ρE − (ρu)2

2ρ

)
(2.3)

Let us consider the derivation of ρu2 + p. Due to Eq. 2.3, we have:

∂(ρu2 + p)
∂ρ

=
∂((ρu)2/ρ)

∂ρ
+
∂p

∂ρ
= −(ρu)2

ρ2
+
γ − 1

2
(ρu)2

ρ2
=
γ − 3

2
u2

∂(ρu2 + p)
∂(ρu)

=
∂((ρu)2/ρ)
∂(ρu)

+
∂p

∂ρ
= 2u− (γ − 1)u = (3− γ)u

∂(ρH)
∂(ρE)

=
∂((ρu)2/ρ)
∂(ρE)

+ (γ − 1)
∂(ρE)
∂(ρE)

= γ − 1

(2.4)

The last line of Eq. 2.2 is obtained following the same kind of relations. This exercise is let to
the reader.

Using derivation rules, the linearized version of Eq. 2.1 is written:

∂U

∂t
+A

∂U

∂x
= 0. (2.5)

Definition 2.2.3. The system Eq. 2.1 is said strongly ill-posed if and only if the linearized
problem Eq. 2.5 has almost one complex eigenvalue: there exist an eigenvalue λ such that λ ∈ C
and λ /∈ R.
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Definition 2.2.4. The linearized system Eq. 2.5 is said well-posed if and only of if all its
eigenvalues are purely real.

Definition 2.2.5. The linearized system Eq. 2.5 is said weakly well-posed if and only of if:

• it is well-posed and,

• the space based on the eigenvectors is incomplete: there are n eigenvalues and p < n
different eigenvectors Vk such that span(V1, ..., Vp) 6= Rn.

Definition 2.2.6. The linearized system Eq. 2.5 with p equations is said hyperbolic or
strongly well-posed if and only if if it is well-posed and there are p different eigenvalues
and therefore p independent eigenvectors.

Definition 2.2.7. The nonlinear system Eq.2.1 is said hyperbolic in a domain Ω ⊂ Rn if
and only of the linearized system Eq. 2.5 is hyperbolic for all U ∈ Ω.

Finding the equivalent diagonal matrix of A and analyzing its eigenvalues is the easiest
way to prove the hyperbolic behavior of the Euler’s equation in 1D. Let’s change the basis of
A from the conservative variables U = (ρ, ρu, ρE)T to the primitive ones V = (ρ, u, p)T ; the
transformation matrix M = ∂U/∂V and its inverse must be explicitly written, component by
component. We have:

M =


1 0 0

u ρ 0

u2

2
ρu

1
γ − 1

 , M−1 =


1 0 0

−u
ρ

1
ρ

0

γ − 1
2

u2 −(γ − 1)u γ − 1

 . (2.6)

Proof. The demonstration is based on the same concept as in Theorem 2.2.2 and is let to the
reader.

It comes from Eq. 2.5:

M
∂V

∂t
+AM

∂U

∂x
= 0,

or, equivalently,

∂V

∂t
+M−1AM

∂U

∂x
= 0 or

∂V

∂t
+ Ã

∂U

∂x
= 0, (2.7)

with

Ã = M−1AM =


u ρ 0

0 u 1
ρ

0 ρc2 u

 , (2.8)

and c =
√

γp
ρ is the speed of sound. Eq. 2.7 represents the Euler’s equations written in a non

conservative form. From Eq. 2.8, one deduces:

A = MÃM−1 (2.9)
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It is clear that A and Ã share the same eigenvalues and the computation of det(λI− Ã) finally
leads to the following diagonal matrix (composed of eigenvalues) Λ:

Λ =


u− c 0 0

0 u 0

0 0 u+ c

 , (2.10)

Using transformation matrices, we have Ã = R̃ΛR̃−1 and finally:

A = RΛR−1 with R = MR̃ and R−1 = R̃−1M−1 (2.11)

One can now compute transformation matrices from A to Λ to show that all eigenvectors
are real: the hyperbolic aspect of the Euler’s equations will be proved. Let R̃k, k = 1, 2, 3 be
the eigenvector at the right hand side and let λk, k = 1, 2, 3 be the corresponding eigenvalues.
We have ÃR̃k = λkR̃k. Introducing Λ, R̃ has its k-th row composed of the eigenvectors R̃k
components since ÃR̃ = R̃Λ. From the following choice for R̃:

R̃ =
1
c2


1 1 1

−c/ρ 0 c/ρ

c2 0 c2

 , (2.12)

we finally obtain, using Eq. 2.11:

R =
1
c2


1 1 1

u− c u u+ c

H − uc u2/2 H + uc

 . (2.13)

Analogously, the left hand side eigenvectors L̃k of Ã are defined by L̃kÃ = λkL̃k and can be
computed from R̃ ˜R−1 = Id, which leads to:

R̃−1 =


0 −ρc

2
1
2

c2 0 −1

0 ρc
2

1
2

 . (2.14)

and

R−1 =


1
2 [(γ − 1)u

2

2 + uc] −1
2 [(γ − 1)u− c] γ−1

2

c2 − (γ − 1)u
2

2 (γ − 1)u −(γ − 1)

1
2

[
(γ − 1)u

2

2 − uc
]
−1

2 [(γ − 1)u+ c] γ−1
2

 . (2.15)

The extension to three-dimension flows is possible and leads to Λ as:

Λ =


u− c 0 0 0 0

0 u 0 0 0
0 0 u 0 0
0 0 0 u 0
0 0 0 0 u+ c

 ,
with real eigenvectors.
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Remark 2.2.8. The eigenvalues u − c, u and u + c represent the speed at which waves are
moving in the flow. Material particles move at velocity u and acoustic waves at absolute
velocities u+ c and u− c.
Remark 2.2.9. For a subsonic flow (u < c with c sound speed), one acoustic speed is negative,
which means that some information goes in a direction opposite to the flow.

The Euler’s equations being hyperbolic, discontinuous solutions can appear at a finite
time. Now, we will analyze the jump at the discontinuities: Rankine Hugoniot relations give
an expression for the jumps.

2.3 Strong and weak solutions of the Euler’s equations

Let us work in the 2D space Ω depending on (x, t) and associated to an unstationary one-
dimension flow solution of Euler equations. The transformation of a one-dimension discretiza-
tion in space and time to a two-dimensions discretization in coupled time / space is chosen to
follow a jump which moves in both space and time.

2.3.1 The method of characteristics and the strong solution

The method of characteristics is a mathematical technique for solving partial differential equa-
tions and in particular, it can be applied to the Euler’s equations, which are first order Partial
Differential Equations (PDE). In this case, the principle of the method is:

1. to transform the initial PDE into an Ordinary Differential Equation (ODE) which only
involves a single variable, this transformation being possible on curves called character-
istic curves,

2. to solve the ODE on the characteristic curve,

3. to transform the solution of the ODE back in the initial space to define the solution of
the PDE.

For sake of simplicity, let’s consider in this section the following 1D scalar Cauchy problem for
which u is the unknown variable:{

∂tu+ ∂xf(u) = 0, ∀t > 0

u(0, x) = u0(x).
(2.16)

Let’s suppose that the initial data x → u0(x) is C1(R) (continuous, derivable and with a
continuous derivative). Eq. 2.16 can be written is a non conservative form:{

∂tu+ a(t)∂xu = 0 with a(u) = f ′(u), ∀t > 0

u(0, x) = u0(x).
(2.17)

Now, let’s introduce the following change of variable from (t, x) to (t′, X):
∂x(t′, X)

∂t′
= a(u(t′, x(t′, X))),

x(0, X) = X,

t = t′

(2.18)
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Definition 2.3.1. The curve t → x(t,X) defined by Eq. 2.18 is the characteristic curve in
relation with the solution t→ u(t, x) of Eq. 2.16.

According to the change of coordinates origins and direction, the rules for derivatives are
written as:{

∂t′ = ∂t′∂t+ ∂t′x∂x = ∂t + a∂x

∂X = ∂Xt∂t+ ∂Xx∂x = J∂x,
(2.19)

with J = ∂X|t′x. One deduces from Eq. 2.19 and Eq. 2.17 that ∂tu + a(t)∂xu = 0 and
∂t′u(t′, x(t′, X)) = 0 are equivalent. As a consequence, the solution u is constant along the
curves defined by u(t′, x(t′, X)) = u(0, x(t′, 0)) = u0(X). These curves are straight lines and
are solutions of the characteristic equation.

Theorem 2.3.2. In 1D, for Cauchy problem Eq. 2.16, the characteristic straight line equations
are:

x(t,X) = X + ta(u0(X)), with a(u) = f ′(u).

Theorem 2.3.3. Let u0(x) be a continuous and differentiable except at some singular points.
Suppose that the solution x → x(t,X) of the characteristic equation is continuous, differen-
tiable except at some singular points on [0, T ]× R and invertible. The inverse transformation
is denoted (t, x)→ X(t, x) with x(t,X(t, x)) = x for all x ∈ R.

Then, the function (t, x)→ u0(X(t, x))) is continuous, differentiable by pieces and is solu-
tion of the Cauchy’s problem Eq. 2.16.

Definition 2.3.4. The solutions described in Theorem 2.3.3 are called strong solutions.

Remark 2.3.5. Solving Theorem 2.3.3 is only possible for single valued problems for which
characteristic lines do not cross. If characteristic lines cross, the information obtained from
the characteristics can lead to the definition of a multi-valued solution or perhaps to the non
existence of a solution.

2.3.2 An example of the limited approach based on characteristics: Burgers’
equation

In this section, we consider the 1D Burgers’ equation coupled with an initial data:
∂u

∂t
+ u

∂u

∂x
= 0

u(x = x0, t = 0) = u(x0, 0)
(2.20)

Eq. 2.20 is called the inviscid Burgers equation since there exists an extension of Eq. 2.20 with
a diffusion term. It is a nonlinear PDE which looks very close to the momentum relation of
the Euler’s equations.
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For Burgers’ equation, the characteristics are solution of X ′ = u(X(t), t). Assume that X
is a solution of this equation, then u[X(t), t] is the restriction of u to this curve and along the
curve:

d

dt
u(X(t), t) =

∂u

∂x

dx

dt
+
∂u

∂t
= 0. (2.21)

We deduce from Eq. 2.21 that the solution will not change along the characteristic curve. Since
the initial condition u0(x) is known, we have

u(X(t), t) = u(x0, 0).

The right hand side is independent of t and therefore constant for the integration. We find
straight lines as characteristics: X(t) = x0 +u(x0, 0)t = x0 +f(x0)t. The solution of the initial
value problem can be written as:

u(x, t) = f(x0) = f(x− ut). (2.22)

At this level, one can notice that

1. the solution is not given explicitly through Eq. 2.22,

2. the characteristic are straight lines but they do not share the same slope,

3. as a consequence, depending on the initial position and on f(x0), the characteristic lines
may intersect. In this case, an analysis of the problem can lead to the existence of several
solutions or to the no-existence of a solution to the initial problem.

To overcome this lack of existence of a classical solution, we must introduce a broader notion
of a solution, a weak solution.

2.3.3 Strong and weak solution

Roughly speaking, a weak solution may contain discontinuities, may not be differentiable,
and will require less smoothness to be considered as solution than a classical strong solution.
Working with the weak solution of a PDE usually requires that the PDE be reformulated in
an integral form. If a classical solution to the problem exists, it will also satisfy the definition
of a weak solution.

Let Ψ be the space of C1 functions φ with zero values out of Ω and on the boundary ∂Ω.
Then, if U is a strong solution of Euler equations, we have:∫

Ω

[
U
∂φ

∂t
+ F (U)

∂φ

∂x

]
= 0, ∀φ(x, t) ∈ Ψ.

U is then said to be a weak solution of Euler equations Eq. 2.1.

Proof. The proof is straightforward. Multiply formally Eq. 2.1 by φ, integer on Ω and use
Green Formula.

One can also show that if U is a weak solution, U can be also a strong solution: the
reciprocity is true is the weak solution is regular (typically C1). As a consequence, both
approaches can be equivalent. However, a weak formulation is a more general concept than
the strong solution.
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Rankine Hugoniot jump relations

Let a discontinuity be defined in the space (x, t). The discontinuity divides an open space Ω
in two open spaces Ω1 and Ω2, such as shown in Fig. 2.1. Let ∂X denote the boundary of a
space X. Let C be the curve of separation between Ω1 et Ω2.

t

∂Ω

-

6
�
�
�
�
�
�
�
�
�
�
�
��

Ω1

C

Ω2

x

'

&

$

%
Figure 2.1: Definition of Ω as a coupled space / time domain.

The weak formulation of Euler’s equations in 1D is written as:
2∑
i=1

(∫
Ωi

[
U
∂φ

∂t
+ F (U)

∂φ

∂x

])
= 0, ∀φ(x, t) ∈ Ψ. (2.23)

By continuity of U in both spaces Ω1 and Ω2, Eq 2.23 can be transformed by Green formula
on each subspace. It leads to:

2∑
i=1

(∫
∂Ωi

[φUni,t + F (U)φni,x]
)

=
2∑
i=1

(∫
Ωi

[
φ(
∂U

∂t
+
∂F (U)
∂x

)
])

, φ(x, t) ∈ Ψ. (2.24)

Since U is a weak solution of Euler equations, the right hand side of Eq 2.24 is zero. The left
hand side of Eq 2.24 can be formulated in another way by the change of volume integrals in
boundary ones on ∂Ω ∪ C. Using the fact that ∀φ ∈ Ψ, φ = 0 on ∂Ω, one obtains:

2∑
i=1

(∫
C

[(Uni,t + F (U)ni,x)φ]
)

= 0. (2.25)

On the discontinuity, ~n2 = − ~n1 and if U1 and U2 are the values of U in Ω1 et Ω2, we have:∫
C

[(U1 − U2)n1,t + (F (U1)− F (U2))n1,x)φ] = 0. (2.26)

Since Eq. 2.26 is true for any function φ of class C1 with a compact support, the final Rankine
Hugoniot’s jump expression is simply:

(U1 − U2)n1,t + (F (U1)− F (U2))n1,x = 0. (2.27)

At this level, we recall that n1 is the unit normal vector on C directed outward Ω1 and it has
two components following the (x, t) space direction.
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2.3.4 Non uniqueness of the weak solution

Here, the aim is not to present the whole details of the mathematical background and we
simply want to justify that there may be several weak solutions of the initial problem. The
weak solution is defined as a solution of an integral formulation with respect to the classical
measure in Rk (Lebesgues measure). Let us suppose (without lack of generality for the present
purpose) that the solution is look for in R. Let us introduce the Dirac function δx0(x) = 0 is
x 6= x0, 1 else. Then, if f is a weak solution, f + δx0 is also a solution. The proof is linked
with the fact that the Dirac function δxo is not seen by the Lebesgues’ measure:∫

Ω
δx0(x)dx = 0, ∀x0 ∈ R .

A simple extrapolation of this idea justifies that the weak formulation of the Euler’s equation
in 1D have several solutions. If one finds a solution f , then another (different) solution is
simply f + δx0 .

As a conclusion, the weak formulation considers a space of weak solutions larger than the
one of strong solutions composed of continuous and differentiable functions. For an initial solu-
tion which corresponds to the strong solution, the weak formulation can add one or more than
one new solutions. The question is now to choose the legitimate one. To do so, mathematician
introduce the notion of entropy (not necessary the same as for fluids!). A new criterium on
the (mathematical) entropy enables to select one solution in the space of weak solutions. This
solution will be the general solution which we look for.

The definition of the mathematical entropy is not in the purpose in such a course on
numerical schemes. If interested, the reader is suggested to read Despres books [1] (in French).

2.3.5 Riemann problem

Definition 2.3.6. The Riemann problem for Euler equations in one dimension consists in
finding a (weak) solution to the Euler equations with an initial condition defined by:

U(x, 0) =


UL ∀x < 0

UR ∀x > 0.
(2.28)

In other words, the principle is to analyze the behavior of the solution in presence of a
discontinuity. Of course, it is exactly the model problem found on an interface during the
finite volume process.

The Euler equations coupled with the initial condition Eq. 2.28 does not include any time
or space scale: if u(x, t) is a solution, then u(αx, αt) is solution, whatever α is. This is called a
self-similar solution. The concept of self-similar solution means that the solution only depends
on x/t and is therefore constant on the half-lines which cross (0, 0).

The analysis of the solution behavior can be conducted directly through the study of Rank-
ine Hugoniot jump relations, Without entering in details, the discontinuities can be identified
precisely. In practice, it is possible to go further in the development since the Rieman’s prob-
lem solved with Rankine Hugoniot relations is a foundation of numerical schemes. This topic
will be analyzed in chapter 4 of this document.
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Chapter 3

Numerical schemes built from mathematical considerations

This chapter is mainly devoted to the analysis of the Jameson Schmidt Turkel convection
scheme [2]. After introducing some possibilities to define the numerical scheme for convection,
the JST scheme is introduced and its stabilization terms explained.

3.1 Introduction

We have seen in chapter 2 the hyperbolic aspect of Euler equations, Rankine Hugoniot jumps
and the non uniqueness of weak solutions. In this chapter, simply forget all the lessons and
take the point of view of a very young mathematician.

For sake of clarity in introducing the underlying approach, let us consider the simple ad-
vection equation at velocity a in 1D:

∂u

∂t
+ a

∂u

∂x
= 0. (3.1)

Integrate Eq. 3.1 as for the Finite Volume approach leads to:

d

dt

(∫
Ω
u

)
+ a

∫
∂Ω
u.~nds = 0. (3.2)

The difficulty concerns the definition of the velocity u at the interface for the boundary integral
in Eq. 3.2. For this simple case, why could not we choose u = 0.5(uL + uR) which is the mean
between left and right values states around the interface? This kind of scheme is called a
centered scheme since there is the same kind of contribution for left and right hand sides fields.
For Euler equations, the approach is a bit more complex due to the nonlinear terms.

3.2 Some consequences of non linearity

The convection terms within the Navier Stokes equations are nonlinear. In particular, the
nonlinear part of the convection flux depends on choices for H = (~u∇).~u. We have seen in
chapter 1 that H can also be written as H = ∇.~u ⊗ ~u. There are mainly four possibilities to
express H or its components:

1. The divergence form:

Hl =
∂ulum
∂xm

, (3.3)
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2. The skew-symmetric form:

Hl =
1
2

(
∂ulum
∂xm

+ um
∂ul
∂xm

)
, (3.4)

3. the convection form:

Hl = um
∂ul
∂xm

, (3.5)

4. the rotational form:

Hl = um

(
∂ul
∂xm

− ∂um
∂xl

)
+

1
2
∂umul
∂xl

. (3.6)

From now on, let l / r denote respectively the left / right volumes on both sides of an interface
i. The interface flux F is an integral which is discretized as a product of a flux density F and
a normal unit vector ~n. For centered schemes, the interface flux density can be computed:

• using the mean of the conservative variables at the interface:

Fi = F
(

1
2

(Wl +Wr)
)
. (3.7)

This is the typical formulation proposed by Jameson et al. [2].

• using the mean of the flux at the interface:

Fi =
1
2

(
F(Wl) + F(Wr)

)
. (3.8)

3.2.1 Analysis of differences between mean of variables and mean of flux
for a centered convection scheme

The difference between both expressions for the interface flux can be analyzed easily using
Taylor expansion on the following one-dimension nonlinear equation ∂u/∂t + ∂u2/∂x = 0.
From now on, a volume is defined by its index i and the interface index i + 1/2 is located
between volumes I and I + 1. The semi-discrete Finite Volume discrete formulation can be
written:

V
∂u

∂t
+ Fi+1/2 − Fi+1/2 = ∆x

∂u

∂t
+ Fi+1/2 − Fi+1/2 = 0. (3.9)

In Eq. 3.9, ∆x = V represents the length of the segment which defines the control volume.
If the flux F is computed with Eq. 3.7, one has:

∂u

∂t
+

1
∆x

[(
ui+1 + ui

2

)2

−
(
ui + ui−1

2

)2
]

=
∂u

∂t
+

1
2

(
u2
i+1 − u2

i

2∆x
+ 2ui

ui+1 − ui−1

2∆x

)
= 0.

(3.10)
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Using Taylor expansions, one can easily prove from Eq. 3.10 that the discretization error is:

1
2

(
u2
i+1 − u2

i

2∆x
+ 2ui

ui+1 − ui−1

2∆x

)
− ∂u

2

∂x
=

1
6
∂3u2

∂x3
(∆x)2− 1

2
∂u

∂x

∂2u

∂x2
(∆x)2+O

(
(∆x)4

)
. (3.11)

If the flux F is computed with Eq. 3.8, one has:

∂u

∂t
+
u2
i+1 − u2

i

2∆x
= 0, (3.12)

and using Taylor expansions, one deduces from Eq. 3.12 that the numerical error is centered
for the first order derivative ∂/∂x:

u2
i+1 − u2

i

2∆x
− ∂u2

∂x
=

1
6
∂3u2

∂x3
(∆x)2 +O

(
(∆x)4

)
. (3.13)

The difference between the considered approximations Eq. 3.11 and Eq. 3.13 is the second
order term −1

2
∂u
∂x

∂2u
∂x2 (∆x)2 which gives a diffusive or anti diffusive correction according to the

sign of ∂u/∂x. Kravchenko and Moin [3] proved that the skew-symmetric form leads to a
lower aliasing error and that the divergence form is less dissipative, which can drive to a non
conservation of energy.

3.3 The Jameson’s artificial dissipation

The centered scheme is unstable and must be used in combination with an artificial dissipation.
The artificial dissipation is a blending between second and fourth order dissipation terms. For
the Finite Volume discretization, the conservation is guaranteed by introducing the dissipation
term directly in the flux expression Fi+1/2 = Fi+1/2~n− di+1/2 with:

di+1/2 = ε
(2)
i+1/2(Wi+1 −Wi)− ε(4)

i+1/2(Wi+2 − 3Wi+1 + 3Wi −Wi−1) . (3.14)

The coefficients ε(2)
i+1/2 and ε

(4)
i+1/2 change the importance of the dissipation term according to

the physics. Both terms depend on the scale factor ri+1/2:{
ε

(2)
i+1/2 = k(2)ri+1/2νi+1/2

ε
(4)
i+1/2 = max(0, k(4)ri+1/2 − ε

(2)
i+1/2).

(3.15)

The factor ri+1/2 is computed from the spectral radius ri of the Jacobian matrix A = ∂F .~n/∂W
(estimated from the mean surface normal vector (~ni+1/2 + ~ni−1/2)/2) in the cell i according to
the following relations:

ri+1/2 =
ri + ri+1

2
. (3.16)

Finally, νi+1/2 from Eq. 3.15 is built with a normalized second order pressure sensor:

µi =
∣∣∣∣pi+1 − 2pi + pi−1

pi+1 + 2pi + pi−1

∣∣∣∣ and νi+1/2 = max(µi, µi+1) . (3.17)
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In fact, the term in ε(2) is generally a second order term but in regions of strong pressure
gradients, it becomes a first order term only. Near shocks, the term in ε(2) represents the
main dissipation contribution. However, this term does not remove completely numerical
oscillations and it stays waves on about 1% of the density which limits strongly the convergence
to the steady state. These waves are finally destroyed by the introduction of the fourth order
term which adds dissipation in the whole computational domain. However, this fourth order
dissipation term also makes oscillations appear near shocks and the fourth order dissipation
term must be destroyed in regions where ε(2) is high, which explains the form of Eq. 3.15.

For transonic RANS computations, classical choices are:

0.5 < k2 < 1 and 0.01 < k(4) < 0.03 ,

while for subsonic flows, the second order dissipation coefficient can be chosen equal to 0. For
incompressible flows, the choice of the coefficients k(2) and k(4) must be done carefully in order
not to avoid an introduction of a numerical dissipation at the same order as the natural fluid
dissipation issued from diffusion.

3.4 Default of the approach

The Jameson Schmidt Turkel’s scheme is defined as a pure centered scheme combined with
dissipation terms issued from mathematical analysis and physical considerations. Numerical
experiences have shown that the JST scheme is not sufficiently robust to treat strong shocks
(typically for a Mach number higher than 2) and there exists another class of schemes -upwind
schemes- which work better for such configurations. They are introduced in Chapter 4.
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Chapter 4

Upwind schemes for Euler equations

4.1 Introduction

All central space discretizations, Jameson Schmidt Turkel as an example, have a symmetry with
respect to a change in sign of the Jacobian eigenvalues, and physically speaking are not able
to distinguish between upstream and downstream influences. This means that the physical
propagation of perturbations along characteristics (hyperbolic behavior of the equations) is
not taken into account in central space discretizations. This lack of physics can be clearly
seen when discontinuities appear in the flow (shock waves, surface discontinuities...) under
the form of oscillations. For example, oscillations appear when using a central second order
scheme in vicinity of a shock wave, and thus artificial dissipation terms are added to stabilize
the solution. The objective of this chapter is to present the way to introduce physical behavior
in discretization schemes.

In this chapter, we consider the mono-dimensional Euler equation written in conservative
form:

∂U

∂t
+
∂F (U)
∂x

= 0 (4.1)

The initial solution U at t = 0 is supposed known and is denoted U(x, 0), ∀x ∈ [0, L]. The goal
is to find a numerical approximation of the solution U(x, t). Eq. 4.1 will be discretized with
a Finite Volume approach and to do that, [0, L] is divided into M finite volumes (segment in
this mono-dimensional case) defined by:

xi−1/2 ≤ x ≤ xi+1/2, (4.2)

The extreme values xi−1/2 and xi+1/2 of the cell Ii define the position of the inter-cell boundary
at which the corresponding interface numerical fluxes must be specified. We recall, namely,
that the finite volume discretization of Eq. 4.1, is expressed as:

∂Ûi
∂t

+
Fi+1/2 − Fi−1/2

xi+1/2 − xi−1/2
= 0 (4.3)

where

Ûi =
∫ xi+1/2

xi−1/2

Udx, (4.4)

represent the mean value on the cell i, and Fi+1/2 is the flux through the interface i + 1/2.
The numerical scheme is the discrete operator which defines the way to compute this flux.
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4.2 Flux Vector Splitting schemes

The first and easier way to introduce physical principle in the construction of numerical fluxes
is to take into accounts the sign of the characteristic wave. By using the characteristic decom-
position of Jacobian matrix as seen in 2.2.2, the Euler equations can be put in characteristic
form:

∂W

∂t
+ Λ

∂W

∂x
= 0, (4.5)

where W represents the characteristic variables defined by:

∂W = R−1∂U. (4.6)

Λ is a diagonal matrix, and the terms of the diagonal are the eigenvalues of the Jacobian. The
set of eigenvalues are split into two parts

Λ = Λ+ + Λ−, (4.7)

with the property that all values of Λ+ (resp. Λ−) are positive (resp. negative). Since F (U)
is a homogeneous function of degree one in U , one has:

F (U) = AU = RΛR−1U, (4.8)

and the following flux splitting can be defined:

F+ = A+U, F− = A−U with A+ = RΛ+R−1 and A− = RΛ−R−1. (4.9)

A general calculation for an arbitrary splitting is simply defined by

Λ± =

 λ±1 0 0
0 λ±2 0
0 0 λ±3

 (4.10)

with the eigenvalues λ1 = u− c, λ2 = u and λ3 = u+ c. A general expression for F can then
be found and it is written:

F± =
ρ

2γ

 2(γ − 1)λ±2 + λ±1 + λ±3
2(γ − 1)uλ±2 + λ±3 (u+ c) + λ±1 (u− c)
(γ − 1)u2λ±2 + λ±3

2 (u+ c)2 + λ±1
2 (u− c)2 + 3−γ

2(γ−1)c
2(λ±1 + λ±3 )

(4.11)

and finally:

Fi+1/2 = F+
i + F−i+1. (4.12)

In 1D, and with the notations which have been introduced, Eq. 4.12 means that the interface
flux at i+ 1/2 is the sum of the contribution from the cell i for waves going from left to right,
and from the cell i+ 1 for waves going from right to left.
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The decomposition Eq. 4.7 is not unique, and two forms will be given. The first one is due
to Steger and Warming [7] and is defined by:

λ+
k =

λk + |λk|
2

(4.13)

λ−k =
λk − |λk|

2
. (4.14)

The second one has been proposed by Steger in 1978 [6]:

λ+
2 =

u+ |u|
2

, λ−2 =
u− |u|

2
(4.15)

λ+
1 = λ+

2 , λ−1 = λ−2 − c (4.16)
λ+

3 = λ+
2 + c , λ−3 = λ−2 . (4.17)

When the velocity is sonic (u = ±c), λ±1 and λ±3 become 0 for the first decomposition, which is
not the case for the second one. This difference generates a discontinuity in an expansion flow

when the velocity reaches c. One can notice that the Jacobian ∂F+

∂U
6= A+ and the eigenvalues

of this Jacobian are different from those of A+. However, Steger and Warming reported that
∂F+

∂U
has just positive eigenvalues. This scheme could be interpreted as presented in Fig. 4.1,

with the direction of the information following the sign of f (positive or negative):

f−i

i− 1/2 i+ 1/2
ii− 1 i+ 1

f+
i−1 f+

i

f−i+1

Figure 4.1: direction of waves according to the sign of the Jacobian eigenvalues.

4.3 Schemes based on the Riemann’s solver

4.3.1 Basic first order scheme

The first step consists in introducing a piecewise constant approximation of the solution U(x, t).
More precisely, the function U(x, t) is assumed constant on each segment [xi−1/2, xi+1/2] and
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its (mean) value is Û(t). Since all flows have quantities which vary in space (and eventually
in time), it is not possible to represent a flow on each control volume by a unique value for
all conservative fields. Therefore, as presented in Fig. 4.2, there must exist a discontinuity
at each mesh interface. Finally, this discontinuity is solved with the solution of the so-called
Riemann problem and the solution of this problem gives a way to compute the numerical flux
at mesh interfaces.

i+ 1

u

x
i− 1/2 i+ 1/2

i

Figure 4.2: Example of a discontinuous (mean) solution on a mesh.

4.3.2 Riemann problem

The Riemann’s problem for the one-dimensional time-dependent Euler’s equation is the Initial
Value Problem (IVP) for the conservation law given by Eq. 4.1, with the following initial
condition:

U(x, 0) =
{
UL if x < 0,
UR if x > 0.

(4.18)

The domain of interest in the x − t plane are points (x, t) with −∞ < x < +∞ and t > 0.
Physically, the Riemann’s problem is a slight generalization of the so called shock-tube problem:
two motionless gases (uL = uR = 0) in a tube are separated by a diaphragm and the diaphragm
breaking generates a wave system that typically consists of a rarefaction wave, a contact
discontinuity and a shock wave1. Each wave generated at t = 0 is associated with one of the

1When the velocities are not zero, different wave associations could occur.

Page 24 of 49



three eigenvalues u − c, u, u + c. Note that the speeds of these waves are not, in general,
the characteristics speeds given by the eigenvalues. As an example, a shock wave result of the
focusing (the superimposition) of acoustic waves which propagate with the velocity equal to
u + c or u − c, but the speed of the resulting shock wave is completely different and depends
purely on the initial condition.

The Riemann’s problem could be exactly resolved and let RP (UL, UR) denote the solution
of the Riemann’s problem between the two states UL and UR. The Riemann’s problem solution
is self-similar, which means that if u(x, t) is a solution, then u(αx, αt) is also solution, whatever
α is. The concept of self-similar solution lies simply with the fact that the solution only depends
on x/t and is therefore constant on the half-lines which cross (0, 0) in (x− t) plane.

4.3.3 From the Riemann’s problem to numerical flux integration

The temporal integration of Eq. 4.3 could be done by several techniques such as simple back-
ward Euler or Runge Kutta. For all methods, a sub-step consists in computing the solution at
time t+∆t. ∆t represents either the time step or the sub-step time of a Runge Kutta method.
To simplify the purpose, only the backward Euler method is considered, and only the one-step
Runge Kutta explicit time integration is considered, and thus Eq. 4.3 becomes:

Ûn+1
i = Ûni −

∆t
xi+1/2 − xi−1/2

[
Fi+1/2 − Fi−1/2

]
. (4.19)

Ûni represents an approximation of mean value on cell Ii of the function U(x, tn) at time
tn = n∆t. In this case, do not forget that the fluxes at computed with the solution at time
n+ 1.

The only remaining problem is to determinate the numerical fluxes Fi+1/2. To do this,
Godunov proposed to evaluate an approximation of the state vector at temporal step n+ 1 by
using the two Riemann’s problem at interfaces i− 1/2 and i+ 1/2. He proposed that:

Ûn+1
i =

1
∆x

[∫ ∆x/2

0
RP (Ûi−1, Ûi)

( x

∆t

)
dx+

∫ 0

−∆x/2
RP (Ûi, Ûi+1)

( x

∆t

)
dx

]
(4.20)

where ∆x = xi+1/2 − xi−1/2.

This formulation is easy to understood for the linear convection equation:

∂u

∂t
+ au = 0 a > 0. (4.21)

The solution of the Riemann’s problem associated with Eq. 4.21 corresponds simply to a
translation of the discontinuity at speed a, as described in Fig. 4.3. Thus, with the notations
used before:

RP (ui−1, ui) =
{
uni−1 if x/t < a,
uni if x/t > a,

(4.22)

Likewise, the solution at interface i+ 1/2 is given by:

RP (ui, ui+1) =
{
uni if x/t < a,
uni+1 if x/t > a,

(4.23)
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a∆t displacement

u

x

i − 1/2 i + 1/2

i i + 1

Figure 4.3: Description of the evolution of the solution of the linear convection equation
Eq. 4.21.

The formulation Eq. 4.20 could be written as:

un+1
i =

1
∆x

[
a∆tuni−1 + (∆x− a∆t)uni

]
, (4.24)

which is equivalent to:

un+1
i = uni − a

∆t
∆x

(
uni − uni−1

)
. (4.25)

The first order upwind scheme could be recognized, and the CFL restriction expresses simply
that the discontinuity which is localized at interface i− 1/2 at time tn does not leave the cell
Ii during ∆t, which reads:

a∆t < ∆x. (4.26)

To obtain the formulation in term of numerical fluxes, we use the following property of con-
servation law:∫ x2

x1

U(x, t2)dx =
∫ x2

x1

U(x, t1)dx+
∫ t2

t1

F (U(x1, t))dt−
∫ t2

t1

F (U(x2, t))dt (4.27)

for any control volume [x1, x2] · [t1, t2]. This relation results from the integration of Eq. 4.1
over the volume [x1, x2] · [t1, t2]. If Ũ(x, t) represents the superimposition of RP (Ûi−1, Ûi) and
RP (Ûi, Ûi+1), the Godunov’s formula reduces to:

Ûn+1
i =

1
∆x

[∫ xi+1/2

xi−1/2

Ũ(x, tn+1)dx

]
. (4.28)
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By using Eq. 4.27 in which x1 = xi−1/2, x2 = xi+1/2, t1 = tn and t2 = tn+1, it comes:

Ûn+1
i = Ûni +

∫ ∆t

0
F
[
RP (Ûi−1, Ûi)(xi−1/2, t)

]
dt−

∫ ∆t

0
F
[
RP (Ûi, Ûi+1)(xi+1/2, t)

]
dt (4.29)

Note that RP (Ûi, Ûi+1)(xi+1/2, t) corresponds to the time evolution at interface xi+1/2 of the
Riemann’s problem solution RP (Ûi, Ûi+1) which is centered around xi+1/2, and thus corre-
sponds to the solution along the ray x/t = 0 and so:

RP (Ûi, Ûi+1)(xi+1/2, t) = RP (Ûi, Ûi+1)(0). (4.30)

Finally, we obtain the following formulation for the numerical flux:

Fi+1/2 = F
[
RP (Ûi, Ûi+1)(0)

]
, (4.31)

which is called the Godunov’s scheme.

4.3.4 The Godunov’s scheme for a scalar equation

For the scalar nonlinear equation coupled with the following initial conditions:

∂u

∂t
+
∂f(u)
∂x

= 0, with u(x, 0) =
{
uL if x < 0
uR if x > 0,

(4.32)

the Godunov’s scheme is:

f1/2 =

 min
uL<u<uR

f(u) if uL < uR

max
uR<u<uL

f(u) else
(4.33)

For the Burgers’ equation in which the function takes the nonlinear expression f(u) = u2/2,
one can prove that:

f1/2 = max
[

1
2

(u−R)2,
1
2

(u+
L )2

]
(4.34)

where u+ = max(u, 0) and u− = min(u, 0).

4.4 Approximate Riemann solver

The method of Godunov is very attractive because it enables the computation of numerical
fluxes according to the properties of the Euler equations. The Godunov’s scheme is based on
exact solutions of the Euler’s equations, but a major drawback lies in the requirement of the
Riemann’s problem solution at each control volume interface. Finally, the method is CPU time
consuming and many simplified version have been published in the literature with the goal to
diminish the CPU time for solving the Riemann’s problem. In practice, all methods are based
on simplifications of the Riemann’s problem obtained by modifying the waves system in the
Riemann’s solver, leading to a two shock waves scheme or a two rarefaction waves scheme. An
approximation of RP (UL, U,R) is find and thus the Godunov’s scheme is used to compute the
numerical fluxes.

The most famous approximated Riemann’s solver is the Roe’s scheme, a Riemann’s solver
for linear system of equations.
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4.4.1 Roe scheme

The principle is to approximate the nonlinear conservative law by a linearized form. Introduc-
ing the Jacobian matrix A = ∂F

∂U
, and using the derivative rule2, the conservation laws

∂U

∂t
+
∂F (U)
∂x

= 0

is transformed in:

∂U

∂t
+A(U)

∂U

∂x
= 0. (4.35)

Roe [5] replaced the Jacobian matrix A(U) by a constant matrix:

Ã = Ã(UL, UR), (4.36)

which is a function of the data states UL, UR. The original Riemann’s problem is then replaced
by the following approximated Riemann’s problem:

∂U
∂t

+ Ã
∂U

∂x
= 0

U(x, 0) =
{
UL if x < 0
UR if x > 0.

(4.37)

Eq. 4.37 is then solved exactly. The Roe’s Jacobian matrix Ã is required to satisfy:

• Ã(UL, UR)(UR − UL) = F (UR)− F (UL) for conservation,

• Ã must be diagonalizable, with real eigenvalues,

• Ã(U,U) = A(U) where A is the Jacobian matrix of F with respect to U : A = ∂F/∂U .

One can prove that the Roe’s matrix Ã is identical to the matrix A(Ũ) where the mean state
Ũ is called the Roe’s average and is defined by:

a =
√
ρR
ρL
, ρ̃ = aρL

ũ =
uL + auR

1 + a
, H̃ =

HL + aHR

1 + a

with u velocity component and H total enthalpy.

The Riemann’s problem for a system of linear equations must now be solved. The jump
between the states vectors UR and UL is projected onto the right hand-sided eigenvectors:

∆U = UR − UL =
3∑
l=1

αlRl (4.38)

2Another technique is presented in [1] and it seems better written but does not correspond to the classical
approach proposed in the litterature.
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where Rl represents the lth column of matrix R, and α = R−1∆U is the vector of characteristic
waves strengths. The solution of the linearized Riemann’s problem evaluated along the t−axis
(x/t = 0) is given by:

LRP (UL, UR)(0) = UL +
∑
λl≤0

αlRl = UR −
∑
λl≥0

αlRl (4.39)

Using directly Eq. 4.31, it follows that (F1/2 represents the flux at interface between the two
states UL and UR):

F1/2 = ÃUL +
∑
λl≤0

αlλlRl = ÃUR +
∑
λl≥0

αlλlRl (4.40)

To find a numerical flux formulation, the process is the same as for the Godunov’s scheme:
an integration over the two domains [−M, 0] · [0,∆t] and [0,M ] · [0,∆t] leads to the following
relations:

∆tFL1/2 = ∆tFL −MUL −
∫ 0

−M
LRP (UL, UR)(x,∆t)dt (4.41)

∆tFR1/2 = ∆tFR −MUR +
∫ M

0
LRP (UL, UR)(x,∆t)dt (4.42)

where:

• LRP (UL, UR) represents the linearized Riemann problem’s solution,

• FL1/2 and FR1/2 are respectively the fluxes at x = 0 for the left hand sides x → 0− (resp.
right hand side x→ 0+) of the interface.

If one considers the difference FR1/2 − F
L
1/2, it comes:

FR1/2 − F
L
1/2 = ∆t(FR − FL)−M(UL − UR) +

∫ M

−M
LRP (UL, UR)(x,∆t)dt (4.43)

For the (exact) solution of the exact Riemann’s problem in the Euler’s equations context, the
right hand side of Eq. 4.43 would be 0. In the present linearized approximation, a solution of the
linearized Euler’s equations LRP (UL, UR) is not a solution of the nonlinear initial equations.
Remembering the first property of the Roe’s matrix Ã, one has FR − FL = Ã(UR − UL), and
so Eq. 4.43 becomes:

FR1/2 − F
L
1/2 = ∆t(ÃUR − ÃUL)−M(UL − UR) +

∫ M

−M
LRP (UL, UR)(x,∆t), (4.44)

and corresponds to the integration over the domain [−M,M ] · [0,∆t] of the linearized conser-
vation equation 4.37, and we can conclude that FR1/2 − F

L
1/2 = 0.

Let us consider now the integration over the domain [−M, 0] · [0,∆t] of the linearized
equations, it comes:∫ 0

−M
LRP (UL, UR)(x,∆t)dt = ∆t

(
ÃUL − Ã[LRP (UL, UR)(0)]

)
−MUL. (4.45)
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Using the expression of [LRP (UL, UR)(0)], we have:∫ 0

−M
LRP (UL, UR)(x,∆t)dt = −∆t

∑
λl≤0

αlλlRl −MUL (4.46)

The first term is then expressed by using Eq. 4.42 and thus, we obtain:

∆tFL −MUL −∆tFL1/2 = −∆t
∑
λl≤0

αlλlRl −MUL (4.47)

which finally gives the expression of the Roe’s flux:

F1/2 = FL +
∑
λl≤0

αlRl = FR −
∑
λl≥0

αlλlRl (4.48)

or:

F1/2 =
1
2

(FL + FR)− 1
2

3∑
i=1

αl|λl|Rl. (4.49)

The first term corresponds to a second order centered flux and the second term is an amount
of upwinding.

4.4.2 Entropy correction

What is the problem

The goal of this section is to introduce the most important drawback of the Roe’s scheme,
namely:

The solution may not respect the second thermodynamics principle.

First, let’s consider the model problem defined by Burgers’ equation:

∂u

∂t
+
∂f(u)
∂x

= 0 with f(u) =
u2

2
. (4.50)

Following the Roe’s scheme, let’s introduce the Jacobian matrix; it corresponds simply to the
derivative f ′(u) = u and as a consequence, the first property of the Roe’s linearization looks
like:

f(uR)− f(uL) = ã(uR − uL) (4.51)

which gives:

ã =


f(uR)− f(uL)

uR − uL
if uL 6= uR

f ′(u) else

(4.52)

For Burgers’ equation, the Roe’s flux is given by:

F1/2 =

{
u2
R/2 if ã ≤ 0

u2
L/2 if ã ≥ 0

and ã =
uL + uR

2
(4.53)
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Let’s assume the initial condition to be:

u(x) =
{
−1 if x ≤ 0
+1 else,

(4.54)

which numerically produces an expansion shock. The existence of expansion shocks is a vio-
lation of the second law of thermodynamics, since it implies entropy reduction. If we observe
the evolution of ã(x), we have:

ã(x) =


−1 if x < 0
0 if x = 0
+1 if x > 0

(4.55)

and so the upwinding term is equal to zero at the discontinuity. For the Godunov’s scheme,
the numerical flux is given by using Eq. 4.34:

f1/2 =


1/2 if x < 0
0 if x = 0
1/2 if x > 0

(4.56)

This expression show that the function u(x) will evolve during time, and so the expansion
shock will disappear.

How to cure the Roe’s scheme

Consider the numerical Roe’s flux:

F1/2 =
1
2

(FL + FR)− 1
2

3∑
i=1

αl|λl|Rl, (4.57)

one can observe that the upwinding term is zero if one of the eigenvalues is zero, and Harten
proposed to replace the absolute value by a special function called the Harten-function defined
by:

Ψ(λ) =


1
2

(
λ2 + δ2

δ

)
if |λ| < δ

|λ| else,

(4.58)

and presented in Fig. 4.4. δ is called the Harten’s parameter, and is chosen by the user. Many
formulations exist for this parameter:

• δ could be constant and chosen classically between 0.1 and 0.25 or,

• δ could depend on the spectral radius δ = δ1(|u|+c) and δ1 is an user-specified parameter.
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δ

Ψ(λ)

λ

δ

Figure 4.4: Representation of the Harten’s function.
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4.5 Second order schemes

The Steger-Warming’s or Roe’s schemes are simple to implement and have good properties,
but their accuracy isn’t sufficient for most of practical applications. This is due to their low
level of precision (order 1). Thus, it is mandatory to introduce second order accuracy in these
schemes, but the modifications to increase accuracy must be carefully done otherwise, oscilla-
tions could appear near discontinuities such as shock waves or contact discontinuity.

In the present section, we introduce a second order accurate scheme, and then we introduce
some important properties such as total variation diminishing or maximum principle.

4.5.1 Variable extrapolation or MUSCL approach

MUSCL means Monotone Upstream-centered Schemes for Conservation Laws and this proce-
dure has been proposed by Van Leer in 1979 [4]. Approximating an unknown by a piecewise
constant function on a mesh is equivalent to a first-order spatial discretization. The objective
of the MUSCL approach is to propose a linear approximation of the solution on each cell,
which corresponds to a second order space discretization. As seen in the previous sections, the
finite volume discretization could be written as:

Ûn+1
i = Ûni −

∆t
∆x

(Fi+1/2 − Fi−1/2). (4.59)

If ULi+1/2 and URi+1/2 represent respectively the left and right values at the mesh interface i+1/2,
a first order scheme is obtained by taking simply ULi+1/2 = Ui and URi+1/2 = Ui+1.

As ever explained, a second order accurate scheme is obtained with the proposed numerical
schemes simply by replacing the zeroth order extrapolation at the mesh interface by a linear
extrapolation. There are several ways to build this first order extrapolation and as an example,
two formulations are presented below:

• Decentered formulation(I) This case is show on Fig. 4.5.

ULi+1/2 = Ui +
1
2

(Ui − Ui−1) (4.60)

URi+1/2 = Ui+1 −
1
2

(Ui+2 − Ui+1) (4.61)

• Centered formulation(II) This case is show on Fig. 4.6.

ULi+1/2 = Ui +
1
2

(Ui+1 − Ui) (4.62)

URi+1/2 = Ui+1 −
1
2

(Ui+1 − Ui) (4.63)

These two formulations are generally combined into a single one by introducing a weight
parameter called precision parameter and denoted φ:

ULi+1/2 =
1− φ

2

(
ULi+1/2

)(I)
+

1 + φ

2

(
ULi+1/2

)(II)
(4.64)

with −1 ≤ φ ≤ +1. Some choices for φ lead to special schemes:
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ii− 1 i + 1 i + 2i + 1/2

Figure 4.5: Description of the first order extrapolation for the decentered formulation.

ii− 1 i + 1 i + 2i + 1/2

Figure 4.6: Description of the first order extrapolation for the centered formulation.
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• φ = −1: decentered scheme,

• φ = +1: centered scheme,

• φ = 1/3: third order scheme, as it could be proved by Taylor expansion arguments.

The reconstruction procedure can be applied on conservative, primitive or characteristic vari-
ables. Since the relations between these variables are not linear, the choice is not irrelevant.
Our experiments for supersonic or hypersonic applications enable us to conclude that the use
of characteristic variables leads to the most robust but expensive scheme, and to decrease the
numerical cost, primitive variables are preferred.

This simple procedure to obtain a second order of accuracy is unfortunately not robust
since oscillations could occur; as it can be seen on Fig. 4.7, which presents the evolution of
the solution between tn and tn+1 for a simple linear convection:

∂u

∂t
+ a

∂u

∂x
= 0. (4.65)

translation a∆t

un
i

un
i+1

U

x

un+1
i

un
i−1

un+1
i−1

Figure 4.7: Creation of numerical oscillations for the linear convection.

At time t = tn, the solution u is discretized by a piecewise function (in green) and ui ≤
ui+1. The linear reconstruction procedure leads to the function represented in blue, which is
convected at velocity a to obtain the purple function. This function is afterwards averaged,
and a new constant piecewise approximation is obtained (in red) at time t = tn+1. At this
time, ui ≥ ui+1: an oscillation appeared. A way of circumvent this mechanism will be proposed
later by introducing slope limiters in the linear reconstruction process.
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4.5.2 Flux extrapolation or non-MUSCL approach

In the last section, the state variables were extrapolated to cell interfaces and after the extrap-
olated values were used to compute the numerical fluxes. Since the flux function is in general
nonlinear in term of state vector, another non equivalent approach could be proposed: the flux
in the cells are directly extrapolated to the boundaries, defining an interface flux.

The flux extrapolation is firstly proposed for flux vector splitting and secondly for Riemann
based schemes. For the positive flux, a backward extrapolation is retained, and for the negative
part, a forward extrapolation is used:

F+
i+1/2 = F+

i +
1
4
[
(1− φ)(F+

i − F
+
i−1) + (1 + φ)(F+

i+1 − F
+
i )
]

(4.66)

F−i+1/2 = F−i+1 −
1
4
[
(1− φ)(F−i+2 − F

−
i+1) + (1 + φ)(F−i+1 − F

−
i )
]

(4.67)

A second order numerical flux is obtained by:

F 2ord
i+1/2 = F−1+1/2 + F+

i+1/2. (4.68)

For the Steger-Warming scheme, the computation of negative and positive parts of fluxes is
clear; but for the Riemann’s solver based schemes, these quantities must be determinate. If
we use the Roe’s scheme Eq. 4.48, the two quantities df− and df+ defined by:

df−i+1/2 = F ∗i+1/2 − Fi =
∑
λl≤0

αlRl (4.69)

df+
i+1/2 = Fi+1 − F ∗i+1/2 =

∑
λl≥0

αlλlRl, (4.70)

correspond to waves which propagate respectively backward for df− and forward for df+.
F ∗i+1/2 represents the Roe’s numerical flux at interface i + 1/2. Thus, the following relations
could be assumed:

F+
i − F

+
i−1 = df+

i−1/2, F
−
i+1 − F

−
i = df−i+1/2 and F+

i + F−i+1 = F ∗i+1/2 (4.71)

Finally, Eq. 4.67 becomes for the Roe’s scheme:

F 2ord
i+1/2 = F ∗i+1/2 +

1
4

[
(1− φ)(Fi − F ∗i−1/2) + (1 + φ)(Fi+1 − F ∗i+1/2

]
(4.72)

+
1
4

[
(1− φ)(Fi+1 − F ∗i+3/2) + (1 + φ)(Fi − F ∗i+1/2

]
(4.73)

4.5.3 Total Variation Diminishing (TVD)

This concept of Total Variation bounded or decreasing is based on a property of the scalar

conservation law. For
∂u

∂t
+
∂f(u)
∂x

= 0, the total variation defined by

TV (u) =
∫ ∣∣∣∣∂u∂x

∣∣∣∣ dx (4.74)

does not increase in time (Lax 1973). The discretized formulation of TV (u) is given by:

TV (u) =
∑
i

|ui+1 − ui|. (4.75)
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A numerical scheme is said to be Total Variation Diminishing if TV (un+1) < TV (un) ∀n.
A scheme is said to be Monotonicity Preserving if:

• no new local extrema in space can be created,

• the value of a local minimum (resp. maximum) is not decreasing (resp. not increasing).

One can prove that TVD schemes are Monotonicity Preserving. The principal interest of
the TVD property in comparison with monotonicity lies in the fact that it is easier to impose
TVD conditions to a scheme than Monotonicity Preserving.

In order to derive a TVD second order scheme, the scheme is rewritten under an increment
form and let us introduce the following difference δui+1/2 = ui+1 − ui. The semi-discretized
equation:

∂ui
∂t

= − 1
∆x

(f∗i+1/2 − f
∗
i−1/2) (4.76)

where f∗i+1/2 = f∗(ui, ui+1) is the numerical flux, is written as:

∂ui
∂t

= − 1
∆x

(C−i+1/2δui+1/2 − C+
i−1/2δui−1/2). (4.77)

More precisely, we have:

C−i+1/2δui+1/2 = f∗i+1/2 − fi and C+
i−1/2δui−1/2 = fi − f∗i−1/2 (4.78)

which is the contribution from waves with negative, respectively positive, wave speeds. Harten
showed that the scheme given by Eq. 4.77 is TVD if and only if:

C+
i+1/2 ≥ 0 , C−i+1/2 ≤ 0 and 0 ≤ ∆t

∆x
(C−i+1/2 − C

+
i−1/2) ≤ 1 (4.79)

This theorem will be used to construct high order TVD scheme based on flux or variable
reconstructions.

4.5.4 Flux reconstruction method: TVD scheme

To build a TVD scheme, we start for example from the expression of the second order flux
(Eq. 4.73), we consider the case Φ = −1, and we introduce the following flux difference ratios:

r+
i+1/2 =

fi+2 − f∗i+3/2

fi+1 − f∗i+1/2

r−i+1/2 =
fi−1 − f∗i−1/2

fi − f∗i+1/2

(4.80)

with these notations, a scalar evolution equation becomes:

∂ui
∂t

+
1

∆x

[
1 +

1
2

Ψ(r+
i−1/2)− 1

2

Ψ(r+
i−3/2)

r+
i−3/2

]
(fi − f∗i−1/2)

+
1

∆x

[
1 +

1
2

Ψ(r−i+1/2)− 1
2

Ψ(r−i+3/2)

r−i+3/2

]
(f∗i+1/2 − fi) (4.81)
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By using the first two TVD conditions Eq. 4.79, we obtain:

1 +
1
2

Ψ(r+
i−1/2)− 1

2

Ψ(r+
i−3/2)

r+
i−3/2

≥ 0 (4.82)

1 +
1
2

Ψ(r−i+1/2)− 1
2

Ψ(r−i+3/2)

r−i+3/2

≥ 0 (4.83)

These two relations are equivalent to:

Ψ(r)
r
−Ψ(s) ≤ 2 ∀r, s (4.84)

and thus

0 ≤ Ψ(r) ≤ min(2r, 2) (4.85)

Two other limits could be obtain by studying linear convection equation with Lax-Wendroff
or Beam-Warming3 schemes and lead to the TVD region shown in Fig. 4.8.

Ψ(r)

r

21

1

2

Ψ(r) = 1

Ψ(r) = 2r
Ψ(r) = r

TVD region

over compressive region

Figure 4.8: Definition of the TVD region.

For example, Sweby [8] showed that for a limiter whose graph lies in the so-called ”over
compressive region”, the corresponding scheme transforms a sinusoidal wave into a square
wave.

The third condition Eq. 4.79 corresponds to a CFL condition and consists in a limit of time
step for robustness.

3These schemes are out of purpose of this lesson but the reader is encouraged to learn about these schemes
by looking for papers on the web.
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4.5.5 Variable reconstruction method: TVD scheme

Let’s begin by a definition: A scheme

un+1
i = H(uni−r+1, ..., u

n
i+s) (4.86)

with r and s two non negative integers, is said monotone if ∂H
∂unj

≥ 0 ∀j, which is equivalent

to say that H is a non decreasing function of each of its arguments.

Remark 4.5.1. Any Riemann’s solver is a monotone scheme.

The following theorem will give the basis used to build variable-reconstruction-based TVD
high order schemes:

Theorem 4.5.2. If the extrapolated values uLi+1/2, u
R
i+1/2 satisfy:{

min(ui−1, ui) ≤ uL ≤ max(ui−1, ui) ∀i
min(ui+1, ui) ≤ uR ≤ max(ui+1, ui) ∀i

(4.87)

then any monotone scheme of the form:

vn+1
i =

1∑
k=−1

bkv
n
i+k (4.88)

applied to uL and uR is TVD.

The monotone property is the discrete version of the following property of the exact solution
of conservation law:

Lemma 4.5.3. If two initial functions u0(x) and v0(x) satisfy v0(x) ≥ u0(x)∀x, then their
corresponding solutions v(x, t) and u(x, t) satisfy v(x, t) ≥ u(x, t) ∀t > 0

One can prove that all Riemann solvers are monotone schemes and finally, building a TVD
scheme based on a monotone scheme and a variable reconstruction technique needs simply to
verify the two inequalities 4.87.

The limited version of the variable reconstruction procedure given by Eq. 4.89 is:

uLi+1/2 = ui +
1
4

[(1− φ)minmod(r, b) + (1 + φ)minmod(1, br)] (ui − ui−1) (4.89)

and
r =

(ui+1 − ui)
(ui − ui−1)

.

One can prove that the following reconstruction procedure respect the inequalities 4.87 if:

1 ≤ b ≤ 3− φ
1− φ

(4.90)

b is called the compression parameter since with larger values of b, the limiting procedure is
less efficient and the scheme becomes too compressive.
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4.6 Extension to 2-D Euler flows

All methods seen in previous sections are devoted to one dimensional conservation law, and we
show now how these previous schemes could be used to discretized two- (or multi-) dimensional
conservation law.

Consider the following two dimensional Euler equations:

∂Û

∂t
+
∂F (U)
∂x

+
∂G(U)
∂y

= 0. (4.91)

The discretization of these equations is based on a Finite-Volume approach. In the future,
the grid is assumed to be a Cartesian mesh with the mesh lines aligned with the coordinates
directions x and y. An explicit finite volume scheme reads:

∂Û

∂t
+

1
∆x

(
Fi+1/2,j − Fi−1/2,j

)
+

1
∆y

(
Gi,j+1/2 −Gi,j−1/2

)
= 0 (4.92)

The problem consists now on finding an expression for the numerical interface fluxes and this
will be done by using independently for each interface a one dimensional scheme: this proce-
dure is called dimensional splitting. This approximation is made in all finite volume solvers,
because it is nearly impossible to solve a two dimensional Riemann problem.

Another question comes from the fact that the flux function F contains a supplementary
component relative to the transversal velocity:

F (U) = (ρu, ρu2 + p, ρv︸︷︷︸
transversal term

, ρuH)T (4.93)

One can easy show that the Jacobian matrix A = ∂F
∂U

has the latest three eigenvalues (the
ones in the 1D approximation) plus one eigenvalue equal to u for the y-component of the ve-
locity. In other words, the characteristic wave associated to this new component is a contact
discontinuity (or a shear wave) and the Riemann’s problem solution consists finally in a four
waves system: the three waves associated with u+ c, u− c and u and a supplementary shear
wave associated with u.

The last question concerns what happens when the mesh is not Cartesian, and the cell (in
2D) is a quadrilateral finite volume (we limit our course to quadrangle-based meshes which are
considered structured). The two dimensional conservation equation is discretized by a finite
volumes methods as:

Vi,j
∂Û

∂t
+
(
F̂
)
i+ 1

2
,j
−
(
F̂
)
i− 1

2
,j

+
(
Ĝ
)
i,j+ 1

2

−
(
Ĝ
)
i,j− 1

2

= 0, (4.94)

The classical notations are adopted (Fig. 4.9). Vi,j is the volume of the cell indexed by (i, j).

(
F̂
)
i+ 1

2
,j

=
[
F
G

]
· ~Si+ 1

2
,j , (4.95)
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node (i,j)

Si,j+1/2

Si,j−1/2

Si+1/2,jSi−1/2,j

Figure 4.9: Representation of the volume and normal vectors for the Finite Volume integration.

where F and G are the convection Cartesian fluxes in direction x and y, and ~S is the surface
vector:

~Si+ 1
2
,j =

[
s1

s2

]
et ~Si,j+ 1

2
=
[
s3

s4

]
, (4.96)

thus, we have:(
F̂
)
i+ 1

2
,j

= s1(F )i+ 1
2
,j + s2(G)i,j+ 1

2
. (4.97)

In the two dimensional context, the cell is also defined by four straight segments. We
consider only two-order accurate schemes (associated with a metric computed at a second
order of accuracy), and effects of cells curvature would not be taken into account4.

If ns denotes the unit vector normal to the face indexed by s, we have ns = (cos(θs), sin(θs)).
The total flux balance in Eq. 4.94 could be written as:

4∑
s=1

`s [cos(θs)F (U) + sin(θs)G(U)] (4.98)

where `s is the length of the line indexed by s. If we use the rotational invariance of the Euler
equations, we have:

cos(θs)F (U) + sin(θs)G(U) = T−1
s F (TsU) (4.99)

where Ts is the rotation matrix associated with the θs and T−1
s is its inverse, namely:

T (θ) =


1 0 0 0
0 cos(θ) sin(θ) 0
0 −sin(θ) cos(θ) 0
0 0 0 1

 (4.100)

4For most of the novel high order convection schemes, curvature effects must be taken into account since
the precision of these schemes depends also on the precision of the discretization and therefore on the metric
considered in the computations.
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Now if we consider the rotated state vector TsU , its second component corresponds to the
velocity aligned with the normal vector to the face ns, and the third component is the tangential
velocity. Thus, we have a strictly one-dimensional problem for this rotated state vector, and
we can use the flux formulations presented earlier.

4.7 Time integration methods

In most of the previous sections, the time derivative was left in its continuous form and was
not discretized. To solve an Ordinary Differential Equation, many numerical techniques are
available, for example Runge Kutta, Predictor-Corrector, or the simplest one called Backward

Euler, which is first order in time. To solve the ODE
du

dt
= f(u, t), the Backward Euler

approach reads:

u(t+ dt)− u(t)
dt

= f(u, t) or un+1 = un + f(un, tn)dt . (4.101)

With a Taylor expansion in time, one can prove that this scheme is first order accurate, and
by increasing the degree of the polynomial approximation in Eq. 4.101, one can build a more
accurate discretization of the so called BDF schemes family. The scheme given by Eq. 4.101 is
said explicit since when the state vector is known at time n, we can compute directly the state
vector at time n+ 1.

When using the explicit time integration Eq. 4.101, the associated time step must be very
small for robustness reason: the Courant Friedich Lewy coefficient which links time and space
steps must be lower than 1 and in practice is of order 0.5. To use larger time step, an implicit
time integration scheme is needed:

un+1 = un + f(un+1, tn+1)dt. (4.102)

In this case, the state vector values at time n+ 1 is obtained by solving the nonlinear equation
Eq. 4.102, which reads:

g(x) = un + f(x, tn+1)− x = 0. (4.103)

Eq. 4.103 is solved with the Newton method which is an iterative approach, written as follows
for a scalar equation:

xν+1 = xν − f(xν)
f ′(xν)

, (4.104)

or as follows for a nonlinear system:

f ′(xν)[xν+1 − xν ] = f(xν). (4.105)

There exist more sophisticated Newton methods which make use of the second order (time)
derivative of f but they are not use in the context of implicit time integration method.

Actually, a step of the iterative Newton method leads to the resolution of a linear system,
which dimensions are equal to the number of cells, and so could be very large. In practice, a
global resolution is prohibited for industrial applications. To simplify the resolution, we must
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take into account the graph of the f ′ matrix (the Jacobian of f): this matrix has many element
equal to zero.

In the following, we denote f(i, j) the flux balance of Eq. 4.92. By using discretization
scheme, this flux balance depends on many points:

f(i, j) = fonct [U(i− l, j − k), U(i− l + 1, j − k), ..., U(i, j), ..., U(i+ l, j + k)] (4.106)

For a first order scheme, k = l = 1 (three points scheme) and k = l = 2 for a second order ones.
Using this notation, the Jacobian f ′ of the flux balance in Eq. 4.105 is calculated by taking
the partial derivative of f (Eq.4.106) by each state vector such as U(i− l + l1, j − k + k1) for
(l1, k1) ∈ [0, 2l]∗ [0, 2k]. Finally, the iteration ν of the Newton’s procedure could be written as:(

Vi,j
∆t

)
∆Ui,j +

(
∂f(i, j)
∂Ui−l,j−k

)
∆Ui−l,j−k +

(
∂f(i, j)

∂Ui−l+1,j−k

)
∆Ui−l+1,j−k + ....

+
(
∂f(i, j)
∂Ui,j

)
∆Ui,j +

(
∂f(i, j)
∂Ui+l,j+k

)
∆Ui+l,j+k = −f(i, j) (4.107)

where:

∆Ui,j =
(
Uν+1
i,j − U

ν
i,j

)
(4.108)

and we recall that the notation f(i, j) correspond to the flux balance through the cell
indexed by (i, j) calculated with the state vector Uν .

We have now to compute all terms of the Jacobian matrix, or more exactly an approxima-
tion of them. To give an example, we consider the case when the Roe’s scheme is used. Firstly,
the Eq. 4.49 could be written in a more compact form:

Fi+1/2,j =
1
2

(Fi+1,j + Fi,j)−
1
2
|A|i+1/2,j(Ui+1,j − Ui,j) (4.109)

where:

|A| = RΨH |Λ|R−1 (4.110)

ΨH is the Harten function and R (resp. R−1) are the matrix of the right (resp. left) eigenvec-
tors. For witting this final form, we consider the most general case of a two-dimensionnal non
Cartesian grid, and so the finite volume discretization is given by Eq. 4.94. We recall that:(

F̂
)
i+1/2,j

= Fi+1/2,j
~Si+1/2,j · ~x+Gi,j+1/2

~Si+1/2,j · ~y, (4.111)

with ~x = (1, 0) and ~y = (0, 1). For the Jacobian matrix, we have:

∂
(
F̂
)
i+1/2,j

∂U
=
∂Fi+1/2,j

∂U
~Si+1/2,j · ~x+

∂Gi,j+1/2

∂U
~Si+1/2,j · ~y (4.112)

We adopt the following notations:

A(Ui,j , Si+1/2,j) =
∂F

∂U
(Ui,j)~Si+1/2,j · ~x+

∂G

∂U
~Si+1/2,j · ~y (4.113)

Page 43 of 49



Remember that Roe replaced the Jacobian matrix by a constant matrix which does not depend
on the state vector and therefore:

∂F̂i+1/2,j

∂Ui,j
=

1
2
A(Ui,j , Si+1/2,j) +

1
2
|A|i+1/2,j (4.114)

and

∂Fi+1/2,j

∂Ui+1,j
=

1
2
A(Ui+1,j , Si+1/2,j)−

1
2
|A|i+1/2,j (4.115)

Finally, the implicit linear system could be given for the node (i, j) by:

(Λ0)i,j∆Ui,j+(Λ1)i,j∆Ui+1,j+(Λ2)i,j∆Ui−1,j+(Λ3)i,j∆Ui,j+1+(Λ4)i,j∆Ui,j−1 = −fi,j (4.116)

with:

(Λ0)i,j =
Vi,j
∆t

+
1
2

(
A(Ui,j , Si+1/2,j) +

1
2
|A|i+1/2,j

)
(4.117)

− 1
2

(
A(Ui,j , Si−1/2,j)−

1
2
|A|i−1/2,j

)
(4.118)

+
1
2

(
A(Ui,j , Si,j+1/2) +

1
2
|A|i,j+1/2

)
(4.119)

− 1
2

(
A(Ui,j , Si,j−1/2)− 1

2
|A|i,j−1/2

)
(4.120)

and:

(Λ1)i,j =
1
2
A(Ui+1,j , Si+1/2,j)−

1
2
|A|i+1/2,j (4.121)

(Λ2)i,j =
1
2
A(Ui−1,j , Si−1/2,j) +

1
2
|A|i−1/2,j (4.122)

(Λ3)i,j =
1
2
A(Ui,j+1, Si,j+1/2)− 1

2
|A|i,j+1/2 (4.123)

(Λ4)i,j =
1
2
A(Ui,j−1, Si,j−1/2) +

1
2
|A|i,j−1/2 (4.124)

Note that (Λl)i,j is a matrix of dimension 4× 4.

To solve this block pentadiagonal system, several methods are available and we adopt here
the so-called DDADI method (Diagonally Dominant Alternate Direction Iterative method).
This method is based on an approximate factorization of the previous linear system. If X is
the vector whose components are the ∆Ui,j , the previous system could be written as:

(D +N +M)X = Rhs, (4.125)

where D is the block diagonal matrix with (Λ0)i,j on the diagonal, N is a two off-diagonal
matrix with (Λ1)i,j on the first upper diagonal and (Λ2)i,j on the first lower diagonal. N
contains only influence in i direction and M in j direction. The factorization could be written
as:

(D +N)D−1(D +M)X = Rhs, (4.126)
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which means in fact that the resolution needs the inversion of two tridiagonal systems solved
efficiently by the Thomas’ algorithm. In practice, for pseudo-unstationary problems, just one
Newton iteration is performed and for unstationary problems, it depends on the ratio between
the numerical time steps and the characteristic time for the evolution of the physical problem.
For example, if the physical problem is driven by low frequency phenomenon, the numerical
time step would be very small in regard to this physics and one Newton iteration will be
enough. For LES computations, where the physical time steps are very small, the Newton
procedure must be continued until convergence.
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Chapter 5

Conclusion

This course is designed as an introduction to CFD with respect to the choice of the scheme to
discretize convection. After the presentation of all necessary notations / notions for numerical
schemes, centered schemes have been quickly introduced. Our aim was to go further in the
development and to treat with details the upwind convection schemes. This choice is motivated
by physics rather than by mathematical arguments.

Finally, the last chapter concerns the discretization with classical upwind schemes and a link
is done with the multi-dimension Riemann problem and with the time integration procedure.
This was to understand that the time integration efficiency (in implicit in particular) is driven
by the numerical stencil used for the spatial approximation. Such an approach is used also by
the third order scheme implemented in AVBP for which the Taylor approximation treats time
and spatial derivatives at the same time (TTGC scheme). Of course, for sake of clarity, the
TTGC scheme has not been introduced in this document.

In the past, the Riemann solver-based schemes were chosen for their robustness property
for industrial application. Extended to second order accuracy, they are the most used schemes
in CFD. Nowadays, with the increase of computer efficiency, more accurate computations are
available even on complex geometries and complex turbulent interactions or noise generation
could be reach. To deal with these new applications, numerical schemes must be non dissipative
(more precisely do not not introduce more dissipation than the physical ones) and not dispersive
to preserve the waves propagation. The main drawback of the Riemann solver based scheme
are the poor spectral property: they are too dispersive, and new numerical tools have been
develop without the use of Riemann solvers.

However, many authors such as Drikakis or Adams, showed recently that the dissipative
behavior of the fine turbulent structures could be modeled with Riemann solver-based schemes
and these schemes coupled with new high order extension formulations can efficiently be used
for LES simulations. As an example, the dispersive nature of these schemes has been overcome
with recent approaches such as Discontinuous Galerkin or Spectral differences. The high order
reconstruction improves greatly the spectral properties of the underlying Riemann solver and
can in fact be used for acoustic computations. Finally, Riemann-based solvers remain one of
the most important discretization tools for CFD.
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