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1. Overall Context

Computational Fluid Dynamics is the ability of simulating complex flow features by use
of computers when analytical solutions are not accessible which is the case for a lot of flow
problems. Since computers can only produce a set of mathematical operations (addition,
substraction, multiplication, division and logical operations) to be operated on discrete
numbers of various types (booleans, integer, real, double...), the notion of discretization is
needed to transform the original governing equations. Different procedures can be employed
to transform the evolution equations into a set of discrete values onto which operations can
be applied by the computer. However all of these schemes suffer from the same problems
that any CFD specialist is supposed to handle before addressing any type of simulation by
use of a commercial or preferred Fortran/C++ code.

The aim of this lecture is thus to illustrate and introduce readers to the notion of:
• Stability: the ability of a discretization to produce approximations that are bounded

or why does my code sometimes gives me nice numbers and others NAN’s (Not A
Number) in my solution file?
• Dispersion and Dissipation: the ability or inability for a discretization to at-

tenuate oscillations or scramble a nice and continuous signal.
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2. Stability of CFD Solvers

2.1. Model Equation. To ease the analysis, the simple 1D problem of convection in an
infinitely long domain is proposed and for which the governing differential equation reads:

(1)
∂φ

∂t
+ u0

∂φ

∂x
= 0.

In the above governing equation, u0 is the constant convection velocity of the scalar func-
tion φ(x, t) to be found and which evolves in space, x and time t. The problem is supposed
infinite and an arbitrary length of 1 m with periodic boundary conditions is retained for the
spatial discretization. Supposing an initial condition for φ(x, t = 0) = Φ0, the analytical
solution to this problem is known, 1, and reads: φ(x, t) = Φ0(x − u0 t) (i.e.: the initial
profile translated by u0 t).

Figure 1. Representation of the convection problem.

Although the analytical solution is here easily accessible, the first step to the analysis is
how can I discretize Eq. (1)? Different approaches exists but in the following, only Finite
Difference (FD) is discussed. Other common methods in CFD are discussed in an other
dedicated lecture.

2.2. Discretization by Finite Difference. First the notion of spatial and temporal
discretization is introduced by simply considering the representation of the continuous
function φ(x, t) at specific instants in time (noted tn and locations in space (noted xi): i.e.
φ(x, t) ≈

⋃
i,n φ(xi, tn) =

⋃
i,n φ

n
i . If the discrete representation of this unknown continuous

function is taken at regular intervals in time and space, let’s say ∆t for time and ∆x for
space, we have a time-line represented by M points and N + 1 points in space such that:

(2) tn = n×∆t with, ∆t = T/N and, n ∈ {0, ..., N},

(3) xi = i×∆x with, ∆x = 1/M and, i ∈ {0, ...,M}.
Note that with the previous notation and because of peridictiy, φn0 = φnM . Likewise at
t = 0, φ0

i = Φ0(xi) = Φ0(i∆x).

Figure 2. Representation of discretized problem.

FD relies on the mathematical notion of limits applied to continuous functions or by the
application of Taylor expansions,

(4)
∂φ

∂x

∣∣∣∣
tn

≈ lim
∆x→0

φni+1 − φni−1

2 ∆x
≈ lim

∆x→0

φni+1 − φni
∆x

≈ lim
∆x→0

φni − φni−1

∆x
≈ ...
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(5)
∂φ

∂t

∣∣∣∣
xi

≈ lim
∆t→0

φn+1
i − φn−1

i

2 ∆t
≈ lim

∆t→0

φn+1
i − φni

∆t
≈ lim

∆t→0

φni − φ
n−1
i

∆t
≈ ...

Of course the discretized version of Eq. (1) and hence the associated set of operations will
defer depending on the approximation retained to represent the set of partial differentiation
operators present in the original governing equation. For instance, taking the first expres-
sion proposed for space and the second one for time, one obtains the so-called Forward
Euler operator for time and the Second ordered Centered scheme for space:

(6)
φn+1
i − φni

∆t
+ u0

φni+1 − φni−1

2 ∆x
= 0.

Note that the notion of order relates to the higher order terms introduced by the Taylor
expansion upon which the discrete operators rely. Re-ordering the discrete expression
obtained in Eq. (7), one clearly sees the chain of operations to be coded for the computer
to apply such a scheme:

(7) φn+1
i = φni − u0

∆t
2 ∆x

[
φni+1 − φni−1

]
.

Hands-on:

Go to the 1D CFD s imulato r and t e s t the above d i s c r e t i z a t i o n . . .

What do you observe a f t e r a c e r t a i n number o f turns ?
I s the s o l u t i o n comparable to the exact ( i n i t i a l ) s o l u t i o n ?

Note: the following differentiation schemes are possible and readers are referred to more
advanced CFD books for details.

∂φ
∂t

∂φ
∂x Name of the scheme

φn+1
i −φn

i
∆t

φn
i+1−φn

i−1

2 ∆x First order explicit in time and Centered in space
-

φn
i −φn

i−1

∆x First order explicit in time and Upwind in space

-
φn+1

i −φn+1
i−1

∆x First order implicit in time and Upwind in space

-
φ

n+1/2
i+1 −φn+1/2

i−1

2 ∆x Centered Crank Nicholson
-

φn
i+1−φn

i−1

2 ∆x First order explicit in time and Centered in space
φn+1

i −φn−1
i

2 ∆t

φn
i+1−φn

i−1

2 ∆x Explicit Leap Frog

Table 1. Typical numercial set ups used in CFD codes.
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2.3. Stability Analysis of a FD Scheme. Based on the previous series of tests, one
observes that the proposed scheme never produces statisfactory results and oscillations are
always present. We are faced with a problem of numerical stability of the scheme: i.e.
any approximation (truncation error, ...) are amplified by the iterative loop cooresponding
to the numercial scheme resulting in an unphysical solution. In extreme cases (long time
duration of the simulation and/or given spatial to time ratios), the code crashes and no
physical solution can be visualized... Such a behavior, although deceptive, could have been
apprehended before-hand by use of the ”Von-Newmann” analysis.

The ”Von-Newmann” analysis studies mathematically the future of a harmonic per-
turbation when injected into the scheme. Defining the perturbation of period 2π/k as,
φni = An ej k xi , where j2 = −1) and An is the perturbation amplitude at instant tn. A
scheme is thus characterized by its amplification coefficient, A = An+1

An , which needs to re-
main inferior to 1 in absolute value to ensure a none exponential growth of perturbations.
Injecting the expression of the harmonic perturbation in Eq. (7), one obtains:

(8)
An+1 −An

∆t
+ u0 A

n e
j k∆x − e−j k∆x

2 ∆x
= 0,

or,

(9) A = 1 − u0
∆t
∆x

j sin(k ∆x).

Clearly, |A| =
√

1 + [u0
∆t
∆x ]2 sin2(k ∆x) ≥ 1, indicating an exponential growth of any

perturbation if this scheme is to be used.

Although specifically derived in the context of the scheme proposed in Eq. (7), any
stability analysis results in an amplification coefficient that is essentially a function of
u0,∆t,∆x and k (the amplification is a function of the perturbation period). The critical
parameter that governing the absolute behavior of the scheme is express by the ”Courant-
Friedrich-Lewy” number:

(10) CFL =
u0 ∆t
∆x

.

Hands-on:

Go to the 1D CFD s imulator and t e s t va r i ous d i s c r e t i z a t i o n s . . .

Can you eva luate a c r i t i c a l CFL number to ensure s t a b i l i t y ?

Hands-on:

For the 3 rd order Runge−Kutta scheme in time and c e n t r a l
d i f f e r e n c i n g in space , s t a b i l i t y i s ensure i f and only i f : CFL $\ l e q \ s q r t {3}$ .

I s t h i s what you observe ?
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3. Dispersion and Dissipation of CFD Solvers

3.0.1. Time steps. When the CFL number is altered or the grid size modified, the time
step changes as per the inequality ∆t < CFL ∆x

|u|+c , where u and c are respectively the local
flow and local sound speeds. Hence, it is imperative to terminate computations when a
pre-specified physical time is reached to obtain comparable results. Being in a fully periodic
problem with propagation speeds that are known (u + c for the acoustic wave studied),
the time taken by the wave for one turn-around time is known and will be used. In the
run.dat file, istore was set to 2, the tlast to 2ms and dtstore to 1ms; nstore is not
read.

4. Presentation of the reference runs and exploitation

4.1. Results: TTGC and LW schemes. Figures 3& 4 show the acoustic wave after one
turn-around time (2ms) for three grid resolutions. For clarity, the exact solution to the
problem is also plotted. As observed for this wave length, the grid resolution impacts the
numerical solution in two potential ways:

• dispersion: the wave has not travelled the proper distance,
• dissipation: the maxima are not recovered and the predicted signal is ”smoother”.

The behavior is also found to slightly differ from one scheme to the next. The main idea
of the next section is to provide hints on the evaluation of the dissipation and dispersion
of both schemes. To do so and to ease the diagnostic, the reader is encouraged to produce
simulations with a large number of turn-around times: 10.

4.2. Dissipation and dispersion. In order to ease the exploitation of the results, the
mathematical concepts of dispersion and dissipation are detailed here. For simplicity, one
assumes the temporal integration to be exact (i.e.: not temporal discretization) and only
spatial operators are studied. In the context of acoustics with a uniform velocity flow,
small perturabtions are not distorted and are simply convected at (u + c). This physical
behavior is described by the following convection equation,

(11)
∂Φi

∂t
= −(u+ c)

∂Φ
∂x

,

for which the solution is known. In particular, if an initial harmonic perturbation is imposed
as the initial condition, the exact solution reads:

(12) Φ(t) = Φ̂(0) ej ω [x−(u+c)t].

Numerically, the problem is discretized and reads (upwind scheme),

(13)
∂Φi

∂t
= −(u+ c)

Φi − Φi−1

∆x
,
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Figure 3. Velocity field obtained with TTGC after one turn-around time
on three grid resolutions. Symbols correspond to the exact solution.

solving for,

∂Φ̂
∂t

= −(u+ c) Φ̂
1− e−j ω ∆x

∆x
(14)

= −Φ̂ j ω (u+ c)
sin(ω ∆x

2 )
ω ∆x

2

e−j ω ∆x/2(15)

= −Φ̂ j ω (u+ c)A(ω).(16)

The discretized system hence provides a solution of the form: Φ̂(ω, t) = Φ̂(0)ej ω [x−(u+c)A(ω)t],
the effective convection velocity of the wave being: (u+ c)A(ω). The numerical prediction
equals the exact solution only if A(ω) = 1. The real and imaginary parts of A respectively
distort the phase velocity (dispersion) and damp (dissipation) the signal. Manipulation of
the exact and approximate solutions allows to retrieve these informations from the different
runs obtained previously as illustrated below for the LW scheme.
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Figure 4. Velocity field obtained with LW after one turn-around time on
three grid resolutions. Symbols correspond to the exact solution.

5. Conclusion

One-dimensional acoustic wave propagation computations are obtained with AVBP for
two of the classical schemes that are Lax-Wendroff and TTGC. The comparaison of the nu-
merical predictions for different grid resolutions allows to illustrate the notion of dissipation
and dispersion as introduced by numerical schemes.
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Figure 5. Schematic representation of dispersion and dissipation effects
on a mono-chromatic harmonic acoustic wave propagated after 10 turn-over
times using LW.
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