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1 Overall Context

Spectral analysis is a widely used method coming from the signal processing
science. However, misuses and misunderstandings of the method are quite com-
mon, to say the least. In addition, most of the signal processing tutorial/book-
s/courses consider the time-dependent signals a particular case of the theory,
making their material very hard to link with Fluid Dynamic applications.
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2 Amplitude distributions

2.1 Spectral amplitude function

Fourier function allows to represent a signal in terms of its spectral components
in the frequency domain.

The Fourier transform is a complex exponential transform which is related to
the Laplace transform. The Fourier transform is also referred to as a trigonomet-
ric transformation since the complex exponential function can be represented in
terms of trigonometric functions. Specifically,

exp (iωt) = cosωt+ i sinωt, exp (−iωt) = cosωt− i sinωt (1)

where i2 = −1.
The Fourier transform X(f) for a continuous time series x(t) is defined as:

X(f) =

∫ +∞

−∞

x(t) exp (−i2πft)dt (2)

where −∞ < f < +∞. Thus, the Fourier transform is continuous over an
infinite frequency range. The inverse transform is:

x(t) =

∫ +∞

−∞

X(f) exp (i2πft)df (3)

where −∞ < t < +∞. Also note that X(f) is a complex function. It may be
represented in terms of real and imaginary components, or in terms of magnitude
and phase. The conversion is made as follows for a complex variable V . Note
that X(f) has dimensions of [amplitude.time].

V = a+ ib (4)

Magnitude(V ) =
√
a2 + b2 (5)

Phase(V ) = argV 6= arctan(b/a) (6)

As an example, consider a sine wave

x(t) = A sin(2πf0t) (7)

where −∞ < t < +∞. The Fourier transform of the sine wave is

X(f) =

(
iA

2

)
(−δ(f − f0) + δ(−f − f0)) (8)

where δ is the Dirac delta function. As illustrated on Fig 1a, The transform of
a sine wave is purely imaginary. On the other hand, the Fourier transform of a
cosine wave is

X(f) =

(
A

2

)
(δ(f − f0) + δ(−f − f0)) (9)

As illustrated on Fig 1b, The transform of a cosine wave is purely real. The
two results depicted in Fig 1 demonstrates two characteristics of the fourier
transforms of real time history functions:

1. The real Fourier transform is symmetric about the f = 0 line.

2. The imaginary Fourier transform is antisymmetric about the f = 0 line.
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a) Sine wave b) Cosine wave

−f0−f0 f0

f0

A
2 δ(−f − f0)

A
2 δ(−f − f0)

A
2 δ(f − f0)

−A
2 δ(f − f0)

ℑX(f) ℜX(f)

ff

Figure 1: Fourier transform of sine and cosine waves

2.2 Dimensions and discretization

The dirac delta function is a distribution : while the peak has no width neither
amplitude in the continuous sense, its integral on a frequency domain is equal
to one. Therefore, the discrete version of the sine fourier transform is:

Xn =

(
iA

2∆f

)
(−δn,n0

+ δn,−n0
) (10)

With ∆f standing for the frequency resolution, and i0∆f = f0. The term
∆f is necessary to keep the discrete integral consistent with the continuous one:

n=+∞∑

n=−∞

Aδn,n0

∆f
∆f = A =

∫ f=+∞

f=−∞

Aδ(f0)df (11)

If you stare blanky at this equality you will note that LHS clearly have the
dimension [amplitude]. RHS must the same dimension, illustrating the strange
dimensional property of the continuous dirac delta function.

• In the frequency domain, δ(f) , the dirac delta function, is of dimension
[frequency−1].

• In the discrete formalism, one must use δn,n0
/∆f to be consistent. Here

δn,n0
is the Kroenecker symbol, without dimension.

These problems are usually not treated in signal processing books, and arise
here because CFD signals are time-dependent. Fig. 2 shows a discrete version of
Fig. 1 consistent with the integral properties of the Fourier transform. Note that
the estimator drawn strictly from mathematics is dependent upon the duration
of the signal. The same estimator multiplied by ∆f is far more interesting as it
gives directly the amplitude of the harmonic components.

2.3 Discrete form of Fourier transform

The discrete Fourier transform Fk for a discrete time series xn is

Fk =
1

N

N−1∑

n=0

(
xn exp

(
−i

2π

N
nk

))
, k = 0, 1, ..., N − 1 (12)

where N is the even1 number of time domain samples, n is the time domain
sample index, k is the frequency domain index. This is the form recommended

1The case of odd number of time domain samples is not discussed here. Hic sunt leones.
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a) Sine wave b) Cosine wave

−f0 ±∆f−f0 ±∆f f0 ±∆f

f0 ±∆f
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2∆f
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2∆f

A
2∆f

−A
2∆f

ℑX(f) ℜX(f)

ff

Figure 2: Discrete fourier transform of sine and cosine waves

to get directly the amplitude of the signal, independently from the frequency
resolution2. Note that the frequency domain increment ∆f is drawn from the
time domain period T with

∆f =
1

T
(13)

The frequency fk is obtained from the index parameter k as follows

fk = k∆f (14)

Note that Fk has dimensions of [amplitude].
The corresponding inverse transform is

xn =

N−1∑

k=0

(
Fk exp

(
+i

2π

N
nk

))
, n = 0, 1, ..., N − 1 (15)

A characteristic of the discrete Fourier transform is that the frequency domain
is taken from 0 to (N − 1)∆f . The line of symmetry is at a frequency of
N/2∆f which marks the Nyquist frequency (one-half of the sampling rate).
Shannons sampling theorem states that a sampled time signal must not contain
components at frequencies above the Nyquist frequency. This point is under
focus in Exercise 1.

Spectrum analyzer devices typically represent the Fourier transform in terms
of magnitude and phase rather than real and imaginary components. Further-
more, spectrum analyzers typically only show only half the total frequency band
due to the symmetry relationship. The spectrum analyzer amplitude may either
represent the half-amplitude or the full- amplitude of the spectral components.
The one-sided, full-amplitude Fourier transform magnitude would be calculated
as

Fk = Magn

[
1

N

N−1∑

n=0

(
xn exp

(
−i

2π

N
nk

))]
, k = 0 (16)

= 2Magn

[
1

N

N−1∑

n=0

(
xn exp

(
−i

2π

N
nk

))]
, k = 1, ...,

N

2
− 1 (17)

with N as an even integer. Note that k = 0 is a special case. The Fourier
transform at this frequency is already at full- amplitude.

2An alternate form which has dimensions of[amplitude.time] is :

Fk = ∆t
∑

N−1

n=0

(
xn exp

(
−i 2π

N
nk
))

, k = 0, 1, ..., N − 1, where T = N∆t. In other words,

Eq. 12 divided by the frequency resolution ∆f . This form is in strict equivalence with the
original Fourier transform of Eq. 2.
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2.4 Exercise 1 : numerical application of Amplitude spec-
tra

Let us consider a signal defined on 8 instants on a duration T = 1s, i.e.
0, 1/8s, 2/8s, 3/8s, 4/8s, 5/8s, 6/8s, 7/8s. The sampling frequency is fs = 8Hz.
The Real and Imaginary terms of the Fourier series are detailed in the tables 1:
The sum of Fourier terms is done following the columns of these tables. Each

cos(2π nk
8 ) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 0 1 1 1 1 1 1 1 1

n = 1 1
√
2/2 0 −

√
2/2 -1 −

√
2/2 0

√
2/2

n = 2 1 0 -1 0 1 0 -1 0

n = 3 1 −
√
2/2 0

√
2/2 -1

√
2/2 0 −

√
2/2

n = 4 1 -1 1 -1 1 -1 1 -1

n = 5 1 −
√
2/2 0

√
2/2 -1

√
2/2 0 −

√
2/2

n = 6 1 0 -1 0 1 0 -1 0

n = 7 1
√
2/2 0 −

√
2/2 -1 −

√
2/2 0

√
2/2

sin(2π nk
8 ) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 0 0 0 0 0 0 0 0 0

n = 1 0
√
2/2 1

√
2/2 0 −

√
2/2 -1 −

√
2/2

n = 2 0 1 0 -1 0 1 0 -1

n = 3 0
√
2/2 -1

√
2/2 0 −

√
2/2 1 −

√
2/2

n = 4 0 0 0 0 0 0 0 0

n = 5 0 −
√
2/2 1 −

√
2/2 0

√
2/2 -1

√
2/2

n = 6 0 -1 0 1 0 -1 0 1

n = 7 0 −
√
2/2 -1 −

√
2/2 0

√
2/2 1

√
2/2

Table 1: Real and Imaginary coefficients of the discrete Fourier transform for
any signal on the time domain 0, 1/8s, 2/8s, 3/8s, 4/8s, 5/8s, 6/8s, 7/8s

column is contributing to a Fourier coefficient (or frequency). One can ob-
serve the symmetry of columns k = 1, 2, 3 and k = 5, 6, 7 with respect to the
”Nyquist” column k = 4.

• Question : With an Excel spreadsheet, compute the coefficients for a
1Hz sine wave.

• Answer : The signal and coefficients are numerically given by Tab. 2.4
and Fig. 3. This result is in agreement with Eq. 8, except that the positive
dirac at −f0 is lying here at k = 7, or fs−f0. The repetition of the pattern
around fs and its multiples is due to the finite duration of the signal.

• Question : Now compute with the same spreadsheet the coefficients of
a signal summing four cosine waves at 1Hz, 2Hz, 3Hz, 4Hz. What would
happen with a sine wave at the Nyquist frequency sin(2πt × 4)? What
whould happen with frequencies greater than the Nyquist frequency?

• Answer : The signal and coefficients are numerically given by Tab. 2.4
and Fig. 4. The results are again consistent with Eq. 9. However, the
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x0 x1 x2 x3 x4 x5 x6 x7

0
√
2/2 1

√
2/2 0 −

√
2/2 -1 −

√
2/2

X0 X1 X2 X3 X4 X5 X6 X7

0 −0, 5i 0 0 0 0 0 +0, 5i

Table 2: Coefficients of the function sin(2πt) on the time domain
0, 1/8s, 2/8s, 3/8s, 4/8s, 5/8s, 6/8s, 7/8s

a) Signal b) Fourier transform

t(s) f(Hz)
0 1

8
2
8

3
8

4
8

5
8

6
8

7
8

0

1

2 3 4 5 6 7

−0, 5i

+0, 5i

x(t) IX(f)

Figure 3: Discrete Fourier transform of the function sin(2πt)

Nyquist frequency coefficient receives the contribution from both sides ,
X4 = 1.

Considering a sine wave at the same frequency sin(2πt×4),X4 = 0i.(Indeed,
x0,1,...,7 = 0 due to undersampling). The original signal should never ex-
hibit a significant content beyond the Nyquist frequency.

x0 x1 x2 x3 x4 x5 x6 x7

4 -1 0 -1 0 -1 0 -1

X0 X1 X2 X3 X4 X5 X6 X7

0 0, 5 0,5 0,5 1 0,5 0,5 0,5

Table 3: Coefficients of the function cos(2πt) + cos(2πt × 2) + cos(2πt × 3) +
cos(2πt× 4) on the time domain 0, 1/8s, 2/8s, 3/8s, 4/8s, 5/8s, 6/8s, 7/8s
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a) Signal b) Fourier transform

t(s) f(Hz)
0

1
8

2
8

3
8

4
8

5
8

6
8

7
8

0 1 2 3 4 5 6 7

+1

+0, 5 +0, 5 +0, 5+0, 5+0, 5+0, 5

x(t) RX(f)

Figure 4: Discrete Fourier transform of the function cos(2πt) + cos(2πt × 2) +
cos(2πt× 3) + cos(2πt× 4)

7



3 Power distributions

3.1 Power spectral density function

First of all, the term ”Power” refers to the instantaneous power of a signal
x(t) , defined equal to |x(t)|2. Consequently the signal ”Power” is equal to its
Mean Square value. From a discrete point of view, the power spectral density
distribution is thus the evaluations of Mean Square (MS) values of frequency
bands on the signal. Before any further reading, let us recall some statistical
estimators of Tab. 4.

Name Continuous form Discrete form

Mean X limT→∞

1
T

∫ T

0
x(t)dt limN→∞

1
N

∑N
i xi

Mean Square X2 limT→∞

1
T

∫ T

0
x(t)2dt limN→∞

1
N

∑N
i x2

i

Root Mean Square
√
X2 limT→∞

√
1
T

∫ T

0
x(t)2dt limN→∞

√
1
N

∑N
i x2

i

Variance σ2 limT→∞

1
T

∫ T

0 (x(t) −X)2dt limN→∞

1
N

∑N
i (xi −X)2

Table 4: Several statistical estimators

One can find three methods to compute the PSD:

1. Measuring the MS value of the amplitude in successive frequency bands,
where the signal in each band has been bandpass filtered. This ”brute
force” method yields cumbersome computations.

2. Taking the Fourier transform of the autocorrelation function. This is
the Wiener-Khintchine approach. While conceptually different (point of
view of autocorrelation , Hic sunt leones again), this second method is
mathematically the same as the third method.

3. Taking the limit of the Fourier transformX(f) times its complex conjugate
divided by its period T as the period approaches infinity. This last method
relies on the Fourier Transform, which comes in handy since it was the
topic of the previous section.

Following the third method , the Fourier transform X(f) for a continuous time
series x(t)

X(f) = lim
T→∞

∫ +T/2

−T/2

x(t) exp (−i2πft)dt (18)

where −∞ < f < +∞.
The power spectral density S(f) for a continuous Fourier transform is defined

as

S(f) = lim
T→∞

1

T
X(f)X∗(f) (19)

where −∞ < f < +∞ and symbol ∗ denotes complex conjugate.
Moving to the discrete domain the single-sided power spectral density func-

tion PSD k for a discrete series is

PSDk =

[
FkF

∗

k

∆f

]
, k = 0 (20)
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=
1

2

[
FkF

∗

k

∆f

]
, k = 1, ...,

N

2
− 1 (21)

with N an even integer and Fk the Fourier coefficients normalized3 to be an
amplitude (see Eq. 52).

The 1
2 factor in equation 21 comes from the fact that the Mean Square of a

sine wave is equal to half its peak value (or
∫ π

0 sin2(t)dt = π/2). The k = 0 case
does not require this peak-to-MS conversions since the MS value is equal to the
peak value for a signal with zero frequency. This signal is often called a DC
signal. Each coefficent PSDk is evaluated on a narrow frequency band 1/∆f .

3.2 Parseval equality

The area under the power spectral density curve is equal to the mean square
value. The mean square value can also be calculated directly from the time
history. This equivalence can be written as an energy equivalence :

E = lim
T→∞

∫ +T/2

−T/2

x(t)2dt = lim
T→∞

∫ +∞

−∞

X(f)X∗(f)df (22)

A similar result can be written for power equivalence:

P = lim
T→∞

1

T

∫ +T/2

−T/2

x(t)2dt = lim
T→∞

1

T

∫ +∞

−∞

X(f)X∗(f)df (23)

Almost all actions in spectral processing (normalization of spectra, zero-
padding, windowing, half spectrum computation, removal of the DC term ) can
affect the Parseval equality. A Parseval check on the final spectrum is the proof
that all these actions are correctly addressed.

3.3 Sound Pressure Level

Sound pressure level (SPL) or sound level is a logarithmic measure of the effec-
tive sound pressure of a sound relative to a reference value. It is measured in
decibels (dB) above a standard reference level. The commonly used ”zero” ref-
erence sound pressure in air is 20 µPa, which is usually considered the threshold
of human hearing. The formula reads:

SPL = 10 log

(
σ2

p2ref

)
(24)

where σ2 is the variance of the signal. The variance formulas are given for
continuous and digital signal respectively:

σ2 = lim
T→∞

(
1

T

∫ T

0

(x(t) −X)2

)
(25)

σ2 = lim
N→∞

(
1

N

N∑

i

(xi −X)2

)
(26)

3With this normalization continuous coefficient X(f) corresponds to discrete coefficient
T × Fk. This might help the reader to see the link between Eq. 19 and Eqs. 20,21
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Its square root is called the standard deviation which is NOT equivalent to Root
Mean Square values. Indeed, most web sources uses PRMS instead of σ2. If you
compute the RMS with the DC component of the pressure, you will end up with
SPL > 180dB, even without fluctuations ).

In the case of several noises, it is possible to compute the SPL provided that
signals are un correlated. In this case only, the variance of the sum is equal to
the sum of variances:

SPL = 10 log

(∑
i σ

2
i

p2ref

)
(27)

This explains why a PSD spectrum expressed in SPL cannot be directly inte-
grated over frequencies to reach the global SPL of a signal.

3.4 Exercise 2 : statistics .vs. Parseval for PSD spectra

• Question : The main characteristic of the white noise is its fluctuation
about the mean, described by the variance σ2. Find the relation between
Mean Square value and Variance. Consequently, what would be the mean
square value of a white noise of variance 0.01Bar2 in the atmospheric
pressure. Express this result in terms of Sound Pressure Level.

• Answer: The Mean Square value is the variance plus the squared mean

i.e. :X2 = σ2 +X
2
.

σ2 = lim
T→∞

(
1

T

∫ T

0

(x(t) −X)2

)
(28)

= lim
T→∞

(
1

T

∫ T

0

x(t)2 − 2x(t)X +X
2

)
(29)

= lim
T→∞

(
1

T

∫ T

0

x(t)2

)
− 2X lim

T→∞

(
1

T

∫ T

0

x(t)

)
+X

2
(30)

= X2 − 2X
2
+X

2
(31)

The mean square value of the pressure signal would be P 2
atm + σ2 =

1, 01Bar2. The variance, expressed in pascal is 1.0267 106Pa2. The SPL
is then 20 log(1.0267 106/2 10−5) = 154dB.

• Question :In a more general context, what would be the Mean Square
value of the signal:

x(t) = A+Bcos(2πf0) +N (C) (32)

with N (C) being a white noise of variance C. Note that the variance of
a sine wave σ2 (cos(t)) is equal to 1

2 . Draw the PSD spectrum in the case
of a sampled signal. Discuss the case of an increase of the sampling rate.
Discuss the case of an increase of the signal duration.

• Answer: As the variance of the three terms are uncorrelated, it is possible
to write the sum of variance and squared mean for all terms :
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MS(x(t)) = σ2(A) +A
2

(33)

+ σ2(Bcos(2πf0)) +Bcos(2πf0)
2

(34)

+ σ2(N (C)) +N (C) (35)

= 0 +A2 (36)

+
B2

2
+ 0 (37)

+ C + 0 (38)

The Mean Square value is therefore A2 + B2

2 + C. The PSD spectrum
is sketched in Fig. 5a. The evolution of the total energy curve is also
displayed on Fig. 5b.

In the case of an infinite signal duration ∆f → 0, the contribution of the
DC component A and the sine wave reduces to dirac peaks of ’infinite’
amplitude, while the noise part remains at the same level.

If the sampling rate increases, fNyquist is increasing. Both DC and sine
peaks remain unchanged. If the noise level variance is kept constant , the
noise level is decreasing as C/fNyquist.

The Parseval equality is satisfied taking into account all the terms of the
signal (Here DC component, harmonic component, random component).
As some components can be removed during the spectral analysis process
(zero-padding requires the removal of the DC term, for example), the user
must track these simplifications while evaluating the power distribution
in the signal.
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a) Power spectral density distribution b) Integral of mean square function

c) Increasing sampling rate b) Increasing signal duration
f0f0

f0f0

PSD [V 2/Hz]PSD [V 2/Hz]

PSD [V 2/Hz]
∫ f

0
PSDdf [V 2] (MS)

+ B2

2∆f

+ B2

2∆f

+ B2

2∆f

+B2

2

A2

∆fA2

∆f

A2

∆f

A2

C
fNyquist

C
fNyquist

C
fNyquist

A2 + B2

2 + C

∆f∆f

∆f

fNyquist

fNyquist

fNyquist

fNyquist

Figure 5: Illustration of different Power Spectral Density . The noise level of
fig. a),c),d) is an ideal estimation,
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4 Finite duration, sampled signals

4.1 Impact of finite duration signals

The case of pure continuous sine waves has been addressed in the previous
section. We will investigate now the effect of finite duration signals through
some mathematical considerations.

First, we consider the following infinite signal x(t) = cos(2πf0t+φ0)[V ], with
f0[Hz] a strictly positive frequency and φ0[rad] a phase in the range [0, 2π][rad].

Note : the delta function is the Fourier transform of 1: δ(f) =
∫ +∞

−∞
e−i2πftdt.

X(f) =

∫ +∞

−∞

cos(2πf0t+ φ0)e
−i2πftdt (39)

=

∫ +∞

−∞

(
ei(2πf0t+φ0) + e−i(2πf0t+φ0)

2

)
e−i2πftdt (40)

=

∫ +∞

−∞

(
eiφ0ei2πf0t + e−iφ0e−i2πf0t

2

)
e−i2πftdt (41)

=

∫ +∞

−∞

1

2

(
eiφ0e−i(2π(f−f0)t) + e−iφ0e−i(2π(f+f0)t)

)
dt (42)

=
1

2

(
eiφ0δ(f − f0) + e−iφ0δ(f + f0)

)
(43)

This last equation is illustrated in Fig. 6. Note in particular that for φ0 =
π/2, the result of the Fourier transform is consistent with cos(2πf0t + π/2) =
sin(2πf0t) .

ℜ

ℑ

f [Hz]

f0

f0

+∞

+∞

φ0

φ0

Figure 6: Fourier transform of the cosine signal, frequency f0, phase φ0

Then, let us consider the signal x(t) = wT
rect(t)× cos(2πf0t+ φ0)[Hz], with

wT
rect a rectangular window of duration T. Note : the Fourier transform of the

rectangular function is:

WT
rect(f) =

∫ +∞

−∞
WT

rect(x)e
−i2πfxdx = Tsinc(πfT ) = sin(πfT )

πf , which is illus-
trated on Fig. 7.
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x(t)[V ]

t[s] x̂(f)

x̂(f)

0

00
0

1

−T/2 T/2 −1/T 1/T

T

a) Signal b) Fourier transform

Figure 7: The Fourier transform of a rectangular window is a Sync function.

X(f) =

∫ +∞

−∞

wT
rect(t)cos(2πf0t+ φ0)e

−i2πftdt (44)

=

∫ +∞

−∞

1

2
wT

rect(t)
(
eiφ0e−i(2π(f−f0)t) + e−iφ0e−i(2π(f+f0)t)

)
dt(45)

=
T

2

(
eiφ0sinc(π(f − f0)T ) + e−iφ0sinc(π(f + f0)T )

)
(46)

This curve degenerates to the Fourier transform of the infinite signal with
T → +∞. A non-intuitive observation is the fact that the frequency support
is infinite −∞ < f < ∞[Hz] while the signal duration is finite. These results
are illustrated on Fig 8 and Fig 9. Phase modification phase rotates the curve
along the frequency axis : Fig 9 a) .vs. b). Target frequency modification shifts
the sinc’s along the frequency axis without other alterations : Fig 9 a) .vs.
c). Signal duration modification compresses the sinc’s around their respective
centers, and the amplitude is increased : Fig 9 a) .vs. d).

ℜ

ℑ

f [Hz]

f0

f0

T/2

T/2
φ0

φ0

Figure 8: Fourier transform of the cosine signal, frequency f0, phase φ0

To conclude, all signals coming from Computational Fluid Dynamics prob-
lems are of finite duration. Therefore, all the estimators will describe the spec-
tral content with wavy sinc functions, and not series of clean localized dirac
delta functions.
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a) Frequency 2Hz,Phase 0.25π,T=5s b) Frequency 2Hz,Phase 0.35π,T=5s

c) Frequency 4Hz,Phase 0.25π,T=5s d)Frequency 2Hz,Phase 0.25π,T=10s

Figure 9: Fourier transform of a cosine of finite duration : plot of the analytical
solution.

4.2 Aliasing

First, let us recall some mathematical properties of the Dirac comb, with an
exerpt of Wikipedia on ”the dirac comb”:

In mathematics, a Dirac comb, also known as an impulse train and sampling
function in electrical engineering, is a periodic Schwartz distribution constructed
from Dirac delta functions :

δτ (t) =

+∞∑

k=−∞

δ(t− kτ) (47)

for some given period τ . Some authors, notably Bracewell as well as some
textbook authors in electrical engineering and circuit theory, refer to it as the
Shah function (possibly because its graph resembles the shape of the Cyrillic
letter sha ). Because the Dirac comb function is periodic, it can be represented
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as a Fourier series :

∆τ (f) =
1

τ

+∞∑

n=−∞

ei2πnt/τ (48)

The Fourier transform of a Dirac comb is also a Dirac comb.

∆τ (f) =
1

τ
δ1/τ (f) (49)

The Fourier transform of a signal x(t)(τδτ (t)), i.e. the signal x(t) sampled on
a period τ , is the convolution of X(f) and ∆τ (f).

X(f) ∗∆τ (f) = X(f) ∗
+∞∑

n=−∞

δ(f − n

T
) (50)

=
+∞∑

n=−∞

X(f − n/τ) (51)

This demonstrates that the computation of the transform from a τ -sampled
signal x(t)(τδτ (t)) is equal to the sum of :

• the transform from the continuous signal X(f)

• of an infinity of copies of this transform, shifted by the frequency gaps
n/τ .

Figure 10 illustrates the aliasing effect. In the temporal domain, the undersam-
pling of a 7Hz cosine yields a serie of value equal to the 1Hz cosine (Fig. 10a).
In the frequency domain, the natural peak is present at 7Hz , but the only visi-
ble peak comes from the copy of the signal X(f − 1/τ), at 1Hz (Fig. 10b). The
very same process is visible in two dimensions through the following example.
A highly resolved checkboard pattern is displayed on Fig. 10c thanks to the anti
aliasing JPEG filter : small black and white regions are shown as grey. Without
the anti-aliasing pattern (Fig. 10d), several wavelenghts are visible, biasing the
actual checkboard pattern.

4.3 Exercise 3: Filtering to prevent aliasing

• Question : A low pass filter rejecting the high frequencies is the common
solution to prevent aliasing. Explain when to use this filter on a signal
created by a CFD solver, ( timestep 1 10−7s, duration 10ms) to design a
fast signal processing tool focusing on the frequency range 0− 10kHz.

• Answer : According to the signal, the frequency resolution is 100Hz, the
maximum Nyquist frequency available is 5MHz , cf. Fig. 11a. Taking
one point over 500 in the original signal yields a timestep of 5 10−5s and
a Nyquist frequency reduced to 10kHz as requested. However, the direct
subsampling do not prevent the aliasing, see Fig. 11b. Therefore, the low
pass filter, rejecting all frequencies beyond 10kHz must be applied like in
Fig. 11c before the downsampling of one point over 500. The aliased third
peak of Fig. 11d is then rejected , as in Fig. 11e.

In other words, applying a low-pass filter on a signal right before spectral
processing shows no interest : the frequencies higher than the sampling
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a) Signal b) Fourier transform

c) With the anti-aliasing JPEG filter d) Without the anti-aliasing JPEG filter

t(s) f(Hz)
0 1

8
2
8

3
8

4
8

5
8

6
8

7
8 0 1 2 3 4 5 6 7

Natural peakAliased peak

x(t) RX(f)

Figure 10: Aliasing effect : a) & b) on a 7Hz cosine sampled at 8Hz ; c) & d)
in two dimensions on a checkboard pattern.(warning, do not read this figure on
screen , print it !)

frequency have already become low frequencies by sampling effect, and
will not be rejected by the filter.
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a) Initial spectrum

b) Effect of subsampling (aliasing) c) Effect of filtering the original signal

d) Zoomed spectrum, without filtering e) Zoomed spectrum, with filtering
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100k
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1M
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10M10M

Figure 11: Ex3 : Filtering to prevent aliasing
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5 Improvement of spectra

5.1 Zeropadding

Zeropadding is a numerical recipe allowing to increase the representation of
the Fourier transform. As seen in the previous sections, the Fourier transform
of signals are continuous on the frequency domain −∞ < f < ∞, even for
sampled signals and finite duration signals. The discrete Fourier transform Fk

for a discrete time series xn was defined as:

Fk =
1

N

N−1∑

n=0

(
xn exp

(
−i

2π

N
nk

))
, k = 0, 1, ..., N − 1 (52)

However, one can arbitrarily increase the number of coefficients with Nzp >
N .

F zp
k =

1

Nzp

Nzp−1∑

n=0

(
xn exp

(
−i

2π

Nzp
nk

))
, k = 0, 1, ..., Nzp − 1 (53)

with xn = 0 ∀n > N − 1, which simplifies into :

F zp
k =

1

Nzp

N−1∑

n=0

(
xn exp

(
−i

2π

Nzp
nk

))
, k = 0, 1, ..., N − 1 (54)

This last expression gives Nzp coefficients Fk, built upon the sum of N terms.
The zeropadding method is thus a way to increase the number of Fourier

coefficients which describes the spectrum of a finite duration signal. It is use-
full to get a better graphical description of the sinc main peak, i.e. a better
estimation of a specific harmonic amplitude. The frequency resolution (or the
width of the associated sinc) is not improved through zeropadding.

a) Initial spectrum b) Zeropadded spectrum c) Continuous spectrum

fff
f0f0f0

Figure 12: Zeropadding effect on the spectrum of a cosine wave of frequency f0.

A major drawback from the zeropadding comes from the DC component of
the signal. In the non-zeropadded case, the DC component is limted only to the
first fourier coefficient F0. In the zeropadded case, the signal takes the shape of
an Heaviside function h(T − x) like in Fig. 13a, especially if the amplitude of
the DC component is big with respect to the signal fluctuation (e.g. pressure
signals). Let us just note that the Fourier transform of the Heaviside function
is :

H(f) =

∫ +∞

−∞

e−2πiftht (55)

=
1

2

[
δ(f)− i

πf

]
(56)
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This component can easily hide the actual spectrum with the ”spectral leak”
of the imaginary term, as illustrated by Fig. 13b. For this reason, it is compul-
sory to remove the DC component from the signal when using the zeropadding
technique.

a) Heaviside shape due to zeropadding b) Amplitude spectrum

ft

Amplitude Amplitude

0 0

Figure 13: Zeropadding effect on the spectrum of a cosine wave of frequency
with a strong DC component.

5.2 Multi-Windowing/Averaging

The topic of single-windowing is not discussed in the present material. The
reader shall find by himself a proper description of the different windows avail-
able in his spectral processing language.

The multi-windowing method is used for a single purpose : reduce the vari-
ance of the Power Spectral Density estimator. Its use on Amplitude is pointless.
Indeed, the Fourier transform of random signals of variance σ2 yields a spec-
trum showing the same variance in the frequency domain, independently of the
sampling. The clean way to ”smooth” the spectrum is to average several spec-
tra made from independent realizations of the random signal, as illustrated in
Fig 14a.

To avoid running several times the same experiment/computation, the multi-
windowing strategy assumes the ergodicity of the random process : the statis-
tical means (averages on realizations) are equal to time averaging. The signal
is divided into bits showing the same lenght, mean, and variance, as shown on
Fig 14b. Each bit is processed as an independent realization of the same random
process. As this method supposes a ’long’ signal , it can be tricky to apply on
the short CFD-created signals.

A third strategy is to record the signal at several positions in the experiment
at the same time like in Fig 14c, assuming that these positions are far enough
to stay uncorrelated. For example, the pressure signal of eight probes located
evenly on the circumference of a jet can replace eight runs with one probe.
This method is particularly suited for CFD computations, with short signal but
unlimited access to flow locations.

5.3 Exercise 4 : Bias of short signals

This exercise uses the OCTAVE jammer.m program.

• Question : The program generates a serie of N peaks of variable ampli-
tudes, separated by variable silences. However, the global signal should
exhibit a main frequency around 1Hz, with an amplitude near 0.5.
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a) Multiple realizations

b) Windowing of a single signal - one realization

c) Several uncorrelated signals - one realization
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Probe 1

Probe 2

Probe 3

Probe 4

Realization 1

Realization 2

Realization 3

Realization 4

Window 1 Window 2 Window 3 Window 4

Figure 14: Three methods to reduce the variance of spectral estimators for
random signals

What is the effect of time shifts and amplitude fluctuations on the spec-
trum (2nd and 3rd parameter)? Is this effect dependent of the signal
length (1st parameter)? What can you conclude for LES signals?

• Answer : Pure amplitude shifts do not have strong effects on a Fourier
spectrum. On the other hand, pure time shifts can quickly lead to totally
biased spectra. Moreover, the biased spectra are totally case-dependant,
with strong variations of the output from a realization to the other.

The bias of the spectra slowly vanishes for long signals, i.e. substantially
greater than 24 periods. In the case of short signals (dozen of periods or
less) the bias makes the spectral analysis inconclusive. In this case, the
spectra usually takes a sawtooth shape. The main tone is often visible,
but can vanish on a pathologic realization, and is biased in frequency.

LES signals are usually short with respect to the largest wavelenght. If the
spectral content is close to an harmonic signal (negligible temporal lags),
spectra will be easy to obtain, allowing a robust analysis of the flow. Short
feedback loops like impinging jets belong to this category.

On the other hand, if the spectral content is far from an harmonic case
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(strong temporal lags), the spectral analysis will be extremely hard to do.
Signals coming from strongly non linear phenomenons like downstream a
cylinder wake belong to this category.
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6 Conclusions

6.1 List of the pitfalls

1. In a continuous frequency domain, the Dirac delta function is of dimension
[frequency−1]. In the discrete domain, it must be replaced by a Kroenecker
function [no dimension], divided by the frequency resolution. This explains
why the factor 1/∆f arises in the discrete formulas.

2. The normalization of an amplitude spectrum is done in order to ensure
that the amplitude of harmonics remains unchanged whatever the signal
duration/sampling is. Therefore, it is not strictly the magnitude of the
Fourier transform.

3. The normalization of PSD spectrum is done in order to ensure that the
power sectral density of noise remains unchanged whatever the signal dura-
tion/sampling is. Therefore, it is not strictly the magnitude of the squared
Fourier transform.

4. The Power of a signal must not be confused with the physical quantity
named Power. Its dimension is the signal dimension squared, do not expect
Watts or Joules there.

5. The Mean Square is the variance plus the Squared Mean. The term RMS
is often confused with the Variance. As Igor, Matlab, Octave or any math
toolbox will follow the math definition, the function ’RMS’ will often lead
to something different than the user is expecting.

6. The Sound Pressure Level (SPL) uses the variance of the signal, not the
RMS (see previous item). If you get 180 dB SPL even on a plain constant
pressure signal, you have fallen in the trap.

7. Aliasing is created by the sampling process. Applying an anti-aliasing
filter on the sampled signal is pointless (like pouring water on ashes).

8. Spectral maps computed from spatial solutions includes a temporal sam-
pling. Thus, spectral maps are pretty good canditates for aliasing.

9. Zeropadding allows to increase the description of the spectrum (but not
the resolution).

10. MultiWindowing is almost never usefull in CFD results, leave it to exper-
iments. In CFD, it is easy to get the same improvement by multiplying
the source of the signals.

11. A signal with significant fluctuations of the time lag between the ’event’
is a good candidate for the ”Chainsaw massacre” : sawtooth spectrum ,
extremely variable from a realization to the other. Even long signals do
not fix totally the problem. Usually , moving the source closer to the start
of the phenomenon is a substantial improvement.
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6.2 Exercise 5 : the online spectral analysis lab

This exercise focuses on the online spectral analysis lab provided on the E-
learning website of cerfacs:
http://elearning.cerfacs.fr/numerical/signal/tutorialSpec/index.php.

• Amplitude : check that the amplitude of the two harmonics are well
caught on the amplitude spectrum.

• DC component : Set DC component on amplitude equal to 1, first
harmonic amplitude to 1, second harmonic to 2, Set the Amplitude and
PSD graphs on log-linear scale. Pay a close attention on the first point of
the spectrums.

The amplitude of DC is well caught on the Amplitude graph. The ratio
between the DC component (Amplitude 1) and the first harmonic (Am-
plitude 1) is one.

• Amplitude vs PSD : With the same setup on the PSD graph, the DC
component and the harmonic component do not stand on the same level,
illustrating how Amplitude and PSD spectra differ.

• Aliasing : Rise the frequency f1 beyond the maximum frequency (Nyquist
frequency). Note the reflexion of the peak when it bounces over the max-
imum frequency.

• Noise : Set the PSD graph in log-log. Then cycle between the White,
Pink, and Brown noise. The Spectrum slope should move respectively
from PSD = cte to PSD = 1/f and PSD = 1/f2 (definitions of white,
pink and brown noise). Note how injecting noise at low frequencies changes
the signal shape.

• Parseval : Check the fact that the observed signal variance plus the
observed signal squared mean equals the observed signal mean square.
Note that this last quantity is equal to the sum of the PSD terms. Note
also how the cummulative PSD reaches this last value.

• Spectral power repartition : Check how the noise contributes to the
total amount of spectral power. In the particular case of a noise concen-
trated on low frequencies (Pink Brown ), observe how the high frequencies
becomes negligible in the Spectral Power budget.
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