Cerfacs Enter the world of high performance ...

PhD Defense: Omar DOUNIA – “Numerical investigation of gas explosion phenomena in confined and obstructed channels”

  Monday 23 April 2018 at 14h00

  Phd Thesis        CERFACS, CONFERENCE ROOM JEAN-CLAUDE ANDRÉ     

Abstract

Mining, process and energy industries suffer from billions of dollars of worldwide losses every year due to Vapour Cloud Explosions (VCE). Moreover, explosion accidents are often tragic and lead to a high number of severe injuries and fatalities. The VCE scenario is complex and controlled by various mechanisms. The interplay among them is still not entirely understood. Understanding all these intricate processes is of vital importance and requires detailed experimental diagnostics. Coupling accurate numerical simulations to well documented experiments can allow an elaborate description of these phenomena.

This thesis focuses on explosions occurring on configurations that are either semi-confined or confined. In such configurations, the explosion is generally initiated by a mild ignition and a subsonic flame front emerges from the ignition source. An important feature of self-propagating flames lies in their intrinsically unstable nature. When they propagate in an environment with high levels of confinement and congestion, which is the case in most industrial sites, a Flame Acceleration (FA) process is often observed that can give rise to very fast flames, known for their destructive potential. In some cases, the FA process can create the appropriate conditions for the initiation of detonations, which corresponds to a rapid escalation of the explosion hazard.

To reproduce the confinement and congestion conditions that one can find in industrial sites, the university of Munich TUM equipped a confined chamber with a series of obstacles and analysed the influence of repeated obstructions on the propagation of hydrogen/air deflagrations. This experimental study showed a strong influence of the mixture composition on the acceleration process. A Deflagration to Detonation Transition (DDT) has also been observed for a certain range of equivalence ratio. This configuration is therefore ideal to study the mechanisms of flame acceleration as well as the intricate DDT process.

A numerical study of both scenarios is performed in this thesis:

–        First for a lean premixed hydrogen/air mixture, a strong flame acceleration is observed experimentally without DDT. The characteristic features of the explosion are well reproduced numerically using a Large Eddy Simulation (LES) approach. The crucial importance of confinement and repeated flame-obstacle interactions in producing very fast deflagrations is highlighted.

–        DDT is observed experimentally for a stoichiometric hydrogen/air mixture. This thesis focuses on the instants surrounding the DDT event, using Direct Numerical Simulations (DNS). Particular attention is drawn to the impact of the chemistry modelling on the detonation scenario.

The failure of preventive measures is often observed in many explosion accidents. To avoid a rapid escalation of the explosion scenario, mitigative procedures must be triggered when a gas leak or an ignition is detected. Metal salts (like potassium bicarbonate and sodium bicarbonate) have received considerable attention recently because well-controlled experiments showed their high efficiency in inhibiting fires. The last part of the thesis focused on the mechanism of flame inhibition by sodium bicarbonate particles. First, criteria based on the particle sizes are established to characterize the inhibition efficiency of the particles. Second, two dimensional numerical simulations of a planar flame propagating in a stratified layer of very fine sodium bicarbonate particles showed that under certain conditions these powders can act as combustion enhancers. These results echo a number of experimental observations on the possible counter-effects of the inhibitors.

Jury

Ashwin CHINNAYYA Institut P', Futuroscope Poitiers Referee
Denis VEYNANTE Laboratoire EM2C, Châtenay-Malabry Referee
Nabiha CHAUMEIX Laboratoire ICARE, Orléans Member
Paul CLAVIN IRPHE, Marseille Member
Antoine DUTERTRE TOTAL S.A., Pau Invited industrial member
Thierry POINSOT IMFT, Toulouse Advisor
Olivier VERMOREL CERFACS, Toulouse Co Adviso

CALENDAR

Monday

22

April

2024

Numerical methods for Large Eddy Simulation using AVBP

From Monday 22 April 2024 to Friday 26 April 2024

  Training    

Monday

29

April

2024

Code coupling using CWIPI

Monday 29 April 2024

  Training    

Monday

13

May

2024

Implementation and use of Lattice Boltzmann Method

Monday 13 May 2024

  Training    

ALL EVENTS