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Fuel depth:
Moisture content:
Particle size:
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Vegetation Meteorology Topography

Wind in front direction: U Slope:
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At a regional-scale
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• Topology of a front.
• 1-D line spreading along a 2-D surface.

• Interface between fresh and burnt vegetation.

At a regional-scale

How to model this front spread ?

Burnt

Fresh
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1. Rate of Spread model

• Two ways to obtain the local ROS R(x,y)
1. CFD modeling of each phenomenon (dehydration, pyrolysis, ignition…):

2. Semi-empirical models based on physics and laboratory experiments:
 Describe some relevant aspects of the physics
 Provide an algebraic expression of the ROS, calibrated expression
 Easily converted from local to regional scale
 Limited computational cost
• Limited domain of validity ROS = f(vegetation, wind, slope)
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1. Rate of Spread model

• A classic semi-empirical in the forest fire community: Rothermel’s model

• Only requires fuel makeup and environmental conditions
• ROS depends linearly on fuel depth

with the proportionality coefficient
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1. Rate of Spread model

• A classic semi-empirical in the forest fire community: Rothermel’s model

• Only requires fuel makeup and environmental conditions
• ROS depends linearly on fuel depth

ROS = f(   ) for different moisture contents
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2. Propagation model

• Front modeling

• Front is described with a scalar progress variable c

0< c <1c =1 c =0
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2. Propagation model

• Propagation modeling

• Best model for front propagation at a given speed R

The Level Set equation: front tracking method to propagate a discontinuity

Requires high order numerical scheme (MUSCL + Slope limiter)
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Principle

• Modeling a wildfire front at a macroscopic scale requires :
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3. Example of fire spread simulation

Rothermel’s model + Level Set

• Heterogeneous fuel depth (e.g. surface vegetation in a forest)
• Size: 200m x 200m
• Wind in y-direction

c = 0

Fresh fuel

Starting fire
c = 1

+

Initial condition



II. Wildfire spread modeling
28

3. Example of fire spread simulation

Rothermel’s model + Level Set

• Heterogeneous fuel depth (e.g. surface vegetation in a forest)
• Size: 200m x 200m
• Wind in y-direction
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Successive front positions
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3. Example of fire spread simulation

Rothermel’s model + Level Set

• Heterogeneous fuel depth (e.g. surface vegetation in a forest)
• Size: 200m x 200m
• Wind in y-direction

Simulation  ≠ Experiments

Successive front positions

Experimental 
Observations

t=1000



Rothermel’s model + Level Set

• Heterogeneous fuel depth (e.g. surface vegetation in a forest)
• Size: 200m x 200m
• Wind in y-direction

II. Wildfire spread modeling
30

3. Example of fire spread simulation

Simulation  ≠ Experiments

How to make simulations more reliable ? 
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Why parameter calibration ?

• Sources of errors in the simulation:
• Models fidelity
• Input parameters are sources of uncertainties in the ROS determination

• Parameter correction provides
1. a better fitness of model parameters.
2. a better estimate of the front position;
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Principle

MODEL OBSERVATIONS

DATA-DRIVEN MODEL
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• Correction of the most influential and/or the most uncertain
model parameters .

Calibration technique

• BLUE (Best Linear Unbiased Estimator)

Analysis
(corrected value)

Background 
(a priori value)

Observation operator 
(simulation result  at observation points)

Observations 

Correction 
increment



• BLUE (Best Linear Unbiased Estimator)
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• Correction of the most influential and/or the most uncertain
model parameters .

• Iterative correction if necessary.

Calibration technique

Observation errors (observation uncertainties)Background errors (parameter uncertainties)

Analysis
(corrected value)

Background 
(a priori value)

Observation operator 
(simulation result  at observation points)

Observations 

Correction 
increment
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Calibration technique

• BLUE (Best Linear Unbiased Estimator)

R

B

Initial condition
Observations
Model
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Calibration technique

• BLUE (Best Linear Unbiased Estimator)

R

B
A

Initial condition
Observations
Model
Data-driven model

1) R≈B
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Calibration technique

• BLUE (Best Linear Unbiased Estimator)

R

B
A

Initial condition
Observations
Model
Data-driven model
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Calibration technique

• BLUE (Best Linear Unbiased Estimator)

R

B
A

Initial condition
Observations
Model
Data-driven model

3) R>B
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Validation framework

• Validation framework :

• Observations synthetically-generated using the fire spread model;
• Background (model parameters) and observation errors B and R perfectly

controlled;
• Quantification of the quality of the calibration algorithm (BLUE).
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Validation framework

• 2 types of observations:

• Field observations
• Front observations
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• Field observations (e.g. fixed sensors)
• Grid defined with space and time frequency
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What type of observations ?

• Field observations (e.g. fixed sensors)
• Grid defined with space and time frequency
• Observation operator : simulated field c at grid points

• Front observations (e.g. airborne observations)
• Following time-evolving locations of fire front:

- Visible or infrared imagery.
- Reconstruction of fire front positions.

Data acquisition

III. Parameter calibration
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What type of observations ?

• Field observations (e.g. fixed sensors)
• Front observations (e.g. airborne observations)

• Following time-evolving locations of fire front
• Observation operator : simulated isocontour c=0.5 at observation times

III. Parameter calibration

0< c <1c =1 c =0

c =0.5
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What type of observations ?

• Field observations (e.g. fixed sensors)
• Front observations (e.g. airborne observations)

• Following time-evolving locations of fire front
• Observation operator : simulated isocontour c=0.5 at observation times

III. Parameter calibration

Parameter correction based on the distance between  obs.         and simulations 

How to calculate the distance between observed and simulated isocontours?

Correction 
increment

BLUE algorithm
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How to calculate the distance between observed and simulated isocontours ?

1. Discretization of the modeled isocontour with points:

III. Parameter calibration
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How to calculate the distance between observed and simulated isocontours ?

1. Discretization of the modeled isocontour with points.

2. Projection of the discretized points on the observed isocontour .

3. Distance calculation between the equivalent points of and :

III. Parameter calibration



IV. APPLICATION TO

WILDFIRE SPREAD MODEL

60



61

1 parameter calibration :

• Calibration of the proportionality coefficient
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1 parameter calibration :

• Calibration of the proportionality coefficient

• Objectives:
• grant observations a high confidence ( R<B ) and check if the analysis is

equal to the true value, used for observation generation:

• compare performances between field and front observations

IV. Application to wildfire
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1 parameter calibration :

• Assimilation configuration:

• Heterogeneous fuel distribution
• Initial condition : centered circle

IV. Application to wildfire

c = 0 

Fresh fuel
Starting fire

c = 1 +

Initial condition
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1 parameter calibration :

• Assimilation configuration:

• Heterogeneous fuel distribution
• Initial condition : centered circle

• True value: = 0.1
- order of magnitude given by Rothermel’s model for no-wind, no-slope

conditions

• Different of values of parameter estimation (background) tested

IV. Application to wildfire
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1 parameter calibration :

• Performances:
• True value: = 0.1

IV. Application to wildfire

Background  Type of obs. Analysis

0.02 (-80%) Field 0.02

Front 0.10

0.07 (-30%) Field 7.61

Front 0.10
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1 parameter calibration :

• Performances:
• True value: = 0.1

IV. Application to wildfire

No correctionOut of range

Background  Type of obs. Analysis

0.02 (-80%) Field 0.02

Front 0.10

0.07 (-30%) Field 7.61

Front 0.10



• Performances:
• True value: = 0.1
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1 parameter calibration :

IV. Application to wildfire

Front observations > Field observations



• Performances:
• True value: = 0.1

Correction of      = 0.04 (-60%) with front obs.

68

1 parameter calibration :

IV. Application to wildfire

Front observations > Field observations

Correction of      = 0.07 (-30%) with field obs.
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Conclusions
• Forest fire spread is an innovative application of data assimilation

• Preliminary study by Mélanie Rochoux has been a good starting point

• New assimilation strategy for front observations is more adapted
• Contain more information than field observations
• Provide better assimilation results

• Several parameters has been calibrated at the same time
• Input parameters
• Experimentally fitted parameters from Rothermel’s model

• Non-linearitiy impact overcome thanks to iterative calibration process

• The robustness of the method allows a wide study of configurations
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Perspectives

• Ongoing application to real data

• Use CFD model to obtain better parametrization of the ROS

• Use other assimilation methods such as Ensemble Kalmann Filter to
assimilate both front positions and model parameters

• Couple fire spread model with an atmosphere model
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Thank you for your attention !

Questions ?


