

Supervisor: Sophie Ricci

Supervisor: Arnaud Trouvé

Parameter Calibration Using Data Assimilation for Simulations of Forest Fire Spread

Blaise DELMOTTE

CERFACS, September 13, 2011

Outline

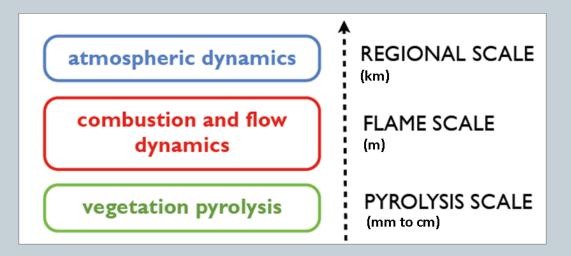
2

- I. Context
- II. Wildfire spread modeling
- III. Data assimilation for parameter calibration
- IV. Application to wildfire spread model
- V. Conclusions and perspectives

I. CONTEXT

What is a wildfire?

• A multi-physics multi-scale phenomenon



5

What is a wildfire?

- A multi-physics multi-scale phenomenon
- Highly dependent on local conditions

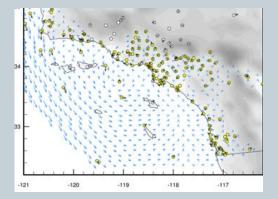
What is a wildfire?

- A multi-physics multi-scale phenomenon
- Highly dependent on local conditions

Vegetation

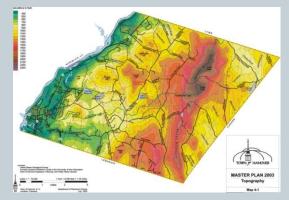
Meteorology

Fuel depth: δ Moisture content: M_f Particle size: σ



Wind in front direction: U

Topography



Slope: $tan \phi$

At a regional-scale

8

At a regional-scale

• Topology of a front.

9

At a regional-scale

- Topology of a front.
- 1-D line spreading along a 2-D surface.

10

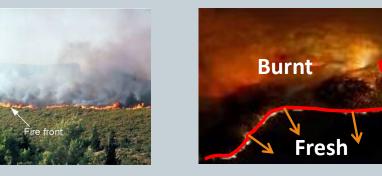
At a regional-scale

- Topology of a front.
- 1-D line spreading along a 2-D surface.

Interface between fresh and burnt vegetation.

At a regional-scale

- Topology of a front.
- 1-D line spreading along a 2-D surface.



Interface between fresh and burnt vegetation.

How to model this front spread ?

II. WILDFIRE SPREAD MODELING

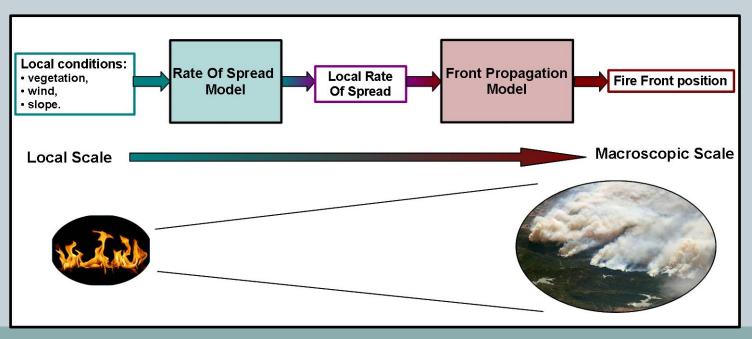
12

13

- Modeling a wildfire front at a macroscopic scale requires :
 - 1. A model to determine the local Rate Of Spread (ROS): R(x,y)

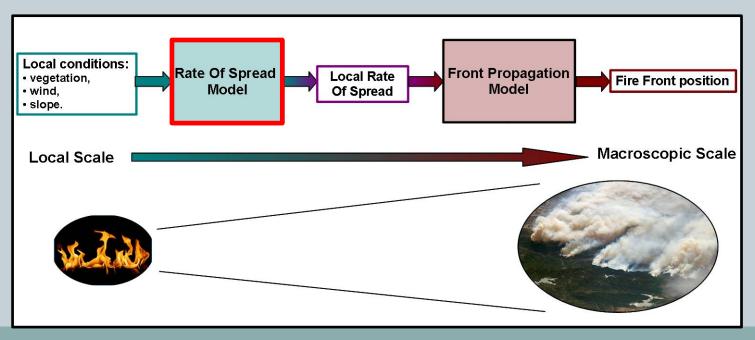
- Modeling a wildfire front at a macroscopic scale requires :
 - 1. A model to determine the local Rate Of Spread (ROS): R(x,y)
 - 2. A model to propagate the front at a given speed R(x,y)

- Modeling a wildfire front at a macroscopic scale requires :
 - 1. A model to determine the local Rate Of Spread (ROS): R(x,y)
 - 2. A model to propagate the front at a given speed R(x,y)



16

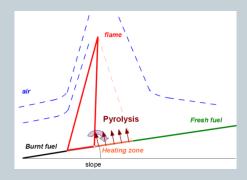
- Modeling a wildfire front at a macroscopic scale requires :
 - 1. A model to determine the local Rate Of Spread (ROS): R(x,y)
 - 2. A model to propagate the front at a given speed R(x,y)



• Two ways to obtain the local ROS **R**(x,y)

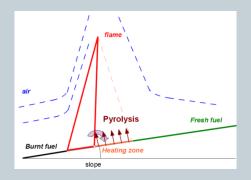
1. Rate of Spread model

- Two ways to obtain the local ROS **R**(x,y)
 - 1. CFD modeling of each phenomenon (dehydration, pyrolysis, ignition...):



1. Rate of Spread model

- Two ways to obtain the local ROS R(x,y)
 - 1. CFD modeling of each phenomenon (dehydration, pyrolysis, ignition...):



2. Semi-empirical models based on physics and laboratory experiments:

- ✓ Describe some relevant aspects of the physics
- ✓ Provide an algebraic expression of the ROS, calibrated expression
- Easily converted from local to regional scale
- Limited computational cost
- Limited domain of validity

ROS = f(vegetation, wind, slope)

TOULOUSE

II. Wildfire spread modeling

1. Rate of Spread model

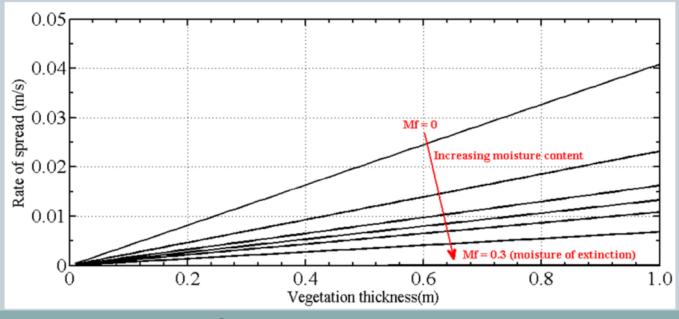
- A classic semi-empirical in the forest fire community: Rothermel's model
 - Only requires fuel makeup and environmental conditions
 - ROS depends linearly on fuel depth δ

$$R(x,y,t) = \tau(x,y,t)\delta(x,y)$$

with $\tau(x, y, t) = f(\beta, \sigma, M_f, U(x, y, t), \tan(\phi))$ the proportionality coefficient

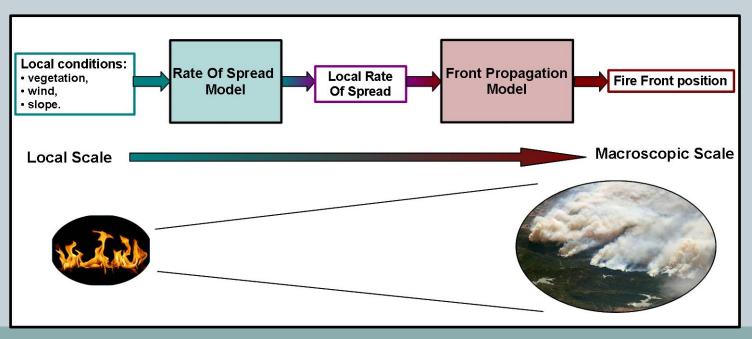
1. Rate of Spread model

- A classic semi-empirical in the forest fire community: Rothermel's model
 - Only requires fuel makeup and environmental conditions
 - ROS depends linearly on fuel depth δ

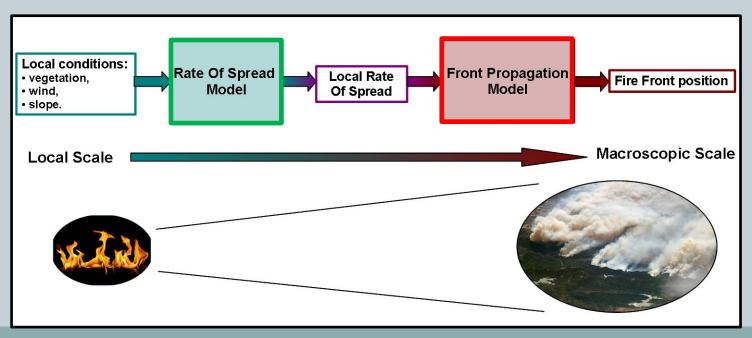


ROS = f(δ) for different moisture contents M_f

- Modeling a wildfire front at a macroscopic scale requires :
 - 1. A model to determine the local Rate Of Spread (ROS): $R(x,y) \sqrt{}$
 - 2. A model to propagate the front at a given speed R(x,y)

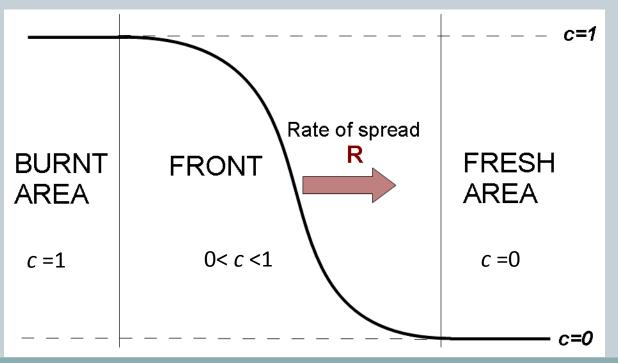


- Modeling a wildfire front at a macroscopic scale requires :
 - 1. A model to determine the local Rate Of Spread (ROS): $R(x,y) \sqrt{}$
 - 2. A model to propagate the front at a given speed R(x,y)



2. Propagation model

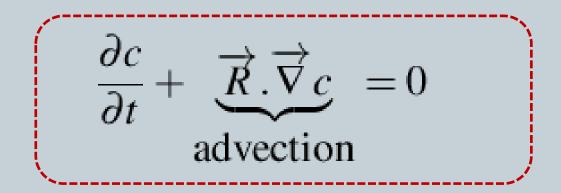
- Front modeling
 - Front is described with a scalar progress variable c



2. Propagation model

- Propagation modeling
 - Best model for front propagation at a given speed **R**

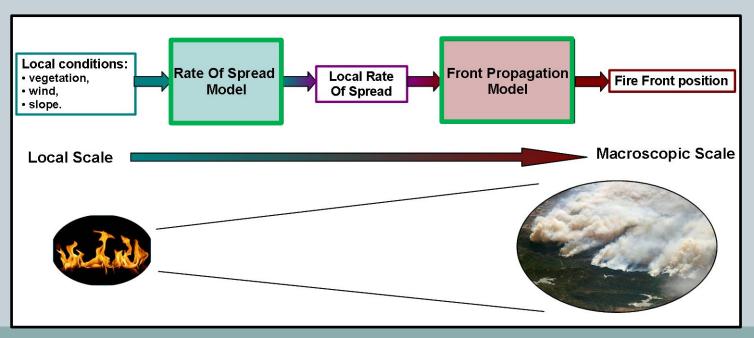
The Level Set equation: front tracking method to propagate a discontinuity



Requires high order numerical scheme (MUSCL + Slope limiter)

26

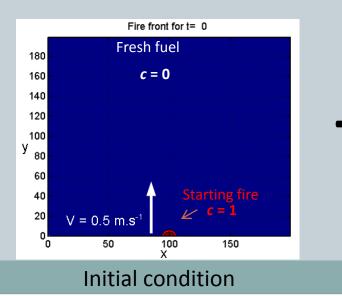
- Modeling a wildfire front at a macroscopic scale requires :
 - 1. A model to determine the local Rate Of Spread (ROS): $R(x,y) \sqrt{}$
 - 2. A model to propagate the front at a given speed R(x,y)

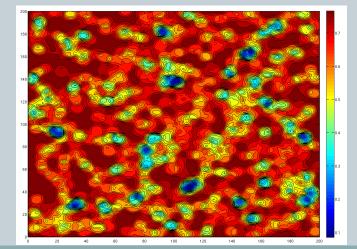


3. Example of fire spread simulation

Rothermel's model + Level Set

- Heterogeneous fuel depth (e.g. surface vegetation in a forest)
- Size: 200m x 200m
- Wind in y-direction



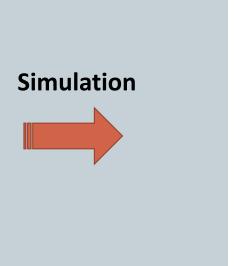


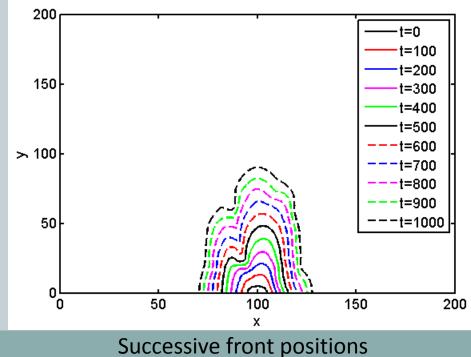
 $0.1m < \delta(x, y) < 0.8m$

3. Example of fire spread simulation

Rothermel's model + Level Set

- Heterogeneous fuel depth (e.g. surface vegetation in a forest)
- Size: 200m x 200m
- Wind in y-direction



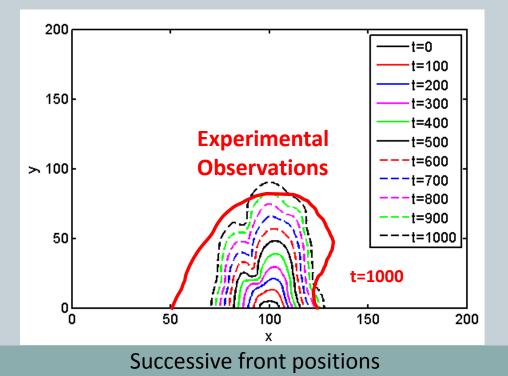


3. Example of fire spread simulation

Rothermel's model + Level Set

- Heterogeneous fuel depth (e.g. surface vegetation in a forest)
- Size: 200m x 200m
- Wind in y-direction

Simulation ≠ Experiments

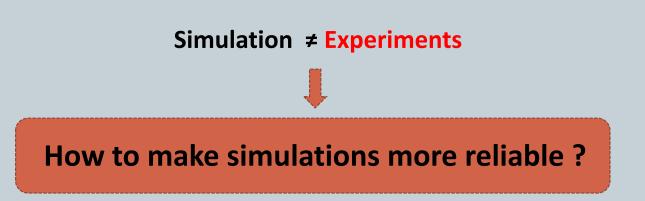


30

3. Example of fire spread simulation

Rothermel's model + Level Set

- Heterogeneous fuel depth (e.g. surface vegetation in a forest)
- Size: 200m x 200m
- Wind in y-direction

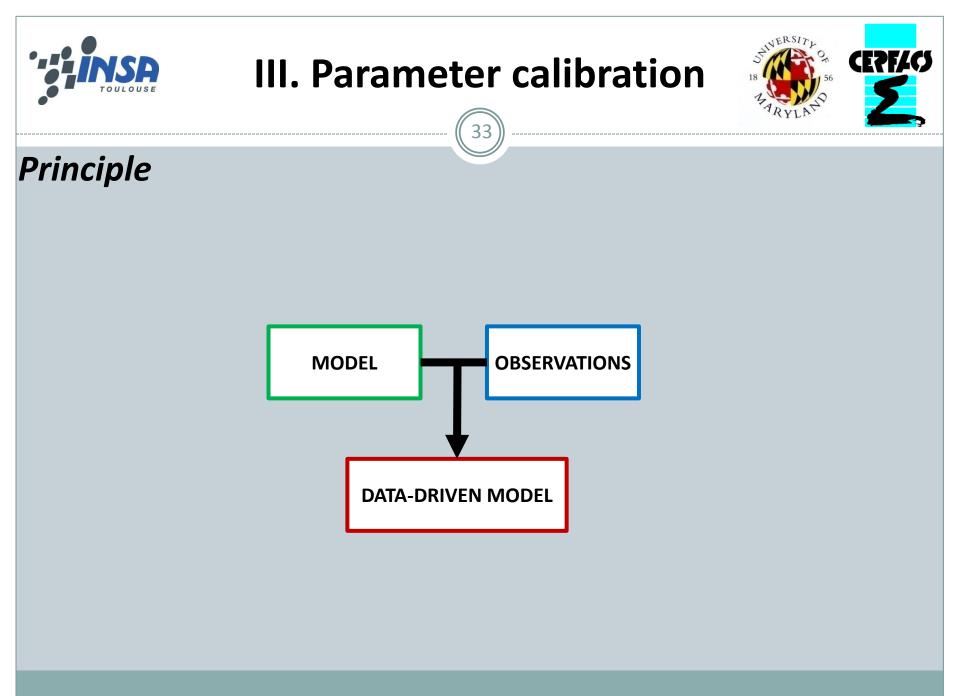


III. DATA ASSIMILATION FOR PARAMETER CALIBRATION

III. Parameter calibration

Why parameter calibration ?

- Sources of errors in the simulation:
 - Models fidelity
 - Input parameters are sources of uncertainties in the ROS determination
- Parameter correction provides
 - 1. a better fitness of model parameters.
 - 2. a better estimate of the front position;



III. Parameter calibration

34

Calibration technique

- BLUE (Best Linear Unbiased Estimator)
 - Correction of the most influential and/or the most uncertain model parameters \mathbf{X}^b .

$$\mathbf{X}^{a} = \mathbf{X}^{b} + \left[\mathbf{K} \left(\mathbf{Y}^{o} - H(\mathbf{X}^{b}) \right) \right]^{\mathsf{fincement}}$$
 increment

AnalysisBackground
(corrected value)ObservationsObservation operator
(simulation result at observation points)

Ba

III. Parameter calibration

35

Calibration technique

- BLUE (Best Linear Unbiased Estimator)
 - Correction of the most influential and/or the most uncertain model parameters \mathbf{X}^b .

$$\mathbf{X}^{a} = \mathbf{X}^{b} + \mathbf{K} \left(\mathbf{Y}^{o} - H(\mathbf{X}^{b}) \right)$$

Analysis
(corrected value)

$$\mathbf{X}^{a} = \mathbf{X}^{b} + \mathbf{K} \left(\mathbf{Y}^{o} - H(\mathbf{X}^{b}) \right)$$

$$\mathbf{X}^{a} = \mathbf{X}^{b} + \mathbf{K} \left(\mathbf{Y}^{o} - H(\mathbf{X}^{b}) \right)$$

$$\mathbf{Background}$$

(*a priori* value)

$$\mathbf{Observations}$$

$$\mathbf{Observation operator}$$

(*simulation result at observation points*)

$$\mathbf{K} = \mathbf{BH}^{T} \left(\mathbf{HBH}^{T} + \mathbf{R} \right)^{-1}$$

(ckground errors (parameter uncertainties)

$$\mathbf{M} = \mathbf{M}^{T} \left(\mathbf{M}^{T} + \mathbf{R} \right)^{-1}$$

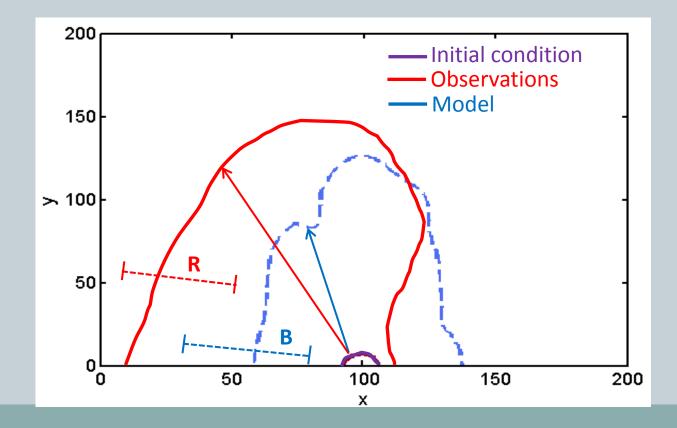
• Iterative correction if necessary.

III. Parameter calibration

36

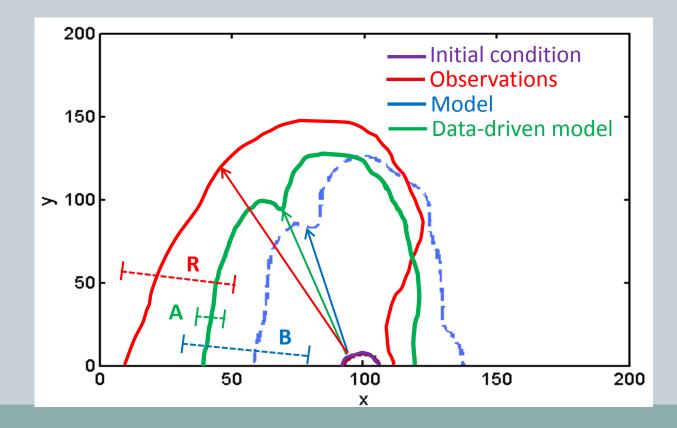
Calibration technique

BLUE (Best Linear Unbiased Estimator)



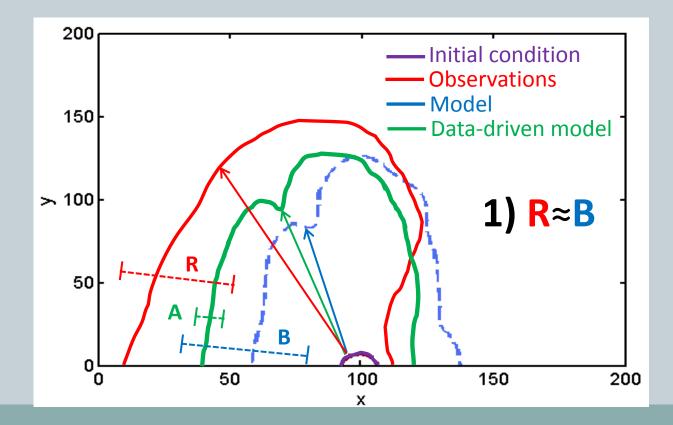
37

Calibration technique



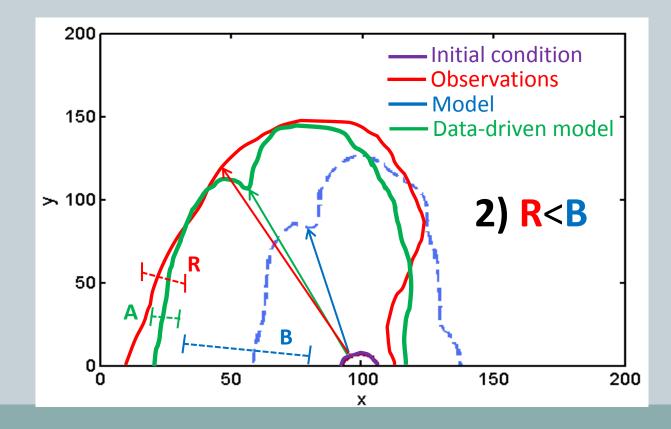
38

Calibration technique

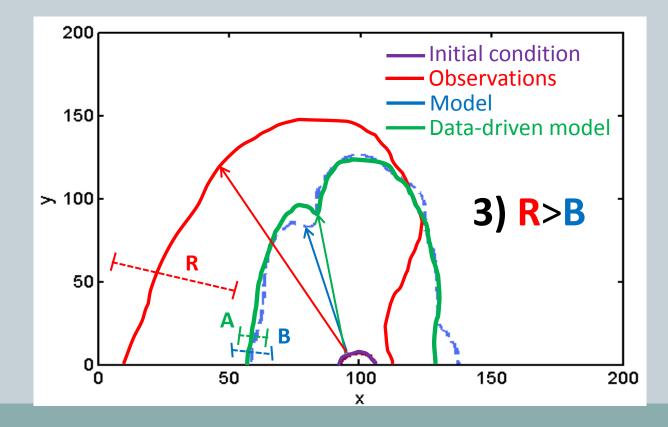


39

Calibration technique



Calibration technique



Validation framework

- Validation framework :
 - Observations synthetically-generated using the fire spread model;
 - Background (model parameters) and observation errors **B** and **R** perfectly controlled;
 - Quantification of the quality of the calibration algorithm (BLUE).

42

Validation framework

- 2 types of observations:
 - Field observations
 - Front observations

43

What type of observations Y^o?

- Field observations (e.g. fixed sensors)
 - Grid defined with space and time frequency

What type of observations Y^o?

- Field observations (e.g. fixed sensors)
 - Grid defined with space and time frequency



45

What type of observations Y°?

- Field observations (e.g. fixed sensors)
 - Grid defined with space and time frequency
 - Observation operator $H(\mathbf{X})$: simulated field c(x,y,t) at grid points

What type of observations Y^o?

- Field observations (e.g. fixed sensors)
 - Grid defined with space and time frequency
 - Observation operator $H(\mathbf{X})$: simulated field c at grid points

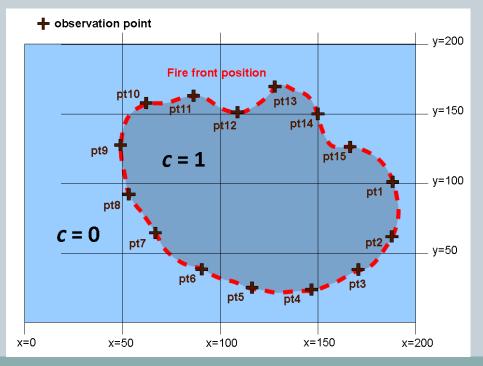
Front observations (e.g. airborne observations)

- Following time-evolving locations of fire front:
 - Visible or infrared imagery.
 - Reconstruction of fire front positions.

Data acquisition

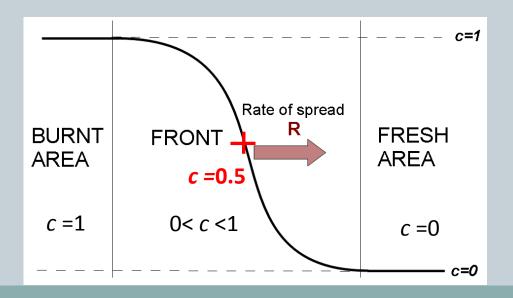
What type of observations Y^o?

- Field observations (e.g. fixed sensors)
- Front observations (e.g. airborne observations)
 - Following time-evolving locations of fire front:



What type of observations Y°?

- Field observations (e.g. fixed sensors)
- Front observations (e.g. airborne observations)
 - Following time-evolving locations of fire front
 - Observation operator $H(\mathbf{X})$: simulated isocontour *c=0.5* at observation times



What type of observations Y^o?

- Field observations (e.g. fixed sensors)
- Front observations (e.g. airborne observations)
 - Following time-evolving locations of fire front
 - Observation operator $H(\mathbf{X})$: simulated isocontour *c=0.5* at observation times

BLUE algorithm

Parameter correction based on the distance between obs. \mathbf{Y}^o and simulations $H(\mathbf{X})$

What type of observations Y^o?

- Field observations (e.g. fixed sensors)
- Front observations (e.g. airborne observations)
 - Following time-evolving locations of fire front
 - Observation operator $H(\mathbf{X})$: simulated isocontour *c=0.5* at observation times

BLUE algorithm

Parameter correction based on the distance between obs. \mathbf{Y}^o and simulations $H(\mathbf{X})$

$$\mathbf{X}^{a} = \mathbf{X}^{b} + \mathbf{K}\left(\mathbf{Y}^{o} - H(\mathbf{X}^{b})\right)^{\prime} \overset{\mathbf{C}}{\mathsf{ir}}$$

Correction increment

What type of observations Y^o?

- Field observations (e.g. fixed sensors)
- Front observations (e.g. airborne observations)
 - Following time-evolving locations of fire front
 - Observation operator $H(\mathbf{X})$: simulated isocontour *c=0.5* at observation times

BLUE algorithm

Parameter correction based on the distance between obs. \mathbf{Y}^o and simulations $H(\mathbf{X})$

$$\mathbf{X}^{a} = \mathbf{X}^{b} + \mathbf{K}\left(\mathbf{Y}^{o} - H(\mathbf{X}^{b})\right)^{\mathbf{C}}$$
 in

Correction increment

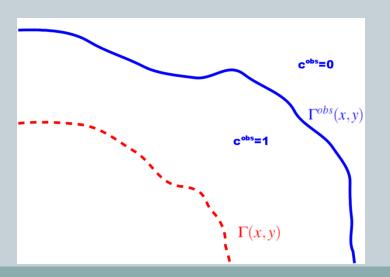
How to calculate the distance between observed and simulated isocontours?

How to calculate the distance between observed and simulated isocontours ?

52

1. Discretization of the modeled isocontour $\Gamma(x, y, t)$ with N_p points:

 $H(\mathbf{X}) = D\left(\Gamma(x, y, t)\right)$

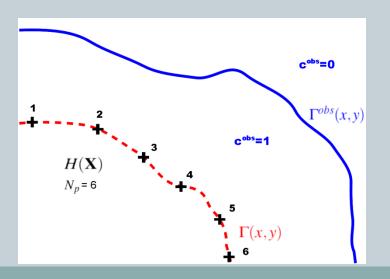


How to calculate the distance between observed and simulated isocontours ?

53

1. Discretization of the modeled isocontour $\Gamma(x, y, t)$ with N_p points:

 $H(\mathbf{X}) = D\left(\Gamma(x, y, t)\right)$



How to calculate the distance between observed and simulated isocontours ?

54

1. Discretization of the modeled isocontour $\Gamma(x, y, t)$ with N_p points:

$$H(\mathbf{X}) = D\left(\Gamma(x, y, t)\right)$$

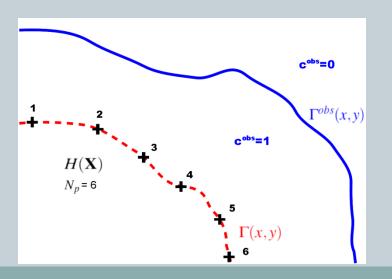
2. Projection of the discretized points on the observed isocontour $\Gamma^{obs}(x, y, t)$:

$$\mathbf{Y}^o = P\left(H(\mathbf{X})\right)$$

How to calculate the distance between observed and simulated isocontours ?

- **1.** Discretization of the modeled isocontour $\Gamma(x, y, t)$ with N_p points.
- **2.** Projection of the discretized points on the observed isocontour $\Gamma^{obs}(x, y, t)$:

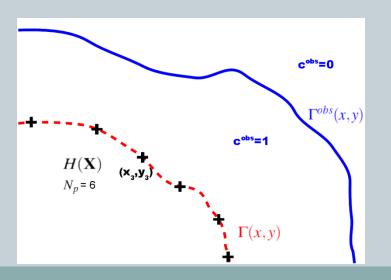
$$\mathbf{Y}^o = P\left(H(\mathbf{X})\right)$$



How to calculate the distance between observed and simulated isocontours ?

- **1.** Discretization of the modeled isocontour $\Gamma(x, y, t)$ with N_p points.
- **2.** Projection of the discretized points on the observed isocontour $\Gamma^{obs}(x, y, t)$:

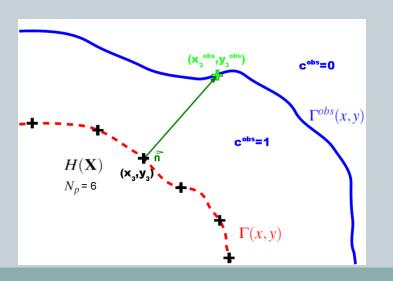
$$\mathbf{Y}^o = P(H(\mathbf{X}))$$



How to calculate the distance between observed and simulated isocontours ?

- **1.** Discretization of the modeled isocontour $\Gamma(x, y, t)$ with N_p points.
- **2.** Projection of the discretized points on the observed isocontour $\Gamma^{obs}(x, y, t)$:

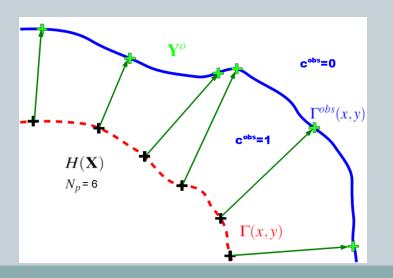
$$\mathbf{Y}^o = P(H(\mathbf{X}))$$



How to calculate the distance between observed and simulated isocontours ?

- **1.** Discretization of the modeled isocontour $\Gamma(x, y, t)$ with N_p points.
- **2.** Projection of the discretized points on the observed isocontour $\Gamma^{obs}(x, y, t)$:

$$\mathbf{Y}^o = P\left(H(\mathbf{X})\right)$$



How to calculate the distance between observed and simulated isocontours ?

59

- **1.** Discretization of the modeled isocontour $\Gamma(x, y, t)$ with N_p points.
- **2.** Projection of the discretized points on the observed isocontour $\Gamma^{obs}(x, y, t)$.
- **3.** Distance calculation between the equivalent points of $\Gamma(x, y, t)$ and $\Gamma^{obs}(x, y, t)$:

 $\mathbf{d} = \mathbf{Y}^o - H(\mathbf{X})$

IV. APPLICATION TO WILDFIRE SPREAD MODEL

61

1 parameter calibration : au

• Calibration of the proportionality coefficient au

 $R(x, y, t) = \tau(x, y, t)\delta(x, y)$

1 parameter calibration : au

• Calibration of the proportionality coefficient au

$$R(x,y,t) = \tau(x,y,t)\delta(x,y)$$

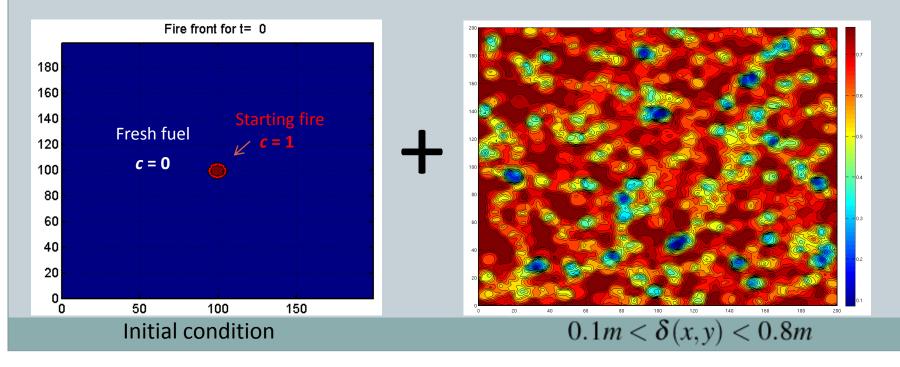
- Objectives:
 - grant observations a high confidence (R<B) and check if the analysis is equal to the true value, used for observation generation:

$$\tau^a = \tau^t$$

• compare performances between field and front observations

1 parameter calibration : au

- Assimilation configuration:
 - Heterogeneous fuel distribution
 - Initial condition : centered circle



1 parameter calibration : au

- Assimilation configuration:
 - Heterogeneous fuel distribution
 - Initial condition : centered circle
 - True value: $\tau^l = 0.1$
 - order of magnitude given by Rothermel's model for no-wind, no-slope conditions
 - Different of values of parameter estimation (background) tested

 $0.2\tau^{\prime} < \tau^{b} < 1.8\tau^{\prime}$

65

1 parameter calibration : au

- Performances:
 - True value: $\tau^{l} = 0.1$

Background $ au^b$	Type of obs.	Analysis $ au^a$
0.02 (-80%)	Field	0.02
	Front	0.10
0.07 (-30%)	Field	7.61
	Front	0.10

66

1 parameter calibration : au

- Performances:
 - True value: $\tau^{t} = 0.1$

Out of range No correction			
Background $ au^b$	Type of obs.	Analysis $ au^a$	
0.02 (-80%)	Field	0.02	
	Front	0.10	
0.07 (-30%)	Field	7.61)	
	Front	0.10	

1 parameter calibration : au

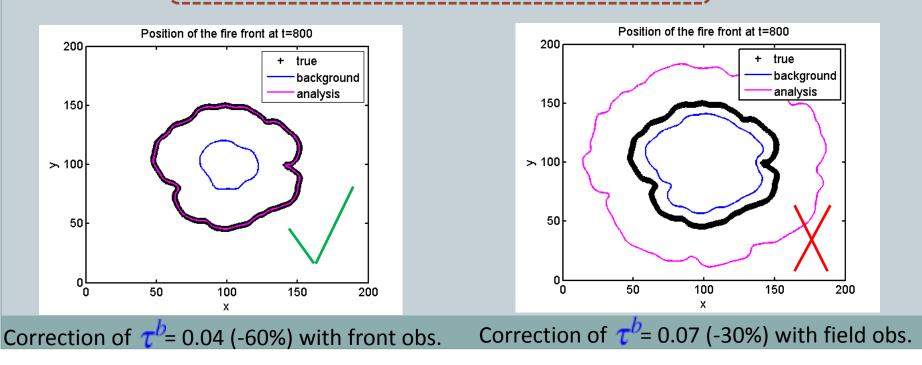
- Performances:
 - True value: $\tau^{t} = 0.1$

Front observations > Field observations

1 parameter calibration : au

- Performances:
 - True value: $\tau^{t} = 0.1$

Front observations > Field observations



V. CONCLUSIONS AND PERSPECTIVES

V. Conclusions

Conclusions

- Forest fire spread is an innovative application of data assimilation
- Preliminary study by Mélanie Rochoux has been a good starting point
- New assimilation strategy for front observations is more adapted
 - Contain more information than field observations
 - Provide better assimilation results
- Several parameters has been calibrated at the same time
 - Input parameters
 - Experimentally fitted parameters from Rothermel's model
- Non-linearitiy impact overcome thanks to iterative calibration process
- The robustness of the method allows a wide study of configurations

V. Conclusions

Perspectives

- Ongoing application to real data
- Use CFD model to obtain better parametrization of the ROS
- Use other assimilation methods such as Ensemble Kalmann Filter to assimilate both front positions and model parameters
- Couple fire spread model with an atmosphere model

72)--

Thank you for your attention !

Questions ?