Critical issue for EXP and CFD: CAD to 3D printing

H. Magnes, S. Marragou, M. Vilespy, T. Schuller

H2 Week, Thursday 29, 2024

Critical issue for EXP and CFD: CAD to 3D printing and other details

H. Magnes, S. Marragou, M. Villespy, T. Schuller

H2 Week, Thursday 29, 2024

3D printing, 10 years ago

Consequences on velocity profiles at burner outlet

ooo PIV

- - - - Simulations with the geometry of the initially desired swirler design

_____ Simulations with the geometry that was printed

Ub= 9.88 m/s, Re_D=7900

Consequences on velocity profiles at burner outlet

ooo PIV

- - - - Simulations with the geometry of the initially desired swirler design

_____ Simulations with the geometry that was printed

Velocity field inside the radial swirler

Desired geometry

Printed geometry

Fig. 5. Velocity field, colored by the velocity magnitude, in a section at the middle of the swirler height (2 mm) for swirler 1 (left) and swirler 2 (right).

3D printing, today

MSHI – 3D printing

3D printing via Direct Metal Laser Sintering (DMLS) in Inconel 718 No thermal treatment

Polishing by sandblasting

What is the precision with respect to drawing?
 What about reproducibility?

IMFT X-ray tomograph

Tomographic X-ray process

Rotating sample

X-ray absorption by matter

Slice reconstruction

Image post-processing

- 1. Selection of relevant cut planes.
- 2. Overlay of X-ray images and CAD sketch section at identical scales (Inkscape)
- 3. Orientation of the Z-cut: X-ray vs. CAD

Comparison between CAD and printed swirler

- Difference in air inlet channel profile: approximately 0.4
 mm.
- Poor quality of the printing for sharp angles of the air inlet channel (support is required for printing in these areas)

Comparison between CAD and printed swirler

0.4 mm difference in the diameter of the deflector

Difference of 0.1 mm on H2 tube diameter

Updated CAD with respect to X-ray tomography

Comparisons between EXP and CFD: an example

Target flames

FLAME A (Anchored) $U_{air} = 12 m/s$ $U_{H_2} = 14 m/s$ $P = 3.8 kW - \phi = 0.45$

FLAME L (Lifted) $U_{air} = 29 m/s$ $U_{H_2} = 35 m/s$ $P = 9.5 kW - \phi = 0.45$

Initial PIV – LES comparisons

Marragou / Aniello

Flame L Cold flow

Initial PIV – LES comparisons

Marragou / Aniello

Flame L Hot flow

Check list

- Geometry
- Air and fuel mass flowrates
- Leaks
- Air and fuel temperatures
- Geometry
- Laser sheet alignment
- Quality of seeding
- Geometry
- Air and fuel mass flowrates
- PIV parameters: ∆T between laser pulses, interrogation windows
- Laser sheet thickness

Particle size!

Stokes Number : $S_{tk} = \frac{\tau_p}{\tau_g} = \frac{\rho_p d_p^2}{18 \, \mu_g} \frac{u_g}{l_g} \checkmark 1$ Balistic particles (insensitive to the small structures of flow)

50361-10, TYPE DX, ALPHA ALUMINA POWDER, Nom particule Desired powder Nom particule	
Riamètan (cure)	50361-10, TYPE DX, ALP <mark>H</mark> A ALUMINA POWDER, 1um
Densité velumjque (g/cm3)	1. 322 705
Diamètre (um)	1
Tau_g (St_K =0.1)	1,22E-04
Tau_ g a(<u>សt</u> pk(ອ)0.01)	1,22E-03
ug (m/s)	50
lg (mm)	3
Tau_g	6,00E-05
St_k	0,20
lg (mm)	3
Tau_g	6,00E-05
Ch. I.	0.20

Nom particule Final Densité volumique (g/cm3)	Dioxyde de zirconium, 96-98 %, extra pur, powd^Pefi sher Chemical 5,85
Diamètre (um) Nom particule	Dioxyde de zirconiu <mark>n0</mark> 96-98 %, extra pur, SLR, Fisher Chemical
Densité vælumiqse (g/cm3)	1, <i>B</i>98 503
Diamètre (um)	10
Tau_g (St_K =0.1)	1,/9E-02
Tau_ g (St_K =0.01) Fau_ p (s)	1;19E-03
ug (m/s)	50
lg	3
Tau_g	6,00E-05
St_k	29,872
lg	3
Tau g	6,00E-05

Comparison between intial and final PIV

Final PIV vs LES

EXP / CFD comparisons: A long chain process

Focal point for database M. Villespy

Other defects

Impact of spoiler on flame stabilization

