Experimental analysis of hydrogen combustion @IMFT MINISTÈRE NSEIGNEMENT SUPÉRIEUR

Thierry Schuller

Institut de Mécanique des Fluides de Toulouse Université Paul Sabatier **OLIVIER HOUDÉ** Institut Universitaire de France Administrateur de l'IUF

Contributions:

G. Oztarlik, S. Marragou, H. Magnes, T. Yahou, H. Pers, H. Paniez, E. Flores-Montoya, M. Durand, M. Lenninger, A. Teixera, D. Güleryüz, M. Hamdaoui T. Guiberti, T. Poinsot, L. Selle

ET DE LA RECHERCHE

Liberté

Égalité

Fraternité

H2 week, IMFT, February 27, 2024

JNIVERSITÉ

Direction générale de l'enseignement supérieur et de l'insertion professionnelle professionnelleIntitulé do la diroction institut gnes universitaire

Low carbon hydrogen production and its final use

A widespread of low carbon H2 is only possible with abundant and cheap electricity

Develop numerical tools and validate to design safe and reliable H2 power units

erc

Established by the European Commission

These technologies cannot be designed without **new fundamental science for H2 combustion**

H2 combustion issues studied @ IMFT

Noise

Thermoacoustics

Hydrogen combustion lab

6 test benches adapted to optical diagnostics and acoustic characterization

IMFT test rigs are designed and instrumented for CFD

Upstream boundary conditions

• Hotwire: mean, rms, time resolved

Air/N2 injection

Tu =300 - 700 K

 $250 \text{ nm}^3/\text{h}$

- Pressure drop
- Acoustic impedance
- Acoustic modulations

~1 bar

Flow field analysis: up to 10 cm x 10 cm

- 2D stereoscopic PIV: mean, rms, phase synchro.
- OH-PLIF : flame front, burnt gases
- CH* OH* : line of sight (high speed)

Walls:

- Temperatures: pyrometers, thermocouples, IR camera, LIP
- Heat flux

Downstream boundary conditions

- Velocity: PIV
- Temperature: radiative corrected thermocouples
- Species concentrations:
 O2, CO2, CO, CH4, H2
 NO, NO2
- Acoustic impedance
- Acoustic modulations

Zoomed diagnostics: Down to 2 mm x 2 mm

- Hot wire, PIV: u, urms
- PIV OH-PLIF: flow, flame
- Raman scattering (mixing)
- Schlieren

Fuel injection conditionsIgnitionCH4, C3H8, H2• Spark $P_i = 1 - 5$ bar, $T_i = 300 - 700$ K• Laser80 kW

1. Operability of multi perforated laminar premixed burners

Domestic boiler burners

Aniello et al. IJHE (2022) 47:33067

Nominal operation with Natural Gas

 $\begin{array}{l} 1.15 \leq \lambda \leq 1.55 \\ 0.65 \leq \phi \leq 0.85 \end{array}$

Turndown ratio : 3 kW – 30 kW

$$P = 3 \text{ kW}$$

 $\phi = 0.6$
 $\mathcal{P}_{H_2} = 0.4$

Radiant mode

Burner 2

Adiabatic mode

Burner 1 operating map

Aniello et al. IJHE (2022) 47:33067

Fixed thermal power P = 3 kW

Air excess ratio needs to be increased with H2 content in the fuel (higher pressure drop)

Hydrogen injection increases flashback propensity at low power

Demixing induced by preferential diffusion

DNS A. Aniello @ IMFT

For lean H2/air mixtures Le<1, ϕ increases in the wake of the injection hole

Delayed blow off

Aniello et al. IJHE (2022) 47:33067

Blow off is not an issue for H2/air flames

Analysis of flashback

Aniello et al. IJHE (2022) 47:33067

Flashback dynamics

Pers et al. IJHE (2023) 48:10235

Burner 2 with optical acccess from the top

Before flashback

After flashback

High speed OH* emission during flashback, ϕ =0.75, X_{H2}=0.95, T_w=1050 K 16 kHZ

Pers et al. IJHE (2023) 48:10235

- (1) Hemispherical expansion
- (2) Flame accelerationwith flame fingersalong hot walls
- (3) Flame propagation in the bulk with thermo-diffusive instabilities

Flashback mechanisms

Pers et al. IJHE (2023) 48:10235

 ϕ = 0.60, PH2 = 100%, 3 kW ϕ = 0.78, PH2 = 65%, 3 kW **Hydrodynamics Auto-ignition** HY-FB **AI-FB** wall initiation hole $t = 0.062 \ ms$ t = 0.062 ms

Flashback can be initiated from a hole or from a hot solid surface

FB-HY: Hydrodynamic flashback

FB-AI: Flashback induced by auto-ignition

Auto-ignition takes place when residence time is larger than autoignition time

Crossover temperature T_c

Sanchez & Williams PECS (2014)

Above T_c , chain branching explosion leads to a sudden drop of ignition delay

Impact of hole size

Pers et al. CNF (2024) in revision

Reducing the hole size does not reduce flashback propensity

2. Jet flames ignition dynamics

Ignition is a critical issue in many combustors

Courtesy of C. Mirat EM2C

Good ignition

- Systematic ignition of flammable mixture
- Smooth transition of flame kernel to burner stabilized flame with the desired shape
- Limited pressure overshoot

Chamber pressure evolution

Ignition dynamics of CH4/H2/air mixtures

The chamber back pressure can be increased with perforated plates at the combustor exhaust

Yahou et al. (2024) JEGTP, 146:011023

Impact of ignition sequence:

- Fuel first/spark after
- Spark first/fuel after
- Variation of pre-fueling time

With H2, transient flashback can occur over a broad part of the operability domain

Pressure overshoot

Yahou et al. (2023) PCI, 39:4641

For the same pressure overshoot, H2 flames have a higher propensity to flashback

Flame displacement speed

 U_{b} = 5 m/s, S_L=0.25 m/s, U_b/S_L=20

H2 flames have higher resistance to strain rate Thermodiffusive effects increase H2 flame speed Yahou et al. (2024) Submitted Int. Symp. Comb., 2024 Yahou et al. (2024) CNF, in revision 5 kHz PIV / OH-PLIF

3. Partially premixed model gas turbine burner

Aerojet gas turbine MICROMIX concept

Convential chamber

Micromix chamber

Disruptive technology with a deep modification of combustion chamber architecture

MICROMIX injectors : many small hydrogen jets in air cross-flow

hydrogen injectors

Structure of lean premixed CH4/H2 swirled flame

Effect of H2 add. on premixed flame stabilization

Guiberti et al. (2015) PCI, 35:1385 Mercier et al. (2016) CNF, 171:42

ϕ =0.79, P=4 kW, OH* chemiluminescence + Abel inversion

As the H2 content increases, elongated V-flames transit to compact M-flames with an additional reaction layer stabilized in the OSL

Hydrogen enriched premixed flames are more compact and more resistant to aerodynamic strain and enthalpy losses leading to increased thermal stress on the burner

Fully premixed H2-air swirled burner

S. Marragou PhD IMFT

Turbulent lean premixed H2-air swirled flames are extremely sensitive to flashback

HYLON : Hydrogen Dual Swirl Low NOx burner

- Late hydrogen injection
- Swirled hydrogen injection

Richard, Viguier, Marragou, Schuller, FR Patent No FR21111267, 2021

Impact of S_i on H2/air mixing rate

S. Marragou PhD IMFT

Cold flow velocity field (PIV) a) 1.5 S = 0.0

Swirling hydrogen improves the mixing rate at the burner outlet

Well mixed limit

Two stabilization regimes

Marragou et al. (2022) IJHE 47: 19275

Stabilization chart @ p=1 bar, T=300 K

Magnes et al. GT2023-103192

Analysis of flame re-anchoring

Reduction of the hydrogen injection velocity *U_i*

High speed image of flame re-anchoring

Line of sight OH* visualization (16 kHz)

Aniello et al. (2023) CNF, 249:112585

TFUP : Triple Flame Upstream Propagation zone

TFUP zone: $u_t < S_d$ Marragou et al. PCI (2023) 255:112908

Triple flame displacement speed $S_d = S_L^0 \left(\rho_u / \rho_b \right)^{1/2}$

Flame stabilization deduced from

- cold flow PIV: u_t
- cold flow Raman scattering: Z₀ Marragou et al. CNF (2023) 39:4345

Flame re-anchoring prediction

 U_i : hydrogen velocity at which transition to anchored flame takes place

Magnes et al. JEGTP (2024) 146:051004

Impact of air preheating, p=1 atm, $S_i=0.6$

Marragou et al. CNF (2023) 39:4345 Impact of swirl, p=1 atm, T_0 =300 K

High pressure test @ ONERA

High pressure ONERA Palaiseau Micado test rig

G. Pilla, ONERA

Test at engine relevant thermodynamic conditions

NOx emissions

Magnes et al. JEGTP (2024) 146:051004

NOx scale with adiabatic flame temperature and residence time

At high power, NOx are independent of thermal power

Blow off

Magnes et al. ASME Turbo Expo, June 2024, London

Flame front fragmentation at the tip (local extinctions) at very lean operating conditions

Interplay between unburnt and NOx emissions

Compromise between NOx and unburnt emissions. Combustion efficiency increases with preheat temperature.

Combustion noise

Marragou, Paniez

P = 7.5 kW, Re_{D} =25000, ϕ ~0.5 HYLON DFDS version PH20 (H2+CH4/air) PH100 (H2+air)

Combustion roar noise peaks at higher frequencies with hydrogen

Thermo-acoustic stability

Paniez PHD IMFT

Higher H2 content results in (1) broader conditions experiencing TAI (2) emergence of high frequency TAI

High frequency instabilities

c)

Paniez et al. Sub

Spinning pressure wave

Conclusion

Efforts to characterize hydrogen flames at IMFT will be pursued with its partners

Thermoacoustics

Ignition, combustion noise, hydrogen gaseous leaks, flame wall interactions

High pressure

P < 10 bar <100 kW

Francazal and HYROPE

Francazal H2 techno campus 2025

200 m² combustion lab
6 new slots for experiments
2 high pressure test facilities

P < 10 bar (2026)

Conclusion

- Decarbonization requires high volumetric fractions of (green) hydrogen in the fuel mixture
- Fuel injectors and block gas regulation systems need to be adapted to fuel blends with reduced Wobbe index and reduced calorific value
- In premixed systems, large air excess ratio are needed to limit NOx emissions and flashback but generate in turn higher pressure drops
- Injector nozzle thermal stress and flashback are the main issues due to high flame displacement speed and high resistance to strain of H2 flames
- Growing number of hydrogen injectors are tested worldwide in order to improve burner reliability and operability with limited NOx

Conclusion

- Decarbonization requires high volumetric fractions of (green) hydrogen in the fuel mixture
- Fuel injectors and block gas regulation systems need to be adapted to fuel blends with reduced Wobbe index and reduced calorific value
- In premixed systems, large air excess ratio are needed to limit NOx emissions and flashback but generate in turn higher pressure drops
- Injector nozzle thermal stress and flashback are the main issues due to high flame displacement speed and high resistance to strain of H2 flames
- Growing number of hydrogen injectors are tested worldwide in order to improve burner reliability and operability with limited NOx

But many issues need to be addressed

- Ignition is more violent with hydrogen
- Higher autoignition risk due to lower ignition delay
- Turbul
 Therm flames
- Hydrogen fueled flames are more receptive to incoming flow disturbances
- H2 kinetics needs to be improved to predict pollutant concentrations (NO, NO₂, N₂O)
- Near wall H2 chemistry is not well known
- ..

Take away message

Urgent need of experiments for model and CFD validations

- Fundamental properties of H2/air flames
- Canonical laminar and turbulent configurations with detailled data
- Engine relevant thermodynamic conditions : T=1000 K, p=30 bar

European Research Council Established by the European Commission

Thanks to

- H. Pers
- H. Magnes

- L. Selle T. Poinsot
- T. Yahou T. Morinière
- A. Aniello
- S. Marragou
- E. Flores-Montoya

H2 combustion in porous media

Poster Enrique Flores Montoya

Poster of the HYLON flame

INSTITUT DE FRANCE Académie des sciences

CŒUR DE FEU

Ine flamme esquissant un cœur, quoi de plus es atours romantiques. bilisation des flammes. ations allant des fournaises aux cées dans l'aéronautique

IMFT/CNR

CI

H2 combustion dynamics issues we are not able to predict

Flashback

Noise

Combustion instabilities

Burners powered by natural gas two examples

Domestic boilers p=1 atm

T= 20°C, ambiant air

Air excess ratio

 $\begin{array}{l} 1.15 \leq \lambda \leq 1.55 \\ 0.65 \leq \phi \leq 0.85 \end{array}$

Gas turbines

Laminar flames stabilized on perforates New boilers are ready for 20% H₂ p= 20-40 bar, T=700-900 K, swirling flames Some turbines already handle 50-70% H_2 in the fuel blend

Systems powered by natural gas are challenged by H₂ injection

Domestic boiler burners

Impact of hydrogen in natural gas network

Wobbe Index [MJ/m³] WI = $\frac{HHV}{\sqrt{d}}$

 $d = \frac{\rho_g}{\rho_a} \quad \begin{array}{l} \mbox{Relative gas density with} \\ \mbox{respect to air @ 15°C} \\ \mbox{and 1 atm} \end{array}$

Hydrogen reduces Wobbe index and calorific value of natural gas when mixed with it

CH4/H2 fuel blends

$$X_{H_2} = \frac{n_{H_2}}{n_{CH_4} + n_{H_2}} \quad \begin{array}{l} {\rm H_2 \, volume \, fraction} \\ {\rm in \, the \, fuel \, mixture} \end{array}$$

Stoichiometric combustion

$$X_{CH_4}CH_4 + X_{H_2}H_2 + 2\left(O_2 - \frac{3}{2}X_{H_2}\right) \longrightarrow X_{CH_4}CO_2 + (2 - X_{H_2})H_2O$$

0

25

51

Fraction of power originating from H2 combustion

$$\mathcal{P}_{H_2} = \frac{Y_{H_2}Q_{H_2}}{Y_{CH_4}Q_{CH_4} + Y_{H_2}Q_{H_2}}$$

Fuel Emission 55 Factor (gCO_2/MJ)

Decarbonization of combustion devices requires large volumetric fractions of H_2 in the fuel mixture $\frac{3}{3}$

Decarbonization

Factor (gCO₂/MJ)

Fraction of power originating from H2 combustion

$$\mathcal{P}_{H_2} = \frac{Y_{H_2}Q_{H_2}}{Y_{CH_4}Q_{CH_4} + Y_{H_2}Q_{H_2}}$$

Decarbonization of combustion devices needs large volumetric fractions of H₂ in the fuel mixture

CH4/H2-air mixture properties

$$X_{H_2} = \frac{n_{H_2}}{n_{CH_4} + n_{H_2}}$$

For lean combustible mixtures ($\phi < 0.8$), hydrogen injection does not alter T_{ad} for $X_{H2} < 0.2$, but drastically increases S_{L}^{0} for $X_{H2} > 0.1$

H2/air mixtures properties

Adiabatic flame simulations, UCSD chemistry, p=1 atm, T=300 K

Flame speed of H2/air mixtures

H2/air - T=300 K, p=1 atm

Courtesy of Jean-Jacques Hok @ Cerfacs

Beeckmann et al, PCI (2017) 36:1531 Constant volume bomb experiments

Wide disparity of laminar burning velocity for lean H2/air flames

Thermo-diffusive instabilities of lean H2/air flames

Hok et al. ICDERS 2022

The displacement speed of lean hydrogen premixed flames is strongly altered by non equidiffusive transport properties

Berger et al. CNF (2022) 240:111935 Berger et al. CNF (2022) 240:111936

NOx formation pathways et emissions

Fig. 17. Schematic representation of the pathways, reactions and molecules involved in the NO formation for H_2 /air combustion.

Magnes et al. GT 2023-103192

NOx emissions remain under control, but why?

Laminar flame speed

Scheme validation for mixture used in DNS

Targeted mixtures

Table 1: Characteristics of the flammable mixtures

Fuel	ϕ	$\delta_{\rm th}$	S_1	T_{ad}
-	-	mm	cm/s	Κ
CH_4	1.00	0.4449	36.41	2212
H_2	0.45	0.4467	40.09	1529

Thermodiffusive instabilities in turbulent H2 flames

Berger et al. (2022) CNF: 111935 & 111936

DNS, Tu=298 K, p=1 atm

The consumption speed of lean hydrogen premixed flames is strongly altered by thermodiffusive instabilities

Flashback during thermal transient

Thermoacoustic instabilities

D. Durox, EM2C

Natural gas fueled domestic boiler

Boiler supplied with natural gas and equipped with an induction mixer. The metal enclosure "breathes" with flames that expand and contract periodically at very low frequency 10-20 Hz

Thermoacoustic instabilities

H2 fueled domestic boiler

Strong tonal noise emission at high at f=1.8 kHz!

Ignition dynamics

T. Yahou PhD IMFT/NTNU

30

Fully premixed non-swirling jet burner $U_b = 5 \text{ m/s}$, $S_L = 0.25 \text{ m/s}$, $U_b/S_L = 20$

Hydrogen powered systems have violent ignition dynamics possibly leading to a temporary reversal flow (flashback)

Aerojet engine gas turbine

..... are powered by kerosene

Hollow cone fuel spray injector

2x10⁵ frames/s T. Morinière PhD IMFT

How to switch to hydrogen?

Premixed swirled CH4/H2-air flames

Flame stabilization

P=10 kW S_i=0.9 S_e=0.7 $J = \frac{\rho_e u_e^2}{\rho_i u_i^2} \leftarrow \frac{CH_4}{Air mixture (\phi_e)}{H_2}$

$\mathcal{P}_{H_2}=0$	$\mathcal{P}_{H_2}=0.2$	$\mathcal{P}_{H_2} = 0.4$	$\mathcal{P}_{H_2} = 0.6$	$\mathcal{P}_{H_2}=0.8$	$\mathcal{P}_{H_2} = 0.98$
$\varphi = 0.70$	$ \phi = 0.67 \\ \phi_e = 0.56 \\ J = 172 \\ u_e = 26 \text{ m/s} \\ u_i = 7 \text{ m/s} $	$\phi = 0.65$	$\phi = 0.62$	$\phi = 0.60$	$\phi = 0.58$
$\varphi_e = 0.70$		$\phi_e = 0.42$	$\phi_e = 0.28$	$\phi_e = 0.14$	$\phi_e \sim 0.01$
$J = \inf$		J=42	J=18	J=10	J=7
$u_e = 26 \text{ m/s}$		$u_e = 25 \text{ m/s}$	$u_e = 25 \text{ m/s}$	$u_e = 24$ m/s	$u_e = 24 \text{ m/s}$
$u_i = 0 \text{ m/s}$		$u_i = 15 \text{ m/s}$	$u_i = 22 \text{ m/s}$	$u_i = 30$ m/s	$u_i = 36 \text{ m/s}$

15

Effect of pilot jet injection on NOx emissions

Oztarlik (2020) CNF 214

HYLON : NOx emissions

Marragou et al. (2022) IJHE 47: 19275--19288

Lifted flames lead to reduced NOx emissions

Stabilization chart @ p=1 bar, T=300 K

Magnes et al. GT2023-103192

Dual fuel dual swirl non-premixed injector

Swirling the fuel yields compact and lifted flames Degenève et al. (2019) JEGTP 141:121018

