

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

Impact of thermodiffusive effects in lean turbulent hydrogen flames

Francis Meziat, Thomas Jaravel, Quentin Douasbin, Omar Dounia, Olivier Vermorel

Hydrogen Week, IMFT, 27/02/2024

www.cerfacs.fr

Context Challenges related to hydrogen for turbulent combustion modeling

- Compared to conventional hydrocarbons
 - Effective Lewis << 1 on the lean side
- Response of flame structure to stretch
- Cellular flame instability

- Interplay between turbulence and cellular instability?
- Implications for turbulent combustion model?

Figure 3: Snapshot of the flame surface area of the LamUnstable case colored by the heat release. The flame surface area is defined by an iso-surface of progress variable at $C_{\rm H_2}$ = 0.8. The initially flat flame is propagating towards an inlet and the flame propagation indicated by arrow.

Berger et al. C&F 2022

Context **Combustion models for Large Eddy Simulation**

- Many ways to tackle this problem
 - (Presumed) PDF models
 - Flame surface density
 - Linear Eddy models
 - Artifically thickened flame model 'TFLES'

Modification of the governing equations

 $D \to FD$

$$\frac{\partial}{\partial x_i} \left(\rho u_i Y_k \right) = \frac{\partial}{\partial x_i} \left(\rho F D \frac{\partial Y_k}{\partial x_i} \right) + \frac{\dot{\omega}_k}{F}$$
$$\dot{\omega} \to \frac{\dot{\omega}}{F} \qquad D \to F D$$

Context **Artificial flame thickening: what do we lose?**

DNS of flame turbulence interaction

- Loss of flame wrinkling !
- Introducing a so-called correction: the efficiency function 'E'

$$\frac{\partial}{\partial x_i} \left(\rho u_i Y_k \right) = \frac{\partial}{\partial x_i} \left(\rho EFD \frac{\partial Y_k}{\partial x_i} \right) + EFD \frac{\dot{\omega}_k}{F}$$

LES of the same case with **F=2**

F : controls the flame front resolution on the grid E: compensates the unresolved flame wrinkling

$$S_l \propto \sqrt{\dot{\omega}D} \to \sqrt{E\dot{\omega}/F} \times EFD = E\sqrt{\dot{\omega}D}$$
$$S_l^T \propto \sqrt{D/\dot{\omega}} \to \sqrt{\frac{EFD}{E\dot{\omega}/F}} = F\sqrt{D/\dot{\omega}}$$

Context Role of stretch in the geometrical approach

Turbulent flame speed

Turbulent flame brush

- Main impact of turbulence =
- Increase of the flame surface

Damköhler hypothesis

$$S_T = A_T / A_0 \times S_L^0$$

Surface enhancement Laminar flame speed

Context Validity of the geometrical approach

- Flamelet hypothesis
 - Assuming Karlovitz number Ka is moderate

•
$$Ka = \tau_{flamme} / \tau_{turb} \simeq \delta_L^2 / \eta^2 \simeq u_\eta^2 / S_L^2$$

• The flame structure remains locally a laminar structure (but which one?)

Borghi diagram

Peters, 1999

Context Derivation of the efficiency function

In the TFLES context

$$E = S_{F=1}^{\Delta} / S_{F>1}^{\Delta}$$

 $\Delta = \text{LES filter scale}$

How is it estimated ?

- Algebraic models: $E = f(u'/S_L, L_T/\delta_l)$
- Transport equation
- Dynamic (scale similarity) models

Context The fractal concept

• Algebraic model based on fractal concept (Charlette et al. C&F 2002)

 $E = (1 + \Delta/\eta_i)^{\beta}$

 β = power-law exponent = D-2 (fractal dimension)

 η_i = cutoff limit of the fractal range

Different asymptotic regimes

-
$$\eta > L_G, \delta_L$$

- $L_G > \delta_l > \eta$ = Damkohler limit

- $\delta_l > L_G, \eta$ = bending effect

et al., C&F, 2013

Context **Derivation of the efficiency function**

• Balance equation for the sub grid-flame surface (Colin et al. 2000)

Context What about hydrogen? 'Thermodiffusive effects'

Damköhler hypothesis must be modified

Turbulent flame speed

Surface enhancement

Laminar flame speed

- Arising questions
 - Does the flamelet hypothesis remains valid (strained or unstrained?)
 - What is the interplay between turbulent and cellular instability:
 - Surface wrinkling: low Lewis number/TD unstable flame = more wrinkling?
 - Increased reactivity: 10 resulting from cellular instability and/or turbulent stretching
 - Competition, interaction?

'Stretch factor'

= global effect of local flame speed enhancement

Wrinkling and burning rate of a

Aspden et al. 2011

Lean hydrogen **Brief literature review**

Aspden et al. JFM, 2011: Lean ($\phi < 0.4$) flames with Ka = 10 - 1500

- At high Karlovitz number, transition to distributed combustion regime with no extinction
- Strong local enhancement of burning speed

FIGURE 5. Two-dimensional vertical slices through three-dimensional simulations showing density, burning rate and temperature at $\varphi = 0.31$, respectively. The density range is [0.2,1.02] kg m⁻³ in each case. The burning rate is shown between zero and 15, 25, 35 and 45 kg m⁻³ s⁻¹, respectively. The temperature range is [298,1600] K in each case.

11

Lean hydrogen **Brief literature review**

- Howarth et al. C&F 2023
- Dataset with large range of operating points (turbulent intensity, pressure, temperature)
- Flame scales based on Aspden et al. PCI 2011: S_L and δ_L taken from 1D TD-unstable freely propagating flame

F-Normalization

(TD unstable flame)

Unstretch flame parameters

Normalization

Lean hydrogen **Brief literature review**

• Howarth et al. C&F 2023, Aspden et al. PCI 2011

Proposed correlation for stretch factor

Local flame speed enhancement (' I_0 ') vs Ka_F

ctor
$$I_0 \propto I_0^{TD,lam}(1 + \alpha \sqrt{Ka_F})$$

 $Ka_F = Ka$ number based on laminar unstable flame

DNS of lean hydrogen flames **Numerical setup**

etc.)

Low intensity turbulence injected to kickstart fluctuations $u' = 10\% U_{bulk}$

Classical setup for turbulent flame in forced HIT to (Savard C&F 2015, Aspden 2011 JFM,

Through a linear momentum source term

DNS of lean hydrogen flames **Operating points**

Characteristics for the two equivalence ratio considered

Equivalence ratio ϕ	0.36	0.52
Laminar flame speed s_1^0 (m/s)	0.134	0.609
Laminar flame thickness δ_l^0 (µm)	879	364
Adiabatic flame temperature T_{ad} (K)	1318	1675
Characteristic flame time $\tau_{\rm f}~({\rm ms})$	6.6	0.59
Flame Reynolds number $Re_{\rm f} = s_1^0 \delta_1^0 / \nu_{\rm u}$	6	11
Effective Lewis number <i>Le</i> _{eff}	0.37	0.43

Two chemistries:

- San Diego, with real Lewis numbers (LeRe) → thermodiffusive effects and instabilities
- Fitted 1-step, unitary Lewis numbers (Le1) \rightarrow no thermodiffusive effects

DNS of lean hydrogen flames **Operating points**

Time of the smaller turbulent scales (Kolmogorov)

Outer to inner scale ratio L_t/δ_l^0 fixed for a given domain size

	u'/s_1^0	Increasing turbulent intensit			
Case		Ka^0	ϕ	Re_{t}	
A36	0.38	0.25	0.36	13	
B36	0.76	0.70	0.36	25	
C36	3.0	5.5	0.36	99	
D36	6.0	16	0.36	198	
E36	11	40	0.36	372	
F36	15	62	0.36	496	
A52	0.47	0.5	0.52	25	
B52	0.75	1	0.52	40	
C52	2.2	5	0.52	116	
D52	3.5	10	0.52	184	
E52	5.6	20	0.52	292	
F52	8.8	40	0.52	464	

ty

List of cases of study

DNS of lean hydrogen flames Effect of Karlovitz number

ϕ = 0.52 San Diego chemistry

Turbulent unstable flame Ka⁰=0.5

Turbulent unstable flame Ka⁰=40

DNS of lean hydrogen flames Effect of Lewis number

SanDiego (LeRe) chemistry

 $Ka^0 = 0.5$

 $Ka^0 = 40$

DNS of lean hydrogen flames Effect of Lewis number

SanDiego (LeRe) chemistry

 $Ka^0 = 0.5$

 $Ka^0 = 40$

DNS of lean hydrogen flames Flame structure San Diego Real Lewis number L52Thermodiffusive effects: - Cellular wrinkling Laminar - Increased consumption in regions of positive curvature À52 $Ka^0 = 0.5$ Increased consumption though C52higher curvature at higher Ka $Ka^{0} = 5$ Effective widening of the region F52with fuel consumption with Ka $Ka^0 = 40$

Unity Lewis Number

No cellular structure ≠ LeRe

Constant consumption – Flame unaffected by stretch

Turbulence-wrinkled structure increasingly similar to LeRe

DNS of lean hydrogen flames

DNS of lean hydrogen flames Key takeaways for modeling

Thermodiffusive effects are very significant in lean hydrogen flames

• Low Ka: Cellular instability mechanism

• High Ka: turbulent stretching

Local flame speed enhancement

$$I_0/I_0^{lam} - 1 \approx \sqrt{Ka}$$

Modified flame scales $(S_I, \delta_I) = Modified$ wrinkling

22

Wrinkling of turbulent H2 flames Fractal analysis

• Fractal parameters extracted with a box counting method $E = (1 + \Delta/\eta_i)^{\beta}$

et al., C&F, 2013

Fractal analysis **Inner-cut off scale**

Cut-off scale vs Karlovitz number

O Le1 chemistry

O LeRe chemistry

• The slope is consistent with findings from Hawkes et al., C&F, 2012: $\eta_{
m i}/\delta_{
m l}^0 \propto Ka^a$ a=0.22-0.265

24

Fractal analysis **Inner cut-off scale**

- δ_1 and Ka based on laminar un stretched quantities
 - Aspden et al. 2011, 2023 suggest to use laminar unstable quantities
- Following a similar idea: δ_l and Ka based on effective stretched quantities (measured by I_0)

Fractal analysis **Fractal dimension**

Fractal dimension vs Karlovitz number

- Positive trend for fractal dimension vs. Karlovitz number
- Consistent with theoretical bounds: passive flame front limit $\beta = 0.67$

O Le1 chemistry O LeRe chemistry 'stretched' scaling

Fractal analysis Summary

- Trends for Le1 cases largely consistent with the literature in terms of wrinkling
- Le<1 cases can be collapsed to Le1 with proper scaling by stretched laminar quantities implying
 - Thinner cut-off scale
 - Lower effective Karlovitz number (divided by ≈ 10 in our case, up to ≈ 20 in DNS of Aspden group) -> Lower fractal dimension

Fractal dimension and inner-cutoff scale from various exp. and num. datasets (Skiba et al. PCI, 2020)

 $_{L}C_{R} = 0.88$ Methane-air Güder et al. 2000 (OH-PLIF): ε/1.55 Propane-air Güder et al, 2000 ¥(Mie): ε/1.55 2.3Propane-air Chen, Mansour 2003 M-flames (PRS): ε/1.85 (a) 2.] Methane-air Chen, Mansour 2003 \times F-flames (PRS): $\epsilon/1.85$ $a_{all} =$ Methane-air 0.215Hawkes et al. 2012 $i_i^{l/\delta}$ (DNS): $\varepsilon_i \times 10$ H₂-air Fit to all: Shim et al. 2011 $R^2 = 0.762$ \blacktriangle (DNS): $\varepsilon_i \times 4$ H₂-air Aspden et al. 2010 (DNS) Supernovae $10^{0} \frac{10^{1}}{Ka_{T,P}}$ 10

27

Key takeaways for modeling

- Cellular instability: significant in the low Ka limit (cellular wrinkling + stretch factor effect) where it is the main contributor to small-scale wrinkling
 - MOD5 approach ($S_T = \Xi_{turb} \times \Xi_{TD} \times I_0$) may be valid for $L_G > > \delta_l$ (hard to verify in DNS)
- Local reactivity enhancement (' I_0 '): synergistic effect between turbulence/TD effects

•
$$I_0 \propto I_0^{TD,lam}(1 + \alpha \sqrt{Ka})$$

- Flame surface wrinkling: High Karlovitz number = high turbulent stretching
 - \rightarrow thinner flame brush = lower inner cut-off
 - \rightarrow lower effective Karlovitz number = lower fractal dimension
 - Overall trend = more wrinkling

• Buiding criterion for the significance of TD instability in turbulent flows? (Chomiak et al., Physical Review E, 2023)

