ZCERFACS

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

CFD tools specificities for H2 flames and available/recommended models in AVBP for hydrogen/air flames.

Quentin DOUASBIN H2 Week • IMFT • 2024.02.27

www.cerfacs.fr

Chemical Kinetics Just this once, H_2 is simpler to model than conventional fuels

Conventional fuels (e.g. kerosene)

- Global chemistries: $N_{\rm spec} \simeq 6, N_{\rm reac} \simeq 2$
- Analytically Reduced Chemistries $N_{\rm spec} \simeq 20 - 30, N_{\rm reac} \simeq 200 - 500$
- Detailed chemistries (e.g. CRECK [1]): $N_{\rm spec} \simeq 600, N_{\rm reac} \simeq 30000$

[1] Bieleveld et al., Proc. Comb. Inst., 2009

[2] Saxena & Williams, Combust. Flame, 2006

Hydrogen

- Global chemistries: $N_{\rm spec} \simeq 4, N_{\rm reac} \simeq 1$
- Analytically Reduced Chemistries
- Detailed chemistries (e.g., UCSD aka San Diego [2]): $N_{\rm spec} \simeq 9, N_{\rm reac} \simeq 21$

ECERFACS

Transport properties

• For conventional fuels, two dynamic viscosity laws are typically used:

Sutherland

$$\mu = c_1 \frac{T^{3/2}}{T + c_2} \frac{T_{ref} + c_2}{T_{ref}^{3/2}}$$

Transport properties Laminar viscosity of the gas

Power law

$$\mu = c_1 \left(\frac{T}{T_{ref}}\right)^b$$

These laws are based on air. \rightarrow is this valid for H₂/Air flames?

Transport properties Laminar viscosity of the gas

Let's consider a canonical counterflow non-premixed flame

6 | **Z**CERFACS **I I I I I**

Transport properties Laminar viscosity of the gas

Transport properties Laminar viscosity of the gas

$$\mu = \frac{X_{H_2}\mu_{H_2}}{X_{H_2} + (1 - X_{H_2})\phi_{H_2,\text{air}}} + \frac{(1 - X_{H_2})\mu_{\text{air}}}{X_{H_2}\phi_{air,H_2} + 1 - X_{H_2}}$$

$$\phi_{air,H_2} = \frac{\left[1 + \left(\frac{\phi_{air}}{\phi_{H_2}}\right)^{1/2} \left(\frac{W_{H_2}}{W_{air}}\right)^{1/4}\right]^2}{2\sqrt{2} \left(1 + \frac{W_{air}}{W_{H_2}}\right)^{1/2}}$$

D. Laera & F. Garnier

Wilke's binary mixing between Pure H2 and Air

Power law

$$\mu_{H_2}(T) = \mu_{ref,H_2} \left(\frac{T}{T_{ref,H_2}}\right)^{\alpha_{H_2}}$$
$$\mu_{air}(T) = \mu_{ref,air} \left(\frac{T}{T_{ref,air}}\right)^{\alpha_{air}}$$

D. Laera & F. Garnier

Transport properties Laminar viscosity of the gas

ECERFACS 9

Accuracy

Species diffusion coefficient

Based on Schmidt number

$$D_k = \frac{\mu}{\rho \mathrm{Sc}_k}$$

• For Wilke's law: we changed μ , Sc_k has • For Wilke's law: we changed μ , P_r has to be adjusted to recover the correct to be adjusted to recover the correct Species diffusion coefficient heat condition coefficient

Transport properties Species diffusion & heat conduction

Heat conduction coefficient

Based on Prandtl number

$$\lambda = \frac{\mu C_p}{\Pr}$$

• Pr_k and Sc_k of the major species are tabulated: H_2 , O_2 , N_2 , H_2O

D. Laera & F. Garnier

Transport properties Wilke's Law: variable Prandlt & Schmidt numbers

Non-adiabatic wall treatments

► A well-known case in the literature of H₂ FWI [1]

[1] Gruber et al. (JFM, 2010)

IFHC model for H₂ FWI i Laminar FWI - standard wall treatment I A well-known case in the literature of H₂ FWI [1]

a) H₂ reaction rate vanishes at the wall \rightarrow local quenching b) Heat release rate peaked values at the wall \rightarrow unexpected behavior

[1] Gruber et al. (JFM, 2010)

16 | **ZCERFACS I I I I I**

Isothermal wall $T_{wall} = T_{fresh}$

Fresh gases *S*_L $T_{fresh} = 300 \text{ K}$ \blacktriangleleft $u_{fresh} = 0 \text{ m/s}$

Per

 $x_{wall} = 0 \text{ m}$

Performed with both San D

[3] Schönfeld and Rudgyard (AIAA,

[4] Poinsot and Lele (JCP, 1993)

Periodicity

<section-header><text></text></section-header>	Non-reflecting pressure outlet [4 $P_{out} = 1$ bar
riodicity	
<i>x</i> _{flame}	L
iego [5] and Burke [6] schem	nes
1999) [5] Saxena and Williams (CNF, 2006) [6] Burke et al. (IJHE, 2010)	17 Z CERFACS – –

outlet [4]

IFHC model for H₂ FWI Laminar FWI - standard wall treatment Definitions

Reduced variables

 $x^{*} = x/\delta_{L} \longrightarrow x^{*} = 0: \text{ free propagation}$ $t^{*} = (t - t_{Q})s_{L}/\delta_{L} \longrightarrow t^{*} = 0: \text{ quenching instant}$ $T^{*} = (T - T_{f})/(T_{b} \longrightarrow 0: \text{ post interaction}$ $\dot{\omega}^{*} = \dot{\omega}_{T}/\dot{\omega}_{T}^{0} \longrightarrow \dot{\omega}^{*} = 1: \text{ free propagation}$

Quantities of interest

$$Pe = x_{flame}/\delta_L$$

easiest-to-acess physical Φ_{wall} parameter in EXP.

IFHC model for H₂ FWI Laminar FWI - standard wall treatment

Results for a standard inert wall treatment

[21] De Nardi et al. (CNF, 2024)

IFHC model for H₂ FWI Laminar FWI - standard wall treatment

Results for a standard inert wall treatment

HOQ $t^* = 0$ 3.02.00 $-\Phi_{wall}$ $t^* = -0.003$ $[^{2}_{2.5}]$ 1.75 $\begin{array}{ccc} & 0 \\ 9 & 8 \\ \end{array} \\ temperature T \end{array}$ Wall heat flux Φ_{wall} [MW $_{0.2}$ WM $_{0.2}$ [MW $_{0.2}$ 1.501.251.00 [[mail] $4^{n_{\rm H}}$ $4^{n_{\rm H}}$ 10.20.75 pg Beduce 0.20 A 0.250.00 0.0-0.50.00.5-1.01.0Reduced time t^*

ZCERFACS 20

distance

IFHC model for H₂ FWI Laminar FWI - standard wall treatment Results for a standard inert wall treatment

- Gradient stiffened during FWI: 0 $\delta_L = 28\Delta x$ recommended [13,15]
- Effect of grid resolution: 0 $\delta_L = 7\Delta x - 224\Delta x$
- $\dot{\omega}^*$ peak at quenching does not 0 converge when the mesh is refined

\rightarrow III-posed problem

[21] De Nardi et al. (CNF, 2024)

[5] Saxena and Williams (CNF, 2006)

[6] Burke et al. (IJHE, 2010)

Close to the non-adiabatic wall

- Cooling of the preheat zone \rightarrow rate 0 of (1) and (2) decreases
- Very fast diffusion of H radical 0 seems to be the problem ($Le_H \simeq 0.1$)
- Only way to consume these radicals 0 is through $(3) \rightarrow$ highly exothermic

22

IFHC model for H₂ FWI Can we assume wall as inert? ii

- **Inert wall assumption?**
 - Lack of experimental validation for premixed H₂ FWI (Φ_{wall})
 - Sticking coefficient for H/O/OH to match EXP. explosion limits [20, 21]
 - Wall-coating material type \rightarrow significant impact on FWI [22]

- - Exist for hydrocarbons [23] and H₂ [24, 25]
 - Also suffer from a lack of experimental validation
 - Can significantly increase computational cost!

[15] Liu et al. (ACS, 2020) [17] Fan et al. (PCI, 2021) [19] Aghalayam et al. (CTM, 2022) [18] Popp and Baum (CNF, 1997) [20] Zhao et al. (CNF, 2022) [16] Li et al. (ENF, 2022)

Heterogeneous catalysis: using detailed surface chemistry mechanisms

IFHC model for H₂ FWI A simplified approach for FWI

Infinitely Fast Heterogeneous Catalysis (IFHC) [21]

• Energy conservation:

Heat released at wall by IFHC

[21] De Nardi et al. (CNF, 2024)

- Global surface chemistry: total, irreversible, occurring in 1 timestep:
 - $2H + O \to H_2O \qquad (1)$
 - $H + OH \rightarrow H_2O$ (2)
 - $4H + O_2 \rightarrow 2H_2O \quad (3)$

Enthalpy of formation of species k

Surface reaction rate of species k

IFHC model for H₂ FWI Laminar FWI - catalytic wall using IFHC iv

IFHC model for H₂ FWI Laminar FWI - catalytic wall using IFHC iv

- distance

[21] De Nardi et al. (CNF, 2024)

- Effect of grid resolution with IFHC: 0 $\delta_L = 7\Delta x - 224\Delta x$
- $\dot{\omega}^*$ peak value controlled with IFHC 0

→ Grid convergence retrieved at $\delta_L = 28\Delta x$

27

Adaptation of TFLES

Thickened Flame model: TFLES Key parameters

- Balance equation for the mass fraction of species k $\frac{\partial \rho Y_k}{\partial t} + \nabla \cdot \left(\rho \mathbf{u} \right)$
- Balance equation for the mass fraction of species k in the **TFLES model**

$$\frac{\partial \rho Y_k}{\partial t} + \nabla \cdot \left(\rho \mathbf{u} Y_k\right) = \nabla \cdot \left(\rho D F E \nabla Y_k\right) + \frac{E}{F} \dot{\omega}_k$$

$F \equiv$ Thickening factor

- The larger F is, the less points we need in the flame front
- Thickened flame thermal thickness:

$$\delta_L^1 = F \delta_L^0$$

[1] Colin et al., Phys. Fluids, 2000

$$Y_k = \nabla \cdot \left(\rho D_k \nabla Y_k\right) + \dot{\omega}_k$$

• Damkohler number: $Da^1 = Da^0/F$

- Karlovitz number: $Ka^1 = Ka^0/F$
- Flame front wrinkles less in the presence of turbulence
- *E* compensate this loss

Thickened Flame model: TFLES Key parameters: dependancy of the thickening factor

 $F\delta_L^0 = N_c \Delta x$

Dynamic thickening (DTFLES)

Physical parameters Model parameters

F

 N_{c} Nb of cells per thickened flame thickness Flame thickness

 I_{u}

P

Φ

Temperature of unburnt products

Pressure

Equivalence ratio

E

Recovering the flame properties in the flame front is **key** to the modeling of thickened flames

> We need: (T_{μ}, P, ϕ)

Typical model: Charlette efficiency function

[1] F. Charlette et al. A power-law wrinkling model for LES of premixed turbulent combustion: Part I-non-dynamic formulation and initial tests. Combustion and Flame, 131:159–180, 2002.

Thickened Flame model: TFLES Key parameters: dependancy of the efficiency function

Physical parameters Model parameters

ECERFACS 31

Thickened Flame model: TFLES Equivalence ratio based on Bilger mixture fraction

Passive scalar constructed from elemental mass fractions (Z_p) .

 Y_F and Y_{Ox} vary across the flame due to decomposition; Z_C , Z_H , and Z_O do not.

$$Z_p = \sum_{k=1}^{N} \frac{a_{p,k} W_p}{W_k} Y_k$$

 $\beta = \sum_{p=1}^{\infty} \gamma_p Z_p$

 $W_k \rightarrow Mol.$ weight of species k $Y_k \rightarrow \text{Mass fraction of species } k$ $W_p \rightarrow Mol.$ weight of element p $a_{p,k} \rightarrow No. \text{ of } p \text{ element atoms}$ in species k

Linear combination so that $\beta_{st} = 0$.

These operations re composition

$$\xi = \frac{\beta - \beta_{Oxid}}{\beta_{Fuel} - \beta_{Oxid}}$$

Normalization between the two bounding cases.

$$\Phi = \frac{\xi}{(1-\xi)} * \frac{1-\xi}{\xi_{st}}$$

Eq. ratio from mixture fraction.

Classical formulation to retrieve the equivalence ratio

ECERFACS 32

Thickened Flame model: TFLES Equivalence ratio based on Bilger mixture fraction

Laminar flame thickness

[2] F. Charlette et al. A power-law wrinkling model for LES of premixed turbulent combustion: Part I-non-dynamic formulation and initial tests. *Combustion and Flame*, 131:159–180, 2002.

✓ CERFACS

33

Thickened Flame model: TFLES Equivalence ratio based on Bilger mixture fraction

Lean H₂-Air Flame ($\phi = 0.5$, $T_{\mu} = 300$ K, P = 1 bar)

[2] F. Charlette et al. A power-law wrinkling model for LES of premixed turbulent combustion: Part I-non-dynamic formulation and initial tests. Combustion and Flame, 131:159–180, 2002.

Laminar flame speed

34

✓ CERFACS

 Solving an additional transport equation for a passive scalar:

 $\frac{\partial \rho Z}{\partial t} + \frac{\partial}{\partial x_i} \left(\rho u_i Z \right) = \frac{\partial}{\partial x_i} \left(\rho D_Z \frac{\partial Z}{\partial x_i} \right)$

• Z is used (instead of Z_{Bilger}) to recover the equivalence ratio

Thickened Flame model: TFLES Solution: equivalence ratio based on a passive scalar

∑ CERFACS ■ ■ ■ ■ ■ 35

Thickened Flame model: TFLES Solution: equivalence ratio based on a passive scalar

H. Vargas

2D stratified flame

$$\Phi = [0.5, 0.8, 0.0]$$

$HRR = 10\% HRR_{max}$

Thickened Flame model: TFLES Solution: equivalence ratio based on a passive scalar

H. Vargas

2D stratified flame

Summary What we discussed today

Chemistry

 Ontrary to conventional fuel Detailed Chemistry
 Output
 Det is affordable for H_2

Transport properties

- Usual viscosity laws are wrong in pure H_2 • Specific correction for H_2 /air: Wilke's Law **O** Variable Prandtl and Schmidt numbers to recover species and heat diffusion properties
- Mixture-averaged transport works for every mixtures \rightarrow correct μ , D_k , λ

Non-adiabatic walls

- Inert non-adiabatic walls are ill-posed
- Infinitely Fast Heterogenous Chemistry fixes this issue

Thickening Flame model

- Thickening factor *F* and efficiency function *E* are key parameters
- F, E depend on model and physical parameters • T_{μ}, P, ϕ
- Bilger's mixture fraction is inaccurate in flame front Need to add an additional transport equation
 - \odot Accurate values of ϕ can then be recovered in the flame front

What we do not have time to discuss today **Other modeling aspects**

Stretch response

- Consumption speed of a H_2 flames strongly affected by stretch (strain & curvature)
 - Classical TFLES does not properly model this
 - A model for the stretch response has been
 created for hydrocarbons [1] and H_2 [2]

Thermodiffusive (TD) instabilities

- Lean laminar H_2 flames are thermodiffusively unstable
 - A simple model (Aniello []) based on correlation
 of Berger [] is available in AVBP
 - WIP: Coupling TD models to corrected stretch response model gives promising results on laminar spherical flames [2]

Flame/turbulence interaction

- Charlette efficiency function used in most TFLES simulations
 - Based on the fractal hypothesis
 - Are H2/Air flame fractal?

O If so, do they have similar fractal properties than other flames?

- What happens when lean flame become turbulent?
- Do turbulence kill the instabilities or are they still present at small scales?
- Are TD effects negligible compared to turbulent wrinkling? Next talk!

39

ECERFACS

• Do they couple ?

Thank you for your attention

Thanks to:

E. Riber	T. Jaravel	L. De Nardi	JJ. Hok
F. Garnier	N. Rouland	T. Poinsot	F. Meziat
D. Laera	B. Cuenot	H. Vargas	

