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O. Thual INPT-IMFT, Toulouse Membre Invité
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Abstract

This manuscript summarizes research I have conducted in ocean data assimi-
lation, emphasizing my work in background-error covariance modelling. First,
I describe my early work in applying four-dimensional variational data assim-
ilation to ocean models. Results from both idealized and realistic studies are
presented, that highlight the fundamental importance of the background-error
covariance matrix (B). Then, the manuscript describes specific developments
I have made to improve the specification of B in variational ocean data assim-
ilation, and discusses areas where further improvements can be expected.
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Chapter 1

Introduction

Data assimilation has its roots in meteorology where the need to produce accurate initial
conditions for Numerical Weather Prediction (NWP) models has long been recognized
as critically important (Daley 1991; Kalnay 2003). Over the past two decades, four-
dimensional variational assimilation (4D-Var) has emerged as the preferred data assim-
ilation method of most major operational NWP centres (Rabier et al. 2000; Desroziers
et al. 2003; Rawlins et al. 2007; Gauthier et al. 2007). Conceptually, the basic objec-
tive of 4D-Var (in its standard strong-constraint formulation) is extremely simple and
appealing: determine the model state trajectory that best fits, in a weighted least squares
sense, the observations available over a given time interval. Since the model trajectory is
controlled by the initial conditions, the problem can be effectively reduced to one of opti-
mizing the model initial conditions at the beginning of the assimilation interval (Lewis and
Derber 1985; Le Dimet and Talagrand 1986; Talagrand and Courtier 1987; Thacker and
Long 1988). Here the term observations is used in a general sense, referring to all avail-
able information on the interval. Typically, this information consists of a prior estimate
of the initial conditions (the model background state), as well as actual observations from
measurements. Mathematically, 4D-Var is a constrained minimization problem involving
a cost function that measures the model fit to the observations and the background state,
subject to the constraint that the solution must satisfy the prognostic equations of the
numerical model. The weights that control the closeness of fit to the observations and
background are specified in terms of estimates of the observation- and background-error
covariances. In this way, the information can be assimilated according to its perceived
accuracy.

In oceanography, data assimilation systems are less advanced than those in NWP but
have been significantly improved in recent years in response to important developments
to the global ocean observing system1 and with the advent of operational activities in
short-term ocean forecasting with high-resolution ocean models2 and in seasonal climate
forecasting with coupled ocean-atmosphere models3. Extensive research has been con-
ducted in ocean 4D-Var and several centres such as ECMWF and the UK Met Office have

1See the OceanObs’09 Conference Proceedings available at http://www.oceanobs09.net.
2See the collection of articles from the Special Issue on ”The Revolution in Global Ocean Forecasting -

GODAE: 10 Years of Achievement”, Oceanography, 22, 2009.
3For example, see http://www.ecmwf.int/products/forecasts/seasonal for a description of operational

seasonal forecasting activities at ECMWF.
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recently implemented variational-based systems for research and operational applications
(Mogensen et al. 2009; Mogensen et al. 2012; Balmaseda et al. 2013; Waters
et al. 2013). There has been particular interest in oceanography in applying 4D-Var to
the field of retrospective analysis, or reanalysis, which concerns the task of reconstructing
the past ocean state by combining highly quality-controlled historical observations with a
state-of-the-art ocean model and atmospheric forcing field, with the aim of improving our
understanding of the ocean circulation and its variability4. The atmospheric forcing field
used for an ocean reanalysis is itself generally produced from an atmospheric reanalysis
(Uppala et al. 2005; Dee et al. 2011). Reanalysis has become an important application
of data assimilation in view of its fundamental role for understanding past and present
climate variability, and for calibrating climate forecast models.

Given the complexity of state-of-the-art atmospheric and ocean general circulation
models (GCMs), their high cost of integration and the size of their state vectors, which is
greater than several million on any given time step, the practical feasibility of 4D-Var is by
no means obvious. To determine an exact global minimizing solution of the cost function
is impossible for all but very simple nonlinear problems. Techniques for minimizing the
cost function typically involve successive linearization steps. Even for linearized problems,
however, determining an exact minimizing solution using a direct solution method leads
to matrix equations that are far too big to manipulate without major simplifications.

Certain algorithmic features of 4D-Var are key to its feasibility. Rather than trying to
solve the problem exactly, only an approximate solution is sought using iterative methods.
As such, only operators (vector-to-vector transformations) are required for the solution
algorithm and there is thus no need to manipulate large matrices explicitly. Limited-
memory quasi-Newton methods (Nocedal 1980; Gilbert and Lemaréchal 1989), which
belong to the class of so-called Krylov subspace methods (Golub and van Loan 1996;
Nocedal and Wright 1999), are iterative algorithms that are specially designed for solving
nonlinear minimization problems with a large number of adjustable parameters. To apply
these methods to 4D-Var requires, on each iteration, the computation of the gradient of
the cost function with respect to the initial conditions. As initially pointed out by Le
Dimet and Talagrand (1986), the gradient vector can be computed efficiently by integrat-
ing (in reverse time) the adjoint of the tangent-linear of the underlying numerical model.
Much of the early work in 4D-Var was devoted to the practical design of accurate adjoint
models and their application within quasi-Newton minimization algorithms (Courtier and
Talagrand 1987; Courtier and Talagrand 1990; Thépaut and Courtier 1991).

The introduction of the incremental formulation was an important milestone in the
practical development of 4D-Var (Courtier et al. 1994). In the incremental approach, the
full nonlinear 4D-Var problem defined by the minimization of a nonquadratic cost function
is transformed into a sequence of minimizations of simpler, linearized 4D-Var problems
involving quadratic cost functions. Linearization is appropriate if nonlinear processes are
sufficiently ‘weak’, so care must be taken to ensure that the width of the assimilation win-
dow does not exceed the time-scale of validity of the linear approximation for increments
generated during the minimization. Though less apparent, the linear hypothesis is also
important in nonincremental 4D-Var since adjoint models used for computing the gradient
are constructed through transposition of the tangent-linear of the nonlinear model.

4Global ocean renalysis is promoted and coordinated at the international level by the CLIVAR Global
Synthesis and Observations Panel (GSOP). See http://www.clivar.org/organization/gsop.
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The quadratic minimization in incremental 4D-Var is usually referred to as the inner
loop and involves computing corrections, or increments, to a ‘guess’ estimate of the initial
conditions. Krylov-subspace methods based on conjugate gradient or Lanczos iterative
algorithms are usually employed in the inner loop as they are particularly effective for
minimizing quadratic cost functions (Golub and van Loan 1995; Meurant 2006). Nonlinear
computations involving the ‘guess’ estimate are performed on the so-called outer loop. The
complete incremental 4D-Var algorithm involves a feedback process to allow the basic state
trajectory of the linearized model to be updated using the most recent guess estimate of
the state trajectory from the nonlinear model. On the first outer iteration, the guess
estimate is defined as the background state. The solution, or analysis, is taken to be the
updated guess estimate on the final outer iteration. Incremental 4D-Var is in fact a variant
of the classical optimization method known as Gauss-Newton (GN) in the optimization
literature (Gratton et al. 2007). In particular, Gratton et al. (2007) refer to incremental
4D-Var as a perturbed and truncated GN algorithm since the linearized operators are
generally (and sometimes crude) approximations to the exact tangent-linear operators,
and since the inner-loop minimization is only solved approximately. In addition, only a
very small number of outer iterations is affordable for very large problems.

Incremental 4D-Var should be viewed as a practical minimization algorithm for ap-
proximately solving the complete (nonincremental) 4D-Var problem. In particular, it
provides a more flexible framework than nonincremental 4D-Var for simplifying technical
development and reducing computational costs. This is a major advantage for applica-
tions with complex, high-resolution GCMs. A hierarchy of linearized models can be used
in the inner loop thereby providing a clear development path from simplified to more
complex incremental 4D-Var systems. In practice, approximations usually involve sim-
plifying the linearization of highly nonlinear physical parameterizations and/or reducing
the resolution of the increment used in the inner loop. An extreme case is when the
linearized model is approximated by the identity matrix. The resulting algorithm is effec-
tively a three-dimensional variational (3D-Var) algorithm, since the temporal dimension
is removed from the inner loop. It is referred to as 3D-Var ‘First-Guess at Appropriate
Time’ (FGAT) in meteorology and oceanography, since the full nonlinear model is still
retained in the outer loop for computing the model misfit with the observations. 3D-Var
FGAT is significantly cheaper than incremental 4D-Var. Despite its simplicity, 3D-Var
FGAT can be effective and is a natural starting point in the development of incremental
4D-Var.

My research in variational ocean data assimilation started during my doctoral work at the
University of Oxford where I studied 4D-Var in a simplified framework. As a postdoctoral
fellow at the Laboratoire d’Océanographie Dynamique et de Climatologie (LODYC)5 in
Paris, I began working on the development of an incremental 4D-Var system for the OPA
GCM (Madec et al. 1999), this model now being part of the more general framework
known as NEMO (Nucleus for European Modelling of the Ocean; Madec 2008). I pursued
this work as a senior researcher at CERFACS and it eventually resulted in what became

5Now known as the Laboratoire d’Oceanographie et du Climat: Expérimentation et Approches
Numériques (LOCEAN).
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known as the OPAVAR system. The main focus of my research in data assimilation has
been on improving the scientific and technical development of OPAVAR and its recent
successor NEMOVAR.

The remainder of the manuscript is organized as follows. A mathematical formulation
of the 4D-Var problem and incremental algorithm is given in Chapter 2. This chapter will
provide a helpful reference for the specific research topics described in Chapters 3 and 4.
Chapter 3 summarizes some of my early research in 4D-Var which involved both idealized
and real-data applications. In particular, I focus on aspects of that work that illustrate
the importance of the background-error covariance matrix and led me to develop a specific
research activity in covariance modelling. In Chapter 4, I summarize my main contribu-
tions in this area, much of which has resulted from collaborative work with PhD students.
The first part of Chapter 4 describes theoretical and numerical issues in the design of
correlation operators for variational assimilation. In this work, a diffusion algorithm is
proposed as a practical and flexible approach to represent the action of a correlation op-
erator in complex boundary domains such as those encountered in ocean models. While
much of this work has been published, some aspects are original. In the second part of
Chapter 4, I discuss multivariate aspects of background-error covariance modelling. Here
the physical nature of covariance modelling is emphasized, through the need to produce
model-variable corrections that are in appropriate dynamical balance. The problem of es-
timating background-error covariances using a combined ensemble-variational approach is
discussed in the third part of Chapter 4. Here the emphasis is on exploiting error informa-
tion from ensembles to calibrate parameters of a prescribed background-error covariance
model, rather than to specify the covariances directly from a sample estimate. Finally,
in Chapter 5, I describe ongoing work and some of the future challenges in covariance
modelling. My curriculum vitae is given Appendix A. Selected articles of which I am
co-author and on which I have based this manuscript are listed in Appendix B. In the text
I have referenced these articles, and PhD theses I have supervised, using a boldface font
to clearly distinguish them from other references.



Chapter 2

Mathematical formulation of the
4D-Var problem

2.1 Nonlinear formulation

Let x(ti) ∈ Rn denote the model state vector at the discrete time ti, which is obtained by
propagating the state vector x(ti−1) from ti−1 to ti using the nonlinear model operator
M(ti, ti−1) : Rn → Rn;

x(ti) = M(ti, ti−1)[x(ti−1)]. (2.1)

For an ocean model, the elements of x(ti) are typically potential temperature (T ), salinity
(S), sea-surface height (η) and the horizontal components of velocity (uh = (u, v)) at
discrete points on the three-dimensional (3D) model grid. Assume that the ocean is
observed over a period t0 ≤ ti ≤ tN and let yo ∈ Rp denote the observation vector where

yo =


yo
0
...

yo
i
...

yo
N

 , (2.2)

yo
i ∈ Rpi being the observation vector at time ti, and

∑N
i=0 pi = p. Let xb(t0) be the

model background initial state. The background estimate of the state at future times in
the period is obtained through successive applications of Eq. (2.1):

xb(ti) = M(ti, t0)[x
b(t0)] (2.3)

where

M(ti, t0) ≡M(ti, ti−1) · · ·M(t1, t0) (2.4)

is the Rn→Rn model propagator from t0 to ti. Equation (2.3) shows explicitly the role of
the initial state vector in determining the model state trajectory. We refer to the initial
state vector as the control vector of the assimilation problem.

11
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For notational simplicity, let x ≡ x(t0) and xb ≡ xb(t0). The nonlinear 4D-Var
problem is then defined as

min
x∈Rn

J [x] =
1

2
(x− xb)T B−1 (x− xb)︸ ︷︷ ︸

Jb

+
1

2
(G (x)− yo )TR−1(G (x)− yo )︸ ︷︷ ︸

Jo

(2.5)

where G : Rn → Rp is a nonlinear operator mapping the initial vector into the space of the
observation vector, and B ∈ Rn×n and R ∈ Rp×p are symmetric, positive-definite matrices
containing estimates of the background- and observation-error covariances, respectively.
By splitting the background and observation terms (Jb and Jo), we are tacitly assuming
that the errors in the background state are uncorrelated with those in the observation
vector.

The nonlinear operator G = G(x) is given by

G(x) =


G0(x)

...
Gi(x)

...
GN (x)

 =


H0(x)

...
Hi(M(ti, t0)(x))

...
HN (M(tN , t0)(x))

 (2.6)

where Hi : Rn → Rpi is the observation operator that transforms x(ti) into the measured
quantity at the appropriate measurement location, and M(ti, t0) is given by Eq. (2.4).
We refer to Gi(x) = Hi(M(ti, t0)(x)) : Rn → Rpi as a generalized (nonlinear) observation
operator for measurements at time ti.

The optimal trajectory through the assimilation window t0 ≤ ti ≤ tN is given by

xa(ti) = M(ti, t0)(x
a)

where xa ≡ xa(t0) is the global minimizing solution of Eq. (2.5) and is referred to as the
analysis.

2.2 Incremental formulation and algorithm

Let x(k−1) be a reference state and let δx(k) be an increment to the reference state such
that

x(k) = x(k−1) + δx(k).

Here we consider the special case when the resolution of the state vector is the same as
that of the increment vector. In terms of the increment, the minimization problem defined
by Eq. (2.5) can be rewritten as

min
δx(k)∈Rn

J [δx(k)] =
1

2

(
x(k−1) + δx(k) − xb

)T
B−1

(
x(k−1) + δx(k) − xb

)
+

1

2

(
G(x(k−1) + δx(k))− yo

)T
R−1

(
G(x(k−1) + δx(k))− yo

)
.(2.7)
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The minimization problems (2.5) and (2.7) are equivalent.

The incremental algorithm is an iterative algorithm defined by the minimization of
a sequence, k = 1, . . . ,Ko, of quadratic cost functions. The quadratic cost function on
iteration k is obtained by linearizing G about the estimate obtained from the previous
iteration k − 1:

G(x(k−1) + δx(k)) ≈ G(x(k−1)) + G̃(k−1)δx(k) (2.8)

where

G̃(k−1) =



G̃
(k−1)
0
...

G̃
(k−1)
i
...

G̃
(k−1)
N


is an approximation to the tangent-linear operator

G(k−1) ≡


∂G0/∂x|x=x(k−1)

...
∂Gi/∂x|x=x(k−1)

...
∂GN/∂x|x=x(k−1)

 =



H
(k−1)
0
...

H
(k−1)
i M(k−1)(ti, t0)

...

H
(k−1)
N M(k−1)(tN , t0)


where M(k−1)(ti, t0) and H

(k−1)
i denote the tangent-linear of the model propagator and

observation operator, respectively. Using the approximation Eq. (2.8), Eq. (2.7) can be
transformed into the quadratic minimization problem

min
δx(k)∈Rn

J (k)[δx(k)] =
1

2
(δx(k) − δxb,(k−1))T B−1 (δx(k) − δxb,(k−1))

+
1

2
(G̃(k−1)δx(k) − δyo,(k−1))T R−1 (G̃(k−1)δx(k) − δyo,(k−1))(2.9)

where

δxb,(k−1) = xb − x(k−1) (2.10)

can be interpreted as the background estimate of δx(k), and

δyo,(k−1) =



δy
o,(k−1)
0

...

δy
o,(k−1)
i

...

δy
o,(k−1)
N


=


yo
0 −G0(x

(k−1))
...

yo
i −Gi(x(k−1))

...

yo
N −GN (x(k−1))


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is a four-dimensional vector of observation-minus-reference state differences which, using
Eqs. (2.2) and (2.6), can be written in compact form as

δyo,(k−1) = yo −G(x(k−1)).

The iterations indexed by k = 1, . . . ,Ko are called outer iterations while the quadratic
minimization iterations performed on each outer iteration are called inner iterations.

On the first outer iteration, the reference state is set to the background state,

x(0) = xb, (2.11)

and hence from Eq. (2.10)

δxb,(0) = 0.

On the first inner iteration of each outer iteration, the increment is initialized to zero,

δx
(k)
(0) = 0

where the subscript (j) denotes the inner iteration counter, with j = 0, . . . ,mk. The
subscript k on mk indicates that the total number of inner iterations may be different from
one outer iteration to the next. After the final inner iteration on each outer iteration, the
reference state is updated with the increment,

x(k) = x(k−1) + δx
(k)
(mk)

. (2.12)

For the next outer iteration k, the background estimate of the increment can be written,
using Eqs (2.10)–(2.12), in terms of the sum of the increments from all previous outer
iterations,

δxb,(k−1) = −
k−1∑
l=1

δx
(l)
(ml)

.

The analysis xa for the incremental problem is taken to be the reference state after
the final outer iteration, which can be written as

xa = xb + δxa

where

δxa =

Ko∑
k=1

δx
(k)
(mk)

= −δxb,(Ko)

is the analysis increment.

2.3 Role of the Jb term and B matrix

In a cycled data assimilation experiment, the background state on each cycle represents
the integrated response of all information (observations, forcing fields,. . . ) used on previ-
ous cycles. Clearly this is valuable information that should be assimilated along with the
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observations. Moreover, in the usual case when the number of observations is less than the
number of control variables, the background state is fundamental information for regular-
izing the assimilation problem. The assimilation of the background state is done through
the Jb term in Eq. (2.5). In this term, an estimate of the inverse of the background-error
covariance matrix, B−1, is required to weight the background state departures. In prac-
tice, the B matrix is used as a preconditioner which allows the minimization problem to be
reformulated in such a way that the inverse B matrix (or operator) never needs to be spec-
ified explicitly. B-preconditioning is commonly achieved via a change of variables which,
although avoiding the need to specify B−1, requires the availability of ‘square-root’ factors
U and UT such that B = UUT (Parrish and Derber 1992, Derber and Bouttier 1999).
B-preconditioning can also be achieved without the need for a square root, but specially
adapted conjugate gradient (CG) algorithms are required (Gürol et al. 2013).

The optimal preconditioner is the inverse of the Hessian matrix in the sense that it
results in convergence of the minimization in a single iteration with a gradient descent
method. The B preconditioner corresponds to the inverse Hessian of the Jb term only.
In the B-preconditioned space, the eigenvalues of the Hessian matrix are bounded below
by 1 and have a cluster of eigenvalues at 1 with size at least max (0, n− p) (Tshimanga
et al. 2008). When p � n, which is typically the case in ocean data assimilation, this
preconditioner can significantly improve the convergence properties of the minimization.
For example, with a single observation (p = 1), the minimization will converge in one
iteration of a CG method.

The B matrix plays an important role in determining the spatial structure and am-
plitude of the analysis increments. To see this, consider the exact solution of the inner
loop problem (Eq. (2.9)). The outer iteration superscript (k) will be dropped for clarity
of notation. Setting the gradient of J to zero yields the solution

δxa = δxb +
(
B−1 + G̃T R−1 G̃

)−1
G̃T R−1

(
δyo − G̃δxb

)
, (2.13)

which using the Sherman-Morrison-Woodbury formula (Golub and van Loan 1996) can be
rewritten in the alternative form

δxa = δxb + B G̃T
(
G̃ B G̃T + R

)−1 (
δyo − G̃δxb

)
︸ ︷︷ ︸

β︸ ︷︷ ︸
α

. (2.14)

Each column vector bi of B corresponds to the error covariance of the background field at
grid-point i with the background field at all grid points i = 1, . . . , n. Letting αi denote the
ith component of the n-dimensional vector α highlighted by the underbrace in Eq (2.14)
then the analysis increment can be written as

δxa = δxb +

n∑
i=1

αibi.

Since δxb is a linear combination of increments from previous outer iterations, it too can
be written as a linear combination of bi. In other words, the analysis increment is in the
column space of B, thus clearly illustrating the importance of the latter.
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If we back up one operation in Eq. (2.14) then we can also write the analysis increment
as a linear combination of the columns rj , j = 1, . . . , p, of the generally rectangular matrix

BG̃T,

δxa = δxb +

p∑
j=1

βjrj

where βj denotes the jth element of the p-dimensional vector β highlighted in Eq (2.14).
Each column vector rj corresponds to the error covariance of the observation at location j
with the background field at all grid points i = 1, . . . , n. The rj vectors are often referred
to as the representers (Bennett 2002). This expression clearly illustrates the role of the
adjoint operator G̃T, as well as B, in determining the analysis increment.

A diagonal B matrix, which would contain information only about the background-
error variances, can help control the amplitude of the analysis increment but is ineffective
at controlling small-scale noise that can result from the assimilation of sparse observa-
tions. This is particularly true in 3D-Var which, with a diagonal B matrix, would produce
bullet-like analysis increments near observation locations. In 3D-Var, the background-
error correlations, which correspond to the off-diagonal elements of B, will be primarily
responsible for spreading the influence of an observation away from its measurement loca-
tion and between model variables. In 4D-Var, the adjoint dynamics will also contribute
to the propagation of observational information, the extent to which will depend on the
width of the assimilation window as well as the underlying dynamical processes.



Chapter 3

Developments in 4D-Var for the
ocean

3.1 4D-Var in a simplified framework

Satellite altimeters provide near-global, time-continuous measurements of the ocean sur-
face topography and are a key component of the ocean observing system (Fu and
Cazenave 1991). Indeed, much of the early interest in ocean data assimilation was inspired
by advances in satellite altimetry. A particularly intriguing question for oceanographers
was the following. Since large-scale variations in the ocean surface topography are a man-
ifestation of large-scale dynamical processes occurring below the surface, could altimeter
measurements combined with a data assimilation method be sufficient to determine the
subsurface ocean circulation? In many ways, the problem is analogous to the early at-
tempts made by meteorologists to determine the 3D circulation of the atmosphere from
surface pressure measurements (Bengtsson 1979). The problem of extracting 3D infor-
mation from surface measurements is arguably more important in oceanography than in
meteorology, however, since direct measurements that probe the fluid’s vertical structure
are much more sparse and difficult to make for the ocean than for the atmosphere.

It was with this question in mind that Weaver and Anderson (1997) explored the
potential of 4D-Var to project altimeter data onto the subsurface fields in an ocean model.
The region of interest was the tropical Pacific Ocean. It is in this region that ocean data
assimilation is important for initializing climate forecasts on seasonal-to-interannual time
scales. The experimental framework was kept deliberately simple in order to answer a few
fundamental questions. How much information about the ocean state can we extract given
a time sequence of perfect altimeter data, an accurate numerical model and forcing field,
and an assimilation scheme that makes optimal use of the dynamics? In particular, how
well are the subsurface fields constrained in models with different vertical resolution, and
how sensitive are the results to the lengths of the assimilation and data sampling period?

The ocean model was a linear reduced-gravity model with an arbitrary number of active
layers. The prognostic model variables were the layer heights and the horizontal velocity
components in each layer. The equatorial waves supported by the model equations, most
importantly baroclinic Rossby and Kelvin waves, play a major role in the seasonal and
interannual variability of the tropical ocean circulation. As a result, when forced by a
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realistic windstress field, simple models of this type are capable of reproducing much
of the observed tropical ocean variability on these timescales (Cane 1979; Busalacchi
and O’Brien 1981). Close variants of this model were used as the ocean component in
simple coupled atmosphere-ocean models in the pioneering efforts to forecast the El Niño–
Southern Oscillation (ENSO) (McCreary 1983; McCreary and Anderson 1984).

The experiments were of the simulated-data (identical-twin) type. The assimilated sea
surface height (SSH) ‘observations’ consisted of complete maps on regular intervals. The
cost function measured the sum of quadratic (‘energy’) misfits between the model and
‘observed’ SSH fields at different times. In the model, SSH is a diagnostic variable defined
as a linear combination of the perturbation layer depths. The adjoint equations used to
compute the gradient of the cost function with respect to the initial height and velocity
fields were derived with respect to an ‘energy’ inner product. With this choice of inner
product, the inverse of the matrix of ‘energy’ weights can be interpreted as a precondition-
ing matrix for the gradient derived with respect to the canonical inner product. In these
experiments there was no background term in the cost function since it was our intent to
concentrate on the efficiency of the dynamics for improving the subsurface fields in the
absence of prior statistical information.

As an example, Fig. 3.1 shows the height-field errors in the third layer of a three-
active layer model, from experiments without (upper panel) and with (lower panel) 4D-
Var assimilation of SSH. The errors are shown at the end of a one-year period. In the
4D-Var experiment, the SSH ‘observations’ were assimilated every ten days using a one-
year assimilation window. This figure illustrates very clearly that information about the
subsurface ocean state is more easily extracted from SSH near the equator than in off-
equatorial regions. The crucial factor governing the success of the assimilation is the
phase separation that develops between the different baroclinic modes over the observation
interval. In off-equatorial regions, where the variability is dominated by slowly propagating
baroclinic Rossby waves, the highest modes can only produce significant phase separations
after several years or even decades depending on how many modes are present in the
system. On the other hand, SSH information is much more easily transferred to depth
near the equator where the faster propagation speeds of large-scale waves enable greater
phase separations to develop between the higher modes on a much shorter timescale.
Decreasing the data sampling period to one day had little effect other than to reduce
small-scale errors primarily close to the western boundary where the model variability is
dominated by strongly dissipated, short Rossby waves.

While the results from this study showed, albeit in highly favorable conditions, that
4D-Var is an effective method for dynamically projecting altimeter data to depth within
the equatorial belt, they also indicated that the task becomes significantly more difficult
as soon as the vertical resolution is extended to include more than a couple of layers
(baroclinic modes), especially away from the equator. Without additional information,
assimilation experiments of considerably longer duration than a year must be considered
to reconstruct the subsurface fields adequately from altimeter data alone. The problem
would clearly be further complicated in real-data applications due to the presence of errors
in the model, observations and forcing fields.

There are two obvious ways where the effectiveness of the altimeter assimilation could
be improved. The first way is to assimilate altimeter data simultaneously with other data,
such as temperature and salinity profiles which provide direct measurements of the ocean’s
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Figure 3.1: The layer 3 height field error in the control (upper panel) and assimilation
(lower panel) experiments at the end of a one-year 4D-Var experiment with full-field
SSH observations every 10 days. The contour interval is 5 metres. (From Weaver and
Anderson (1997).)

density structure. From this perspective, the altimeter assimilation problem should be
viewed within the more general framework of operational data assimilation or reanalysis;
both aim at determining the best possible ocean analysis by combining all available in-
formation. The second way is to include a background term in the 4D-Var cost function
in order to exploit prior knowledge about the multivariate statistical properties of the
background state. This information is contained in the estimate of the background-error
covariance matrix and complements the time-dependent dynamical information brought
by the model through the observation term. The impact of a multivariate formulation of
the background-error covariance matrix on the assimilation of altimeter data is discussed
in chapter 4.

3.2 4D-Var in a realistic framework

Whereas simple models such as the one used by Weaver and Anderson (1997) are help-
ful for exploring new assimilation methods and understanding basic processes, they have
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severe limitations when applied to real data. Real-data assimilation applications should
employ state-of-the-art GCMs which contain the most complete and accurate representa-
tions of the physical processes governing the ocean circulation. To employ an advanced
assimilation method such as 4D-Var with a GCM in a real-data application requires sig-
nificantly more development and validation than with a simple model in a simulated-data
framework. In addition to the model and assimilation method, procedures are required
for data handling and quality control, for cycling the model from one assimilation window
to the next, and for evaluating the assimilation performance through a comprehensive set
of diagnostics. Together, the different components comprise the data assimilation system.

Motivated by the growing interest in ENSO forecasting and the importance of initializ-
ing coupled ocean-atmosphere GCMs for making ENSO forecasts, I began the development
of an incremental 4D-Var system for the OPA ocean GCM (Madec et al. 1999) as a post-
doctoral fellow at LODYC in Paris. At the time, OPA was a relatively new GCM and
had mainly been applied to process studies in regional basins such as the tropical Pacific
Ocean and Mediterranean Sea. Central to a 4D-Var system are tangent-linear (TL) and
adjoint models. These needed to be developed for the latest version of OPA (version
7.0 at the time). While I spent considerable effort deriving the TL and adjoint models
for OPA, this was an excellent way to learn about the details of the ocean GCM and
ultimately was beneficial when it came to develop other components of the assimilation
system. By the time the first version of the incremental 4D-Var system, originally referred
to as OPAVAR, was ready for real-data experimentation (nearly 4 years later), OPA had
gone through two major upgrades (versions 8.0 and 8.1). A third major upgrade (version
8.2) was introduced near year 2000 to include, among others, important developments
for the global configuration (ORCA), such as the introduction of a free surface (Roullet
and Madec 2000). Substantial changes to the OPAVAR system were required after each
model upgrade, such as rederiving the TL and adjoint models. This delayed scientific
experimentation, but kept OPAVAR in phase with model releases, thereby enabling it to
benefit from the latest model improvements and to be attractive to other developers and
users.

Initially the 4D-Var system was developed for a tropical Pacific configuration of OPA
and applied to the assimilation of in situ temperature observations from the Global Tem-
perature and Salinity Pilot Programme. A description of both the system and the results
from a 6-year cycled 4D-Var experiment are given in the two-part article by Weaver et
al. (2003) and Vialard et al. (2003) (a more detailed presentation is given in the tech-
nical report of Weaver et al. (2002)). These articles also present results from a 3D-Var
FGAT system which was derived as a by-product of the incremental 4D-Var system by
simply replacing the tangent-linear model with a persistence model. The 3D-Var sys-
tem provided a useful reference for evaluating the benefits of the more expensive 4D-Var
system.

A global version of the 4D-Var system was developed as part of the ENACT1 project,
and adapted to assimilate salinity profiles and along-track altimeter data as well as tem-
perature profiles. The system also supported 3D-Var, and was later extended to produce
ensembles of 3D-Var analyses in the ENSEMBLES2 project (Daget et al. 2009). Due to

1ENhanced ocean data assimilation and ClimaTe prediction: a 3-year project financed under EC-
Framework 5.

2ENSEMBLE-based predictions of climate changes and their impactS: a 5-year project financed under
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the high computational cost of running the global 4D-Var system, only the cheaper 3D-
Var system was used extensively for analysis production over long periods. The 4D-Var
system was used for two specific studies that required only single-cycle experimentation.
In particular, Weaver et al. (2005) (chapter 4) used the global 4D-Var system to study
the impact of multivariate balance operators in 4D-Var, and Tshimanga et al. (2008)
used it to investigate the effectiveness of different limited-memory preconditioners in a
multi-outer iteration framework.

3.2.1 Validation of the linear approximation

To assess the validity of the linear approximation in the incremental formulation, Weaver
et al. (2003) compared the time-evolution of an initial perturbation in the nonlinear
model with its evolution in the linear models: persistence in 3D-Var, and the TL model in
4D-Var. In the assimilation experiments described by Weaver et al. (2003) and Vialard
et al. (2003), the width of the assimilation window was taken to be 10 days for 3D-Var and
30 days for 4D-Var, so the linear approximation was verified on these time-scales. Ideally,
the initial perturbation should have structure and amplitude typical of actual background
errors. Actual background errors are not known so in that study, as a proxy, the initial
perturbation was taken to be the difference between two model background states valid
at the same time but produced from different initial conditions: one initial state was
taken from an analysis 30 days into the past whereas the other state was taken from an
analysis 60 days into the past. Figure 3.2a shows a meridional-vertical section of the
perturbation in the eastern Pacific. The field is characterized by large perturbations of up
to 4◦C, appearing as a result of temperature observations that were assimilated between
day 60 and day 30 into the past. Figures 3.2b and c show the nonlinear perturbation
after 10 days and 30 days respectively, and Fig. 3.2d shows the TL perturbation after
30 days. In the 3D-Var system, the assumption is that the perturbation does not evolve
significantly over the 10-day window. By comparing Figs 3.2a and b, we see that this is a
very good approximation outside the equatorial belt but has some limitations closer to the
equator where the dynamical adjustment time-scales are shorter. On the other hand, over
30-days the TL model provides a good description of large-scale perturbations in both
off-equatorial and equatorial regions. The TL approximation was shown to be mainly
limited by tropical instability waves that develop in the eastern Pacific particularly during
the autumn months. Vertical mixing and convective processes, both of which were highly
simplified in the TL model, also tend to limit the TL approximation in the small vertical
scales.

The linear approximation can be examined from a different perspective by compar-
ing the values of the incremental (quadratic) and nonincremental (nonquadratic) cost
functions at various stages during minimization. Figure 3.3 shows the behaviour of the in-
cremental and nonincremental cost functions in two experiments using the tropical Pacific
4D-Var system of Weaver et al. (2003). In these experiments, the resolution was iden-
tical in the inner and outer loops. Five outer-loop iterations were used in one experiment
(solid curve), whereas only one outer-loop iteration was used in the other experiment. The
assimilation window was 30 days. The jumps in the solid curves occur after an outer-loop
iteration when the reference trajectory is reinitialized (here every ten inner-loop itera-

EC-Framework 6.
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Figure 3.2: (a) Meridional-vertical section at 110◦W of a temperature perturbation used
to check the validity of the linear approximation. The perturbation after (b) 10 days and
(c) 30 days evolution in the nonlinear model, after (d) 30 days evolution in the TL model.
The contour interval is 0.5◦C. (From Weaver et al. (2003).)

tions). The final values of the nonincremental cost function are plotted with an asterix
and plus symbol for the experiment with and without multiple outer-loop iterations, re-
spectively. This figure provides a clear illustration of the positive impact of the outer-loop
iterations. The final value of the nonincremental cost function with outer-loop iterations
is about half that without multiple outer-loop iterations. Furthermore, it is very close to
the final value obtained with the incremental cost function (solid curve) and thus provides
a good measure of the consistency of the incremental approach. In the absence of multiple
outer-loop iterations, however, this consistency is lost as illustrated by the large discrep-
ancy between the final values of the nonincremental and incremental cost functions (cf.
plus symbol and dashed curve).

A similar verification was given in Tshimanga et al. (2008). Their experiments were
conducted on a (shorter) 10-day window and with a global version of the 4D-Var system
with three outer-loop iterations and ten inner-loop iterations per outer-loop iteration. As
in the 4D-Var system of Weaver et al. (2003), identical resolution was used in the outer
and inner loops. As can be seen from Fig. 3.4, the differences between the values of the
incremental and nonincremental cost functions at the outer loop end-points are small and
only distinguishable between the first and second outer-loop iterations (k = 1) where the
relative error is 4.5% (for k = 2 the relative error is less than 0.1%). This suggests that the
linear approximation is also quite accurate in this 4D-Var experiment. It is worth pointing
out that in these experiments the linear approximation also included simplifications in the
TL model, the most important being in the representation of vertical and isopycnal mixing,
where terms involving the linearization of vertical-mixing coefficients and isopycnal slopes
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Figure 3.3: The value of the cost function (J) as a function of the minimization iteration
for 4D-Var experiments with five outer-loop iterations (solid curve) and one outer-loop
iteration (dashed curve). The plus (asterix) symbol indicates the final value of the nonin-
cremental cost function for the experiment with one (five) outer iteration(s). For clarity,
these symbols have been displaced slightly to the left of the right border. J has been nor-
malized by its respective value at the start of minimization and plotted on a logarithmic
vertical axis. (From Weaver et al. (2003).)

were neglected.

3.2.2 Flow-dependent background-error variances in 4D-Var

It is well known that, in the limit of a perfect, linear model, variational assimilation is
equivalent to the Kalman filter in that, given identical inputs, they produce the same anal-
ysis at the end of the assimilation window (Courtier et al. 1994). Weaver et al. (2003)
exploited this theoretical equivalence to assess how in 4D-Var the dynamical model acts to
modify the background-error variances. In particular, for a specific assimilation window
t0 ≤ ti ≤ tN , they estimated the diagonal of the matrix

Pb(tN ) = M(tN , t0) B M(tN , t0)
T (3.1)

which results from propagating the initial background-error covariance matrix Pb(t0) = B
using the tangent-linear propagator and its adjoint. In an extended Kalman filter (with
a perfect model), an equation of the form (3.1) would be used explicitly to transport the
covariances forward in time. In incremental variational assimilation, this propagation is
implicit in the global minimization process.

Figure 3.5, left panel, shows vertical profiles of the background-error standard devia-
tions σb for temperature at the equator in the central Pacific (140◦W). The dashed-dotted
curve is the prior value of σb, which has been estimated, albeit rather crudely, from the
model climatology in an experiment without data assimilation. It has a rather broad
structure throughout the upper ocean and displays a maximum around the depth of the
climatological thermocline (near 170 m). In 3D-Var these σb are effectively used to weight
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Figure 3.4: The values of the quadratic cost function (solid curve) and nonquadratic cost
function (open circles) as a function of the inner-loop (conjugate gradient) iteration number
in each of the three outer-loop iterations of the unpreconditioned 4D-Var experiment.
The curves are placed one after the other in sequence and the inner-loop iterations are
cumulated. (From Tshimanga et al. (2008).)

the background state at all times within the assimilation window, whereas in 4D-Var they
are used to weight the background state only at the beginning of the window. The solid
curve in Fig. 3.5 shows an example of the effective σb used in 4D-Var at the end of a
30-day window. The tangent-linear dynamics tend to reduce the σb in the mixed layer
and to sharpen the profile around the level of maximum background-error variance. The
maximum occurs at the level of the thermocline as confirmed by comparing σb to a cor-
responding 30-day mean profile of the background |∂T/∂z| (Fig. 3.5, right panel). This
tendency is physically sensible since the level of maximum variability of the thermal field,
and thus of maximum likely error, is located at the level of the thermocline.

3.2.3 Improving the background-error covariance model

Comparisons of the 3D-Var and 4D-Var analyses in the tropical Pacific study of Weaver
et al. (2003) and Vialard et al. (2003) indicated that 4D-Var was superior to 3D-Var
in several areas. The fit to the assimilated temperature observations was consistently
better in 4D-Var than in 3D-Var. Furthermore, the impact on the state variables not
directly observed (the velocity and salinity fields) was generally better in 4D-Var than
in 3D-Var. One of the distinguishing features of the 3D-Var analyses was a large bias
in the velocity field which was associated with a spurious circulation cell that developed
along the equatorial strip (strong downwelling in the eastern Pacific, weaker but broader
upwelling in the central/western Pacific, eastward surface currents). Salinity also exhibited
a bias, with a drift towards lower values. A bias was present in the temperature field but
was greatly reduced on each assimilation cycle by the direct assimilation of subsurface
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Figure 3.5: Left panel: vertical profiles of the background-error standard deviations (in ◦C)
used in 3D-Var and 4D-Var at the equator at 140◦W. The dashed-dotted curve corresponds
to the standard deviations specified at the beginning of the assimilation window. In 3D-
Var, these are also the effective standard deviations used at all future times within the
window. The solid curve corresponds to the effective standard deviations used implicitly in
4D-Var at the end of the 30-day window in a particular cycle of 4D-Var. Right panel: the
corresponding profile of the background |∂T/∂z| at this location. The values of |∂T/∂z|
have been multiplied by a factor of ten in order to be plotted with the same horizontal
scale as in panel a. (From Weaver et al. (2003)).

temperature data.

Many of the deficiencies with the 3D-Var analyses were not fundamental to 3D-Var
but could be attributed to an inadequate treatment of the background-error covariances.
The B matrix used in the 3D-Var experiments was univariate in temperature. The error
correlations were assumed to be approximately Gaussian and modelled using a diffusion
algorithm (Weaver and Courtier 2001; chapter 4). The zonal (meridional) length scales
of the Gaussian function were slightly increased (reduced) near the equator to account for
simple anisotropic effects due to equatorial dynamics. The vertical scales were set to be a
scalar multiple of the local grid depth to provide adequate smoothing between model levels.
The variances were allowed to vary with each grid point and specified according to model
climatology as explained in the previous section. A similar (univariate) B matrix was also
used in the 4D-Var experiments, but extended to include additional spatial correlation
functions for salinity and the horizontal components of velocity.

The univariate treatment of the background-error covariances was obviously a weak
point and was one of the suspected reasons for the large bias that developed in the 3D-
Var analyses. Since only the temperature field was corrected, problems occurred as the
other fields adjusted to the temperature field during the forward integration of the model.
While the B matrix was also univariate in 4D-Var, the TL model constraint resulted in
salinity and velocity field increments that were partially in balance with the temperature
increments, leading to better surface currents and reduced salinity drift. There were still
some areas, however, where 4D-Var was not as good as the model simulation without
data assimilation (underestimated equatorial undercurrent, and unrealistic variability in
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salinity) which suggested that improvements to B could be beneficial to 4D-Var analyses
as well.

Several improvements were subsequently made to the B model. A fully multivariate
formulation was developed which included constraints between, for example, temperature
and salinity, and density and currents. Some of these constraints, such as those between
temperature and salinity, were state-dependent, and thus were able to account for some
(weak) flow dependency in B. Inspired by the results of Fig. 3.5, the background-error
variances were also made flow-dependent by parameterizing them in terms of the vertical
gradient of the background state. The positive impact of these developments to B in
3D-Var is illustrated in Fig. 3.6. Shown are the mean equatorial surface currents from the
4D-Var and 3D-Var experiments of Weaver et al. (2003) and Vialard et al. (2003),
which used the simpler (univariate, flow-independent) B formulation (Figs 3.6b and c),
and from a 3D-Var experiment which used an improved (multivariate, flow-dependent)
B formulation (Fig 3.6d). For comparison, Fig. 3.6a shows the Reverdin et al. (1994)
climatology which was derived directly from surface drifter and current-meter observations.
A striking feature in Fig. 3.6c is the large eastward bias in the equatorial surface currents,
as already pointed out above. The main impact of the improved covariance model in 3D-
Var is to eliminate this eastward bias and bring the currents much closer to the observed
and 4D-Var climatologies.

In this and the previous chapter, I have outlined the role of the B matrix and il-
lustrated how improved B models can have a significant impact on the quality of ocean
analyses. In the next chapter, I provide a more detailed account of the different aspects of
B modelling related to my published work and to the methods being developed specifically
for NEMOVAR.
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Figure 3.6: Surface zonal current climatologies in the tropical Pacific Ocean. a) The
Reverdin et al. (1994) climatology. Climatolgies from the (b) 4D-Var and (c) 3D-Var
experiments of Weaver et al. (2003) and Vialard et al. (2003). (d) Climatology from
a 3D-Var experiment with an improved B formulation. The contour interval is 0.1 ms−1,
and the blue (yellow) shaded regions indicate westward (eastward) currents.
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Chapter 4

Developments in background-error
covariance modelling for the ocean
In real-life applications the true covariances of background error are never known to great
accuracy since there is insufficient information to estimate them. Even if they could
be estimated accurately, representing them in a full-rank covariance matrix would not
be possible due to its enormous size. Practical techniques for representing background-
error covariances in variational data assimilation require simplifying assumptions based on
physical insight and computational considerations. Statistical estimation is still important
but can only be used sensibly to calibrate a relatively small number of covariance parame-
ters. Useful background-error covariance information can be extracted from an adequately
perturbed ensemble data assimilation system (Daget et al. 2009; section 4.3). In varia-
tional assimilation, the challenge is then how to synthesize this information effectively in
a covariance model that can be applied efficiently on each iteration of the minimization
algorithm. Ideally, the covariance model should be designed to capture robust features
in the available covariance estimates, such as multivariate relationships, geographical and
wavenumber dependencies of the variances and correlations, and anisotropic variations
which often occur near regions of pronounced density or topographic gradients, or where
the data distribution is discontinuous.

Multivariate relationships between variables give rise to a cross-variable component
in the covariances. In variational assimilation, it is common to specify the multivariate
component of the covariances through a balance operator that captures known physical or
statistical relationships between model variables (Weaver et al. 2005, section 4.2). The
inverse of the balance operator can be interpreted as a transformation to a new set of vari-
ables whose cross-variable covariances are much weaker than those of the untransformed
variables. The cross-covariances of the transformed variables are usually considered suf-
ficiently small that they can be neglected. In doing so, the full multivariate covariance
matrix can be decomposed into a sum of simpler univariate covariance matrices acting on
each of the transformed variables. Each univariate covariance matrix can in turn be fac-
tored into a (symmetric and positive-definite) correlation matrix multiplied to its left and
right by a diagonal matrix of standard deviations. The remaining challenge is how to rep-
resent adequately and evaluate efficiently the product of a generally full-rank, non-diagonal
correlation matrix with an arbitrary vector. This can be done using a diffusion equation
(Weaver and Courtier 2001; Weaver and Ricci 2004; Mirouze and Weaver 2010;
Weaver and Mirouze 2013) as discussed next.
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4.1 Univariate correlation modelling using a diffusion equa-
tion

The continuous analogue of a correlation matrix–vector product is an integral operator, the
kernel of which is a symmetric and positive-definite correlation function. When evaluated
at discrete points, the correlation function defines a (full-rank) correlation matrix although
this definition is of limited practical interest for large matrix problems. The evaluation of
integral equations involving the background-error correlations is among the most costly
steps in the variational data assimilation algorithm.

Several methods have been developed in meteorology and oceanography for repre-
senting univariate correlation operators (Bannister 2008). Methods based on spectral
or wavelet transforms have been developed extensively for atmospheric data assimilation
(Fisher 2003; Deckmyn and Berre 2005; Pannekoucke et al. 2007). Correlation operators
based on physical-space models have also been developed. Physical-space formulations
are more convenient than spectral or wavelet formulations in complex-boundary domains
such as those encountered in ocean data assimilation. Gaspari and Cohn (1999) and
Gneiting (2002) derive families of parameterized homogeneous and isotropic correlation
functions with the important property of compact support so that they can be integrated
efficiently in grid-point space. Gaspari et al. (2006) describe extensions to these functions
to account for spatially varying length-scales. Correlation integrals can also be represented
efficiently using grid-point filters. The recursive filter (Lorenc 1992; Purser et al. 2003a,b)
and the diffusion equation (Derber and Rosati 1989; Egbert et al. 1994; Weaver and
Courtier 2001; Mirouze and Weaver 2010; Weaver and Mirouze 2013) fall into
this class of correlation model.

Derber and Rosati (1989) proposed the use of an iterative Laplacian grid-point
smoother in order to approximate a Gaussian correlation operator. Egbert et al. (1994)
and Bennett et al. (1997) described a close variant of the algorithm in which the Lapla-
cian smoothing could be interpreted as a pseudo-time-step integration of a diffusion equa-
tion. Weaver and Courtier (2001) described the algorithm in more detail and pro-
posed various extensions to account for more general correlation functions than the quasi-
Gaussian of the original Derber and Rosati (1989) algorithm. Weaver and Ricci (2004)
and Mirouze and Weaver (2010) studied implicit versions of the diffusion algorithm.
In preparing this manuscript, I embarked on providing a comprehensive review of the
theory underpinning the explicit- and implicit-diffusion methods for modelling correla-
tion functions. The review material ultimately became part of an article (Weaver and
Mirouze 2013) in the Quarterly Journal of the Royal Meteorological Society. The details
are not repeated here (the reader is referred to Appendix B where a copy of the article can
be found). The remainder of this section will focus mainly on the practical construction
of 2D and 3D correlation models using a diffusion operator formulated with an implicit
scheme, with reference to methods developed specifically for NEMOVAR as part of the
PhD thesis of Mirouze (2010).

4.1.1 Two-dimensional correlation models

Coordinate systems of global ocean models are referenced to the spherical-shell geometry
of the ocean. From a mathematical perspective, this leads naturally to consider 2D ‘hor-
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izontal’ correlation functions on the spherical space S2. The product of a 2D correlation
function on S2 and a 1D correlation function on the bounded subset of the Euclidean space
R1 is commonly used to construct 3D correlation functions on the spherical-shell subspace
of R3. This approach of separating the horizontal and vertical correlation functions is
usually justified by the fact that the global ocean circulation is characterized by scales
that are much larger in the horizontal direction (along geopotential surfaces) than in the
vertical direction (perpendicular to geopotential surfaces).

To fix the ideas, we focus on the use of a diffusion operator to represent a 2D
background-error correlation model on a discretized grid on S2. Let i = 1, . . . , N de-
note the number of grid-points and let ψ be the N × 1 vector containing the grid-point
values of a background variable ψ = ψ(λ, φ) where λ is longitude (0 ≤ λ ≤ 2π) and φ
is latitude (−π/2 ≤ φ ≤ π/2). The background-error covariance matrix B for ψ can be
formulated as

B = D1/2 Γ1/2 L W−1Γ1/2 D1/2 (4.1)

where D = D1/2D1/2 is a diagonal matrix of background-error variances (D1/2 is the
diagonal matrix of background-error standard deviations), L is the matrix representation
of a positive-definite smoothing operator, and Γ = Γ1/2Γ1/2 is a diagonal matrix of nor-
malization factors that transforms C = Γ1/2 L W−1Γ1/2 into a matrix with 1s along the
diagonal in accordance with a correlation matrix. The smoothing operator depends on
the model coordinate system and grid resolution. It is constructed to be self-adjoint with
respect to the inner product 〈·, ·〉W = (·)TW(·), where W is a diagonal matrix of discrete
metric coefficients. Denoting the adjoint of L by L∗ then the self-adjointness property
implies that

L = L∗ = W−1LTW, (4.2)

and hence that B is symmetric in the usual sense (B = BT).
For some applications, such as preconditioning (Tshimanga et al. 2008) or random-

ization (Weaver and Courtier 2001), it is desirable to have access to a “square-root”
operator U such that B = UUT. Providing the smoothing operator can be factored as
L = L1/2L1/2 then from Eqs (4.1) and (4.2) it follows that

U = D1/2 Γ1/2 L1/2 W−1/2.

Weaver and Courtier (2001) discuss how a diffusion operator L can be used to rep-
resent the action of a positive-definite covariance matrix. Ignoring continental boundaries,
the solution of the 2D diffusion equation on S2,

∂ψ

∂s
− κ∇2ψ = 0 ; ψ(φ, λ, 0) = ψ̂(φ, λ) (4.3)

where

∇2ψ ≡ 1

a2 cosφ

∂

∂φ

(
cosφ

∂ψ

∂φ

)
+

1

a2 cos2 φ

∂2ψ

∂λ2
,

has the general form

ψ(λ, φ, s) =

∫
S2
cs(θ;κs) ψ̂(λ′, φ′) a2 cosφ′ dλ′ dφ′. (4.4)
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Here s is to be interpreted as a dimensionless pseudo-time coordinate. The diffusion
coefficient κ then has physical units of length squared.

The kernel c(θ;κs) of the integral operator (4.4) is an isotropic covariance function
that approximates a Gaussian function:

cs(θ;κs) ≈ cg(r,Dg) ∝ exp
(
−r2/2D2

g

)
(4.5)

where
r = r(θ) = a

√
2(1− cos θ)

is the chordal distance between points (λ, φ) and (λ′, φ′) separated by an angle θ (0 ≤ θ ≤
π) on the sphere of radius a. The length-scale, Dg, of the Gaussian function is defined here
in terms of the local curvature of the covariance function at its peak. This is a standard
definition in meteorology and oceanography, and is sometimes referred to as the Daley
length-scale in reference to Daley’s book (Daley 1991) where it is discussed within the
context of data assimilation. In Eq. (4.5), Dg is related to the product of the diffusion
coefficient and the total action time s of the diffusion:

Dg ≈
√

2κs.

Therefore, to approximate the action of a Gaussian correlation operator on S2, Eq. (4.3)
can be solved numerically and normalized by cs(0) to obtain the correct (unit) amplitude.
In this case, the normalization matrix in Eq. (4.1) is simply a constant multiple of the
identity matrix, Γ ≈ γsI, where

γs = (c(0))−1 ≈ 2πD2
g.

Weaver and Ricci (2004) and Weaver and Mirouze (2013) discuss how a
“time”-implicit the diffusion model on S2 can be used to define a more general and ro-
bust covariance model than the “time”-explicit formulation proposed by Weaver and
Courtier (2001). Define the linear operator A : ψ 7→ ψ̂ where

Aψ ≡
(
1− L2∇2

)
ψ, (4.6)

L being a constant scale parameter. Equation (4.6) is a roughening operator and can
be derived by discretizing the “temporal” derivative in Eq. (4.3) with an Euler-backward
implicit scheme and setting the diffusion coefficient κ = L2. The inverse operator A−1,
on the other hand, is a smoothing operator. Applying the A operator M times can be
interpreted as inverting an M -step implicitly-formulated diffusion operator L ≡ (AM )−1 =
(A−1)M where A−1 : ψ̂ 7→ ψ.

The elliptic equation AMψ = ψ̂ yields a general solution of the form

ψ(λ, φ) =

∫
S2
ch(θ;L,M) ψ̂(λ′, φ′) a2 cosφ′ dλ′ dφ′, (4.7)

where the kernel ch(θ;L,M) is an isotropic covariance function with characteristics very
similar to those of a Whittle-Matérn or Matérn function cw(r;L,M) on R2 (Guttorp and
Gneiting 2006):

ch(θ;L,M) ≈ cw(r;L,M) ∝
( r
L

)M−1
KM−1

( r
L

)
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where KM−1(r/L) is the modified Bessel function of the second kind of order M − 1. The
parameters L and M control the length-scale and spectral-decay rate of the covariance
function. From the standard (Daley) definition of length-scale, it can be shown that

Dh ≈ Dw =
√

2M − 4L (4.8)

where M > 2 to exclude non-differentiable Matérn functions. Furthermore, the normal-
ization matrix is Γ ≈ γhI where

γh ≈ 4π(M − 1)L2 =
4π(M − 1)

2M − 4
D2

w. (4.9)

The integral equation (4.7) can be evaluated numerically by solving the linear system
of equations

Aψ1 = ψ̂
Aψ2 = ψ1

...
AψM = ψM−1

 (4.10)

where A is a self-adjoint, positive-definite matrix constructed from a discretized version
of the linear operator A. The self-adjointness of A is defined with respect to the W-
inner product where, assuming a constant zonal and meridional resolution ∆λ and ∆φ,
W = diag

(
a2 cosφi ∆λ∆φ

)
, and hence A = A∗ = W−1ATW. The smoothing operator

in (4.1) is then

L = (A−1)M

where Lψ̂ = ψM . Symmetric matrices are preferable to self-adjoint matrices when used
with standard linear system solvers. The system matrix in (4.10) can be easily made
symmetric by left-multiplying both sides of the equations by W. This yields the smoothing
operator

L = (Â−1W)M

where Â = WA = ÂT. Notice that by restricting M to be even, it is straight-
forward to define a square-root operator L1/2 as a diffusion operator over M/2 steps:
L1/2 = (Â−1W)M/2.

Applying a direct matrix solver to a 2D implicit diffusion problem such as (4.10) re-
quires access to algebraic software libraries specially designed for large, sparse matrices.
For example, Weaver and Ricci (2004) and Ricci (2004) used the HSL Mathematical
Software Library to solve a generalized 2D implicit diffusion problem for a data assimila-
tion application with a regional ocean configuration, run on a single processor machine.
However, adapting this method to the massively-parallel environment of the global-ocean
configuration of OPA/NEMO was not feasible, so alternative methods were explored.

For 1D implicit diffusion problems, the linear system (4.10) can be solved efficiently us-
ing a standard matrix solver such as Cholesky decomposition (Golub and van Loan 1996).
The covariance kernels implied by 1D implicit diffusion in R belong to the class of auto-
regressive (AR) functions (Mirouze and Weaver 2010). Inspired by the work of
Purser et al. (2003a,b) with the 1D recursive filter, Mirouze and Weaver (2010) and
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Mirouze (2010) suggest approximating the 2D implicit diffusion operator by a product
of 1D implicit diffusion operators,

L ≈ LφLλ

= (A−1φ )M (A−1λ )M

= (A−1φ A−1λ )M (4.11)

= (AλAφ)−M (4.12)

where the matrices Aλ and Aφ are discrete representations of the 1D operators

Aλψ ≡
(

1− L2

a2 cos2 φ

∂2

∂λ2

)
ψ, (4.13)

Aφψ ≡
(

1− L2

a2 cosφ

∂

∂φ

(
cosφ

∂

∂φ

))
ψ. (4.14)

In terms of symmetric matrices Âφ = WφAφ and Âλ = WλAλ, where
Wλ = diag(a cosφi ∆λ), Wφ = diag(a∆φ), and W = WφWλ, the smoothing oper-
ator becomes

L = (Â−1φ Wφ Â−1λ Wλ)M

= (Â−1φ Â−1λ W)M . (4.15)

The matrix product AλAφ in Eq. (4.12) is a discrete representation of the 2D rough-
ening operator (cf. Eq. (4.6))

AλAφψ = Aψ +A′λφψ

where

A′λφψ =
L4

a4 cos3 φ

∂

∂φ

(
cosφ

∂

∂φ

)
∂2ψ

∂λ2
.

The A′φλ term can be interpreted as the error resulting from approximating A by a product
of 1D operators. Notice that the error is different if we change the order of the operations:

AφAλψ = Aψ +A′φλψ

where

A′φλψ =
L4

a4 cosφ

∂

∂φ

(
cosφ

∂

∂φ

(
1

cos2 φ

∂2ψ

∂λ2

))
6= A′λφψ

since, unlike in the Euclidean space R2, the component derivatives do not commute in a
non-Euclidean space such as S2. As a consequence, the self-adjointness of L on S2 is not
preserved by this construction.

Another problem with this construction is that it gives rise to a spurious anisotropic
response characterized by correlations that are diamond-shaped instead of circular. (This
occurs in R2 as well as S2). However, since the problematic error terms are of order M−2
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for a fixed length-scale Dh (Eq. (4.8)), they can be effectively suppressed by making M
sufficiently large; i.e., by seeking an approximate Gaussian response since ch ≈ cg and
Dh ≈ Dg for large M . In practice, M ∼ 10 gives an adequate isotropic response. A 2D
correlation model based on a product of 1D implicit diffusion operators has been devel-
oped for NEMOVAR by Mirouze (2010). Some of the issues involved in the practical
implementation of this method are discussed in the following sections.

4.1.2 Solid-wall boundary conditions

Now consider Eq. (4.3) in the presence of solid-wall boundaries such as coastlines in an
ocean model. Different boundary conditions (BCs) have been considered by Weaver and
Courtier (2001) and Mirouze and Weaver (2010): setting the normal derivative of
the field to be zero at the boundary (Neumann BCs); setting the field itself to be zero at the
boundary (Dirichlet BCs); or a mixture of the two (Robin BCs). Regardless of the type of
BC employed, the resulting response of the diffusion operator near the boundary leads to
a large change in the amplitude of the covariance function. As a consequence, the constant
normalization factor γh becomes a poor estimate of the correct normalization factors near
the boundaries. In numerical applications, the correct normalization factor at a particular
grid-point can be computed exactly by applying L to the discrete vector representation of
a Dirac δ-function centred at that point; i.e., a vector δi equal to zero everywhere except
at the grid-point i where it is defined by the inverse of the local area element. (The spatial
integral of δi would then produce a value of 1 as required by the formal definition of a δ-
function.) The value of the smoothed field at grid-point i is the inverse of the normalization
factor at that point. This algorithm, which requires as many applications of the diffusion
operator as there are grid-points, is expensive and of limited practical interest for large
problems. Alternatively, the normalization factors can be approximated using a cheaper
algorithm based on an ensemble of random vectors (Weaver and Courtier 2001). The
accuracy of this method is determined by the number of random vectors employed.

While the normalization process can correct the amplitude of the covariance function,
it results in a distortion of the shape and effective length-scale of the covariance functions
near the boundaries. Mirouze and Weaver (2010) provide examples in 1D that illus-
trate this effect. They go on further to propose a formulation of the diffusion operator that
effectively renders the operator transparent to solid-wall boundaries. This can be done by
defining L to be the average of two diffusion operators, one employing Neumann (N) BCs
and the other employing Dirichlet (D) BCs:

L =
1

2
(LN + LD)

=

(
1√
2
L
1/2
N

1√
2
L
1/2
D

)
1√
2
L
1/2
N

1√
2
L
1/2
D

 (4.16)

where the second expression illustrates that the square-root associated with L is now
a rectangular matrix operator. A mathematical proof of this result is given in Mirouze
and Weaver (2010) for the Gaussian case described by the 1D diffusion equation. Equa-
tion (4.16) follows from an intuitive generalization of this result to higher dimensions and
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to account for the (finite M) Matérn-like functions represented by the implicit diffusion
operator. Its validity has been demonstrated numerically in several examples in 1D as well
as in global configurations of NEMOVAR. While this formulation doubles the cost of the
correlation model, it may be important for applications requiring accurate analyses near
the boundary. Note that with L defined by Eq. (4.16), the constant normalization factor
γh is a good approximation of the correct normalization factor near boundaries as well as
far from boundaries.

4.1.3 Inhomogeneity and non-separability

The assumption that background-error correlation length-scales are constant is very re-
strictive in ocean data assimilation. Ocean variability occurs on a wide-range of time and
spatial scales, and has a strong regional dependence. For example, ocean variability is dom-
inated by mesoscale eddies in western boundary current regions such as the Gulf Stream,
whereas it is dominated by larger scale, linear wave dynamics in the equatorial regions.
Furthermore, the ocean observing system consists of a largely inhomogeneous distribution
of measurements. For example, there is an abundance of measurements in certain regions
of strategic or economic interest, such as the Gulf Steam or tropical Pacific, but far fewer
measurements in the more hostile and isolated environment of the Southern oceans. The
inhomogeneous nature of the ocean observing system and the regional diversity of ocean
dynamics will result in a geographical dependence in the background-error correlations
which should be accounted for.

Now consider the case when we allow for spatial variations in the scale parameter
L = L(λ, φ). Local estimates of the Daley length-scales D = D(λ, φ) can be obtained
from statistics of ensemble-forecast differences (Belo Pereira and Berre 2006; Pannekoucke
and Massart 2008; Daget 2008; see section 4.3). Given estimates of D and a prescribed
value of M , the local diffusion scale L can be determined from Eq. (4.8). To account
for spatially-varying scale parameters in the implicit diffusion model, the parameter L2

must be introduced within the derivatives in order to ensure that A remains self-adjoint
with respect to the inner product 〈ψ1, ψ2〉W =

∫∫
ψ1ψ2 a

2 cosφ dλdφ, and hence that the
correlation functions implied by L = (A−1)M are symmetric. Equation (4.6) then becomes

Aψ ≡
(
1−∇ · L2∇

)
ψ (4.17)

where ∇ denotes the horizontal gradient operator and ∇· the horizontal divergence oper-
ator.

A consequence of varying the scale parameters is that the normalization factors are no
longer constant. When the scale variations are sufficiently slow compared to the scale itself,
a reasonable approximation to the normalization factor at each grid-point can be obtained
from Eq. (4.9) using the local value of L2 (Pannekoucke and Massart 2008; Mirouze and
Weaver 2010). A better approximation may be obtained using the same expression
but with filtered estimates of L2 (Purser et al. 2003b; Mirouze and Weaver 2010;
Yaremchuk and Carrier 2012). Alternatively, the more expensive randomization or δ-
function methods described earlier can be applied to obtain more accurate estimates.

Let us now return to the formulation (4.15) where the 2D implicit diffusion operator is
separated into a product of 1D implicit diffusion operators, and let the matrix operators
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Aλ and Aφ denote discrete representations of

Aλψ =

(
1− 1

a2 cos2 φ

∂

∂λ

(
L2(λ, φ)

∂

∂λ

))
ψ

and Aφψ =

(
1− 1

a2 cosφ

∂

∂φ

(
L2(λ, φ) cosφ

∂

∂φ

))
ψ,

which are the 1D implicit diffusion operators derived from Eq. (4.17) (cf. Eqs (4.13) and
(4.14)).

While Aλ and Aφ are self-adjoint with respect to the Wλ- and Wφ-inner products,
respectively, their product AλAφ (or AφAλ) is not, in general, self-adjoint with respect
to the W-inner product:

AλAφ = W−1
λ AT

λ Wλ W−1
φ AT

φ Wφ

= W−1 AT
λAT

φ W

= W−1 (AφAλ)T W

= (AφAλ)∗

6= (AλAφ)∗ (in general).

This means that self-adjointness of the associated smoothness operator L has to be forced
explicitly. There are several ways to do this as outlined below, but some have more
attractive properties than others.

To simplify notation, let

Lφλ = Lφ Lλ

where

L∗φλ = L∗λ L∗φ = Lλ Lφ

L
1/2
φλ = L

1/2
φ L

1/2
λ .

}
(4.18)

The formulation

L(1) =
1

2

(
Lφλ + L∗φλ

)
, (4.19)

obtained by averaging Lφλ with its adjoint, is an obvious way to impose self-adjointness.
However, it doubles the number of diffusion operations and does not have a simple square-
root factorization. It also has unsatisfactory smoothness properties near complex bound-
aries as discussed later and illustrated by Mirouze (2010)

More convenient formulations can be derived using square-root factorizations of Lφλ
and L∗φλ. Using the relations (4.18) in Eq. (4.19) and rearranging terms leads to an
alternative (self-adjoint) formulation

L(2) =
1

2

(
L
1/2
φλ L

1/2
φλ

∗
+ L

1/2
φλ

∗
L
1/2
φλ

)
= L

1/2
(2) L

1/2
(2)

∗
(4.20)



38

where

L
1/2
(2) =

1√
2

(
L
1/2
φλ L

1/2
φλ

∗ )
.

Equation (4.20) also doubles the number of diffusion operations but, contrary to Eq. (4.19),

possesses a relatively simple “square-root” L
1/2
(2) . The rectangular nature of L

1/2
(2) , however,

means that the size of the control vector needed for minimization with a square-root
preconditioner will effectively be doubled. (This situation also arises from the treatment
of the boundary conditions following Eq. (4.16)). A simple way to avoid this is to average

L
1/2
φλ and L

1/2
φλ

∗
directly within the definition of the square root. This leads to the following

formulation:

L(3) =
1

4

(
L
1/2
φλ L

1/2
φλ + L

1/2
φλ L

1/2
φλ

∗
+ L

1/2
φλ

∗
L
1/2
φλ + L

1/2
φλ

∗
L
1/2
φλ

∗)
,

= L
1/2
(3) L

1/2
(3)

∗
(4.21)

where

L
1/2
(3) =

1

2

(
L
1/2
φλ + L

1/2
φλ

∗)
.

Eq. (4.21) contains the two terms in Eq. (4.20) plus two extra terms associated with the
cross product in Eq. (4.21). When implemented using the factorization (4.21), L(3) has an
equivalent number of diffusion operations as L(2). Dobricic and Pinardi (2008) proposed
a similar construction for representing 3D covariances from the product of a horizontal
covariance operator based on the recursive filter and a vertical covariance matrix derived
from Empirical Orthogonal Functions.

The additional diffusion terms required by formulations L(1), L(2) and L(3) will increase
the computational cost of the correlation operator. This may be a problem for some
applications. Two cheaper formulations can be derived by considering each self-adjoint
component of Eq. (4.20) separately:

L(4) = L
1/2
φλ

(
L
1/2
φλ

)∗
(4.22)

and L(5) =
(
L
1/2
φλ

)∗
L
1/2
φλ . (4.23)

Both Eqs (4.22) and (4.23) are valid correlation operators, and have an easily accessible
square root, but choosing between one or the other is somewhat arbitrary.

Formulations L(p), p = 1, . . . , 5, are identical when Lλ and Lφ commute, which occurs
for the special case when the correlation kernels of Lλ and Lφ are independent of φ and
λ, respectively, and M is large. We can therefore expect them to produce similar results
in regions where the correlation function Cλφ(λ, φ, λ′, φ′) implied by LλLφ can be well ap-
proximated by a separable function Cλ(λ, λ′)Cφ(φ, φ′). They can, however, produce quite
different results in regions where non-separability is important. For example, this can oc-
cur near complex coastlines where a particular order of the diffusion operations may result
in some regions being “smoothed” more than others. In data assimilation, this can lead
to unphysical gradients in the analysis increments, particularly when the correlation scale
is much larger than the scale of the local geometry. As illustrated by Mirouze (2010),
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(a) ms = 1 (b) ms = 5

Figure 4.1: Point correlations obtained using a different number (ms) of alternating di-
rections in a 2D correlation operator based on Eqs (4.22) and (4.24) but applied on a
uniform Cartesian grid. The correlations are computed with respect to a point immedi-
ately to the left of an island of the size of one grid-point. The Daley length-scale is equal
to 10 grid-points. The number of implicit diffusion iterations (M) equals 10.

the effect is especially acute with the formulation L(1), and least problematic with the
formulations L(2) and L(3) which have the greatest number of diffusion applications with
alternating directions. Even these latter formulations may not be sufficient to remove
spurious features. In this case, it would be desirable to increase the number of alternat-
ing diffusion directions within the individual square-root operators. This can be done by
formulating the square-root operators as

L
1/2
φλ =

(
L
1/2ms

φ L
1/2ms

λ

)ms

(4.24)

where ms is a positive integer that is chosen to be a factor of M . The maximum possible
number of alternating diffusion directions would be produced by choosing ms = M/2.
Figures 4.1a and b illustrate the effect of the parameter ms on minimizing numerical
artifacts in the correlations near an isolated boundary point, here taken to be a small island
whose size is 10 times smaller than the scale of the correlation structures. In practice,
an appropriate choice of ms will also depend on the details of the implicit solver and
its implementation on massively parallel machines. For example, the solution algorithm
currently used in NEMOVAR involves a Cholesky algorithm, combined with a procedure to
remap the rectangular domains of the parallel decomposition used in NEMO into banded
domains that are suitable with the forward-elimination and backward-substitution steps
of the Cholesky algorithm (Mirouze 2010). For this algorithm, it is desirable to keep
ms sufficiently small to limit the number of costly remapping steps needed to go from one
decomposition to the next.

4.1.4 Three-dimensional correlation models

A 3D correlation operator that includes the vertical dimension z can be constructed as a
self-adjoint product of three 1D implicit diffusion operators Lλ, Lφ and Lz, following the
basic approach described above. In the 3D case, there are six possible combinations of Lλ,
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Lφ and Lz and therefore six possible self-adjoint square-root formulations (cf. Eqs (4.22)
and (4.23) in the 2D case). As in the 2D case, to avoid spurious gradients in the correlations
near complex bathymetry, it may be necessary to perform additional smoothing between
the horizontal and vertical planes, using an “interleaving” formulation analogous to (4.24).
In NEMO, the parallel decomposition is done in the horizontal domain, so that a switch
from either Lλ or Lφ to Lz (or vice-versa) does not require a reorganization of processors
as required by a switch from Lλ to Lφ (or vice-versa).

The numerical artifacts near coastlines and bathymetry can be eliminated naturally
through the use of a non-separable smoothing operator constructed from a true 3D implicit
diffusion operator L3D ≡ (A−13D)M where

A3Dψ ≡
(

1−∇ · L2
h(λ, φ, z)∇− ∂

∂z

(
L2
z(λ, φ, z)

∂

∂z

))
ψ. (4.25)

Here, the horizontal and vertical scale parameters, Lh and Lv, are treated as functions
of the three spatial coordinates. The operator A3D is positive definite and self-adjoint
with respect to the inner product 〈ψ1, ψ2〉 =

∫∫∫
ψ1ψ2 a

2 cosφ dλ dφ dz. Applying a fully
3D implicit diffusion-based correlation operator is computationally challenging for large
systems, and to my knowledge has not been attempted yet in practical data assimilation
systems. It is an attractive possibility for future development however, especially in view
of its importance for representing anisotropic correlations as discussed next.

4.1.5 Anisotropy

Isotropic correlation models, or quasi-isotropic correlation models that allow stretching
of the correlations only in the direction of the computational coordinates, are commonly
used in data assimilation algorithms because of their simplicity and computational conve-
nience. There is no reason, however, to expect actual background-error correlations to be
isotropic or quasi-isotropic in geophysical fluids such as the ocean. On the contrary, one
would expect them to be strongly anisotropic, particularly near coastlines, bathymetry,
ocean fronts or in unevenly observed regions. Anisotropic correlation models allow for
preferential stretching or shrinking of the correlation functions along arbitrary directions.
Anisotropy can be taken into account in the diffusion equation by replacing the diffu-
sion coefficient with a diffusion tensor. With reference to the 3D implicit diffusion (cf.
Eq. (4.25)), the A3D operator becomes

A3Dψ ≡ (1−∇ ·L(λ, φ, z)∇)ψ (4.26)

where ∇· is the 3D divergence operator, ∇ is the 3D gradient operator, and L is a sym-
metric (diffusion) tensor which is, in general, a function of the three spatial coordinates.

In 3D the symmetric diffusion tensor contains six independent elements. Four of the
tensor elements account for anisotropy between the horizontal and vertical directions.
The importance of these terms compared to the diagonal terms is related to the choice of
vertical coordinate in the correlation model. In an ocean model, for example, a natural
vertical coordinate is a hybrid coordinate involving a standard geopotential (z) coordinate
in unstratified regions such as the mixed layer, an isopycnal (ρ) coordinate in strongly
stratified regions, and a terrain-following (s) coordinate near the ocean bottom, the latter
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being particularly important in shallow coastal regions (Haidvogel and Beckmann 1999).
In this hybrid coordinate system, the flow is more naturally decoupled into ‘horizontal’
and ‘vertical’ processes. If the same coordinate system is adopted for a background-error
correlation model then it is reasonable to assume, at least from a physical viewpoint, that
the non-diagonal tensor elements are small and can be neglected. However, anisotropy in
background-error correlations can also arise from the assimilation of data, especially near
the transition between poorly observed and well observed regions. In general, the relative
importance of the diagonal and non-diagonal terms of the tensor can only be determined
after a thorough diagnostic study involving the direct estimation of the elements of the
tensor.

Many ocean models used for global- and basin-scale circulation studies employ a z
coordinate. Weaver and Courtier (2001) showed how a standard isopycnal diffusion
tensor used to parameterize mixing of unresolved processes in a z-coordinate ocean model
could also be used to transform the coordinates of a background-error correlation model
formulated as an explicit 3D diffusion operator. The resulting operator produces correla-
tions that are strongest along the background isopyncal surfaces but fall off rapidly across
these surfaces. This is illustrated in Fig. 4.2 which compares correlation structures from
a 3D diffusion operator in z coordinates and isopycnal coordinates. A correlation model
based on Fig. 4.2c would clearly be less destructive to the background density profile than
a correlation model based on Fig. 4.2b. Furthermore, being state-dependent, isopycnal
coordinates would allow the background-error correlation model to evolve from one cycle
to the next, rather than being fixed as in z coordinates.

An analogous coordinate transformation was proposed within the framework of Opti-
mal Interpolation by Balmaseda et al. (2008). While the isopycnal correlation model has
appealing features, the implementation based on the explicit scheme proposed by Weaver
and Courtier (2001) is too expensive for routine applications since a prohibitively high
number of iterations is required to maintain numerical stability in regions of strong isopy-
cnal gradients. Moreover, the specification of the length-scales must be performed in
isopycnal space, which makes estimating them more difficult in a z-coordinate model.
Weaver and Mirouze (2013) propose alternative methods for defining anisotropic cor-
relations, which involve estimating the tensor directly in the model coordinate system.
This is discussed within the context of ensemble data assimilation in section 4.3.2.

4.2 Multivariate covariance modelling using balance opera-
tors

Ocean state vectors involve a mixture of variables. The primary variables of an OGCM
are potential temperature (T ), salinity (S), SSH (η) and the two components (u and v)
of the horizontal velocity vector. These variables are highly coupled through the physical
relationships described by the governing equations of the OGCM. Background errors can
thus be expected to be highly correlated between variables. Accounting for cross-variable
covariances in the background-error formulation is important in allowing the assimilation
system to extract information about unobserved variables from observed variables, and, as
already illustrated in Chapter 3, in helping to minimize unphysical adjustment processes
that can occur when the model is initialized from an analysis.
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(a) (b) (c)

Figure 4.2: (a) A meridional section of a typical background potential temperature field
in the eastern tropical Pacific. (b) The auto-correlation field at a depth of 55 metres and
latitude 8◦N generated by a 3D diffusion operator defined with respect to the geopotential
coordinate system. (c) The corresponding auto-correlation field obtained using the 3D
diffusion operator defined with respect to an isopycnal coordinate system based on the
background isopycnal surfaces associated with (a). (From Weaver and Courtier 2001).

The next subsection describes how the general 4D-Var problem described in Chapter 2
can be modified to take into account multivariate relationships in the background-error
formulation. This will then be followed by a brief description of the specific multivariate
relationships proposed by Ricci et al. (2005) and Weaver et al. (2005) for variational
ocean data assimilation, and which form the basis of the multivariate covariance formu-
lation used in NEMOVAR. A close variant of this formulation is also used in the 4D-Var
system for the ROMS model (Moore et al. 2011a,b,c).

4.2.1 A general transformation of variables

Central to the multivariate covariance formulation is the assumption that the initial state
variables can be transformed into a new set of variables whose cross-covariances are suffi-
ciently small that they can be ignored. The basic idea was originally proposed by Derber
and Bouttier (1999) for atmospheric data assimilation and developed in an oceanographic
context by Weaver et al. (2005).

We refer to the notation of Chapter 2 where the general 4D-Var problem was in-
troduced. The transformation of the initial state vector x = x(t0) into a vector w of
approximately uncorrelated variables will be denoted as

w = K−1(x)

where K−1 : Rn → Rn is assumed to be invertible and possibly nonlinear. The forward
operator K is usually called a balance operator. In terms of w, the nonlinear 4D-Var
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problem (2.5) can be recast as finding wa = arg min J [w] where

J [w] =
1

2
(w −wb)T B−1(w) (w −wb) +

1

2
(G[K(w)]− yo )TR−1(G[K(w)]− yo ) (4.27)

where

wb = K−1(xb) (4.28)

is the background estimate of w. The analysis in model space is given by

xa = K(wa). (4.29)

By virtue of the ‘decorrelation’ transformation (4.28), the error covariance matrix B(w)

of the transformed background-state vector wb can be assumed to be block-diagonal (uni-
variate). The individual blocks correspond to the error covariance matrices of each of the
transformed variables. These univariate covariance matrices can be modelled separately
using a diffusion operator as described in the previous section. Whereas the model propa-
gator M(ti, t0) in the general expression for G (Eq. (2.6)) constrains the sequence of model
states between t0 and ti, the balance operator K in Eq. (4.27) provides a complementary
constraint on the state at initial time. Although K can be absorbed into the generalized
observation operator G, it is convenient here to keep them separate in Eq. (4.27) in order
to clarify an approximation made in NEMOVAR, as outlined below.

The incremental approximation of (4.27) leads to the sequence k = 1, . . . ,Ko of
quadratic minimization problems (cf. (2.9)) for finding δwa = arg min J [δw] where

J (k)[δw(k)] =
1

2
(δw(k) − δwb,(k−1))T B−1(w) (δw(k) − δwb,(k−1)) (4.30)

+
1

2
(G̃(k−1)K̃(k−1)δw(k) − δyo,(k−1))TR−1(G̃(k−1)K̃(k−1)δw(k) − δyo,(k−1))

where

δwb,(k−1) = wb − w(k−1),

δyo,(k−1) = yo −G[K(w(k−1))] (4.31)

and K̃(k−1) is an approximation of the tangent-linear of the balance operator,
∂K/∂w|w=w(k−1) . The analysis increment in control space can be written as a sum of
the minimizing increments from all outer iterations (see Chapter 2),

δwa =

Ko∑
k=1

δw
(k)
(mk)

= −δwb,(Ko).

The analysis in model space can then be obtained from Eq. (4.29) with

wa = wb + δwa.

By transforming the problem back to model space, it is easy to see that the effective
formulation of the background-error covariance matrix for xb has the form

B(k−1) = K̃(k−1) B(w) (K̃(k−1))T. (4.32)
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The dependence of K̃(k−1) on the reference state (in the case of a nonlinear balance
operator) implies that B(k−1) will be updated from one outer iteration to the next.

The nonlinear balance operator is required in Eq. (4.31) to compute the model coun-
terpart of the observation vector given the reference state w(k−1). Through successive
linearizations about w(l), l = 0, ..., k − 2, this operator can be approximated by

K(w(k−1)) ≈ K(w(0)) +
k−1∑
l=1

K(l−1)δw(l)
(ml)

= xb +
k−1∑
l=1

δx̃
(l)
(ml)

(4.33)

where

δx̃
(k)
(mk)

= K(k−1)δw(k)
(mk)

is an approximation of the model-space increment

δx
(k)
(mk)

= K
(
w(k−1) + δw

(k)
(mk)

)
−K

(
w(k−1)

)
.

With this approximation, only the sequence of linearized balance operators K(k−1) are
required to iterate the incremental algorithm. This approximation has been adopted in
NEMOVAR for practical convenience and will be discussed further below.

4.2.2 Temperature-salinity constraints

Many of the early applications of data assimilation in OGCMs focussed on the tropical
oceans, particularly the Pacific, where there was great interest in producing accurate
estimates of the upper ocean state for improving the initialization of forecasts of climate
anomalies such as ENSO with coupled GCMs. The backbone of the ENSO observing
system, which was established in the mid-1980s to mid-1990s as part of the Tropical
Ocean Global Atmosphere (TOGA) programme, consisted of temperature profiles from
both XBTs deployed by volunteer observing ships and from ATLAS moorings in the
Tropical Atmosphere Ocean (TAO) array. Much of the early efforts in tropical ocean data
assimilation were dedicated to assimilating these temperature data using relatively simple
univariate schemes.

While these schemes led to vastly more accurate estimates of upper ocean thermal
state than without data assimilation, they tended to have a detrimental effect on the
ocean-state variables (salinity, currents) not directly constrained by the data. The main
reason for this was attributed to artificial changes of water masses in the model caused
by spurious mixing when the temperature field is changed while leaving salinity, the other
primary thermodynamic variable controlling density, unchanged. Multivariate schemes,
in particular those that produced corrections to salinity in response to corrections to
temperature, were proposed to alleviate this problem. Troccoli and Haines (1999) and
Troccoli et al. (2002) proposed a two-step nonlinear scheme (hereafter referred to as the
TH scheme) that involved first correcting temperature through assimilation and then
searching for the analyzed temperature value in the background density profile in order to
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retrieve the corresponding background salinity value for defining the salinity “analysis” at
that point. The method acts to preserve the background water masses. While the scheme
worked remarkably well when assimilating only temperature data in a univariate OI-type
system, it was difficult to apply in a more general context such as 4D-Var or with the
simultaneous assimilation of multiple data-types.

Ricci et al. (2005) proposed a linearized variant of the TH scheme to fit within
the multivariate covariance formulation of Derber and Bouttier (1999). In their scheme,
temperature was taken as the primary variable whereas salinity was split into a “balanced”
term dependent on temperature, and an “unbalanced” term to account for that part of
salinity that is independent of temperature. They derived their linearized scheme from
the second-term of a Taylor series expansion of the (assumed) background S(T ) relation
at each grid-point. A local salinity balance coefficient was then defined from a finite-
difference approximation of the background value of ∂S/∂T at each grid-point. Only
the contribution of the vertical component of the derivative was taken into account in
approximating ∂S/∂T . This is analagous to the TH scheme which accounted for salinity
changes arising from vertical advective processes only. In well-mixed regions there is little
or no reason to expect temperature and salinity to be correlated. In these regions, which
are characterized by small T or S gradients, the balance coefficient was set to zero, and
the salinity analysis was dependent entirely on the unbalanced salinity component. The
incremental formulation (4.30) suggests that the linearized scheme should be used in the
inner loop only and that the original nonlinear TH scheme should be retained in the outer
loop. While this may have had a beneficial impact on the analyses, it was decided instead
to employ the approximation (4.33) for simplicity.

Figure 4.3 illustrates the impact of the multivariate T-S scheme on the mean salinity
profile between 0 and 2000m in the TAO region (10◦S–10◦N; 160◦E–70◦W) of the tropical
Pacific. The results are from a multi-year 3D-Var experiment assimilating only tempera-
ture data. Compared to climatology (red curve), when no T-S constraint is applied, the
water is too fresh above 400m and too salty below (green curve), and produces a notable
reduction in the salinity maximum near 100m. The mean salinity profile in this experiment
is clearly degraded compared to the experiment without data assimilation (black curve).
With the T-S constraint, the mean salinity profile is improved, through a reduction of
the artificial freshening and saltening above and below 400m (blue curve). The currents
at the surface and below the core of the Equatorial Undercurrent were also improved,
even though this field was not directly constrained by the multivariate analysis. Ricci et
al. (2005) went on further to perform a detailed analysis of the heat and salt budgets
in the model. This original aspect of their work provided useful physical insight of the
processes at work in the model in response to the temperature data assimilation, with and
without the T-S constraint.

4.2.3 Additional balance constraints

Weaver et al. (2005) extended the work of Ricci et al. (2005) to include balance rela-
tionships for the other ocean state variables, η, u and v. The balance was still conditioned
by temperature in the sense that this was the primary variable used as the starting point
to establish the balanced part of the other variables. Given the increment to the state
vector δx(k) = (δT, δS, δη, δu, δv)T, where the components are understood to be column



46

Figure 4.3: The 1996 mean salinity profile between 0 and 2000m averaged over the TAO
region: Levitus climatology (solid red curve), control (no data assimilation; dashed black
curve), assimilation without T-S constraint (dashed-dotted green curve), and assimilation
with T-S constraint (dashed-dotted blue curve). (From Ricci et al. (2005)).
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vectors containing the value of the variable at each grid-point, then the control vector was
taken to be δw(k) = (δT, δSU, δηU, δuU, δvU)T where the subscript U means the unbal-
anced component of that variable. In general operator form, the sequence of linearized
balance transformations comprising K(k−1) had the following structure,

δT (k) = δT (k)

δS(k) = K
(k−1)
ST δT (k) + δS

(k)
U = δS

(k)
B + δS

(k)
U

δη(k) = Kηρ δρ
(k) + δη

(k)
U = δη

(k)
B + δη

(k)
U

δu(k) = Kup δp
(k) + δu

(k)
U = δu

(k)
B + δu

(k)
U

δv(k) = Kvp δp
(k) + δv

(k)
U = δv

(k)
B + δv

(k)
U

where

δρ(k) = K
(k−1)
ρT δT (k) + K

(k−1)
ρS δS(k)

δp(k) = Kpρ δρ
(k) + Kpη δη

(k)
(4.34)

are diagnostic quantities corresponding to increments of density and pressure, respectively,
and Kxy represents the balance transformation from variable(s) y to x. The subscript B
denotes the balanced part of that variable. The lower triangular form of K(k−1) means that
the inverse operator (K(k−1))−1 can be computed trivially using forward elimination. This
is convenient for estimating background-error covariance statistics of the control variables
(w) from samples of background error with respect to the model variables (x) which is
the information available in practice (e.g., from ensemble perturbations, see section 4.3).

The balanced component of salinity is defined from the T-S constraint described earlier.
The resulting total salinity increment (balanced + unbalanced component) is then used
with the temperature increment in a linearized version of the equation of state to compute
a density increment (the first of the diagnostic equations in (4.34)). Note that the T-
S and density balance operators include a superscript (k − 1) to indicate that they are
dependent on the reference state, which is not the case for the other balance relations. The
density increment is then used to compute a baroclinic contribution to the SSH through
the dynamic height relation, assuming a “level of no motion” at some reference depth. (An
alternative balance relation that does not require this assumption is described in Weaver
et al. (2005) but involves the solution of an elliptic equation and thus is more costly and
more complicated to implement). The unbalanced component of SSH is attributed to a
barotropic signal. The total SSH increment and the density increment are then used with
the hydrostatic relation to compute a pressure increment (the second of the diagnostic
equations in (4.34)). Finally, the pressure increment is used in the geostrophic relation to
compute a balanced component for velocity. Near the equator the Coriolis parameter goes
to zero and thus the standard f -plane geostrophic relation breaks down. In this region
the meridional component of velocity is reduced to zero while a β-plane approximation is
used to compute a geostrophically balanced zonal component of velocity. The unbalanced
part of velocity is then attributed to the ageostrophic component.

The coupling of the balance operator and its transpose with the univariate error co-
variance matrix B(w) via Eq. (4.32) results in a complex multivariate error covariance
matrix with respect to the model variables, as illustrated in the Appendix of Weaver et
al. (2005). Although the explicit matrix form is never needed in practice, it is helpful
for understanding how the different elements combine to determine the expression for the
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Figure 4.4: Horizontal section of the SSH analysis increments generated by the 4D-Var
assimilation of a single temperature observation located on the equator in the central
Pacific at 100m depth and at day 10 into an assimilation window. The increments are
displayed on day 10 for a 4D-Var experiment (a) without and (b) with the balance operator
activated. The contour interval is 0.02m. (From Weaver et al. (2005)).

analysis increment in the presence of a single observation-type. Several illustrations were
given in Weaver et al. (2005). While the balance operator is clearly fundamental in
establishing a physically sensible (multivariate) analysis in 3D-Var, it also plays an im-
portant role in 4D-Var. This is illustrated in Fig. 4.4 which shows the SSH increments
produced from two 4D-Var single temperature observation experiments performed without
and with the balance operator activated. The observation is located in the thermocline on
the equator and at the end of a 10-day assimilation window. The SSH increments shown
are those produced at the observation time (day 10) using the tangent-linear model to
propagate forward the analysis increment at initial time. The SSH increment produced
without the balance operator has a localized structure similar to that obtained by a mul-
tivariate 3D-Var, whereas the increment produced with the balance operator results in
the temperature observation projecting much more effectively onto large-scale equatorial
waves-modes.

The balance operator can be considered effective if the variance of background error
of the balanced variables explains a substantial part of the variance of background error
of the full variables. If this is not the case then the balance operator would provide little
useful information for the analysis. Using simulation errors produced with a NMC-type
method as a proxy for actual background errors, Weaver et al. (2005) provide evidence
that their proposed balance operator explains a significant percentage of background-error
variance. Further evidence was given by Daget (2008) who studied the validity of the
balance operator using simulation errors computed from the 9-member ensemble 45-year
reanalysis for the ENSEMBLES project. His work also highlighted, however, certain
limitations in the T-S balance and the equatorial velocity balance where a non-negligible
cross-covariance was obtained between the balanced and unbalanced components of the
error, contradicting the underlying hypothesis that these components are uncorrelated.
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4.3 Covariance estimation using an ensemble

The general purpose of a covariance model is to incorporate in it as much prior knowledge
as possible about the statistical structures of the errors in order to limit the number
of covariance parameters that need to be estimated from actual statistics. The balance
operator and the diffusion-based correlation operator described in this chapter are the core
components of the covariance model developed for NEMOVAR. In the remainder of this
chapter, the problem of estimating parameters of the covariance model is discussed within
the context of ensemble data assimilation.

The next subsection deals with the variance estimation problem as studied by
Daget (2008) and Daget et al. (2009) using an ensemble technique applied to a global-
ocean 3D-Var system. The final subsection discusses some recent work by Weaver and
Mirouze (2013) to apply an ensemble technique to the estimation of parameters that
control the length-scales and anisotropic response of a correlation model based on a diffu-
sion operator.

4.3.1 Ensemble estimation of background-error variances

An important feature of an ensemble data assimilation system is its capacity to provide
flow-dependent information on analysis and background error. This information can be
exploited in a cycled assimilation system to improve the estimate of the background-
error covariance matrix on each cycle. A theoretical justification of the method within
the context of variational assimilation is provided by Berre et al. (2006) and Daget et
al. (2009). In particular, they show how perturbing the input parameters of a cycled
analysis/forecast system leads to linearized evolution equations for the analysis and fore-
cast state perturbations which are identical to those for the true errors. Furthermore,
assuming that the perturbations to the input parameters are random samples drawn from
the probability distribution of the true errors, then the evolved analysis and forecast per-
turbations from the cycled ensemble will also be random samples from the distribution
of the true errors. The covariance matrices estimated from a sample of perturbed-minus-
unperturbed analysis and forecast differences then provide accurate estimates of the true
analysis- and forecast-error covariance matrices. In practice, these covariance matrices
will only be approximate due to the finite sample of the ensemble and due to inaccuracies
in the specification of the error covariance matrix of the input parameters.

Daget et al. (2009) investigated the potential of using the spread of background-
states from a 9-member ensemble 3D-Var system to provide flow-dependent estimates of
the background-error variances of temperature and (unbalanced) salinity in a low resolu-
tion global model (the ORCA2 configuration). (Only temperature and salinity data were
assimilated so the only background-error variables to specify in the 3D-Var system were
temperature and unbalanced salinity). The cycling and estimation procedure adopted in
that study is summarized schematically in Fig. 4.5 (see caption for details). In order to
reduce sampling error, a sliding window was used to include the ensemble of background
states from the previous 9 cycles (90-days) in the computation of the variances for the
current cycle. This effectively increased the ensemble size to 81, but at the expense of fil-
tering out background-error variations on intraseasonal time-scales and strongly damping
those on seasonal time-scales.
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Figure 4.5: Schematic illustration of the ensemble 3D-Var system. The ensemble of anal-
ysis states xal,c−1(tN ), l = 0, . . . L − 1, at the end of cycle c − 1 are used to initialize the
background trajectories of each ensemble member on the next cycle c. The background
trajectory of each member l is produced by integrating the model with a perturbed set of
forcing fields (wind-stress, heat flux, PmE), fl,c,i = fc,i + ε̃fl,c,i, from the initial condition

xbl,c(t0) = xal,c−1(tN ). Each background trajectory is compared with a set of perturbed
observations yol,c,i = yoc,i + ε̃ol,c,i to produce an innovation vector for each member l. A
3D-Var (FGAT) analysis is then performed for each ensemble member using the appro-
priate innovation vector and a background-error variance matrix D(ŵ),c that has been

estimated from the ensemble of background initial states xbl,c(t0). Ensemble member l = 0

is unperturbed: ε̃f0,c,i = 0 and ε̃o0,c,i = 0. The resulting analysis increment is then used to
produce an analysis state trajectory using Incremental Analysis Updates. (From Daget et
al. 2009).

The 3D-Var analyses produced with the ensemble variances showed improvements
over those produced with an empirical parameterization of the variances. In particular,
there was a reduction of error-growth between assimilation cyles and a better fit to non-
assimilated observations such as equatorial current measurements in the Pacific, suggesting
that the dynamical balance in the analyses was improved with the ensemble variances.
However, statistical consistency diagnostics indicated that the ensemble variances were
largely underestimated, especially in the upper ocean, which pointed to deficiencies in the
ensemble-generation procedure and the need for variance inflation (which was not applied).
Even more troubling was that both sets of 3D-Var analyses were in some regions and for
some variables worse than those from a control analysis in which no data were assimilated.
This pointed to more general problems in the data assimilation system. Model systematic
error associated with poor resolution and inaccuracies in the forcing fluxes and vertical
mixing parameterization scheme was viewed as an important factor contributing to the
deficiencies in the data assimilation.
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4.3.2 Ensemble estimation of background-error correlations

The study of Daget et al. (2009) examined the use of an ensemble to estimate only
the diagonal elements of B. If Ng denotes the total number of grid-points and Nv the
number of background-error variables then this requires the estimation of N = Ng ×Nv

elements, which is much smaller than the (N2 + N)/2 independent elements required to
estimate the full (symmetric) B matrix. As such, the variance estimation problem will
be less exposed to problems of sampling error than the correlation estimation problem.
(In practice, however, some degree of spatial or temporal filtering is needed even for the
variances since the number of ensemble members (Ne) is typically much smaller than N).

The ensemble estimation of background-error correlations can also be reduced to
a problem of order N by making certain simplifying assumptions about the form of
the correlation function that we wish to estimate. This is discussed by Weaver and
Mirouze (2013) within the context of a diffusion-based correlation model. In particular,
assume that the correlation function is locally homogeneous and at least twice differen-
tiable. This latter requirement is satisfied by both the Gaussian function and the Matérn
functions, provided that for the latter M > 1 in R and M > 2 in R2 and R3. These
are the functions that can be approximately modelled by applying an M -step implicitly-
formulated diffusion operator.

For anisotropic and homogeneous versions of these functions, the distance between two
points x and x′ in Rd is measured according to

r =

√
(x− x′)TL−1 (x− x′)

where L is the aspect tensor of the correlation function. The aspect tensor defines the
scale (diffusion) tensor in the diffusion equation. For the implicit diffusion kernels,

L =
1

2M − d− 2
H−1 (4.35)

where H is the tensor of second-derivatives of the correlation function evaluated at zero
separation. In the geostatistical literature H is known as the correlation Hessian tensor.
Weaver and Mirouze (2013) called its inverse H−1, which appears in Eq. (4.35), the
Daley tensor in view of its analogy with the Daley length-scale in the isotropic case.
In particular, they discuss how ensemble perturbations can be used to obtain a sample
estimate of the elements of H by exploiting the diagnostic formulae of Belo Pereira and
Berre (2006). In compact form, the expression reads (Michel 2013),

He =

Ne∑
l=1

∇ε̂bl
(
∇ε̂lb

)T
(4.36)

where

ε̂ bl =
εbl

σe
√
Ne − 1

(4.37)

is the background perturbation εbl normalized by
√
Ne − 1 times the sample estimate

of its standard deviation σe. The estimate of He can be done at each grid-point and
the corresponding scale tensor Le estimated from Eq. (4.35). The resulting correlation
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estimates are both anisotropic and inhomogeneous. In 2D (3D) this requires the estimation
of 3N (6N) independent elements, which is of the same order as the variance estimation
problem. Equations (4.36) and (4.37) illustrate that the tensor- and variance-estimation
problems are tightly connected, which suggests that these parameters should be defined
consistently in the data assimilation system. This contrasts the approach of Daget et
al. (2009) where only the variances were estimated from the ensemble while the length-
scales were parameterized empirically.

Rather than using the ensemble to calibrate the parameters (variances and aspect ten-
sor) of a pre-defined B model, an alternative approach is to use it to provide a direct sample
estimate of B and then to localize the sample estimate using a Schur (element-by-element)
product in order to remove remote covariances associated with sampling noise. This is
a common approach used in practical applications of the Ensemble Kalman filter (e.g.,
Houtekamer and Mitchell 2005) and Ensemble Variational assimilation (e.g., Bishop et
al. 2011). Restricting the localization to the sample correlation matrix, Ce = XXT where

X is a Ng × Ne matrix whose columns are the normalized perturbations ε̂ bl = D
−1/2
e εbl

(i.e., the discrete representation of Eq. (4.37)) then the localized sample correlation matrix
has the form

B = D1/2
e [Ce ◦Cloc] D

1/2
e (4.38)

where Ce ◦ Cloc denotes the Schur product of Ce with a prescribed Ng × Ng localized
correlation matrix Cloc. The length-scales in Cloc determine the distance beyond which
the correlations in Ce should be significantly damped or explicitly set to zero.

An equivalent but more convenient form of Eq. (4.38) for variational assimilation is
(e.g., see Buehner 2012)

B = D1/2
e

 Ne∑
p=1

Dε̂pCloc Dε̂p

D1/2
e (4.39)

where Dε̂p = diag(ε̂p). In Eq. (4.39) the Schur product is now replaced by a standard
matrix multiplication. When implemented in a B-preconditioned conjugate gradient (CG)
algorithm (Gürol et al. 2013), Cloc can be applied as an operator. The diffusion operator
is an obvious candidate for defining Cloc. Furthermore, the scale tensor estimated from
He can be used as the basis for selecting a spatially-dependent localization tensor Lloc,
thus generalizing the concept of a localization scale to account for directionality. A natural
choice of the tensor would be Lloc = αLe for some constant α > 1.

Figure 4.6 illustrates the effectiveness of the two methods for estimating correlations
from a small number of ensemble perturbations. The analytical model used to generate
the anisotropic and inhomogeneous “true” correlations, displayed in panel (a) at selected
points, is described in Weaver and Mirouze (2013). The corresponding patterns ob-
tained from a sample estimate of the correlation matrix (Ce) with a 10-member ensemble
(panel (b)) are heavily contaminated by sampling noise. The signal is clearly recognizable
with 100 ensemble members (panel (c)) but sampling noise still leads to non-negligible
spurious correlations at large separation distances. Panels (d) and (e) show that both the
correlation model and explicit correlation localization are reasonably effective at repro-
ducing the true correlations even with only 10 ensemble members. (See the figure caption
for further details).
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The diffusion-based correlation model requires the estimation of order Ng diffusion
tensor elements for each of the analysis variables. Accounting for general non-diagonal
diffusion tensors requires the solution of non-trivial large-scale elliptic equations for which
computationally efficient methods are essential. Correlation localization requires Ne appli-
cations of the diffusion operator on each CG iteration but can be performed using simple
(e.g., isotropic) diffusion formulations while still allowing complex correlation information
to be extracted from the ensemble. This may result in important computational savings
compared to the direct diffusion modelling of anisotropic and inhomogeneous correlations.
Localization also provides more flexibility with regard to the specification of multivariate
covariances. A promising avenue for future development is to consider hybrid covariance
formulations that linearly combine the two representations of B; i.e., a covariance model
with ensemble-estimated parameters and an explicitly localized sample estimate of the
covariance matrix.
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(a) True correlations at selected points

(b) Raw correlations with Ne = 10 (c) Raw correlations with Ne = 100

(d) Modelled correlations with Ne = 10 (e) Localized correlations with Ne = 10

Figure 4.6: (a) True correlations at selected points, computed from an anisotropic and
inhomogeneous correlation matrix. (b) Raw correlations estimated from a 10-member
ensemble drawn from the true distribution. (c) As panel (b) but with a 100-member
ensemble. (d) Reconstructed correlations using a diffusion operator with the diffusion
tensor estimated from the same 10-member ensemble. (e) Reconstructed correlations
obtained by explicitly localizing the sample correlations with a diffusion operator whose
tensor is defined as twice the estimated diffusion tensor. The latter approach is equivalent
to an adaptive Schur-product localization. (Panels (a) and (c) are from Weaver and
Mirouze (2012)); panel (d) is analagous to panel (g) in Weaver and Mirouze (2012)
but without local spatial averaging.)



Chapter 5

Summary and outlook

This manuscript has provided a summary of research I have conducted in ocean data
assimilation, focussing on my work in background-error covariance modelling. Since the
beginning of my career, I have placed great importance on demonstrating the practical
benefits of my research, including the research of PhD students and post-doctoral scientists
that I have supervised. To this end, much of my work has been devoted to the development
of a data assimilation system for the community ocean model NEMO. Early in my career
I developed a variational data assimilation system known as OPAVAR, which was tailored
to NEMO’s predecessor OPA. In collaboration with other groups, it was rewritten to fit
within the framework of NEMO and extended to include new features and operational
capabilities. The revised system is called NEMOVAR and is the basis of the current
operational ocean data assimilation systems at ECMWF and the Met Office.

An overriding message in this manuscript is that the development of an effective data
assimilation system requires a good understanding of the physics and characteristics of
the underlying problem. Nowhere is this more true than in the specification of the
background-error covariance matrix (B). The importance of multivariate relationships
in the covariance matrix was one aspect that was highlighted. Computational efficiency is
another key aspect of the assimilation problem, especially in oceanographic applications
where the dimension of the state vector is enormous and the cost of applying the different
assimilation components is high. Spatial correlation operators used in background-error
covariance models or for localizing ensemble-estimated background-error covariances are
particularly demanding of computational resources, which explains why a great deal of
research by the data assimilation community has been aimed at trying to reduce the cost
of this operation. As discussed in this manuscript, diffusion operators can be used to de-
fine general and computationally efficient correlation operators, and are particularly well
suited for variational assimilation with grid-point models in complex boundary domains
such as the ocean. Much of my research has been dedicated to studying diffusion-based
correlation operators both from a general theoretical perspective and with the specific
goal of implementing them in NEMOVAR. The minimization algorithm is another com-
ponent of the assimilation system where computational efficiency and design constraints
are crucial. Although only briefly discussed in this manuscript, this is an area where I
have collaborated with the Parallel Algorithms group at CERFACS to develop methods
with important practical benefits for ocean data assimilation.

Improving the specification of B remains a key challenge in ocean data assimilation
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and will continue to be a focus of my research in the coming years. Ensemble methods
provide the appropriate framework for obtaining flow-dependent estimates of background
error and naturally link the problems of data assimilation and probabilistic forecasting.
Ensemble methods are also well suited for massively parallel computations required by
modern-day computers. To exploit ensemble methods effectively in ocean data assimila-
tion will require a significant research effort. In this manuscript I have described some
initial work I have conducted in this area in collaboration with colleagues and students.
This work needs to be further developed to improve both the ensemble-perturbation strat-
egy needed for sampling the major sources of uncertainty in the ocean model and data
assimilation system, and the methods needed for synthesizing ensemble-covariance infor-
mation in practical B formulations for variational assimilation, as discussed at the end of
Chapter 4. These issues will be addressed through my involvement in current and future
research projects (LEFE-MANU, RTRA-FILAOS/AVENUE, ERA-CLIM2) and through
collaborative work with ECMWF, the UK Met Office and INRIA aimed at developing
NEMOVAR.
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ABSTRACT

Three- and four-dimensional variational assimilation (3DVAR and 4DVAR) systems have been developed for
the Océan Parallélisé (OPA) ocean general circulation model (OGCM) of the Laboratoire d’Océanographie
Dynamique et de Climatologie. An iterative incremental approach is used to minimize a cost function that
measures the statistically weighted squared differences between the observational information and their model
equivalent. The control variable of the minimization problem is an increment to the background estimate of the
model initial conditions at the beginning of each assimilation window. In 3DVAR, the increment is transported
between observation times within the window using a persistence model, while in 4DVAR a dynamical model
derived from the tangent linear (TL) of the OGCM is used. Both the persistence and TL models are shown to
provide reasonably good descriptions of the evolution of typical errors over the 10- and 30-day widths of the
assimilation windows used in the authors’ 3DVAR and 4DVAR experiments, respectively.

The present system relies on a univariate formulation of the background-error covariance matrix. In practice,
the background-error covariances are specified implicitly within a change of control variable designed to improve
the conditioning of the minimization problem. Horizontal and vertical correlation functions are modeled using
a filter based on a numerical integration of a diffusion equation. The background-error variances are geograph-
ically dependent and specified from the model climatology. Single observation experiments are presented to
illustrate how the TL dynamics act to modify these variances in a flow-dependent way by diminishing their
values in the mixed layer and by displacing the maximum value of the variance to the level of the background
thermocline.

The 3DVAR and 4DVAR systems have been applied to a tropical Pacific version of OPA and cycled over
the period 1993–98 using in situ temperature observations from the Global Temperature and Salinity Pilot
Programme. The overall effect of the data assimilation is to reduce a large bias in the thermal field, which was
present in the control. The fit to the data in 4DVAR is better than in 3DVAR, and within the specified observation-
error standard deviation. Intermittent updating of the linearization state of the TL model is shown to be an
important feature of the incremental 4DVAR algorithm and contributes significantly to improving the fit to the
data.

1. Introduction

The El Niño–Southern Oscillation (ENSO) phenom-
enon is one of the main contributors to predictability
on seasonal to interannual timescales (Barnett et al.
1993; Palmer and Anderson 1994). Accurate ENSO

Corresponding author address: Dr. Anthony T. Weaver, CERFACS,
42 Ave. Gaspard Coriolis, 31057 Toulouse Cedex 1, France.
E-mail: weaver@cerfacs.fr

forecasts are thus a prerequisite to the development of
a reliable dynamical seasonal forecasting system with
a coupled ocean–atmosphere model (CGCM). Early
studies (Cane et al. 1986; Latif and Flügel 1991; Bal-
maseda et al. 1994) showed that some ENSO forecasting
skill could be obtained using only observed surface
wind stress to initialize the ocean component of the
forecasting system. More recent studies have shown that
assimilating ocean observations to initialize CGCMs re-
sulted in significantly better ENSO forecasts (Ji and
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Leetma 1997; Rosati et al. 1997; Segschneider et al.
2000, 2001; Alves et al. 2002). Subsurface temperature
observations from expendable bathythermographs
(XBTs) and the Tropical Atmosphere Ocean (TAO) ar-
ray (McPhaden 1993) were shown to be especially ben-
eficial to forecast skill (Ji and Leetma 1997; Alves et
al. 2002; Segschneider et al. 2001). Combining available
observations and an ocean model into a dynamically
consistent picture of the ocean state can also help to
provide better insight into the processes determining
ocean variability at various timescales.

In meteorology, optimal interpolation (OI) was the
standard technique used for many years for producing
initial conditions for numerical weather prediction
(NWP; Gandin 1965; Rutherford 1972; Lorenc 1981).
More recently, however, most of the major NWP centers
have replaced their OI systems by variational assimi-
lation systems (Parrish and Derber 1992; Courtier et al.
1998; Gauthier et al. 1999; Rabier et al. 2000; Lorenc
et al. 2000). In variational assimilation, the analysis
problem is defined by the minimization of a cost func-
tion that measures the statistically weighted squared dif-
ferences between observations (including a model back-
ground state) and their model counterpart. The cost
function is minimized with respect to selected control
variables and this is done iteratively using a gradient
descent method. Variational assimilation overcomes
many of the limitations of OI: it allows for greater flex-
ibility for assimilating different observation types (pos-
sibly nonlinearly related to the model state); it elimi-
nates the need to split the analysis domain into subsec-
tions so that all observations can, in principle, influence
the analysis at every model grid point; it provides a
more general framework for using more sophisticated
background-error covariance models; and it provides a
clearer development path toward advanced, four-di-
mensional assimilation techniques. These advantages
are equally relevant for oceanographic data assimilation.

In this paper, we describe three- and four-dimensional
variational assimilation (3DVAR and 4DVAR) systems
that have been developed for the rigid-lid version of the
Océan Parallélisé (OPA) ocean general circulation mod-
el (OGCM) of the Laboratoire d’Océanographie Dy-
namique et de Climatologie (LODYC; Madec et al.
1998). One of the main motivations for developing the
system is to produce ocean analyses for seasonal climate
forecasting. In the present study, the 3DVAR and
4DVAR systems are applied to produce a reanalysis of
the tropical Pacific Ocean over the period 1993–98 using
in situ temperature observations. Here, and in the com-
panion paper by Vialard et al. (2003, hereafter referred
to as Part II), we evaluate the analyses by focusing on
their statistical and physical properties, and their com-
parison with independent datasets, rather than their im-
pact on climate forecasts.

Both the 3DVAR and 4DVAR systems have been
designed following the incremental approach (Courtier
et al. 1994). The control variable of the minimization

problem is taken to be an increment to the background
estimate of the model initial conditions at the beginning
of a given assimilation window. In the cost function,
the observations are compared to the sum of the back-
ground counterpart of the observations and an increment
computed in observation space using a linear model.
The fundamental difference between the 3DVAR and
4DVAR formulations lies in the level of sophistication
of the linear model used to transport the state increment
between observation times. In 3DVAR, a simple per-
sistence model is used, whereas in 4DVAR a dynamical
model based on the tangent linear (TL) of the OPA
OGCM is used. The 4DVAR scheme involves substan-
tially more development than does 3DVAR since an
adjoint model must be derived for the linearized version
of the OGCM in order to compute the gradient of the
cost function with respect to the increment at initial
time.

This particular incremental version of 3DVAR can
be viewed as a limiting case of incremental 4DVAR in
which the TL operator is replaced by the identity matrix.
As in 4DVAR, observations can be assimilated at their
appropriate measurement times since they are compared
directly to the background state, which is propagated in
time using the OGCM. For this reason, the scheme has
been coined 3D-FGAT, for first guess at appropriate time
(Fisher and Andersson 2001).1 For example, the FGAT
feature may be particularly important in the Tropics
where an equatorial Kelvin wave can travel more than
2000 km in 10 days.2

In incremental 4DVAR, the dynamical model used to
propagate the increment provides a time-dependent mul-
tivariate constraint on the analysis. Incremental 4DVAR
is derived as an approximation to the complete 4DVAR
problem in which the full nonlinear model (here an
OGCM) is imposed as a constraint in the cost function
with the model initial conditions taken as the control
variables (Le Dimet and Talagrand 1986; Talagrand and
Courtier 1987). In oceanography, most 4DVAR-related
applications to date with OGCMs have concentrated on
solving the complete problem directly, and in some cas-
es using different or additional control variables (e.g.,
surface forcing fields; Tzipermann et al. 1992a,b; Grei-
ner et al. 1998a,b, Greiner and Arnault 2000; Bonekamp
et al. 2001). The incremental formulation was intro-
duced in meteorology to overcome some important prac-
tical difficulties with solving the complete 4DVAR
problem directly. In the latter, nonlinearities in the mod-
el constraint can significantly complicate the structure
of the cost function and prevent its minimization at a

1 FGAT was initially introduced in OI in the mid-1980s by D.
Vasiljevic at the European Centre for Medium Range Weather Fore-
casts (ECMWF). The 40-yr atmospheric reanalysis project (ERA-40)
at ECMWF employs an FGAT version of 3DVAR.

2 Ten days is a typical window width used in OI-type ocean analysis
systems such as the operational system at ECMWF (Alves et al. 2002).
It is also the window width used for the 3DVAR experiments pre-
sented here.
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reasonable computational cost using a gradient descent
method. Furthermore, in order to compute a numerically
accurate gradient, the adjoint of the exact TL of the full
nonlinear model is required. When the nonlinear model
contains discontinuous parameterizations or numerics,
an accurate derivation of these models can be particu-
larly difficult (Xu 1996).

The incremental algorithm should be viewed as a
practical algorithm for approximately solving the com-
plete problem. As constraints are linear, the cost function
is quadratic and minimization with a gradient descent
method is generally much more efficient. In the present
study, our main objective is to reconstruct the large-
scale, low-frequency component of the tropical ocean
circulation, which is well known to be largely governed
by linear wave dynamics (e.g., see Philander 1989).
Therefore, a priori the linearity assumption in incre-
mental 4DVAR would not appear to be a very restrictive
one. More generally, however, nonlinear effects can be
partly accounted for by introducing a feedback (outer
loop) in the algorithm to update the basic state of the
linear model with increments generated during mini-
mization (the inner loop) (Courtier et al. 1994; Laroche
and Gauthier 1998). In terms of technical development,
the incremental formulation has a distinct advantage
over the complete formulation as the derivation of the
linear and adjoint models can be greatly simplified by
smoothing or neglecting discontinuous parameteriza-
tions (Mahfouf 1999). For example, this latter point has
been exploited in the present study to neglect changes
in vertical diffusion coefficients associated with pertur-
bations in temperature, salinity, and velocity. Finally,
the computational cost of 4DVAR may also be signif-
icantly reduced by computing the increments at lower
resolution than that of the full model (Rabier et al.
2000), although this is not an issue in our present sys-
tem, which employs a relatively low resolution version
of the OGCM.

The purpose of this paper is to give a thorough de-
scription of the current 3DVAR and 4DVAR systems and
to study certain algorithmic and statistical aspects of the
two systems. Validation of physical aspects of the anal-
yses is given in Part II. The organization of the paper is
as follows. Section 2 describes the general formulation
of the incremental 3DVAR and 4DVAR problems. In
section 3, the different system components are described.
In section 4, several diagnostics are presented to highlight
some important properties of the two systems. A sum-
mary is given in section 5.

2. Formulation of the 3DVAR and 4DVAR
problems

a. Incremental formulation

The notation used in this paper closely follows the
recommendations of Ide et al. (1997). Let w denote the

ocean state vector. The components of w consist of those
model variables that are to be estimated from obser-
vations to produce the analysis wa. A model forecast,
initiated from a previous analysis, provides a prior or
background estimate, wb, of w. Since wb will already
be close in some sense to the ‘‘true’’ state we wish to
estimate, it is convenient to formulate the estimation
problem in terms of an increment, dw, where

bw 5 w 1 dw. (1)

The state vector is propagated in time by the ocean
model:

w(t ) 5 M(t , t )[w(t )],i i i21 i21 (2)

where M 5 M(ti, ti21) represents the nonlinear model
operator acting on w(ti21) between times ti21 and ti.
Substituting (1) into (2) and expanding about wb(ti21)
gives, to first order,

bw(t ) ø M(t , t )[w (t )] 1 M(t , t )dw(t ), (3)i i i21 i21 i i21 i21

where M 5 M(ti, ti21) denotes a linear operator that acts
on dw(ti21) between times ti21 and ti. We define the
prognostic model for the increment as

dw(t ) 5 M(t , t )dw(t ).i i i21 i21 (4)

Now, let denote the observation vector at time ti.oyi

Denoting Hi as the observation operator at ti, then the
model equivalent of can be written asoyi

bH [w(t )] ø H [w (t )] 1 H dw(t ),ii i i i i (5)

where Hi is a linear operator that acts on the increment
at ti. Assuming that a time sequence of observation
vectors is available over an interval t0 # ti # tn, then
the model estimates of the observations within this in-
terval can be directly related to the model initial con-
ditions since w(ti) 5 M(ti, t0)[w(t0)], where M(ti, t0) [
M(ti, ti21)+ · · · +M(t1, t0). Thus,

bH [w(t )] 5 G [w(t )] ø G [w (t )] 1 G dw(t ),ii i i 0 i 0 0 (6)

where the combined operator Gi 5 HiM(ti, t0) is a gen-
eralized observation operator and Gi 5 HiM(ti, t0) is its
linearized counterpart with M(ti, t0) [ M(ti, ti21) · · ·
M(t1, t0).

In 4D variational assimilation, the analysis is defined
as the state vector wa 5 wa(t0) that simultaneously min-
imizes the ‘‘distance’’ to the background state wb 5
wb(t0) and to the time sequence of observations onoyi

t0 # ti # tn. Distance is defined by an inner product (a
cost function JF) whose weighting metric takes into ac-
count the statistical accuracy of the background and
observational information. Expressed as a function of
the increment dw 5 dw(t0), which constitutes the con-
trol vector of the minimization problem, JF may be writ-
ten as
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n1 1
F T b o T b o21 21J (dw) 5 dw B dw 1 [G (w 1 dw) 2 y ] R [G (w 1 dw) 2 y ] , (7)O ii i i i2 2 i50

| | | |
| |

FJ Jb o

where the matrices B and Ri contain estimates of the
covariances of background and observation error, re-
spectively. In (7) the observation errors are assumed to
be uncorrelated in time and uncorrelated with the back-
ground error. The observation term ( ) measures theFJ o

fit between the observations and their model equivalent.
The background term (Jb) penalizes the size of the in-
crement (i.e., measures the fit to the background state).
The analysis is given by wa 5 wb 1 dwa, where dwa

is the increment that minimizes JF.
In the incremental formulation of variational assim-

ilation (Courtier et al. 1994), (7) is approximated by a
quadratic cost function J of dw by replacing Gi(wb 1
dw) with its linearized counterpart (6). This results in
an important practical simplification to the minimization
problem, from one with potentially many minima due
to the nonlinearity in Gi, to one with a unique minimum
as guaranteed by the linearity of G i. The simplified cost
function reads

1
T 21J(dw) 5 dw B dw

2
| |

|
Jb

n1
T 211 (G dw 2 d ) R (G dw 2 d ) , (8)O i i ii i2 i50

| |
|
Jo

where the innovation vector

o b o bd 5 y 2 G (w ) 5 y 2 H [w (t )]i i i i i i (9)

plays the role of an effective observation vector. Our
3DVAR (FGAT) and 4DVAR formulations differ prin-
cipally in the choice of the linear operator M that is used
in Gi to propagate the increment dw(ti) in (4). In
3DVAR, the increment is evolved by a simple persis-
tence model, which corresponds to setting M 5 I, the
identity matrix. In 4DVAR, the increment is propagated
by an approximate TL operator, M ø (]M/]w) | , thebw5w

main approximation being introduced in the parametri-
zation of vertical mixing as discussed in section 3b.

In practice, the cost function (8) is minimized ap-
proximately using an iterative gradient descent method.
The increment is updated on each iteration using the
gradient of the cost function with respect to the incre-
ment. The gradient of the Jo term with respect to the
increment (=dwJo) can be obtained efficiently using the
adjoint of the linear operator Gi (Le Dimet and Tala-
grand 1986; Thacker and Long 1988). A feedback be-
tween the linear and nonlinear models can then be in-

troduced by allowing the basic-state trajectory of the
linear model to be regularly updated with the most re-
cent estimate of the state trajectory obtained during min-
imization (Courtier et al. 1994). The updates are per-
formed on an outer loop of the assimilation algorithm,
while the iterations of the actual minimization are per-
formed within an inner loop [see appendix A in Weaver
et al. (2002) for details on how the inner–outer loop
algorithm is implemented in our current system]. With
frequent updates, the accuracy of the linear model
should improve and the minimum of the incremental
cost function should be closer to that of the original
(nonincremental) cost function (7) involving the non-
linear model (Laroche and Gauthier 1998). This pro-
vides a practical way of accounting for nonlinearities
in the assimilation algorithm while retaining the com-
putational advantages of a quadratic minimization prob-
lem.

In order to improve the convergence properties of the
minimization, a preconditioning transformation is em-
ployed by which the cost function is redefined in terms
of a nondimensional variable:

2Iv 5 U dw, (10)

where U is a rectangular matrix defined such that B 5
UUT and B21 5 (U2I)TU2I, the superscript 2I denoting
generalized right inverse [i.e., U2I 5 UT(UUT)21]. The
fact that U is rectangular, with dim(dw) , dim(v), is a
feature that is particular to our current system and is
related to the rigid-lid constraint used in the formulation
of the ocean model. This point is discussed in more
detail in section 3a and 3c. Introducing the transfor-
mation (10) directly into (8) leads to a simplified back-
ground term, Jb 5 vTv/2. The variational analysis prob-
lem is solved directly in v space, and then transformed
back to model space using the generalized left inverse
transformation:

dw 5 Uv. (11)

The adjoint of (11) is used for computing the gradient
of the Jo term in v space:

T= J 5 U = J .v o dw o (12)

The conditioning of the Jb term in v space is optimal
in the sense that the Hessian of Jb (the matrix of second
derivatives of Jb) is the identity matrix. For the special
case of a single observation, the convergence of the
minimization in v space is achieved in a single iteration
using a gradient descent method with an exact line
search.

The minimization routine used in this study is the



1364 VOLUME 131M O N T H L Y W E A T H E R R E V I E W

FIG. 1. Schematic representation of the cycling procedures used
for (a) 3DVAR and (b) 4DVAR. Two cycles are illustrated in each
sketch. The dotted (solid) curves correspond to the background (anal-
ysis) trajectory; the cross symbols denote observations. The shaded
square (circle) at the beginning of each cycle denotes the background
(analysed) initial state. Note that in 4DVAR the analysis increment
(represented by the difference between the shaded square and circle)
is applied directly to the background initial state to produce the anal-
ysis trajectory, whereas in 3DVAR it is applied gradually as a forcing
to the model equations. This explains why in 3DVAR the analysis
and background start from the same point at the beginning of each
cycle.

limited-memory quasi-Newton algorithm M1QN3 of
Gilbert and Lemaréchal (1989). An exact line search
has been employed with M1QN3 in order to improve
the efficiency of the algorithm for quadratic minimi-
zation problems. The so-called warm start facility of
M1QN3 is also employed when more than one outer
iteration is performed in order to precondition the min-
imization using the information accumulated on the
Hessian matrix during the preceding minimization.

b. The nonlinear analysis trajectory

The minimizing solution of the quadratic cost func-
tion (8) is a trajectory of increments dwa(ti) satisfying
exactly the equations of the linear model (4) on t0 # ti

# tn. The corresponding model trajectory wb(ti) 1
dwa(ti) is used in the Jo term to compare with the ob-
servations [Eq. (8)]. It will be convenient to refer to
this trajectory as the linear analysis in order to distin-
guish it from the nonlinear ‘‘analysis’’ trajectory wa(ti)
defined below. We will return to this point in section 4f
and Part II of the paper.

There are several ways the analysis increment dwa may
be used to correct the trajectory of the nonlinear model.
Two different approaches have been adopted in our
3DVAR and 4DVAR systems. Since our current assim-
ilation system incorporates only temperature observa-
tions and relies on a univariate formulation of the back-
ground-error covariance matrix (section 3c), the 3DVAR
produces an analysis increment for the temperature field
only. A practical way of adjusting the nonanalyzed model
fields while minimizing spurious adjustment processes is
to apply the analysis increment gradually through a forc-
ing term in the nonlinear model:

a a aw (t ) 5 M(t , t )[w (t )] 1 F(t )dw ,i i i21 i21 i (13)

where wa(t0) 5 wb and F(ti) is a weighting function
defined such that F(ti) 5 1 so as to conserve thenSi50

time-integrated value of the analysis increment dwa. The
forcing term can be shown to behave as a low-pass time
filter (Bloom et al. 1996). In this study, the temperature
increment is applied uniformly over the time window
via a constant forcing F(ti) 5 1/n. A similar procedure
has been adopted in the ECMWF ocean analysis system
(Alves et al. 2002) and is illustrated schematically in
Fig. 1a.

In contrast to the 3DVAR, the 4DVAR produces a
multivariate analysis increment since the TL model dy-
namics act to couple the different increment variables.
This dynamical coupling thus allows us to generate in-
crements in velocity and salinity even if only temper-
ature data are assimilated. Since these increments will
be in approximate dynamical balance, in 4DVAR we
choose to initialize the nonlinear model directly using
the analysis at t0:

a aw (t ) 5 M(t , t )[w (t )],i i 0 0 (14)

where wa(t0) 5 wb 1 dwa (Fig. 1b). Finally, when cy-

cling the 3DVAR or 4DVAR over an extended period,
the analysis obtained from the trajectory at the end of
the interval is taken to be the background state for a
variational analysis performed on the following interval
(Fig. 1).

3. Components of the assimilation system

a. The ocean model

The ocean model used in this study is the OPA OGCM
of the Laboratoire d’Océanographie Dynamique et de
Climatologie (Madec et al. 1998). The model solves the
primitive equations for horizontal currents u 5 (u, y),
potential temperature Tu, and salinity S. The equations
are formulated in orthogonal curvilinear z coordinates
and discretized using finite differences on an Arakawa
C grid. The basic configuration of the model is described
in Vialard et al (2001). It covers the tropical Pacific
Ocean from 308N to 308S, and 1208E to 708W. The zonal
resolution is 18 and the meridional resolution varies
from 0.58 at the equator to 28 at the northern and south-
ern boundaries. The model has 25 levels, with a reso-
lution of 10 m in the upper 130 m, increasing to
1000 m in the bottom level. Realistic bathymetry is
included using the Levitus (1982) land–sea mask.

At solid boundaries, conditions of no-slip and no-
normal flux are applied on the velocity and tracer fields,
respectively. At the ocean surface (z 5 0), a rigid-lid
and no-volume flux condition is applied (Roullet and
Madec 2000). An obvious consequence of the rigid-lid
condition is that, unlike in a free-surface model, there
is no prognostic equation for sea surface height (h 5
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0). The no-volume flux condition is an additional re-
quirement that the vertical velocity identically vanishes
at the surface (w 50 at z 5 0) and, hence from the
continuity equation, that the horizontal velocity field (u,
y) is nondivergent (Bryan 1969). The latter condition
is satisfied by defining the (u, y) field through a baro-
tropic streamfunction c and a set of independent (sub-
surface) baroclinic velocities (û, ). This leads to someŷ
important technical difficulties in formulating the
4DVAR problem as detailed in appendix B of Weaver
et al. (2002).

Surface fluxes of momentum, heat, and freshwater
are prescribed at the ocean–atmosphere interface. The
momentum flux is specified through weekly wind stress
products from the European Remote Sensing (ERS) sat-
ellite’s scatterometer (Grima et al. 1999). The heat and
freshwater fluxes are specified as a daily climatology
computed from the ECMWF (ERA-15) reanalysis (Gib-
son et al. 1997). The solar and nonsolar components of
the heat flux are specified separately in order to allow
penetration of the shortwave radiation in the upper
ocean. A relaxation to weekly analyses of sea surface
temperature (SST; Reynolds and Smith 1994) is applied
through a Newtonian damping term added to the surface
(nonsolar) heat flux. The relaxation coefficient is set to
240 W m22 K21, which for a depth scale of 50 m
corresponds to a restoring timescale of 1 month. No
relaxation is applied to sea surface salinity. In the con-
trol integration only, in which no data are assimilated,
a damping to Levitus climatological temperature and
salinity is applied below the surface mixed layer outside
the 108S–108N band.

b. The tangent-linear and adjoint models

The numerical codes of the TL and adjoint models
have been derived directly from the numerical code of
the nonlinear model by applying standard, hand-coding
techniques (Talagrand 1991; Giering and Kaminski
1998). Some approximations have been introduced in
the derivation of the TL and adjoint models, the most
important one being in the parameterization of vertical
diffusion, as described in more detail below. Another
approximation relies on an intermittent storage of the
basic-state trajectory to reduce computer memory re-
quirements. In our experiments, the basic state has been
stored once per day (every 16 time steps) and defined
at intermediate times through linear interpolation. The
impact of this approximation on the accuracy of the TL
model was minor. Finally, to reduce the CPU cost of
the adjoint integration, an approximation has been in-
troduced in the adjoint of the elliptic solver that is ap-
plied on each time step to enforce the nondivergence
constraint on the vertically integrated velocity. Details
can be found in appendix B of Weaver et al. (2002).

SIMPLIFIED VERTICAL DIFFUSION

Let a denote one of the prognostic state variables u,
y, Tu, or S. In the complete TL model, the tendency of
a perturbation da produced by vertical diffusion is de-
scribed by the two-term partial differential equation:

]da ] ]da ] ]a
5 A 1 dA , (15)y y1 2 1 2]t ]z ]z ]z ]z

where Ay 5 Ay (u, y, Tu, S) is the vertical diffusion
coefficient and dAy 5 (]Ay /]u)du 1 (]Ay /]y)dy 1 (]Ay /
]Tu)dTu 1 (]Ay /]S)dS is the perturbation of Ay resulting
from perturbations of u, y, Tu, and S. The first term on
the right-hand side of (15) is a standard diffusion op-
erator with coefficient Ay . In the incremental algorithm,
Ay is updated on each outer iteration and held constant
only during the inner iterations. The second term on the
right-hand side of (15) is more problematic because of
both theoretical and practical difficulties in computing
the perturbation dAy . First, a direct computation of dAy

would involve linearizing the turbulent kinetic energy
(TKE) and enhanced vertical diffusion parameterization
schemes used in OPA. These schemes are highly non-
linear and discontinuous so any attempt to linearize
them directly would have to be done with considerable
caution (Xu 1996; Zou 1997). Discontinuities are a well-
known source of numerical noise in the TL model. One
possibility for reducing such noise is to derive dAy from
a suitably smooth approximation to the original nonlin-
ear scheme (Janiskova et al. 1999). Generally speaking,
however, the problem is more complex than that of sim-
ply smoothing isolated discontinuities as the second
term in (15) contains other generating mechanisms of
spurious noise, which are present even in smoother pa-
rameterization schemes (Mahfouf 1999; Zhu and Ka-
machi 2000). The simplest way of avoiding these po-
tential noise problems is to neglect the second term
altogether by setting dAy [ 0. This simplification, which
has been used extensively in meteorology (e.g., Mahfouf
1999), is adopted here. Implementing a more elaborate
linear physics parameterization was considered pre-
mature at this stage without first evaluating results using
the simplified scheme.

c. The background-error covariance matrix

The background-error covariance matrix (B) plays an
important role in determining the spatial structure of the
analysis increment in both 3DVAR and 4DVAR. There
are two basic difficulties in specifying B. First, given
the sparsity of ocean observations, it is difficult, if not
impossible, to obtain complete and accurate estimates
of the covariances, even in the tropical Pacific, which
is one of the best-observed ocean basins. Second, even
if there were sufficient observations, the sheer size of
B (roughly 5 3 1011 elements in our application) means
that this matrix cannot be stored explicitly and so must
be simplified. In practice, this is done by modeling the
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FIG. 2. The horizontal correlation functions for the tracer fields at latitudes of (a) 08, (b) 58N, and (c) 158N. The contour interval is 0.1.

covariances using analytical functions or filters that de-
pend on a limited number of tunable parameters and
that are numerically efficient for large-scale problems.

In our current system, B is univariate (three-block
diagonal with respect to horizontal velocity, tempera-
ture, and salinity) and includes a relatively simple cor-
relation model. Here, B is constructed as a symmetric
product of several operators:

1/2 21 T/2 TB 5 SSLL W L LSS
| |

(16)
|
C

1/2 21/2 21/2 T/2 T5 (SSLL W ) (W L LSS ) ,
| | | |

(17)
| |

TU U

where L is a 3D filtering operator that is self-adjoint
with respect to the scalar product whose metric is the
diagonal matrix W of volume elements; L and S are
diagonal matrices of normalization factors and back-
ground-error standard deviations, respectively; and S is
a simplification operator that maps the horizontal com-
ponents of total velocity (u, y) into independent com-
ponents (c, û, ) [for a detailed discussion see appendixŷ
B in Weaver et al. (2002)].

The underbraces in (17) highlight the preconditioning
matrix U and its adjoint UT, which are needed in (11)
and (12), respectively. Here, U is a rectangular matrix
since the factor S is a mapping from a higher-dimen-
sional space spanned by (u, y) into a lower-dimensional
space spanned by (c, û, ). This explains why the gen-ŷ
eralized right inverse U21 has been used in the trans-
formation (10). The underbrace in (16) highlights that
part of B corresponding to the correlation matrix C. The
univariate correlations in C are assumed to be approx-
imately Gaussian and are modeled implicitly with the
filter L. The vertical (y) and horizontal (h) correlations
are modeled separately using a 1D filter Ly and 2D filter
Lh. The 3D correlation model is then constructed from
the product L 5 LyLh. The diagonal normalization ma-
trix L is needed to ensure that the variances (diagonal
elements) of C are equal to unity. Various filters exist
for modeling correlation functions but some are better
suited than others depending on the application. The
complex boundaries associated with coastlines imposes

a particular constraint for oceanographic applications.
For such applications, Laplacian- or diffusion-based fil-
ters are particularly well suited (Derber and Rosati 1989;
Egbert et al. 1994; Weaver and Courtier 2001). Here, a
diffusion-based filter has been used to model both the
vertical and horizontal correlations; Ly is defined by an
explicit time step integration of a 1D diffusion equation
in the vertical direction, while Lh is defined by an ex-
plicit time step integration of a 2D diffusion equation
over the sphere. The boundary conditions are chosen to
be of Neumann type and are imposed directly within
the finite-difference expression for the Laplacian using
a land–ocean mask (Madec et al. 1998).

The correlation functions are made anisotropic and
varied geographically by introducing a ‘‘diffusion’’ ten-
sor in the Laplacian operator (Weaver and Courtier
2001). In particular, the tensor coefficients have been
tuned to allow for longer correlation length scales near
the equator in the zonal direction than in the meridional
direction (Meyers et al. 1991; Kessler et al. 1996). Here,
the horizontal length scales are taken to be a function
of latitude and symmetric about the equator. The zonal
and meridional length scales for the tracer fields have
been defined to be 88 and 28, respectively, at the equator,
and 48 in both directions poleward of 208N/S, with a
linear transition between these values within the equa-
torial strip. The anisotropic ratio at the equator is con-
sistent with the climatological observation statistics of
Meyers et al. (1991), although the values of the actual
length scales are somewhat smaller in our study. The
values chosen here are broadly similar to those used in
previous ocean data assimilation studies of the tropical
Pacific (Smith et al. 1991; Behringer et al. 1998; Seg-
schneider et al. 2001). The horizontal correlation func-
tions for the tracer fields are illustrated in Fig. 2.

The horizontal correlations of the velocity field are
modeled using a diffusion equation formed from the
vector Laplacian rather than the scalar Laplacian used
in the tracer diffusion model. The vector Laplacian has
the desirable property of ensuring that the smoothing
by the correlation function acts separately on the hor-
izontal divergence and vorticity components of the ve-
locity field (Madec et al. 1998). With the introduction
of the anisotropic tensor, however, this is no longer
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FIG. 3. The vertical correlation functions for the tracer fields at depths of (a) 96 (level 10), (b) 168 (level 15), and
(c) 490 m (level 19). Note the different scales on the vertical axes.

strictly guaranteed. Geostrophy allows us to approxi-
mate the length scales of the vorticity correlations as

ø 0.6Lh, where Lh is the specified length scale ofzLh

the tracer correlations (see Weaver et al. 2002). These
smaller length scales have also been used for the di-
vergence correlations. It is worth remarking that, while
geostrophy has been used as a constraint for defining
the length scales of the tracer and velocity correlation
functions, our covariance model does not at present in-
clude a geostrophic balance constraint on the covari-
ances themselves. Note also that the correlation model
for the velocity background errors is not required in our
univariate 3DVAR, which assimilates temperature in-
formation only.

The vertical correlations of the velocity field are mod-
eled using a diffusion equation that acts separately on
the components u and y. The vertical length scales for
both the tracers and the velocity components are taken
to be a function of depth with a dependence on the
model’s vertical resolution to provide adequate smooth-
ing between model levels. At each model level, the ver-
tical length scale is set to twice the depth of that level.
This results in rather sharp correlations above the ther-
mocline where the resolution is highest and much broad-
er correlations below the thermocline where the reso-
lution is coarsest (Fig. 3).

The background-error standard deviations are al-
lowed to vary with each grid point and have been com-
puted with respect to the climatological model mean
obtained from a control run without data assimilation.
This specification is based on the assumption that back-
ground errors are likely to be largest in regions of strong
ocean variability (e.g., in the thermocline). The same
background-error standard deviations are used at the
beginning of each assimilation cycle.

d. Observations
The assimilation dataset consists of in situ tempera-

ture observations from the Global Temperature and Sa-

linity Pilot Project (GTSPP) of the National Oceano-
graphic Data Centre (NODC). This includes data from
mainly TAO moorings and XBTs, and from a limited
number of conductivity–temperature–depth (CTD) casts
and drifting buoys. A manual quality control procedure
was used to remove suspect data (Alves et al. 2002).
Observations falling within the surface level of the mod-
el (between 0 and 10 m) were also discarded to avoid
potential redundancy with the observed SST (Reynolds
and Smith 1994) used in the Newtonian damping term
during outer iterations. The in situ temperatures retained
for assimilation were then converted into potential tem-
perature (the prognostic model variable) using a stan-
dard conversion formula [Eq. (A3.13) in Gill (1982)]
with a reference salinity of 35.0 psu.

The observation-error covariances are assumed to be
uncorrelated in space and time. The error variances are
set to (0.58C)2 for TAO data and (1.08C)2 for all other
data to ensure that the generally higher quality TAO
data have more weight in the analysis. The observation
operator H consists of horizontal bilinear interpolation
and vertical linear interpolation. For TAO data, H also
includes a time averaging since these data are available
as daily averages.

4. Evaluation of 3DVAR and 4DVAR: Internal
diagnostics and consistency checks

The purpose of this section is to evaluate certain al-
gorithmic and statistical properties of the 3DVAR and
4DVAR systems. The analyses themselves will be dis-
cussed in detail in Part II. First, in section 4a, the as-
similation experiments are introduced. In section 4b, the
validity of the linear assumption, which underlies the
incremental formulation, is investigated. Convergence
and optimality properties of the assimilation systems are
then examined in sections 4c and 4d. In section 4e, some
of the flow-dependent characteristics of the background-
error statistics used implicitly in 4DVAR are examined
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in a simplified framework with single observations. Fi-
nally, in section 4f, the statistics of the innovation and
residual vectors are examined to assess the fit of the
background and of the analysis to the assimilated ob-
servations.

a. Experimental setup

Both the 3DVAR and 4DVAR systems have been
cycled over the period 1 January 1993–30 December
1998 using a 10- and 30-day assimilation window, re-
spectively. A total of 60 (inner) iterations of the mini-
mization were performed per cycle, with an outer it-
eration performed every 10 inner iterations in 4DVAR.
No outer iterations were performed in 3DVAR since Hi

is linear and M 5 I is independent of the basic state.
To provide a reference for evaluating 3DVAR and
4DVAR, an additional (control) experiment was per-
formed in which no data were assimilated. In all ex-
periments (hereafter referred to as EX3D, EX4D, and
EXCL), the initial conditions on 1 January 1993 were
generated from a 4-yr spinup of the model starting from
rest and from Levitus (1982) climatological temperature
and salinity. The wind stress forcing used for the first
three years of the spinup was a climatology computed
from the ERS wind stress products. The final year of
the spinup was a transition year between ERS clima-
tological and year 1992 products.

b. Validity of the linear increment models

Incremental variational assimilation is founded on the
linear approximation (6). In this section, we wish to
examine the validity of this approximation by checking
the accuracy of both the persistence model used in
3DVAR on a 10-day window and the TL model used
in 4DVAR on a 30-day window. The accuracy of each
model can be assessed by comparing the time evolution
of an initial perturbation dw in the nonlinear (NL) model
with its evolution in the linear (L) model. The nonlinear
perturbation can be computed from the finite difference,

NL b bdw (t ) 5 M(t , t )(w 1 dw) 2 M(t , t )(w ),i i 0 i 0 (18)

while the linear perturbation is given by
Ldw (t ) 5 M(t , t )dw.i i 0 (19)

Ideally the initial perturbation dw should have structure
and amplitude typical of background errors. The actual
background errors are not known, however; so in order
to apply this test a suitable proxy must be defined. In
meteorology, it is commonly assumed that the back-
ground errors can be roughly approximated from dif-
ferences in model forecasts initiated from analyses at
different time lags (Rabier et al. 1998). Here we consider
a similar approach in which an initial perturbation is
derived from the difference between two model states
obtained from free integrations of the model having dif-
ferent initial states. One of the initial states is taken to

be the analysis state (wa) at the end of a 4DVAR as-
similation interval [as defined by (14)], while the other
initial state is taken to be the background state (wb)
valid at the same time (see Fig. 1b). In the first example
presented below, wa and wb are taken from the end of
the second 30-day cycle (on 1 March 1993) of EX4D,
with dw 5 wa 2 wb defining the initial perturbation in
(18) and (19). The validity of the linear model was also
investigated for other types of perturbations (analysis
increments, differences between analyzed states at two
different dates) and for other starting dates, and the
results were qualitatively similar to those discussed be-
low.

A meridional–vertical section of the perturbation tem-
perature at 1108W is shown in Fig. 4a. The field is
characterized by large perturbations of up to 48C, ap-
pearing as a result of the temperature observations,
which are assimilated during the second cycle. The per-
turbations after 10 and 30 days of integration in the
nonlinear model are shown in Figs. 4b and 4c, respec-
tively. Figure 4b allows us to check the assumption in
3DVAR that perturbations do not evolve significantly
over 10 days outside the equatorial strip. The large-
amplitude positive anomaly near 128N and the smaller-
amplitude negative anomalies near 168N and 78S are
indeed well approximated by the 10-day persistence
model (cf. Figs. 4a and 4b). The persistence assumption
breaks down nearer the equator where the oceanic dy-
namical response is much more rapid. In the persistence
model, the positive anomaly at 48N is largely overes-
timated, while the negative anomaly at 78N is largely
underestimated. In contrast, Figs. 4c and 4d illustrate
that the TL model is able to provide a good description
of the perturbation in the equatorial waveguide at least
30 days ahead. The similarity of Figs. 4c and 4d may
come as little surprise since it is well known that the
large spatial scale, low-frequency response of the trop-
ical oceans involves predominantly linear wave dynam-
ics (Philander 1989).

At smaller spatial and temporal scales (,1000 km,
,1 month), energetic motions in the central and eastern
equatorial Pacific are dominated by tropical instability
waves (TIWs) (Legeckis 1977). Because of the impor-
tance of nonlinear processes in ultimately limiting the
growth of unstable waves, it is interesting to see if some
of the differences between perturbations in the TL and
nonlinear models can be linked to TIWs. TIWs are most
energetic during the autumn months. If TIW activity is
indeed a limiting factor of the TL approximation, then
one would expect this approximation to be less valid
during this time. To check this, the above experiment
was repeated using a starting date of 27 September 1993
and a temperature perturbation defined as the difference
between the 4DVAR analysis and background state at
that time (i.e., at the end of the ninth 30-day cycle of
EX4D). A zonal–vertical section of the difference at
48N between the nonlinear and TL model-predicted tem-
perature perturbations after 30 days is shown in Fig. 5.
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FIG. 4. (a) Meridional–vertical section at 1108W of a temperature
perturbation defined as the difference between a 4DVAR analysis and
the background state valid at the same time (1 Mar 1993). The per-
turbation after (b) 10 and (c) 30 days of evolution in the nonlinear
model, and after (d) 30 days of evolution in the TL model. The contour
interval is 0.58C.

FIG. 5. Zonal–vertical section at 48N of the difference between
temperature perturbations in the nonlinear and TL models after 30
days. The initial perturbation in both experiments is defined as the
difference between the 4DVAR analysis and the corresponding back-
ground state on 27 Sep 1993. The contour interval is 0.58C.

West of 1608W, the TL approximation holds quite well.
Most of the nonlinear behavior is located in the upper
thermocline in the eastern and central Pacific, which is
the area of largest thermal signal from TIWs. The dif-
ferences between the nonlinear and linear perturbations
are mostly associated with larger amplitudes of the lin-
ear perturbation. This confirms that nonlinear mecha-
nisms play an important role in limiting the amplitude
of the TIWs, and that the TL approximation is limited
at their spatial scale. Over longer integration periods,
the TIWs show up clearly as the dominant error signal
(not shown), with the amplitude of the perturbations
tending to be greatly overestimated in the TL model.
This limitation is, however, only present at spatial scales
of order 1000 km and during the active TIW season.

Strongly nonlinear processes associated with vertical
mixing and convection are another factor contributing
to the limitation of the TL approximation, particularly
in the small vertical scales. For example, when a per-
turbation leads to a statically unstable water column in
the nonlinear model, the water column will be mixed
instantaneously as a result of enhanced vertical diffu-
sion. This process will effectively reduce the amplitude
of the perturbation in the nonlinear model. In the TL
model, on the other hand, there is no linearized coun-
terpart of this process and the perturbation will remain
unchanged. This could explain the differences in the
mixed layer seen in Fig. 5. Weaver et al. (2002) present
additional diagnostics that provide further confirmation
of these points.

In summary, the results from this section indicate that
the 10-day persistence model used in 3DVAR is ade-
quate for describing large-scale perturbations in off-
equatorial regions but has some limitations closer to the
equator where the dynamical adjustment timescales are
shorter. In comparison, the 30-day TL model provides
a good description of large-scale perturbations in both
off-equatorial and equatorial regions. Smaller-scale, re-
gionally confined structures associated with TIWs, how-
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FIG. 6. The value of the cost function (J) as a function of the
minimization iteration on the second cycle of EX4D (solid curve).
As a sensitivity test, the second cycle of the 4DVAR experiment has
been repeated with only one outer iteration (dashed curve), compared
to five outer iterations used in the reference experiment. The plus
sign (asterisk) indicates the final value of the nonapproximated cost
function (7) for the experiment with one (five) outer iteration(s). For
clarity, these symbols have been displaced slightly to the left of the
right border; J has been normalized by its respective value at the start
of the minimization and plotted on a logarithmic vertical axis.

ever, are more problematic and our experiments suggest
that they are possibly the main source of error in the
TL integration. Vertical mixing and convective pro-
cesses also tend to limit the accuracy of the TL model
in the small vertical scales. Further research is required
to determine whether the accuracy of the TL model can
be improved using a more sophisticated parametrization
of vertical diffusion, in particular one that accounts for
(nonzero) perturbations in the vertical mixing coeffi-
cients. However, it will be shown in section 4f and in
Part II that these limitations on the validity of the TL
model are much less severe than appears at first sight
and that in fact a very good fit to the data is possible.

c. Convergence properties

Each 10-day 3DVAR cycle required roughly 25 min
of CPU time on a Fujitsu VPP700, while each 30-day
4DVAR cycle required roughly 5 h of CPU time (i.e.,
a factor of 4 more costly than 3DVAR). The conver-
gence of the minimization in 3DVAR was relatively
quick, requiring on average less than 25 iterations to
reach the effective minimum of J. The convergence of
the minimization in 4DVAR was generally slower than
in 3DVAR. After the final (60th) iteration, the reduction
of the norm of =vJ relative to its initial value was typ-
ically between three and four orders of magnitude com-
pared to over six orders of magnitude in 3DVAR.

As a typical example, Fig. 6 (solid curve) shows the
value of J from the second cycle of EX4D. The jumps
in the solid curves in Fig. 6 occur after an outer iteration
when the reference trajectory is reinitialized (here every
10 iterations). To illustrate the value of these outer it-
erations, the 4DVAR minimization on this particular
cycle was repeated with only one outer iteration, that
is, 60 minimization iterations with no trajectory updates
(dashed curve in Fig. 6). Although it was found that
convergence was more efficient without than with outer
iterations, with a gain of approximately an order of mag-
nitude in the reduction of the gradient norm, the re-
duction of the cost function in the experiment performed
without outer iterations saturates at a level above the
cost function with outer iterations. One has to be careful,
however, in making direct comparisons between these
two curves since, after the first outer iteration, the cost
functions are no longer the same in the two experiments.
It is more instructive to compare the final value of the
full (nonapproximated) cost function JF [Eq. (7)] for
each experiment. These values are plotted in Fig. 6 with
an asterisk (plus sign) for the experiment with (without)
outer iterations. This figure provides a clear indication
of the positive impact of the outer iterations. The final
value of JF with outer iterations is about half that with-
out outer iterations. Furthermore, it is very close to the
final value obtained with the approximated (quadratic)
cost function (solid curve) and thus provides a good
measure of the consistency of the incremental approach.
In the absence of outer iterations, however, this consis-

tency is lost as illustrated by the large discrepancy be-
tween the final value of JF and that of the approximated
cost function J (dashed curve).

In 3DVAR, 60 iterations was more than double the
number actually needed to reach an acceptable level of
convergence. Despite this potential to economize in
3DVAR, 60 iterations were retained simply to be con-
sistent with the total number of iterations used in
4DVAR. In 4DVAR, convergence was slower but still
reasonably efficient. Preconditioning techniques such as
those described in Fisher and Andersson (2001) offer
considerable scope for further improving the minimi-
zation efficiency. The outer iterations were clearly
shown to be an essential feature of the algorithm. At
present, however, it is not clear how many outer iter-
ations are needed for the solution of the incremental
problem to be a good approximation to the solution of
the full problem. It is also not clear what combination
of outer and inner iterations gives the best convergence
rate. These issues are a matter for further research.

d. Optimality properties

The formulation of the variational assimilation prob-
lem relies on a number of hypotheses on the statistics
of the background and observation errors. The validity
of these hypotheses is an important factor in determining
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FIG. 7. The value of g 5 2Jmin/p plotted as a function of the assimilation cycle during the period 1993–98 in (a)
3DVAR and (b) 4DVAR. On each cycle, Jmin represents the value of the cost function at the end of the minimization
and p the total number of observations assimilated through the Jo term. A total of 219 (73) 10-day (30 day) cycles
were performed in 3DVAR (4DVAR). The expected value of g 5 1 (solid line) is plotted together with error bars
(dashed lines) at 1 6 sg , where sg 5 is the expected standard deviation of g . The dotted curves in (a) and (b)Ï2/p
correspond to the actual values of g computed on each cycle in the reference experiments EX3D and EX4D. The
dashed–dotted curve in (a) corresponds to the actual values of g from a 3DVAR experiment in which the observation-
error variance for the TAO data is set to twice the value used in EX3D.

the optimality of the analysis. One particularly simple
diagnostic that can be used to check whether the sta-
tistics of B and R are consistent with the innovation
vector is the value of the cost function at its minimum
(Jmin), which, for a linear system, should, on statistical
average, be equal to p/2 where p is the total number of
assimilated observations (Tarantola 1987; Bennett et al.
2000). If we assume further that the background and
observation errors are Gaussian then it can be shown
(e.g., see section 4.3.6 in Tarantola 1987) that the ex-
pected variance of Jmin is 5 E[(Jmin 2 E[Jmin])2]2s Jmin

5 p/2, where E[ ] is the mathematical expectation op-
erator. Therefore, provided B and R are correctly spec-
ified and that the system is quasi-linear, the value of Jmin

on each assimilation cycle should be p/2 within a stan-
dard deviation of .Ïp/2

In order to compare the actual values of Jmin with its
expected value, it is more convenient to consider the
normalized quantity g 5 2Jmin/p for which E[g] 5 1
and 5 E[(g 2 E[g])2] 5 2/p. Here, scales with2 2s sg g

the inverse of p so will be small when a large number
of observations are assimilated. Figures 7a and 7b (dot-
ted curves) show the actual values of g as a function
of the assimilation cycle in EX3D and EX4D. The ex-
pected value of g 5 1 (solid line) is also plotted together
with the expected error bars (dashed lines) at 1 6 sg .
The average of the actual values of g over all cycles in
EX3D is close to its expected value of one ( 5 0.90,g
where the overbar denotes cycle average) but in EX4D
it is somewhat too small ( 5 0.73). On average, theg
actual values of g exceed its expected value by 9sg in
EX3D and 29sg in EX4D. The expected error bars are

slightly larger in EX3D than in EX4D since there were
fewer observations assimilated during a 10-day 3DVAR
cycle than during a 30-day 4DVAR cycle (roughly
10 000 observations were available every 10 days).
Even so, the actual values of g nearly always greatly
exceed the expected error bounds in both experiments.

Consider the expression for Jmin in terms of the in-
novation vector d (Tarantola 1987):

1
T 21TJ 5 d (GBG 1 R) d, (20)min 2

where the generalized quantities d 5 (. . . , , . . .)T, GTdi

5 (. . . , , . . .)T, and R 5 diag(. . . , Ri, . . .) haveTGi

been introduced to simplify the notation. From (20) it
is clear that the value of Jmin, or equivalently g, may
be decreased (increased) if the variances of either B or
R are increased (decreased). The lower than expected
value of g in EX4D therefore could be a sign that either
the background- or observation-error variances have
been overestimated. Our prior estimate of the obser-
vation-error variances is very crude and in particular
takes no account of possible representativeness error.
For example, the value of 0.58C used for the standard
error of TAO data is only slightly larger than the doc-
umented estimate of TAO observation error, which ac-
counts only for the instrumental component of that error
(McCarty et al. 1997). The specified observation-error
variances are thus probably underestimated and there-
fore acting to increase the value of g. This effect is
clearly demonstrated by the dashed–dotted curve in Fig.
7a, which shows the actual values of g from a 3DVAR
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experiment in which the standard error for TAO data
was increased to 1.08C. This led to a factor of 2 decrease
in the cycle average of g( 5 0.44).g

It is more likely that the background-error variances,
which have been specified from the climatology of a
model integration performed without data assimilation,
are substantially overestimated. Whereas this specifi-
cation might yield a reasonable estimate of the back-
ground errors for the first cycle, it is probably too large
an estimate in later cycles, particularly in well-observed
regions, where the data assimilated in previous cycles
have acted to reduce the innovation vector. Generally
speaking, however, it is safer to overestimate than un-
derestimate the background-error variances to prevent
the model from drifting too far from observations. It
should be noted that a misspecification of the back-
ground- and/or observation-error correlations could also
change the value of g.

Another interesting feature in Fig. 7 is the rather large
variance in g between cycles. This is an indication that,
contrary to what has been assumed, the background-
error covariances are not stationary, in addition to being
largely overestimated as already mentioned. From Fig.
7a, we see that the variability of g is larger in EX3D
than in the sensitivity experiment where the standard
error used for TAO data was larger. This is understand-
able since the smaller standard error for TAO in EX3D
means that g will be more sensitive to the true variations
in the background-error covariances between cycles.

While the Jmin statistic gives some useful insight into
the optimality properties of the system, it is not possible
based on this information alone to correct unambigu-
ously any misspecification of the background- and/or
observation-error covariances. If the actual value of Jmin

is not equal to p/2, then this can be rectified simply by
muliplying B and R by the factor g 5 2Jmin/p. This
procedure will change the absolute values of the back-
ground-, observation-, and analysis-error variances, but
will have no influence on the analysis increment itself.
What is important then is the relative magnitude of the
variances in B and R (the absolute values can be ob-
tained by postmultiplication by g). Adaptive procedures
can be used to tune the variances in B and R using
information on the mismatch between the expected and
actual values of subparts of the cost function at its min-
imum (Desroziers and Ivanov 2001). To compute the
expected minimum value of subparts of the cost function
is more complicated, but practical methods do exist
(Bennett et al. 2000; Desroziers and Ivanov 2001). We
have not attempted to apply any of these methods in
the present study but they do offer an interesting pos-
sibility for improving the variance estimates in the fu-
ture.

e. Flow-dependent background-error variances

It is well known that, in the limit of a perfect, linear
model, variational assimilation is equivalent to the Kal-

man filter in that, given identical input parameters, they
produce the same analysis at the end of the assimilation
window (e.g., see Courtier et al. 1994). Consider an
assimilation window t0 # ti # tn in which a background
state wb, with error-covariance matrix B, is available at
the beginning of the assimilation window and an ob-
servation vector , with error-covariance matrix Rn, isoyn

available at the end of the window. Within the linear
approximation, the error-covariance matrix Pb(tn) for
the background state wb(tn) 5 M(tn, t0)(wb) is obtained
by evolving B using the linear model and its adjoint:

TbP (t ) 5 M(t , t )BM(t , t ) ,n n 0 n 0 (21)

where Pb(t0) 5 B. In an extended Kalman filter, (21)
would be used explicitly to transport the covariances
forward in time. In incremental variational assimilation,
on the other hand, this propagation is implicit in the
global minimization process. For the example above,
the variational analysis increment at t0, obtained by min-
imizing (8) exactly, can be written as

a T TTdw 5 BM(t , t ) H [H M(t , t )BM(t , t )n nn 0 n 0 n 0

21T3 H 1 R ] d , (22)n n n

where dn 5 2 Hn[wb(tn)]. The analysis increment atoyn

tn can be obtained by applying M(tn, t0) to both sides
of (22) to yield, after inserting (21),

a 21b T b Tdw (t ) 5 P (t )H [H P (t )H 1 R ] d ,n n n nn n n n (23)

where dwa(tn) 5 M(tn, t0)dwa. Equation (23) is the stan-
dard analysis step of an extended Kalman filter, which
weights the background state at tn using an error-co-
variance matrix predicted by (21).

Our FGAT version of 3DVAR can be viewed as a
limiting case in which M is taken to be the identity
matrix. This implies that Pb(tn) 5 B, that is, that the
background-error covariances at the end of the window
(and at all intermediate times) are identical to those
specified at the initial time. In incremental 4DVAR, on
the other hand, M is the TL operator so that Pb(tn) will
be modified by dynamical processes acting within the
window. In this section, we focus on how the TL dy-
namics act to modify the prior estimates of the back-
ground-error variances [the diagonal elements of
Pb(tn)]. The TL dynamics will also modify the back-
ground-error correlations but a discussion of this feature
is beyond the scope of the present paper.

Single-observation experiments provide a practical
way of computing the effective background-error var-
iances used implicitly in 4DVAR (Thépaut et al. 1993,
1996). For a single observation, d 5 dn and (so)2 5
Rn become scalars, and hT 5 Hn becomes a vector of
the same length as w. The error variance of the back-
ground equivalent of the observation is then given by
the scalar product ( )2 5 hTPb(tn)h. If we assume fur-bs n

ther that the observation is of one of the model state
variables and that its location coincides with a model
grid point, then hT 5 (0, . . . , 0, 1, 0, . . . 0), where the
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FIG. 8. (a) Vertical profiles of the background-error std devs (8C) used in 3DVAR and 4DVAR at the
equator at 1408W. The dashed–dotted curves correspond to the standard deviations specified at the
beginning of the assimilation window. In 3DVAR, these are also the effective standard deviations used
at all future times within the window. The solid curves correspond to the effective standard deviations
used in 4DVAR at the end of the 30-day window of the second cycle in EX4D. (b) The corresponding
profile of | ]Tu/]z | at this location, computed from the 30-day mean of the background temperature state
on the second cycle. The values of | ]Tu/]z | have been multiplied by a factor of 10 in order to be plotted
with the same horizontal scale as in (a).

entry equal to one corresponds to that grid point, and
( )2 becomes an element of the diagonal of Pb(tn). Itbs n

is straightforward to deduce ( )2 by applying hT tobs n

both sides of (23):

d
T a b 2h dw (t ) 5 (s ) , (24)n n b 2 o 2[ ](s ) 1 (s )n

which can be rearranged to give

T ah dw (t )nb 2 o 2(s ) 5 (s ) . (25)n T a[ ]d 2 h dw (t )n

The term hTdwa(tn) is the value of the analysis incre-
ment at the time and gridpoint location of the single
observation. Equation (25) thus provides the basis of
an algorithm for systematically diagnosing the exact di-
agonal elements of Pb(tn). To compute all diagonal el-
ements of Pb(tn) using (25) would be prohibitively ex-
pensive since (25) requires as many single observation
experiments as the number of elements of w. This al-
gorithm is therefore only practical for computing a small
subset of the , which is what is desired here. If anbs n

estimate of the complete diagonal of Pb(tn) were re-
quired, then a more efficient, but approximate, algorithm
based on randomization would be more appropriate
(e.g., Andersson et al. 2000).

Figure 8 shows vertical profiles of the background-
error standard deviations ( ) for temperature at thebs n

equator in the central Pacific (1408W). The dashed–
dotted curve is the prior estimate of , which, as dis-bs n

cussed earlier, was computed from a control experiment
without data assimilation. In 3DVAR, the prior esti-
mates are effectively used to weight the background
state at all times within the assimilation window, while

in 4DVAR they are used for weighting the background
state at the beginning of the assimilation window. The
prior estimate displays a maximum around the depth of
the climatological thermocline where variability is
greatest (around 170 m). The solid curve shows the
profile of the effective used in 4DVAR at the endbs n

of the second 30-day cycle (3 March 1993) of EX4D
(see Part II for a thorough description of this experi-
ment). By repeating this experiment at different latitudes
it was found that the flow dependency in the esti-bs n

mates is greatest near the equator, which is not surprising
since dynamical effects have shorter timescales there.
In 30 days, the ocean state can change significantly at
the equator but much less so at higher latitudes. Figure
8a also shows that the TL dynamical processes tend to
reduce the in the ocean mixed layer, particularly inbs n

the upper 70 m. Note that the Newtonian relaxation term
for SST is contributing to this tendency by damping
temperature perturbations in the top level of the TL
model.

The TL dynamics also tend to move the level of max-
imum background-error variance to the level of the ther-
mocline, as illustrated by comparing Fig. 8a with the
profile of | ]Tu/]z | computed from the 30-day-averaged
background temperature state on the second cycle. This
tendency is physically sensible since the level of max-
imum variability of the thermal field, and thus of max-
imum likely error in the background state, is located at
the level of the thermocline. It can also be noted that
the TL dynamics can substantially increase the maxi-
mum value of the background-error variance near the
equator. This is related to the fact that the background
trajectory in this experiment has already felt the influ-
ence of observations assimilated during the previous
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FIG. 9. Time-averaged statistics, plotted as a function of depth, of
BmO and AmO for TAO data during the 1993–98 period. (a) The
average of BmO (thin curves) and AmO (thick curves), (b) the rms
of BmO (thin curves) and AmO (thick curves), and (c) the rms of
AmO (thick curves) and of the Jo residual (thin curves). In (a) and
(b), the dashed curve corresponds to EXCL; in all panels, the dashed–
dotted curves correspond to EX3D, and the solid curves to EX4D.
Note that the AmO and Jo residual of EX4D [solid curves in (c)] are
indistinguishable.

cycle through a tightening of the thermocline. This tight-
er, well-defined thermocline, relative to that of the con-
trol, leads to larger thermal signals and thus to an in-
crease in the maximum value of by the TL dynamics.bs n

In some 3D assimilation systems (e.g., Behringer et al.
1998; Alves et al. 2002), the background-error variances
have been parameterized by making them dependent on
the vertical gradient of the background temperature
field. Figure 8 suggests that relating sb to the back-
ground temperature gradient is dynamically sensible.
Such a weighting could also be useful in 3DVAR and
4DVAR by introducing a flow dependence in the var-
iances of B at the beginning of the window.

f. Fit to the observations

Statistics derived from the background minus obser-
vation vector {BmO [ Hi[wb(ti)] 2 } and analysisoyi

minus observation vector {AmO [ Hi[wa(ti)] 2 }oyi

can yield useful information about the internal consis-
tency of the data assimilation system (Hollingsworth
and Lönnberg 1989). Figures 9a and 9b show the 1993–
98 averaged statistics of the BmO and AmO as a func-
tion of depth for all the assimilated TAO data in EX3D
and EX4D. For reference, the average statistics of the
difference between the control and TAO data are also
shown, which for convenience will be referred to as the
BmO of EXCL. In Fig. 9a the BmO curve of EXCL
displays a large warm bias of about 28C just below the
thermocline. This bias is largely reduced in EX3D, with
the maximum of the averaged BmO and AmO being
about 0.38C at 50 m. The bias is almost completely
absent from EX4D: the average of AmO is very small,
except at 250 m where the analysis is about 0.18C too
cold.

In Fig. 9b the rms of BmO of EXCL shows large
differences both just below the thermocline, where there
are large biases, and in the thermocline, where signals
associated with the seasonal cycle and interannual var-
iability are largest. These differences are substantially
reduced in EX3D and EX4D. The rms of BmO in EX4D
is similar to that of EX3D, with a maximum around
1.58C at the level of the thermocline. On the other hand,
the rms of AmO in EX4D is very much reduced, being
less than 0.58C over the entire water column, compared
to the rms of AmO in EX3D, which is hardly smaller
than that of BmO. The fit to the TAO data in EX4D is
thus within the specified level of the observation error
(0.58C), which is not the case in EX3D. The larger AmO
in EX3D is primarily an artifact of the gradual way the
analysis increment is applied to the model. While min-
imizing nonphysical adjustment processes, this proce-
dure ultimately degrades the fit to the data achieved by
the linear analysis wb(ti) 1 dwa(ti). This is illustrated
in Fig. 9c, which shows that for EX3D the rms of the
Jo residual, Hidwa(ti) 2 d i, is considerably less than the
AmO and is comparable to the specified observation
error (0.58C). An additional experiment was performed
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FIG. 10. Spatially averaged rms of BmO (thin curves) and AmO
(thick curves) for TAO data, plotted as a function of the assimilation
cycle during the 1993–98 period. The dashed curve corresponds to
EXCL, the dashed–dotted curves to EX3D, and the solid curves to
EX4D. The statistics for EX3D are displayed as an average over three
cycles (30 days) in order to be compared with those from EX4D.

FIG. 11. Rms of the 1993–98 cycle average of BmO (thin curves),
AmO (thick curves), and Jo residual (thick curves) for TAO data
plotted as a function of the day within the assimilation window. The
dashed curve corresponds to EXCL, the dashed–dotted curves to
EX3D, and the solid curves to EX4D. The upper (lower) of the two
thick dashed–dotted curves corresponds to the AmO (Jo residual) of
EX3D. The AmO and Jo residual (thick solid curves) of EX4D are
indistinguishable.

in which the (temperature) analysis increment was add-
ed directly to the background initial conditions as in
4DVAR. The statistics of the AmO and Jo residual for
that experiment were comparable to those of EX3D but
the overall impact of the assimilation on the model fields
was significantly worse and therefore justifies our ap-
proach of applying the analysis increment gradually. For
EX4D, the residual and AmO are indistinguishable in
Fig. 9c. This result is consistent with Fig. 6 of section
4c, which showed that, after several outer iterations, the
full and incremental cost functions converged to similar
values at the end of minimization. That result was dem-
onstrated for a particular cycle (the second); Fig. 9c just
confirms that this feature is consistent for all cycles of
EX4D.

Figure 9 provided a time-averaged view of the BmO
and AmO statistics for the assimilated TAO data. Figure
10 now provides a view of how these statistics change
with time during the 1993–98 analysis period. On the
first assimilation cycle, the background is provided by
the control and as a result the BmO is very large (Fig.
10). After the first assimilation cycle, however, the prop-
erties observed in Fig. 9 begin to emerge: the average
of AmO is small in both EX3D and EX4D, and the rms
of AmO is equal to about 18C in EX3D and 0.58C in
EX4D. It was found that, in both EX3D and EX4D, the
statistics of BmO and AmO are approximately station-
ary, and in particular do not seem to exhibit any obvious
dependence on either the number of assimilated obser-
vations or interannual variability.

The cycle average of the temporal evolution of BmO
and AmO within the assimilation window is shown in
Fig. 11. For the background, which is not constrained
by observations, the fit to the data degrades with time.
After 10 days in EX3D and 30 days in EX4D, the rms
of BmO increases by 0.28 and 0.58C from initial values
of 1.08 and 0.68C, respectively. The rms of BmO at the
end of the window is 1.28C in both experiments, com-
pared to 1.98C in EXCL. In both EX3D and EX4D, the
fit of the analysis to the data is uniform over their re-
spective assimilation windows, apart from a very slight
increase of the AmO at the window boundaries in
EX4D. Note that, since the analysis at the end of a given

cycle is used as the background at the beginning of the
next cycle, the BmO at day 0 should be equal to the
AmO at day 30, except for the first and last cycle for
which there is no corresponding AmO (day 30) and
BmO (day 0), respectively. This latter point explains
the slight difference between these quantities in Fig. 11.
When model error is important, and not explicitly ac-
counted for in the assimilation method, it often mani-
fests itself as a U shape in the fit to the data (Ménard
and Daley 1996). Any signal of model error, however,
is more likely to be visible in the Jo residual than in the
AmO since the residual is the quantity that is minimized
objectively. The residual will contain information about
linearization errors introduced by the approximation (3)
as well as errors in the nonlinear model itself.

The cycle average of the Jo residuals in EX3D and
EX4D is also shown in Fig. 11. For EX3D (lower thick
dashed–dotted curve), the U shape is evident, though
quite weak, with a difference of about 0.28C between
the highest point at the window boundaries and the low-
est point in the middle of the window. If this is indeed
a sign of model error, then it would be consistent with
the results of section 4b, which illustrated that the per-
sistence model did have some limitations near the equa-
tor. In contrast, in EX4D, the residuals are nearly flat
over the whole window width (and are very similar to
the AmO). This result then suggests that model error is
not a significant problem over the 30-day window used
in 4DVAR.

5. Summary

Three- and four-dimensional variational assimilation
systems have been developed for the rigid-lid version
of the OPA OGCM (Madec et al. 1998). The assimi-
lation problem is defined by a cost function that pe-
nalizes departures from the data and from a background
estimate that is the result of a previous assimilation. The
control variable of the cost function is the initial con-
dition at the start of each assimilation window. The cost
function is minimized using an incremental approach
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by which the full minimization problem, involving the
nonlinear OGCM as a constraint, is approximated by a
sequence of quadratic minimization problems involving
linear constraints. The control variable of each quadratic
cost function is an increment to the initial conditions.
In the incremental 3DVAR, the increment is transported
forward in time by a persistence model. In the incre-
mental 4DVAR, a linearized version of the full OGCM
is used to propagate the increment. The adjoint of the
linear model propagator is used to compute the gradient
of the cost function with respect to the initial condition
increment thus allowing the solution to be found iter-
atively using a gradient descent method. Once the anal-
ysis increment is found, it is applied at the beginning
of the assimilation window to derive the 4DVAR anal-
ysis trajectory. In the case of 3DVAR, it is applied as
a constant 3D forcing to the model equations over the
assimilation window as a way of minimizing spurious
adjustments.

The systems have been applied to assimilate in situ
temperature data in the tropical Pacific Ocean. Three
experiments were performed for the 1993–98 period: a
control experiment without data assimilation, an exper-
iment using 3DVAR cycled with a 10-day window, and
an experiment using 4DVAR cycled with a 30-day win-
dow. The validity of the persistence model (3DVAR)
and of the TL model (4DVAR) was investigated. It was
shown that persistence was a reasonable assumption
over 10 days, at least outside the equatorial waveguide,
and that the TL model provides a good description of
the large-scale oceanic state over at least 30 days. How-
ever, because of the nonlinear nature of convective and
vertical mixing processes, the validity of the TL model
could be degraded at small vertical scales. Tropical in-
stability waves (TIWs) are nonlinear oscillations with
a timescale of about 1 month. At their horizontal scale,
the TL model is also less accurate. Nevertheless, in
4DVAR a very good fit to the observed TIWs was
achieved (see Part II). This result points to the important
role of the outer iterations in the incremental 4DVAR
formulation in providing a feedback mechanism be-
tween the TL and nonlinear models so that the model
can eventually achieve a very close fit to the data. With
outer iterations, the final values of the incremental and
nonincremental cost functions were shown to be very
close, which provides a good measure of the consistency
of the incremental approach for solving the original non-
linear minimization problem. Without outer iterations,
the performance of the 4DVAR system is seriously de-
graded.

Single-observation experiments have been performed
to illustrate the effect of the TL dynamics in modifying
the prior estimates of the background-error variances.
The TL dynamics were shown to modify the variances
in a physically sensible way. The variances were di-
minished in the mixed layer, and the maximum value
of the variance in the profile could be increased and
displaced to the level of the background thermocline,

where thermal variability (and background error) is
greatest.

A detailed examination of the fit of the different anal-
yses to the assimilated data has been made. The control
experiment displays a large bias below the thermocline,
which is strongly reduced in the 3DVAR analyses and
almost entirely absent from the 4DVAR analyses. The
rms difference between the analyses and observations
is also very much reduced in the thermocline region.
For example, for TAO data, whereas the rms difference
is about 2.88C in the control, it falls to 1.48C in 3DVAR
and to below 0.58C in 4DVAR, which is less than the
specified standard deviation of the observation error.
Over the TAO region, the spatially averaged rms dif-
ference between the observations and the 3DVAR and
4DVAR analyses is stationary in time (equal to 18C in
3DVAR and 0.48 in 4DVAR) and, in particular, does
not exhibit any dependence on the number of obser-
vations or interannual variability.

In this paper, the 3DVAR and 4DVAR systems have
been described and evaluated in terms of certain algo-
rithmic and statistical diagnostics. In Part II, the anal-
yses produced by the two systems are examined from
a physical perspective. A discussion of the results of
the two papers and possible avenues for future devel-
opment are given at the end of Part II.
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SUMMARY

It is common in meteorological applications of variational assimilation to specify the error covariances
of the model background state implicitly via a transformation from model space where variables are highly
correlated to a control space where variables can be considered to be approximately uncorrelated. An important
part of this transformation is a balance operator which effectively establishes the multivariate component of the
error covariances. The use of this technique in ocean data assimilation is less common. This paper describes a
balance operator that can be used in a variable transformation for oceanographic applications of three- and four-
dimensional variational assimilation. The proposed balance operator has been implemented in an incremental
variational data assimilation system for a global ocean general-circulation model. Evidence that the balance
operator can explain a significant percentage of background-error variance is presented. The multivariate analysis
structures implied by the balance operator are illustrated using single-observation experiments.

KEYWORDS: Background-error covariances Nonlinear balance Ocean analysis

1. INTRODUCTION

The importance of the background-error covariances for determining the quality
of analyses and forecasts is well known (Daley 1991). Specifying appropriate
background-error covariances is a complex research problem which requires careful
consideration of physical, statistical and computational issues. One important problem
is how best to define the multivariate component of the background-error covariances.
The multivariate component is responsible for transferring observational information
between model variables and thus is critical for extracting information about unobserved
variables from directly observed quantities. The problem of defining multivariate
covariances is also intimately related to that of producing balanced initial conditions
for initializing forecasts. In particular, improvements in the specification of multivariate
covariances will usually translate into better dynamically balanced analyses and there-
fore can reduce, or even eliminate, the need for a separate ‘initialization’ procedure.

In oceanography, various approaches have been developed to introduce multivariate
constraints in data assimilation systems. In some systems, they take the form of dynam-
ical or physical constraints (e.g. geostrophic or temperature–salinity (T –S) relations)
that are applied a posteriori to a statistically generated univariate analysis (Burgers et al.
2002; Troccoli et al. 2002; Balmaseda 2004). While this generally leads to much better
forecasts than if no constraints were applied at all, it does not make optimal use of
multivariate information in defining the analysis itself and makes the assimilation of
different data types more difficult.

A more effective way of incorporating multivariate constraints in the data
assimilation system is through the background-error covariances. A popular method
in oceanographic applications of sequential data assimilation schemes such as the
Kalman filter is to compute the error covariances in a reduced-dimension subspace
spanned by a limited number of three-dimensional (3D) empirical orthogonal functions
(Testut et al. 2003) or a few members of an appropriately generated ensemble of ocean

∗ Corresponding author: CERFACS, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 1, France.
e-mail: weaver@cerfacs.fr
c© Royal Meteorological Society, 2005.
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model states (Lermusiaux et al. 2000; Keppenne and Rienecker 2003). While reduced-
space methods are capable of producing complex multivariate covariance structures,
they have the disadvantage of restricting the analysis increment to lie only in the sub-
space spanned by the chosen basis vectors. Various localization techniques have been
proposed to overcome this rank deficiency problem but unfortunately can be applied
only at the expense of disrupting some of the attractive balance properties of the original
covariances.

The specification of the multivariate component of the background-error co-
variances for variational ocean data assimilation has received much less attention.
In ocean applications of four-dimensional variational assimilation (4D-Var), cross-
variable correlations in the background errors are often neglected altogether (Bennett
et al. 2000; Stammer et al. 2002; Weaver et al. 2003). This approximation is often
justified by the fact that 4D-Var includes the ocean model (or a linearized version
of the ocean model) as a constraint in the assimilation problem and so already con-
tains a multivariate component. The validity of this approximation depends on several
factors such as the length of the assimilation window, the choice of control variables,
and the particular application. It is clearly a very poor approximation, however, in three-
dimensional variational assimilation (3D-Var) which does not include the ocean model
as a constraint. In general, a well-tuned multivariate background-error covariance model
is beneficial to 4D-Var as well as 3D-Var.

This paper describes a very general method for incorporating multivariate con-
straints in variational ocean data assimilation. It extends the work of Ricci et al. (2005)
who proposed a technique for incorporating T –S constraints in a 3D-Var system.
The fundamental idea is to simplify the specification of the background-error co-
variances by designing a transformation from model state space, where variables are
highly correlated, to another (control) space where variables can be considered approxi-
mately mutually uncorrelated. The basic technique is commonly used in meteorological
applications of variational assimilation (Derber and Bouttier 1999; Cullen 2003) but has
seen limited use in oceanography. In effect, the specification of the background-error
covariances in model state space is transformed into one of defining a more general
observation operator. An obvious advantage with this approach is that observation
operators can be nonlinear whereas constraints that are included in traditional covariance
(matrix) formulations are necessarily linear.

The paper is organized as follows. An outline of the general approach for modelling
background-error covariances is given in section 2. Special attention is paid to some
important practical issues concerning the implementation of the technique in incre-
mental versions of 3D-Var and 4D-Var. Section 3 describes a multivariate balance
operator that can be used in a control variable transformation for 3D-Var and 4D-Var
applications with ocean general-circulation models (OGCMs). The proposed balance
operator has been implemented in a variational assimilation system for the OPA OGCM.
Examples with this system are presented in section 4 to illustrate various properties
of the balance operator. Conclusions are given in section 5. An appendix provides
some mathematical details on the relationship between the balance operator and the
multivariate component of the background-error covariance matrix.

2. AN IMPLICIT REPRESENTATION OF THE BACKGROUND-ERROR COVARIANCES

(a) Formulation of the problem
The formulation of variational assimilation given by Derber and Wu (1998)

provides a very general and convenient framework for representing background-error



MULTIVARIATE BALANCE FOR VARIATIONAL OCEAN ASSIMILATION 3607

covariances in model state space. In their formulation, the variational analysis is defined
by the minimization of a cost function of the form

J (v) = 1
2 (v − vb)T(v − vb) + 1

2 (G(v) − yo)TR−1(G(v) − yo), (1)

where v is the control (analysis) vector, vb is the background estimate of the control
vector, yo is the vector of observations, R is an estimate of the observation-error
covariance matrix, including contributions from measurement and representativeness
error, and G is a nonlinear operator that maps the control vector onto the space of the
observation vector∗. The background-error covariance matrix of the control vector is
assumed to be the identity matrix (B(v) = I) as evident by the use of the canonical
inner product for the background term in (1). In other words, background errors for
vb are assumed to be uncorrelated and to have unit variance. Clearly the control vector
must be constructed carefully for this to be a reasonable assumption; e.g. it would be
a very poor assumption if v were taken to be the model state vector. There are two
advantages that result from this formulation where the background term takes on a very
simple form. First, it generally improves the convergence properties of the minimization
when the problem is solved with a conjugate gradient algorithm. For quadratic cost
functions, this is often explained by a reduction in the condition number of the Hessian
(Golub and Van Loan 1996). Second, all constraints in the assimilation problem are
now imposed through the nonlinear observation operator G, including multivariate and
smoothness constraints that are used in conventional model-space (matrix) formulations
of the background-error covariances. In particular, this opens the way for incorporating
potentially more realistic (nonlinear) multivariate balance relationships in the analysis
problem.

The control vector v is assumed to be related to the model state vector x through a
transformation of the form

v = U−1(x), (2)

where U−1 is a block-matrix operator, with possibly nonlinear blocks, which is assumed
to be square and invertible in the following. There is no complication if U is rectangular
(i.e. if there are fewer control variables than state variables) but in this case U would
only be invertible in a generalized sense. If the observations are distributed over a
time window t0 ≤ ti ≤ tn then x can be interpreted, as in a conventional formulation of
4D-Var, as the initial state of the dynamical model used in G to propagate the model
state forward to the observation times†.

Following Derber and Bouttier (1999), the operator U−1 can be split into three basic
operators: a transformation K−1 that produces a set of approximately mutually uncor-
related variables by removing any known dynamical or physical balance relationships
between model state variables; a diagonal matrix D−1 of normalization factors; and a
roughening operator F−1 (the inverse of a smoothing operator) that acts separately on
each of the uncorrelated variables. The change of variables (2) is needed to compute the
background estimate, vb, of the control vector from the background estimate, xb, of the
model state, while the inverse of the change of variables

x = U(v) = K(D(F (v))) (3)

∗ Nonlinear and linear matrix operators will be distinguished throughout by italic and bold font, respectively.
† By interpreting x to be the initial conditions, the model and external forcing fields are tacitly assumed to be
perfect. This assumption can be relaxed in the above formulation by considering x to contain model-error or
external forcing terms in addition to the initial conditions.
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is needed to evaluate the term G(v) in the observation term. Equation (2) can be used
to compute covariance statistics of the contrived control vector v from estimates of
background error for the state vector x. In practice, only a few aspects of the covariances
(e.g. average variances) can be estimated reliably. From these estimates, the assumption
that B(v) ≈ I can be tested: if it is not well satisfied then either a new B(v) �= I could be
used to weight the background term in (1) or the parameters in the operators F , D and
K could be recalibrated so that the approximation is better satisfied.

(b) Incremental formulation
The incremental formulation (Courtier et al. 1994) provides a practical algorithm

for approximately minimizing (1). The incremental algorithm is defined by the iterative
minimization of a sequence, k = 1, . . . , Ko, of quadratic cost functions

J k(δvk) = 1
2(δvk − db,k

(v)
)T(δvk − db,k

(v)
)

+ 1
2 (Gk−1δvk − do,k)TR−1(Gk−1δvk − do,k),

(4)

where

db,k
(v)

= vb − vk−1, (5)

do,k = yo − G(vk−1) (6)

is the innovation vector, vk−1 is a reference state, δvk is an increment defined by
vk = vk−1 + δvk, and Gk−1 is a linearized operator defined such that G(vk−1 + δvk) ≈
G(vk−1) + Gk−1δvk (when this equation is satisfied exactly, (4) is identical to (1)).
The superscript k − 1 indicates that Gk−1 is the result of linearizing G about vk−1.
The sequence k = 1, . . . , Ko is called outer iterations while the minimization iterations
performed within each outer loop are called inner iterations. Equations (5) and (6) are
the effective ‘background’ and ‘observation’ vectors for the inner-loop minimization. In
practice, it is customary to set v0 = vb and to choose vk−1, for k = 2, . . . , Ko, to be the
solution obtained at the end of the previous outer loop. The minimum of (4) after the
Koth outer iteration defines the analysis increment, δva = δvKo . The analysis in model
space is then given by xa = U(va) where va = vKo−1 + δva.

The nonlinear transformation (3) is needed on each outer iteration to evaluate the
term G(vk−1) in (4). Through successive linearizations about vl , l = 0, . . . , k − 2, this
transformation can be approximated by

xk−1 = U(vk−1) ≈ U(v0) +
k−1∑

l=1

Ul−1δvl . (7)

By choosing v0 = vb, the first term on the right-hand side of (7) becomes

U(v0) = U(vb) ≡ xb.

Equation (7) then implies that xk−1 can be approximated as the sum of the model-space
background state and the model-space increments estimated using the inverse of the
linearized change of variables. A further consequence of choosing v0 = vb is that the
difference vector (5) can be written as minus the sum of the increments generated from
previous outer iterations:

db,k
(v)

= v0 − vk−1 = −
k−1∑

l=1

δvl . (8)
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Equation (8) together with the approximation (7) allow us to eliminate the explicit
dependence of (4) on vk−1 and thus to iterate the incremental minimization algorithm
without the need to perform either the nonlinear transformation (2) or its inverse (3)
(only the linearized transformations are required).

To complete the evaluation of G(vk−1), xk−1 must be propagated to the observation
times using the model operator and then transformed to the observed quantities using the
observation operator. The linearized counterpart of this operator is required to evaluate
Gk−1δvk in (4). As discussed in Weaver et al. (2003), 3D-Var and 4D-Var can be
distinguished by the type of linear model that is used to evolve the increments between
observation times. In 3D-Var the increments are persisted, whereas in 4D-Var they
are evolved by a dynamical model that closely approximates the tangent-linear model.
By distinguishing 3D-Var and 4D-Var at the incremental level, they can be viewed as
two different algorithms for approximately solving the same 4D assimilation problem
described by the non-quadratic cost function (1).

(c) Diagnosing the effective background-error covariance matrix
Although the background-error covariance matrix in model space has not been

defined explicitly, its effective form on a given outer iteration can be easily diagnosed by
transforming the background term in (4) into model space using the linearized change
of variables δvk = (Uk−1)−1δxk and its inverse δxk = Uk−1δvk. This yields

J k
b = 1

2
(δxk − db,k

(x)
)T(Bk

(x))
−1(δxk − db,k

(x)
), (9)

where
Bk

(x) = Kk−1Dk−1
(̂x)

Fk−1

︸ ︷︷ ︸
Uk−1

Fk−1T
Dk−1

(̂x)

T
Kk−1T

︸ ︷︷ ︸
Uk−1T

, (10)

and db,k
(x)

= Uk−1db,k
(v)

. Equation (10) corresponds to the model background-error covari-
ance matrix on the kth outer iteration. Since Bk

(x)
depends, in general, on the linearization

state xk−1, it may vary from one outer iteration to the next. In this way, the outer iter-
ations provide an adaptive mechanism for modifying the background-error covariance
model during the course of minimization. The background-error covariance matrix BKo

(x)
used on the final outer iteration Ko would be the effective covariance matrix used for the
analysis. Note that in 4D-Var, BKo

(x)
would be evolved (implicitly) within the assimilation

window through the action of the linearized dynamical model and its adjoint (Courtier
et al. 1994). In 3D-Var, on the other hand, BKo

(x)
would be fixed within the assimilation

window, although, as in 4D-Var, it may vary from one assimilation cycle to the next
through its dependence on the background state.

Equation (10) provides a valuable statistical interpretation of the control variable
transformation. The product Fk−1(Fk−1)T of the linearized smoothing matrix and its
transpose can be interpreted as a correlation matrix, provided that care has been taken to
normalize the matrix so that the diagonal elements are all equal to one. The correlations
in Fk−1(Fk−1)T correspond to those of the errors of the transformed background
variables x̂b = K−1(xb), not to the error correlations of xb itself. By construction,
cross-correlations between these variables are neglected so that Fk−1(Fk−1)T is block-
diagonal (univariate), where each block corresponds to the autocorrelation matrix for
each variable in x̂b. While the cross-correlations will never be exactly zero in practice,
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the intent is that, with an astutely chosen K−1 operator, they can be made sufficiently
small so that neglecting them is an acceptable assumption.

The diagonal matrix Dk−1
(̂x)

in (10) contains estimates of the standard deviations
of the errors in x̂b. In meteorology, it is typical to estimate the standard deviations
(and parameters of the correlation model) from a suitably constructed ensemble of
forecast differences (Parrish and Derber 1992; Buehner 2005). To estimate statistics
of the control variables, the forecasts must first be transformed into x̂-space using K−1

or, as an approximation, the forecast differences can be transformed directly using the
linearized balance operator Kk−1. In (10), Kk−1 couples the different model variables
and thus establishes the multivariate component of the background-error covariances
in x-space (Derber and Bouttier 1999). The remainder of this article is devoted to
the specification of a balance operator for ocean data assimilation. The problems of
estimating background-error covariances and deriving efficient and general smoothing
algorithms for representing background-error correlations are both very important, but
a proper discussion of these issues goes beyond the scope of this paper.

3. A BALANCE OPERATOR FOR OCEAN STATE VARIABLES

(a) General formulation
The variables comprising the model state vector are assumed to be potential

temperature T , salinity S, sea surface height (SSH) η, and the components of the
horizontal velocity vector uh = (u, v)T. These variables correspond to the standard
prognostic variables in a free-surface, hydrostatic OGCM. In this section, an operator
K−1 is developed which can be used to transform x = (T , S, η, uh)T into a vector
x̂ = (T , SU, ηU, uh

U)T whose elements T , SU, ηU and uh
U = (uU, vU)T can be considered

to be approximately mutually uncorrelated. This can be achieved by separating the state
variables into unbalanced and balanced components (Derber and Bouttier 1999), except
for one variable, taken here to be T , which is treated in totality and used as the starting
point to establish the balanced part of the other variables. The other elements SU, ηU
etc. of x̂ represent the unbalanced part of that particular variable.

The balance relationships used to define x = K(̂x) are described in detail in the
next section. Symbolically, the balance operator can be summarized by the sequence of
equations

T = T,

S = KST (T ) + SU = SB + SU,

η = Kηρ(ρ) + ηU = ηB + ηU,

u = Kup(p) + uU = uB + uU,

v = Kvp(p) + vU = vB + vU,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(11)

where
ρ = KρT S(T , S),

p = Kpρ(ρ) + Kpη(η)

}
(12)

are diagnostic quantities corresponding to density and pressure, respectively, and
Kxy represents the transformation from the variable(s) y to x. The variables with a
subscript B on the right-hand side of (11) represent the balanced component of those
variables. The lower block-triangular structure of the balance operator (11) implies that
a balanced variable can be a function of the variables preceding it in the sequence but
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will be independent of the variables following it in the sequence. It also allows the
inverse balance operator K−1 to be obtained trivially from the sequence of equations

T = T,

SU = S − SB,

ηU = η − ηB,

uU = u − uB,

vU = v − vB.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(13)

A linearized version of x = K(̂x) is required for the incremental formulation. According
to (7), the linearized balance equation can be approximated as

xk−1 ≈ xb +
k−1∑

l=1

δxl, (14)

where δxl = Kl−1δ̂xl . This approximation is very convenient since it eliminates the need
to specify the nonlinear version of the balance operator (it is implicit in xb). It is used in
the rest of this section and in the illustrations presented in section 4. It can be expected
to be a good approximation when the balance operator is weakly nonlinear.

From (11) and (12), the linear balance equations for the increment can be written in
the general form

δT k = δT k,

δSk = Kk−1
ST δT k + δSk

U = δSk
B + δSk

U,

δηk = Kηρδρk + δηk
U = δηk

B + δηk
U,

δuk = Kupδpk + δuk
U = δuk

B + δuk
U,

δvk = Kvpδpk + δvk
U = δvk

B + δvk
U,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(15)

where
δρk = Kk−1

ρT δT k + Kk−1
ρS δSk,

δpk = Kpρδρk + Kpηδη
k.

}
(16)

As described later, nonlinear operators are used for the salinity balance KST and the
density balance KρT S . All the other balance operators are linear and thus independent of
the linearization state xk−1. This has been made clear in (15) by omitting the superscript
k − 1 from those matrix operators.

(b) A set of linearized balance relationships
Temperature plays an important role in the balance formulation since is used to

compute all, or a significant part of, the balanced component of the other variables.
The relationship between temperature T and salinity S is complex and traditionally
determined empirically from scatter plots of historical T and S data. Han et al. (2004)
propose fitting a high-order polynomial function to T –S diagrams in order to determine
an explicit S(T ) relationship. This procedure works reasonably well in some data-rich
regions such as the western tropical Pacific Ocean, as illustrated by Han et al. (2004).
Using a somewhat different formulation to the one presented here, Han et al. (2004)
then go on to show how such an S(T ) relationship, together with an estimate of the
uncertainty in this relationship, can be used to correct salinity from temperature data
within a variational assimilation framework.
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Troccoli and Haines (1999) propose an alternative and simpler method for adjusting
salinity when only temperature information is available. Their approach is designed to
preserve the T –S properties of the background state by making vertical displacements
of the local background salinity field in response to changes to the local background
temperature field produced by the assimilation of temperature data. The attractive
features of their method are that it can be applied in a global system, it allows for state-
dependency in the T –S relation, and it does not require any prior statistical analysis of
an observational database.

Ricci et al. (2005) describe a simple variant of the Troccoli and Haines (1999)
scheme for implementation within a linear balance operator. In their study, balanced
salinity increments are defined by

δSk
B = γ k−1 ∂S

∂z

∣∣∣∣
S=Sk−1

∂z

∂T

∣∣∣∣
T =T k−1

δT k, (17)

where γ = γ k−1(T k−1, Sk−1, uk−1, vk−1) is a coefficient that is set to either zero or
one, depending on various conditions in the reference state. For example, to take into
account the weak correlation between temperature and salinity in well-mixed regions,
γ k−1 is set to zero at grid points where the reference vertical mixing coefficient is
large, such as in the ocean mixed layer. When γ k−1 = 0, δSk is entirely described
by its unbalanced component δSU. To avoid a discontinuity in the balance at the base
of the mixed layer, δSk

B is smoothly reduced to zero at the surface from its non-zero
value just below the mixed layer. The vertical derivatives in (17) are used to estimate
the local derivative of the background T –S relation and can be computed using finite
differences or a cubic spline. In practice, it has been found desirable to apply a horizontal
smoothing operator (e.g. the one used in Fk−1) to the balance coefficient in (17) in order
to avoid generating noisy salinity increments. The impact of the T –S balance has been
evaluated in detail by Ricci et al. (2005) in a multi-annual cycled 3D-Var experiment
for the tropical Pacific Ocean. When assimilating temperature data alone, they showed
that the constraint can have a significant positive impact on velocity as well as salinity
compared to a 3D-Var analysis in which no T –S constraint is applied. Notice that, as the
T –S constraint is dependent on the reference state, it can evolve both during the course
of minimization (via outer iterations) and from one assimilation cycle to the next.

Density can be computed from potential temperature and salinity using a nonlinear
equation of state (e.g. McDougall et al. 2003). The (balanced) density increment can be
defined by linearizing the equation of state about the reference state:

δρk = ρ0(−αk−1δT k + βk−1δSk), (18)

where

αk−1 = (1/ρ0)∂ρ/∂T |S=Sk−1,T =T k−1,

βk−1 = (1/ρ0)∂ρ/∂S|S=Sk−1,T =T k−1

are thermal and saline expansion coefficients, respectively, and ρ0 is a constant reference
density.

SSH can be computed diagnostically as a function of the state variables T , S and uh

by filtering out non-stationary contributions to SSH (e.g. from high-frequency gravity
waves) using the rigid-lid approximation (Fukumori et al. 1998). Furthermore, for flow
regimes where the Rossby number is weak (regimes close to geostrophic balance),
contributions to SSH from advection, dissipation, and surface forcing can be neglected.
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The resulting equation approximates SSH as the sum of two terms: a baroclinic term that
depends on density and a barotropic term that depends on the depth-integrated transport.
For the global model used in the illustrations in the next section, Ferry (2003) has
demonstrated that SSH variability is indeed dominated by its baroclinic and barotropic
components, except in coastal regions where the contribution from surface forcing can
be important. In the following, the baroclinic and barotropic contributions to SSH are
taken to be the balanced and unbalanced parts of SSH, respectively.

The balanced (baroclinic) component can be estimated by computing the dynamic
height at the surface z = 0 relative to a reference depth zref:

δηk
B = −

∫ 0

z′=zref

(δρk(z′)/ρ0) dz′ (19)

(zref = 1500 m in the examples in section 4). Equation (19) is only an approximation
of the baroclinic part of (the increment of) SSH. The complete expression involves the
solution of an elliptic equation (Fukumori et al. 1998):

∇ · H∇δηk
B = −∇ ·

∫ 0

z=−H

∫ 0

z′=z

(∇δρk(z′)/ρ0) dz′ dz (20)

where z = −H(λ, φ) is the total ocean depth, λ is longitude, φ is latitude, and ∇ and
∇· are the horizontal gradient and divergence operators, respectively. Equation (20)
takes into account variations in topography and is independent of a reference depth, and
therefore would be more accurate than (19) in regions where bathymetry is important or
where the ocean is shallow. For this study, however, the simpler equation (19) has been
adopted.

The balanced pressure increment at any depth z can be computed by integrating the
hydrostatic equation from z to the surface:

δpk(z) =
∫ 0

z′=z

δρk(z′)g dz′ + ρ0g(δηk
B + δηk

U), (21)

where g is the acceleration due to gravity, and the second term on the right-hand side of
(21) is the pressure exerted by the surface elevation, δpk(0) = ρ0gδηk , with δηk given
by (15). Substituting (19) in (21) and reversing the order of integration of the first term
on the right-hand side of (21) leads to

δpk(z) = −
∫ z

z′=zref

δρk(z′)g dz′ + ρ0gδηk
U. (22)

Away from the equator, the balanced part of the horizontal velocity components
(δuk

B, δvk
B) is assumed to be in geostrophic balance; i.e. proportional to the horizontal

gradient of (22) divided by the Coriolis parameter f . The horizontal gradient of the first
term in (22) is associated with a baroclinic geostrophic velocity, while that of the second
term is associated with a barotropic geostrophic velocity. The ageostrophic components
of the velocity increment are assumed to be associated with the unbalanced components
(δuk

U, δvk
U).

Special treatment of the geostrophic velocity balance is required near the equator
where f → 0. There, the zonal component δuk

B is taken to be geostrophically balanced
while the meridional component δvk

B is reduced to zero. Geostrophic balance for δuk
B

is computed near the equator using a β-plane geostrophic approximation (Lagerloef
et al. 1999), which involves the meridional derivative of the geostrophic equation.
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For this balance to exist, the meridional pressure gradient must exactly vanish at the
equator so that the standard (undifferentiated) form of the geostrophic equation is sat-
isfied when f = 0. Picaut and Tournier (1991) suggest adding a latitudinally dependent
correction term to the pressure field in order to force a zero meridional gradient at the
equator while leaving the meridional curvature of the original pressure field, and hence
the estimate of the zonal geostrophic current via the β-plane approximation, unaltered.
A similar technique is adopted here. The correction term effectively filters out all flows
with anti-symmetric pressure structures about the equator. An important exception is an
equatorial Kelvin wave, which is associated with a strictly zonal current in geostrophic
balance and is thus described by the proposed velocity balance on the equator.

To allow for a smooth transition between the equatorial (β-plane) geostrophic
velocity and the standard (f -plane) geostrophic velocity away from the equator, weight-
ing functions Wβ = exp (−φ2/2L2

β) and Wf = 1 − Wβ are introduced, where Lβ is a
length-scale whose size is of the order of the equatorial Rossby radius of deformation
(Lagerloef et al. 1999). At the equator, Wβ = 1 and Wf = 0, while far away from the
equator, Wβ ≈ 0 and Wf ≈ 1. Experimental evidence is given by Lagerloef et al. (1999)
to justify the Gaussian form for the weighting function. The complete expression for
the increments of the balanced velocity components in spherical coordinates is then
given by

δuk
B = − 1

ρ0

(
Wf

f
+ Wβ

β

1

a

∂

∂φ

)
1

a

∂δp̃k

∂φ
, (23)

δvk
B = 1

ρ0

Wf

f

1

a cos φ

∂δp̃k

∂λ
, (24)

where β = ∂f/∂(aφ), and a is the radius of the earth. To simplify the β-plane approxi-
mation, the differentiated term involving the product f ∂δuk

B/∂(aφ) has been neglected
in (23). This term can be expected to be relatively small near the equator where f ≈ 0.
Following Picaut and Tournier (1991), the modified pressure increment in (23) and (24)
is defined by

δp̃k = δpk − φ

(
∂δpk

∂φ

)

φ=0
exp (−φ2/2L2

p), (25)

where the second term on the right-hand side (25) corresponds to the pressure correction
factor. The correction term does not affect (24), is negligible far from the equator, and
satisfies both the β-plane constraint

(∂2δp̃k/∂φ2)φ=0 = (∂2δpk/∂φ2)φ=0

and the necessary condition for geostrophic balance at the equator,

(∂δp̃k/∂φ)φ=0 = 0.

The length-scales Lp in the correction term and Lβ in the weighting functions are taken
to be equal and set to 1.55◦ as in Lagerloef et al. (1999).

4. ILLUSTRATIONS

The balance operator described in the previous section has been implemented
in a 3D-Var/4D-Var system (Weaver et al. 2003) for a global, free-surface version
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of the OPA OGCM (Madec et al. 1998; Roullet and Madec 2000). The system
has been exploited within the framework of the European ENACT project
(see http://www.ecmwf.int/research/EU projects/ENACT) to produce global ocean
re-analyses using historical temperature and salinity data (Ingleby and Huddleston 2006)
and surface forcing fields from the ERA40 atmospheric re-analysis (Uppala et al. 2005).
It is beyond the scope of this paper to provide a thorough description of the system
and assessment of the re-analyses. Only certain aspects of the system concerning the
balance operator and background-error covariance formulation are discussed and illus-
trated here.

(a) Evidence of balance in ocean background errors
The balance operator can be considered effective if the variance of background error

of the balanced variables explains a substantial part of the variance of background error
of the full variables. If this is not the case then the balance operator would provide little
useful information for the analysis. Since actual background error is unknown, a suitable
proxy must be defined in order to estimate its statistical properties. Here, background
error is approximated as the difference between the background state (xb(tn)) and the
reference state (xK(tn)) at the end of an assimilation window. The two states will differ
since the background state over the window t0 ≤ ti ≤ tn is obtained by forcing the model
with the atmospheric fluxes only, whereas the reference state is obtained by assimilating
data over t0 ≤ ti ≤ tn in addition to applying the surface forcing. This approach is
analogous to the so-called NMC method used in meteorology to estimate background-
error statistics (Parrish and Derber 1992). Berre et al. (2006) discuss the conditions for
which the NMC method is a good approximation to true forecast error.

A set of 328 background-minus-reference state differences has been obtained by
cycling the 3D-Var system over the nine-year period 1993–2001 using a ten-day
window. The inverse of the linearized balance operator was then applied to each
of these difference fields in order to retrieve the unbalanced components. From the
average variance, σ 2

x , of the full fields and the average variance, σ 2
xU

, of the unbal-
anced fields, the percentage ratio of explained variance r = (1 − σ 2

xU
/σ 2

x ) × 100% was
computed. For the global average, r is 37% for salinity, 94% for SSH, and 70% and
44% for the zonal and meridional components of velocity, respectively. Errors computed
using the NMC method were artificially small in regions poleward of 65◦N/S and below
1000 m since no data were assimilated there. Those regions were thus excluded from
the global average. In so far as the NMC method provides a reasonable representation of
background errors, these results suggest that the proposed balance operator can explain
a substantial amount of actual background-error variance.

The percentage variance ratio has also been computed as a function of depth from
the horizontally averaged variances in each model level, and as a function of latitude
from the zonally and depth-averaged variances. The results are displayed in Figs. 1(a)
and (b). For salinity, r is largest (up to 80%) below the level of the mean thermocline
(below 200 m), and reduces gradually to zero between 200 m and the surface (Fig. 1(a)).
The small value of r close to the surface is understandable since the salinity balance
is deliberately reduced in regions of strong mixing such as the surface mixed layer.
Figure 1(b) suggests that the salinity balance is most effective in the subtropical gyre
regions (between 10◦N/S and 30◦N/S). For the u-component of velocity, r is relatively
uniform with depth, with values between 60% and 70%. The explained variance is about
20% to 40% smaller for v than u, and decreases more rapidly with depth. The velocity
balance for the u-component is effective at all latitudes, even at the equator where it
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Figure 1. The percentage ratio r of background-error variance explained by the balanced part of salinity
(solid curve), SSH (dashed-dotted curve), the u-component of velocity (dashed curve) and the v-component of
velocity (dotted curve). (a) r computed from horizontally averaged variances and plotted as a function of depth;
(b) r computed from zonally and depth-averaged variances and plotted as a function of latitude. Background errors

have been estimated from a set of 329 background-minus-reference state differences.

explains about 50% of the variance. The value of r for the v-component is, as expected,
small near the equator where the weight given to the geostrophic equation for v is
reduced to zero (see (24)), but is comparable to the value of r for the u-component
poleward of about 10◦N/S. The SSH balance is particularly effective and explains
over 90% of the variance within 40◦ of the equator. At mid- and high latitudes, the
barotropic (unbalanced) component is known to be important, which probably explains
the reduction in r in this region.

It is worth noting that if the balanced and unbalanced fields were truly independent
then σ 2

x = σ 2
xB

+ σ 2
xU

, where σ 2
xB

denotes the variance of the balanced field. The per-
centage variance ratio r would thus be equivalent to r̂ = (σ 2

xB
/σ 2

x ) × 100%. Comparing
r̂ with r would then provide a measure of the validity of the assumption that the two
fields are approximately uncorrelated. In particular, comparing Figs. 1(a) and (b) with
the equivalent figures for r̂ (not shown) illustrates that r and r̂ do have similar structure
and amplitude for all fields, except for u and v for which there is a tendency for r̂ to
increase with depth rather than decrease with depth as in Fig. 1(a). The reasons for this
discrepancy are not known at present but will need to be explored in future work.

(b) Single-observation experiments with 3D-Var and 4D-Var
The multivariate properties of the background-error formulation are most clearly

illustrated using single-observation experiments. A mathematical demonstration of this
point is given in the appendix. For simplicity, the unbalanced components of salinity,
SSH and velocity are ignored (they are assumed to have zero error variance) so that only
the univariate T covariances need to be specified. In other words, the balance operator
is applied as a strong constraint (Lorenc 2003). This is sufficient to illustrate basic
properties of the balance operator which is the objective here. For practical applications,
however, it would be better to apply the balance operator as a weak constraint by
prescribing a non-zero covariance to the unbalanced components, provided reasonable
estimates of these covariances can be computed (e.g. using ensemble methods).
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The univariate 3D smoothing operator for T is defined as the product of a 1D and
2D anisotropic diffusion operator (Weaver and Courtier 2001). The resulting correlation
structures are approximately Gaussian. The parameters of the 3D diffusion operator
are the same as those used for the T –T correlations in the study of Weaver et al.
(2003), except for the vertical correlation scales which have been slightly reduced
here. The error variances, (σ k

T )2, for T have been made dependent on the vertical
gradient of the reference T field in order to focus the largest errors at the level of the
thermocline where thermal variability is greatest. Weaver et al. (2003) illustrate how
this simple parametrization of the background T errors can account for some of the
dynamical effects implicit in a Kalman filter. A similar parametrization is used in the
operational ocean data assimilation systems at the National Centers for Environmental
Prediction (Behringer et al. 1998) and European Centre for Medium-Range Weather
Forecasts (Alves et al. 2004). To avoid prescribing unrealistically small variances in the
mixed layer and deep ocean where vertical T gradients are small, the parametrization is
modified so that

σ k
T =

{
max(σ̃ k

T , σ ml
T ), in the mixed layer,

max(σ̃ k
T , σ do

T ), below the mixed layer,
(26)

where
σ̃ k

T = min{|(∂T /∂z|T =T k−1)δz|, σ max
T }, (27)

σ max
T being the maximum-allowed value of σ k

T , δz a vertical scale, and σ ml
T and σ do

T

lower bounds in the mixed layer and deep ocean, respectively. The specification of σ k
T is

thus transformed into one of choosing appropriate values for these parameters. For the
examples presented here, σ max

T = 1.5 K, δz = 10 m, σ ml
T = 0.5 K, and σ do

T = 0.07 K.
In the first example, the impact of a single T observation in 3D-Var is considered.

For this special case, the analysis of the T field depends entirely on the univariate T
covariances (it is independent of the balance operator) and the analysis increments for
the other variables are independent of the univariate covariances of their unbalanced
component. Those increments could be obtained a posteriori by applying the linearized
balance operator directly to the analysed T increment. This point is clarified in the
appendix. Figure 2 shows the 3D-Var analysis increment for a single T observation
chosen to be 1 K higher than the background T value, and located in the thermo-
cline (100 m) on the equator in the central Pacific (160◦W). The observation-error
variance has been set to (1.0 K)2. These increments are proportional to the implicitly
defined background-error covariances with T at the observation point (Ko = 1 in all
experiments). The structures are physically sensible. The positive T anomaly in the
subsurface (Fig. 2(a)) is associated with an elevated SSH (Fig. 2(e)) and a geostrophic
current at the surface, with an eastward zonal component that is symmetric about the
equator (Figs. 2(c)) and a meridional component that is asymmetric about the equator
(Figs. 2(d)). The dependence of the T –S balance and the T error variances on the ref-
erence state can lead to an anisotropic response in the T and S increments. To avoid
generating noisy increments, both the T –S balance coefficients and σ b

T were smoothed
in each level using the horizontal diffusion operator in Fk−1.

The previous example does not illustrate the full potential of the balance operator
for exploiting different observation types in the assimilation process. When information
about state variables other than T is assimilated, the analysis results from a generally
complex interaction between the balance operator, its adjoint and the covariance statis-
tics of the uncorrelated variables. For example, a SSH observation would provide direct
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Figure 2. Horizontal sections of the analysis increments for (a) temperature, (b) salinity, (c) zonal velocity,
(d) meridional velocity, and (e) SSH generated by the 3D-Var assimilation of a single-temperature observation
(positive innovation) located at a depth of 100 m on the equator in the central Pacific. The contour interval is
2.0 K in (a), 0.2 psu in (b), 0.1 m s−1 in (c), 0.01 m s−1 in (d), and 0.02 m in (e). The fields have been multiplied

by a factor 100. Solid (dashed) contours indicate positive (negative) values.

information on SSH as well as indirect information on T and S via the dynamic height
relation (19). In this case, the covariances for the unbalanced components of S and SSH,
as well as those for T , would influence the analysis, and the adjoint of the balance
operator would be required in the minimization process to map gradient information
from SSH into gradient information for the other fields (the appendix).

Figure 3 shows a zonal-vertical section at the equator of the T increment (Fig. 3(a))
and S increment (Fig. 3(b)) generated by the 3D-Var assimilation of a single SSH
observation, chosen to be 5 cm higher than the background SSH, on the equator in
the eastern Pacific (110◦W). The observation-error variance has been set to (0.5 cm)2.
To fit the SSH observation, 3D-Var produces T and S increments with largest amplitude
at the level of the thermocline. The vertical structures are noticeably anisotropic.
The increments display a pronounced upward tilt from west to east commensurate
with the tilt of the background isotherms in this region. This anisotropic response is
produced by the gradient-dependent T variances. The S increment has a dipole-like
structure where the transition from negative to positive values occurs at the level of the
salinity maximum in the background state. Above this level, the vertical derivative of
the background salinity is negative (salinity increases with depth), whereas below this
level, the vertical derivative is positive (salinity decreases with depth). Since the vertical
derivative of the background temperature is everywhere negative (temperature decreases
with depth), there is a change in sign in the derivative ∂S/∂T |T =T b, S=Sb in (17) which
gives rise to the dipole in Fig. 3(b).
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Figure 3. Vertical cross-section at the equator of the analysis increments for (a) temperature and (b) salinity
generated by the 3D-Var assimilation of a single SSH observation (positive innovation) located on the equator in
the central Pacific. The contour interval is 2.0 K in (a), and 0.1 psu in (b). The fields have been multiplied by a

factor 100. Solid (dashed) contours indicate positive (negative) values.
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Figure 4. Horizontal section of the SSH analysis increments generated by the 4D-Var assimilation of a
single-temperature observation (positive innovation) located ten days into an assimilation window at the same
geographical location as in the example in Fig. 2. The increments are displayed on day 10 for a 4D-Var experiment
(a) without and (b) with the balance operator activated. The fields have been multiplied by a factor 100 and the
same contour interval has been used here as in Fig. 2(e). Solid (dashed) contours indicate positive (negative)

values.

The previous examples illustrate the fundamental importance of the balance opera-
tor in establishing a physically sensible (multivariate) response in 3D-Var. The balance
operator also plays an important role in 4D-Var. This is illustrated in Fig. 4 which shows
the SSH increments produced from two 4D-Var single T observation experiments per-
formed without and with the balance operator activated (Figs. 4(a) and (b), respectively).
The geographical location of the single T observation is the same as in the example in
Fig. 2. In these experiments, the control variables are a function of the model initial con-
ditions which are taken to be ten days before the observation time. For the experiment
without the balance operator, the background-error covariances must be specified for
the full fields at initial time. The correlation models for S and velocity are taken to be
identical to those used by Weaver et al. (2003) for a rigid-lid version of OPA, while the
correlation model for SSH is taken to be identical to the horizontal correlation model
for T and S. The variances are set to values typical of the climatological variability of
these fields: (0.08 m)2 for SSH, and surface values of (0.25 psu)2 for S, (0.4 m s−1)2

for u, and (0.1 m s−1)2 for v. The variances for S, u and v are gradually reduced below
the surface. For the experiment with the balance operator, the unbalanced variances are
set to zero as in the previous example, while the variances of the balanced components
are defined implicitly via interactions between the balance operator and univariate T
covariances.

The increments shown in Figs. 4(a) and (b) are those produced at the observation
time (day 10) and have been computed by using the tangent-linear model to propagate
forward the analysis increment at initial time. The SSH increment in the first 4D-Var
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experiment has localized structure similar to that obtained by 3D-Var with the balance
operator (cf. Figs. 4(a) and 2(e)). In terms of the analysis of SSH, nothing much appears
to have been gained by using 4D-Var. When the balance operator is included, however,
the temperature observation projects much more effectively onto large-scale equatorial
wave-modes as clearly illustrated in Fig. 4(b) by the presence of a westward-propagating
baroclinic Rossby wave to the west of the observation location. Contrary to the 4D-Var
experiment without the balance operator, the observation is able to have a much wider
impact than in 3D-Var.

5. SUMMARY AND CONCLUSIONS

The background-error covariances are often cited as a critical component of a statis-
tical data assimilation system. An arguably more fundamental component is the operator
that is needed to compute the model counterpart of the assimilated observations. In this
paper, it was shown how linear balance and smoothness constraints, that are traditionally
used to model multivariate covariances of background error, could be cast within the
more general, nonlinear, framework of an observation operator. The key aspect of this
procedure is the design of a transformation, possibly nonlinear, from the space of highly
correlated model state variables to a space of non-dimensional control variables that
are approximately mutually uncorrelated. In the space of the transformed variables, the
background-error covariance matrix is assumed to be the identity matrix. The inverse
of the transformation, or its generalized inverse if the dimension of the control space is
smaller than that of model space, is also needed so not all transformations are suitable.

This paper outlined a control variable transformation for application to variational
ocean data assimilation. The focus was on the balance operator, the inverse of which
is designed to decorrelate the model state variables of temperature, salinity, SSH and
velocity. In the proposed formulation, the inverse of the sequence of balance relation-
ships left temperature unaltered but removed parts from salinity that could be related
to temperature, parts from SSH that could be related to temperature and salinity, and
parts from velocity that could be related to temperature, salinity and SSH. Both linear
constraints (geostrophy, hydrostatic, dynamic height) and nonlinear constraints (T –S
relationship, equation of state) were employed. In incremental variational assimilation,
nonlinear constraints are linearized about a reference state as part of the minimization
process. Furthermore, by linearizing the control variable transformation within the def-
inition of the reference state itself, the minimization problem can be solved without the
need to perform either the nonlinear transformation or its inverse. This is a convenient
approximation but may break down when the increments are large. Further research is
needed to quantify the impact of this approximation for the nonlinear balance operator
proposed here.

Evidence that the proposed ocean balance operator can explain a substantial amount
of actual background-error variance was provided by considering the statistical bal-
ance properties of a large set of differences between model forecasts verifying at the
same time. Single-observation experiments were performed to illustrate the multivariate
analysis structures implied by the balance operator. One example illustrated how the
balance operator could be used as an effective way to project SSH (altimeter) data onto
the subsurface density field in 3D-Var. Another example illustrated the potential bene-
fits of the balance operator for equatorial analysis with 4D-Var. To obtain full benefit
from the balance formulation in realistic implementations will require careful specifica-
tion of the error covariance statistics of the transformed (uncorrelated) state variables.
Ensemble methods could be very promising for this purpose.
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APPENDIX

Matrix representation of the background-error covariance model
In this appendix, an explicit form of the background-error covariance matrix is

derived to illustrate how, on a given outer iteration of the incremental variational
algorithm (10), the components of the balance operator combine with the univariate
blocks of the covariance matrix of the uncorrelated variables to produce a full-rank
multivariate covariance matrix for the model variables. For clarity of notation, the
superscript k − 1 on linearized operators will be omitted. From (10), the background-
error covariance matrix of the model state x is related to the background-error covariance
matrix of the uncorrelated state variables x̂ by

B(x) = KB(̂x)KT, (A.1)

where B(̂x) = D(̂x)FFTDT
(̂x)

is a block matrix of the form

B(̂x) =

⎛

⎜⎜⎜⎜⎜⎝

BT T 0 0 0 0
0 BSUSU 0 0 0
0 0 BηUηU 0 0

0 0 0 BuUuU BT
vUuU

0 0 0 BvUuU BvUvU

⎞

⎟⎟⎟⎟⎟⎠
, (A.2)

with Bx̂x̂ = Dx̂Fx̂x̂FT
x̂x̂DT

x̂ , x̂ = T , SU, ηU and uh
U. The four-block submatrix in the lower

corner of (A.2) corresponds to Buh
Uuh

U
. A non-zero cross-covariance between uU and

vU arises since the smoothing operator Fuh
Uuh

U
employed involves a vector Laplacian

operator which smooths separately horizontal divergence and relative vorticity (Weaver
et al. 2003).

The balance operator is a lower diagonal matrix of the form

K =

⎛

⎜⎜⎜⎜⎜⎝

I 0 0 0 0
KST I 0 0 0
KηT KηS I 0 0
KuT KuS Kuη I 0
KvT KvS Kvη 0 I

⎞

⎟⎟⎟⎟⎟⎠
, (A.3)

where, from (15) and (16),

KηT = Kηρ KρT ,

KuT = Kup Kpρ KρT ,

KvT = Kvp Kpρ KρT ,

KηS = Kηρ KρS,

KuS = Kup Kpρ KρS,
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KvS = Kvp Kpρ KρS,

Kuη = Kup Kpη,

Kvη = Kvp Kpη.

Substituting (A.2) and (A.3) in (A.1) and carrying out the matrix multiplication gives

B(x) =

⎛

⎜⎜⎜⎜⎜⎝

BT T BT
ST BT

ηT BT
uT BT

vT

BST BSS BT
ηS BT

uS BT
vS

BηT BηS Bηη BT
uη BT

vη

BuT BuS Buη Buu BT
vu

BvT BvS Bvη Bvu Bvv

⎞

⎟⎟⎟⎟⎟⎠
, (A.4)

where

BST = KST BT T ,

BηT = KηT BT T ,

BuT = KuT BT T ,

BvT = KvT BT T ,

BSS = KST BT T KT
ST + BSUSU,

BηS = KηT BT T KT
ST + KηSBSUSU,

BuS = KuT BT T KT
ST + KuSBSUSU,

BvS = KvT BT T KT
ST + KvSBSUSU,

Bηη = KηT BT T KT
ηT + KηSBSUSUKT

ηS + BηUηU,

Buη = KuT BT T KT
ηT + KuSBSUSUKT

ηS + KuηBηUηU,

Bvη = KvT BT T KT
ηT + KvSBSUSUKT

ηS + KvηBηUηU,

Buu = KuT BT T KT
uT + KuSBSUSUKT

uS + KuηBηUηUKT
uη + BuUuU,

Bvu = KvT BT T KT
uT + KvSBSUSUKT

uS + KvηBηUηUKT
uη + BvUuU,

Bvv = KvT BT T KT
vT + KvSBSUSUKT

vS + KvηBηUηUKT
vη + BvUvU.

To interpret the results of the single-observation experiments in section 4, it is
helpful to illustrate how the algebraic structure of (A.4) determines the expression for
the increment δxk on each outer iteration. Consider the exact minimizing solution of (4),
which is found by setting the gradient of (4) to zero and solving for δvk (e.g. see
Daley 1991):

δvk = GT(GGT + R)−1do,k. (A.5)

For a single observation, do,k = do,k, R = (σ o)2 and GGT = (σ k)2 are scalars, where
the latter two quantities correspond to, respectively, the observation-error variance and
the effective background-error variance for the observation on the kth outer iteration.
If the observation is situated at the end of the assimilation window (t = tn) then
G = HnM(tn, t0)U where Hn = hT is the observation operator, which for a single
observation is a vector of the same length as δx, and M(tn, t0) is the linearized forward
propagator which is the identity matrix in 3D-Var and the tangent-linear operator in
4D-Var. Substituting these expressions into (A.5) and transforming the increment into



MULTIVARIATE BALANCE FOR VARIATIONAL OCEAN ASSIMILATION 3623

model space gives

δxk = Uδvk = cB(x)M(tn, t0)
Th, (A.6)

where c = do,k{(σ k)2 + (σ o)2}−1 and, from (10), B(x) = UUT. From (A.6) it is clear
that δxk will be proportional to the columns of the matrix B(x) M(tn, t0)

T, or simply
the columns of B(x) in the case of 3D-Var. For example, for a temperature observation,
h = (eT, 0, 0, 0, 0)T, where e is a vector corresponding to the temperature components
of δxk, and the other elements of h are zero vectors corresponding to the other variable
components. (If the temperature observation is located exactly at a model grid point
then e = (0, . . . , 0, 1, 0, . . . , 0)T where the non-zero entry is associated with that grid-
point.) In this case, it is easy to see that the 3D-Var increment will be proportional to
the first block-column of B(x), in particular dependent on BT T and the forward balance
operators only. Likewise, the 3D-Var increment will be proportional to the second block-
column of B(x) for a salinity observation, proportional to the third block-column of
B(x) for a SSH observation, and proportional to the third plus fourth block-columns of
B(x) for a vector velocity observation. Notice that in 4D-Var, regardless of what type
of observation is assimilated, δxk will be a non-trivial linear combination of all block-
columns of B(x) since the action of the adjoint operator M(tn, t0)

T will result in a transfer
of information from the observed quantity to all model variables.
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ABSTRACT: This paper studies the sensitivity of global ocean analyses to two flow-dependent formulations of the
background-error standard deviations (σ b) for temperature and salinity in a three-dimensional variational data assimilation
(3D-Var) system. The first formulation is based on an empirical parameterization of σ b in terms of the vertical gradients
of the background temperature and salinity fields, while the second formulation involves a more sophisticated approach
that derives σ b from the spread of an ensemble of background states. The ensembles are created by explicitly perturbing
both the surface fluxes (wind stress, fresh water and heat) used to force the model and the observations (temperature and
salinity profiles) used in the assimilation process. The two formulations are compared in two cycled 3D-Var experiments for
the period 1993–2000. In both experiments, the observation-error standard deviations (σ o) are geographically dependent
and estimated from a model-data comparison prior to assimilation. An additional 3D-Var experiment that employs the
parametrized σ b but a simpler σ o formulation, and a control experiment involving no data assimilation, were also conducted
and used for comparison.

All 3D-Var experiments produce a significant reduction in the mean and standard deviation of the temperature and
salinity innovations compared to those of the control experiment. The largest differences between the two σ b formulations
occur in the upper 150 m, where the parametrized σ b are notably larger than the ensemble σ b. In this region, the innovation
statistics are slightly better for the parametrized σ b. Statistical consistency checks indicate that both schemes underestimate
σ b, the underestimation being stronger with the ensemble formulation. The error growth between cycles, however, is much
reduced with the ensemble σ b, suggesting that the analyses produced with the ensemble σ b are in better balance than those
produced with the parametrized σ b. This claim is supported by independent data comparisons involving model fields not
directly constrained by the assimilated temperature and salinity profiles. In particular, sea-surface height (SSH) anomalies
in the northwest Atlantic and zonal velocities in the equatorial Pacific are clearly better with the ensemble σ b than with the
parametrized σ b. Results also show that while some aspects of those variables are improved with data assimilation (SSH
anomalies and currents in the central and eastern Pacific), other aspects are degraded (SSH anomalies in the northwest
Atlantic, currents in the western Pacific). Areas for improving the ensemble method and for making better use of the
ensemble information are discussed. Copyright c© 2009 Royal Meteorological Society
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1. Introduction

An important feature of an ensemble data assimila-
tion system is its capacity to provide flow-dependent
information on analysis and background error. This
information can be exploited in a cycled assimilation
system to improve the estimate of the background-error
covariance matrix on each cycle. The simplest way
to use the ensemble information is to build a low-
rank approximation to the background-error covariance
matrix on a given cycle from the sample covariance
of the ensemble of model forecast states initiated from
the previous cycle. The matrix is rank deficient since

∗Correspondence to: A. T. Weaver, CERFACS, 42 avenue Gaspard
Coriolis, 31057 Toulouse Cedex 01, France.
E-mail: Anthony.Weaver@cerfacs.fr

the number of ensemble members is typically several
orders of magnitude smaller than the number of back-
ground state variables. In the Ensemble Kalman Filter
(EnKF), this rank deficiency can be exploited to pro-
duce computationally efficient implementations of the
standard Kalman filter analysis equation. (Houtekamer
and Mitchell (2005) and Evensen (2007) provide reviews
of the different variants of the EnKF.) However, using
a small ensemble to estimate the covariance matrix
directly in a high-dimensional system can lead to noisy
variances and spurious long-range correlations due to
sampling error. Various filtering and localization proce-
dures have been proposed to alleviate this problem in
practical implementations of the EnKF (Houtekammer
and Mitchell, 2001; Keppenne and Reinecker, 2002; Ott
et al., 2004; Buehner and Charron, 2007; Oke et al.,
2007).

Copyright c© 2009 Royal Meteorological Society
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Lorenc (2003b) and Buehner (2005) illustrate how an
ensemble-estimated background-error covariance matrix,
with or without localization, can be used in a varia-
tional assimilation scheme. The procedure involves using
the square root of the (localized) ensemble covariance
matrix to transform the control vector into a vector of
background-state increments. The basic transformation is
designed to precondition the minimization problem and is
standard in variational assimilation systems that employ
more conventional background-error covariance formula-
tions based on covariance models (Derber and Bouttier,
1999; Lorenc, 2003a; Weaver et al., 2005). Methods to
define the background-error covariance matrix as a lin-
ear combination of an ensemble-estimated matrix and a
covariance model matrix have also been proposed (Hamill
and Synder, 2000; Lorenc, 2003b; Buehner, 2005).

Rather than using the ensemble directly to construct
an estimate of the covariance matrix, it may be used
indirectly to calibrate specific parameters of a covariance
model (Fisher, 2003; Žagar et al., 2005; Belo Pereira and
Berre, 2006; Berre et al., 2006; Küçükkaraca and Fisher,
2006). The use of a covariance model has the advan-
tage of providing a full-rank (implicit) representation of
the covariance matrix and thus allows the assimilation
method to produce corrections to the background state in
a much larger space than that spanned by a limited num-
ber of ensemble members. There is also no need for a
separate localization procedure since covariance models
are constructed to permit only spatially limited covariance
functions. The use of ensembles in combination with a
variational assimilation scheme is relatively unexplored in
ocean data assimilation. The main purpose of this study
is to investigate the potential of an ensemble of ocean
analyses to provide useful flow-dependent estimates of
the background-error variances in a three-dimensional
variational assimilation (3D-Var) system. This study can
be viewed as a first step towards making more com-
prehensive use of an ensemble for calibrating additional
parameters of the covariance model.

The paper is organized as follows. Section 2 gives
a description of the ocean data assimilation system.
The sensitivity experiments presented in this paper
involve different formulations of both the observation-
error variances and background-error variances. These
formulations, including the background-error variance
formulation based on the ensemble method, are described
in section 3. Results from cycled 3D-Var experiments that
compare the relative impact of the different variance for-
mulations are presented in section 4. A summary and
conclusions are given in section 5. Appendix A provides
a derivation of the formula used to estimate geographi-
cally dependent observation-error variances. Appendix B
presents the mathematical basis of the ensemble method
used for estimating background-error covariances.

2. The assimilation system

A variational data assimilation system has been devel-
oped at CERFACS for climate research applications. The

system, known as OPAVAR, is based on an incremental
variational algorithm (Courtier et al., 1994) and ver-
sion 8.2 of the Océan Parallélisé (OPA) ocean general
circulation model (Madec et al., 1998). Three- and four-
dimensional variational assimilation (3D-Var and 4D-Var)
versions of the system were initially developed for tropi-
cal Pacific basin applications (Weaver et al., 2003; Vialard
et al., 2003; Vossepoel et al., 2004; Ricci et al., 2005).
The system was later extended to a global configura-
tion in the European project ENACT (Enhanced Ocean
Data Assimilation and Climate Prediction; http://www.
ecmwf.int/research/EU projects/ENACT), where it was
applied to produce multi-decadal ocean analyses for sea-
sonal hindcast initialization and studies of ocean climate
variability (Davey et al., 2006; Carton and Santorelli,
2008). Important advances were made to the system
during ENACT, one of the most noteworthy being the
development of a fully multivariate background-error
covariance model based on balance operators (Weaver
et al., 2005). More recently the system has been extended
in the European project ENSEMBLES (Ensemble-based
Predictions of Climate Changes and their Impacts; http://
www.ecmwf.int/research/EU projects/ENSEMBLES) to
generate a nine-member ensemble of multi-decadal ocean
analyses. The ensemble was produced using multiple
atmospheric forcing fields whose differences were con-
structed to be consistent with estimates of the actual
uncertainty in these fields. In ENSEMBLES, the ocean
analysis ensemble has been used to contribute to the pro-
duction of probabilistic forecasts on seasonal to decadal
time-scales (Weisheimer et al., 2007). The ensemble 3D-
Var system used in this study is based on the system
developed for ENSEMBLES. The basic components of
the system are described in the remainder of this section.

2.1. Ocean model and forcing fields

The ocean model is a global, free-surface configuration
of the ocean general circulation model OPA8.2 (Madec
et al., 1998). The model solves the primitive equations for
horizontal currents, uh = (u, v), potential temperature, T ,
salinity, S, and sea-surface height (SSH), η. The free-
surface formulation is described in Roullet and Madec
(2000). The equations are formulated in orthogonal
curvilinear z-coordinates and discretized using finite
differences on an Arakawa C-grid. The horizontal grid
is stretched in the Northern Hemisphere and contains
two poles located on the North American and Asian
continents. Outside the equatorial region, the grid mesh
is approximately isotropic (Mercator-like) with zonal ×
meridional resolution approximately 2◦ × 2◦ cos φ, where
φ is latitude. Within the equatorial region, the meridional
resolution is increased, with the grid size reaching a
value of 0.5◦ at the Equator. Increased resolution is also
used in the Mediterranean Sea (1◦ × 1◦) and Red Sea
(≈ 1◦ × 2◦). The number of horizontal grid points is
182 × 149. The model has 31 levels of which 21 are
in the upper 1000 m. The thickness of the levels varies
from 10 m within the upper 100 m to 500 m below the
3000 m level. The maximum depth is 5500 m.

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1071–1094 (2009)
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Lateral and vertical subgrid-scale mixing is para-
metrized using Laplacian diffusion. Vertical diffusion
coefficients for momentum, heat, and salt are computed
using a Turbulent Kinetic Energy mixing scheme. Lat-
eral mixing coefficients of momentum, heat and salt
are geographically dependent. For heat and salt, the lat-
eral diffusion acts along neutral surfaces and includes
an additional tracer advection term following Gent and
McWilliams (1990). The model is forced using wind-
stress, τ = (τ x, τ y), heat flux, Q, and fresh-water (pre-
cipitation minus evaporation) flux, PmE, from ERA-40
(Uppala et al., 2005). The fresh-water flux from ERA-40
is known to be inaccurate. Here the model is forced using
bias-corrected ERA-40 precipitation from Troccoli and
Kållberg (2004).

The ensemble experiments are performed over the
9-year period 1 January 1993 to 31 December 2001.
The experiments are designed to test the impact of using
the ensemble to update the background-error variances
on each assimilation cycle. A separate set of ensemble
experiments covering the 46-year period 1960–2005 has
also been conducted as part of the ENSEMBLES project.
The assimilation system used in those experiments is a
close variant of the system used here, the main difference
being that there was no attempt to use the ensemble to
update the background-error covariance matrix as done
in this study. The ENSEMBLES experiments also used a
more recent version (EN3) of the quality-controlled in situ
dataset described in section 2.2 and these data were not
perturbed as in this study (section 3.2). In ENSEMBLES,
the ocean analysis ensemble was used to provide initial
conditions for seasonal and decadal ensemble forecasts.
Results from the assimilation experiments conducted
in ENSEMBLES will not be discussed in this paper,
although results from a separate experiment that employs
a system similar to the one used in ENSEMBLES will
be used as a reference for evaluating the impact of the
ensemble-generated background-error variances.

The experimental design follows closely the com-
mon procedures used in ENSEMBLES and in the earlier
project ENACT (Davey et al. 2006). The initial condi-
tions on 1 January 1993 were obtained by spinning up
the model from rest and temperature and salinity states
defined from the Levitus climatology (Levitus et al.,
1998). Climatological ERA-40 forcing was used from 1
January 1978 to 31 December 1982, and daily ERA-40
forcing was used from 1 January 1983 to 31 December
1992. The model sea-surface temperature (SST) field is
relaxed to model-gridded SST analysis products. During
the spin-up from 1 January 1978 to 31 December 1982,
the SST climatology from ERA-40 was used, while daily-
interpolated SST analyses from Reynolds OIv2 (Reynolds
et al., 2002) were used from 1 January 1983 onwards.
As in ENACT and ENSEMBLES, a globally uniform
relaxation coefficient of −200 W m−2K−1 is used, which
corresponds to a relaxation time-scale of 12 days for a
mixed-layer depth of 50 m. With this choice, the model
SST is always close to the ‘observed’ SST. This is an
important requirement for seasonal and decadal forecast

initialization for which the system has been applied in
ENSEMBLES.

Subsurface relaxation to climatology has been applied
to control model drift but has been chosen to be rather
weak so as not to suppress interannual and decadal
variability. A weak global subsurface relaxation to model-
gridded temperature and salinity monthly climatology,
smoothed with a 3-month running mean, is applied with
a 3-year time-scale at all vertical levels (Davey et al.,
2006). Within 1000 km of coastlines, the relaxation
coefficient is reduced smoothly to zero directly at the
coast since the smooth density gradients from the Levitus
climatology are not dynamically consistent with the steep
topographic gradients in the model. Poleward of 60◦N/S,
where the model is less reliable because of the absence
of an active sea-ice model, the relaxation time-scale is
reduced smoothly from 3 years to 50 days at 70◦N/S and
beyond.

The subsurface relaxation provides a weak relaxation
to temperature and salinity climatology in the top ocean
model level. For temperature, the relaxation is dominated
by the much stronger relaxation to SST described above.
For sea-surface salinity, no relaxation is applied other
than the weak contribution at the surface from the
relaxation to climatology. Imbalances in the fresh-water
fluxes cause the globally averaged model SSH field to
drift (≈ 0.7 m in 15 years). Here the drift has been
suppressed by applying a daily correction to the fresh-
water fluxes based on the sea-level drift that occurs on
the previous day. As a result, the global mean SSH field
is very close to zero on any given time step.

2.2. Observations

The assimilation dataset consists of in situ temper-
ature and salinity profiles from version EN2 v1 of
the ENACT/ENSEMBLES quality-controlled dataset
(Ingleby and Huddleston, 2007). The data are obtained
primarily from the World Ocean Database 2001 (WOD01;
Conkright et al., 2002). After 1990, they are supple-
mented with data from the World Marine Environmen-
tal Laboratory (Johnson et al., 2002) and the Global
Temperature–Salinity Profile Program. The dataset is
essentially composed of bathythermographs (MBTs and
XBTs), hydrographic profiles (conductivity–temperature–
depth (CTD) and predecessors), moored buoys from the
Tropical Atmosphere–Ocean/Triangle Trans-Ocean Buoy
Network (TAO/TRITON) and Prediction and Research
Moored Array in the Atlantic (PIRATA) arrays, profil-
ing floats and Argo data. Observations determined by the
quality control as ‘definitely wrong’ or ‘probably wrong’
were not assimilated. Additional screening has been done
directly in the assimilation system. Observations have
been rejected in closed seas, in some semi-enclosed
seas (Mediterranean, Red, Baltic and Japan Seas), below
1000 m and poleward of 65◦N/S. The reason for reject-
ing the data in those regions was based on the inadequacy
of the model or assimilation system to use the observa-
tional information effectively, rather than on the actual
quality of the observations. Vertical thinning of profiles
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was performed to restrict the number of individual mea-
surements between two model levels to a maximum of
five. The model background state was not used in any of
the quality control decisions, so that all observations were
assimilated regardless of their difference from their back-
ground counterpart. This was done to ensure that exactly
the same observations were assimilated in each of the
sensitivity experiments.

2.3. Data assimilation method

The data assimilation method is a variant of the multivari-
ate incremental 3D-Var FGAT (First-Guess at Appropriate
Time) method described in Weaver et al. (2003, 2005) and
Ricci et al. (2005). A short description is given below to
highlight those features of the method that are important
in this study.

Let w = (T , S)T denote the model vector of temper-
ature and salinity, both T and S being understood to
be row-vectors defined on the three-dimensional (3D)
model grid. The superscript T denotes transpose. Let
wb = (T b, Sb)T be a background estimate of w, and
let δw = (δT , δS)T be an increment defined such that
w = wb + δw. Given profile observations of temperature
(T o

i ) and salinity (So
i ) distributed over a time window

t0 ≤ ti ≤ tN , 3D-Var FGAT produces an increment δwa

by approximately minimizing the quadratic cost function

J [δw] = 1

2
δwT B−1

(w) δw

+ 1

2
(Hδw − d)TR−1(Hδw − d), (1)

where

d =


d0
...

di

...

dN

 =


yo

0 − H0wb(t0)
...

yo
i − Hiwb(ti )

...

yo
N − HN wb(tN )

 , (2)

yo
i = (T o

i , So
i )

T being the observation vector at measure-
ment time ti , and Hiwb(ti ) the background counterpart of
the observation vector at ti . The background state at ti ,
wb(ti ) = (T b

i , Sb
i )

T, is a subset of the complete model
background state vector, xb(ti ) = (T b

i , Sb
i , η

b
i , u

b
i , v

b
i )

T,
that is obtained by integrating the model from t0 to ti
from the background initial condition xb(t0) available at
the start of the window. The model integration can be
represented as

xb(ti) = M(ti, ti−1)[xb(ti−1), fi] , (3)

where M(ti, ti−1) denotes the nonlinear model opera-
tor between ti−1 and ti , and fi = (τ x

i , τ
y

i , Qi, PmEi)
T

denotes the vector of external atmospheric surface fluxes
used to force the ocean model on the interval ti−1 to
ti . These surface fluxes have been made explicit in Equa-
tion (3) in order to clarify the description of the ensemble
method given in section 3 and Appendix B.

The observation operators Hi in Equation (2) are
3D interpolation operators at each measurement time
ti and are formulated as the product of a horizontal
(Hh

i ) and vertical (Hz
i ) interpolation operator. Here, Hz

i

is a cubic spline and Hh
i is a bilinear interpolation

operator, specially adapted to irregular grids (such as the
global OPA grid) following the remapping technique of
Jones (1998). For TAO/TRITON temperature data, which
are daily averaged in the EN2v1 database, the observation
operator also includes a daily averaging of the model
temperature field. The observation matrix in Equation (1)
is given by

H =


H0
...

Hi

...

HN

 . (4)

Note that the Hi operators in Equation (4) act on the same
increment δw in Equation (1), whereas in Equation (2)
they act on the different background states wb(ti ) in
the computation of the innovation vectors di = yo

i −
Hiwb(ti) in Equation (2).

The matrices B(w) and R contain estimates of the
background- and observation-error covariances, respec-
tively. Observation errors are assumed to be mutually
uncorrelated so that R = D(y) = D1/2

(y) D1/2
(y) where D1/2

(y) =
diag{σ o

T , σ o
S }, σ o

T and σ o
S denoting row-vectors that con-

tain estimates of the standard deviations of temperature
and salinity observation error. The specification of the
observation-error standard deviations is described in sec-
tion 3. Background errors are assumed to be correlated.
The covariance matrix is described by the symmetric
product of operators

B(w) = K(w) D1/2
(ŵ) F(ŵ)FT

(ŵ) D1/2
(ŵ)K

T
(w) (5)

= U(w) UT
(w) , (6)

where

F(ŵ) =
(

FT T 0
0 FSU SU

)
, (7)

D1/2
(ŵ) =

(
D1/2

T 0
0 D1/2

SU

)
, (8)

K(w) =
(

I 0
KST I

)
, (9)

and

U(w) = K(w) D1/2
(ŵ) F(ŵ). (10)

The matrix product B(ŵ) = D1/2
(ŵ) F(ŵ) FT

(ŵ) D1/2
(ŵ) in Equa-

tion (5) is block diagonal (univariate) and can be inter-
preted as a background-error covariance matrix for the
vector ŵb = (T b, Sb

U)T where Sb
U is an ‘unbalanced’

background salinity variable that is constructed to be

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1071–1094 (2009)
DOI: 10.1002/qj



ENSEMBLE 3D-VAR FOR THE GLOBAL OCEAN 1075

approximately uncorrelated with T b (Weaver et al., 2005).
The transformation of background errors from ŵ-space
to w-space is achieved using the linear balance opera-
tor K(w). Here, K(w) is formulated so that it leaves T b

errors unchanged but estimates Sb errors as the sum of
balanced (Sb

B) and unbalanced (Sb
U) errors where the bal-

anced component is computed directly from T b errors
using the operator KST . Following Ricci et al. (2005),
KST has been parametrized in terms of the vertical gra-
dients of T b and Sb so that local salinity changes can
be produced in response to local temperature changes to
allow approximate preservation of the background water-
mass properties. The degree to which the water-mass
properties are preserved is controlled by the background-
error standard deviation matrices D1/2

T = diag{σ b
T } and

D1/2
SU

= diag{σ b
SU

} where σ b
T and σ b

SU
are row-vectors con-

taining estimates of the standard deviations of tempera-
ture and unbalanced salinity background errors. The main
purpose of this study is to explore the potential of an
ensemble 3D-Var to provide flow-dependent estimates of
these standard deviations.

The block matrices FT T and FSUSU are 3D univariate
smoothing operators, each constructed as the product of
a 1D and 2D anisotropic diffusion operator (Weaver and
Courtier, 2001). The product of F(ŵ) with its adjoint FT

(ŵ)

is, with appropriate normalization, a 3D correlation oper-
ator. The correlation functions implied by the diffusion
model are approximately Gaussian. The parameters of the
3D diffusion model are the same as those used for the uni-
variate T correlations in Weaver et al. (2003), except for
the vertical correlation scales which have been slightly
reduced here (they are proportional to the local vertical
grid depths). Identical correlation parameters are used for
T and SU. The ensemble 3D-Var could also be used to
estimate parameters of the diffusion model although this
interesting possibility goes beyond the scope of the cur-
rent study.

The cost function J is minimized iteratively using a
conjugate gradient algorithm (Fisher, 1998; Tshimanga
et al., 2008). To improve the convergence properties of
the minimization, a preconditioning transformation δv =
U−1

(w)δw, where U−1
(w) = F−1

(ŵ) D−1/2
(ŵ) K−1

(w), is employed in
Equation (1) resulting in the modified cost function

J [δv] = 1

2
δvT δv

+1

2
(H U(w) δv−d)TR−1(H U(w) δv−d). (11)

Forty iterations are performed on each assimilation cycle,
which typically results in a reduction of nine orders
of magnitude in the Euclidean norm of the gradient
relative to its initial value. If δva denotes the minimizing
solution of Equation (11) then the minimizing solution
of Equation (1) is determined from δwa = U(w) δva . To
produce balanced increments for the other model state
variables η, u and v, a more general variable transform
is applied to the solution δva:

δxa = K(x) D1/2
(ŵ) F(ŵ) δva , (12)

where δxa = (δT a, δSa, δηa, δua, δva)T is the analysis
increment for the complete model state vector, and

K(x) =


I 0

KST I
KηT KηS

KuT KuS

KvT KvS

 (13)

is the full balance operator. The matrix

B = U UT, (14)

where

U = K(x) D1/2
(ŵ) F(ŵ), (15)

can be interpreted as a reduced-rank error covariance
matrix for the complete background state xb. The opera-
tors KηT and KηS in Equation (13) compute a balanced
SSH increment, δηa, by integrating a density increment
from a reference depth (1500 m) to the surface, where the
density increment is computed from δT a and δSa using
a linearized equation of state. The operators KuT , KuS ,
KvT and KvS compute balanced horizontal velocity incre-
ments, δua and δva, from the geostrophic relation. Near
the Equator, δva is reduced to zero while δua is balanced
geostrophically using a β-plane approximation (Lagerloef
et al., 1999). A detailed description of the multivariate
balance operator can be found in Weaver et al. (2005).

The increment δw and background-error covariance
matrix B(w) are formally defined with respect to wb. In
3D-Var, wb can be chosen from any background state
wb(ti ) within the window. It is usually taken in the middle
of the window to minimize the effects of the approxima-
tions in 3D-Var. This is particularly important in non-
FGAT formulations where this static background state is
used to compare directly with observations occurring at
different times (i.e. using wb instead of wb(ti) in Equa-
tion (2)). Here, following Weaver et al. (2003) and Ricci
et al. (2005), we take, as in 4D-Var, wb to be the back-
ground state at the start of the window (wb ≡ wb(t0)).
This choice was made mainly for simplifying the techni-
cal implementation of 3D-Var in our system, which also
supports 4D-Var. It also provides a useful interpretation of
3D-Var as a limiting case of incremental 4D-Var in which
the tangent-linear operator that propagates the increment
in 4D-Var is replaced by the identity operator in 3D-
Var. The background state wb is used here in two places:
first, to define the linearization state in the T -S balance
(KST ); and second, in the parametrized formulation of
the background-error variances with respect to which the
ensemble-generated variances will be compared.

The technique of Incremental Analysis Updates (IAU;
Bloom et al. 1996) is used to introduce the analysis
increment gradually into the ocean model in order to
minimize spurious adjustment processes. In this study,
IAU is applied over the entire window; i.e. given δxa,
the model integration from t0 to tN is repeated using a
prognostic equation of the form

xa(ti) = M(ti, ti−1)[xa(ti−1), fi] + Fiδxa , (16)

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1071–1094 (2009)
DOI: 10.1002/qj



1076 N. DAGET ET AL.

where xa(t0) = xb(t0), and Fi is a weighting function
defined such that

∑N
i=1 Fi = 1. The weighting function

has been formulated to give maximum weight in the cen-
tre of the window, with the weighting reduced linearly
to a small value at the window end-points. Such weight-
ing provides a smooth transition of the analysis trajectory
from one assimilation cycle to the next. An assimilation
window of tN = 10 days has been used for the experi-
ments in this study. Note that, in the ensemble system,
the entire 3D-Var cycle (the integration of Equations (3)
and (16) and the computation of the analysis increment
via Equation (12)) must be performed separately for each
ensemble member l, as described in the next section.

3. Specification of the observation- and background-
error variances

3.1. Observation-error variance matrix: D(y)

Two formulations of the observation-error variance
matrix have been tested in this study. The first formula-
tion, denoted D(1)

(y), is based on a simple analytical function
that depends, except near coastlines, on depth only. The
function has been constructed to provide an approximate
fit to the vertical profiles of globally averaged temper-
ature and salinity observation-error standard deviations
(σ o) estimated by Ingleby and Huddleston (2007) (their
Table 3). For temperature, σ o is a maximum at 75 m
depth where it has a value of 1 ◦C compared to 0.75 ◦C
at the surface and its minimum value of 0.07 ◦C in the
deep ocean. For salinity, σ o decreases exponentially with
depth from 0.18 psu at the surface to a minimum value
of 0.02 psu in the deep ocean. Near coastlines, where
our coarse resolution model is a poor representation of
the real ocean, the σ o profiles have been inflated. The
inflation factor has been set to a value of two directly at
the coastline and decreases smoothly to a value of one
beyond 300 km of the coastline.

The second formulation, denoted D(2)

(y), employs geo-
graphically dependent temperature and salinity σ o that
have been estimated using a statistical method originally
proposed by Fu et al. (1993). The method has been widely
used in ocean data assimilation (Fukumori, 2000; Men-
emenlis and Chechelnitsky, 2000; Leeuwenburgh, 2007).
Given a vector wc = (T c, Sc)T of temperature and salin-
ity fields computed from a model integration without
data assimilation (the control run in this study), the Fu
et al. method estimates the observation-error variances
from the covariance between co-located observation and
observation-minus-control anomalies:

D(2)
(y) = diag

{
yo

i
′ (

yo
i
′ − Hiwc

i
′ )T

}
, (17)

where the overbar indicates an appropriate time and spa-
tial average, and the prime indicates anomaly with respect
to this average. Appendix A provides a derivation of
Equation (17) and a discussion of the various assumptions
involved.

The variance computation has been performed using all
in situ data between January 1962 and December 2002
contained in the ENSEMBLES data-set (section 2.2).
Estimates have been made at each model grid point
by averaging covariances within that model grid cell.
In some regions, such as the deep ocean and Southern
Hemisphere, the σ o are grossly underestimated due to the
sparseness of the data. To avoid this problem, the Ingleby
and Huddleston variances were imposed as minimum
values. The σ o were then smoothed in each level by
applying a local two grid-point Shapiro filter. Finally, the
model-gridded σ o were interpolated to the observation
locations using the observation operator, and inflated near
coastlines as in D(1)

(y). Both D(1)

(y) and D(2)

(y) provide estimates
of only the stationary component of σ o. No attempt was
made to estimate a time-varying component of σ o due to
the sparseness of the data.

The globally averaged profiles of σ o computed from
Equation (17) (not shown) have similar characteristics
to those of Ingleby and Huddleston (2007) although are
noticeably larger above 1500 m. For temperature, the
largest difference between the two estimates is 0.3 ◦C
and occurs near the maximum value of σ o at 75 m. For
salinity, the largest difference is 0.05 psu and occurs
at the surface. The geographical distribution of σ o is
illustrated in Figure 2 in Daget et al. (2008). The
largest σ o (up to 3 ◦C) occur in regions characterized
by strong internal variability. In particular, large values
are obtained in the thermocline in the tropical Pacific
and Atlantic Oceans, as well as in western boundary
current regions (in particular, the Gulf Stream, Kuroshio,
Agulhas and Malvinas Current regions) where there is
significant mesoscale activity that our coarse-resolution
model cannot resolve and thus where representativeness
error is large. This important feature is absent in D(1)

(y).

3.2. Background-error variance matrix: D(ŵ)

Two flow-dependent formulations of the background-
error variance matrix have been tested in this study.
The first formulation, denoted D(1)

(ŵ), is based on an
empirical parametrization, while the second formulation,
denoted D(2)

(ŵ), is derived from an ensemble method. The
formulations are described in detail in the remainder of
this section.

3.2.1. Parametrized error variance matrix: D(1)
(ŵ)

For temperature, the background-error standard-error
deviations (σ b) are parametrized in terms of the vertical
gradient of the background temperature field so that large
σ b are concentrated at the level of the thermocline where
thermal variability is greatest. Weaver et al. (2003) illus-
trate how this simple variance parametrization can capture
some of the dynamical effects implicit in 4D-Var. A sim-
ilar parametrization is used in the operational ocean data
assimilation systems at the National Centers for Envi-
ronmental Prediction (NCEP; Behringer et al., 1998) and
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ECMWF (Balmaseda et al., 2008). The parametrization
is described by the equation

σ b
T =

{
max

(̃
σ b

T , σ ml
T

)
in the mixed layer,

max
(̃
σ b

T , σ do
T

)
below the mixed layer,

(18)

where

σ̃ b
T = min

{∣∣∣∣(∂T

∂z

∣∣∣∣
T =T b

)
δz

∣∣∣∣ , σ max
T

}
, (19)

σ max
T being the maximum-allowed value of σ b

T , δz a
vertical scale, and σ ml

T and σ do
T lower bounds in the mixed

layer and deep ocean, respectively. In this study, as in
Weaver et al. (2005), σ max

T = 1.5 ◦C, δz = 10 m, σ ml
T =

0.5 ◦C, and σ do
T = 0.07 ◦C. Finally, the σ b

T were smoothed
in each model level using a diffusion (Gaussian) filter
with geographically dependent length-scales identical to
those specified in the horizontal correlation operator.

For unbalanced salinity, σ b is defined in a somewhat
ad hoc fashion according to the equation

σ b
SU

=
{

σ max
SU

if z ≥ zmax ,

σ max
SU

α(z) if z < zmax ,
(20)

where σ max
SU

= 0.25 psu, zmax is the depth of the maximum
of ∣∣∣∣( ∂S

∂T

∣∣∣∣
T =T b

)∣∣∣∣ ≡
∣∣∣∣(∂S

∂z

∣∣∣∣
S=Sb

)(
∂z

∂T

∣∣∣∣
T =T b

)∣∣∣∣ ,
and

α(z) = 0.1 + 0.45 × [
1 − tanh {2 ln (z/zmax)}

]
. (21)

The above parametrization thus defines the largest σ b
SU

between the surface and the level of maximum S(T )

gradients, and decreases σ b
SU

monotonically below this
level. The large values in the mixed layer are especially
important since there salinity is described primarily by its
unbalanced component (Ricci et al. 2005). The empirical
formulation of σ b will serve as a reference for evaluating
the ensemble-generated σ b described below.

3.2.2. Ensemble-estimated error variance matrix: D(2)

(ŵ)

The ensemble method employed in this study is sim-
ilar to that used in the meteorological variational data
assimilation studies of Fisher (2003), Žagar et al. (2005)
and Berre et al. (2006). Appendix B provides the math-
ematical basis of the method. In particular, it is shown
how perturbing the input parameters of a cycled analy-
sis/forecast system leads to linearized evolution equations
for the analysis and forecast state perturbations which are
identical to those for the true errors. Furthermore, assum-
ing that the perturbations to the input parameters are
random samples drawn from the probability distribution
of the true errors, then the evolved analysis and fore-
cast perturbations from the cycled ensemble will also be
random samples from the distribution of the true errors.
The covariance matrices estimated from a sample of

perturbed-minus-unperturbed analysis and forecast differ-
ences then provide accurate estimates of the true analysis-
and forecast-error covariance matrices. In practice, these
covariance matrices will only be approximate due to the
finite sample of the ensemble and due to inaccuracies
in the specification of the error covariance matrix of the
input parameters.

The method for cycling the ensemble analysis/forecast
system is summarized schematically in Figure 1. Assum-
ing that the errors in the different ensemble members are
uncorrelated then, as discussed in Appendix B (Equa-
tion (B.25)), D(ŵ) can be estimated from the difference
between background states wb

l (t0) of successive ensemble
members, l = 0, . . . , L − 1:

D(2)

(ŵ) = diag

{
1

2(L−1)

L−1∑
l=0

[
K−1

(w)

{
wb

l (t0) − wb
l+1(t0)

}]
×

[
K−1

(w)

{
wb

l (t0) − wb
l+1(t0)

}]T
}
, (22)

where

K−1
(w) =

(
I 0

−KST I

)
(23)

and wb
L(t0) = wb

0(t0). Equation (22) can be related
to Equation (B.25) by noting that wb

l (t0) = wb
l,c(t0) =

wa
l,c−1(tN ) where c is the cycle number. Equation (23)

is the inverse of the balance operator (Equation (9)) and
is needed in order to estimate σ b for ŵ as required by
the covariance model (Equation (5)).

Key to the design of the ensemble system is the
construction of the perturbations for the system input
parameters. In Appendix B, the ensemble method is
developed while considering a general set of input param-
eters consisting of the external surface forcing fields,
initial state, observations, and model-error source terms.
Ideally, the perturbations should be chosen to sample
the true statistical uncertainty in these parameters. The
true error statistics of the input parameters are unknown
and must be approximated in practice. In this study, the
perturbations ε̃f

l,i , l = 1, . . . , L − 1, to the surface fields
(wind-stress, heat flux, PmE) are defined from differences
between different analysis products (see below). The
perturbations ε̃o

l,i to the observations are drawn from a
Gaussian distribution with covariance matrix equal to the
diagonal R-matrix used in the assimilation system. The
background initial state perturbations ε̃b

l (t0) = ε̃b
l,c(t0)

are set to zero on the first cycle (c = 1). On subsequent
cycles, these perturbations are defined implicitly as the
difference between the perturbed and unperturbed back-
ground states (̃εb

l (t0) = xb
l,c(t0) − xb

0,c(t0)). Perturbations
associated with model error ε̃

q
l,i are neglected altogether

in this study.
The perturbations to the surface forcing fields have

been derived by ECMWF where they are used to
produce ensembles of initial conditions for operational
seasonal forecasting (Balmaseda et al., 2008). They have
also been used by various groups for ocean analysis
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Figure 1. Schematic illustration of the ensemble 3D-Var system. The ensemble of analysis states xa
l,c−1(tN), l = 0, . . . L − 1, at the end of cycle

c − 1 are used to initialize the background trajectories of each ensemble member on the next cycle c. The background trajectory of each member
l is produced by integrating the model with a perturbed set of forcing fields (wind stress, heat flux, PmE), fl,c,i = fc,i + ε̃f

l,c,i, from the initial

condition xb
l,c(t0) = xa

l,c−1(tN). Each background trajectory is compared with a set of perturbed observations yo
l,c,i = yo

c,i + ε̃o
l,c,i to produce an

innovation vector for each member l. A 3D-Var (FGAT) analysis is then performed for each ensemble member using the appropriate innovation
vector and a background-error variance matrix D(ŵ),c that has been estimated from the ensemble of background initial states xb

l,c(t0). Ensemble

member l = 0 is unperturbed: ε̃f
0,c,i = 0 and ε̃o

0,c,i = 0. The resulting analysis increment is then used to produce an analysis state trajectory as
described at the end of section 2.3.

production in the ENSEMBLES project. For wind
stress, the perturbations are computed from differences
between monthly mean anomalies from the ERA-40
and NCEP/National Center for Atmospheric Research
(NCAR) reanalysis products. Perturbations to the fresh-
water flux have been introduced in the precipitation
field only, and are computed from differences between
monthly mean anomalies of bias-corrected ERA-40 and
NCEP/NCAR precipitation fields. To define the forcing
perturbations for a given date and a given ensemble
member, the perturbations are chosen randomly among
the various difference fields that have the same calendar
month (a sample of 44). Finally, daily perturbations of
wind-stress and fresh-water flux are computed from the
monthly fields using linear interpolation.

Perturbations of SST are used as a proxy for pertur-
bations in heat flux, and are derived from differences
between daily anomalies from different Reynolds prod-
ucts (2D-VAR and OIv2). The SST perturbations for a
given date and ensemble member are constructed follow-
ing the same random selection procedure used for the
wind-stress and fresh-water flux perturbations. The pro-
cedure leads to a set of daily SST perturbations that, for a
given member, are uncorrelated from one day to the next.
To remove the temporal discontinuity, the daily SST per-
turbations have been smoothed in time using a two-pass
recursive filter which is equivalent to correlating the per-
turbations with a second-order auto-regressive function
(Purser et al., 2003). A filtering time-scale of 7 days was
used. The perturbations were then rescaled to ensure that
the globally averaged standard deviation was the same
before and after filtering.

Four sets of surface forcing field perturbations were
generated using the procedure above. Eight perturbed

forcing fields were then produced by adding and subtract-
ing the four forcing perturbations from the unperturbed
fields. A different set of randomly perturbed observations
was defined for each of the eight branches involving dif-
ferent forcing fields. The eight perturbed branches plus
the unperturbed branch give a 9-member ensemble. Vari-
ances computed from this small number of ensemble
members were too noisy to be used directly in the assim-
ilation system. In order to increase the sample size, a
sliding window was used to include the ensemble of back-
ground states from the previous 9 cycles (90 days) in the
computation of the variances for the current cycle. This
effectively increased the ensemble size to 81. Assuming
Gaussian statistics, the standard error in the estimated
standard deviation for an ensemble size L is 1/

√
2L (e.g.

Barlow (1989), p. 89). Thus, with L = 81, the error is 8%
compared to 24% with L = 9. A 17-member ensemble
with four perturbed observation branches for each per-
turbed forcing branch was also tested (with and without
a 9-cycle sliding window) but did not lead to notice-
able improvements over the 9-member ensemble (with
9-cycle sliding window) to justify the extra computational
cost. The use of a sliding window represents a compro-
mise between the desire to have, on the one hand, truly
flow-dependent background-error variances and, on the
other, to reduce sampling error. In particular, with the
90-day window used here, background-error variations
on intraseasonal time-scales are filtered out and those on
seasonal time-scales are strongly damped.

Minimum values were set for the ensemble σ b to
avoid excessively small values in the deep ocean where
the surface forcing perturbations and limited number
of perturbed temperature and salinity profiles were not
very effective in maintaining an adequate spread. The
minimum-allowed values were taken to be 0.07 ◦C and
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Figure 2. Vertical profiles of (a, b) σ b and (c, d) σ o for (a, c) temperature and (b, d) salinity in B1R1 (grey shaded areas), B1R2 (solid curves)
and B2R2 (dashed curves). The solid and dashed curves coincide in (c, d). (e) and (f) show the corresponding ratios (σ b)2[(σ b)2 + (σ o)2]−1.
Both (σ b)2 and (σ o)2 have been computed at observation points, temporally averaged over the 1994–2000 period, and spatially averaged over

the global region and within vertical model grid cells.

0.01 psu and correspond to globally averaged climatolog-
ical estimates of σ b

T and σ b
S at 5000 m given by Ingleby

and Huddleston (2007). These are also the deep-ocean
values used in the parametrized σ b, and only affect the
ensemble spread below the thermocline (Figure 2).

4. Results

Four experiments were performed over the period 1993–
2000 to test the sensitivity of the analyses to the different

background- and observation-error variance formulations
presented in the previous section. Experiment B1R1
uses the parametrized σ b and simplified σ o. Experiment
B1R2 uses the parametrized σ b and the σ o estimated
using the Fu et al. method. The reanalysis experiments
conducted by CERFACS in ENACT (Davey et al., 2006)
and ENSEMBLES used the variance specifications in
B1R1 and B1R2, respectively. Experiments B1R1, B1R2
and the control (CTL) are our reference experiments.
Experiment B2R2 uses the ensemble σ b, and the σ o

from the Fu et al. method. The parametrized σ b were
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Table I. Summary of the background- and observation-error
variance matrix formulations used in the different experiments.
The matrices D(1)

(ŵ) and D(2)
(ŵ) contain the parametrized and

ensemble-estimated background-error variances, respectively.
The matrices D(1)

(y) and D(2)
(y) contain the simplified and Fu

et al. estimated observation-error variances, respectively.

Experiment name D(1)

(ŵ) D(2)

(ŵ) D(1)

(y) D(2)

(y)

B1R1 X X
B1R2 X X
B2R2 X X

used to initialize B2R2 on 1 January 1993 but were then
replaced with the ensemble σ b 180 days after cycling. All
time-averaged statistics presented in this section exclude
the first year of the experiments. The different ensemble
members of B2R2 produced statistically similar results.
Unless stated otherwise, results from B2R2 will be
presented from the unperturbed member. The assimilation
experiments are summarized in Table I.

Our objective in this paper is to provide an overall
assessment of the relative performance of the different
experiments, so we focus mainly on globally averaged
diagnostics in this section. An exception is in section 4.5
where results involving comparisons with independent
data are presented for the northwest Atlantic and tropical
Pacific regions.

4.1. Vertical profiles of σ b and σ o

The vertical profiles of the prescribed σ b and σ o are
illustrated in this section for the different experiments.
For consistency with the observation-space diagnostics
presented later in this paper, both σ b and σ o have been
evaluated by first computing the variances (σ b)2 and
(σ o)2 at observation points, averaging the variances in
space and time, and then taking the square root to obtain
the standard deviations. Here, the spatial averaging is
performed over the global region and within the vertical
model grid cells, and the time averaging is performed
over the 1994–2000 period.

The specified background-error variances (σ b)2 at
observation points correspond to the diagonal elements of
HB(w)HT. To compute the diagonal of HB(w)HT requires
a specific algorithm since this matrix is only available in
operator form in our system. The diagonal elements can
be estimated at a reasonable cost using a randomization
algorithm (Andersson et al., 2000). Specifically, given
an ensemble of Gaussian random vectors vm, m =
1, . . . , M , drawn from a population with zero mean and
unit variance (E[vm] = 0 and E[vmvT

m] = I where E[·]
is the expectation operator) then

HB(w)HT ≈ 1

M − 1

M∑
m=1

(
HU(w)vm

)(
HU(w)vm

)T
, (24)

where U(w) is given by Equation (10). On each cycle,
Equation (24) was used with an ensemble of M = 100

random vectors to produce an estimate of σ b at observa-
tion points, with an estimated error of approximately 7%.

Figure 2 shows vertical profiles of the specified σ b

and σ o for temperature and salinity. At all depths, but
especially in the upper 200 m, the ensemble-estimated σ b

of B2R2 are smaller than the parametrized σ b of B1R1
and B1R2, while the Fu et al. estimated σ o of B1R2
and B2R2 are larger than the simplified σ o of B1R1.
The ratio (σ b)2[(σ b)2 + (σ o)2]−1, displayed in the lower
panels, roughly indicates the average weight given to
an innovation at a particular depth in determining the
analysis increment (Equations (B.10) and (B.11)). For
B2R2, the weights are noticeably smaller and more
uniform with depth compared to those from B1R1 and
B1R2. As a result, the analysis on each cycle of B2R2
will tend to remain closer to the background state than it
will in either B1R1 or B1R2 which will tend to pull it
more to the observations, especially in the upper 200 m.
It is not possible a priori to say which of these σ b and σ o

profiles are most appropriate. The diagnostics presented
in the remainder of the paper will examine their relative
impact on different aspects of the ocean analyses.

4.2. Assimilation statistics

The innovation vector, d (Equation (2)), and analysis
increment, δwa, provide valuable information for assess-
ing the statistical performance and internal consistency of
the assimilation system (Desroziers et al., 2005). In this
section, we examine mean statistics of d and the anal-
ysis residual, r = d − Hδwa, where these vectors, with
the time index omitted, are understood to contain the
innovation vectors and analysis residuals from all cycles
in the 1994–2000 period. The analysis residual r (sim-
ply called the residual in what follows) corresponds to
the value of the difference field in the observation term
of the 3D-Var FGAT cost function (Equation (1)) at the
end of minimization. Whereas r quantifies the fit to the
data achieved by the assimilation method, it does not
represent the actual fit to the data achieved after correct-
ing the model integration using IAU, which is given by
r̃ = yo − Hwa. By construction, the IAU procedure does
not produce a close fit to the data near the beginning of
each cycle so that, in general, ‖̃r‖ > ‖r‖.

Figure 3 shows the vertical profiles of the time mean of
the globally averaged residual and innovation vector for
temperature and salinity. A non-zero mean in the inno-
vations and residuals is an indication of bias (systematic
error) in the system (Dee and Todling, 2000; Balmaseda
et al., 2007). In CTL there is a large negative bias above
200 m in both the temperature and salinity innovations
(Figures 3(c, d)), where the model without data assimila-
tion is, on average, too warm (up to 0.7 ◦C) and too salty
(up to 0.6 psu) compared to observations. The mean tem-
perature innovations change sign near 250 m, suggesting
that the model is biased cold below this level. The mean
salinity innovations are very small below 200 m, possibly
as a result of the subsurface relaxation to climatology.
The mean innovations are reduced substantially, espe-
cially for salinity, in all assimilation experiments. The
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Figure 3. Vertical profiles of the 1994–2000 time mean of the globally averaged analysis (a, b) residuals (r = d − Hδwa) and (c, d) innovations
(d = yo − Hwb) for (a, c) temperature and (b, d) salinity for CTL (thin dotted curves), B1R1 (grey shaded areas), B1R2 (solid curves) and B2R2

(dashed curves). Values have been averaged onto model levels. For CTL the innovation and residual are identical (δwa = 0).

mean residuals are slightly smaller than the mean inno-
vations. They are smallest for B1R1 (grey shade) which
is understandable since the σ o in B1R1 are smaller than
those used in B1R2 and B2R2, so that the assimilation
method will tend to give more weight to the observations
in B1R1 than in B1R2 and B2R2. In all experiments, the
remaining biases, while much smaller than in CTL, are
still significant, the largest being at the surface in B2R2
where the maximum innovation biases are approximately
−0.3 ◦C and –0.11 psu.

Figure 4 shows vertical profiles of the standard devia-
tion (sd) of the residual and innovation vectors:

sd(z) =
√

(z − z)2 (25)

where z = d, r or r̃, and the overbar indicates spatial aver-
age over the globe and within vertical model grid cells,
and temporal average over the 1994–2000 period. The
standard deviation indicates how well the model fits the
observed temporal and spatial variability. CTL exhibits
large errors in both temperature and salinity, particularly
in the upper 150 m where signals associated with sea-
sonal and interannual variability are largest. Maximum
differences are 2.25 ◦C for temperature and 1.65 psu for
salinity. Relative to CTL, all assimilation experiments
improve the fit to the observed temperature and salinity

variability at all depths. This is true on the global average
(Figure 4) although in the equatorial Pacific (not shown)
the salinity variability below 50 m was found to be
slightly degraded in B1R1 and B1R2, but not in B2R2,
which points to a deficiency in the parametrized estimates
of σ b

S . Differences between B1R1 and B1R2 are small
(shaded and solid curves). B1R1 displays slightly smaller
sd(r) in salinity around 100 m and in temperature at all
depths, whereas B1R2 displays slightly smaller sd(d) in
both temperature and salinity in the upper 100 m. This
illustrates that a better fit to the data (achieved in B1R1
by reducing σ o) does not necessarily translate into a
better model forecast. The differences arising from using
the ensemble σ b (B2R2; dashed curves) are larger, with
both sd(r) and sd(d) being increased relative to those in
B1R1 and B1R2, especially near the surface.

At first sight it appears that the use of the ensemble σ b

has slightly degraded the performance of the assimilation
system. Closer inspection of Figure 4, however, reveals
that while the innovations are larger in B2R2, the dif-
ference between the residuals and innovations is smaller
than in B1R1 and B1R2, particularly in the upper 100 m
where the difference is 0.1 ◦C and 0.05 psu smaller. This
result indicates that the error growth in a 10-day fore-
cast cycle is smaller in B2R2 than in B1R1 and B1R2,
which in turn suggests that the analyses in B2R2 are better
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Figure 4. As Figure 3, but showing the standard deviation of the analysis residuals (sd(r)) and innovations (sd(d)) as defined by Equation (25).

balanced. Since the error growth is compensated by the
assimilation increment, a smaller error growth in B2R2
should be indicative of smaller increments in B2R2. This
is confirmed by Figures 5(a, b) which display the verti-
cal profiles of the root-mean-square (rms) of the analysis
increments at observation points (rms(Hδwa)) from the
different experiments. For both temperature and salinity,
the increments are smallest in B2R2 and largest in B1R1.

The smaller analysis increments in B2R2 could also
be an indication that the assimilation system is under-
affected by the observations. It is instructive therefore
to compare the rms of the analysis increments with the
actual 10-day forecast improvement as measured by the
innovations. To do so, we define an ‘efficiency’ (E) index,

E = rms(dc) − rms(d)

rms(Hδwa)
, (26)

which measures the ratio of the difference between the
rms of the 10-day forecast error from the control and from
the assimilation experiment, to the ‘work done’ by the
assimilation method (at observation points) to reduce the
forecast error. Small (large) innovations and increments
will act to increase (decrease) the E index. For example,
one system will be more efficient than another (have a
larger E value) if it can achieve, on average, a similar
reduction in the innovations but with smaller increments.
Positive (negative) values of the E index imply that the

assimilation is beneficial (detrimental) to the model. Note
that the index depends on the forecast lead-time (which
influences the numerator in Equation (26)) as well as the
width of the assimilation window (which influences the
denominator in Equation (26)). Therefore, the E index
cannot be used to compare experiments with different
assimilation windows. Here, the forecast lead-time and
assimilation window width are both equal to ten days.
Note also that the E index is defined for any assimilation
experiment that is affected by observations at least once,
so the denominator is always non-zero.

Vertical profiles of the E index for the three assimi-
lation experiments are shown in Figure 5. The E index
is positive at all depths for all experiments, with highest
values obtained in B2R2 and lowest values in B1R1. For
temperature, the E index is largest at the mean level of
the thermocline (100 m), whereas for salinity it is largest
nearer the surface. In all experiments, there is a decrease
in the temperature E index near the surface. This is related
to the strong SST relaxation term used in both CTL and
the assimilation experiments, which acts to reduce the
value of the numerator in Equation (26).

4.3. Specified versus diagnosed σ b and σ o

The difficulty in defining background- and observation-
error statistics means that they are likely to be
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Figure 5. Vertical profiles of (a, b) the rms of the assimilation increments at observation points (rms(Hδwa)) and of (c, d) the efficiency index
(Equation (26)) for (a, c) temperature and (b, d) salinity in B1R1 (grey shaded areas), B1R2 (solid curves) and B2R2 (dashed curves). Values

have been averaged onto model levels.

incorrectly specified in a practical data assimilation
system. Desroziers et al. (2005) discuss how the innova-
tions and analysis increments generated by a data assim-
ilation system can be used to diagnose a posteriori the
covariances of observation error and background error
in observation space. Assuming that the background and
observation errors are mutually uncorrelated, and that
their covariance matrices are good approximations to the
true error covariance matrices, then the covariance matrix
of the innovation vector satisfies

E
[
ddT] ≈ HB(w)HT + R. (27)

This classical result is easily derived using the expression
for the innovation vector in terms of the background
and observation errors, given by Equation (B.12) in
Appendix B. Furthermore, using the analysis equation
(Equation (B.10)), it is straightforward to show that the
components of Equation (27) satisfy

E
[
d

(
Hδwa)T

]
≈ HB(w)HT (28)

and

E
[
d

(
d − Hδwa)T

]
≈ R. (29)

The left-hand sides of Equations (28) and (29) can be
estimated using statistics from the assimilation system,
while the right-hand sides of these equations are the spec-
ified covariance matrices presented earlier. In this section,
these expressions are used to check the consistency of the
specified standard deviations (σ b and σ o) with those diag-
nosed using assimilation statistics. The analysis focuses
on the time- and horizontally averaged component of the
standard deviations. As in Equation (25), the mean bias
has been removed from d and Hδwa in estimating the
standard deviations from Equations (28) and (29).

Figure 6 shows vertical profiles from B2R2 of the spec-
ified σ b and σ o (solid curves) and the diagnosed σ b and
σ o (dashed curves) estimated from Equations (28) and
(29) using the innovation and analysis increments from
all cycles between 1994 and 2000. The specified σ b are
identical to those displayed earlier in Figure 2 (dashed
curves). In B2R2, the specified σ b

T and σ b
S are every-

where underestimated compared to the diagnosed values
(Figures 6(a, c)), whereas the specified σ o

T and σ o
S are

overestimated compared to the diagnosed values, apart
from the upper 30 m where the σ o

S are slightly underesti-
mated (Figures 6(b, d)). The maximum specified-minus-
diagnosed differences are −0.45 ◦C and –0.4 psu for σ b

T

and σ b
S , and 0.4 ◦C and 0.15 psu for σ o

T and σ o
S . It is

interesting to note that the structure and amplitude of the
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Figure 6. Vertical profiles of (a, c) σ b and (b, d) σ o for (a, b) temperature and (c, d) salinity in B2R2. Solid curves correspond to the σ b and σ o that
were specified in the assimilation experiment; dashed curves correspond to the σ b and σ o that were diagnosed a posteriori using Equations (28)

and (29). The specified σ b and σ o are identical to those displayed by dashed curves in Figure 2.

diagnosed σ b
T , and to a lesser extent the diagnosed σ b

S ,
are closer to those of the parametrized σ b

T and σ b
S than

the ensemble σ b
T and σ b

S (cf. Figure 2). The ensemble and
diagnosed σ b

S in particular exhibit large differences in the
upper 200 m. Compared to B2R2, there is better consis-
tency between the diagnosed and specified σ b in B1R2
(Figures 7(a, c)), although this seems to be achieved at
the expense of degrading the consistency between the
diagnosed and specified σ o (Figures 7(b, d)).

The results in Figure 6 suggest that the ensemble 3D-
Var system produces background (and analysis) perturba-
tions with inadequate spread on a global average. This
apparent deficiency is not unique to our system but is a
common problem in other ensemble data assimilation sys-
tems as well (e.g. Houtekamer and Mitchell (2005) give
a discussion within the context of the EnKF). This issue
is discussed further in section 5. The apparent overesti-
mation of σ o, on the other hand, points to limitations
in our simple model of the observation-error covari-
ances, which ignores spatial and temporal correlations
and employs flow-independent variance estimates derived
from a method that is itself subject to assumptions of
questionable validity. Although Equation (29) is used
purely for diagnostic purposes in this study, it provides
the basis of an iterative algorithm for calibrating σ o using
the innovations and analysis increments generated by the

assimilation system (Desroziers et al., 2005). In a similar
way, Equation (28) can be used to calibrate observation-
space values of σ b. Unlike σ o, however, these are not
direct inputs to the ensemble 3D-Var system. How best
to use Equation (28) to improve the estimates of σ b in
the space of the analysis variables and how to combine
this information effectively with ensemble estimates of
σ b are open questions.

4.4. Temporal variability of the ensemble and assimila-
tion statistics

The results presented so far have highlighted time-
averaged aspects of the assimilation performance. In
this section, time-varying aspects will now be evaluated,
focusing on results from the ensemble experiment B2R2.
Figures 8(a, b) show time series of the 1993–2000 ensem-
ble spread (the square root of the ensemble variance) of
the observation-space analysis Hiwa

l (ti ) and background
Hiwb

l (ti ), computed with respect to all (L = 9) ensemble
members:

spread{Hiwa,b} =√√√√√ 1

L − 1

L−1∑
l=0

(
Hiw

a,b
l (ti ) − 1

L

L−1∑
l=0

Hiw
a,b
l (ti )

)2

,

(30)
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Figure 7. As Figure 6, but for B1R2.

where the overbar indicates spatial average over the globe
and within vertical model grid cells, and temporal average
over 30-day intervals. A well-defined ensemble should
have a spread characteristic of the actual uncertainty in
the model state. Figures 8(a, b) show that the spread
in both temperature and salinity is systematically smaller
in the analysis than in the background, as one would
expect. The spread appears to stabilize around mean val-
ues of 0.1 ◦C and 0.035 psu, after an initial increase dur-
ing the first 6 months of the experiment. In other words,
there is no evidence of ensemble collapse. The decrease
in the spread from mid-1993 onwards corresponds to the
time when the parametrized σ b are replaced with the
ensemble σ b. The variability of the spread is larger for
salinity than for temperature, which is mainly associated
with increased sampling error due to the smaller number
of salinity observations. It is interesting to note that the
values of the mean spread are similar to those computed
in the stochastic EnKF system of Leeuwenburgh (2007;
his Figure 3 for the tropical Pacific region). His sys-
tem was based on a different ocean model as well as
a different assimilation method, but employed a similar
perturbation strategy to ours, involving random perturba-
tions to the atmospheric forcing fields and observations.

Figures 8(c, d) show corresponding time series of the
sd(̃ri) and innovation sd(di) of the unperturbed ensemble
member l = 0, as given by Equation (25) but with the
temporal averaging operator defined as in Equation (30).

Both sd(̃ri) and sd(di) are about one order of magnitude
larger than the analysis spread of the (observation space)
analysis and background (Figures 8(a, b)). The spread
of the background state at observation points roughly
corresponds to the prescribed values of σ b at observation
points, as can be seen by comparing the magnitudes
of the temperature and salinity spread in Figures 8(a, b)
with those of the prescribed mean σ b

T and σ b
S profiles in

Figures 2(a, b) (dashed curves). For both temperature and
salinity, the magnitude of sd(di) is at all times comparable
to that of the mean σ o in Figures 2(c, d), which is
consistent with Equation (27) in view of the relatively
small ensemble spread that defines σ b. Despite the small
spread, sd(di) (and sd(̃ri)) of B2R2 is consistently much
smaller than sd(di) of CTL.

4.5. Comparison with independent data

The diagnostics presented in the previous sections have
focused on the model variables (temperature and salinity)
that are directly constrained by the observations. In this
section, model variables (SSH and velocity) that are not
directly constrained by the observations are examined
and validated against independent data. First, SSH
anomalies from the various experiments are compared
with SSH anomalies from TOPEX/Poseidon (T/P), where
the anomalies are computed with respect to the 1993–
2000 mean SSH of each product. Correlation coefficients

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1071–1094 (2009)
DOI: 10.1002/qj



1086 N. DAGET ET AL.

1994 1996 1998 2000

date

0.00

0.05

0.10

0.15

0.20

T
 (

°C
)

T
 (

°C
)

1994 1996 1998 2000

date

0.00

0.02

0.04

0.06

0.08

S
 (

ps
u)

1994 1996 1998 2000

date

0.0

0.5

1.0

1.5

2.0

2.5

1994 1996 1998 2000

date

0.0

0.5

1.0

1.5

S
 (

ps
u)

(a) (b)

(c) (d)

Figure 8. 1993–2000 time series of (a, b) the ensemble spread at observation points for the background, Hiwb(ti) (black shade), and analysis,
Hiwa(ti) (light grey shade), in B2R2, and of (c, d) the standard deviation of the innovation vector, sd(di) (black shade), and of the residuals,
sd(̃ri) (light grey shade), in B2R2. The standard deviation of the innovation in CTL (dark grey shade) is also shown in (c, d). Temperature and
salinity are displayed in (a, c) and (b, d), respectively. Values have been been computed for the global region and averaged into 30-day intervals.

Table II. Correlation coefficient and rms error in the northwest extratropical Atlantic (75–40◦W, 30–60◦N) and the NINO3.4
region of the tropical Pacific (170–120◦W, 5◦S–5◦N) between SSH anomalies from TOPEX/Poseidon data and those from the

model in the various experiments.

NW.EXTROP.ATL NINO3.4
Experiment name Correlation Rms error (m) Correlation Rms error (m)

CTL 0.97 0.012 0.98 0.022
B1R1 0.62 0.040 0.99 0.012
B1R2 0.73 0.033 0.99 0.012
B2R2 0.87 0.023 0.99 0.013

and rms errors are displayed in Table II for the northwest
extratropical Atlantic and NINO3.4 in the tropical Pacific.
In the northwest Atlantic, the CTL has the highest cor-
relation and lowest rms error of all experiments, which
suggests that data assimilation is degrading the SSH
field to some extent in this region. Of the assimilation
experiments, B2R2 compares best with T/P, while B1R1
compares worst. Since the closest fit to the in situ data

was achieved in B1R1, followed by B1R2 and then B2R2
(Figures 3 and 4), this further suggests that the SSH field
degrades in this region as the model fit to the in situ data
improves. One possible explanation for this behaviour is
the presence of model bias, which is not explicitly taken
into account in the assimilation algorithm yet known to be
important in this region. For example, Dee (2005) shows
that the interaction of bias with a non-stationary observing
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Figure 9. 1993–2000 time series of SSH anomalies in (a) the northwest extratropical Atlantic and (b) the NINO3.4 region of the tropical Pacific
from CTL (dotted curve), B1R2 (thick solid curve), B2R2 (dashed curve), and TOPEX/Poseidon (thin solid curve).

system can lead to spurious time variability. Other factors
such as inadequacies in the balance operator, incorrect
background- or observation-error covariances, or simply
‘bad’ data could explain the degradation but pinpointing
the specific reasons is difficult without conducting more
targeted studies. In contrast, in NINO3.4, the assimilation
experiments give similar statistical performance. Relative
to CTL, they exhibit a slight improvement in correlation
(the correlation of CTL is already very high) and a larger
reduction in the rms error.

The 1993–2000 time series of the SSH anomalies in
these regions, displayed in Figure 9, show clearly that the
dominant variability is seasonal in the northwest Atlantic
(Figure 9(a)) and interannual in the tropical Pacific (Fig-
ure 9(b)). Compared to T/P, the seasonal variations in
the northwest Atlantic are reproduced in the assimila-
tion experiments but with smaller amplitude, especially in
B1R2 during 1996–1998. The observed seasonal variabil-
ity is better reproduced in B2R2. Experiment B1R2 also
displays a pronounced decreasing trend after 1999, which
is weaker in B2R2 and not present in T/P. In NINO3.4,
the interannual variations of CTL are slightly damped
relative to those in T/P, especially during the 1997 El
Niño event where the assimilation experiments, especially
B1R2, reproduce the large amplitude of the observed SSH
anomalies much better.

At the Equator in the Pacific, the quality of the velocity
field can be assessed by comparing it to current meter data
from the TAO array. Figure 10 shows vertical profiles of
the correlation coefficients and rms errors between zonal
current data from TAO at three locations (165◦E, 140◦W
and 110◦W) and the corresponding zonal velocity field
from CTL, B1R2 and B2R2. The assimilation of temper-
ature and salinity profiles improves the intensity of the
equatorial surface currents and equatorial undercurrent in
the central Pacific, as indicated by the reduced rms errors

in B1R2 and B2R2 compared to those of CTL in the
upper 100 m at 140◦W (Figure 10(d)). The upper ocean
currents in B2R2 are also improved relative to CTL in the
eastern Pacific (Figures 10(e, f)) but slightly degraded in
the western Pacific (Figures 10(a, b)). The zonal currents
in B1R2 are degraded in the upper 150 m of the western
Pacific (Figures 10(a, b)), and show no clear improvement
over CTL in the eastern Pacific (Figures 10(e, f)). Exper-
iment B2R2 outperforms B1R2 at nearly all depths at all
three locations.

5. Summary and conclusions

An ensemble 3D-Var system for global ocean anal-
ysis has been described in this paper. The global
3D-Var system is based on an earlier 3D-Var system
for the tropical Pacific (Weaver et al., 2003; Vialard
et al., 2003) but includes many new features such as
a fully multivariate background-error covariance model
(Weaver et al., 2005), the use of a state-of-the-art quality-
controlled in situ dataset (Ingleby and Huddleston, 2007),
revised background- and observation-error variance for-
mulations, and the capacity to generate ensembles of
ocean analyses. On a given assimilation cycle, the ensem-
ble of analyses are created by adding perturbations to
the surface forcing fields (wind stress, fresh-water flux,
and SST – a proxy for heat flux) and observations (tem-
perature and salinity profiles) used in the assimilation
process. These perturbations are based on estimates of
the actual uncertainty in these input fields. The ocean
initial conditions on each cycle are also perturbed, but
this is done implicitly as a result of the parallel cycling
of the 3D-Var system with different perturbed forcing
and observations for each ensemble member. The purpose
of the analysis ensemble is to sample uncertainty in the
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Figure 10. (a, c, e) Correlation coefficient and (b, d, f) rms error (m s−1) between equatorial zonal currents from TAO data and those from CTL
(dotted curves), B1R2 (solid curves) and B2R2 (dashed curves) over the 1993–2000 period at (a, b) 165oE, (c, d) 140oW and (e, f) 110oW.

ocean model state. Applications of the analysis ensem-
ble include initialization of coupled ocean–atmosphere
models for probabilistic climate forecasting, uncertainty
estimation for historical ocean reanalysis, and the estima-
tion of flow-dependent background-error covariances.

The main purpose of this paper was to explore the
use of the ensemble 3D-Var for providing flow-dependent
estimates of the background-error standard deviations
(σ b). A 9-member ensemble was constructed and tested in
a cycled 3D-Var framework over the period 1993–2000.

On each 10-day cycle, the σ b of all members were
updated based on the ensemble spread of background
states. To reduce sampling error, a 9-cycle (90-day)
sliding window was used to include additional ensemble
members from the recent past in the σ b computation.
The larger sample size (81 in total) was achieved at
the expense of filtering out intraseasonal variations in
background error. This constraint could be relaxed in the
future by increasing the number of ensemble members
and/or by employing alternative filtering techniques for
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reduced sampling noise, such as those described in
recent articles by Buehner and Charron (2007) and Berre
et al. (2007).

A control experiment, in which no data were assimi-
lated, produced large differences in the mean state and
variability of the temperature and salinity fields when
compared to the profile observations that were assimi-
lated in the 3D-Var experiment. These differences were
substantially reduced in the ensemble 3D-Var experi-
ment. Evaluation of fields not directly constrained by
the assimilated observations gave mixed results. Results
showed that, in general, the ensemble 3D-Var experiment
improved equatorial currents in the central and eastern
Pacific and the representation of interannual variabil-
ity of SSH. However, there were other regions where
the assimilation degraded the results (equatorial currents
in the western Pacific, SSH anomalies in the northwest
Atlantic), possibly because of problems related to large
systematic model error in these regions. Comparisons
with a separate 3D-Var experiment that employed a sim-
pler, empirically based flow-dependent σ b parametriza-
tion showed that, on the global average, both led to
similar reductions in the profile innovations (the mean
and standard deviation) below 150 m but the parametrized
σ b gave slightly smaller innovations above 150 m. Fields
not directly constrained by the assimilated observations,
however, were clearly better (closer to independent obser-
vations) with the ensemble σ b than with the parametrized
σ b. Moreover, the error growth between assimilation
cycles was much reduced using the ensemble σ b sug-
gesting that the ensemble σ b produced analyses that
were in better balance than those generated using the
parametrized σ b. This result could have important impli-
cations on the degree to which the assimilated informa-
tion is retained by the model during the forecast step,
but further investigation of this issue is needed; e.g. by
computing statistics of the observation-minus-background
differences on time periods that go beyond the 10-day
forecast cycling period, or by testing the impact on sea-
sonal forecasts using coupled models.

Diagnostics designed to check the consistency of the
prescribed covariances with those estimated a posteriori
from assimilation statistics indicated that the σ b were
underestimated by the ensemble, especially above 150 m.
The parametrized σ b were also underestimated but to a
lesser extent. Simple procedures to inflate the ensemble-
generated σ b in the upper ocean were tested (results not
presented in this study) but did not give satisfactory
results. The apparent underestimation of the ensemble
spread is likely due to several factors including the small
size of the ensemble and deficiencies in the perturba-
tion strategy. The SST relaxation term, for example, has
the tendency to produce excessive damping of temper-
ature perturbations near the surface. The direct assimi-
lation of SST data (via the cost function), which will
be implemented in future versions of our assimilation
system, should alleviate this problem. The absence of
model-error perturbations is also a weakness, particularly
for the relatively low-resolution model used in this study
which can be expected to have a significant model-error

component associated with the unresolved mesoscale.
Techniques to include model-error perturbations, such as
those described by Hamill and Whitaker (2005), could be
explored in future work. Despite these apparent shortcom-
ings, results from this study are encouraging and suggest
that useful information about background error can be
extracted from a suboptimal ensemble.

This study has focused on using the ensemble to esti-
mate the background-error standard deviations, but other
parameters of the background-error covariance model
could be estimated as well. Pannekoucke et al. (2008)
present a practical method for estimating geographically
dependent correlation length-scales from ensemble dif-
ferences. In our quasi-Gaussian correlation model based
on a diffusion operator, these length-scales are related to
the elements of the diffusion tensor (Pannekoucke and
Massart, 2008). Preliminary results from applying the
Pannekoucke et al. method to estimate the tensor ele-
ments from time-averaged ensembles generated by our
system are encouraging, although further work is needed
to evaluate the impact of the new length-scale estimates
in a cycled assimilation experiment.

The ensemble procedure has been tested in a 3D-Var
framework in this study but is applicable to 4D-Var
as well. In incremental 4D-Var, the background-error
covariances are propagated implicitly within assimila-
tion cycles using a linearized version of the model and
its adjoint. This feature is absent in 3D-Var where the
background-error covariances are stationary within assim-
ilation cycles. An ensemble 4D-Var method could be
used, as in ensemble 3D-Var, to propagate background-
error information between assimilation cycles, and is
therefore complementary to the deterministic propaga-
tion of covariances achieved by 4D-Var within cycles.
Practical ensemble 4D-Var applications, however, would
likely require approximations in the ensemble-generation
strategy due to the substantial extra cost of 4D-Var. In
general, the extra computational expense of producing
ensembles of analyses may be justified if these analyses
can be used simultaneously for probabilistic forecasting
as well as background-error covariance estimation.
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Appendix A

Observation-error covariance estimation using the Fu
et al. (1993) method

Following Janjić and Cohn (2006), we define the true
state vector xt(ti) at time ti to be the component
	(x) xt

C(ti ) of the true continuum state xt
C(ti) where 	(x)

is a projection operator from the continuum onto the
finite-dimensional subspace resolved by the numerical
model. The resolved component is the quantity that we
wish to estimate through data assimilation. The observa-
tion vector yo

i can be related to xt(ti ) through an equation
of the form (Janjić and Cohn, 2006)

yo
i = Hixt(ti) + εm

i + εr
i + εi

i , (A.1)

where Hi is the discrete observation operator which is
taken to be linear as in the assimilation system described
in section 2. The discrepancy between yo

i and Hixt(ti)

can be attributed to errors in the measurement process,
εm
i , representativeness errors associated with the unre-

solved scales, εr
i = Hi

[
xt

C(ti) − xt(ti)
]
, where Hi is the

continuum observation operator, and interpolation errors
associated with approximating the continuum observation
operator by Hi , εi

i = (Hi − Hi ) xt(ti ). The sum of these
errors is the total observation error,

εo
i = εm

i + εr
i + εi

i . (A.2)

The method of Fu et al. (1993) is designed to estimate
the static component of the observation-error covariance
matrix by comparing time-averaged statistics of the
observation vector with those of its model equivalent
Hixc(ti), where xc(ti) is the state vector computed from
a model integration without data assimilation (the control
run in this study). At any time ti , the unconstrained model
state can be related to the true state through

xc(ti) = xt(ti ) + εc(ti ) , (A.3)

where εc(ti) represents the unconstrained model-state
error. For notational convenience, the time parameter
will be dropped in the rest of this appendix. Using
Equations (A.1)–(A.3), the auto- and cross-covariances
of yo and Hxc can be computed as follows:

E
[̃
y o(̃y o)T] = HE

[̃
x t(̃x t)T]

HT + E
[
εo(εo)T]

+ HE
[̃
x t(εo)T]+E

[
εo(̃x t)T]

HT,

(A.4)

E
[
H̃x c(H̃x c)T] = HE

[̃
x t(̃x t)T]

HT+HE
[
εc(εc)T]

HT

+ HE
[̃
x t(εc)T]

HT

+ HE
[
εc(̃x t)T]

HT, (A.5)

E
[̃
y o(H̃x c)T] = HE

[̃
x t(̃x t)T]

HT+HE
[̃
x t(εc)T]

HT

+ E
[
εo(εc)T]

HT+E
[
εo(̃x t)T]

HT ,

(A.6)

where E[ .] denotes the expectation operator and z̃ = z −
E[ z ]. The errors are assumed to be unbiased: E[εo] =

E[εc] = 0. The unknown auto-covariance of the true
state, E [̃x t(̃x t)T], can be eliminated by subtracting Equa-
tion (A.6) from Equations (A.4) and (A.5) to yield

E
[̃
y o(̃y o−H̃x c)T]=E

[
εo(εo)T]+ Z1, (A.7)

E
[
H̃x c(̃y o−H̃x c)T]=−HE

[
εc(εc)T]

HT+ Z2, (A.8)

where

Z1 = HE
[̃
x t(εo)T] − E

[
εo(εc)T]

HT

− HE
[̃
x t(εc)T]

HT, (A.9)

Z2 = E
[
εo(̃x t)T]

HT + E
[
εo(εc)T]

HT

− HE
[
εc(̃x t)T]

HT. (A.10)

The left-hand sides of Equations (A.7) and (A.8) are
quantities that can be estimated, under the ergodic
assumption, from time- and spatially averaged obser-
vations and their unconstrained model counterpart. The
unknown quantity of interest here is the observation-error
covariance matrix, R̂ ≡ E[εo(εo)T], in Equation (A.7).

Following Fu et al. (1993), an approximate equation
for R̂ is obtained by assuming that Z1 ≈ 0 or at least that
this term is small (in a matrix-norm sense) compared to
R̂. The validity of this assumption can be appreciated by
examining each term in Equation (A.9). The first term
can be neglected by assuming that the true state (the
resolved scales) and observation error are approximately
uncorrelated, E [̃xt(εo)T] ≈ 0. This is a safe assumption
for the measurement component of the observation error
which has no reason to be correlated with the true state.
It also implies that the resolved and unresolved scales
are entirely decoupled, which is more restrictive. The
second term can be neglected by assuming that the
observation error and unconstrained model-state error
are approximately uncorrelated, E[εo(εc)T] ≈ 0. From
Equation (A.3), this is ensured if E[εo(̃xt)T] ≈ 0, as
already discussed above, and if E[εo(̃xc)T] ≈ 0, which
is a reasonable assumption since the model (control)
integration is not constrained by the observations. It is
more difficult, however, to justify ignoring the third term
(E [̃xt(εc)T] ≈ 0), as already pointed out by Menemenlis
and Chechelnitsky (2000) who provide evidence in their
analysis of TOPEX/Poseidon altimeter data that suggests
that this term is not negligible. This third assumption
is made purely for practical convenience and should be
treated with caution. Equation (A.7) (with Z1 = 0) has
been used in this study to estimate the variances of
observation error (Equation (17)) although in principle
it could be used to estimate the correlations as well.

The assumptions described above also imply that
Z2 ≈ 0 in Equation (A.8), thereby yielding an approxi-
mate expression for HB(xc)HT where B(xc) ≡ E[εc(εc)T].
Equation (A.8) may provide useful information for initial-
izing the background-error covariance matrix on the first
assimilation cycle, where the background state is obtained
from an unconstrained model (spin-up) integration, but is
of questionable relevance for defining background-error
covariances in the presence of data assimilation. This
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expression has not been exploited in this study where
instead the ensemble method has been used to enrich a
quasi-static covariance model with flow-dependent esti-
mates of the variances.

Appendix B

Background-error covariance estimation using an ensem-
ble method

The purpose of this appendix is to illustrate how differ-
ences between members of a suitably generated 3D-Var
ensemble can be used to estimate the covariances of
background error. First, expressions for the first-order
evolution of the true background- and analysis-state errors
will be derived. These expressions will then be related to
the first-order evolution of background- and analysis-state
perturbations in the ensemble system. The presentation is
similar to that of Berre et al. (2006) but extended here to a
nonlinear framework and tailored to account for particular
features of our ensemble 3D-Var system.

B.1. First-order evolution of the true background- and
analysis-state errors

As discussed in section 2.3, the background state on a
given 3D-Var cycle corresponds to the IAU-corrected
state at the end of the previous cycle (xb

c(t0) = xa
c−1(tN )).

For notational convenience, the index c will be ignored
except when clarification is necessary.

The background state evolves from ti−1 and ti accord-
ing to Equation (3) where xb(t0) = xb

c(t0) = xa
c−1(tN ).

Using the notation established in Appendix A, the evolu-
tion of the true continuum state xt

C(ti ) can be described
by the equation

xt
C(ti ) = M(ti , ti−1)

[
xt

C(ti−1), ft
C,i

]
, (B.1)

where M(ti , ti−1) is the true continuum model operator
from ti−1 to ti , and f t

C,i is the true continuum surface forc-
ing vector acting from ti−1 to ti . The evolution equation
of the true resolved state xt(ti ) ≡ 	(x) xt

C(ti ) can be repre-
sented in terms of the discrete model operator M(ti, ti−1)

and the true resolved forcing vector f t
i ≡ 	(f) f t

C,i , where
	(f) is a projection operator from the atmospheric con-
tinuum onto the finite-dimensional subspace of the model
forcing field, as

xt(ti ) = M(ti, ti−1)
[
xt(ti−1), f t

i

] − ε
q
i , (B.2)

where ε
q
i is the model error. Following Cohn (1997) and

Janjić and Cohn (2006), ε
q
i can be neatly expressed as

the sum ε
q
i = ε

qd
i + ε

qu
i where

ε
qd
i ={

M(ti, ti−1)−	(x)M(ti , ti−1)
}[

xt(ti−1), f t
i

]
(B.3)

is the model error due to discretizaton, and

ε
qu
i = −	(x)M(ti , ti−1)

[
xt

C(ti−1)− xt(ti−1), f t
C,i − f t

i

]
(B.4)

is the model error due to the unresolved scales. Notice
that our definition of model error through Equations (B.3)
and (B.4) does not include the contribution from the
surface forcing field error

εf
i = fi − f t

i , (B.5)

which is treated separately in what follows. The forcing
errors include errors inherent in the (re)analysis procedure
used to produce the atmospheric fluxes as well as errors
associated with the interpolation procedure used to map
the fluxes onto the model grid and time step.

An equation for the time evolution of the background
error,

εb(ti ) = xb(ti) − xt(ti ), (B.6)

can be derived by subtracting Equation (B.2) from
Equation (3) to yield

xb(ti)−xt(ti ) =M(ti, ti−1)
[
xb(ti−1), fi

]
−M(ti, ti−1)

[
xt(ti−1), f t

i

]+ε
q
i . (B.7)

Expanding the second term on the right-hand side of
Equation (B.7) about xb(ti−1) and fi , and using Equa-
tions (B.5) and (B.6), yields, to first order,

εb(ti ) ≈ Mxb(ti , ti−1) ε
b(ti−1) + ε

p
i

≈ Mxb(ti , t0) ε
b(t0) +

i∑
j=1

Mxb(ti , tj ) ε
p
j , (B.8)

where

ε
p
i = Mf(ti , ti−1) ε

f
i + ε

q
i , (B.9)

is the total model error at time ti . Here,

Mxb(ti , ti−1) ≡ ∂M

∂x

∣∣∣∣
x=xb(ti−1)

,

Mxb(ti , tj ) ≡ Mxb(ti , ti−1) · · · Mxb(tj+1, tj ) ,

Mxb(ti , ti) ≡ I ,

and Mf(ti , ti−1) ≡ ∂M

∂f

∣∣∣∣
f=fi

.

The assimilation method transforms the innovation
vector, d = (..., dT

i , ...)T, into an analysis increment. By
minimizing the 3D-Var FGAT cost function exactly, the
analysis increment can be expressed as

δxa = K d , (B.10)

where

K = B HT(
HB HT + R

)−1
, (B.11)

is the Kalman gain matrix, B and R being the pre-
scribed background- and observation-error covariance
matrices detailed in section 2. The innovation vector can
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be expressed in terms of the background error (Equa-
tion (B.6)) and observation error (Equations (A.1) and
(A.2)) by noting that

di = yo
i − Hixb(ti)

= yo
i − Hixt(ti) + Hixt(ti) − Hixb(ti )

= εo
i − Hiε

b(ti ). (B.12)

The analysis increment is applied to the model using
IAU as described by Equation (16). The first-order
evolution of the analysis error,

εa(ti ) = xa(ti ) − xt(ti ), (B.13)

is obtained by subtracting Equation (B.2) from Equa-
tion (16) to yield

xa(ti )− xt(ti ) =M(ti, ti−1)
[
xa(ti−1), fi

] + Fiδxa

−M(ti, ti−1)
[
xt(ti−1), f t

i

]+ε
q
i . (B.14)

Expanding the third term on the right-hand side of Equa-
tion (B.14) about xa(ti−1) and fi and using Equation (B.9)
gives, to first order,

εa(ti ) ≈ Mxa(ti , ti−1) ε
a(ti−1) + Fi δxa + ε

p
i

≈ Mxa(ti , t0) ε
b(t0)

+
i∑

j=1

Mxa(ti , tj )
[
Fj δxa + ε

p
j

]
, (B.15)

where Mxa(ti , ti−1) ≡ ∂M

∂x

∣∣∣∣
x=xa(ti−1)

,

and εb(t0) = εb
c(t0) = εa

c−1(tN ).

Equation (B.15) is similar to Equation (B.8) for the
background error but employs a different linearization
state (xa(ti ) instead of xb(ti)) and includes the analysis
increment as an extra component of ‘model error’.

B.2. Ensemble representation of background- and
analysis-state errors

Let the index l denote a particular ensemble member on
a given cycle, and let ε̃b

l (t0), ε̃
f
l,i , ε̃

q
l,i and ε̃o

l,i define a set
of perturbations to the system input parameters such that

xb
l (t0) = xb(t0)+ε̃b

l(t0), ε̃b
l (t0) ∼ N(0, P̃b(t0)), (B.16)

fl,i = fi + ε̃ f
l,i , ε̃ f

l,i ∼ N(0, F̃i ), (B.17)

ql,i = ε̃
q

l,i , ε̃
q
l,i ∼ N(0, Q̃i ), (B.18)

yo
l,i = yo

i + ε̃o
l,i , ε̃o

l,i ∼ N(0, R̃i ), (B.19)

where we assume that the perturbations are normally
distributed with E [̃ε ] = 0 and E [̃ε̃εT] = A. From Equa-
tions (3) and (16), the equations describing the time
evolution of the perturbed background state xb

l (ti ) and
perturbed analysis state xa

l (ti ) can be written as

xb
l (ti )=M(ti, ti−1)

[
xb

l (ti−1), fl,i
] + ql,i , (B.20)

xa
l (ti )=M(ti, ti−1)

[
xa

l (ti−1), fl,i
]+Fi δxa

l+ql,i , (B.21)

where xa
l (t0) = xb

l (t0), and δxa
l = K dl , with dl =

(..., dT
l,i , ...)

T and dl,i = yo
l,i − Hixb

l (ti ), is the analysis
increment produced using the perturbed observations and
perturbed background trajectory of ensemble member l.

Subtracting Equation (3) from Equation (B.20) and
Equation (16) from Equation (B.21), and linearizing
terms, gives

ε̃ b
l (ti ) ≈ Mxb(ti , t0) ε̃

b
l (t0)

+
i∑

j=1

Mxb(ti , tj )̃ε
p
l,j , (B.22)

ε̃ a
l (ti ) ≈ Mxa(ti , t0) ε̃

b
l (t0)

+
i∑

j=1

Mxa(ti , tj )
[
Fj δ̃xa

l + ε̃
p
l,j

]
, (B.23)

where ε̃
p
l,i = Mf(ti , ti−1) ε̃

f
l,i + ε̃

q
l,i ,

δ̃xa
l = K d̃l ,

d̃l = (..., d̃T
l,i , ...)

T ,

and d̃l,i = ε̃ o
l,i − H̃ε b

l (ti ) .

Comparing Equations (B.22) and (B.23) with Equa-
tions (B.8) and (B.15) shows that the ensemble perturba-
tions, ε̃b

l (ti ) and ε̃a
l (ti ), and the true errors εb(ti) and εa(ti),

obey identical first-order evolution equations. Further-
more, if the covariance matrices of the input perturbations
in Equations (B.16)–(B.19) are equal to the covariance
matrices of the true errors,

P̂b(t0) ≡ E
[
εb(t0)(ε

b(t0))
T]

,

F̂i ≡ E
[
εf
i (ε

f
i )

T]
,

Q̂i ≡ E
[
ε

q
i (ε

q
i )

T]
,

and R̂i ≡ E
[
εo
i (ε

o
i )

T]
,

then it follows from Equations (B.22) and (B.23) that the
evolving covariance matrices

P̃b(ti) = E
[̃
ε b
l (ti )(̃ε

b
l (ti ))

T]
and P̃a(ti) = E

[̃
ε a
l (ti )(̃ε

a
l (ti ))

T]
will be identical to those of the true errors

P̂b(ti) ≡ E
[
εb(ti)(ε

b(ti ))
T]

and P̂a(ti) ≡ E
[
εa(ti)(ε

a(ti))
T]

.

Of particular interest here is the covariance matrix

P̃a(tN ) = E
[̃
ε a
l (tN )(̃ε a

l (tN ))T]
of the analysis-state error ε̃a(tN ) at the end of the
cycle, since this matrix should be used to define the
background-error covariance matrix for the next cycle
(Figure 1): P̃a(tN ) = P̃a

c(tN ) = P̃b
c+1(t0). This matrix can
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be estimated from a sample of L − 1 perturbed analysis
states as

P̃a(tN ) ≡ 1

L − 1

L−1∑
l=1

{
xa

l (tN ) − xa(tN )
}

×{
xa

l (tN )−xa(tN )
}T

, (B.24)

where each xa
l (tN ) is generated by perturbing the sys-

tem input parameters as in Equations (B.16)–(B.19).
Rather than using Equation (B.24), Fisher (2003), Žagar
et al. (2005) and Berre et al. (2006) suggest estimat-
ing P̃a(tN ) from differences between ensemble members.
Assuming that the errors of the different members are
mutually uncorrelated, then

P̃a(tN ) = 1

2
E

[{̃
ε a
l (tN ) − ε̃ a

l+1(tN )
}

×{̃
ε a
l (tN ) − ε̃ a

l+1(tN )
}T

]
≈ 1

2(L − 1)

L−1∑
l=0

{
xa

l (tN ) − xa
l+1(tN )

}
×{

xa
l (tN )−xa

l+1(tN )
}T

, (B.25)

where xa
L(tN ) = xa

0(tN ) = xa(tN ). The multiplicative fac-
tor 1/2 arises since ensemble members are effectively
used twice in Equation (B.25). For historical reasons,
Equation (B.25) rather than Equation (B.24) has been
used in this study.
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Raynaud L. 2007. ‘A variational assimilation ensemble and the
spatial filtering of its error covariances: increase of sample size by
local spatial averaging’. Proceedings of workshop on flow-dependent
aspects of data assimilation. ECMWF: Reading, UK. pp 151–168.

Bloom SC, Takacs LL, da Silva AM, Ledvina D. 1996. Data
assimilation using Incremental Analysis Updates. Mon. Weather Rev.
124: 1256–1271.

Buehner M. 2005. Ensemble-derived stationary and flow-dependent
background-error covariances: Evaluation in a quasi-operational
NWP setting. Q. J. R. Meteorol. Soc. 131: 1013–1044.

Buehner M, Charron M. 2007. Spectral and spatial localization
of background-error correlations for data assimilation. Q. J. R.
Meteorol. Soc. 133: 615–630.

Carton JA, Santorelli A. 2008. Global decadal upper-ocean heat content
as viewed in nine analyses. J. Climate 21: 6015–6035.

Cohn SE. 1997. An introduction to estimation theory. J. Meteorol. Soc.
Japan 75: 257–288.

Conkright ME, Antonov JI, Baranova O, Boyer TP, Garcia HE,
Gelfeld R, Johnson D, Locarnini RA, Murphy PP, O’Brien TD,
Smolyar I, Stephens C. 2002. World Ocean Database 2001, Volume
1: Introduction. NOAA Atlas NESDIS 42. US Government Printing
Office: Washington, DC.

Courtier P, Thépaut JN, Hollingsworth A. 1994. A strategy for
operational implementation of 4D-Var, using an incremental
approach. Q. J. R. Meteorol. Soc. 120: 1367–1388.

Daget N, Weaver AT, Balmaseda MA. 2008. ‘An ensemble three-
dimensional variational data assimilation system for the global
ocean: Sensitivity to the observation- and background-error variance
formulation’. Tech. Memo. No. 562. ECMWF: Reading, UK. Avail-
able at http://www.ecmwf.int/publications/library/do/references/
list/14.

Davey M, Huddleston M, Ingleby B, Haines K, Le Traon P-Y,
Weaver AT, Vialard J, Anderson DLT, Troccoli A, Vidard A,
Burgers G, Leeuwenburgh O, Bellucci A, Masina S, Bertino L,
Korn P. 2006. Multi-model multi-method multi-decadal ocean
analyses from the ENACT project. CLIVAR Exchanges 11: 22–25.

Dee DP. 2005. Bias and data assimilation. Q. J. R. Meteorol. Soc. 131:
3323–3343.

Dee DP, Todling R. 2000. Data assimilation in the presence of
forecast bias: the GEOS moisture analysis. Mon. Weather Rev. 128:
3268–3282.

Derber J, Bouttier F. 1999. A reformulation of the background error
covariance in the ECMWF global data assimilation system. Tellus
51A: 195–221.

Desroziers G, Berre L, Chapnik B, Poli P. 2005. Diagnosis of
observation, background and analysis-error statistics in observation
space. Q. J. R. Meteorol. Soc. 131: 3385–3396.

Evensen G. 2007. Data Assimilation: The Ensemble Kalman Filter.
Springer: Berlin.

Fisher M. 1998. ‘Minimization algorithms for variational data
assimilation’. In Proceedings of seminar on recent developments in
numerical methods for atmospheric modelling. ECMWF: Reading,
UK. pp 364–385.

Fisher M. 2003. ‘Background error covariance modelling’. In
Proceedings of seminar on recent developments in data assimilation
for atmosphere and ocean. ECMWF: Reading, UK. pp 35–63.

Fu LL, Fukumori I, Miller RN. 1993. Fitting dynamic models to the
Geosat sea level observations in the tropical Pacific Ocean. Part II:
A linear, wind-driven model. J. Phys. Oceanogr. 23: 2162–2181.

Fukumori I. 2000. Data Assimilation by Models. In Satellite Altimetry
and Earth Sciences: A Handbook of Techniques and Applications.
Academic Press. pp 237–265.

Gent PR, McWilliams JC. 1990. Isopycnal mixing in ocean circulation
models. J. Phys. Oceanogr. 20: 150–155.

Hamill TM, Snyder C. 2000. A hybrid ensemble Kalman fitler-3D
variational analysis scheme. Mon. Weather Rev. 128: 2905–2919.

Hamill TM, Whitaker JS. 2005. Accounting for the error due to
unresolved scales in ensemble data assimilation: A comparison of
different approaches. Mon. Weather Rev. 133: 3132–3147.

Houtekamer PL, Mitchell HL. 2001. A sequential ensemble Kalman
filter for atmospheric data assimilation Mon. Weather Rev. 129:
123–137.

Houtekamer PL, Mitchell HL. 2005. Ensemble Kalman filtering. Q. J.
R. Meteorol. Soc. 131: 3269–3289.

Ingleby B, Huddleston M. 2007. Quality control of ocean temperature
and salinity profiles – Historical and real-time data. J. Mar. Sys. 65:
158–175.
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Troccoli A, Kållberg P. 2004. ‘Precipitation correction in the ERA-40
reanalysis’. ERA-40 Project Report Series 13. ECMWF: Reading,
UK.

Tshimanga J, Gratton S, Weaver AT, Sartenaer A. 2008. Limited-
memory preconditioners, with application to incremental four-
dimensional variational data assimilation. Q. J. R. Meteorol. Soc.
134: 753–771.
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Differential operators derived from the explicit or implicit solution of a diffusion
equation are widely used for modelling background-error correlations in geophys-
ical applications of variational data assimilation. Key theoretical results underpin-
ning the diffusion method are reviewed. Solutions to the isotropic diffusion prob-
lem on both the spherical space S2 and the d-dimensional Euclidean space Rd are
considered first. In Rd the correlation functions implied by explicit diffusion are
approximately Gaussian, whereas those implied by implicit diffusion belong to the
larger class of Matérn functions which contains the Gaussian function as a limit-

ing case. The Daley length-scale, defined as D =
√

−d/∇2c(r)
∣∣
r=0

where ∇2 is the

d-dimensional Laplacian operator and r = |r| is Euclidean distance, is used as a stan-
dard parameter for comparing the different isotropic functions c(r). Diffusion on S2

is shown to be well approximated by diffusion on R2 for length-scales of interest.
As a result, fundamental parameters that define the correlation model on S2 can be
specified using more convenient expressions available on R2.

Anisotropic Gaussian or Matérn correlation functions on Rd can be represented
by a diffusion operator furnished with a symmetric and positive-definite diffusion
tensor. For anisotropic functions c(r), the tensor D = −

(
∇∇Tc(r)|r=0

)−1
where ∇ is

the d-dimensional gradient operator, is a natural generalization of the (square of) the
Daley length-scale for characterizing the spatial scales of the function. Relationships
between this tensor, which we call the Daley tensor, and the diffusion tensor of
the explicit and implicit diffusion operators are established. Methods to estimate
the elements of the local Daley tensor from a sample of simulated background
errors are presented and compared in an idealized experiment with spatially varying
covariance parameters. Since the number of independent parameters needed to
specify the local diffusion tensor is of the order of the total number of grid points
N, sampling errors are inherently much smaller than those involved in the order N2

estimation problem of the full correlation function. While the correlation models
presented in this paper are general, the discussion is slanted to their application to
background-error correlation modelling in ocean data assimilation. Copyright c©
2012 Royal Meteorological Society

Key Words: correlation functions; covariance modelling; background error; ocean data assimilation;

diffusion tensor; ensemble estimation

Received 30 June 2011; Revised 13 March 2012; Accepted 20 March 2012; Published online in Wiley Online

Library 17 May 2012

Citation: Weaver AT, Mirouze I. 2013. On the diffusion equation and its application to isotropic

and anisotropic correlation modelling in variational assimilation. Q. J. R. Meteorol. Soc. 139: 242–260.

DOI:10.1002/qj.1955

Copyright c© 2012 Royal Meteorological Society



Isotropic and Anisotropic Correlation Modelling with a Diffusion Equation 243

1. Introduction

Various methods have been proposed for modelling
background-error correlations in geophysical applications
of variational data assimilation (VDA) (see Bannister,
2008, for example, for a thorough review of methods
used in atmospheric VDA). In ocean VDA, background-
error correlation models based on the diffusion equation
are popular. The method has its origins in the work of
Derber and Rosati (1989), who proposed the use of an
iterative Laplacian grid-point filter in order to approximate a
Gaussian correlation operator. Egbert et al. (1994) described
a close variant of the algorithm in which the Laplacian
grid-point filter could be interpreted as a pseudo-time-
step integration of a diffusion equation with an explicit
scheme. Weaver and Courtier (2001) (hereafter WC01)
described the algorithm in more detail and proposed various
extensions to account for more general correlation functions
than the quasi-Gaussian of the original Derber and Rosati
(1989) algorithm. Correlation models based on explicit
diffusion methods have been used in various VDA systems
in oceanography (Weaver et al., 2003; Di Lorenzo et al.,
2007; Muccino et al., 2008; Daget et al., 2009; Kurapov et al.,
2009; Moore et al., 2011), meteorology (Bennett et al. 1996),
and atmospheric chemistry (Geer et al., 2006; Elbern et al.,
2010).

An explicit diffusion scheme is appealing because of its
simplicity, but can be expensive if many iterations are
required to keep the scheme numerically stable. This can
occur when the local diffusion scale is ‘large’ relative to the
local grid size. To keep the explicit scheme affordable, the
correlation length-scales must be bounded even if statistics
or physical considerations suggest that larger values would
be more appropriate. This limitation can be overcome by
reformulating the diffusion model using an implicit scheme
which has the advantage of being unconditionally stable.

One-dimensional (1D) implicit diffusion operators have
been used for representing temporal and vertical correlation
functions (Bennett et al., 1997; Chua and Bennett, 2001;
Ngodock, 2005) and products of 1D implicit diffusion
operators have been used for constructing two-dimensional
(2D) and three-dimensional (3D) correlation models (Chua
and Bennett, 2001; Zaron et al., 2009). The correlation
kernels associated with the 1D implicit diffusion operator
belong to the family of Mth-order autoregressive (AR)
functions where M is the number of implicit iterations
(Mirouze and Weaver, 2010; hereafter MW10). As discussed
by MW10, the 1D implicit diffusion operator is closely linked
to the recursive filter (Lorenc, 1992; Hayden and Purser,
1995), which has been developed extensively in meteorology
for constructing correlation models in multiple dimensions
(Wu et al., 2002; Purser et al., 2003a, 2003b; Liu et al.,
2007). The recursive filter has also been employed in ocean
data assimilation systems (Martin et al., 2007; Dobricic and
Pinardi, 2008; Liu et al., 2009).

The 1D implicit diffusion approach for constructing
2D and 3D correlation models can be convenient for
computational reasons, but has limitations. For example,
with few iterations, the product of 1D implicit diffusion
operators produces a well-known spurious anisotropic
response (Purser et al., 2003a). Unphysical features can
also appear near complex boundaries, such as coastlines
or islands in an ocean model, where correlation functions
cannot always be reasonably represented by a product of

separable functions of the model’s coordinates. Correlation
models based on 2D or 3D implicit diffusion operators
can overcome these limitations but are more difficult
to implement since they involve the solution of a large
linear system (matrices of dimension O(106 × 106) or
larger in VDA). Some progress in the development of
this approach has been made by Weaver and Ricci (2004)
and Massart et al.(2012), who used sparse matrix methods
to solve a 2D implicit diffusion problem directly, and by
Carrier and Ngodock (2010) and S. Gratton (2011, personal
communication), who used iterative methods based on
conjugate gradient or multi-grid to approximate the solution
of a 2D or 3D implicit diffusion problem.

Multidimensional implicit diffusion correlation operators
can be interpreted in terms of smoothing norm splines,
which were introduced to atmospheric data assimilation by
Wahba and Wendelberger (1982) and Wahba (1982), and
discussed within an oceanographic context by McIntosh
(1990). In the norm spline approach, the background term
of the cost function in VDA is formulated in terms of a linear
combination of weighted derivative operators that penalize
explicitly the amplitude and curvature of the solution. When
the weighting coefficients are given by binomial coefficients,
the inverse of the background-error correlation operator
implied by the norm spline can be expressed as the inverse of
an implicit diffusion operator. The direct penalty approach
was popular in some of the early studies of four-dimensional
VDA (Thacker, 1988; Sheinbaum and Anderson, 1990)
but generally leads to a poorly conditioned minimization
problem (Lorenc et al., 2000). Effective preconditioning
techniques for VDA require access to the background-
error covariance operator itself. An interesting exception is
the recent study of Yaremchuk et al. (2011), who propose
a variational formulation in which the inverse of the
background-error covariance is modelled directly using the
inverse of a low-order (two-iteration) 3D implicit diffusion
operator. No apparent conditioning problems were reported
in their examples from an ocean VDA system.

The present paper has a dual purpose: first, to provide a
review of the diffusion equation as a basis for constructing
anisotropic and inhomogeneous correlation models for data
assimilation; and second, to illustrate how fundamental
parameters that control spatial smoothness properties of
these models can be estimated using ensemble methods.
Section 2 brings together key results from data assimilation
and geostatistics on the isotropic diffusion problem.
Diffusion is considered both on the sphere and in the
d-dimensional Euclidean space. Analytical expressions for
the isotropic correlation functions implied by appropriately
normalized explicit and implicit diffusion in these spaces
are presented and compared. The Daley length-scale is
used as a standard parameter for comparing the different
functions, and expressions relating it to the parameters of
the diffusion-model are established.

The results from section 2 provide the foundation for
building anisotropic correlation models with the diffusion
equation. This is discussed in sections 3 and 4. The Daley
tensor is introduced, which is defined as the negative
inverse of the tensor of second derivatives of the correlation
function evaluated at zero distance (the Hessian tensor).
The Daley tensor is an anisotropic generalization of the
Daley length-scale. Expressions relating the Daley tensor
to the diffusion tensor of the diffusion models are given.
Section 4 discusses techniques for estimating the Daley
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tensor from statistics of a sample of simulated errors
such as those that would be available from an ensemble
data assimilation system. Idealized experiments are then
presented to compare the effectiveness of two of the
estimation techniques. Conclusions are given in section
5. Appendix A provides a derivation of the relationship
between the Daley and diffusion tensors for the correlation
functions represented by the implicit diffusion equation in
R2. Appendix B provides a derivation of the key formulae
for estimating the Daley tensor.

2. Isotropic diffusion

Coordinate systems of global atmospheric and ocean models
refer to the spherical-shell geometry of the atmosphere and
ocean. From a mathematical perspective, this leads naturally
to consideration of 2D ‘horizontal’ correlation functions on
the spherical space S2. The product of a 2D correlation
function on S2 and a 1D correlation function on the
bounded subset of the Euclidean space R1 is commonly
used to construct 3D correlation functions on the spherical-
shell subspace of R3 that defines the model domain.
This approach of separating the horizontal and vertical
correlation functions is usually justified by the fact that the
global atmospheric and ocean circulations are characterized
by scales that are much larger in the horizontal direction
(along geopotential surfaces) than in the vertical direction
(perpendicular to geopotential surfaces). In the remainder of
this section, the correlation functions that can be represented
by isotropic diffusion on S2 and the general Euclidean space
Rd are described. Table 1 provides a brief description of the
main symbols used in this section.

2.1. Explicit diffusion on S2

Consider the 2D diffusion equation applied to the scalar
field η(λ, φ, s):

∂η

∂s
− κ∇2η = 0, (1)

where κ > 0 is a diffusion coefficient, and

∇2 =
1

a2 cos φ

∂

∂φ

(
cos φ

∂

∂φ

)
+

1

a2 cos2 φ

∂2

∂λ2

is the Laplacian operator in geographical coordinates
(λ, φ), λ denoting longitude (0 ≤ λ ≤ 2π), φ latitude
(−π/2 ≤ φ ≤ π/2), and a the radius of the sphere (the
Earth’s radius in our case). In the context of this paper, s is
to be interpreted as a dimensionless pseudo-time coordinate.
The diffusion coefficient then has physical units of length
squared. The solution of Eq. (1) on S2 can be interpreted as
a covariance operator (e.g. see WC01). Let

η(λ, φ, 0) = γ s η̃(λ, φ) (2)

denote the initial condition, where γ s is a normalization
constant. The solution at some s > 0 can be expressed as the
integral operator Cs : η̃ 7→ η(s),

η(λ, φ, s) =
∫

S2
cs(θ) η̃(λ′, φ′) a2 cos φ′ dλ′ dφ′, (3)

Table 1. A list of the main generic symbols used in section 2. The

specification of the superscripts α and β is summarized in the bottom table.

A quantity in Rd is supplemented with a subscript d if it depends explicitly

on the dimension of the space; otherwise it is omitted.

Symbol Description

Cα , Cβ Correlation operators on Rd and S2

Cα(x, x′) General correlation function on Rd

x Vector of Cartesian coordinates

cα
d (r) Isotropic correlation function on Rd

r Euclidean distance

ĉ α
d (x̂) Fourier transform of cα

d(r)

x̂ Vector of spectral wave numbers

cβ(θ) Isotropic correlation function on S2

θ Angular separation

c
β
n Legendre coefficients for cβ(θ)

n Total wave number

Dα , Dβ Daley length-scale of cα
d(r) and cβ(θ)

γ α
d , γ β Normalization constants on Rd and S2

Superscript Description

α g Regular diffusion on Rd

w Implicit diffusion on Rd

β s Regular diffusion on S2

h Implicit diffusion on S2

where cs(θ) is an isotropic function that depends on the
angular separation θ , 0 ≤ θ ≤ π , between points (λ, φ) and
(λ′, φ′) on the sphere:

cos θ = cos φ cos φ′ cos (λ−λ′) + sin φ sin φ′. (4)

The normalization constant γ s in Eq. (2) has been
absorbed into the function cs(θ) which has the specific
form

cs(θ) =
∞∑

n=0

cs
n P0

n(cos θ), (5)

where

cs
n =

γ s

4πa2

√
2n + 1 exp

(
−

κs

a2
n(n + 1)

)
, (6)

n being the total wave number, and P0
n(cos θ) the Legendre

polynomials, normalized such that P0
n(1) =

√
2n + 1, fol-

lowing the usual convention in meteorology (Courtier et al.,
1998). All isotropic covariance functions on S2 can be
expressed, as in Eq. (5), as an expansion in terms of the
Legendre polynomials (Weber and Talkner, 1993; Theorem
2.11 of Gaspari and Cohn, 1999). They are positive-definite
functions on S2 if the spectral coefficients are positive, which
is clearly the case for all of the coefficients cs

n. Equation (3)
is thus a valid covariance operator on S2.

The covariance function is readily transformed into a cor-
relation function (cs(0) = 1) by defining the normalization
constant as

γ s = 4πa2

( ∞∑

n=0

(2n + 1) exp
(
−

κs

a2
n(n + 1)

))−1

. (7)

The fundamental parameter controlling the shape of the
correlation function is the product κs in Eq. (6). To define
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the length-scale of cs(θ), we use the standard definition
from Daley (1991, p. 110), the geometrical interpretation of
which is discussed by Pannekoucke et al. (2008). For cs(θ),
the Daley length-scale reads

Ds =

√
−

2

∇2cs|θ=0

= a

√
2∑∞

n=0 n(n + 1)
√

2n + 1 cs
n

. (8)

Equations (6) and (8) provide a relationship between
κs and Ds that allows us to control the correlation shape
(length-scale).

Now consider a discretized version of Eq. (1) in which the
first-order derivative is approximated using a forward-Euler
(explicit) scheme. This yields

η(λ, φ, sm) = η(λ, φ, sm−1) + κ 1s∇2η(λ, φ, sm−1), (9)

where m is a positive integer, 1s = sm − sm−1 is the step
size, and ∇2 is understood to be the Laplacian operator
in discretized form. For convenience, we can assume that
sm = m so that the step size 1s = 1. This parameter can thus
be ignored hereafter without loss of generality. Repeated
applications of Eq. (9) on the interval 0 < m ≤ M leads to
the linear operator

η(λ, φ, M) =
(
1 + κ∇2

)M
η(λ, φ, 0), (10)

where η(λ, φ, 0) is given by Eq. (2). For clarity we let

κ = L2, (11)

to emphasize that the coefficient is positive and can be
interpreted as the square of a scale parameter.

The key idea is that, on a numerical grid, the effect of
the integral correlation operator (3) on an arbitrary scalar
field η̃(λ, φ) can be approximated by applying a discretized
differential operator (10). This is the essence of the original
Derber and Rosati (1989) scheme. The parameter κs of the
correlation function cs(θ) can be related to the parameters
M and κ of Eq. (10) by noticing that κs = κM = ML2.
In practice, it is customary to prescribe the Daley length-
scale (Ds). Given Ds, the product ML2 can be determined
by a non-trivial inversion of Eq. (8). This has been done
by trial and error for the illustrative examples presented
in this paper. To determine M and L2 from the product
ML2, we have an additional requirement that M must be
sufficiently large (L2 sufficiently small) in order to maintain
the numerical stability of the explicit scheme. Provided M
is not too ‘large’, applying the discretized operator (10)
is an efficient way of evaluating the integral operator (3).
What defines an acceptable value of M will depend on the
application.

To represent a larger family of correlation functions than
Eqs (5) and (6), WC01 proposed a generalized diffusion
model in which the scaled Laplacian in Eq. (1) is replaced
by a linear combination of powers of scaled Laplacians:

−κ∇2 7→
P∑

p=1

κp(−∇2)p, (12)

where the diffusion coefficients κp > 0 can be related to a
general set of scale parameters Lp via the equation

κp = L
2p
p , p = 1, . . . , P. (13)

The resulting correlation functions have the same basic
form as Eq. (5) but with the cs

n given by

cs
n =

γ s

4πa2

√
2n + 1 exp


−

P∑

p=1

κps

a2p
(n(n + 1))p


, (14)

and the appropriate modification to γ s to produce a unit-
amplitude function. Equation (6) is a special case of Eq.
(14) with P = 1. Unlike the standard diffusion model,
the generalized diffusion model can be used to represent
correlation functions that change sign, as illustrated in
Figure 1 of WC01. This is an appealing feature if there is
compelling evidence of negative correlations in the error
fields, although representing them with powers of Laplacian
operators would clearly increase the cost of the correlation
model.

2.2. Explicit diffusion on Rd

Now consider the diffusion equation (1) on the d-
dimensional Euclidean space Rd, where ∇2 now rep-
resents the Laplacian operator in Cartesian coordinates
x = (x1, . . . , xd). While our particular interest concerns the
spaces R1, R2 and R3, it is easier to consider them as special
cases of the general diffusion problem in Rd. The initial
condition of the diffusion problem can be written as

η(x, 0) = γ
g

d η̃(x), (15)

where γ
g

d > 0 is a normalization constant and η̃(x) is
assumed to be bounded at infinity. Using the Fourier
transform (FT), the solution at ‘time’ s > 0 can be written
as a convolution operator Cg

d : η̃ 7→ η(s):

η(x, s) =
∫

Rd
C(x, x′) η̃(x′) dx′, (16)

where C(x, x′) = cg(r) is the Gaussian function

cg(r) =
γ

g

d

(4πκs)d/2
e−r2/4κs, (17)

r = |x − x′| being the Euclidean distance between points x
and x′ on Rd. Setting the normalization factor to

γ
g

d = (4πκs)d/2 (18)

ensures that cg(0) = 1.
The Daley length-scale for any twice differentiable,

isotropic correlation function c(r) in d dimensions is given
by

D =
√

d

tr
(
−∇∇Tc

∣∣
r=0

) =
√

−
d

∇2c
∣∣
r=0

, (19)

where ∇∇T is the outer product of the d-dimensional gradi-
ent operator ∇ = (∂/∂x1 . . . ∂/∂xd)T and its transpose. The
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Figure 1. The grid-point values ch(r(θ)) (upper panel) and the variance-
power spectra

√
2n + 1 ch

n (lower panel) of sample correlation functions
generated with Eqs (5) and (30) using different values of M. The scale
parameters have been set to L = 353 km, L = 250 km and L = 125 km
for the functions corresponding to M = 3 (dashed-dotted curves), M = 4
(dashed curves) and M = 10 (dotted curves), respectively, in order to
achieve a common Daley length-scale of Dh = 500 km (see Eq. (8)). The
Gaussian correlation function cg(r(θ)) (Eq. (24)) with Dg = 500 km is
shown for reference (thick solid curves). The correlation functions in the
upper panel are plotted as a function of chordal distance (Eq. (23)). A
spectral truncation at n = 500 has been used. The lower panel is plotted on
a log-log scale.

quantity within the trace operator is the correlation Hessian
tensor (Chorti and Hristopulos, 2008). The Hessian tensor
plays a fundamental role in characterizing the anisotropic
correlation functions described later in this paper (sections 3
and 4). For the d-dimensional Gaussian function, the Daley
length-scale is

Dg=
√

2κs. (20)

In terms of Dg, the normalization factor is

γ
g

d=(2π)d/2(Dg)d. (21)

As before, we can approximate Eq. (16) with a differential
operator based on a discretization of the diffusion equation
using an M-step explicit scheme. In terms of the parameters
M and L2 of the explicit diffusion operator, Eqs (20) and
(21) become

Dg =
√

2ML (22)

and γ
g

d = (4Mπ)d/2Ld.

Let us consider now the interpretation of the Gaus-
sian function on S2. First, since S2 is embedded in R3, a
valid isotropic correlation function on S2 can always be
constructed from a valid isotropic correlation function in
R3 by restricting x = (x1, x2, x3) and x′ = (x′

1, x′
2, x′

3) to be
points on the sphere. Expressing these points in geographi-
cal coordinates x = (a cos φ cos λ, a cos φ cos λ, a sin φ) and
x′ = (a cos φ′ cos λ′, a cos φ′ sin λ′, a sin φ′) leads to the
chordal distance measure

r = r(θ) = a
√

2(1 − cos θ), 0 ≤ θ ≤ π , (23)

where cos θ is given by Eq. (4). The Gaussian correlation
function on R3 confined to the subspace S2 is thus

cg(r(θ)) = e−(r(θ))2/2(Dg)2 = e−a2(1−cos θ)/(Dg)2
.

From Eq. (23) we notice that r depends only on cos θ ,
or alternatively θ , and that cos θ = 1 − r2/2a2, where
0 ≤ r ≤ 2a. We also recall that all isotropic correlation
functions on S2 can be expressed as a Legendre expansion
that depends only on cos θ (Eq. (5)). It is then possible
to represent any isotropic correlation function on S2 as a
function of either r or θ .∗

In particular, consider the representation of the Gaussian
on S2 in terms of the Legendre polynomials. As shown in
WC01:

cg(θ) =
∞∑

n=0

cg
n P0

n(cos θ)′, (24)

where

cg
n = γ̃ g

√
2n + 1

In+1/2(ω)

I1/2(ω)

and γ̃ g =
e−ω sinh(ω)

ω
,

In+1/2(ω) denoting the modified Bessel function of fractional

order n + 1/2, andω = (a/Dg)2. In view of the results onRd,
one might expect that the correlation kernel cs(θ) implied by
diffusion onS2 (Eq. (5)) is similar to the Gaussian correlation
function (24) on S2. Indeed, for a given length-scale Dg, it
is possible to find a corresponding parameter κs in Eq. (6)
such that the difference between cs(θ) and cg(θ) is ‘small’
(Roberts and Ursell, 1960; Hartman and Watson, 1974).
In particular, consider the scales of interest in atmospheric
and ocean data assimilation for which ω ≫ 1. Matching the
n = 0 coefficients cs

0 and c
g
0 of the Legendre polynomials and

noting that

γ̃ g ≈
(Dg)2

2a2

for large ω, we obtain the approximation to the
normalization factor

γ s ≈ 2π(Dg)2. (25)

∗Isotropic correlation functions on S2 will be written explicitly as a
function of r(θ) whenever the context requires an interpretation in
terms of chordal distance.
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Now matching the n = 1 coefficients cs
1 and c

g
1 and using

(25) leads to the approximation

κs ≈
(Dg)2

2
. (26)

WC01 illustrate the excellent agreement between cs(θ)
and cg(θ), particularly for the large scales, for a given length-
scale Dg and with κs approximated according to Eq. (26)
(see their Figure A1).

Equations (25) and (26) are none other than those derived
earlier for the diffusion problem in R2 (cf. Eqs (21) and
(20) with d = 2). In other words, for length-scales small
compared to the radius of the Earth, we obtain the somewhat
intuitive result that diffusion on the sphere (the Cs operator)
is well approximated by diffusion on the 2D Cartesian plane
(the Cg

2 operator). For calibrating the correlation model, it
is then possible to employ the simple expressions (26) and
(25) for the length-scale and normalization factor in place
of the more complicated expressions (8) and (7).

There are two main drawbacks with the generalized
explicit diffusion model of WC01. First, the correlation
functions that can be represented by the model have limited
flexibility in the spectral domain, especially at high wave
numbers where their decay rates are at least as fast as that of
the Gaussian function. In data assimilation, this can result
in excessive smoothing of small-scale features in the analysis
(Purser et al., 2003b). Second, the explicit scheme is subject
to a stability criterion that depends on the ratio of the
length-scale and grid size, raised to the power of 2P. As a
result, many iterations may be required when the length-
scale is large compared with the grid resolution. With the
variable coefficient and anisotropic versions of the model
discussed later, the computational cost of the algorithm can
be especially high. A diffusion model based on an implicit
formulation can overcome these limitations, as described
next.

2.3. Implicit diffusion on S2

Consider again the diffusion equation (1) but this time
discretized using a backward-Euler (implicit) scheme:

η(λ, φ, sm) = η(λ, φ, sm−1) + κ 1s∇2η(λ, φ, sm), (27)

where, as in Eq. (10), we can assume sm = m and hence
1s = 1, and interpret κ as the square of a scale parameter
(Eq. (11)). Rearranging Eq. (27) and applying it repeatedly
on the interval 0 < m ≤ M leads to the ‘reverse-time’ or
inverse diffusion operator

(
1 − κ∇2

)M
η(λ, φ, M) = η(λ, φ, 0). (28)

Equation (28) can be interpreted as a roughening operator
as opposed to the diffusion operator itself, which is a
smoothing operator.

Following Eq. (2), we define the initial condition as

η(λ, φ, 0) = γ h η̃(λ, φ) (29)

where γ h is a normalization constant. Weaver and
Ricci (2004) show that the differential operator
(Ch)−1 : η(M) 7→ η̃ is the inverse of a correlation opera-
tor Ch : η̃ 7→ η(M), where the latter is given by an integral

equation of the form (3), with isotropic correlation function
ch(θ) of the Legendre form (5) as its kernel. The spectral
coefficients of ch(θ) are strictly positive and given by

ch
n =

γ h

4πa2

√
2n + 1

(
1 +

L2

a2
n(n + 1)

)−M

. (30)

The normalization factor is

γ h = 4πa2

( ∞∑

n=0

(2n + 1)

(
1 +

L2

a2
n(n + 1)

)−M
)−1

(31)

and the Daley length-scale is given by Eq. (8) with cs
n replaced

by ch
n .

In the explicit diffusion model, the only free parameter
was the product κsM = ML2 which controls the spatial
scale of the quasi-Gaussian correlation kernel (Eq. (6) with
s = sM). The implicit diffusion model, on the other hand,
allows for greater control of the shape characteristics of the
associated correlation kernels since both L2 and M are free
parameters. Numerically, this extra flexibility is reflected
by the important property of unconditional stability of the
implicit scheme. In the limiting case of M → ∞, with ML2

held fixed, the spectral coefficients (30) reduce to those of
the quasi-Gaussian solution which is the only correlation
function that can be represented by solving the diffusion
equation explicitly.

The upper panel in Figure 1 displays correlation functions
ch(r(θ)) for different values of M and a constant Daley
length-scale (500 km). The values are plotted as a function of
chordal distance r(θ). The Gaussian function cg(r(θ)) is also
shown for reference. Increasing the value of M decreases the
‘fatness’ of the tail of ch(r(θ)), with the Gaussian providing
the upper limit as M → ∞. The total variance of ch(r(θ)) and
cg(r(θ)) is given by their value at the origin, which is equal
to one. The coefficients

√
2n + 1 ch

n and
√

2n + 1 c
g
n give the

contribution of each wave number n to the total variance
of ch(r(θ)) and cg(r(θ)), respectively, and thus define the
variance-power spectra. The lower panel in Figure 1 shows
a log-log plot of this spectra as a function of n. Here we
see that the increased fatness in correlation shape for low
values of M is associated with higher variance and a reduced
damping rate in the small scales, slightly less variance in
the intermediate scales, and increased variance in the large
scales.

As with the generalized diffusion equation, a linear
combination of powers of scaled Laplacian operators (12)
can be introduced in Eq. (28) to yield a larger family
of correlation functions, but at extra cost. The spectral
coefficients of this larger family are given by

ch
n =

γ h

4πa2

√
2n + 1


1 +

P∑

p=1

(
L2

p

a2

)p

(n(n + 1))p




−M

,

(32)

with γ h modified accordingly so that ch(0) = 1. The
smoothing spline functions introduced by Wahba (1982)
correspond to the special case of Eqs (5) and (32) for which
M = 2.

Increasing the degree P of the polynomial of the Laplacian
leads to correlation functions that oscillate about the zero
axis. This is illustrated in the upper panel of Figure 2,
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Figure 2. As Figure 1 but for sample correlation functions generated with
Eqs (5) and (32) with a fixed value of M = 4 and different values of P. The
scale parameters have been adjusted to yield a common Daley length-scale
of 500 km: L1 = 250 km with P = 1 (dashed-dotted curves), L1 = 0 and
L2 = 206 km with P = 2 (dashed curves), L1 = L2 = 0, L3 = 209 km with
P = 3 (dotted curves).

where the generalized ch(r(θ)) are displayed with different
values of P but a fixed value of M = 4. The amplitude
of the negative lobes increases with increasing value of P.
In spectral space, the negative lobes are associated with a
decrease in variance in the large scales and an increase in
variance in the intermediate scales. Increasing the value P
also leads to a steepening of the decay rate of the variance in
the smaller scales.

A straightforward variant of Eq. (32) that can be used to
enhance the oscillations while maintaining a gradual spectral
decay rate at high wave numbers is

ch
n =

γ h

4πa2

√
2n + 1


1 +

P∑

p=1

ρp

(
L2

p

a2

)p

(n(n + 1))p




−M

,

(33)

where ρp is a dimensionless coefficient that can take on both
negative and positive values. This is equivalent to redefining
the diffusion coefficients (13) as κp = ρpL2p. Equation (33)
yields positive coefficients by restricting M to be even.
Examples are shown in Figure 3 for the case P = 2 and
M = 2, and a single scale parameter L1 = L2 = L. Here
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Figure 3. As Figure 1 but for sample correlation functions generated with
Eqs (5) and (33) with a fixed value of M = 2, P = 2 and ρ2 = 1, and
different values of ρ1. A single scale parameter L1 = L2 = L has been used
and adjusted to yield a common Daley length-scale of 500 km: L = 308 km
with ρ1 = −1 (dashed-dotted curves), L = 326 km with ρ1 = −1.5 (dashed
curves), and L = 340 km with ρ1 = −1.8 (dotted curves).

ρ2 has been set to one and negative values have been
used for ρ1. Increasing the magnitude of ρ1 results in
a significant increase in the amplitude of the oscillations
and a much sharper spectral peak at intermediate scales.
Notice that by setting ρ1 = 2 we recover the non-oscillatory
correlation function governed by Eq. (30) with M = 4,
which is displayed in Figure 1 (dashed curves).

On a numerical grid, Ch can be approximated by a
discrete operator that solves the linear system (28)–(29)
for a given right-hand side η̃(λ, φ). We refer to Ch as an
implicit diffusion correlation operator. Although the cost of
each iteration of an implicit diffusion operator will generally
increase relative to that of the explicit scheme, the total cost
of the implicit algorithm can easily decrease through the
possibility of performing significantly fewer iterations.

2.4. Implicit diffusion on Rd

The starting point is the following general fractional
differential operator (Cw

d )−1 : ψ 7→ ψ̃ (Whittle, 1954, 1963;
Guttorp and Gneiting, 2006):

(γ w
d )−1

(
1 − L2∇2

)ν+d/2
ψ(x) = ψ̃(x), (34)
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where ψ̃(x) ∈ Rd is assumed to be bounded at infinity, ν > 0
is a smoothness parameter, and γ w

d > 0 is a normalization
constant that depends on the dimension of the space. The
FT of Eq. (34) gives the relation

ψ̂(x̂) = ĉ w
d (r̂) ̂̃ψ(x̂), (35)

where ψ̂(x̂) and ̂̃ψ(x̂) denote the FTs of ψ(x) and ψ̃(x),
respectively, and

ĉ w
d (r̂) =

γ w
d(

1 + L2 r̂2
)ν+d/2

, (36)

r̂ = |x̂| being the norm of the vector of spectral wave
numbers associated with x (see also Yaglom, 1987, p. 363,
Eq. (4.130); Stein, 1999, p. 49, Eq. (32); or Gneiting et al.,
2009, p. 16, Eq. (20)). Setting

γ w
d = 2dπd/2 Ŵ(ν + d/2)

Ŵ(ν)
Ld, (37)

where Ŵ(ν) denotes the Gamma function, and applying the
inverse FT to Eq. (35) leads to an integral solution of the
general form (16), where C(x, x′) = cw(r) is a unit-amplitude
isotropic function given by

cw(r) =
21−ν

Ŵ(ν)

( r

L

)ν

Kν

( r

L

)
, (38)

Kν(r/L) denoting the modified Bessel function of the second
kind of order ν, and r = |x − x′|. Since ĉ w

d (r̂) is strictly

positive, cw(r) is a valid correlation function inRd (Bochner’s
theorem; see Theorem 2.10 in Gaspari and Cohn, 1999).
Notice that the power spectrum ĉ w

d (r̂) depends on d but the
correlation function itself cw(r) is independent of d.

Equation (38) is a class of correlation function well known
in the geostatistical literature as the Whittle–Matérn or
Matérn family (Gneiting, 1999; Stein, 1999; Guttorp and
Gneiting, 2006). The link between this correlation family
and the fractional differential operator (34) is attributed
to Whittle (1954, 1963). Of particular interest here is the
subclass of Matérn functions that correspond to (positive)
integer values of the parameter M = ν + d/2. For this
subclass, the inverse correlation operator (Cw

d )−1 has a
greatly simplified representation for numerical applications
and can be interpreted as an M-step implicitly formulated
diffusion operator (MW10), where (cf. Eqs (15) and (16))

ψ̃(x) 7→ η(x, 0) = γ w
d η̃(x),

ψ(x) 7→ η(x, M).

The correlation kernels and their associated FT are given
by

cw
d(r) =

21−M+d/2

Ŵ(M − d/2)

( r

L

)M−d/2

KM−d/2

( r

L

)
, (39)

and

ĉ w
d (r̂) =

γ w
d(

1 + L2 r̂2
)M

.

Equation (39) yields valid correlation functions if
M > d − 1 (ν > 0; Guttorp and Gneiting, 2006). Notice

also that in contrast to the full Matérn family, the implicit-
diffusion kernels depend on d (which has been made explicit
by adding the subscript d in cw

d (r)) but their normalized
power spectrum ĉ w

d (r̂)/ ĉ w
d (0) is independent of d. For odd

values of d, Eq. (39) reduces to a polynomial of order
M − (d + 1)/2 times an exponential function; this is the
well-known class of AR functions.

Of relevance here are the spaces R1, R2 and R3. The
implicit-diffusion kernels on these spaces can be written
explicitly as

cw
1(r) =

M−1∑

j=0

βj,M

( r

L

)j

e−r/L, (40)

cw
2(r) =

22−M

(M−2)!

( r

L

)M−1

KM−1

( r

L

)
, (41)

and cw
3(r) =

M−2∑

j=0

βj,M−1

( r

L

)j

e−r/L, (42)

where

βj,M =
2j(M − 1)! (2M − j − 2)!

j! (M − j − 1)! (2M − 2)!
.

From Eq. (37), the expressions for the normalization
constants become

γ w
1 =

22M−1[(M − 1)!]2

(2M − 2)!
L,

γ w
2 = 4π(M − 1) L2 (43)

and γ w
3 =

22M−1π[(M − 2)!]2(M − 1)

(2M − 4)!
L3.

Using Eq. (19), the Daley length-scale of the implicit
diffusion kernels in Rd can be evaluated as

Dw
d =

√
2M − d − 2 L. (44)

Equation (44) is derived in MW10 for d = 1 and in
Appendix A for d = 2. The generalization to d > 2 follows
by noting that the correlation functions associated with
odd d all have the form (40) with M 7→ M − (d − 1)/2,
while those functions with even d all have the form (41)
with M 7→ M − (d − 2)/2. Equation (44) imposes further
restrictions on the choice of M where now we require

M >

{
(d + 1)/2 if d odd,

(d + 2)/2 if d even.

InR2, for example, we require M > 2. Finally, even values
of M are more convenient than odd values of M since they
greatly simplify the derivation of a ‘square-root’ factor of
the diffusion operator, which is important for estimating
normalization factors and for preconditioning in variational
assimilation (WC01).

The explicit diffusion kernels are the limiting case of
the implicit diffusion kernels as M → ∞ with Dw

d fixed.
This is easily deduced from Eqs (36), (37) and
(44) where, for M = ν + d/2 large, Dw

d 7→ Dg (Eq.

(22)), γ w
d 7→ γ

g

d (Eq. (21)), and ĉ w
d (r̂) 7→ γ

g

d ĉ g(r̂), where

ĉ g(r̂) = exp (−r̂2(Dg)2/2) is the FT of the d-dimensional
Gaussian function (17). Based on the similarity of the
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Figure 4. A comparison of the correlation functions ch(r(θ)) (Eqs (5) and
(30)), cw

2(r(θ)) (Eq. (41)) and cw
3(r(θ)) (Eq. (42)) for M = 4. The four sets of

curves correspond to Daley length-scales of 500 km, 1000 km, 2000 km and
4000 km (curves from left to right, respectively). Correlations are plotted
as a function of chordal distance. A spectral truncation at n = 500 has been
used for ch(r(θ)).

explicit diffusion kernels on S2 and R2 when (Dg/a)2 ≪ 1,
one would expect similar agreement between the implicit
diffusion kernels on S2 and R2 when (Dw

2 /a)2 ≪ 1.

Figure 4 shows the correlation function ch(r(θ)) for
M = 4 plotted as a function of chordal distance r(θ) for
four different Daley length-scales Dh (solid curves). For
comparison, the correlation functions cw

2(r(θ)) for M = 4
are also shown (dashed curves). The Daley scales Dw

2

have been set to Dh and then the corresponding L have
been computed from Eq. (44). As expected, the curves
are virtually indistinguishable for length-scales of primary
interest (<1000 km). Only when the length-scale exceeds
2000 km do noticeable differences appear, and these mainly
occur in the tail of the function. In other words, the
differential operator (Ch)−1 on S2 can be well approximated
locally by the differential operator (Cw

2 )−1 acting on the
tangent plane R2. The simple relations (43) and (44) can
then be used in place of the spectral expansions (31) and
(8) to provide a good approximation of the normalization
factor and length-scale. This is convenient especially with
grid-point ocean models where spectral expansions cannot
be readily computed due to the presence of complex land
boundaries.

It is important to stress, however, that cw
2(r(θ)) itself is not a

valid correlation function onS2. A valid correlation function
onS2 from the Matérn family is the AR function cw

3(r(θ)). For
example, Gaspari and Cohn (1999) discuss the second-order
AR (SOAR) function on S2 (see their Eq. (2.36)). Figure 4
shows the fourth-order AR function for different length-
scales (dashed-dotted curves). The differences between
cw

3(r(θ)) and ch(r(θ)) are larger than those between cw
2(r(θ))

and ch(r(θ)) but still quite small for length-scales less than
1000 km.

A more general set of correlation functions on Rd can be
modelled using a linear combination of implicit diffusion
operators or a generalized implicit diffusion operator
constructed from the inverse of a polynomial of Laplacian
operators raised to the power of M (MW10; Yaremchuk
and Smith, 2011; or see Purser et al., 2003b, for related
approaches involving the recursive filter). The correlation

functions generated by the first approach are described by a
linear combination of Matérn functions where the weighting
coefficients for each function are specified such that the
combined function is positive definite. Gregori et al. (2008)
provide general conditions on the model parameters for
achieving this. MW10 provide an example in R1 in which
two SOAR functions are combined to produce a correlation
function with negative lobes.

The second approach is analogous to the one outlined
in section 2.3 for the problem on S2 (Eqs (32) and (33)).
Hristopulos (2003), Hristopulos and Elogne (2007) and
Yaremchuk and Smith (2011) have studied extensively
the special case M = 1 and P = 2 on Rd for which the
parameter settings κ1 = ρ L2 and κ2 = L4 with ρ < 0
and satisfying ρ2 < 4 yield a family of positive-definite,
oscillatory functions such as those illustrated in Figure 3 on
S2. With all of these approaches, however, the advantages
of increasing the flexibility in the correlation model have to
be carefully measured against the increase in computational
cost that results from the need to solve additional or more
complicated large linear systems, and the difficulty of having
to estimate additional parameters.

3. Anisotropic diffusion

Isotropic correlation models are commonly used in data
assimilation algorithms because of their simplicity and
computational convenience. There is no reason, however,
to expect actual background-error correlations to be
isotropic in geophysical fluids such as the ocean. On the
contrary, one would expect them to be strongly anisotropic,
particularly near coastlines, bathymetry, or ocean fronts.
General anisotropic correlation models allow for preferential
stretching or shrinking of the correlation functions along
arbitrary directions. With a diffusion-based correlation
model this can be done using a diffusion tensor, as
outlined in this section. To fix the concepts and definitions,
we focus mainly on the homogeneous and anisotropic
problem. Methods for estimating the parameters of a
general inhomogeneous and anisotropic diffusion model
are described in section 4.

3.1. Homogeneity and anisotropy

Consider the 2D diffusion equation on R2,

∂η

∂s
− ∇ · κ∇η = 0, (45)

where κ ∈ R2 × R2 is an anisotropic, but constant diffusion
tensor

κ =
(

κxx κxy

κyx κyy

)
(46)

which is assumed to be symmetric (κyx = κxy) and positive

definite (κxxκyy > κ2
xy) so that κ is guaranteed to be

invertible. The diagonal terms of the tensor determine the
strength of the diffusion in the coordinate directions x and
y, while the off-diagonal elements allow the principal axes
of the diffusion to be rotated relative to x and y.

The solution of Eq. (45) is a straightforward extension
of the solution to the isotropic problem (Pannekoucke
and Massart, 2008; Pannekoucke, 2009). Given the initial
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condition η(x, y, 0) = γ
g
2 η̃(x, y), the solution can be

expressed as Eq. (16) (with d = 2) where the kernel is
given by the Gaussian function

cg( r̃ ) =
γ

g
2

4π s|κ |1/2
e−̃r 2/4s, (47)

|κ | denoting the determinant of κ , and r̃ the non-
dimensional distance measure

r̃ =
√

(x − x′)T κ−1 (x − x′), (48)

with x = (x, y)T. From this definition, κ can also be
interpreted as the aspect tensor of the Gaussian function
(47) (Purser et al., 2003b). The elements of κ have physical
units of length squared. Setting

γ
g
2 = 4π s |κ |1/2

ensures that cg(0) = 1.
For a homogeneous and at least twice-differentiable

correlation function, we can define the Hessian tensor
(Swerling, 1962; Hristopulos, 2002; Chorti and Hristopulos,
2008), which for the 2D Gaussian function is

H
g = − ∇ ∇Tcg

∣∣̃
r=0

, (49)

where ∇∇T is the outer product of the 2D gradient operator
∇ = (∂/∂x ∂/∂y)T and its transpose. The correlation
Hessian tensor is of interest here since it is a quantity that
can be estimated from sample statistics of background error
(see section 4). Following the basic procedure described in
Appendix A, it is straightforward to verify that

H
g =

1

2s
κ

−1. (50)

In the isotropic case, κ = κ I and hence H
g = (Dg)−2

I

where (Dg)2 = 2κs is the square of the Daley length-scale.
The inverse of the tensor (49)

D
g := (H

g)−1 (51)

can thus be considered as a generalization of the (square of
the) Daley length-scale to the anisotropic case. We will thus
refer to this quantity as a Daley tensor.

For the 3D diffusion equation, the diffusion tensor
κ ∈ R3 × R3 contains six independent elements:

κ =




κxx κxy κxz

κyx κyy κyz

κzx κzy κzz


 (52)

where κyx = κxy, κzx = κxz and κzy = κyz. In direct analogy
with the 2D problem, the integral solution involves a 3D
Gaussian kernel with aspect tensor given by (52), and
normalization constant given by γ

g
3 = (4π s)3/2|κ |1/2 (cf. Eq.

(18)). The relationships (49)–(51) hold for the 3D problem
with ∇ now interpreted as the 3D gradient operator.

To approximate a 2D or 3D anisotropic and homogeneous
Gaussian correlation operator numerically, we can solve Eq.
(45) with an explicit scheme,

η(x, M) = γ
g

d (1 + ∇ · κ∇)M η̃(x),

where from Eqs (50) and (51)

κ =
1

2M
D

g, (53)

and the operator 1 + ∇ · κ∇ is understood to be in discrete
form. If the non-diagonal tensor elements of κ are zero,
which can always be achieved by rotating the model
coordinates to be aligned with the principal axes of the
ellipse or ellipsoid implied by Eq. (48) (see, for example,
Xu, 2005), then the 2D or 3D Gaussian operator can be
replaced by a product of 1D Gaussian operators acting
independently along each direction x, y and z. Ignoring
boundary conditions, each 1D Gaussian operator can in
turn be approximated by a 1D diffusion operator discretized
using an M-step explicit scheme.

Extending these results to the d-dimensional implicit case,
we can define a set of anisotropic and homogeneous Matérn
correlation operators, with ν = M − d/2, as solutions to the
following linear system (cf. Eq. (34)):

(γ w
d )−1(1 − ∇ · κ∇)Mη(x, M) = η̃(x),

where

γ w
d = 2dπd/2 Ŵ(M)

Ŵ(M − d/2)
|κ |1/2. (54)

The associated correlation functions are given by

cw
d( r̃ ) =

21−M+d/2

Ŵ(M−d/2)
r̃ M−d/2 KM−d/2( r̃ ) , (55)

with r̃ defined by Eq. (48). As for the Gaussian, we can derive
the following relationships between the Hessian tensor of
cw

d( r̃ ) and diffusion tensor κ (see Appendix A):

H
w
d = − ∇ ∇Tcw

d

∣∣̃
r=0

,

D
w
d :=

(
H

w
d

)−1
,

κ =
1

2M − d − 2
D

w
d .





(56)

The solution described in section 2.4 corresponds to the
isotropic case κ = L2 I with L2 = (Dw

d )2/(2M − d − 2).

3.2. Inhomogeneity and anisotropy

Analytical expressions for the correlation kernels of the
anisotropic diffusion operators in Rd with spatially varying
diffusion tensors κ(x) are not known in general. Paciorek
and Schervish (2006) describe a family of anisotropic and
inhomogeneous correlation functions that generalize the
standard isotropic and homogeneous Gaussian and Matérn
family. These correlation functions have the form

Cg
(

x, x′) = β
(

x, x′) exp
(
−̃r 2/2

)
(57)

for the Gaussian-like function, and

Cw
d(x, x′) = β

(
x, x′)

×
21−M+d/2

Ŵ(M−d/2)
r̃ M−d/2KM−d/2( r̃ ) (58)
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for the Matérn-like functions (ν = M − d/2) where

r̃ =

√

(x − x′)T

(
A(x) + A(x′)

2

)−1

(x − x′)

and

β
(

x, x′) = |A(x) |1/4 |A
(

x′) |1/4

×
∣∣∣∣
1

2

(
A(x) + A

(
x′))

∣∣∣∣
−1/2

,

A(x) and A
(

x′) denoting the (symmetric and positive
definite) aspect tensors at points x and x′, respectively.
Equations (57) and (58) with A(x) ≈ 2s κ(x) for the
Gaussian-like function and A(x) ≈ κ(x) for the Matérn-
like functions can be considered as the approximate kernels
of the explicit and implicit forms of the anisotropic diffusion
operator when the diffusion tensors κ(x) vary slowly
and smoothly in space. This is illustrated in MW10 who
provide examples in 1D comparing a two-step implicit-
diffusion kernel and an inhomogeneous version of the SOAR
function for different spatial distributions of the length-scale
parameter.

4. Specifying the anisotropic tensor

The elements κxz, κzx, κyz and κzy of the 3D diffusion
tensor account for anisotropy between the horizontal
and vertical directions. The importance of these terms
compared to the diagonal terms is related to the choice
of vertical coordinate in the correlation model. In an
ocean model, for example, a natural vertical coordinate
is a hybrid coordinate involving a standard geopotential (z)
coordinate in unstratified regions such as the mixed layer, an
isopycnal (ρ) coordinate in strongly stratified regions, and
a terrain-following (s) coordinate near the ocean bottom,
the latter being particularly important in shallow coastal
regions (Haidvogel and Beckmann, 1999). In this hybrid
coordinate system, the flow is more naturally decoupled into
‘horizontal’ and ‘vertical’ processes. If the same coordinate
system is adopted for a background-error correlation model
then it is reasonable to assume, at least from a physical
viewpoint, that the non-diagonal tensor elements κxz, κzx,
κyz and κzy, and possibly κxy and κyx, are small and can
be neglected. However, anisotropy in background-error
correlations can also arise from the assimilation of data,
especially when the data coverage is irregular. In general,
the relative importance of the diagonal and non-diagonal
terms of the tensor can only be determined after a thorough
diagnostic study involving, for instance, the direct estimation
of the elements of the Daley tensor.

Many ocean models used for global- and basin-
scale circulation studies employ a z coordinate. WC01
illustrated how a standard isopycnal diffusion tensor
used to parametrize mixing of unresolved processes
in a z-coordinate ocean model could also be used
to transform the coordinates of a background-error
correlation model formulated as an explicit 3D diffusion
operator. An analogous coordinate transformation was
proposed within the framework of Optimal Interpolation
by Balmaseda et al. (2008). While the isopycnal correlation
model has appealing features, the implementation based on
the explicit scheme proposed by WC01 is too expensive

for routine applications since a prohibitively high number
of iterations is required to maintain numerical stability
in regions of strong isopycnal gradients. Moreover, the
specification of the Daley length-scales must be performed in
isopycnal space, which makes estimating them more difficult
in a z-coordinate model. In the remainder of this section
we explore alternative methods for defining anisotropic and
inhomogeneous correlations, which involve estimating the
Daley tensor directly in the model coordinate system.

4.1. Ensemble estimation methods

Given an estimate of the Daley tensor, the anisotropic
response of the explicit diffusion operator can be calibrated
using Eq. (53), which relates the Daley tensor of the
Gaussian function to the diffusion tensor. Alternatively, the
anisotropic response of the implicit diffusion operator can be
calibrated using the third expression in (56), which relates
the Daley tensors of the ν = M − d/2 Matérn functions
to the diffusion tensor. Several authors have proposed
methods for estimating the Daley tensor using perturbations
from an ensemble of model states (Belo Pereira and Berre,
2006; Pannekoucke and Massart, 2008; Pannekoucke, 2009;
Sato et al., 2009). The basic procedure is outlined below.
Two of the methods will then be compared in idealized
experiments using the diffusion equation. For simplicity, we
focus on the 2D case.

Assume that an ensemble of Ne model states is available
and that the distribution of these states about their mean is
a good approximation of the true probability distribution
function (pdf) of the model-state (background) error ǫ. In
variational assimilation, this pdf is assumed to be Gaussian
and thus fully described by its mean (E[ǫ(x)] = 0) and
covariance function

B
(

x, x′) = E
[
ǫ(x) ǫ

(
x′)] , (59)

where E[ · ] denotes the expectation operator. The associated
correlation function C(x, x′) can be determined from the
factorization

C
(

x, x′) =
B
(

x, x′)

σ(x) σ (x′)
, (60)

where

σ (x) =
√

E
[
ǫ(x)2

]

is the standard deviation of ǫ at x. Assuming that C(x, x′) is
at least twice differentiable then we can define the symmetric
tensor

T
(

x, x′) = −∇ ∇ ′ TC
(

x,x′) ,

where ∇ = (∂/∂x ∂/∂y)T and ∇ ′ = (∂/∂x′ ∂/∂y′)T. The
local correlation Hessian tensor is the value of T at x = x′.
Assume further that, in a neighbourhood of x, C

(
x,x′)

can be well approximated by a homogeneous function
C̃(r) where r = x−x′ = (x − x′, y − y′)T = (̃x, ỹ)T. Letting
∇̃ = (∂/∂ x̃ ∂/∂ ỹ )T, then we can define

T̃(r) = −∇̃ ∇̃TC̃(r) , (61)

such that T̃(0) ≈ T(x, x) (see Appendix B).
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Let H(x) = T(x, x) denote the local correlation Hessian
tensor at x. Pannekoucke and Massart (2008) and
Pannekoucke (2009) assume a Gaussian form for the
correlation function and then invert this function at each
point x to estimate H(x) in terms of sample correlation
estimates with neighbouring points. Belo Pereira and
Berre (2006) propose an alternative method for estimating
H(x), which does not require a prior assumption on the
functional form of the correlations. Their method leads to
the expression

Ĥ(x) =
∇ǫ(x) (∇ǫ(x))T − ∇σ̂ (x) (∇σ̂ (x))T

(̂σ (x))2
, (62)

where

∇ǫ(x) (∇ǫ(x))T =
1

Ne − 1

Ne∑

l=1

∇ǫl(x) (∇ǫl(x))T

and (̂σ (x))2 = (ǫ(x))2 = 1
Ne−1

∑Ne
l=1 (ǫl(x))2 .

The gradient terms can be estimated numerically using
finite differences. When the correlation function is strictly
homogeneous, Ĥ is equivalent to the constant tensor

T̃(0) (Eq. (61)) if the sampling operator is replaced by
the expectation operator (see Appendix B). Note that
the derivation of Eq. (62) is based on the rather general
assumptions of differentiability and local homogeneity of
the correlation function. A specific assumption about the
actual form of the correlation function is implied only
when Ĥ is employed with a particular diffusion operator
(explicit or M-step implicit scheme). Hristopulos (2002) and
Chorti and Hristopulos (2008) describe a related approach in
geostatistics which involves estimating the aspect ratios and
orientation angle required to transform the local covariance
Hessian tensor into isotropic form.

Multidimensional Gaussian correlation operators can be
applied efficiently using a combination of 1D recursive
filters or 1D diffusion operators (Purser et al., 2003a, 2003b;
MW10). For anisotropic Gaussian operators, the so-called
triad (hexad) algorithm (Purser et al., 2003b; Purser, 2005)
allows one to determine from the aspect tensor of the 2D
(3D) Gaussian function, the three (six) generalized grid-
lines along which the 1D filters should be applied. Within
that framework, various flow-dependent formulations of the
aspect tensor have been proposed (De Pondeca et al., 2006;
Liu et al., 2007, 2009; Sato et al., 2009). Of particular interest
here is the hybrid formulation of Sato et al. (2009) where
the inverse of the aspect tensor of the Gaussian function
is defined as a linear combination of a ‘conventional term’
based on a quasi-isotropic, static formulation (A

−1
iso ) and

an ‘ensemble term’ formed from the sample covariance
of the gradient of the ensemble-generated perturbations,
normalized by the sample variance of the perturbations:

Â
−1

(x) = αA
−1
iso (x) + βH̃(x) (63)

where

H̃(x) =
∇ǫ(x) (∇ǫ(x))T

(̂σ (x))2
, (64)

and α and β are weighting coefficients. Sato et al. (2009)
provide a heuristic derivation of Eqs (63)–(64). They are
equivalent to Eq. (62) when α = 0 and β = 1, and when
the standard deviations are constant. As with the hybrid
covariance formulations that involve combining static and
ensemble-based expressions of the full covariance matrix
(Wang et al., 2008), the static term in the aspect tensor is
intended to give the estimate more robustness especially
when the ensemble size is small, although accounting for it
requires extra parameters that must be tuned empirically.

Finally, with small ensemble sizes it can be advantageous
to apply a local spatial averaging or filtering operator to
the estimated variances and covariances in order to reduce
the effects of sampling error (see, for example, Berre and
Desroziers (2010) for a thorough review of recent work in
this area). Letting F denote a particular filtering operator
then the expressions for the filtered estimate of the inverse
tensor are given by Eqs (62) and (63)–(64) with

∇ǫ(x) (∇ǫ(x))T 7→ F
(

∇ǫ(x) (∇ǫ(x))T
)

,

(̂σ (x))2 7→ F
(
(̂σ (x))2

)
,

and σ̂ (x) 7→
√

F
(
(̂σ (x))2

)
.

4.2. Numerical experiments

In this section we perform idealized experiments to evaluate
and compare the effectiveness of Eq. (62) and Eqs (63)–(64)
for estimating the parameters of an anisotropic tensor. For
simplicity, we focus on the 2D anisotropic diffusion problem
and the solution algorithm based on the explicit scheme.
Furthermore, for the tensor estimated using Eqs (63)–(64),
only the special case α = 0 and β = 1 is considered.

The experimental design is as follows. First, we define the
‘true’ covariance matrix of the problem as

B = 6 Ŵ
1/2 L Ŵ

1/2
6,

where L is the M-step explicit diffusion operator
(1 + ∇ · κ∇)M discretized using a standard centred finite-
difference scheme on a uniform grid, Ŵ = Ŵ

1/2
Ŵ

1/2 is
a diagonal matrix of normalization factors, and 6 is a
diagonal matrix of standard deviations σ . With constant
parameters and ignoring the influence of boundaries, B
defines a Gaussian covariance matrix.

Next, a sample of Ne spatially uncorrelated random
vectors ǫ̂ l, l = 1, . . . , Ne, are produced on the grid, where the
distribution of each ǫ̂ l is taken to be Gaussian with E[ǫ̂ l ] = 0
and E[ǫ̂ l ǫ̂ l

T] = I. Each vector ǫ̂ l is then transformed into a
new vector ǫ l such that E[ǫ l ǫ

T
l ] = B. This is done using the

‘square-root’ of the B-operator,

ǫ l = 6 Ŵ
1/2 L1/2

ǫ̂ l,

where L = L1/2L1/2, the exponent 1/2 implying M/2
iterations of the explicit diffusion operator (with M taken to
be even). The sample covariance matrix constructed from
the ensemble of ǫ l vectors provides an estimate of the true
covariance matrix:

B ≈
1

Ne − 1

Ne∑

l=1

ǫ
′
lǫ

′
l
T

, (65)

where ǫ
′
l = ǫ l − 1

Ne

∑Ne
k=1 ǫk.
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Our interest here is not to try to reconstruct the full
covariance matrix from (65) but rather, with the help of
Eq. (62) or Eq. (64), to try to reconstruct the anisotropic
tensor used in L to generate the ǫ l. Indeed, the sampling
errors resulting from estimating the local anisotropic tensor
can be expected to be much smaller than those resulting
from estimating the full covariance matrix. For the 2D
problem, the tensor estimation requires, at each grid point,
sample estimates of the standard deviation of ǫ and of the
three independent tensor elements involving the gradient
of ǫ, i.e. a total of 4N elements where N is the total
number of grid points. This is much smaller than the
(N2 + N)/2 independent elements required to determine
the full covariance matrix.

The numerical experiments are performed in a
square domain on a 2D grid xi,j = (xi, yj) where xi =
i1x, i = 1, . . . ,

√
N, and yj = j1y, j = 1, . . . ,

√
N. Here,

1x = 1y = 1 unit and N = 200 × 60, and thus the effective
size of the B matrix is (1.2 × 104) × (1.2 × 104). Neumann
boundary conditions are employed at the solid walls located
at the domain edges. As a result, the implied correlation
function near the boundary is slightly modified from the
target Gaussian (MW10).

At each grid point xi,j, the ‘true’ diffusion tensor κ for L
is defined according to (cf. Eq. (53))

κ i,j =
1

2M
Di,j, (66)

where Di,j is the local Daley tensor which is formulated as

Di,j = Ri,jDi,jR
−1
i,j ,

Di,j being a diagonal matrix and Ri,j a rotation matrix (R
−1
i,j =

R
T
i,j). The elements (Dxx)i,j, (Dyy)i,j and (Dxy)i,j = (Dyx)i,j of

Di,j are thus determined by the diagonal elements (Dxx)i,j

and (Dyy)i,j of Di,j and by the rotation angle θi,j of Ri,j. For
the experiments described here, θi,j = θ is constant, while

the parameters (Dxx)i,j and (Dyy)i,j are specified as a simple
oscillatory function of the spatial coordinates xi,j:

(Dxx)i,j = A1f (xi,j) + B1,

(Dyy)i,j = −A1f (xi,j) + B1,

where

f (xi,j) = cos

(
2πxi

X

)
cos

(
2πyj

Y

)
,

A1 = 1
2

(
Dmax − Dmin

)
, B1 = 1

2

(
Dmax + Dmin

)
, and

X = Y = 20. Similarly, the variances are specified as

σ 2
i,j = A2f (xi,j) + B2,

where A2 = 1
2

(
σ 2

max − σ 2
min

)
and B2 = 1

2

(
σ 2

max + σ 2
min

)
.

Experiments are performed with different values of the
parameters θ , Dmin, Dmax, σ 2

min and σ 2
max (see Table 2).

The normalization factors γi,j of the diagonal matrix Ŵ

are approximately given by the expression

γi,j ≈ 2π |Di,j|1/2. (67)

This approximation was used by Pannekoucke and
Massart (2008), for example, and is reasonable if the

diffusion tensor varies in space on a scale much larger
than the local correlation scale and with a proper treatment
of the boundary conditions (MW10). The factors can be
estimated to a higher accuracy using more refined analytical
approximations (Purser et al., 2003b; Purser, 2008a, 2008b;
MW10; Yaremchuk and Carrier, 2012) or randomization
methods (WC01; Yaremchuk and Carrier, 2012). They can
also be computed exactly using the δ-function method
(WC01; MW10). In this idealized study, we employ the
exact normalization method in order to avoid introducing
a bias in the ensemble perturbations and thus complicating
the interpretation of the results. In practice, however,
the exact computation is generally not affordable and
hence the representation of covariances using the diffusion
equation will also be affected by approximations in the
normalization factors. The errors that can result from
using the approximate expression (67) are illustrated in
the experiments below.

The estimation of the tensor via the statistical relationships
(62) and (64) is achieved using centred finite-differences.
Estimates of the first derivatives of the error and its
standard deviation produce values at the interface of the
grid cells, i.e. at the half-integer points (i + 1/2, j) for the
x-component and (i, j + 1/2) for the y-component. The
sample variance of these quantities is computed directly at
these points to evaluate the numerator in the expressions
for the diagonal elements of the tensor. The off-diagonal
elements involve estimates of the cross-product of the
x- and y-components of the derivatives. This requires
interpolation of one of the component derivatives to the
point where the other component derivative is defined. To
estimate the cross-product at (i + 1/2, j), the x-component
derivative that is defined there is multiplied with an estimate
of the y-component derivative obtained by averaging
its values from the four surrounding points (i, j + 1/2),
(i + 1, j + 1/2), (i, j − 1/2) and (i + 1, j − 1/2), and vice-
versa for estimating the cross-product at (i, j + 1/2). To
compute the denominator in the expressions for the tensor
elements, the sample variance of the error is interpolated
from (i, j) points to (i + 1/2, j) or (i, j + 1/2) points. In
order to use the estimated tensor elements in the diffusion
equation, the elements are first averaged to the (i, j) points
and then the off-diagonal elements averaged to force
symmetry. The estimated tensor is then inverted at each
point and used with the relation (66) to define the diffusion
tensor at each point. Finally, interpolation is used to define
the values of the tensor elements at the half-integer points
(i + 1/2, j) or (i, j + 1/2) where they are required with the
centred-difference formulation of ∇ · κ∇.

Table 2 summarizes the results from sev-
eral experiments with different parameter settings
P = (θ , Dmin, Dmax, σmin, σmax). Three cases are considered.
In the first case, the principal axes of the anisotropic cor-
relations are aligned with the grid-lines, and the variance
is constant: P1 = (0, 3, 6, 1, 1). The second case extends
the first case by allowing the variances to vary in space:
P2 = (0, 3, 6, 1, 5). Finally, the third case extends the second
case by rotating the principal axes of the anisotropic corre-
lations relative to the grid-lines: P3 = (π/4, 3, 6, 1, 5). The
quality of the estimation is measured in terms of the domain-
averaged bias and root-mean-square error (RMSE) of the
estimates of the elements (Hxx, Hyy, Hxy). (The results for the
estimates of Hyx are not given since they are almost identical
to those of Hxy). For reference, the domain-averaged RMS
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Table 2. Bias and RMSE of the estimates of the correlation Hessian tensor elements (Hxx, Hyy , Hxy) using expressions (62) (Ĥ) and (64) (H̃). The second

column lists the parameter settings in the ‘true’ covariance model and the third column indicates the choice of ensemble size (Ne) and spatial filtering

scale (Navg) used in the estimation process. The RMS of the true values of (Hxx, Hyy , Hxy) are (5.3, 5.3, 0) × 10−2 when θ = 0, and (5.0, 5.0, 1.7) × 10−2

when θ = π/4.

Exp (θ , Dmin, Dmax, σmin, σmax) (Ne, Navg) Method (Hxx, Hyy , Hxy)

Bias ×10−2 RMSE ×10−2

1 (0, 3, 6, 1, 1 ) (100, 0) Ĥ (0.06, 0.20, 0.0) (1.2, 1.6, 0.46)

2 (0, 3, 6, 1, 1 ) (100, 0) H̃ (−0.01, 0.15, 0.0) (1.2, 1.6, 0.47)

3 (0, 3, 6, 1, 1 ) (10, 0) Ĥ (0.33, 0.39, 0.07) (4.6, 4.8, 2.1)

4 (0, 3, 6, 1, 1 ) (10, 0) H̃ (0.92, 0.99, 0.10) (4.9, 5.2, 2.2)

5 (0, 3, 6, 1, 5 ) (100, 0) Ĥ (−0.07, −0.22, 0.0) (1.2, 1.6, 0.47)

6 (0, 3, 6, 1, 5 ) (100, 0) H̃ (1.2, 1.1, −0.01) (2.5, 2.8, 1.2)

7 (π /4, 3, 6, 1, 5) (100, 0) Ĥ (−0.22, −0.40, 0.01) (1.4, 1.7, 0.85)

8 (π /4, 3, 6, 1, 5) (100, 0) H̃ (1.1, 0.88, 0.0) (2.6, 2.7, 1.4)

9 (π /4, 3, 6, 1, 5) (10, 0) Ĥ (0.17, 0.10, −0.02) (4.0, 4.5, 2.3)

10 (π /4, 3, 6, 1, 5) (10, 1) Ĥ (0.33, 0.28, 1.9) (3.3, 3.6, 1.9)

11 (π /4, 3, 6, 1, 5) (10, 3) Ĥ (0.51, 0.45, −0.36) (2.0, 2.2, 2.8)

12 (π /4, 3, 6, 1, 5) (100, 1) Ĥ (0.02, 0.14, −0.07) (1.2, 1.4, 0.86)

13 (π /4, 3, 6, 1, 5) (100, 3) Ĥ (0.31, 0.19, −0.32) (0.98, 1.0, 1.1)

of the true values of (Hxx, Hyy, Hxy) are (5.3, 5.3, 0) × 10−2

when θ = 0, and (5.0, 5.0, 1.7) × 10−2 when θ = π/4.
With P1, Ĥ (Eq. (62)) and H̃ (Eq. (64)) produce similar

results with a relatively large ensemble (Ne = 100) as one
might expect since the true variances are constant (Exps 1–2
in Table 2). Interestingly, however, Ĥ is noticeably more
accurate than H̃ with a small ensemble size (Ne = 10; Exps
3–4). When the variances are spatially varying (P2 and P3),
the errors for H̃ become significantly larger, whereas those
for Ĥ are similar to the constant variance case (Exps 5-8).
This illustrates the importance of the second term in Eq.
(62).

Local spatial filtering is beneficial for reducing the RMSE
especially when the ensemble size is small (Ne = 10; Exps
9–11). With the raw ensemble estimates (Navg = 0), the
RMSE is comparable to the RMS of the true signal
(Exps 3–4, 9). Here, a very simple filtering procedure has
been used in which the estimate at xi,j is obtained by
averaging estimates at points within Navg grid points of
(i, j) where in the examples considered Navg = 1 or 3. This
increases the size of the averaging sample at each point to
Neff = (2Navg + 1)2 × Ne, except near the boundary where
fewer points are used in the averaging process. While
increasing the value of Navg reduces the RMSE, it does so at
the expense of increasing the bias in the estimates. With a
larger ensemble (Ne = 100), good results are obtained when
a ‘light’ filtering is applied (Navg = 1), with both the bias
and RMSE being reduced relative to the no filtering case
for all but the off-diagonal elements which are very slightly
degraded (Exps 7, 12–13). The filter in this example is very
simple and the choice of filtering scale is somewhat ad hoc.
More sophisticated (objective) filters could be expected to
perform better as discussed by Raynaud et al. (2009) and
Berre and Desroziers (2010), and recently by Raynaud and
Pannekoucke (2012) within the context of filters based on
diffusion.

The correlations obtained using the ‘true’ tensor with
the parameter settings P3 are illustrated at selected points
in Figure 5(a). Figure 5(b) shows the corresponding
correlations estimated directly from the sample covariance
matrix (Eq. (65)) with a 100-member ensemble. Sampling
errors are large and manifest themselves as spurious
non-local correlations. In contrast, the diffusion-based

correlation model is localized by construction. The
correlations resulting from estimating the diffusion tensor
from the 100-member ensemble are shown in Figure 5(c).
The estimated correlations are in good agreement with the
true correlations and notably capture prominent anisotropic
features such as the rotation of the principal axes relative
to the grid lines. The third correlation pattern from the
left boundary is computed with respect to a point that is
located midway between maximum and minimum values
of Dxx, Dyy and σ 2 where the spatial derivative of these
parameters is maximum and thus where one would expect
the local homogeneous assumption to be least valid. At this
location the estimated errors are largest and up to 20%
(Figure 5d). The breakdown of homogeneity also affects
the accuracy of the approximate expression (67) for the
normalization factors. This can be seen in Figure 5 parts
(e) and (f), which show the estimated correlations and
associated error when approximate normalization factors
from Eq. (67) are used in place of the exact factors that
were used to produce Figure 5(c). The amplitude of the
error now reaches 50% for the third correlation pattern (the
colour bar is truncated at 30%) and is noticeably larger
for the other correlation patterns as well. Finally, Figure 5
parts (g) and (h) show the correlations and associated
errors obtained using the tensor estimated with Ne = 10
combined with local spatial averaging. While the correlations
are not as accurate as those with Ne = 100, they are still
reasonable approximations. The maximum error for the
third correlation pattern is approximately 25% and reaches
36% when the approximate normalization factors are used
(not shown).

5. Summary and conclusions

Accounting for general background-error correlations
effectively and efficiently is a considerable challenge in
geophysical data assimilation. In VDA, general background-
error correlation models can be defined using differential
operators constructed numerically from the explicit or
implicit solution of a diffusion equation. Theoretical
results underpinning the diffusion approach to correlation
modelling were reviewed in this paper. First, the isotropic,
constant-coefficient diffusion problem was considered both
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Figure 5. (a) The ‘true’ correlations at selected points in the domain. (b) The correlations estimated directly from the sample covariance matrix (Eq. (65))
with 100 ensemble members. The correlations produced using the diffusion equation with the diffusion tensor estimated with (c) 100 members, no local
spatial averaging, and exact normalization; (e) 100 members, no local spatial averaging, and normalization factors approximated using Eq. (67); and (g)
10 members, local spatial averaging with a 7 × 7 grid-point window, and exact normalization. The differences between the correlations obtained using
the estimated diffusion tensor and the true correlations are illustrated in panels (d), (f) and (h).

on the sphere and in the d-dimensional Euclidean space Rd.
The covariance functions (kernels) of the integral solution
operators implied by explicit and implicit diffusion in
these spaces were identified. The solutions on the sphere
were shown to be well approximated by the solutions
on R2 for scales of interest in ocean and meteorological
data assimilation. Expressions relating the diffusion model
parameters to the parameters that control the length-scale
and amplitude (normalization factor) of the covariance
function were also given. These results provided the basis
for constructing more general correlation operators via
anisotropic diffusion, which was the focus of the second part
of the paper.

Anisotropic diffusion was considered in Rd. The
anisotropic diffusion problem is characterized by a diffusion
tensor that controls the direction of the covariance response,
as well as its scale and amplitude. Solutions to the

anisotropic, constant-tensor diffusion problem are integral
operators that involve covariance kernels with the same
basic form as those of the isotropic, constant-coefficient
problem. With the explicit scheme, these functions are
approximately Gaussian, whereas with the implicit scheme
they are members of the larger Matérn family (e.g., inR3 they
are AR functions). For the anisotropic functions, distance is
defined by a norm whose metric is given by the inverse of
the diffusion tensor. This metric can in turn be related to the
correlation Hessian tensor which is defined by the tensor of
second-derivatives of the correlation function evaluated at
zero separation. The importance of this tensor is that it can
be related to quantities that can be estimated directly from
ensemble statistics. The inverse of the correlation Hessian
tensor was referred to as the Daley tensor in this paper
in view of its close connection to the conventional Daley
length-scale in the isotropic case.
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Ensemble data assimilation methods can be used to
provide flow-dependent estimates of the background-
error covariances. In realistic applications, the number of
independent background-error covariances that need to be
estimated is huge and the number of ensemble members
that can be affordably run is very limited. Methods are then
required to synthesize the ensemble-covariance information
to avoid manipulating huge covariance matrices, on the one
hand, and to reduce the effects of sampling error, on the
other.

The correlation information in the ensemble can be
synthesized using a diffusion model with an anisotropic and
spatially varying tensor.† Procedures for estimating the local
Hessian tensor (which in turn can be related to the diffusion
tensor) from ensemble perturbations were described and
compared in idealized numerical experiments. The method
of Belo Pereira and Berre (2006), which assumes local
homogeneity of the correlation function but accounts for
spatially varying variances, was shown to work particularly
well, and is well suited for the automated computations
required in a cycled ensemble data assimilation system.
Local spatial filtering of the tensor was critical with small
ensemble sizes (order 10), but the raw ensemble with 100
members gave good results without spatial filtering in our
example. In general, a carefully designed objective filter
would be beneficial in order to maximize the signal-to-
noise ratio of the ensemble-estimates of the tensor elements
in a similar way that it has been shown to be beneficial
to the ensemble estimation of background-error variances
(Raynaud et al., 2009; Berre and Desroziers, 2010).

In realistic applications, the numerical stability condition
associated with explicit diffusion schemes can severely
limit their computational efficiency. In particular, many
iterations are likely to be needed with general anisotropic and
inhomogeneous diffusion models that employ ensemble-
estimated tensors. Implicit diffusion schemes are more
robust but require solving a large linear system for which
efficient methods that are well-suited to massively parallel
machines are required. This important practical aspect of
the problem was not addressed in this paper and should be
the subject of further research.
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Appendix A

The Daley tensor of the 2D implicit-diffusion kernels

In this appendix we show that the expression for the Daley
tensor of the 2D implicit-diffusion kernels cw

2( r̃ ) (Eq. (55)
with d = 2) is related to the diffusion tensor by Eq. (56).
For clarity of notation the subscript and superscript of
cw

2( r̃ ) will be dropped hereafter. The relationships between
the Daley and diffusion tensors for the implicit-diffusion
kernels in higher dimensions and for the Gaussian function
(Eqs (49)–(51)) are straightforward to verify following the
basic procedure outlined here.

From the chain rule, the three independent elements of
the outer product in the first equation of (56) can be written
as

∂2c

∂x2
=

∂2c

∂ r̃ 2

(
∂ r̃

∂x

)2

+
∂c

∂ r̃

(
∂2 r̃

∂x2

)
,

∂2c

∂y2
=

∂2c

∂ r̃ 2

(
∂ r̃

∂y

)2

+
∂c

∂ r̃

(
∂2 r̃

∂y2

)
,

∂2c

∂x ∂y
=

∂2c

∂ r̃ 2

(
∂ r̃

∂x

) (
∂ r̃

∂y

)
+

∂c

∂ r̃

(
∂2 r̃

∂x ∂y

)
.





(68)

Expressing Eq. (55) with d = 2 as

c( r̃ ) = αM r̃ M−1KM−1( r̃ ) , (69)

where αM = 22−M/(M−2)! and M > 2, and using the
following recurrence relation for the modified Bessel
functions of the second kind of integer order n (Eq. 9.6.26
of Abramowitz and Stegun, 1970),

∂Kn

∂ r̃
= −

n

r̃
Kn − Kn−1,

where Kn = Kn( r̃ ), allows us to write

∂c

∂ r̃
= −αM r̃ M−1KM−2,

∂2c

∂ r̃ 2
= −αM

(
r̃ M−2KM−2 − r̃ M−1KM−3

)
.





(70)

The inverse of the symmetric diffusion tensor (46) can be
written as

κ
−1 =

(
κ−1

xx −τκ−1
xy

−τκ−1
xy κ−1

yy

)
,

where τ = 1/(µ − 1) and µ = κxxκyy/κ
2
xy. In expanded

form the nondimensional distance measure (48) then reads

r̃ 2 = κ−1
xx

(
x − x′)2 + κ−1

yy

(
y − y′)2

− 2τκ−1
xy

(
x − x′) (

y − y′) . (71)

From Eq. (71) we can derive the following relations

∂ r̃

∂x
= r̃ −1X,

∂ r̃

∂y
= r̃ −1Y ,

∂2 r̃

∂x2
= − r̃ −3X2 + r̃ −1κ−1

xx ,

∂2 r̃

∂y2
= − r̃ −3Y2 + r̃ −1κ−1

yy ,

∂2 r̃

∂x ∂y
= − r̃ −3X Y − r̃ −1τκ−1

xy ,





(72)
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where

X = κ−1
xx

(
x − x′) − τκ−1

xy

(
y − y′) ,

Y = κ−1
yy

(
y − y′) − τκ−1

xy

(
x − x′) .

Substituting Eqs (70) and (72) in Eq. (68) yields

∂2c

∂x2
= αM

(
r̃ M−3KM−3 X2 − r̃ M−2KM−2 κ−1

xx

)
,

∂2c

∂y2
= αM

(
r̃ M−3KM−3 Y2 − r̃ M−2KM−2 κ−1

yy

)
,

∂2c

∂x ∂y
= αM

(
r̃ M−3KM−3 X Y + r̃ M−2KM−2 τκ−1

xy

)
.

Since c(0) = 1, for all allowable M, we have from Eq. (69)
the general relation

r̃ n Kn( r̃ )
∣∣∣̃
r=0

=
1

αn+1
.

Hence

∂2c

∂x2

∣∣∣∣̃
r=0

=
αM
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X2

∣∣∣∣̃
r=0

−
αM
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κ−1

xx
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r=0

, (73)

∂2c
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r=0
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αM
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r=0

−
αM
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yy

∣∣∣∣̃
r=0

, (74)

∂2c

∂x ∂y

∣∣∣∣̃
r=0

=
αM

αM−2
X Y

∣∣∣∣̃
r=0

+
αM

αM−1
τκ−1

xy

∣∣∣∣̃
r=0

.

The first term on the right-hand side of each of the
above equations vanishes since X = Y = 0 at r̃ = 0, while
the common coefficient of the second term in each equation
is

αM

αM−1
=

1

2M − 4
.

Thus we obtain the relationship governed by (56) with
d = 2.

In the isotropic case, κxx = κyy = L2 and τκ−1
xy = 0.

Equations (73) and (74) can then be averaged and inverted
to yield the standard definition of the square of the 2D Daley
length-scale involving the Laplacian operator (Eq. (44) with
d = 2).

Appendix B

Estimating the Hessian tensor from an ensemble of
simulated errors

In this appendix we provide a derivation of Eq. (62) for
the special case of a homogeneous correlation function.
The derivation is similar to the one given in the Appendix
of Belo Pereira and Berre (2006) except for notational
changes and greater emphasis here on some of the underlying
assumptions.

The starting point is the general expression (59) for the
covariance function B

(
x, x′) of the ensemble of model-state

errors. We consider here the 2D case where x = (x, y)T

and x′ = (x′, y′)T, and assume that B
(

x, x′) is at least twice
differentiable. We can express the covariance function of

the derivatives of the ensemble errors as follows (Swerling,
1962; Daley, 1991, p. 156):

Bxx′
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Using Eq. (60) the derivatives on the right-hand side of the
above equations can be evaluated in terms of the standard
deviations σ(x) and correlation function C

(
x, x′). Focusing

on the first of these equations this yields

Bxx′
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) (
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Under the assumption of homogeneous cor-
relations, we can write C

(
x, x′) = c(r) where

r = x − x′ = (x − x′, y − y′)T (Gaspari and Cohn, 1999).
Using the chain rule, the derivatives of C with respect to
x, x′, y and y′ can be rewritten in terms of derivatives of
c with respect to x̃ = x − x′ and ỹ = y − y′. For Bxx′

(
x, x′)

this gives
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.

Evaluating the above equation at x = x′ (r = 0), and
noting that ∂c(r) /∂ x̃|r=0 = 0 since c(r) is maximum at
r = 0 and that c(0) = 1, yields

Bxx(x, x) =
(

∂σ(x)

∂x

)2

− (σ (x))2 ∂2c(r)

∂ x̃ 2

∣∣∣∣
r=0

,

which can be rearranged as

−
∂2c(r)

∂ x̃ 2

∣∣∣∣
r=0

=
1

σ 2

(
Bxx(x, x) −

(
∂σ

∂x

)2
)

, (75)
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where σ = σ (x). A similar analysis for the other covariance
functions yields

−
∂2c(r)

∂ ỹ 2

∣∣∣∣
r=0

=
1

σ 2

(
Byy(x, x) −

(
∂σ

∂y

)2
)

, (76)

−
∂2c(r)

∂ x̃ ∂ ỹ

∣∣∣∣
r=0

=
1

σ 2

(
Bxy(x, x) −

(
∂σ

∂x

)(
∂σ

∂y

))
, (77)

−
∂2c(r)

∂ ỹ ∂ x̃

∣∣∣∣
r=0

=
1

σ 2

(
Byx(x, x) −

(
∂σ

∂y

) (
∂σ

∂x

))
. (78)

In tensor notation, the left-hand side of Eqs (75)–(78)
is equivalent to Eq. (61) evaluated at r = 0, while the
right-hand side of the equations can be identified with the
right-hand side of Eq. (62).
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