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Abstract. This paper is the second part in a series of two ar-

ticles, which aims at presenting a data-driven modeling strat-

egy for forecasting wildfire spread scenarios based on the as-

similation of the observed fire front location and on the se-

quential correction of model parameters or model state. This

model relies on an estimation of the local rate of fire spread

(ROS) as a function of environmental conditions based on

Rothermel’s semi-empirical formulation, in order to propa-

gate the fire front with an Eulerian front-tracking simulator.

In Part I, a data assimilation (DA) system based on an en-

semble Kalman filter (EnKF) was implemented to provide

a spatially uniform correction of biomass fuel and wind pa-

rameters and thereby, produce an improved forecast of the

wildfire behavior (addressing uncertainties in the input pa-

rameters of the ROS model only). In Part II, the objective

of the EnKF algorithm is to sequentially update the two-

dimensional coordinates of the markers along the discretized

fire front, in order to provide a spatially distributed correc-

tion of the fire front location and thereby, a more reliable ini-

tial condition for further model time-integration (addressing

all sources of uncertainties in the ROS model). The resulting

prototype data-driven wildfire spread simulator is first eval-

uated in a series of verification tests using synthetically gen-

erated observations; tests include representative cases with

spatially varying biomass properties and temporally varying

wind conditions. In order to properly account for uncertain-

ties during the EnKF update step and to accurately represent

error correlations along the fireline, it is shown that members

of the EnKF ensemble must be generated through variations

in estimates of the fire’s initial location as well as through

variations in the parameters of the ROS model.

The performance of the prototype simulator based on state

estimation (SE) or parameter estimation (PE) is then eval-

uated by comparison with data taken from a reduced-scale

controlled grassland fire experiment. Results indicate that

data-driven simulations are capable of correcting inaccurate

predictions of the fire front location and of subsequently pro-

viding an optimized forecast of the wildfire behavior at future

lead times. The complementary benefits of both PE and SE

approaches, in terms of analysis and forecast performance,

are also emphasized. In particular, it is found that the size of

the assimilation window must be specified adequately with

the persistence of the model initial condition and/or with the

temporal and spatial variability of the environmental condi-

tions in order to track sudden changes in wildfire behavior.

The present prototype data-driven forecast system is still at

an early stage of development. In this regard, this prelimi-

nary investigation provides valuable information on how to

combine observations with a fire spread model in an efficient

way, as well as guidelines to design the future system evolu-

tion in order to meet the operational requirements of wildfire

spread monitoring.
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1 Introduction

Wildfires generally feature a front-like geometry and may be

described at regional scales (i.e., at scales ranging from a few

tens of meters up to several kilometers) as a thin flame zone

that self-propagates normal to itself into unburnt vegetation.

The local propagation speed is commonly referred to as the

rate of spread (ROS) and is defined as the speed of the flame

with respect to a fixed observer. Thus, the ROS can be re-

garded as the displacement rate of the flame surface separat-

ing the burning zone and the unburnt vegetation; it directly

results from multi-scale multi-physics interactions between

biomass pyrolysis, combustion and flow dynamics, radiation

and convection heat transfer, as well as atmospheric dynam-

ics and chemistry.

For early warning of potential wildfire danger, operational

systems have been designed worldwide by national civil

defense authorities to identify geographical areas that are

subject to possibly extreme wildfire behavior. Fire danger

is a generic term referring to the assessment of both con-

stant and variable fire precursor factors affecting the igni-

tion, spread, intensity and suppression capability of wild-

fires (Chandler et al., 1983). Current operational fire dan-

ger rating systems adopt a regional-scale viewpoint based

on empirical ROS modeling approaches and integrate remote

sensing data (i.e., meteorological, terrain topography and

biomass fuel information) into a reduced set of macroscopic

qualitative and/or numerical indices such as the Fire Weather

Index (FWI) in Canada and in Europe (Van Wagner, 1987;

Hirsch, 1996), the Forest Fire Danger Index (FFDI) in Aus-

tralia (Noble et al., 1980; Dowdy et al., 2009) or the National

Fire Danger Rating System (NFDRS) in the USA (Burgan,

1988). These fire danger rating systems mainly rely on me-

teorological information. Thus, the evaluation of fire danger

could be improved through a more detailed wildfire spread

modeling and a more accurate forecast of the potential ROS,

accounting for the spatial and temporal variability of envi-

ronmental conditions.

A wide range of wildfire spread modeling approaches has

emerged over the last decade to describe the physical pro-

cesses at flame scale as well as the interactions between the

fire and the atmosphere. On the one hand, physics-based

computational fluid dynamics (CFD) modeling approaches

provide detailed numerical simulations of the combustion-

related processes that control the fire spread. Due to the high

computational cost of flame-scale CFD and due to the lack

of knowledge in environmental conditions, the use of CFD-

based detailed modeling approaches such as FIRETEC (Linn

et al., 2002), WFDS (Mell et al., 2007) or AVBP-PRISSMA-

PYROWO (Rochoux, 2014) is currently restricted to re-

search projects and is not compatible with operational appli-

cations. On the other hand, regional-scale fire spread mod-

els such as FARSITE (Finney, 1998), FOREFIRE (Filippi

et al., 2009, 2013), PROMETHEUS (Tymstra et al., 2010)

or PHOENIX RapidFire (Chong et al., 2013) use a semi-

empirical model that treats the ROS as a parametric func-

tion of biomass fuel properties, terrain topography and me-

teorological conditions; for instance, FARSITE uses a semi-

empirical model due to Rothermel (1972), while FOREFIRE

is based on the quasi-physical model due to Balbi et al.

(2009); a detailed review of ROS models is provided in

Sullivan (2009). One recent strategy to better account for

time-varying weather conditions at regional scales consists

of coupling a front-tracking simulator for surface fires with

a meso-scale CFD atmospheric model for fire-induced at-

mospheric dynamics, see for instance WRF-Fire (Kochanski

et al., 2013) or FOREFIRE-MESONH (Filippi et al., 2013).

Still, many uncertainties remain due to simplifications in the

description of the physics and to knowledge gaps in the de-

scription of environmental conditions and yet, errors in the

properties of the biomass fuel or in the flame/wind inter-

actions induce strong changes in the heat transfer from the

flame to the vegetation and in the biomass fuel pyrolysis

for instance. Thus, modeling errors as well as errors in the

boundary conditions (e.g., biomass fuel properties, meteo-

rological conditions and terrain topography) and initial con-

ditions inevitably translate into errors in the simulated and

forecast positions of the fire front.

For the wildfire spread simulation to be predictive and

compatible with operational applications, the uncertainties

in the ROS semi-empirical model must be quantified and re-

duced through a data assimilation (DA) methodology. The

uncertainties inherent in wildfire spread modeling suggest

the use of ensemble-based DA. Ensemble forecasts stochasti-

cally characterize the non-linear response of models to vari-

ations in the input data (Finney et al., 2011). Furthermore,

DA integrates available fire sensor observations into a com-

puter modeling tool to correct and optimize the model out-

puts and to thereby produce improved forecast capabilities.

Since sharp variations of the wind direction can lead to sig-

nificant spatial deformations of the propagating fireline and

since a canyon terrain can lead to eruptive fire behavior with

strong acceleration in the steepest upslope directions, a spa-

tially distributed correction along the fireline is required to

be able to track the time-evolving location of the fire front.

This study is an extension of our previous works presented

in Rochoux et al. (2012, 2013a, b, 2014a), in which a pro-

totype data-driven wildfire simulator was developed. The

initial prototype featured the following main components:

an Eulerian front-tracking solver combined with a model de-

scription of the local ROS proposed by Rothermel (1972); an

assumed series of airborne or possibly spaceborne observa-

tions of the fire front location; and a DA algorithm relying

on parameter estimation. The DA prototype based on an en-

semble Kalman filter (EnKF) was successfully evaluated in

the context of a controlled grassland fire experiment (Paugam

et al., 2013) when applied for estimating the input parame-

ters used in the Rothermel-based ROS model (e.g., the fuel

moisture content, the fuel particle surface-to-volume ratio,

the wind direction and magnitude), see for instance Rochoux

Nat. Hazards Earth Syst. Sci., 15, 1721–1739, 2015 www.nat-hazards-earth-syst-sci.net/15/1721/2015/



M. C. Rochoux et al.: EnKF state estimation for data-driven regional-scale wildfire spread 1723

et al. (2014a). It was found that data-driven simulations are

capable of correcting inaccurate predictions of the fire front

location and of providing an optimized forecast of the wild-

fire behavior; the quality of the forecast prediction capabil-

ity being dependent on the temporal variability of the er-

rors in the ROS model parameters. While these studies con-

firmed the potential of a DA strategy for improved wildfire

spread predictions, the choice of a spatially uniform param-

eter estimation approach is considered questionable. While

well-suited for statistically spatially homogeneous problems

(i.e., problems in which corrections to the parameters of the

ROS model can be applied uniformly, at reduced scale for

instance), this choice is no longer adapted to more general

wildfire problems in which biomass fuel, topographical and

possibly meteorological properties exhibit arbitrary spatial

variations. In order to provide a spatial correction along the

fireline, one could foresee the extension to the estimation of

spatially distributed biomass, topographical, and wind ROS

model parameters. As this solution would be computation-

ally prohibitive in the context of real-time forecast of wild-

fire behavior and inconsistent with the actual knowledge of

environmental conditions (Rochoux, 2014), an alternative so-

lution is proposed here.

The objective of the present study is to remove some of

the main limitations in the initial design of our prototype

data-driven wildfire simulator with an extension to the case

of spatially varying biomass fuel and meteorological condi-

tions. This extension is based on a change from a parameter

estimation (PE) approach to a state estimation (SE) approach

that consists of sequentially updating the model state using

complete or incomplete observations of the fire front (see

Fig. 1). This correction of the fire front location at the ob-

servation time provides a more reliable initial condition to

the fire spread model, and allows to produce ensemble-based

forecasts of the fire front location that are more consistent

with the actual fire behavior. In contrast to the PE approach

that only addresses uncertainties in the ROS model parame-

ters, the SE approach accounts for multiple sources of uncer-

tainties that are difficult to distinguish but that contribute to

the uncertainties in the fire front location, i.e., uncertainties

in the ROS model parameters but also in the ROS parameter-

ization itself noted f in Eq. (1):

ROS≡ f (wind conditions, biomass fuel properties). (1)

The uncertainties in the function f are partly due to sim-

plifications in the physics of propagating fires when build-

ing the relation between ROS and environmental conditions

(e.g., heat transfer to biomass fuels, steady-state assumption,

non-local effects).

This change to a SE approach was inspired in part by pre-

vious studies by Mandel and Beezley (2007) and Mandel

et al. (2008, 2011) in which the control variable is the temper-

ature state variable and is characterized by a bimodal prob-

ability density function (PDF) in the fire region (i.e., burn-

ing state or non-burning state). In order to satisfy the Gaus-

FIREFLY 
wildfire spread 

simulator

Parameters

Initial condition

Boundary conditions

Comparison

Simulated fronts

Observations

Ensemble Kalman filter
Parameter estimation

State estimation

Figure 1. Data assimilation flowchart for PE and SE approaches

over one assimilation cycle (control variables are colored in blue)

using OpenPALM. Note that the SE approach provides the correc-

tion of the fire front location at the observation time and not at the

initial time of the current assimilation cycle.

sian assumption in the EnKF, the idea of morphing from im-

age processing was introduced (Mandel and Beezley, 2007);

however, this choice led to technical difficulties in the EnKF

implementation. In the present study, the fire front is repre-

sented as a finite number of front markers, which are equally

spaced along the fireline that is projected onto the horizontal

plane. Thus, the control vector includes the two-dimensional

coordinates of each simulated front marker on the horizontal

plane and is characterized by an approximate Gaussian PDF,

which allows for a straightforward application of the EnKF.

To obtain an efficient correction on the location of these front

markers from a local observation, it is of primary importance

to estimate reliable error correlations in the forecast error co-

variance matrix. Reliable means that these error correlations

must be consistent with the actual spatial correlations of the

errors in the fire spread model. For this purpose, an ensemble

that accurately accounts for all sources of uncertainties must

be generated during the EnKF prediction step.

This work provides valuable insight on how to best com-

bine information from fire remote sensing and fire spread

modeling using a data assimilation technique. Note that the

validation of the prototype data-driven fire forecast sys-

tem is currently limited to a reduced-scale controlled fire

experiment. This system would need further developments

to integrate the most recent progress in the fire radiative

power (FRP) data analysis and in the fire spread modeling,

and thereby directly address the operational requirements of

wildfire spread monitoring.

The paper is organized as follows. The fire front observa-

tions and the wildfire spread model (called FIREFLY) are

presented in Sect. 2. The EnKF algorithm is presented in

Sect. 3. The performance of the resulting data-driven wildfire

simulator is evaluated using first, academic tests in which ob-

servations are synthetically generated in Sect. 3; the focus is

on the impact of ensemble generation on the representation

of error correlations and on the resulting shape of the cor-

rected fireline. The simulator performance is evaluated using

second, a validation test in which observations are taken from

a controlled grassland fire experiment in Sect. 4; a compar-
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ative study of the SE approach with the PE approach is also

provided to highlight the benefits and drawbacks of each ap-

proach, in terms of update and forecast performances.

2 Information on wildfires at regional scales:

observations and forward model

2.1 Observations of the fire front location

We assume in the present study that observations of the fire

front location are available and that these observations can

be made at different relevant times with a low measurement

error. There is a growing body of literature on recent techno-

logical developments for geo-referenced wildfire front track-

ing (Riggan and Robert, 2009; Wooster et al., 2013), see Ro-

choux (2014) for a comprehensive review.

In the following, the observation vector noted yo
t contains

the two-dimensional coordinates (xo
i ,y

o
i ) of the front mark-

ers at time t , with i varying between 1 and No
fr. The co-

ordinates of the fire front markers are assumed to have in-

dependent Gaussian-like random errors εo with zero mean

and with standard deviation (STD) noted σ o. Two types of

experiments are presented in this work: observation system

simulation experiments (OSSEs), in which observations are

synthetically generated using a reference (true) solution of

the FIREFLY model that is modified by random observation

errors εo (see Sect. 3); and a controlled grassland fire ex-

periment, in which the observations are reconstructed from

measured temperature maps and using a definition of the fire

front as the 600 K iso-temperature contour (see Sect. 4).

2.2 The fire spread model (the forward model)

FIREFLY tracks the time-evolving location of the fire front

using the following three components: (1) the Rothermel-

based ROS model from the latest revision (Rothermel, 1972;

Andrews et al., 2013):

0 ≡ 0
(
δv,Mv,Mv,ext,6v,m

′′
v,ρp,1hc,uw

)
, (2)

where the nomenclature for the input parameters are sum-

marized in Table 1; (2) an Eulerian front-tracking solver for

the fire front propagation equation that computes the spa-

tiotemporal variations of the progress variable c ≡ c(x,y, t)

introduced as a flame marker with c = 0 in the unburnt veg-

etation, c = 1 in the burnt vegetation, and where the flame

front is identified as the contour line cfr = 0.5; (3) an iso-

contour algorithm for the reconstruction of the fire front

that discretizes the flame contour cfr = 0.5 with Nfr markers,

(xi , yi) representing the two-dimensional coordinates of the

ith marker. Note that the wind velocity magnitude uw is de-

fined by the projection of the wind velocity vector (defined

by its magnitude, u∗w (m s−1), and direction angle, α∗w (◦))

along the (local) normal direction to the fire front, see Ro-

choux et al. (2014a) for further details on the front-tracking

solver (e.g., numerical approach, model diagnostics).

Since its first developments (Rothermel, 1972), the basic

mathematical formulation of the Rothermel model has been

preserved. Users have adapted coefficients (such as the de-

scription of the fuel bed properties, see for instance Sand-

berg et al., 2007) and added optional submodels to fit spe-

cific cases of fire propagation. In this work, the latest revi-

sion from the Rothermel model (Andrews et al., 2013) is used

(the original formulation includes a revised wind speed limit

function to correct the rate of spread dependence on strong

wind speeds). Since the focus is on the DA strategy, the com-

plex description of the biomass fuel that can be used by forest

service experts (Sandberg et al., 2007) is not addressed in this

work. The default values given in Rothermel (1972) such as

the moisture content at extinction (Mv,ext = 30%) are there-

fore used.

Still, the PE and SE approaches presented in the follow-

ing are valid for any fire spread model. While beyond the

scope of this work, they could be extended to more com-

plex description of the input data (biomass fuel, surface wind

conditions, terrain topography) without changing the esti-

mation algorithm. Furthermore, FIREFLY could readily be

replaced by any other front-tracking simulator of wildfire

spread, for instance FARSITE, FOREFIRE, PROMETHEUS

or PHOENIX RapidFire.

The extension of FIREFLY to cases with complex terrain

topography is outside the scope of the present study since

the controlled grassland fire experiment used for the compar-

ative evaluation of the PE and SE approaches corresponds to

a reduced-scale, flat and horizontal, open-field grassland lot

burning; a flat terrain is therefore assumed in both academic

and validation tests presented in this paper.

3 Data assimilation algorithm: specificities of the state

estimation approach

3.1 Formulation of the ensemble Kalman filter

We present here the ensemble Kalman filter (EnKF) algo-

rithm applied, in the context of SE, for one assimilation cycle

between time (t−1) and time t ; the PE approach is explained

in detail in Rochoux et al. (2014a).

3.1.1 Control space and observation space

The DA algorithm uses a discretization of both the simulated

and observed fire fronts, called SFF and OFF, respectively.

The discretization of SFF is a set of Nfr markers; the con-

trol vector xt , also called the state vector, contains the two-

dimensional coordinates of the Nfr front markers at time t :

xt =
[
(x1,y1), (x2,y2). . ., (xNfr

,yNfr
)
]
,

such that the size of xt is n= 2Nfr.
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Table 1. Input parameters of the Rothermel-based ROS sub-model.

Name Symbol Unit

Fuel depth (vertical thickness of the vegetation layer) δv m

Fuel moisture (mass of water divided by mass of dry vegetation) Mv %

Fuel moisture at extinction Mv,ext %

Fuel particle surface-to-volume ratio 6v m−1

Fuel loading m′′′v kg m−2

Fuel particle mass density ρp kg m−3

Fuel heat of combustion 1hc J kg−1

Wind velocity magnitude at mid-flame height (projected onto horizontal plane) uw ms−1

Similarly, the discretization of OFF is a set ofNo
fr markers;

the observation vector yo
t of size 2No

fr is defined as follows:

yo
t =

[(
xo

1 ,y
o
1

)
,
(
xo

2 ,y
o
2

)
, . . .,

(
xo
No

fr
,yo
No

fr

)]
.

Observations of the fire front location are likely to be pro-

vided with a coarse resolution; in addition, observations may

be incomplete and cover only a fraction of the fire front

perimeter due to a limited monitoring or to the opacity of

the fire-induced thermal plume. Thus, we may expect No
fr to

be much lower thanNfr. In the following, we assume for sim-

plicity thatNo
fr = (Nfr/r), where r is an integer taking values

(much) larger than 1 (r represents the difference in resolution

between SFF and OFF).

3.1.2 Observation operator

In order to pair a subset of No
fr markers along SFF with the

No
fr markers along OFF, an observation operator Gt is intro-

duced. Within the framework of SE, Gt is reduced to a selec-

tion operatorHt taking 1 out of every r = (Nfr/N
o
fr)markers

along SFF at the observation time t . The model counterparts

of the observation quantities, noted yt and of size 2No
fr, read

as follows:

yt = Gt (xt )=Ht (xt ), (3)

associating each marker of OFF with its closest neighbor

along SFF. This representation of the fire fronts provides a lo-

cal information efficient at retrieving the anisotropy in wild-

fire spread; the generalization of this representation to com-

plex fire front topology will be addressed in future work.

3.1.3 Sequential estimation

The EnKF algorithm is sequentially applied; each assimila-

tion cycle [t − 1, t] consists of two successive steps for each

member of the ensemble indexed by the exponent k as illus-

trated in Fig. 2:

1. a prediction step (forecast), in which the system is

evolved from time (t − 1) to time t (t being the next

observation time) through an integration of FIREFLY

to forecast the fire front location xt given some uncer-

tainty ranges in the ROS model parameters and in the

fire ignition location (xign,yign). This step leads to an

ensemble of Ne fire front positions at time t designated

as follows:

xf
t =

[
x

f,(1)
t , · · ·,x

f,(k)
t , · · ·,x

f,(Ne)
t

]
,

used to stochastically describe the error covariance ma-

trix Pf
t ∈ R2Nfr×2Nfr that is expressed as follows:

Pf
t =

Ne∑
k=1

(
x

f,(k)
t − xf

t

) (
x

f,(k)
t − xf

t

)T
Ne− 1

, (4)

where the overline denotes the mean value over the en-

semble. The structure of Pf
t is as follows:

– the first diagonal block (of sizeNfr×Nfr) represents

the error covariances of the marker x coordinates

(univariate error covariances): in this block, each

diagonal term represents the error variance of one

marker x coordinate, while off-diagonal terms rep-

resent the covariances of the error in one marker x

coordinate with the errors in the other marker x co-

ordinates;

– the second diagonal block (of size Nfr×Nfr) rep-

resents the error covariances of the y coordinates

(univariate error covariances): in this block, each

diagonal term represents the error variance of one

marker y coordinate, while off-diagonal terms rep-

resent the covariances of the error in one marker

y coordinate with the errors in the other marker

y coordinates;

– cross-diagonal blocks (of size Nfr×Nfr) repre-

sent the (symmetric) multi-variate error crossed-

covariances between the x and y coordinates of the

Nfr simulated front markers (multi-variate error co-

variances).

2. an update step (analysis), in which new observations yo
t

are considered at the analysis time t and in which the kth

www.nat-hazards-earth-syst-sci.net/15/1721/2015/ Nat. Hazards Earth Syst. Sci., 15, 1721–1739, 2015
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Analysis fire  
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t-1 = (xi, yi), i in [1,Nfr]  

FIREFLY forward model  
M[t-1,t](xa

t-1) = xf
t 
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t = (xi
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o]  

EnKF algorithm  
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t = xf
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e
 df

t 
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 ensemble estimate 
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t) 
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f 

forecast k  

…
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front at t analysis 1  

analysis k  

…
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Prediction step 
(forecast) 

STEP. 2:  
Update step 
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Figure 2. Flowchart of the EnKF algorithm during the [t − 1, t]

assimilation cycle for a SE approach.

ensemble member is updated consistently with the ob-

servations, based on the following EnKF update equa-

tion:

x
a,(k)
t = x

f,(k)
t +Ke

t

(
yo
t + ξ

o,(k)
−Ht

(
x

f,(k)
t

))
, (5)

Ke
t = Pf

tH
T
t

(
HtP

f
tH

T
t +R

)−1

, (6)

where, as for the PE approach (see Rochoux et al.,

2014a), the innovation vector d
(k)
t is simply defined as

the vector formed by the directed distances between the

paired SFF-OFF markers for the kth ensemble member:

d
(k)
t = y

o
t + ξ

o,(k)
− yf

t = y
o
t + ξ

o,(k)
−Ht

(
x

f,(k)
t

)
, (7)

with an additional noise ξo,(k) added to the observation

vector to avoid ensemble collapse (Burgers et al., 1998).

The EnKF update in Eqs. (5) and (6) provides corrected

positions xa
t for the Nfr simulated markers along the

fireline at time t , but there is no feedback on the ROS

model parameters and/or on the fire’s initial location

used to generate variability in the ensemble of forecasts.

Note that in the context of SE, the selection operatorHt
is straightforward to compute, meaning that a selection

of lines and columns of Pf
t is sufficient to estimate the

term (HtP
f
tH

T
t ). Note also that in the present study as in

Rochoux et al. (2014a), observation errors are assumed

uncorrelated, i.e., the observation error covariance ma-

trix R is treated as a diagonal matrix, in which each di-

agonal term is the error variance (σ o)2 associated with

the x or y coordinate of the No
fr markers along OFF.

3.2 Ensemble generation

The generation of the forecast ensemble is of primary impor-

tance in the performance of the EnKF forecast/update steps

since it directly impacts how uncertainties are represented in

the forecast error covariance matrix Pf
t . To allow for reliable

error covariance modeling, all possible sources of uncertain-

ties must be accounted for during this forecast step.

Different techniques can be considered to generate the en-

semble of forecasts. If each fire front marker is perturbed sep-

arately (meaning that the error of one marker is uncorrelated

to the errors of its neighbors along the fireline), the result-

ing fire front does not exhibit coherent features. This ensem-

ble generation is therefore conflicting with the physical pro-

cesses underlying wildfire spread. An alternative and more

physically consistent strategy is to generate an ensemble of

simulated fire fronts by (1) randomly perturbing the input

parameters of the Rothermel-based ROS model (e.g., wind

magnitude u∗w and direction angle α∗w, fuel moisture content

Mv) as well as the fire’s initial location (xign, yign), and by

(2) integrating FIREFLY using the PALM-PARASOL func-

tionality in OpenPALM1 (Fouilloux et al., 1999; Lagarde

et al., 2001; Buis et al., 2006) for each set of parameters as

in the PE approach, see Rochoux et al. (2014a) for details on

PALM-PARASOL. This leads to an ensemble ofNe fire front

locations at time t designated as xf
t and used to describe the

forecast error covariance matrix Pf
t .

A series of OSSE tests cases is presented here to highlight

the key aspects of the proposed SE approach. The focus is on

the impact of ensemble generation on the stochastic estima-

tion of the spatial correlations of the marker location errors

in Pf
t and the resulting correction of the fireline. Observa-

tion errors are assumed to be small with respect to the fire-

line perimeter (with the observation error STD taken equal to

σ o
= 1m); the SE-based EnKF performance is evaluated by

its ability to track the time-evolving location of the observed

fire front.

3.2.1 Isotropic case

An isotropic case corresponding to a 200m × 200m do-

main with uniform biomass fuel properties and no wind is

considered first. The ROS 0 is constant, uniform and taken

equal to 0.2 ms−1. The true fire is ignited at (xign, yign)=

(100m, 100m) as a circular front with a radius of 5 m. Us-

ing a 1 m computational grid resolution along the x and y di-

rections and a 0.5 s temporal resolution, FIREFLY is first

integrated over the time window [0; 200 s] in order to pro-

duce at the analysis time (chosen to be t = 200s) the true

location of the fire front. A forecast ensemble of Ne = 25

members is then produced based on spatial variations of the

fire’s initial location (xign, yign) around a mean value (97 m,

103 m) and with an error STD along both x and y directions

taken equal to σ f = 10m, see Fig. 3a. In this test, uncer-

tainties in the forecast ensemble are only due to errors in

the initial location of the fire front. The observed fire front

is described by a stand-alone marker (No
fr = 1), while sim-

ulated fire fronts are discretized using Nfr = 100 markers

(i.e., r =Nfr/N
o
fr = 100).

Figure 3a presents a comparison between the true and fore-

cast fire front positions at time t = 200s (i.e., the observation

1http://www.cerfacs.fr/globc/PALM_WEB/
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(a) Forecast estimates of the fire front location 

(b) Analysis estimates of the fire front location 

Figure 3. Spatially uniform OSSE test with constant ROS but un-

certain ignition location (xign, yign); one assimilation cycle [0;

200 s]; all figures correspond to the observation time t = 200s.

(a) Comparison between true (black solid line) and forecast (blue

dashed lines) fire front positions; the cross symbol is the only obser-

vation available. (b) Similar comparison between true (black solid

line) and analysis (red dashed lines) fire front positions.

time). This figure shows that due to uncertainties in the initial

location of the fire front at initial time (0s), the predicted fire

front locations are scattered over a large area at observation

time (200s). Since in this test, uncertainties in the distribu-

tion of the biomass fuel properties are not accounted for in

the ensemble generation, the propagation of the fire front is

isotropic (simulated fire fronts remain circular).

Figure 4 presents the spatial correlation of the error in the

location of the marker indexed by m in Fig. 3a. Note that

the error correlation associated with the marker m represents

how the error in the location of this simulated marker is cor-

related to the errors in the location of its neighbors along the

(a) Univariate error correlations along the fireline 
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(b) Multi-variate error correlations along the fireline 

Figure 4. Error correlation functions along the fireline associated

to one marker location (the vertical bar represents its reference lo-

cation indexed by m in Fig. 3a) for the OSSE isotropic propagation

test with constant ROS but uncertain ignition location (xign, yign)

at the observation time t = 200s. (a) Univariate correlations: the

dashed (solid) line indicates the error correlation of the reference

marker x coordinate (y coordinate) with respect to the errors in the

x coordinates (y coordinates) of the other markers along the fire-

line. (b) Multi-variate correlations: the dashed (solid) line indicates

the error correlation of the reference marker x coordinate (y coordi-

nate) with respect to the errors in the y coordinates (x coordinates)

of the other markers along the fireline.

fireline (this, in order to characterize the fire front as a coher-

ent feature given by FIREFLY). Figure 4 shows that univari-

ate correlations are almost equal to one, while multi-variate

correlations are nearly zero. Errors in the position of the Nfr

simulated front markers are highly correlated within the en-

semble due to the isotropic propagation. As a result, the DA

algorithm translates the information observed at one marker

into a uniform correction along the fireline.

Figure 3b presents the comparison between the true and

analysis fire front positions at the observation time t = 200s.

The analysis ensemble corresponds here to the updated fire

front locations that are produced through the EnKF update

step. As expected, the analysis estimates of the fire front loca-

tions feature a much reduced scatter around the true location

of the fire front, and the EnKF correction is isotropic due to

high error correlations along the fireline (i.e., each analysis

estimate within the ensemble is a circular front). With this

uniform definition of the forecast ensemble, deforming the

shape of the fire front through the ensemble-based analysis

is impossible.
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3.2.2 Anisotropic case

To be able to stochastically represent more complex front

shapes that are representative of all sources of uncertainties

in the wildfire spread model as well as of their spatial vari-

ability, it is of primary importance to consider non-uniform

environmental conditions when generating the ensemble of

forecasts.

An anisotropic case of wildfire spread subject to spatially

varying vegetation properties and wind-aided propagation is

now considered. An ensemble of Ne = 20 forecasts is pro-

duced over the time window [0; 150 s], based on assumed

uncertainties in the fire ignition location (xign, yign) at ini-

tial time (0 s) as well as in a subset of ROS model param-

eters, specifically in the fuel layer depth δv, the fuel mois-

ture content Mv, the fuel particle surface-to-volume ratio 6v

and the wind properties (magnitude u∗w and direction angle

α∗w). In addition, the fuel depth δv is assumed to be spa-

tially varying, taking different values in the four quadrants

of the square-shaped 700m × 700m computational domain.

Thus, uncertainties in the forecast ensemble are due to varia-

tions in 10 parameters, whose mean and STD values are pre-

sented in Table 2. Simulated fire fronts are discretized using

Nfr = 100 markers; the impact of spatial error correlations on

the EnKF-based analysis estimates is studied here for vary-

ing number of observed front markers No
fr.

Figure 5a presents a comparison between the true and fore-

cast fire front positions at observation time t = 150s. Due to

uncertainties in the ROS model parameters and not only un-

certainties in the fire’s initial location, the propagation is now

anisotropic; due to the presence of wind and to the spatial

variations in fuel depth, the forecast fire fronts are charac-

terized by stronger irregularities and more complex shapes

than results presented in Fig. 3a. Figure 5b presents a sim-

ilar comparison between the true and analysis fire front po-

sitions at time t = 150s; the observed fire front is described

by No
fr = 20 uniformly distributed markers (i.e., r = 5). As

expected, the ensemble of analyses features a much reduced

scatter (in terms of front shapes) around the true location of

the fire front.

While Fig. 5a–b shows that the direct observation of the

fire front location can overcome various uncertainties in the

ROS model parameters, Fig. 5c illustrates that the spatial dis-

tribution of the observations along the fireline has a signifi-

cant impact on the analysis. This figure considers a practi-

cally relevant situation in which the observations are limited

to a certain section of the fireline (i.e., the informed section,

possibly due to the opacity of the thermal plume) and there-

fore, provide an incomplete picture. In this situation, while

the EnKF algorithm produces an analysis that is close to the

true state in the informed section, the benefits of DA are

reduced in the non-informed sections. However, in spite of

a reduced level of performance, the EnKF algorithm remains

capable of a significant improved performance compared to

a stand-alone forecast (in terms of front shapes and loca-
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(a) Forecast estimates of the fire front location 

(b) Analysis estimates of the fire front location 
with Nfr

o = 20 

(c) Analysis estimates of the fire front location 
with Nfr

o = 12 for an incomplete set of 
observations 

Figure 5. Spatially varying OSSE test with uncertain ROS model

parameters and with uncertain ignition location (xign, yign); one

assimilation cycle [0; 150 s]; all figures correspond to the observa-

tion time t = 150s. (a) Comparison between true (black solid line)

and forecast (blue dashed lines) fire front positions. (b–c) Compar-

ison between true (black solid line) and analysis (red dashed lines)

fire front positions. Black cross symbols are the Nos
fr

observed front

markers.
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Table 2. Properties of the ensemble forecast in the OSSE anisotropic case.

Random variable True value Ensemble mean Ensemble STD

(δv,1, δv,2, δv,3, δv,4) (m) (0.25, 1.25, 0.75, 1.75) (0.25, 1.25, 0.75, 1.75) (0.10, 0.10, 0.10, 0.10)

Mv (%) 20 20 10

6v (m−1) 11 500 11 500 4000

(u∗w,α
∗
w) (ms−1, ◦) (1.0, 315) (0.75, 315) (0.15, 45)

xign (m) 350 350 20

yign (m) 350 350 20

tions). This improved performance is due to the spatial corre-

lation of the errors in the location of the simulated markers.

Since the anisotropy of wildfire spread is now represented by

a wide range of uncertainties in the forecast ensemble, the er-

ror in the location of one observed marker is correlated with

the error in the location of its adjacent markers along the fire-

line as shown in Fig. 6 for the marker indexed by m in Fig. 5a.

Stated differently, the estimation problem translates the in-

formation coming from one observation marker into a local

correction restricted to the closest neighbors only. The dis-

tance over which the observation marker affects the correc-

tion of the simulated front marker locations is referred to as

correlation length scale (Daley, 1991; Pannekoucke et al.,

2013). This length scale depends on the spatial variability

of the errors in the ensemble generation and on the consis-

tency of these statistics with the model errors statistics. For

instance, Fig. 6 shows that the length scale associated with

the univariate error correlations of the marker x coordinate

typically takes values on the order of 15 m on both sides

of the considered simulated marker. This means that if this

marker is assimilated, the correction of its location subse-

quently modifies the shape of the fire front over a distance of

15 m on both sides of this marker. This figure also shows that

the errors in the marker y coordinates are anti-correlated on

both sides of the marker m; due to its particular location on

the fireline (i.e., at the boundary between the flank and the

back side of the fire), variations in the wind conditions in-

duce significant changes in the fire front shape in the vicinity

of marker m (markers can move from the flank to the back

side of the fire or from the back side to the flank by modifi-

cation of the wind direction for instance). As a consequence,

when several observations are available, a non-uniform cor-

rection is obtained, and the DA algorithm is able to change

the shape of the analysis fronts and more easily match the

observations.

Figure 7 examines the influence of the number of uni-

formly distributed markers along the observed fire front No
fr

on the EnKF performance. This figure presents the root mean

square (RMS) distance between the true and the forecast fire

front positions as well as between the true and the analysis

fire front positions as a function of No
fr. The figure shows

that when No
fr is large (see Fig. 5b with No

fr = 20), the EnKF

algorithm successfully drives the analysis ensemble towards

(a) Univariate error correlations along the fireline 

(b) Multi-variate error correlations along the fireline 
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Figure 6. See caption of Fig. 4. OSSE anisotropic case with un-

certain ROS model parameters and with uncertain ignition location

(xign, yign) at the observation time t = 150s; the vertical bar repre-

sents its reference location indexed by m in Fig. 5a.

the true state; in contrast, when No
fr is small, the EnKF algo-

rithm has reduced effects and the analysis estimates remain

close to the forecast estimates. Stated differently, the perfor-

mance of the DA algorithm and its ability to capture the high-

resolution features of wildfire spread depend strongly on the

density of the observation network.

Furthermore, even though accounting for a wide range of

uncertainties in the ROS parameters provides a wide range

of possible fire front shapes, sampling errors can degrade the

representation of the error statistics during the EnKF predic-

tion step (if the number of membersNe in the ensemble is not

large enough) and thereby, the analysis solution. Figure 8 ex-

amines the impact of Ne on the EnKF performance, in terms

of the RMS distance between the true and forecast fire front

positions as well as between the true and analysis fire front

positions. These results show that for the present anisotropic

case, Ne = 20 members are sufficient to obtain converged er-

ror statistics; below this threshold value, sampling noise in-
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Figure 7. Average distance between the true and forecast fire front

positions (blue circles) and between the true and analysis fire front

positions (red squares) at time 150 s as a function of the number of

observed markers Nos
fr

; OSSE anisotropic case. Error bars indicate

the associated STD.

duces significant errors in the representation of error covari-

ances.

3.3 Sequential model state estimation

3.3.1 Principle and algorithm

To apply successive assimilations (i.e., perform regular

EnKF updates), the ensemble of analysis fire fronts must

be used as initial conditions and evolved to future times.

However, to restart the FIREFLY front-tracking simulator,

a two-dimensional progress variable field c is required (see

Sect. 2.2). The field c(k) ≡ c(x,y, t)(k) associated with the

kth ensemble member x
a,(k)
t (k varying between 1 and Ne) is

therefore reconstructed and used as initial condition for the

next assimilation cycle [t, t + 1]. This reconstruction is per-

formed through a binarization process, i.e., c(k) = 0 in the

unburnt vegetation and c(k) = 1 in the burnt area.

For each member k in the ensemble, the reconstruction al-

gorithm applied to each mesh node (xN ,yN ) of the compu-

tational domain is as follows (see Fig. 9):

1. pair the mesh node (xN ,yN ) with the closest simulated

front marker noted (xA,yA) (computation of the mini-

mal distance to the fire front);

2. determine the closest neighbor of (xA,yA) along the

fireline noted (xB ,yB);
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Figure 8. Average distance between the true and forecast fire front

positions (blue circles) and between the true and analysis fire front

positions (red squares) at time 150 s as a function of the number

of members Ne in the ensemble; OSSE anisotropic case. Error bars

indicate the associated STD.

3. compute the normal vector to the fireline (orthogonal to

segment [AB]) passing through the node (xN ,yN ), and

determine their intersection noted (xO ,yO) (by linear

algebra);

4. calculate the two-dimensional inner product between

the vector
−−→
ON and the outward normal vector to the

front at node (xA,yA) noted
−→
nA: the sign of the inner

product determines if the mesh node (xN ,yN ) is inside

or outside the burnt area:

– if the inner product (
−−→
ON ·

−→
nA) is positive, the mesh

node (xN ,yN ) is outside the burnt area;

– if (
−−→
ON ·

−→
nA) is negative, the mesh node (xN ,yN ) is

within the burnt area;

– if (
−−→
ON ·

−→
nA) takes a zero value, the mesh node

(xN ,yN ) is on the fireline.

5. Determine the corresponding value of the progress vari-

able c at mesh node (xN ,yN ); a smoothing hyper-

bolic tangent function is applied when the mesh node

(xN ,yN ) is near the fire front.

The reconstructed progress variable field c(k) can be used to

integrate FIREFLY over the next forecast period [t; t + 1].

A schematic of the sequential SE approach over the as-

similation cycle [t − 1, t] for the kth ensemble member is

presented in Fig. 10; the main steps are as follows:
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(xN,yN)

(xA,yA)

(xB,yB)

(xO,yO)

c = 1

c = 0

nA

Mesh node

Analysis fire front xt
a,(k)  

(Nfr markers)

Figure 9. Schematic of the reconstruction algorithm for the FIRE-

FLY initial condition. In this example, the mesh node (xN ,yN ) is

outside the burnt area, the inner product (
−−→
ON ·

−→
nA) is positive.

1. build an ensemble of perturbed ROS model parameters

(see Sect. 3.2);

2. integrate the forward model from time (t − 1) to time t ,

starting from the analysis progress variable field related

to the kth member at time (t − 1) and using the set of

perturbed parameters related to the kth member;

3. compute the forecast error covariance matrix Pf
t using

Eq. (4);

4. compute the observation operator reduced to a selection

operator through Eq. (3), in order to obtain the model

counterparts of the observations at time t ;

5. apply the Kalman filter update equation at time t for

each member of the ensemble based on Eqs. (5)–(6),

in order to obtain the corrected positions of the front

markers at time t ;

6. reconstruct the progress variable two-dimensional field

c(k) corresponding to the analysis estimates at time t

(the reconstruction procedure must be performed for all

members Ne in the ensemble).

To move to the next assimilation cycle [t, t + 1], step (1) can

be performed again.

3.3.2 Sequential assimilation for the anisotropic case

Multiple assimilation cycles for the OSSE anisotropic case

(presented in Sect. 3.2.2) are now considered based on the

previously described multi-cycle algorithm. The quality of

the forecast (measured by its ability to track the location

of the true fire front) is examined over the time window

[0; 600 s] with observations taken at 150 s time intervals, at

times t1 = 150s, t2 = 300s, t3 = 450s and t4 = 600s. Thus,
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Figure 10. Schematic of the sequential SE approach for each en-

semble member k = 1, · · ·,Ne, with a focus on the reconstruction

of the two-dimensional progress variable c(k) posterior to analysis

over the time window [t − 1, t] and prior to forecast over the time

window [t, t + 1].

Table 3. Time-varying true wind conditions (in terms of magnitude

u∗w and direction angle α∗w) in the OSSE anisotropic case with mul-

tiple assimilation cycles, from 0 to 600 s, at 150 s time intervals.

Assimilation u∗w (ms−1) α∗w (◦)

cycle

1 1.0 315

2 0.75 290

3 0.83 257

4 1.20 232

the EnKF update is performed over four successive assimila-

tion cycles; each assimilation cycle [tn−1; tn] includes a pre-

diction step that integrates FIREFLY from tn−1 until tn and

an update step that corrects the location of the simulated fire

front at time tn (n= 1, . . .,4). The propagation of the true

fire front is simulated for time-varying wind conditions (but

with assumed constant wind velocity and direction over each

assimilation cycle) presented in Table 3, while the forecast

ensemble is simulated for constant wind conditions using the

ROS model parameters presented in Table 2. Note that the

perturbation of the fire ignition location (xign,yign) is only

introduced during the first assimilation cycle (as a means to

account for uncertainties in the fire’s initial location before

remote sensing detection).

The quality of the forecast is expected to deteriorate at in-

creasing lead-times (i.e., when the time delay between the

actual forecast time and the previous analysis time increases)

for two reasons. First, because the impact of the fire front

correction applied at a given analysis time decreases with
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Figure 11. OSSE anisotropic case over multiple assimilation cycles

(from 0 to 600 s): comparison between the free run (green dashed-

dotted line), the mean forecast estimate (blue dashed line), observa-

tions (black crosses) and the mean analysis estimate (red solid line)

at 150 s time intervals, at times (a) t1 = 150s (the gray circle cor-

responds to the true initial location); (b) t2 = 300s; (c) t3 = 450s;

and (d) t4 = 600s.

time (i.e., when the forecast lead-time increases). Second,

because the present implementation of the SE-based EnKF

does not provide any correction for ROS modeling errors or

for ROS model parameters (including the incorrect assump-

tion of a constant wind); such correction may be addressed

through a PE approach, see Rochoux et al. (2014a).

Figure 11 presents the successive comparison between the

mean free run (i.e., stand-alone FIREFLY simulation without

DA as green dashed-dotted line), the mean fire front location

related to the forecast estimates (blue dashed line) and to the

analysis estimates (red solid line) as well as the observations

(black crosses) at times t1, t2, t3 and t4. It is found that the

free run simulation does not accurately estimate the rate and

direction of the fire spread due to imperfect knowledge in

the ROS model parameters and in the fire’s initial location.

As for the forecast, it provides a more accurate prediction

of the fire front location and a more physically consistent

front shape than the free run at each assimilation time. Still,

the analysis estimates exhibit a much reduced scatter due to

the EnKF update and the information gain obtained by the

observations:; the distance between the analysis fire front and

the observations is largely reduced at the analysis time, and

the shape of the analysis fire front is much more consistent

with the observed fire front.

The performance of the EnKF update is confirmed by the

error statistics presented in Fig. 12a, which presents the time-

evolution of the deviations of FIREFLY model predictions

from observations. It is shown that the benefits from the

EnKF update decrease as the forecast lead-time increases.

For instance, the RMS distance to the true front is signifi-

cantly reduced by the EnKF update, from 30 m for the free

run (FR) to less than 1 m for the analysis (A1) during the first

assimilation cycle [0;150s]. Starting again from the anal-

ysis estimates at time 150s, FIREFLY simulates the fore-

cast fire evolution in time but, without additional observa-

tions, the distance between the true state and the forecast

(F1) significantly increases, to 20m at time t2 = 300s up

to approximately 80 m at time t5 = 750s. By repeating the

EnKF update at 150s time intervals, the distance between

the true state and the simulated fire front remains below 10 m.

EnKF-based data-driven simulations bring valuable informa-

tion on the wildfire spread behavior, even when DA is not

applied systematically. This is illustrated in Fig. 12b, which

presents a comparison of different fire front forecasts at time

t4 = 600s using FIREFLY, with or without DA. The closer

the assimilation time to t4 = 600s, the better the forecast pre-

diction; consistently, the free run (FR) provides the less ac-

curate prediction with a mean distance to the observations

approximately equal to 70 m; in contrast, this mean distance

is reduced by a factor of nearly 2 for (F2) and by a factor of

70 for (A4).

In summary, these results of OSSE test cases show that in

a SE approach, EnKF updates provide valuable information

and lead to accurate forecasts on wildfire behavior at short

lead-times, the definition of short being dependent on the

persistence of the model initial condition. Accordingly, the

EnKF update must be performed at regular time intervals to

efficiently track the actual wildfire propagation.

4 Application to a controlled grassland fire experiment

The EnKF-FIREFLY data-driven simulator is now evaluated

in a validation study corresponding to a controlled grassland

fire experiment (a case in which the true control vector is

not known and may not exist if the model is not sufficiently

representative). The experimental configuration corresponds

to a small (4m× 4m), flat and horizontal, open-field grass-

land lot burning under moderate wind conditions in which

the ROS takes values on the order of 1 cms−1 (with a maxi-

mum value reaching 5 cms−1 in the wind direction).

The properties of the grass are (approximately) known:

δv = 8cm (field measurement), Mv = 22% (field measure-

ment) and 6v = 11 500m−1 (Rothermel’s fuel database for

short grass); the wind conditions are also approximately

known: the magnitude and direction angle of the wind are

constant and equal to u∗w = 1ms−1 and α∗w = 307◦. The fire

spread is recorded using a thermal-infrared camera; the ther-

mal maps are post-processed (the fire front is defined at the
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Figure 12. OSSE anisotropic case over multiple assimilation cy-

cles (from 0 to 600 s). (a) Average distance between the true and

forecast/analysis fire front location as a function of the assimila-

tion cycle index: green circles correspond to the free run (FR); tri-

angles, crosses, diamonds and stars correspond to a forecast with

an EnKF update at t1 = 150s (F1), t2 = 300s (F2), t3 = 450s (F3)

and t4 = 600s (F4), respectively; square symbols correspond to an

EnKF update performed at times t1 (A1), t2 (A2), t3 (A3), t4 (A4)

and t5 (A5). (b) Comparison at time t4 = 600s between the free run

(FR) in green dashed-dotted line, the mean forecast estimate (F1,

F2, F3) in dashed lines, observations in black crosses, and the mean

analysis estimate (A4) in red solid line.

Table 4. Statistical properties of the forecast ensemble in the con-

trolled grassland fire experiment.

Random variable Ensemble mean Ensemble STD

Mv (%) 22 6

6v (m−1) 11 500 4000

(u∗w,α
∗
w) (ms−1, ◦) (1, 307) (0.4, 45)

δv,1 (m) 0.06 0.04

δv,2 (m) 0.08 0.04

δv,3 (m) 0.10 0.04

δv,4 (m) 0.12 0.04

xign (m) 2 0.65

600 K iso-temperature contour) and thereby, provide full fire

contours. The study considers four successive, 14 s-long, as-

similation cycles with initialization at time t0 = 50s and suc-

cessive updates at times t1 = 64s, t2 = 78s, t3 = 92s and

t4 = 106s. Based on the spatial resolution of the camera, the

estimated STD of the measurement error is σ o
= 0.05m.

4.1 Performance of state estimation

To generate the ensemble of forecasts, the mean values of

the ROS model parameters are the (approximately) known

short grass properties and wind conditions. Spatially uni-

form distributions for Mv, 6v, u∗w and α∗w are assumed; in

addition, the grassland lot is divided into four equally sized

rectangular-shaped sections and the fuel depth δv is treated

as different in each zone, 6, 8, 10 and 12 cm from east to

west (noted δv,i , with i = 1, · · ·,4, respectively). The uncer-

tainty in the initial position of the fire at time t0 (along the

x-direction) is also accounted for; the mean is the observed

fire front location taken from the experiment. The ensem-

ble contains Ne = 50 members corresponding to 9 different

choices of the ROS model parameters and of the fire’s initial

location, i.e., [δv,1,δv,2,δv,3,δv,4,Mv,6v,u
∗
w,α
∗
w,xign]. The

corresponding stochastic perturbations are characterized by

relatively large levels as presented in Table 4. In these sim-

ulations, Nfr = 100 markers are used to represent simulated

fire fronts and No
fr = 50 markers are considered for observa-

tions (i.e., r = 2).

Figure 13a presents a comparison between the mean

(ensemble-average) forecast estimate of the fire front loca-

tion (as predicted by FIREFLY starting from time t0 = 50s),

the observations and the mean analysis estimate at time t1 =

64s. It is found that the mean free forecast (without DA)

significantly underestimates the observed ROS of the fire.

In contrast, the predictions that are made after an EnKF up-

date performed at time t1 successfully reduce the distance be-

tween FIREFLY simulations and observations. In particular,

the mean analysis estimate features a topology that is very

consistent with the observed fire front, a result that requires

an accurate and non-uniform correction of the fire front loca-

tion. Figure 14 presents the univariate error correlations asso-
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(b) t2 = 78 s 

(c) t3 = 92 s 

(d) t4 = 106 s 

Figure 13. Controlled grassland fire experiment with multiple as-

similation cycles from t0 = 50s to t4 = 106s. Black crosses cor-

respond to observations, the gray solid line corresponds to the ini-

tial condition of the assimilation cycle, the green dashed-dotted line

corresponds to the free run (without DA), the blue dashed line cor-

responds to the mean forecast estimate (without DA for the first

observation time or with DA at the previous observation time), and

the red solid line corresponds to the mean analysis estimate (with

a DA update at the current observation time). Assimilation cycles

(a) [50; 64 s]; (b) [64; 78 s]; (c) [78; 92 s]; and (d) [92; 106 s].

ciated with the front marker indexed by m in Fig. 13a for the

forecast (blue dashed line) and analysis (red solid line) esti-

mates. The analysis estimates feature a much reduced length

scale compared to the forecast estimates to allow for a spa-

tially distributed correction during the EnKF update.
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Figure 14. Univariate error correlation functions along the fireline

associated to one marker location (the vertical bar represents its ref-

erence location indexed by m in Fig. 13a) – controlled grassland fire

experiment over the assimilation cycle [50; 64s]. (a) Error correla-

tion of the reference marker x coordinate with respect to the errors

in the x coordinates of the other markers along the fireline: the blue

dashed (red solid) line corresponds to the mean forecast (analysis)

estimate. (b) Error correlation of the reference marker y coordinate

with respect to the errors in the y coordinates of the other markers

along the fireline: the blue dashed (red solid) line corresponds to the

mean forecast (analysis) estimate.
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Similar comparisons to Fig. 13a are presented in Fig. 13b–

d at times t2, t3 and t4, respectively. Note that the mean fore-

cast estimate (blue dashed line) is initialized at the previous

observation time by the analysis produced by the DA cycle,

while the free forecast (green dashed-dotted line) is initial-

ized at time t0 and does not use any analysis. It is found that

the mean distance to the observations is reduced by a factor

of at least 5 over all assimilation cycles, by performing EnKF

updates at 14 s time intervals. Thus, the agreement between

predicted and observed front positions is remarkable and sig-

nificantly better than the level of agreement that would be ob-

tained in the absence of DA. However, in spite of the quality

of the correction provided by the SE-based EnKF algorithm,

the performance of the forecast remains limited; for instance,

Fig. 13b shows that the mean forecast estimate (initialized by

the analysis at time t1 and integrated until time t2), while still

significantly more accurate than the free forecast (initialized

by the initial conditions at time t0 and integrated until time

t2), is not in good agreement with the observation (relatively

to the mean analysis estimate). These results suggest that in

the present configuration, the persistence of the initial con-

dition is limited to short lead-times (i.e., shorter than 14 s)

and the performance of the SE-based EnKF forecast could

be improved by more frequent assimilation.

4.2 Comparison to parameter estimation

A PE approach based on the standard EnKF approach and

validated in Rochoux et al. (2014a) is applied to the same

controlled grassland fire experiment. While the SE approach

leads to a direct adjustment of the fire front location, the PE

approach works by an adjustment of the ROS model parame-

ters. In the PE approach, four parameters are used as control

variables: the fuel moisture content Mv and particle surface-

to-volume ratio 6v as well as the wind magnitude u∗w and

direction angle α∗w, i.e.,

x =
[
Mv,6v,u

∗
w,α
∗
w

]
,

with n= 4 the size of the control vector. These parameters

are perturbed around mean values and with prescribed uncer-

tainties (according to assumed levels of uncertainty presented

in Table 4), but remain spatially uniform for each ensemble

member. The EnKF ensemble contains Ne = 1000 members,

meaning that during each assimilation cycle, FIREFLY pro-

duces 1000 fire front trajectories associated with each set of

control parameters. Note that the size of the ensemble is dras-

tically increased compared to the SE approach, in order to re-

trieve accurate error statistics of the control parameters and

to avoid the equifinality problem (i.e., a problem in which

multiple sets of parameters provide the same simulated fire

front), see Rochoux (2014) for further explanations on this

equifinality problem.

Figure 15a compares the mean forecast estimate obtained

at time t4 = 106s, using the PE ensemble (blue dashed line)

and the SE ensemble (blue solid line) as predicted by FIRE-

FLY integration and with an EnKF update performed at suc-

cessive observation times t1 = 64s, t2 = 78s and t3 = 92s.

Figure 15b compares the mean analysis estimate obtained at

the same time t4 = 106s using a PE-based EnKF update (red

dashed line) and a SE-based EnKF update (red solid line). In

both figures, predictions are compared to observations (black

crosses). It is found that for both PE and SE approaches, the

analysis estimates provide more accurate fire front locations

than the forecast estimates. This point is also illustrated in

Fig. 16, which presents the RMS distance between the ob-

servations and the mean fire front location produced by the

forecast estimates (see Fig. 16a) and analysis estimates (see

Fig. 16b) over the four successive assimilation cycles; the

mean distance to the observations is reduced by a factor 2 in

the PE approach and by a factor of at least 5 in the SE ap-

proach. Additionally, the performance of the SE-based anal-

ysis is significantly better than that of the PE-based analy-

sis (relying on spatially uniform distributions of ROS model

parameters); the mean distance between observed and SE-

based simulated fire fronts remains below 0.1 m for all as-

similation cycles and the scatter of the SE-based analysis en-

semble is significantly less than that obtained through PE.

In spite of the overall quality of the correction provided by

both EnKF estimation approaches, the accuracy of the fore-

cast, while still significantly better than that obtained in the

free run simulations, rapidly decreases over time. Some of

the benefits of an analysis are indeed lost in the forecast at

time t4, due to the limited persistence of the initial condition

and/or due to the temporal variability of the errors in the en-

vironmental conditions. The improved forecast performance

of the PE approach is illustrated in Fig. 16a; the adjustment

of the ROS model parameters allows for a correction of in-

accuracies in initial guesses as well as an adaptation to time-

dependent properties; the statistical properties of the EnKF

ensemble are dynamically evolving. In contrast, the statisti-

cal properties of the SE-based EnKF ensemble are constant.

Figure 17 illustrates this point. In particular, this figure shows

that the prior values of the moisture content Mv and the fuel

particle surface-to-volume ratio 6v are not adequate to ef-

fectively track the actual fire propagation (in comparison,

the estimated wind conditions in the PE approach are con-

tained in the support of the forecast PDFs). These values are

corrected in the PE approach; the mean (ensemble-average)

value of Mv is decreased from 22 % to approximately 10 %;

the mean (ensemble-average) value of 6v is increased from

11 500m−1 to approximately 19 000m−1. These values are

not corrected in the SE approach and therefore, induce a sig-

nificant bias in wildfire spread simulations.

In this validation study, the assimilation needs to be re-

newed by frequent observations with an assimilation fre-

quency (i.e., frequency at which the EnKF update is renewed

by observations) that is high enough to track the temporal

variability of the errors in the ROS model parameters. Updat-

ing environmental conditions (the biomass moisture content
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(a) Forecast over [92; 106 s] 

(b) Analysis at t4 = 106 s 
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Figure 15. Comparison between simulated (lines) and observed

(symbols) front positions at time t4 = 106s in the controlled grass-

land burning experiment. The simulated front position is the mean

position calculated as the average of the EnKF ensemble; dashed

lines (solid lines) correspond to the PE-based (SE-based) simula-

tions. (a) Forecast (with EnKF update at t3 = 92s). (b) Analysis

(with EnKF update at t4 = 106s).

in particular) explains the bulk of the improved forecasts at

future lead times.

5 Conclusions

This study is the second part in a series of two articles, in

which we propose and explore a new paradigm for producing

optimized forecasts of the wildfire behavior based on obser-

vations of the fire front location. The prototype data-driven

simulator combines a regional-scale wildfire spread model,

FIREFLY, with a data assimilation (DA) algorithm based on

an ensemble Kalman filter (EnKF); it features a choice be-

tween a parameter estimation (PE) approach (in which the

estimation targets are the parameters of the rate of spread

(ROS) model) and a state estimation (SE) approach (in which

the estimation targets are the time-evolving spatial coordi-

nates of the fire front). The cornerstone of this prototype

data-driven simulator is to do the following:
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Figure 16. Evolution over 4 successive assimilation cycles of the

average distance between the observations and the mean fire front

location produced by the (a) forecast estimates and the (b) analy-

sis estimates at times t1 = 64s, t2 = 78s, t3 = 92s, and t4 = 106s.

Dashed (solid) lines represent PE (SE) results; vertical bars indicate

the STD in the forecast and analysis estimates.

1. explicitly account for the effects of both measurement

and modeling errors and thereby, overcome some of the

current limitations of regional-scale wildfire modeling;

2. account for non-linearities in the wildfire behavior and

for temporal variability of the errors in the environmen-

tal conditions;

3. forecast reliable wildfire spread scenarios at limited

computational cost, consistently with an operational

framework for real-time monitoring of wildfire behav-

ior.

The present study assumes that airborne and/or spaceborne

observations of the fire front location are available at fre-

quent times but possibly provide an inaccurate and incom-

plete description of the fire front due to the opacity of the
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Figure 17. Evolution of ROS model parameters at four successive

analysis times; controlled grassland fire experiment. PE-based en-

semble: blue circle symbols (connected by a dashed line) indicate

mean values in the forecast ensemble; red square symbols (con-

nected by a solid line) indicate mean values in the analysis en-

semble; vertical bars indicate the corresponding STD. SE-based

ensemble: black horizontal solid lines indicate mean values; black

horizontal dashed lines indicate STD. (a) Biomass fuel moisture

content Mv (%). (b) Biomass fuel particle surface-to-volume ra-

tio 6v (m−1). (c) Wind magnitude u∗w (ms−1). (d) Wind direction

α∗w (◦).

fire-induced thermal plume or due to a limited monitoring.

The performance of both PE and SE approaches was evalu-

ated on synthetic cases of wildfire spread that are representa-

tive of real wildfire conditions as well as on a reduced-scale

controlled grassland fire experiment.

Even though certain input parameters of the ROS model

can be assumed constant over the fire duration (in particu-

lar, intrinsic properties of biomass fuels), other parameters

exhibit a dynamic behavior due to the presence of the prop-

agating wildfire. Wind conditions change over time, partly

due to the fire/atmosphere interactions and their feedback

on local atmospheric conditions (in terms of wind, air tem-

perature and humidity). In addition, the moisture content of

biomass fuel also varies, in particular that of dead biomass,

which can be considered in thermal equilibrium with the at-

mosphere. A dynamic estimation of time-varying environ-

mental parameters is therefore required to produce accurate

simulations of the wildfire behavior. For this purpose, a PE

approach was presented in Part I of this series of two arti-

cles, see Rochoux et al. (2014a). This PE approach was re-

stricted to spatially uniform parameters. Accounting for the

detailed spatial variations of environmental conditions would

indeed significantly increase the computational cost, with no

means of assessing the consistency of the EnKF update to

in situ measurements (since those are usually provided with

a coarse spatial resolution).

Part II of this series of two articles demonstrated that

to obtain a local correction of the fire front location, the

generation of the stochastic ensemble must represent the

anisotropy in wildfire spread. This anisotropy was implic-

itly introduced in the SE approach by selecting spatially dis-

tributed biomass fuel properties and distinct wind conditions

between the different members in the ensemble. The SE ap-

proach was shown to be successful at retrieving at low com-

putational cost (i.e., with a relatively small number of mem-

bers in the ensemble), the actual shape of the fire front in

cases with strong anisotropic propagation conditions. This

approach was also found relevant for observations made with

significant errors and/or cases in which the observations are

incomplete (e.g., when only a section of the fireline is in-

formed), in order to reconstruct a complete, reliable initial

condition for FIREFLY restart.

Furthermore, it was demonstrated that for the present con-

trolled grassland fire experiment, the PE approach provides

a more reliable forecast capability of the wildfire behavior

than the SE approach (due to improved knowledge in en-

vironmental conditions that are usually poorly assessed) at

short lead times (i.e., at 14 s time intervals). This ranking

between PE and SE approaches remains problem-dependent

and may not hold in cases where the assimilation cycle is

longer (due to a lower observation frequency) and where

the values of the environmental conditions strongly fluctuate

during an assimilation cycle. The duration of the assimilation

cycle (i.e., a user-defined variable) is therefore of primary

importance in the success of the proposed DA approaches; it

must be specified consistently with the persistence of the ini-

tial condition and/or with the temporal and spatial variability

of the errors in the environmental conditions.

This series of two articles emphasizes the potential of DA

to dramatically increase wildfire simulation accuracy. In par-

ticular, the present original comparison between different

data assimilation strategies show that the future data-driven

wildfire spread strategy will be a blend of the PE and SE

strategies in order to address all possible sources of uncer-

tainties in the fire representation, consistently with the avail-

able amount of information on the fire event.

While wildfire spread forecast capabilities are still at an

early stage of development, it is envisioned that they will be

similar to current weather forecast capabilities and that they

will provide real-time fire forecasts using thermal-infrared

imaging including a description of both wildfire dynamics

and plume emissions such as FOREFIRE-MESONH (Filippi

et al., 2009, 2013). Thus, future plans include the following:

– the extension of the FIREFLY front-tracking simula-

tor to complex terrain topography; a recent study (Ro-
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choux et al., 2014b) has shown that the performance

of the EnKF algorithm is preserved for synthetic cases

of slope-aided wildfire spread and that the DA formal-

ism remains the same as for a no-slope fire propagation;

but this needs to be validated against real-world wildfire

events;

– the evaluation of the PE/SE-based estimation strategy

for real-world wildfire events, in order to design the ob-

servation requirements (in terms of spatial and tempo-

ral resolutions) to obtain reliable forecasts of wildfire

spread;

– the development of a dual SE/PE approach that could

partly overcome the forecast limitations illustrated in

the present and past studies (the PE approach could be

extended to the case of weak spatial variations of the

ROS model parameters);

– the study of the forecast performance with respect to

the formulation of the ROS model and the possible

generation of the ensemble with different ROS models

(the Rothermel’s semi-empirical model was used in the

present study to demonstrate the feasibility of the EnKF

algorithm, but the present strategy could be applied to

any ROS model in the literature);

– the integration of the DA algorithm into a meso-scale at-

mospheric model based on computational fluid dynam-

ics. The issues related to DA for coupled physical sys-

tems were not addressed in this work. We propose here

a DA strategy that is suitable for surface wildfire spread,

but that would need further developments to deal with

a land surface–atmosphere coupled modeling system.

In summary, this preliminary investigation demonstrates

the feasibility of data assimilation for wildfire spread fore-

casting, and provides useful guidelines to design the future

capabilities of the data-driven prediction system. The com-

plexity of the system will be gradually increased and vali-

dated against more realistic wildfire events, in order to meet

the operational requirements of wildfire monitoring in the

long term.
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