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ABSTRACT

This study seeks to derive the sea surface temperature (SST) response to anthropogenic forcing from ob-

servations over the last century, using simple methods inspired from pattern scaling. As in pattern scaling, the

spatial response is assumed to scale with global-mean and annual-mean surface temperature. The long-term

aim of this work is to generate anthropogenically forced SST and sea ice patterns for the recent past and near-

term future, and use them to force atmosphere–land climate models for attribution and prediction purposes.

The present work compares estimation methodologies and, within a Monte Carlo framework based on large

initial condition ensembles of climate model simulations, examines the robustness of the patterns obtained.

The different methods explored here yield a similar SST spatial response, mostly reflecting the observed

SST linear trend map. The different methods nevertheless provide distinctive temporal evolution of the

global-mean and annual-mean SST response, which in turn affects the temporal evolution of the global-mean

and annual-mean air surface temperature simulated in corresponding prescribed SST simulations. The esti-

mated SST spatial response consists mostly of a warming of the midlatitude coasts near the western boundary

currents, the tropical Indian Ocean, and the Arctic Ocean. This pattern generally agrees with previously

published observational and modeling studies. Based on Monte Carlo analysis of the large ensembles, it is

found that between 36% and 56% of its spatial variance results from anthropogenic forcing.

Overall, the work herein provides constraints on the uncertainty associated with the spatial variability of an

anthropogenically forced component of climate change derived from observations, which can potentially be

used for climate attribution and prediction.

1. Introduction

It is known that imposing twentieth-century observed

sea surface temperatures (SSTs) and sea ice concentra-

tions in a land–atmosphere global climate model

(AGCM) determines much of that model’s circulation

and land surface temperature trend, even in the absence

of additional radiative forcing (e.g., Gates 1992; Lau

1997; Hoerling et al. 2008; Deser and Phillips 2009;

Compo and Sardeshmukh 2009). This is because oceanic

moistening and warming of the air over the ocean leads,

by atmospheric advection, to moistening and warming

of the air over land, thereby increasing the downward

longwave radiation at the land surface, thereby deter-

mining the characteristics of the broad climate response.

In addition, spatial patterns of SST also affect land

climate via their major roles in driving atmospheric tele-

connections [e.g., El Niño–Southern Oscillation (ENSO)

and the Atlantic multidecadal oscillation (AMO)].

Hence, if one could cleanly separate the anthropogenic

component of SST and sea ice change from natural vari-

ability, the anthropogenic component of the SST and sea

ice change could then be used to drive idealized global or

regional land–atmosphere climate models to investigate
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the associated land climate response. Such simulations can

then be used for climate change attribution, climate var-

iability analysis, and climate prediction.

The spatial response of SST and sea ice concentration

to anthropogenic forcing can be derived from coupled

atmospheric–ocean GCMs (AOGCMs) or directly from

observations. Deriving it fromAOGCMs is challenging,

in particular because current AOGCMs used for climate

prediction have difficulty capturing observed SST

trends, even after accounting for natural climate vari-

ability (Shin and Sardeshmukh 2011). This error can

affect applications such as pattern scaling (Santer et al.

1990; Tebaldi and Arblaster 2014) and climate change

detection and attribution, and would certainly affect this

proposed application as well.

To avoid such issues and make progress, this study

evaluates a relatively new method that relies heavily

on observations to derive the spatial response of SST

and sea ice concentration to anthropogenic forcing

(Hoerling et al. 2011). As with Santer et al.’s (1990)

model-based pattern scaling, our method consists of

scaling with global-mean and annual-mean surface

temperature a time-invariant spatial pattern h(x) that

corresponds to the spatial response of a given variable

(in our case SST and sea ice concentration) to anthro-

pogenic forcing. Note that whereas we derive the spatial

pattern h(x) entirely fromobservations, the global-mean

and annual-mean surface temperature used for the

scaling may be alternatively derived from observations

(in case of past climate attribution) or AOGCM outputs

(in case of climate prediction). To our knowledge, this

approach has only been used once in the past, by

Hoerling et al. (2011). Practically speaking, it is a simple

and straightforward approach, which allows a simple

and straightforward interpretation of results. In their

work, Hoerling et al. (2011) quantify the decadal mean

changes (2011–20) in North American surface air tem-

perature and precipitation by forcing three different

AGCMs with decadal mean (2011–20) estimates of an-

thropogenically forced SST computed with the method

explored here, and sea ice concentration computed from

the persistence of their monthly pattern taken from

2007–09. They predict that the anthropogenically forced

component of North American warming in 2011–20

relative to 1971–2000 climatological conditions will be

a surface warming over the entire North American

continent, a precipitation decrease over the contiguous

United States, and a precipitation increase over Canada.

The study also provides quantitative estimates of the

fraction of change attributable to the predicted forced

component. The method shows considerable promise,

and in our work we aim to employ it to create amonthly-

mean estimate of anthropogenically forced SST and sea

ice concentration (reconstructed from a time-invariant

spatial pattern and its associated time series) covering

historical and future time periods. We then use this es-

timate to force an AGCM in a time-evolving mode.

Because the method used in Hoerling et al. (2011)

remains to be validated and interpreted, the current

study explores its characteristics and robustness.We first

evaluate three observation-based estimation methods

for anthropogenically forced SST and sea ice concen-

tration (described in section 2). We then discuss how the

three estimates obtained for anthropogenically forced

SST differ in their spatial structure h(x) and associated

time evolution. We also use them to force an AGCM,

and discuss the corresponding three sensitivity experi-

ments (section 3a). Then (section 3b) we use a Monte

Carlo large initial condition ensemble approach (Kay

et al. 2015) to quantify the method’s ability to correctly

isolate the anthropogenically forced signal from internal

variability in the SST spatial patterns h(x), as well as in

some other aspects of surface temperature change. We

also apply our method to several models from phase 5 of

the Coupled Model Intercomparison Project (CMIP5),

and compare, for SST, these model-based h(x) with the

observation-based h(x) (section 3c). Finally, we discuss the

uncertainties associated with this method and conclude

the study (section 4). Note that even though we apply the

method to observed SSTs and sea ice concentrations, this

study will focus on analysis performed on SSTs.

2. Method and datasets

a. Overview of the method

We denote by S(x, t) the departure of the annual

mean SST from its climatological mean for location x

and calendar year t. We wish to estimate the anthro-

pogenically forced component of S(x, t). To do so we

first decompose S into the sum of a forced component SF
and a random component SI , representing the noise

associated with internal climate variability that is as-

sumed to be independent of SF (Ribes et al. 2010). As

for pattern scaling, we assumes that SF(x, t) can be

separated as SF(x, t)’ g(t)h(x). In classical pattern

scaling SF is obtained from anthropogenically forced

climate projections dominated by greenhouse forcing;

h(x) is estimated as the epochal difference between two

multidecadal periods of S from the simulation separated

by a suitably long period, and g is the global mean

temperature difference between the two epochs (Santer

et al. 1990; Tebaldi and Arblaster 2014). Instead, we

here obtain SF from observations for the reasons out-

lined in the introduction, and compute h(x), as in

Hoerling et al. (2011), by linearly regressing observed
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S(x, t) onto g(t). Both variables are high-pass filtered

prior to regression to account for serial autocorrelations.

We use three different methods to derive g(t) from

global-mean and annual-mean SSTs, as described in

section 2b. The time-varying SF is then obtained by

multiplying h(x) by g(t), to which the observed clima-

tology is added to yield a monthly-mean time series.

Therefore, as for patterns scaling, our method assumes

that the SST and sea ice spatial response to anthropo-

genic forcing (greenhouse gases and aerosols) does not

vary in time. This assumption is less justified for Arctic

sea ice concentration than for SSTs due to its less linear

response to anthropogenic forcing, particularly in late

summer/early autumn. This approach nevertheless al-

lows the prescribed sea ice response to be consistent

with the prescribed SST response.

b. Methods to estimate g(t)

We consider three estimates of g(t), denoted gL, gC,

and gTh; for all three estimates, g is normalized to have

unit standard deviation, meaning that the spatial pattern

h represents an estimate of the forced response at each

spatial point per unit standard deviation of the global-

mean and annual-mean SST response. The ‘‘linear’’ es-

timate gL(t) is simply a standardized linear function

gL(t)5 ð2 ffiffiffi

3
p

/DtÞ(t2 t), where Dt is the time interval for

the analysis and t is the time midpoint; note that by

definition the standard deviation of gL is unity over the

time interval. In this case, h is a spatial map of the SST

linear trend, an approach that is sometimes used

in pattern scaling (Tebaldi and Arblaster 2014). The

‘‘cubic’’ estimate gC(t) is obtained by taking the global-

mean and annual-mean SST and fitting it to a third-order

smoothed spline using the function smooth.spline from

the R package with df5 3. A similar approach is used in

Hoerling et al. (2011), and is intended to capture the

increase in the rate of SST warming through the twen-

tieth century. Finally, the ‘‘Thompson’’ estimate gTh is

obtained following a three-step procedure. In the first

step the signals of ENSO, explosive volcanoes and the

cold ocean–warm land (COWL) pattern (Wallace et al.

1995) are extracted from the observed time series of

global-mean and monthly-mean SST. The ENSO and

volcanic signals are estimated using a simple thermo-

dynamic model while the COWL signal is estimated

using the covariance between Northern Hemisphere

land–sea temperature difference and sea level pressure.

In the second step these signals form the basis of

a multivariate linear regression between the signals and

the observed time series of global-mean and monthly-

mean SST. The terms in this regression associated with

these signals of natural variability are then removed

from the observed time series of global-mean and

monthly-mean SST to produce a ‘‘residual’’ time series.

This step in the procedure provides a simple, robust, and

physically based methodology for removing the major

known signals of natural global climate variability

(Thompson et al. 2009). Finally, in the third step this

residual time series is regressed against our best estimate

of observed anthropogenic radiative forcing to yield gTh.

For interpretation of results, our working assumption

is that the forced signal from solar variability is relatively

weak. Our methods produce g(t) that either temporally

filter the short-term impacts of volcanic aerosols, or in

the case of the Thompson (Th) method attempts to ex-

plicitly removes them.All themaps presented here show

the scaled regression coefficient field ~h representing h(x)

divided by its global mean.

c. Datasets and models

We derive g(t) from observations using version 4 of

the Hadley Centre surface temperature product (here-

inafter HadCRUT4), which includes missing values. We

use HadCRUT4 as the basis for g(t) for dataset consis-

tency with the inputs into the gTh (Thompson et al. 2009)

index. The possible artificial fluctuations owing to

the time-dependent data coverage in the HadCRUT4

global-mean and annual-mean time series are not ex-

pected to affect g(t), as g(t) represents a very smoothed

version of the time series. Once g(t) is obtained, we are

free to obtain h(x) from other datasets. In particular, we

derive h(x) from observations using the National Center

for Atmospheric Research (NCAR) global SST and sea

ice product (Hurrell et al. 2008; the product is herein-

after called ‘‘Hurrell’’). We use Hurrell instead of

HadCRUT4 to derive h(x) because Hurrell is the stan-

dard driving dataset used in the NCAR AGCM simu-

lations that we shall present shortly. In addition, the

Hurrell SST twentieth-century trend map agrees with

the twentieth-century trendmap that is obtained with all

the observational SST datasets tested in Solomon and

Newman (2012), after statistical correction accounting

for sampling of ENSO variability.

For statistical analysis purpose, we also derive g(t) and

h(x) from several CMIP5 models (see Table 1) and two

large initial condition ensembles. These three ensembles

are forced with time-dependent historical greenhouse

gases, ozone, aerosols, volcanic emissions, and solar

variability taken from the standard datasets of the his-

torical radiative forcing CMIP5 protocol (Taylor et al.

2012). From CMIP5 we use 1900–2005 SSTs from 26

models, using one historical realization per model

(Taylor et al. 2012).

The two initial condition large ensembles (e.g.,

Mudryk et al. 2014; Fischer and Knutti 2014; Kay et al.

2015) are used to test the method in a perfect model
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framework. Realizations in these ensembles can be

treated as idealized observations that differ from each

other only by their internal variability and so can be used

to separate SI from SF . First, we use an ensemble of 39

simulations performed with the NCAR Community Cli-

mate System version 4 (CCSM4) coupledGCM. It covers

the period 1960–2005 at 28 atmosphere and 18 ocean

resolution (Mudryk et al. 2014). Second, we use an initial

condition ensemble of 30 simulations performed with the

NCAR CESM1 (CAM5) coupled GCM (hereinafter

simply CESM1; Kay et al. 2015) covering the period

1920–2005 at 18 atmosphere and 18 ocean resolution.

Finally, we briefly analyze a set of four prescribed SST

and sea ice concentration experiments over 1920–2005, or

‘‘AMIP-type’’ experiments, with the NCAR atmosphere–

land model CAM5 on a horizontal resolution in

the atmosphere of approximately 28 (the F_AMIP_

CAM5_CN compset). The four experiments are forced

with CMIP5 historical radiative forcing (Taylor et al.

2012). The ‘‘AMIP’’ simulation is forced with Hurrell

SST and sea ice concentration whereas the linear (L),

cubic (C), and Th simulations that will be presented are

forced with different estimates of anthropogenically

forced SST (SF) and sea ice concentration, obtained by

regressing, for the time period 1900–2005, Hurrell SSTs

and Hurrell sea ice concentrations against observation-

based gL, gC, and gTh respectively. We perform one

experiment with each estimate of SF . For these experi-

ments we consider that areas where the regression co-

efficients h(x) are not statistically significant at the 95%

confidence level represent areas where the signal (an-

thropogenically forced component) cannot be distin-

guished from the noise (internal variability). In this case,

we set h(x) to zero as an attempt tominimize the effects of

regions where internal variability dominates, and apply

a spatial smoothing that weights the value of h(x) ac-

cording its p value to minimize spatial discontinuity.

3. Results

a. Evaluation of the estimation methods

Figure 1 shows the standardized gL (blue), gC (red),

and gTh (green) derived from observations (solid curves)

for 1900–2005. As stated above, gL increases linearly

from2
ffiffiffi

3
p

to 1
ffiffiffi

3
p

from the beginning to the end of the

period (about 0.5 unit of standard deviation per decade).

The somewhat nonlinear gC, similar to what was obtained

in Hoerling et al. (2011) shows accelerated warming over

time. The more strongly nonlinear gTh has a weak

warming trend prior to the early 1970s that transitions to

a stronger warming trend thereafter. Factors contributing

to the increasedwarming after the 1970s include enhanced

greenhouse forcing and reduced aerosol forcing (e.g.,

Wild et al. 2007).

For comparison, we include gC derived from theCMIP5

multimodel mean (dashed curves). By construction, gL is

uniquely defined, and currently gTh has only been calcu-

lated for observations. The accelerated warming after the

1970s is stronger in the CMIP5 multimodel mean than in

the observations because SSTs increase more quickly in

the CMIP5 multimodel mean than in the observations

after this date, and more slowly before that.

To illustrate how the spatial pattern of SF [h(x)] can be

affected by the choice of g(t), Fig. 2 shows ~h(x) derived

from Hurrell SST over the period 1900–2005 using gL
(Fig. 2a) and gC (Fig. 2b), and the difference between
~h(x) using gTh and ~h(x) using gL (Fig. 2c). The patterns of
~h(x) for gL and gC are nearly identical. They feature

strong warming in the tropical Indian Ocean (stronger

warming in the northern as compared to the south-

ern Indian Ocean), the southern Atlantic Ocean, the

TABLE 1. The 26CMIP5models used in this study, distinguishing

the models including some representation of the indirect aerosol

effect. (Expansions of acronyms are available online at http://www.

ametsoc.org/PubsAcronymList.)

Modeling center Model

Indirect aerosol effect

included: Using aerosol

emissions instead of

aerosol optical depth

CSIRO-BOM ACCESS1.3 Yes

ACCESS1.0 Yes

CCCma CanESM2 Yes

CNRM-CERFACS CNRM-CM5 Yes

CSIRO-QCCCE CSIRO-Mk3.6.0 Yes

NASA GISS GISS-E2-H Yes

GISS-E2-R Yes

MOHC (additional

realizations by

Instituto Nacional

de Pesquisas

Espaciais)

HadGEM2-ES Yes

HadGEM2-CC Yes

IPSL IPSL-CM5A-LR Yes

IPSL-CM5A-MR Yes

IPSL-CM5B-LR Yes

MRI MRI-CGCM3 Yes

Norwegian

Climate Centre

NorESM1-M Yes

NorESM1-ME Yes

INM INM CM4 Yes

MIROC MIROC5 Yes

NSF–DOE–NCAR CESM1 (CAM5) Yes

CESM1-BGC No

BCC BCC-CSM1.1 No

BCC-CSM1.1m No

NCAR CCSM4 No

MPI-M MPI-ESM-LR No

MPI-ESM-MR No

CMCC CMCC-CMS No

FIO FIO-ESM No
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southernmost part of the Atlantic and Indian Oceans

(608–458S, 608W–1208E), the northern North Pacific

Ocean, theArctic and subarctic oceans, and the northern

and southern midlatitudinal coasts (including the west-

ern boundary currents). Cooling or insignificant warming

is found in the Greenland Sea, the eastern tropical Pa-

cific, and off the West Antarctic coast. These SST

warming patterns are in general agreement with pre-

viously published work based on observations (Fig. 7a

from Ting et al. 2009; Figs. 2a and 2e from Mohino et al.

2011; Wu et al. 2012) and to some extent on AOGCMs

(Fig. 1 from Lu et al. 2008; Figs. 3 and 4a from Ting et al.

2009; Figs. 2 and 8 fromXie et al. 2010). Figures 1 and 2c

suggest that relative to gL, thewarming coherentwith gTh
is enhanced in the tropics and high latitudes and reduced

in the midlatitudes before the 1930s and after the 1980s.

The overall relative difference between the two patterns

is 10%–20%. Not surprisingly ~h(x) using gL and gTh is

dominated by the linear trend and so is relatively in-

sensitive to the choice of g(t) estimate.

To quantify the overall dependence of the time evo-

lution of SF ’ g(t)h(x) on the choice of g(t), Fig. 3a

shows, for the time period 1920–2005, the global-mean

and annual-mean SST anomalies as taken from the ob-

servations (Hurrell, magenta curve) and from the

different estimates of SF obtained using observation-

based gL, gC, and gTh (i.e., the corresponding g multi-

plied by the spatial mean of the corresponding h). All

estimates of SF show much weaker interannual vari-

ability than the observed time series, and the disagree-

ment of the empirical estimates is relatively small

compared to interannual-to-decadal variability.

We recall that we wish to use SF to analyze land cli-

mate response to anthropogenically forced SST and sea

ice concentration. Based on Fig. 3a, we expect different

choices of SF leading to different responses of the land

climate. For example, Fig. 3b shows, for the time period

1920–2005, the 11-yr running mean of global-mean and

annual-mean surface air temperature (SAT) anomalies

over land, as taken from the observations (HadCRUT4,

magenta curve) and from the AMIP, L, C, and Th

experiments. Because the simulated global-mean and

annual-mean SATs show strong interannual vari-

ability, we use an 11-yr running mean to highlight the

major differences in the time series. We see that 1) the

time evolution of the global-mean and annual-mean

land SATs from the AMIP experiment tracks the ob-

served evolution well, with warming trends up to the

1940s, weak cooling from the 1940s to the 1970s, and

stronger warming after the 1970s; 2) there is little

FIG. 1. Standardized g(t) computed with the L (blue), C (red), and Th (green) methods for

the period 1900–2005, derived fromHadCRUT4 (solid curves). Also plotted is the g(t) derived

from the CMIP5 multimodel ensemble mean (dashed red curve) based on the ensemble mean

of 26 experiments. All curves have zero mean and unit is standard deviation. Note that L is by

construction identical for simulations and observations.
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difference between the time evolution of the global-

mean and annual-mean land SATs taken from the L

and C experiments; and 3) the global-mean and annual-

mean land SAT in Th is nearly constant before the

1970s and increases at about 0.28C decade21 after the

1970s.

We conclude that the three methods tested produce

a similar spatial response of SSTs to anthropogenic

forcing [h(x)] but a different time evolution of this pat-

tern. In turn, these differences can potentially influence

the simulated land climate response. The differences

between the observed warming and the L, C, and Th

warmings provide distinctive perspectives on the in-

fluence of natural variability in land surface temperature

in the recent historical era; this idea will be explored

further in subsequent work.

b. Evaluation of the methods in a perfect model
setting

The sensitivity of the land climate response to differ-

ent estimates of SF evident in Fig. 3b motivates a more

in-depth investigation of how to estimate uncertainty in

the anthropogenically forced signal. In this section, we

use large initial condition ensembles (Kay et al. 2015) to

quantify our ability to correctly isolate the anthro-

pogenically forced SST spatial response pattern h(x)

from internal variability, when h(x) is derived from ob-

servations. In the framework of large initial condition

ensembles, we can consider each realization to be an

identically forced pseudo-observation drawn from the

same statistical distribution. For a given method, we can

generate one g(t) and one h(x) for each realization, and

examine the statistics within the ensemble. Thereby, we

obtain one h(x) for each realization of the large en-

semble. We then compute the spatial correlation among

these h(x) to quantify the amount of internal variability

they include. We select gC for this analysis, although

similar results are obtained for the L method.

Figures 4a and 4b show centered spatial correlation

coefficients between ~h(x) derived from SSTs taken from

CCSM4 over 1960–2005 and from CESM1 over 1960–

2005 and 1920–2005. Figure 4a quantifies the pairwise

spatial correlation coefficients, thereby estimating how

much of the observation-based spatial pattern ~h(x) is

expected to be reproduced in a second set of observa-

tion. According to Fig. 4a, the distribution of pairwise

spatial correlation coefficients varies from negative

values to about 0.8. For CESM1 over 1920–2005, the

median value of the correlation coefficients is about 0.6,

indicating that in the CESM1 large ensemble over 1920–

2005, on average 36% of the spatial variance of an esti-

mated pattern ~h(x) is explained by the spatial variance of

another ~h(x), and hence results from anthropogenic

forcing. For the period 1960–2005, correlation co-

efficients tend to be greater for CCSM4 than for CESM1.

This could be because the global SSTwarming trend over

the twentieth century is more pronounced in CCSM4

than in CESM1 (Hurrell et al. 2013) or because the

warming pattern is more uniform in CESM1 than in

CCSM4. Figure 4a also shows that lengthening the av-

eraging period boosts correlation values, suggesting how

estimates of SF derived from observations could be im-

proved quantitatively by using a longer record.

Figure 4b considers a second test that makes addi-

tional use of the statistics of the ensemble. In this test, we

take the ensemble mean ~h(x) excluding each time the

ensemble member being tested, and find its spatial cor-

relation with the ~h(x) from each individual ensemble

member. The ensemble mean provides a more robust

estimate of the forced response by averaging most of the

internal variability. To be consistent with Fig. 5, we

compute the ensemble mean ~h(x) by averaging ~h(x)

from individual members instead of computing ~h(x)

from the ensemble mean; the difference between the

two patterns obtained is relatively small (on average

FIG. 2. Shown is ~h(x) [i.e., regression pattern h(x) divided by its

global mean] computed by regressing Hurrell SST against (a) gL
and (b) gC, both derived from HadCRUT4 over the period 1900–

2005, as described in Fig. 1. Also shown is (c) the difference be-

tween ~h(x) computed with gL and ~h(x) computed with gTh. All

panels have a unit of 8C 8C21 of global SST warming, and areas in

(a) and (b) not significant at 95% according to the Student’s t test

are hatched.
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10%). According to Fig. 4b, the distribution of correla-

tion coefficients is boosted by from 0.1 to 0.2 in all cases

and the range of correlation coefficients narrowed. Here

we note that the median value of the correlation co-

efficient in CESM1 over 1920–2005 is about 0.75,

indicating that in the CESM1 large ensemble over

1920–2005, on average 56% of the spatial variance of

an estimated pattern ~h(x) is explained by the spatial

variance of the ensemble mean h(x) and hence results

from anthropogenic forcing.

Because our observation-based estimate of h(x) is

computed over the time period 1900–2005 (Fig. 2b), we

use the statistics obtained with the longest record

available (CESM1; 1920–2005) as an analogy to estimate

the amount of internal variability included in our

observation-based estimate of h(x). We conclude that

between 36% and 56% of the spatial variance of our

estimated observation-based pattern h(x) results from

anthropogenic forcing. This estimate is model and

length dependent.

To quantify the extent to which this test is variable

dependent, Figs. 4c and 4d correspond to Figs. 4a and 4b,

but for patterns of land SAT excluding the SAT located

above sea ice [i.e., the spatial correlation of patterns of

land SAT obtained via regression on g(t)]. For CESM1,

the median values of the correlation coefficients are

somewhat lower for land SATs than for SSTs, which il-

lustrates additional uncertainty coming from atmo-

spheric internal variability. However, to round out the

picture, when the pattern of global SAT (over ocean,

land, and sea ice) response is considered (Figs. 4e,f), the

correlations and hence the mutual consistency is in-

creased above that of the SSTs in all cases. Here, the

global SAT response including the effects of polar am-

plification and weaker tropical warming is more robust

than the corresponding pattern of SST response, sug-

gesting that some details of the SST response might not

be important in determining the global temperature

response pattern.

To illustrate how the pattern of ~h(x) varies within

ensembles and across models, Fig. 5 shows the ensemble

mean of ~h (first row), the intraensemble standard de-

viation of ~h (second row), and the signal-to-noise ratio of
~h inferred as the quotient of the first row to the second

row (third row), for the CCSM4 (left column) and

CESM1 (right column) large ensembles, over the period

FIG. 3. (a) Global-mean and annual-mean anomalies of the different SSTs used to force the

AGCMexperiments CAM5 over the period 1920–2005, shown as observed (Hurrell, magenta),

and computed by regressing Hurrell against gL (blue), gC (red), and gTh (green), all derived

from HadCRUT4 over the period 1900–2005, as described in Fig. 1. (b) Simulated SATs av-

eraged over land areas for the AMIP (black), L (blue), C (red), and Th (green) forced simu-

lations, along with the observed HadCRUT4 temperatures (magenta). All time series have

been smoothed with an 11-yr running mean.
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1960–2005, which is the common period for the two

ensembles. In agreement with the observation-based

pattern (Fig. 2b), the two ensemble mean patterns pre-

sented in Fig. 5 (top row) show a warming in the

southern western boundary currents and almost no

warming in the tropical Pacific. On the other hand, they

produce more warming in the mid-Atlantic and south-

ern Pacific and less warming in the western North Pacific

(in particular the Kuroshio) than in the observation-

based pattern (see Fig. 2b). In addition, CCSM4 shows

a more uniform warming of the Indian Ocean than the

observed pattern, and CESM1 a much stronger Barents/

Kara Sea warming. But the question remains whether

the differences from observed pattern are due to in-

ternal variability or differences in anthropogenically

forced response.

To partially answer this question, the second row of

Fig. 5 shows that the source of variability in ~h(x) sug-

gested in Figs. 4a and 4b involves, in both models, in-

ternal variability in the northern North Pacific Ocean

and the Barents/Kara Sea. Additional hotspots of in-

ternal variability include the Greenland Sea in CCSM4,

and the western Pacific Ocean in CESM1. The lack of

warming in the western North Pacific and the warming

inmid-Atlantic in bothmodels is relatively robust across

realizations, suggesting that in these regions, the dif-

ference with the observations is a systematic bias. Ac-

cording to the third row from Fig. 5, CCSM4 shows

a relatively larger signal-to-noise ratio compared to

CESM1, in many regions including the Pacific, Indian,

and Atlantic Oceans. Both models show a relatively

small signal-to-noise ratio in the North Atlantic and the

Barents/Kara Sea.

To concretely illustrate how two individual re-

alizations of the same ensemble can differ from each

other, Fig. 6 shows ~h from two individual realizations

selected from the CCSM4 (left column) and CESM1

(right column) large ensemble, for the period 1960–

2005. According to Fig. 6, the differences in spatial re-

sponse patterns found in two selected realizations, which

FIG. 4. Perfect-model tests of the method used to estimate ~h(x). (a) Pairwise centered spatial correlation between

the SST ~h(x) computed from (left) the 39-member CCSM4 ensemble over the time period 1960–2005 (741 pairs), and

(middle),(right) the 30-member CESM1 ensemble for the time periods 1960–2005 (465 pairs) and 1920–2005 (465

pairs), respectively. Here, each ~h(x) is extracted from the specified ensemblemember SSTs using gC derived from the

SST of the same specified ensemble member. For each box, the central mark is the median, the edges of the box are

the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and

outliers are plotted individually in red. (b) As in (a), but here each ~h(x) is compared to the ensemble mean ~h(x)
excluding the ensemble member being tested. (c),(d) As in (a),(b), but for land SATs excluding SAT located above

sea ice; (e),(f) as in (a),(b), but for global (ocean, sea ice, and land) SATs.

3758 JOURNAL OF CL IMATE VOLUME 28



again could be considered as pseudo observations, can

be striking: possible scenarios include a moderate cool-

ing (CCSM4 run X) or pronounced warming (CCSM4

run Y) in the high northern latitudes for CCSM4, and

a pronounced (CESM1 run X) or moderate warming

(CESM1 run Y) in the western Pacific Ocean for

CESM1.

c. Comparison with the CMIP5 models

To broaden the comparison, Fig. 7 shows the CMIP5

multimodel mean ~h (Fig. 7a), the multimodel standard

deviation of ~h (Fig. 7b), and the signal-to-noise ratio of ~h

inferred as the quotient of Figs. 7a and 7b (Fig. 7c), for

the period 1900–2005. Here, the multimodel standard

deviation reflects differences in external forcing (e.g.,

different volcanic forcing), model physics (e.g., different

implementations of aerosol physics and chemistry), SST

response to external forcing, and SST internal vari-

ability. Globally, the pattern response derived from

CMIP5 (Fig. 7a) shows less spatial structure than the

pattern response derived from CCSM4 (Fig. 5a, top),

CESM1 (Fig. 5b, top), and the observations (Fig. 2).

Whereas the pattern response derived from CMIP5

reproduces some features seen in the pattern response

derived from CCSM4, CESM1, and the observations

(e.g., warming of the Southern Hemisphere western

boundary currents), it fails to reproduce some others

(e.g., tropical Pacific cooling). In addition, the CMIP5

intermodel standard deviation (Fig. 7b) is in many re-

gions comparable to the intraensemble standard de-

viation (Fig. 5, middle row) for the CCSM4 and CESM1

large ensemble, which is particularly pronounced

(between 28 and 38C 8C21 of global SST warming) in

the Greenland and the Barents/Kara Sea. The largest

FIG. 5. (a) The value of ~h(x) computed from the 39-member CCSM4 ensemble over the time period 1960–2005 as

described in Fig. 4, and shown as (top) the ensemble mean, (middle) the standard deviation, and (bottom) the

signal-to-noise ratio, inferred as the quotient of the first row to the second row. (b) As in (a), but for the 30-member

CESM1 ensemble. The top two panels have a unit of 8C 8C21 of global SSTwarming. The contours in the top panels

show areas where the signal-to-noise ratio is higher than 2.
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signal-to-noise ratio is found in the tropics (Fig. 7c).

Internal variability must therefore be carefully accounted

for when comparingmodel-basedwith observation-based

patterns. Comparing Fig. 2b with Fig. 7a, we also show

that over the period 1900–2005, the median value of the

spatial correlation between the observed (Fig. 2b) and

the CMIP5 multimodel mean (Fig. 7a) ~h(x) is about 0.4,

with an interquartile range from about 0.3 to 0.5 (not

shown). These can be compared to the perfect model

potential values of about 0.6 for the median, with an in-

terquartile range from about 0.5 to 0.7 (Fig. 4b). Thus,

the correlations obtained are just under half the expected

value if the models provided perfect representation of

a perfect observational dataset. This low correlation can

be explained by imperfections in the method and/or in

the CMIP5 models.

We note that there is some sensitivity of these results

to whether or not the indirect aerosol effect is included

in the CMIP5 models (Table 1; Lohmann and Feichter

2005). Figure 8 is identical to Fig. 7 but separates the

CMIP5 models including the indirect aerosol effect

(Fig. 8a) from the CMIP5 models excluding them

(Fig. 8b). We see that compared to the all-model CMIP5

ensemble mean (Fig. 7a), selecting only the group of

CMIP5 models accounting for the indirect aerosol effect

(Fig. 8a) 1) does not improve the comparison between

the observed and the CMIP5 multimodel mean ~h dis-

cussed, 2) reduces the amount of warming captured in ~h

in particular at high northern latitudes, 3) increases the

intermodel spread globally except in theGreenland Sea,

and 4) consequently reduces the signal-to-noise ratio.

4. Discussion and conclusions

This work evaluates a novel statistical approach

(Hoerling et al. 2011) inspired by classical pattern scal-

ing to estimate, from observations, the spatiotemporal

characteristics of the SST response to anthropogenic

forcing. We have created various estimates of the SST

response based on observations and models, and have

performed a series of tests to evaluate the robustness of

these responses. We find that the SST spatial response

derived from the Hurrell et al. (2008) observational

dataset includes warming in the tropical Indian Ocean

(in the form of a north–south dipole), the western

boundary currents in midlatitudes, the Arctic and sub-

arctic, the southern Atlantic, and the southernmost

region of the Atlantic and Indian Ocean (608–458S,
608W–1208E). Principal features of these patterns are

mostly reproduced by the CMIP5 multimodel mean and

agree with previously published results (including

Hoerling et al. 2011).We find that theymostly reflect the

linear trend of observed SSTs, within 10%–20% de-

pending on the method chosen to derive the anthropo-

genic radiative forcing time evolution. We show that

despite having a small influence on the spatial pattern of

the SST response, the method chosen to derive the an-

thropogenic radiative forcing time evolution nevertheless

FIG. 6. As in Fig. 5, but for two selected individual members from (a) CCSM4 and (b) CESM1. Areas not significant

at 95% according to the Student’s t test are hatched.
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significantly affects the time evolution of the SST re-

sponse, especially in the mid-twentieth century: In par-

ticular, whereas the global-mean and annual-mean SSTs

increase more or less linearly through time when pro-

duced with the L and C methods, they show almost no

increase until about the 1970s when produced with the Th

method. This time evolution difference in global-mean

and annual-mean SSTs affects the time evolution of the

global warming simulated over land in the corresponding

AMIP-type experiments. In turn, this is expected to affect

the timing of the associated atmospheric circulation and

hydroclimatology changes; these effects will be further

considered in subsequent work.

By considering each member from two large initial

condition ensembles of coupled climate models as

a pseudo-observation, the Monte Carlo (perfect model)

analysis highlights the uncertainty associated with de-

riving the SST spatial response pattern from observa-

tions. The test indicates that between 36% and 56% of

the spatial variance of the observation-based response

pattern described above results from anthropogenic

forcing. Our study suggests that similar ratios would

apply to other estimates of response patterns derived

from observed SSTs over the time period 1920–2005,

using either the classical pattern scaling method or

a regression method of [e.g., Fig. 7a from Ting et al.

(2009), Figs. 2a and 2e from Mohino et al. (2011), and

Fig. 1 (top and middle panels) from Hoerling et al.

(2011)]. However, we expect higher ratios for the re-

sponse patterns derived from an ensemble mean of

simulations (as opposed to a single ensemble member

or to observations), as used in the classical pattern

scaling method, since by construction an ensemblemean

only includes a limited amount of internal variability

(by canceling out the internal variability from individ-

ual realization via ensemble averaging). We conclude

that deriving the spatial response pattern from an ob-

servational dataset instead of an ensemble mean of

simulations reduces the uncertainty related to model

imperfections, but increases the uncertainty related to

internal variability.

The ultimate application of this method is to use our

observation-based estimate of anthropogenically forced

SSTs and sea ice concentrations to evaluate the land

climate response to anthropogenically forced SSTs and

sea ice concentrations; an initial test of this application

has been presented here (Fig. 3c). We now discuss lim-

itations and uncertainties of this method, and lessons

learned to apply going forward.

First, our study shows that the spatial pattern estimate

of anthropogenically forced SSTs highly depends on the

choice of the SST observational dataset, which can dis-

agree in key areas such as the tropical Pacific (Deser

et al. 2010). Then, the time evolution of this estimate

depends on the method chosen to derive the anthropo-

genic radiative forcing time evolution, an issue that

might be further explored with model-based approaches

(e.g., Ting et al. 2009). Furthermore, our method as-

sumes a linear behavior of the climate system (e.g., SSTs

and sea ice concentrations response to anthropogenic

forcing is assumed to scale linearly with global-mean

and annual-mean SSTs; Santer et al. 1990; Ribes et al.

2010; Tebaldi andArblaster 2014) that is probably not as

simple in reality. In addition, our method does not ac-

count for the anthropogenic impact on oceanic internal

variability or for the local impact of anthropogenic

aerosols on SST and sea ice. The latter leads to addi-

tional uncertainties around the mid-twentieth century

when aerosol emission rates begin to slow down, and in

the future time periods that will be associated with local

increase and decrease in aerosol emissions.

Additional uncertainty also comes from the amount of

internal variability that is included in the spatial pattern

estimate of anthropogenically forced SSTs. This amount

can be reduced by increasing the time period chosen for

regression (e.g., our study shows that increasing the time

FIG. 7. The value of ~h(x) computed from the 26 CMIP5 multi-

model ensemble member over the time period 1900–2005, and

shown as (a) the ensemble mean, (b) the ensemble standard de-

viation, and (c) the signal-to-noise ratio, inferred as the quotient of

(a) to (b). The top two panels have a unit of 8C 8C21 of global SST

warming. The contours in the top panels show areas where the

signal-to-noise ratio is higher than 2.
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period from 1960–2005 to 1920–2005 decreases the

amount of internal variability included in the SST spatial

response by about 20%) and/or by using an optimal re-

gression (e.g., Hasselmann 1993).

Finally, because AMIP-type experiments, even with

prescribed observations of SST, sea ice concentration,

and radiative forcing, do not always faithfully reproduce

the observed circulation and hydroclimatic response

(e.g., Covey et al. 2004), being subject to atmospheric

internal variability and inaccuracies in the atmospheric

and land models, our proposed approach to simulate the

climate response to anthropogenically forced SSTs and

sea ice concentrations is still expected to be model de-

pendent, and subject to atmospheric internal variability.
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