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Reducing the dimensionality of the complex spatio-temporal variables associated with climate modeling,
especially ensembles of climate models, is a challenging and important objective. For studies of detection
and attribution, it is especially important to maintain information related to the extreme values of the
atmospheric processes. Typical methods for data reduction involve summarizing climate model output
information through means and variances, which does not preserve any information about the extremes.
In order to help solve this challenge, a dependence summary measure appropriate for extreme values
must be inferred. Here, we adapt one such measure from a recent study to a larger domain with a
different variable and gridded data from observations and climate model ensembles, i.e. E-OBS ob-
servations and the CNRM-CM5 model. The handling of such ensembles of data is proposed, as well as a
comparison of the spatial clusterings between two different ensembles, here a present-day and a future
ensemble of climate simulations. This method yields valid information concerning extremes, while
greatly reducing the data set.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One aim of statistical climatology is to reduce complex spatio-
temporal variations of atmospheric and oceanic variables to a
small number of statistical quantities, often means and covar-
iances, that summarize the present state and future evolution of
the climate system. These summaries involve the analysis of spa-
tio-temporal averages and variances of climate variables.

Empirical Orthogonal Functions (EOF) represent the canonical
example of such statistical techniques taking their roots in corre-
lation structures. EOF analysis has been instrumental in identifying
modes of climate variability such as the North Atlantic Oscillation
and North Pacific Pattern (e.g., see review by Hurrell et al., 2003). A
key element to justify this reliance on averages and covariances is
their strong mathematical link with the Gaussian probability
density function (pdf), which is entirely characterized by these
two mathematical summaries. In addition, the central limit theo-
rem states that averages over large blocks in space or time can be
well approximated by the Gaussian pdf (e.g., see page 35 of von
Storch and Zwiers, 2002).
B.V. This is an open access article u

r).
From a risk perspective, extreme weather events that strongly
depart, not only from the mean, but also lay outside of the usual
range of climate variability, are of the highest interest because of
their strong potential of having a devastating impact on society. In
such cases, the idea of summarizing the distributional features of
extreme events via means and correlations is entirely in-
appropriate. Further, statistical analysis must be addressed within
a very different probability framework. Here, we rely on the
multivariate extreme value theory (EVT, e.g., see the books of Re-
snick, 2007; de Haan and Ferreira, 2006; Beirlant et al., 2004;
Coles, 2001).

Just as EOF analysis seeks to reduce the dimensionality of cli-
mate variability by identifying spatial domains with highly cor-
related climate variability, we aim to reduce the dimensionality by
clustering the time series of maxima taken over a block size of
interest (season, year, decades, etc.) spatially.

We need here to measure the spatial dependence among block
maxima, e.g. largest summer temperatures at different locations.
Cooley et al. (2006) proposed a convenient distance adapted from
the variogram distance used in geostatistics (e.g., Wackernagel,
2003). Vannitsem and Naveau(2007) applied this distance to
precipitation measured in Belgium. It essentially compares the
ordering of extreme events between two time series of maxima.
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Consequently, this rank-based approach bypasses the complex
step of fitting a parametric marginal law at each location.

For clustering, Bernard et al. (2013) recently proposed a rank-
based algorithm and applied it to weekly maxima of hourly pre-
cipitation in autumn from 1993 to 2011 over France. In this paper,
we make use of their clustering algorithm, where the new con-
tributions derive from the following unique challenges.

Here, we analyze summer maxima of daily temperatures over
Europe, which involves a much larger domain, as well as a variable
with very different characteristics. Another important departure
from Bernard et al. (2013) is that we work with gridded numerical
model output, an historical (1950–2005) ensemble and a future
(2006–2100) ensemble of the CNRM-CM5 climate model, as well
as E-OBS gridded temperature observations. Working with climate
model output will shed some light on potential future changes of
spatial clustering of temperature maxima, a topic rarely covered in
the Detection and Attribution literature.

The use of a different data set also raises important methodo-
logical questions. Compared to precipitation recorded from 1993
to 2011, the hypothesis of stationarity used by Bernard et al. (2013)
is on shaky ground for temperature maxima over the period 1950–
2005. The trend effect is removed from the observed and simu-
lated temperatures before computing our distance between time
series of maxima, thus explicitly focusing on spatially analyzing
temperature maxima patterns that result from internal variability
of the climate system. This approach provides complements to the
large number of studies that have focused on changes in absolute
temperature extremes over this time period in climate model
ensembles (e.g., Kharin et al., 2007; IPCC, 2012; Sillmann et al.,
2013).

A second methodological point is to determine how to compare
two maps of clusters, for example the one obtained from present-
day runs with the one derived from future runs. In this paper, we
will offer a simple algorithmic solution to this nontrivial problem,
see the end of Section 3.3.

As in Bernard et al. (2013), a byproduct of our analysis will be a
reduction of the dimensionality in time (by taking the maxima
over a block size of three months), and in space (the clustering
reduces a grid of a few hundred points into a much smaller, well-
chosen set of grid points that represent the center of each cluster).
2. Data and methods

2.1. Summer maxima of daily temperature maxima

In this paper, we focus on JJA (June–July–August) maxima of
daily maximum temperatures over Europe. We work with two
types of gridded data: E-OBS temperatures from 1950 to 2013 (0.5°
horizontal resolution; Haylock et al., 2008) and climate model runs
from the CNRM-CM5 model (1.4° horizontal resolution; Voldoire
and et al., 2012). This climate model was used in the Coupled
Model Intercomparison Project Phase 5 (CMIP5) and has 10 his-
torical simulations over the period 1850–2005, 5 simulations over
the future period (2006–2100) under the Representative Con-
centration Pathways (RCP) 8.5 (for a total radiative forcing path-
way leading to 8.5 W/m2 in 2100). In this paper, we refer to the
E-OBS observation dataset as EOBS and to the historical and future
ensembles as HIST (1950–2005) and RCP8.5 (2006–2100), re-
spectively. To compare spatial clusterings between observations
and model outputs, EOBS temperatures are interpolated on the
model grid using the remapcon command of the Climate Data
Operators software (http://www.mpimet.mpg.de/cdo), a con-
servative regridding method.

Simulated temperatures have first been linearly de-trended
from the non-physical long-term changes (model drift) found in
climate models (Gupta et al., 2013). This drift is estimated from the
control simulation, a long simulation (850 years) in which the
natural (solar activity and volcanic aerosols) and anthropogenic
(greenhouse gases and aerosols) forcings remain constant at their
pre-industrial 1850 values.

In a second step, we de-trend observed and simulated tem-
peratures from the long-termwarming trend, following a two-step
procedure. First, we remove the multi-year climatological average
from daily temperature maxima within every dataset. Then, from
these temperature residuals, the historical and future trends are
estimated by the HIST and RCP8.5 ensemble average (respectively),
for every grid point and each calendar day. These 10- and
5-member means (respectively) are filtered by a 91-day running
average. The future trend is removed from the simulated tem-
peratures of the RCP8.5 ensemble, whereas the historical trend is
removed from both observed temperatures of EOBS and simulated
temperatures of the HIST ensemble.

Removing the same trend from observations and simulations
adds the assumption that the model correctly captures the mean
response to anthropogenic greenhouse gases over Europe. How-
ever, our algorithm always works with the ranks of individual time
series, not their absolute values (see Eq. (1)) and this reduces the
complex issue of trend removal by subtracting a linear or other fit.
Such methods are extremely sensitive to the method of fitting.

Removing the warming trend is not a compulsory step of our
algorithm. Still, interpreting clusters of raw temperatures is more
difficult than from anomalies, as the trend itself could play a role
in the clustering. Such an issue is especially prominent at the end
of the 21st century and under the RCP8.5 scenario, which projects
a strong warming over Europe. Here, we prefer to focus on de-
trended temperatures, a reflection solely of internal variability.

Before explaining the clustering algorithm used here, it is im-
portant to comment on the recurrent confusion concerning the
interpretation of results based on block maxima, here summer
extreme temperatures. Seasonal maxima at two different locations
do not need to occur on the same day. In other words, the block
size, the season here, removes all information about the timing
within a block. Hence, any distance measuring the proximity be-
tween two series of maxima over 55 years provides “climatologi-
cal” rather than “weather” information. In particular, it is mis-
leading to speak about the temporal synchronicity of extreme
“events” or “episodes” here. Having two close by stations with
respect to our distance simply means that their maxima behave
similarly, in a distributional sense at the yearly scale, see Fig. 3. Of
course, it may be possible (although rarely) that the hottest days
for some year happen simultaneously at two locations, but this
temporal feature is never taken into account with our clustering
analysis.

2.2. Clustering algorithm

Following the notations of Bernard et al. (2013), we denote by i
and j two grid point locations, and their two associated time series
of seasonal maxima by Mi

t( ) and Mj
t( ) where t represents a given

year. In order to spatially cluster temperature maxima, we need to
somehow calculate, not the geographical distance, but a type of
dissimilarity measure between two time series of maxima. Here,
we use a rank-based distance defined by
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where Ri
t( ) corresponds to the rank of the tth year within the time

series of maxima recorded at location i. We opt for this distance for
two reasons. First, being based on ranks, it is possible to compare
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different objects in the sense that there is no need to “standardize”
or “transform” the temperature maxima (no need to fit a Gen-
eralised Extreme Value distribution). Second, Eq. (1) can be
interpreted as a “degree of dependence” within the mathematical
framework of bivariate EVT (e.g., see Resnick, 2007; de Haan and
Ferreira, 2006; Beirlant et al., 2004; Coles, 2001; Fougères, 2004).
To see this, one has to remember the basic probability definitions
of independence and complete dependence between two equi-
probable events, say A and B with  A B( ) = ( ). In particular, we
can write

 A B Aand . 2( ) = ( ) ( )θ

where the cases 2θ = and 1θ = define the independence and
complete dependence between A and B, respectively.

In the case of a bivariate max-stable random vector with unit-
Fréchet margins, i.e. A M ui= { ≤ }, B M uj= { ≤ } with
 A B uexp 1/( ) = ( ) = ( − ) for u 0> , it is possible to write (2), not
only for the two cases of independence and complete dependence
but for any max-stable structure. More precisely, we can always
write for bivariate max-stable vectors with unit-Fréchet margins
that

⎡⎣ ⎤⎦  M u M u M u M u; .i j i j
/2ij( ≤ ≤ ) = ( ≤ ) ( ≤ ) θ

The so-called “extremal coefficient” θij (e.g., Schlather, 2002;
Schlather and Tawn, 2003; Naveau et al., 2009) summarizes the
degree of dependence between the time series Mi and Mj.

To make the link with (1), Cooley et al. (2006) showed that the
extremal coefficient contains the same information as our rank-
based distance. In particular, one can be deduced from the other
via
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Knowing how to measure the proximity of two grid points with
respect to their maxima, we can now apply a clustering algorithm.
A classical candidate is the k-means algorithm that creates cluster
centers by averaging points within a cluster. But averaging breaks
the concept of max-stability, the mean of two maxima is not a
maximum anymore and the interpretation with the extremal
coefficient cannot be used within a k-means algorithm. As already
noted by Bernard et al. (2013), the Partitioning Around Medoids
(PAM) algorithm proposed by Kaufman and Rousseeuw(1990) has
the advantage of preserving maxima in the sense that each cluster
centers remains a time series of maxima, not an average of time
series.

The PAM algorithm divides a dataset of N objects into K clus-
ters. Three pre-processing steps are needed before implementing
PAM. First, the distance matrix defined by (1) needs to be com-
puted. Second, the number of clusters K must be chosen and third,
the algorithm requires an initial set of K medoids, which are ran-
domly selected.

Then, the PAM algorithm can be run as follows:
(A)
 Assign each grid point to the nearest medoid with respect to
the distance (1).
(B)
 For each cluster, find the new medoid for which the total in-
tra-cluster distance based on dij is minimized.
(C)
 Repeat steps (A) and (B) until the clusters converge and re-
main unchanged through one iteration
To choose a relevant number K of clusters and to assess if a
weather station is well classified, Rousseeuw (1986) developed the
so-called “silhouette coefficient” that compares cluster tightness
(small dik within the cluster k) with cluster dissociation (see i k,δ −
defined below). After running the PAM algorithm with a given K,
each location i is associated with a medoid k. The silhouette
coefficient for the weather station i is defined as follows:

s K d1 / , 4i ik i k,( )δ( ) = − ( )−

where dik represents the average intra-cluster distance between
station i and all other stations associated with medoid k. The real

i k,δ − corresponds to the smallest of the k 1− average distance be-
tween station i and all other stations associated with a medoid
different from k. For the PAM algorithm procedure, s Ki ( ) necessa-
rily belongs to the interval 1, 1[ − ]. If s K 1i ( ) ≈ , it means that the
intra-cluster distance is much smaller than the inter-cluster dis-
tances. Consequently, the maximum Mi can be considered as well
classified. In contrast, if si is near zero, the clustering is viewed as
non-informative, meaning that Mi could have been in a different
cluster with the same relevancy. To summarize the quality of a
partitioning into K clusters, one can use the average silhouette
coefficient
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or other statistics from the set s K s K, , N1{ ( ) … ( ))}. Such summaries
will be used in our application. To implement our approach, a
package for the open-source statistical R software is available on
the homepage of the second author.
3. Clustering of summer temperature maxima

3.1. Clustering EOBS

The clustering algorithm applied to the de-trended EOBS da-
taset of JJA seasonal maximum of daily maximum temperature is
provided in Fig. 1 for the particular number of clusters K¼15. As
expected, the insignificant points are located mostly at the
boundaries between two clusters, which is a positive sign con-
cerning the robustness of our clustering algorithm. Medoids are
not necessary located in the center of a cluster.

Concerning the climate interpretation, the output with K¼15
clusters show coherent structures and highlights regional climates,
e.g. over the Iberia peninsula and the United Kingdom. These clear
spatial coherent structures must have a physical cause, likely due
to synoptic-scale weather patterns. However, no geographical in-
formation like latitudinal and longitudinal coordinates is used in
the clustering algorithm, which is only driven by the ranks of time
series of JJA seasonal maxima of daily maximum temperatures.

Each cluster strength can be analyzed via its cluster-averaged
silhouette coefficient. Highest values reveal strong clusters and
lowest values weak ones. We have noticed that when the number
of clusters increases by one unit, the weakest cluster (or one of the
weakest) often splits into two clusters, whereas the strongest
clusters are the most stable when varying K in the input of the
clustering. This result leads to the delicate question of how to
choose the appropriate number of clusters. Given K, the algorithm
will always divide the domain into K subdomains, even if the
optimal number of clusters is below K. In addition, one of our goals
is to reduce dimensionality. Hence, it makes sense to choose the
smallest K possible whenever adding an extra cluster does not
bring any significant information.

To illustrate, Fig. 2 displays how the average silhouette coeffi-
cient s K( ) defined by Eq. (5) varies as a function of K. From the
observations (top panel), one can clearly see that s 15( ) is the
highest value, and that using K 16≥ does not improve the spatial
clustering over Europe. In addition, Fig. 1 confirms that the clus-
tering with K¼15 is spatially and climatologically coherent.
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Fig. 1. Clustering of EOBS JJA maximum temperatures (de-trended) with K¼15.
Colors refer to the cluster strength from strong (reddish colors) to weak (blueish
colors). Diamond shaped locations represent medoids (i.e. cluster centers) and
points not linked by a grey line to a medoid have a silhouette coefficient below the
minimum significance level of 0.1. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)

Fig. 2. Silhouette coefficient statistics (median, 10th and 90th percentiles) of s K( ) defined
corresponds to a more coherent clustering. The horizontal line indicates to the significan
trended) for panel (a), and HIST JJA maximum temperatures (de-trended) for panel (b).
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To further develop this analysis, we have also rerun our clus-
tering algorithm while only keeping significant points. The sil-
houette coefficients statistics from this second clustering are all
shifted toward higher values, and the shape of the evolution is
rather unchanged.

The bottom panel of Fig. 2 also displays how the average sil-
houette coefficient s K( ) evolves within the HIST ensemble. A
common feature between the observed and simulated evolutions
is the first increase of s K( ) towards its highest value, followed
either by relatively stable or even decreasing values. Contrary to
EOBS, the HIST ensemble highlights K¼11 as the most appropriate
number of clusters to choose as an input to the clustering
algorithm.

In summary, K¼15 appears to be a reasonable choice for EOBS,
whereas K¼11 seems more appropriate for the model. One pos-
sible reason for this difference may come from the original spatial
resolution of EOBS, whose temperatures were gridded on a half-
degree regular grid from a data set of stations. Local processes,
such as soil moisture content variations for example, can have
significant impacts in summer on daily maximum temperatures
over Europe. Such local information could be included within the
observations but not within the simulated temperatures because
of a coarser spatial resolution (1.4-degree horizontal resolution)
and also because of the limitations of the CNRM-CM5 land-surface
scheme. In addition, differences between the observed and simu-
lated atmospheric circulation could also explain these differences
on the average silhouette coefficient.

To go one step further in understanding the spatial features of
Fig. 1, the temporal evolution of significant members of clusters 7#
(around Serbia), 8# (around Austria) and 15# (Turkey), is displayed
in panels (b), (c), and (d) of Fig. 3, respectively. It is striking that
although the amplitude can vary, the temporal synchronicity (ups
and downs) of each series is very similar within each cluster. This
by Eq. (5) as a function of the number of clusters from K¼2 to K¼50. A larger value
ce level of 0.1 and the dataset corresponds to EOBS JJA maximum temperatures (de-



Fig. 3. Temporal depiction of the clustering of Fig. 1 with K¼15. Panel (a): medoids time series. Panels (b), (c) and (d): temporal evolution of significant members (colored
lines) of clusters 7# (around Serbia), 8# (around Austria) and 15# (Turkey), respectively. The maps show the locations of the cluster medoids (diamonds) and the cluster
members (colored points), where only significant members are considered (s K 0.1i ( ) > ). (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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Fig. 4. Comparison of two clustering maps with K¼11 obtained from HIST (1950–
2005) and RCP8.5 (2006–2100) ensembles of the CNRM-CM5 model. Medoids from
HIST ensemble are indicated by diamonds, while squares refer to medoids of the
RCP8.5 clustering. The clustering map corresponds to the output from the HIST
ensemble. Hot (cold) colors mean stability (change) of the spatial distribution of
clusters over time. Black points refer to insignificant members (s K 0.1i ( ) < ). Arrows
illustrate the displacement of the medoids between HIST and RCP8.5 clustering
maps. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)
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can be explained by our distance (1) based on ranks. Another clear
feature in panels (b)–(d) is that cluster 15# is better self-organized
than 7# and 8# . This is reflected by the color code in Fig. 1 that is
proportional to the averaged silhouette coefficient of the cluster.

Concerning the variability between clusters, panel (a) of Fig. 3
shows a strong variability among the medoids' temporal behavior.
This result makes sense because we expect a similar conduct
within a cluster but a large difference between clusters.

In summary, Fig. 3 emphasizes that medoids appear to be
correctly selected because they accurately describe their own
cluster and strongly depart from other medoids. In terms of spatial
dimension reduction, it means that our 15 medoids could be used
as representative time series for the whole European domain.

A medoid represents a member of a cluster that can provide
similar up and downs (in time) than the elements of its cluster. In
other words, a medoid should, in theory, indicate how the syn-
chronicity of its largest values propagates within its cluster.
However, the medoids do not summarize all characteristics of a
cluster. Instead, rather like a EOF captures some elements (var-
iances) of a data set, a medoid provides a particular feature (ranks
dissimilarity) of the cluster, and regarding a given metric, the ex-
tremal coefficient in our case, a medoid is an optimal
representative.

An application of this result could be found in the comparison
of the time series of a medoid, say temperature maxima, with a
complete different variable, say pressure fields. In this case,
working with ranks provides a simple way to compare apples and
oranges. The study of the medoid time series between two far
away regions could also help seeking interconnections, through
the identification of temporal synchronicities, even with large
magnitude differences between these two regions.

3.2. Clustering an ensemble

To cluster a model ensemble, say with M members, two pos-
sibilities can be considered. One can apply the clustering algorithm
to each member and then summarize the resulting M maps in one
way or another. A second option is to merge all of the ensembles
into one big matrix, each column representing the same grid point
where each ensemble is stacked one after the other, and then
apply the clustering algorithm at once.

Although the first option may appear simpler at first, it has two
main drawbacks. Statistically, it is not easy to summarize M maps.
Physically, the clustering from one member is a result of the par-
ticular trajectory of the climate undertaken in that member over
the period of interest. Seeking the ensemble medoids from the
clustering of each of the members should not be expected, because
these different expressions of the internal variability cannot finally
converge toward the clustering that best describes the climate (as
simulated in the model, with a finite number of members). This
behavior is particularly true over continental areas where internal
variability has stronger impacts than over coastal areas. The sec-
ond approach does not have these drawbacks. In terms of inter-
pretation, the output simply depicts the spatial clustering over the
period of interest, based on a sample of the different realizations
(i.e. the members).

As we want to compare two ensembles (HIST and RCP8.5) in
this paper, we need to develop a simple and fast criterion to assess
how a cluster for ensemble A has changed in ensemble B, and vice-
versa. Our idea is to study how medoids move around from one
ensemble to the other. For example, suppose that the city of
Trieste corresponds to a medoid location in the clustering of en-
semble A. Then one can easily find the cluster that contains Trieste
in ensemble B and its associated medoid, say Pisa for the sake of
illustration. Now, it is possible to check if Pisa either belongs to the
original cluster centered around Trieste in ensemble A or not.
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Basically, we need to look at how the medoids of ensemble A move
to ensemble B and back to A (A B A→ → ). The opposite road
(B A B→ → ) can also be explored and, at the end, we have four
different cases:

very high medoids remain identical in their trajectories from A to
B, and vice-versa.

high medoids change locations but remain in the same cluster
in both directions.

low medoids change locations but remain in the same cluster
in only one direction.

very low medoids change locations and clusters in any direction.
These four medoid behaviors can be interpreted as no displace-
ment, displacement, merging/splitting and appearance/dis-
appearance, respectively, (see color code in Fig. 4).

3.3. Evolution of clusterings maps made from CNRM-CM5 outputs

To determine possible changes in internal variability of extreme
summer temperatures between the historical and the future per-
iod (in the model world), we apply the clustering on HIST (1950–
2005) and RCP8.5 (2006–2100) ensembles with K¼11, and the top
panel of Fig. 4 compares the two clusterings.

Out of the 11 medoids, 4 stay at the exact same location and
5 are slightly displaced. Overall, 9 clusters out of 11 do not present
clear changes in the future ensemble, but two others do. Because
one cluster disappears (blue) in the RCP8.5 clustering, one has to
appear, and so is the green cluster split in two, as indicated by the
two arrows.

The analysis of Fig. 4a with K¼11 highlights two regions pre-
senting possible changes in clustering of summer extreme tem-
peratures, while the rest of Europe remains unchanged. To explore
the robustness of these two regions, the analysis has also been
performed with K¼12 (Fig. 4b). The two regions that witness a
change for K¼11 disappear with K¼12. The same conclusion also
holds for K¼10 (not shown).

Hence, we conclude that the spatial clustering of summer ex-
treme temperatures within the CNRM-CM5 model world is robust
over time. The changes detected for K¼11 are an artifact of sta-
tistical instabilities rather than a strong signal. This conclusion is
corroborated by the fact that the other nine regions remain in-
variant for K¼11.

In addition, the changes between the two ensembles for K¼11
are associated with clusters of low averaged silhouette coefficients
in both ensembles (not shown). If we were detecting changes for
the largest silhouette coefficients, then changes will be more sig-
nificant, but it is not the case here, and for all these reasons, we
cannot reject the hypothesis of temporal stationarity for the
clusters spatial patterns.

Statistical instabilities have been found through the sensitivity
to the sampling size. We tested the differences in the spatial
clustering with the same RCP8.5 ensemble but with a half-reduced
HIST ensemble size (for both ensembles to have 5 members). Re-
sults clearly show the dependence to the sampling size (not
shown). Indeed, the HIST clustering maps present small changes,
and so does the map of changes between the two ensembles. In
our case, a larger RCP8.5 ensemble should probably lead to slightly
different maps of changes between the two ensembles.
4. Discussion

Bernard et al. (2013) introduced a new framework for cluster-
ing events based on their extremes rather than solely on their
means and variances, which is important for risk analysis
concerning a changing climate. In this paper, we add to the
method in order to account for a much larger domain, ensembles
of data, and idiosyncrasies associated with a different variable. It is
found that using different numbers of clusters can reveal asso-
ciations at different scales of weather/climate phenomena, but for
the most part, within reason, the results are robust to the choice of
the number of clusters, which does need to be determined a priori.
The most surprising, and positive, result is that, without using
positional information, specific geographical structures never-
theless revealed themselves.

Reducing the dimensionality of a dataset while preserving in-
formation about the extremes is a difficult task because it falls
within the realm of extreme value theory where handling multi-
variate/spatial data can be challenging. The distance measure used
here, has fundamental links with multivariate extreme value
theory via the extremal coefficient, but does not rely on estimating
any parameters or dependence structures. In fact, the measure is
very straightforward to compute, and it is appropriate for clus-
tering extremes. Moreover, the framework is couched inside the
usual, and well understood, clustering framework; specifically, in
this case, the Partitioning Around Medoids (PAM) technique.

Another important contribution of this work is the handling of
ensembles of data, which introduce unique challenges. On one
hand, they can be handled by analyzing each member individually,
and then summarizing the resulting ensemble of maps. Such a
scheme is fraught with difficulties, despite its simple appearance.
In particular, from a statistical point of view, it is difficult to
summarize many maps, but also the results of each map is a direct
consequence of the unique trajectories of each member, which do
not translate well into a summary. On the other hand, the en-
semble can be taken as a large multivariate variable whereby the
clustering can be performed so that one unique map is de-
termined. This latter approach does not suffer from the difficulties
of the first, ostensibly more attractive method.

This study has been conducted using a single climate model,
which does not show any significant changes in spatial clustering
of summer temperature extremes for the future European climate.
The present work also offers a blueprint to develop a methodology
for future studies focused on extremes where it is desired to re-
duce spatio-temporal dimensions.

A multi-model analysis from the CMIP5 simulations could be
interesting and helpful to understand the changes in interannual
variability over Europe. These issues are actively studied by the
climate community (e.g., Scherrer, 2005; Seneviratne et al., 2006;
Parey et al., 2009; Fischer et al., 2012), but the spatial de-
pendencies are less frequently examined.

Understanding how the internal variability is represented in
every climate model is a crucial point to further investigate if
changes are projected to occur in response to global warming. This
could be done with the control simulations of the models, where
the forcings remain constant over very long periods.

Models having a large number of members in their ensembles
could be particularly useful for these issues. Indeed, the effect of
the sampling has been highlighted in this study. Large ensembles
would imply lower sampling effects, and a better description of
the spatial correlation of extremes.
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