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Abstract
In many communities such as climate science or industrial design, to solve
complex coupled problems with high fidelity external coupling of legacy solvers
puts a lot of pressure on the tool used for the coupling. The precision of such
predictions not only largely depends on simulation resolutions and the use of
huge meshes but also on high performance computing to reduce restitution
times. In this context, the current work aims at studying the scalability of code
coupling on high performance computing architectures for a conjugate heat
transfer problem. The flow solver is a Large Eddy Simulation code that has been
already ported on massively parallel architectures. The conduction solver is
based on the same data structure and thus shares the flow solver scalability
properties. Accurately coupling solvers on massively parallel architectures while
maintaining their scalability is challenging. It requires exchanging and treating
information based on two different computational grids that are partitioned
differently on a different number of cores. Such transfers have to be thought to
maintain code scalabilities while maintaining numerical accuracy. This raises
communication and high performance computing issues: transferring data from a
distributed interface to another distributed interface in a parallel way and on a
very large number of processors is not straightforward and solutions are not
clear. Performance tests have been carried out up to 12 288 cores on the CURIE
supercomputer (TGCC/CEA). Results show a good behavior of the coupled
model when increasing the number of cores thanks to the fully distributed
exchange process implemented in the coupler. Advanced analyses are carried out
to draw new paths for future developments for coupled simulations: i.e.
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optimization of the data transfer protocols through asynchronous communica-
tions or coupling-aware preprocessing of the coupled models (mesh partitioning
phase).

Keywords: code coupling, massively parallel, Large Eddy Simulation, conjugate
heat transfer

1. Introduction

Determination of heat loads such as wall temperatures and heat fluxes is a key issue in gas
turbine design [1, 2]: the interaction of hot gases and reacting flows with colder walls is a key
phenomenon in all combustion chambers and is actually a main design constraint in current gas
turbine developments. With the constant increase of computing power, numerical simulations of
the thermal interaction between fluid flows and solids offer new design paths to diminish
development costs through important reductions of the number of experimental tests. To
determine mean heat loads on structures, many authors use conjugate heat transfer (CHT) where
the fluid and solid equations are resolved simultaneously to predict the temperature and heat
flux distributions in the system with a high level of fidelity. CHT is a difficult field and most
existing tools are developed for chained (rather than coupled), steady (rather than transient)
phenomena thanks to Reynolds-averaged Navier–Stokes (RANS) solvers [1, 3, 4]. The
accuracy of the CHT predictions largely relies on the computational fluid dynamics (CFD)
method. Recent contributions based on Large Eddy Simulation (LES) [5–7] provide promising
results especially for the prediction of heat transfer in complex geometries [8–12].

Use of an unsteady LES flow solver to resolve such problems raises several complexities
to address for CHT. LES requires high mesh resolutions to accurately capture the flow physics.
It is also more CPU consuming than RANS methods to converge spatial and temporal statistics.
These specificities imply the use of specific strategies to accelerate the convergence toward
steady heat transfer problems as well as efficient methods to use existing high performance
architectures to decrease the restitution times of such coupled simulations. Previous studies
have proposed guidelines to reach stable convergence of CHT problems with LES based on
time desynchronization of convection and conduction as well as the use of high frequency
information exchanges between the different physics [8, 12, 13]. There are two basic
approaches to numerically solving CHT problems. The first one is a direct coupling approach
where the different physics are solved simultaneously in a large system of equations by a
monolithic solver [14–18]. The second approach consists of solving each set of equations
separately with dedicated solvers that exchange interface conditions through a coupler [3, 19–
23]. The last solution adopted here has the advantage of using existing state-of-the-art codes to
solve fluid and solid equations.

In this context and with the convergence recommendations, the resolution of CHT
problems puts a lot of pressure on the tool used to couple the solvers. Several communities have
investigated the use of code couplers in many different areas ranging from climate studies to
industrial applications. These communities are now faced with the challenge of running the
coupled applications with highly loaded codes on massively parallel machines where the
solvers exchange a large amount of data at a high rate of exchange. The strategy investigated in
this work to address these issues relies on recent developments made in a generic parallel
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coupler [24]. The first section presents the fluid and solid solvers. Then, implementation details
on the coupling library are provided. Finally performance tests carried out up to 12 288 cores on
the CURIE supercomputer (TGCC/CEA) are proposed and analyzed.

2. Presentation of the flow and conduction solvers

This section presents the fluid and solid solvers used to construct the CHT tool. Both solvers
have a mesh partitioning-based parallelism. After a short description of their functionalities,
parallel performance of each solver is given.

2.1. The fluid solver AVBP

The AVBP project was historically motivated by the idea of building a modern CFD software
with high flexibility, efficiency and modularity. Recent information about this flow solver can
be found in [25]. The solver is routinely used and developed in the frame of cooperative works
with a wide range of industrial companies. AVBP is capable of handling hybrid unstructured
grids to ease complex geometry grid generation and adapted to high order numerical schemes in
time and space. AVBP solves the compressible Navier–Stokes equations and focuses on
unsteady turbulent flows (with and without chemical reactions) for internal flow configurations.
The prediction of turbulent flows is based on the LES sub-grid scale closure problem [5]. The
data structure of AVBP employs a cell-vertex finite-volume approximation. The numerical
methods are the Lax–Wendroff scheme [26] or finite-element-type low-dissipation Taylor–
Galerkin [27, 28] discretizations combined with linear-preserving artificial viscosity models.
The AVBP library includes integrated parallel domain partitioning and data reordering tools,
handles message passing and includes supporting routines for dynamic memory allocation,
parallel input/output and iterative methods.

Typical strong speed-up obtained with AVBP is illustrated in figure 1(a). This flow solver
shows excellent scalability up to 8192 cores. Results are still good for 24 000 cores (efficiency

Figure 1. Strong speed-up curve obtained for (a) AVBP on different machines and
physical configurations and (b) AVBP and AVTP on the CURIE/TGCC supercomputer
with the target configuration of the study.
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is around 85%). The decrease in performance for a very large number of cores (point around
16 000 cores) underlines a physical limit often encountered on massively parallel applications.
Indeed for very large numbers of cores the ratio between computation time and communication
time is directly proportional to the problem size (number of grid points and unknowns). For this
specific illustration, the configuration tested with 16 000 cores corresponds to a calculation
without enough cells per core or a too low computational workload for each core compared to
the amount of exchanges needed to proceed with the CFD computation. It shows that a given
task is limited in terms of scalability and no increase in performance is expected beyond a given
number of cores. When writing this paper, improvements of the fluid solver have been pushed
forward allowing better speed up on more cores.

2.2. The solid solver AVTP

The AVTP solver has been written based on the data structure of AVBP. The solver inherits
from the mesh capability and the computational performances of AVBP. AVTP solves the time
dependent energy conservation equation. The heat diffusion follows Fourier’s law and the solid
solver takes into account local changes in heat capacity and conductivity with temperature. The
second order Galerkin diffusion scheme [29] for spacial discretization comes from the AVBP
solver. Time integration is done either with an explicit or an implicit first order forward Euler
scheme. The resolution of the implicit system is done with a parallel matrix free conjugate
gradient method [30].

AVTP resolves only one equation with only one operator: i.e. at least five times less
equations and two times less operators than AVBP for a 3D configuration without combustion.
The number of operations per iteration done by AVTP is thus very low compared to AVBP. A
typical strong speed-up obtained with AVTP is illustrated in figure 1(b) for explicit and implicit
schemes. Due to the small number of operations per iteration, the scaling of the explicit
integration becomes poor at about 500 cores and then saturates. For the same Fourier number
(F = 0.5 at which the explicit scheme is limited due to stability reasons), the implicit scheme
shows better scaling performances due to the fact that it needs more operations per iteration than
the explicit scheme. The price for one iteration on one processor is thus higher when using the
implicit scheme compared to the explicit one. Increasing the Fourier number, the number of
operations per iteration increases (the method needs more sub-iterations to converge) and thus
the scaling appears to be better (F= 10 on figure 1). Note, however, that using larger Fourier
numbers increases the time step resulting in a global decrease of consumed CPU time to
simulate a given physical time, which is why implicit schemes are preferred for this type of
solver. Finally, as the number of partitions increases (i.e. increasing the number of cores), the
more the conjugate gradient algorithm needs sub-iterations to converge, which increases the
overall number of operations per iteration and thus participates in the decrease of the overall
efficiency of the solver. After 750 cores, the efficiency of the implicit solver at F = 10 is hence
less than 75%.

3. Presentation of the coupler

The OpenPALM software is a code coupler, i.e. a library of functionalities that facilitate the
scheduling of existing componentsʼ execution sequentially or concurrently as well as the
exchange of data between these components. This is achieved in part via a collection of
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primitives that are called in the codes as well as with more complex mechanisms for application
scheduling. OpenPALM aims at implementing a general tool allowing one to easily integrate
high performance computing applications in a flexible and evolutive way proposing a solution
to the balance between performance, software reuse and numerical accuracy. OpenPALM is
mainly composed of three complementary components: (1) the PALM library, (2) the CWIPI
library and (3) the graphical interface PrePALM. As the application programming interface is
available in Fortran and C/C++, OpenPALM can couple codes written in different languages. In
the following, each component is described briefly.

3.1. The PALM library

PALM has originally been designed for oceanographic data assimilation algorithms, but its
domain of application extends to every kind of scientific application [31]. In the framework of
PALM, applications are split into elementary components that can exchange data though MPI
communications. The main features of PALM are the dynamic launching of the coupled
components, the full independence of the components from the application algorithm, the
parallel data exchanges with redistribution and the separation of the physics from the algebraic
manipulations performed by the PALM algebra toolbox. It can be defined as a dynamic coupler
for its ability to deal with situations where the component execution scheduling and the data
exchange patterns cannot be entirely defined before execution.

3.2. The CWIPI library

Based on the BFT and FVM libraries [32], CWIPI [33] aims at providing a fully parallel
communication layer for mesh based coupling between several parallel codes with MPI
communications. Like most existing coupling libraries for multi-executable paradigms
[13, 22, 23, 34], CWIPI is a static coupler in the sense that all the components of the
simulations are started at the beginning, exchange data during the run phase and finish together
at the end. Coupling is made through 1D, 2D or 3D exchange zones that can be discretized in
different ways in the coupled codes. The library takes into account all types of geometrical
elements (polygon, polyhedral) with an unstructured description. CWIPI functionalities involve
the construction of the communication graph between distributed geometric interfaces through
geometrical localization, interpolation on non-coincident meshes, exchange of coupling fields
for massively parallel applications as well as visualization file building. The CWIPI library is
the part of OpenPALM that is mostly used in this study and is thus explained in more detail in
the next section.

3.3. The graphical interface PrePALM

The graphic user interface, called PrePALM, is a portable Tcl/Tk application. The user
describes entirely through this user interface the execution scheduling, the parallel sections, the
data exchange patterns and the algebraic treatments [24]. It ends up providing the input file to
the coupler executable as well as the source code for the wrappers of the coupled component
which take care of the set-up of the communication context with no need for changes in the
component sources. The same graphic tool can be used at run time to monitor the simulation
status and to provide post-mortem statistics on the memory and CPU time resources used by the
different components.
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4. High performance mesh based coupling

Code coupling is an appealing method to develop multiphysics and multicomponent
applications. However, if it is done incorrectly it can become a performance pitfall and render
useless the efforts invested to optimize each individual code. There are at least two important
aspects to take into account to manage efficient code coupling in an HPC context: (1) reducing
the overhead of data transfer between the solvers and (2) maintaining a low global processor
idle time. Indeed, and unless both codes have perfectly equal CPU per iteration times, the fastest
code will have to wait for the others. Having a good load balancing is the key to maintaining a
low idle time and thus reducing CPU waste.

The first point requires the most attention and a direct point-to-point communication
between each solver’s processors is proposed. Also because non-matching grids are used, a
parallel interpolation method is required. The algorithm consists of two parts: the initialization
or setup phase, i.e. where the communication routes and the interpolation coefficients are
computed, and the run-time phase, or how inter-code synchronization is actually executed. The
first phase is done just once per coupled simulation except if the geometries are mobile.

For the description of these phases, let us consider that solvers A and B are linked by a
coupling through their respective discretized coupled interface IA and IB.

4.1. Inter-code communication scheme (ICCS) determination

During the initialization phase, OpenPALM creates an internal communicator for each code that
replaces the MPI_COMM_WORLD communicator. Then, for each coupling defined by the
user (i.e. link between two solvers), inter-communicators are created between pairs of coupled
codes. From the userʼs point of view, the inter-application communications are completely
transparent even if the codes are parallel.

The communication routeʼs construction, ICCS determination, consists of projecting the
discretized interface IA on IB and vice versa as a preparation for the communication phase. To
maintain full scalability, coupling massively parallel applications has to remain a distributed
process not only during the run-time part, but also during the initialization part. Furthermore,
distributing the workload in the initialization improves the capacity of the coupled application
to handle large simulations (which is a key for future applications).

Connecting the interfaces IA and IB means being able to perform geometrical searches from
a computational domain into the other to locate the degrees of freedom of IA in IB and
vice versa. To keep the data distribution, the geometrical searches are performed in a parallel
way by avoiding data centralization and sequential treatments. This objective faces a clear
difficulty: in massively parallel CFD applications or heat transfer solvers the meshes are
partitioned into sub-domains each processed by a different processor. This partitioning also
applies to the coupling interfaces. As the partitioning algorithm is usually not aware of the
coupling process, the different distributions have no reason to match, leading to complex
associations between interface processors of both solvers. To address these specific difficulties
the CWIPI algorithm is composed of an optimized three-level location method (algorithm 1):
the first level is the partition number of the mesh, the second one is the cell number in the
selected partition, and the next one is the mean value computed in the selected cell.

As the process is fully symmetric, let us consider that code A is the source code (where the
data is localized for the interpolation) and code B is the target code. The corresponding
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interfaces IA and IB are partitioned on processes, leading to nA sub-interfaces noted IA
n and nB,

sub-interfaces IB
m with n n[1, ]A∈ and m n[1, ]B∈ . It is worth noting that the number of sub-

interfaces nA (respectively nB) is lower or equal to the total number of partitions of code A
(respectively B). Only the processes that contain a sub-interface are involved in the projection
algorithm.

The location algorithm is parameterized to adjust the size of the bounding box around the
source process sub-interface IA

n for step #2 (algorithm 1) as well as around the source cells for
step #4. This parameter takes the form of a tolerance: increasing it helps to locate points when
geometries are not exactly matching. Note, however, that increasing tolerance results in an
increase of the time requested by the location algorithm to converge.

Algorithm 1. Inter-code communication scheme (ICCS) determination algorithm

Step 0:
- Each partition n of the source code defines its discretized source sub-interface IA

n to the coupler (nodes
coordinates and connectivity of the cells).

- Each partition m of the target code defines its discretized target sub-interface IB
m to the coupler (nodes

coordinates and connectivity of the cells).
Step 1: Each process of the the source code defines a surrounding box of its partition IA

n

Step 2: Each process of the source code checks for geometrical intersections of its surrounding box of
sub-partition IA

n with target nodes of the different target sub-interface IB
m

return Determination of a reduced number of target nodes per source process n
return Construction of a first communication graph between source and target processes
Step 3: Each process of the source code classifies the previous target nodes in an octree structure to
optimize the next research step

return Octree structure containing the target nodes
Step 4: Each source process defines a sub-box per mesh element of its sub-interface IA

n

Step 5: Each source process checks the intersection between each source cell sub-box of IA
n and the target

nodes classified in the octree
return Determination of a limited number of candidate target nodes per source cell
Step 6: For each target node, the source process identifies the closest element of the source sub-interface
IA
n and defines the final communication graph

return Final communication graph from the source processes to the target ones

4.2. Communication phase

The communication phase consists of the interpolation of the fields and the exchange of the data
between the solvers. The data can be stored either at the center of the cells for cell-centered
solvers or at the nodes for cell-vertex solvers. Interpolation is done directly by the source solver
via linear methods, i.e. barycenter interpolation with 1 elements (triangular in 2D and tetra in
3D), implying a spatial accuracy of 2. Note that the user can customize the interpolation with
callback definition. To ensure communication scalability the communication scheme between
each solver is based on direct point-to-point communications between the processors which
share a common interface following the communication graph ICCS setup of the previous
phase. Each processor generally has several counterparts, which have to provide a portion of
their data field.

Two communication schemes exist in the library: (1) synchronous and (2) asynchronous.
In the synchronous mode, each process of code A that treats a sub-interface IA

n is involved in a
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loop of communications with processes of code B that share partially this sub-interface. The
bounds of this loop are obtained thanks to the ICCS determination phase and follow the natural
order of the process numbering. The exchanges are based on the MPI_Sendrecv primitive so
that they can be mono- or bi-directional. This primitive is a blocking one implying that an
exchange between process n of code A and process m of code B has to be finished before
starting the exchange between n and m 1+ . This method is not well optimized when a very
large number of cores is involved in the coupling. Concerning the asynchronous mode, the
exchanges are based on loops around the primitives MPI_Issend for sending and MPI_Irecv for
reception. The completion monitoring of the exchanges is achieved thanks to loops around
primitives MPI_Wait. In this mode, communications can overlap in a fully transparent way
which is prone to be better performing than the synchronous mode. The other advantage of the
method is its potential to overlap communication times with other treatments in the codes that
do not affect the exchanged fields.

To illustrate the differences of performance between the synchronous and asynchronous
communication modes, a simple toy is used. In this toy, codes A and B exchange data with the
synchronous mode and codes A′ and B′ are coupled with the asynchronous method. Each code
is running on the same number of cores (p) and performs 100 ping-pong exchanges of one
quantity. All the p cores of all the solvers participate in the coupling that is performed on a 3D
surface. Note that A (respectively B) and A′ (respectively B′) are two instances of the same
source code that perform only data exchanges.

Figure 2 illustrates the communication patterns of synchronous and asynchronous
communication schemes with p = 25. Only a zoom of the execution traces obtained with Extrae/
Paraver [35] is provided here. The loss of resources due to the ordered loop of the synchronous
mode is clearly evidenced by the large gray zones (representing waiting periods of the cores) for
both codes, the steps forming the communication pattern. By contrast, the asynchronous
method exhibits almost no waiting period for the cores. As a result, codes A′ and B′ perform at
least two ping-pong exchanges when codes A and B perform only one for the present case.

Figure 2.MPI traces of the the synchronous and asynchronous communication schemes
on a coupling toy. Codes A, B, A′ and B′ are running on p = 25 cores. Blue zones
correspond to computations, red to MPI exchange, gray to core waiting and yellow
traces are communications.
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Figure 3.MPI traces of the the synchronous and asynchronous communication schemes
on a coupling toy. Codes A, B, A′ and B are running on p [1, 4, 9, 16, 25]= cores.
(a) The size of the exchange array has a fixed size per core and (b) the global size of the
exchange array is the same for all the process counts. The abscissa CPU time is scaled
on a 25 × 25 case for (a) and on a 1 × 1 case for (b).
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Figure 3 presents in the same form as figure 2 the whole communication phase through
Extrae/Paraver traces for two situations:

(a) increasing the number of cores per code while keeping the same amount of data to
exchange per core,

(b) increasing the number of cores per code while maintaining the global size of the exchange
array that is distributed on p cores.

In the first situation (a), the total amount of data exchanged between the codes increases
linearly with p. The second situation (b) corresponds to a realistic computation where the
meshes of the solvers are decomposed on the available cores, reducing the amount of data to
exchange per computing core. Case (a) shows that increasing the number of cores per code
while maintaining the size of the local array to exchange fixed leads to an important increase of
the time taken by synchronous exchanges. Asynchronous communications on the other hand
exhibit an almost constant time for the 100 ping-pong exchanges. When going to a more
realistic situation, case (b) shows that increasing the number of cores per code while decreasing
the amount of data exchange per core leads to a drastic decrease of the execution time taken to
perform the 100 ping-pong exchanges. In all the core counts the performances of the
asynchronous mode are better than the synchronous one.

5. Application to an industrial combustion chamber

The configuration of interest is a sector of an annular helicopter combustion chamber (figure 4),
including the secondary air flow (A), the flame tube (B) and the high pressure distributor (C).
The flame tube is fed with air and kerosene through an injector (D). The flame stabilizes in the
primary zone (E). The thermal problem studied here by CHT consists in the determination of
the temperature of combustor wall as well as of the stator.

The fluid domain is discretized with 3.8 million nodes and 21.4 million tetrahedra. To
describe the flame with sufficient accuracy, the mesh is refined in the primary zone where the

Figure 4.View of fluid and solid models of the industrial configuration. Only one sector
of the annular combustion chamber is investigated.
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flame stabilizes. The solid domain is discretized with 3.8 million nodes and 18.2 million
tetrahedra. The high number of solid cells is linked to a resolution constraint that requires at
least four elements in the wall thickness. The conjunction of very thin walls with the use of
tetrahedra leads to a large number of elements.

Computations are done on the CURIE supercomputer, owned by GENCI and operated at
the TGCC by CEA. CURIE offers different fractions of x86-64 computing resources. Thin
nodes among the 5040 B510 bullx nodes of the architectures are used in the present study. Each
node is composed of two eight-core Intel processors Sandy Bridge EP (E5-2680) with 2.7GHz,
64GB and one local SSD disk. A total of 80 640 cores are availables on the machine. The
coupling has been tested on 768 processors, i.e. 12 288 cores.

The strong speed-up obtained with AVBP on the present configuration is shown on
figure 1(b). The performance of the solver is very good up to 2048 cores. Afterward, a
significant loss of performance is observed. This is directly linked to two things: (1) the
MPI_allreduce that are not optimized in the version of Bullxmpi used for these tests and (2) the
size of the fluid mesh which does not contain enough degrees of freedom to reach good scaling
properties up to 8000 cores. The strong speed-up obtained with AVTP on the present
configuration is also shown on figure 1(b). The curve is the one already discussed during the
AVTP description. A good scalability is observed up to 650 cores when using the implicit
scheme with a Fourier number F = 10 as in the present coupled computations.

6. Parallel efficiency of the CHT model

This section first presents the strong scaling analysis of the coupling between AVBP and AVTP
from 128 to 12 288 cores. In the first part, the simulation conditions are detailed. Some
important features resulting from the application that directly impact the efficiency results are
underlined. The performance of the coupled application up through 12 288 cores is analyzed.
Finally a second set of tests on a reduced number of cores is used to compare synchronous and
asynchronous communication modes as well as a deeper performance analysis of the coupled
model.

6.1. Strong scaling analysis

6.1.1. Simulation conditions. The physics and the numerics of the coupling methodology to
reach a steady thermal state of the solid are detailed in [8, 13]. The main idea relies on a
desynchronization of the temporal evolutions in the fluid and solid with a high frequency
exchange to reduce the CPU cost while ensuring stability of CHT computations. It results that
for the present case, both solvers run in parallel and exchange data at a fixed frequency
corresponding to 20 times steps of the fluid code and one time step of the solid solver.

Table 1 presents the repartition of cores between AVBP and AVTP for the nine cases
tested. Knowing the performances of the codes on the target machine, these repartitions aim at
not slowing down the fluid code which is the more CPU greedy in case of a non-perfect
synchronization at meeting points (i.e.: the cores of the solid solver wait for the fluid ones for
data exchange). The performances of the coupling are compared to AVBP performances in the
following of the paper. Note that the driver of OpenPALM runs on one core and that AVBP
always runs on a whole processor count to avoid processor sharing between AVBP and AVTP.
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AVBP treats around 0.48 million cells on its discretized coupling interface and AVTP
treats about 1.7 million elements. The core distribution among the solvers as well as the number
of cores on which these coupling interfaces are partitioned for the 9 cases are shown in figure 5.
It is worth noting that 100% of the solid cores are involved in the coupling process for all cases.
On the other hand, the proportion of AVBP processes involved in the coupling interface
decreases almost exponentially when the number of cores increases. This behavior is linked to
the ratio between the volume of the configuration and its surface which is higher in the case of
the fluid solver. It is important to note that mesh partitioning is managed independently in each
solver resulting in non-conformal patterns of the partitioned discretized surfaces.

It is of interest to analyze the evolution of the distribution of the number of mesh elements
in the sub-interfaces as the number of cores increases. Indeed, a reduced amount of AVBP cores
have more tasks to perform than the others because of the exchanges with AVTP. The way this
additional load is distributed and its evolution when the number of processing cores increases, is
particularly important to ensure scaling of the coupled application. To analyze these
distributions, figures 6 and 7 show the histograms of the number of cores treating nc cells
(these histograms are constructed based only on the cores with coupling cells). Abscissa scales
are logarithmic to facilitate the interpretation. An ideal configuration would feature
homogeneous distributions with all cores having the same amount of coupling cells leading
to the same amount of work or communications to perform. Concerning the fluid solver AVBP,

Figure 5. (a) Repartition of the total cores allocated to the solvers as well as evolution of
the number of cores involved in the coupling and (b) corresponding percentage of cores
involved in the coupling process for each solver.

Table 1. Repartition of cores between AVBP and AVTP for the coupled simulations.
The OpenPALM driver takes one core.

Case # 1 2 3 4 5 6 7 8 9

AVBP 124 224 480 992 1984 4000 6016 8000 12 032
AVTP 3 31 31 31 63 95 127 191 255
OpenPALM 1 1 1 1 1 1 1 1 1

Total 128 256 512 1024 2048 4096 6144 8192 12 288
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the histograms at low number of cores are rather spread out with distinct peaks, reflecting an
inhomogeneous partitioning of the coupled discretized interface among the computing cores.
Increasing the number of cores narrows the range of the histograms around the small number of
cells. A significant peak emerges indicating a homogenization of the distribution of coupling
cells on the cores. Nevertheless, the peak at very low number of cells remains highlighting the
participation of cores in the process of inter-code exchanges for a small number of information.
From cases #3 to #9, the peak has the same order of magnitude as the main peak of the
distribution.

As far as AVTP is concerned, case #1 exhibits a rather homogenous distribution on the
three cores. Then all the distributions show a multimodal profile with a marked peak in the
range of small numbers of coupling cells per core.

The different analyses in this section underline phenomenological issues resulting from the
coupler as well as the CHT application setup. Some of these results consist of potential
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Figure 6. Histograms of the distribution of coupling cells per AVBP core depending on
the total number of cores of the coupled simulations.
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weaknesses for performance results: imbalance between the number of cores allocated to the
solvers, all the cores of the AVBP solver not participating in the coupling creating a difference
of computing load inside the code itself; imbalance repartition of the sub-interface among the
coupling cores on each solver; complex communication scheme with a lot of connections
between the processes of the two solvers, and finally a combination of these features. Having
identified these behaviors, the next section analyzes the strong scalability of the application.

6.1.2. Performances of the coupled application with synchronous communications. The time
needed to construct the ICCS is presented in figure 8(a). Except for case #1, this time is almost
constant when the number of cores increases. For case #1, the ratio of cores involved in the
coupling of AVBP over the one involved in the coupling of AVTP is the most important.
Indeed, this ratio translates partly the imbalance of cores that have to communicate together
leading to a very poor efficiency of the algorithm. Increasing the number of cores for AVTP
from case #1 to case #2 leads to a drastic reduction of the consumed time. From cases #2 to #4,
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Figure 7. Histograms of the distribution of coupling cells per AVTP core depending on
the total number of cores of the coupled simulations.
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the number of cores allocated to the AVTP coupling interface is fixed while the number of
AVBP cores increases. It results in a slight increase of the time spent to construct the
communication scheme. Then, the ratio of coupling cores between the solvers is almost
constant resulting in a slight decrease of the time consumed by the ICCS algorithm up to 8000
cores. From these analyzes, one can note that the scaling of the ICCS algorithm largely depends
on the number of processes involved in the coupling on each side of the coupled model.
Increasing the number of cores of just one code is not sufficient to ensure a good scaling of this
coupling phase.

Figure 8(b) presents the evolution of the time taken by an AVBP iteration compared to the
time of an exchange between the solvers as a function of the total number of cores of the
coupled system. The exchanges are made in the synchronous mode. As previously mentioned,
the fluid solver exhibits a rather good scaling until 4000 cores. Above 8000 cores, the time of an
iteration reaches a plateau. The time needed for the data exchange is almost constant whatever
the number of cores. As for the first phase, the time of the communication step exhibits an
important decrease from case #1 to #2. This reveals that the balance of processes that are
coupled continues to play an important part in this phase. Then, the communication time
slightly increases as the number of cores grows. Until several thousand of cores, the time
requested by an exchange is several order of magnitude lower than the time of an AVBP
iteration. Then both times are of the same order. As the coupling is done every 20 iterations of
the fluid solver AVBP, the global scaling of the application presented on figure 1(b) is
conserved. The communication phase is thus fully transparent in term of restitution time for
the user.

6.2. Additional performance measurements

To gauge the relative performances of synchronous and asynchronous communication modes
on the real geometry, the 16 cases presented in table 2 have been performed. This set of
computational experiments aims at drawing a map of exchange times by fixing a different
number of AVTP cores and increasing the number of AVBP cores. This map is shown on

Figure 8. (a) Time taken by the inter-code communication scheme determination
algorithm. (b) Comparison of the time for one iteration of AVBP and the time to do one
exchange as a function of the total number of cores of the coupling.
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figure 9, comparing the times for one exchange between the solvers for the two communication
modes. The first noticeable element is that asynchronous communications always outperformed
synchronous ones in this example. Then, for almost all the cases, for a fixed number of AVTP
cores, increasing the number of cores of AVBP leads to an increase of the exchange time
between the solvers as evidenced in the previous section. This increase is much more evident

Figure 9. Comparison of synchronous (dotted lines) and asynchronous (continuous
lines) communications. The diameters of the circles are proportional to the time spent in
the communication process.

Table 2. Repartition of cores between AVBP and AVTP and time taken by one
exchange for the comparisons of synchronous (sync.) and asynchronous (async.)
communications modes.

# AVTP cores # AVBP cores Async. exch. time (s) Sync. exch. time (s)

4 123 0119 0135
4 251 0303 0344
4 379 0177 0176
4 507 0167 0214
8 119 0016 0043
8 247 0105 0145
8 375 0109 0181
8 503 0121 0248
15 112 0025 0061
15 240 0015 0072
15 368 0014 0159
15 496 0017 0165
31 96 0013 0036
31 224 0010 0042
31 352 0008 0054
31 480 0010 0136
47 80 0016 0034
47 208 0008 0031
47 336 0009 0034
47 464 0006 0036
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for the synchronous cases. When increasing the number of AVTP cores at almost fixed value of
AVBP cores, the trend of the exchange times is to decrease. This decrease is more important for
the asynchronous cases. A very important piece of information is that scalability of the
exchange times depends on the number of cores of each code: increasing the number of cores of
only one solver leads to a decreasing exchange time up to a given lower limit. To continue
decreasing the time for exchanges, the number of cores affected by the second solver has to be
increased to spread the communication loads. An important parameter that seems to drive the
communication time between the solvers is the sparsity:

Sp
np np

np np
(1)AVBP AVTP

AVBP AVTP

=
−
+

were npAVBP and npAVTP are the number of AVBP (resp. AVTP) cores involved in the coupling
interface of the AVBP (resp. AVTP) solver. Figure 10 shows that the times needed to construct
the ICCS as well as to perform exchanges correlate very well with Sp. This correlation has to be
explored in more details.

7. Conclusion

The different choices made for the resolution of CHT problems on complex geometries with a
high fidelity solver put a lot of pressure on the tool used for the coupling. As in several
communities, developers are now faced with the challenge of running coupled applications with
highly loaded codes on massively parallel machines and with solvers exchanging a lot of data at
a high frequency. The strategy investigated in this work to address these issues relies on recent
developments made in a generic parallel coupler. The characteristics of the coupled tool
including the fluid and solid solvers as well as the coupler are detailed. The tool is then applied
to an industrial combustion chamber. Performance tests are carried out until 12 288 cores on the
CURIE supercomputer (TGCC/CEA) and relevant parameters that influence the coupling

Figure 10. (a) Time taken by the inter-code communication scheme determination
algorithm as a function of the sparsity parameter Sp and (b) exchange times of the
synchronous and asynchronous communications as a function of the sparsity
parameter Sp.
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scalability are detailed. The coupler exhibits a very good behavior up to 12 288 cores implying
that the use of HPC can drastically reduce the restitution time of coupled applications for
industrial design with high fidelity solvers. Analyses of the scaling response underline the
impact of imbalanced repartitions of cores among the codes, imbalance repartitions of the
sub-interface among the coupling cores on each solver, as well as the complex communication
scheme which can infer a lot of connections between processes of the solvers on coupling
overhead. These points are independent from the coupler and can be addressed by incorporating
the knowledge of the coupling in the preprocessing step of the solvers (constraint and co-
partitioning). Tests on asynchronous communications show an important improvement of the
scalability of the coupler indicating development paths for the future. Finally, optimizations can
be envisaged to increase the performances of synchronous communications by enhancing the
ordering of the communications.
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