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@ BDDC preconditioner

© Overlapped BDDC implementation

© Scalability analysis (overlapped)

© Inexact BDDC

© Scalability analysis (overlapped /inexact)

© Conclusions and future work
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@ BDDC preconditioner
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Problem statement

Given a bounded domain Q and a FE partition 7', we build a
conforming (nodal) finite element (FE) space, i.e. Vi, C H3(Q).

@ Variational problem: find u € Vj, such that
a(u,v) = (f,v), for any v € V4,

assuming a(-, -) symmetric, coercive (e.g. Laplacian or linear elasticity)
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Problem statement

Given a bounded domain Q and a FE partition 7', we build a
conforming (nodal) finite element (FE) space, i.e. Vi, C Ho(Q).

@ Variational problem: find u € Vj, such that
a(u,v) = (f,v), for any v € V4,

assuming a(-, -) symmetric, coercive (e.g. Laplacian or linear elasticity)

o Algebraic problem: Equivalent to find x € R” such that
Ax = b,

where A is a large and sparse symmetric positive definite matrix
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Problem statement

Given a bounded domain Q and a FE partition 7', we build a
conforming (nodal) finite element (FE) space, i.e. Vi, C Ho(Q).

@ Variational problem: find u € Vj, such that
a(u,v) = (f,v), for any v € V4,

assuming a(-, -) symmetric, coercive (e.g. Laplacian or linear elasticity)

o Algebraic problem: Equivalent to find x € R” such that
Ax = b,

where A is a large and sparse symmetric positive definite matrix

Motivation:

Efficient exploitation of distributed-memory
machines for large scale FE problems =
Domain decomposition framework

o: interior DoFs (/); e: interface dofs (I')
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Interface (Schur complement) problem

@ The domain partition induces a block structure
A Air Xi by
A = = = b7
X |:AFI Arr]{xr} {br]

A = diag (A AR, AD)

where
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Interface (Schur complement) problem

@ The domain partition induces a block structure
A Arr Xi b
A = = = b7
X |:AFI Arr]{xr} {br]

Ay = diag (AS,”, AD ,Aglp))

where

o After the interior correction [A, b, 0], a reduced system for xr is obtained
Sxr = g,

where S = Arr — Ar,AﬁlA,r is the interface Schur complement
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Interface (Schur complement) problem

@ The domain partition induces a block structure
A Arr Xi b
A = = = b7
X |:AFI Arr]{xr} {br]

Ay = diag (AS,”, AD ,Aglp))

where

o After the interior correction [A, b, 0], a reduced system for xr is obtained
Sxr =g,

where S = Arr — Ar,AﬁlA,r is the interface Schur complement

@ Approach: Consider a Krylov subspace solver for Sxr = g
— Preconditioning plays a major role for optimality and scalability

o Alternatively, the preconditioner can be extended to Ax = f (equivalent as
soon as A;! exactly)
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Balancing domain decomposition by constraints (BDDC)

[Dohrmann, Mandel, Cros, Fragakis,
Papadrakakis, Le Tallec, Vidrascu, .. .]

Idea: Solve global problem w/ reduced continuity

o Replace V} by V, (reduced continuity)
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Balancing domain decomposition by constraints (BDDC)

[Dohrmann, Mandel, Cros, Fragakis,
Papadrakakis, Le Tallec, Vidrascu, .. .]

Idea: Solve global problem w/ reduced continuity

o Replace V} by V, (reduced continuity)

o Define the injection | : Vi — V4
weight, comm and add
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Balancing domain decomposition by constraints (BDDC)

[Dohrmann, Mandel, Cros, Fragakis,
Papadrakakis, Le Tallec, Vidrascu, .. .]

Idea: Solve global problem w/ reduced continuity

o Replace V} by V, (reduced continuity)

o Define the injection | : Vi — V4
weight, comm and add

o Find X, € \7;, such that:
a(>”<h., \7h) = (ltrh, Vh>, Vv, € \N/h

. o _ =i
and obtain z, = £/X,, where z, = Mgy,

@ Last correction: £ is the harmonic extension
of the boundary values, which implies local
Dirichlet solvers
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Balancing domain decomposition by constraints (BDDC)

[Dohrmann, Mandel, Cros, Fragakis,
Papadrakakis, Le Tallec, Vidrascu, .. .]

Idea: Solve global problem w/ reduced continuity

o Alternatively,

Find %X € R” such that:

A% = Ir

and obtain z = £I%, where z = Mg, r

o Ais a sub-assembled global matrix (only
assembled the red corners in the figure)

[0 —AAr
° &= { 0 Ir
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Balancing domain decomposition by constraints (BDDC)

o Let Vi, = [ V6] and decompose V, as

Ve = [i% 0]

V=V, V. ith M
h F® Ve, wi { Ve Ly U
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Balancing domain decomposition by constraints (BDDC)

o Let Vi, = [ V6] and decompose V, as

Ve = [i% 0]

Vi, = VED VC7 Wlth{ \7(_‘ LA Ve

@ Now, problem split into fine-grid (%¢) and coarse-grid (Xc) correction
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Balancing domain decomposition by constraints (BDDC)

o Let Vi, = [ V6] and decompose V, as

oo o f VUr =i 0]
V},—V,ﬂ:@\/c7 Wlth{ V(_‘L VF

@ Now, problem split into fine-grid (%£) and coarse-grid (Xc) correction
Fine-grid correction (Xr)
e Find Xr € R" such that
/Z\)N(F = Itr
constrained to (Xr)e = 0

@ Equivalent to P independent problems

Find )”(é") S Rﬁ(i) such that

A0 — jtp

constrained to ()?,(,—i)). =0

v
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Balancing domain decomposition by constraints (BDDC)

o Let Vi, = [ V6] and decompose V, as

c e Ve = [¥o 0]
Vi =V, V. th & .
h F @ Ve, wi { Ve Ly Ve

@ Now, problem split into fine-grid (%¢) and coarse-grid (X¢) correction

Coarse-grid correction (Xc)

Computation of Ve = span{®, ®,..., Py}
o Find & € R™*"¢ such that

AP =0

constrained to ®e = /

@ Equivalent to P independent problems

Find o € R7*"C such that

ADp() — 0 -

constrained to ¢(.i) =1

v
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Balancing domain decomposition by constraints (BD

Circle domain partitioned into 9 ®; (Vc's basis vector)
subdomains
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Balancing domain decomposition by constraints (BDDC)

o Let Vi, = [ V6] and decompose V, as

Ve = [i% 0]

V= Ve @ Ve, withd
h F® Ve, wi { Ve Ly Ve

@ Now, problem split into fine-grid (%¢) and coarse-grid (X¢) correction

Coarse-grid correction (Xc)

Assembly and solution of coarse-grid problem
Ac = assembly(A?) = assembly(®*A")®), Solve Acae = ®*/'r, %c = Pac

coarse-grid problem is
@ Global, i.e. couples all subdomains

o But much smaller than S (size nc)

@ Potential loss of parallel efficiency with P
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Coarse dofs definition

Key aspect: Selection of coarse dofs, i.e. continuity among subdomains

Properties of BDDC preconditioner

o Optimality (x(M~'S) bounded by a constant for fixed N/P and 1 P)
o N/P = (H/h) large in practice (e.g. O(10%) for sparse direct solvers)
o In general, BDDC(ce) and BDDC(cef) require much less iterations in 3D

@ But at the expense of a more costly coarse-grid problem

Coarse dofs vs. k(M™1S): d=2

Q

=3

Continuity on corners [1+d 'og® (¥)] % [1+d 'og®(¥)]
Continuity of mean value on edges too  [1+d 'log® (%)] [1+ d 'log® (})]

Continuity of mean value on faces too - [1+d 'log® (§)]
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Balancing domain decomposition by constraints (BD

Circle domain partitioned into 9 ®; (V¢'s basis vector)
subdomains
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Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

© The method allows for a (mathematically supported) extremely aggressive
coarsening (10° — 10° size reduction between fine/coarse level)
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Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

© The method allows for a (mathematically supported) extremely aggressive
coarsening (10° — 10° size reduction between fine/coarse level)

@ The coarse matrix has a similar sparsity as the original matrix
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Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

© The method allows for a (mathematically supported) extremely aggressive
coarsening (10° — 10° size reduction between fine/coarse level)

@ The coarse matrix has a similar sparsity as the original matrix

© Coarse and local components can be computed in a parallel (additive) way
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Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

© The method allows for a (mathematically supported) extremely aggressive
coarsening (10° — 10° size reduction between fine/coarse level)

@ The coarse matrix has a similar sparsity as the original matrix
© Coarse and local components can be computed in a parallel (additive) way

@ Local (constrained) Neumann and coarse solvers can be solved in an inexact
way (AMG-cycle instead of sparse direct solvers)
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Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

© The method allows for a (mathematically supported) extremely aggressive
coarsening (10° — 10° size reduction between fine/coarse level)
@ The coarse matrix has a similar sparsity as the original matrix

© Coarse and local components can be computed in a parallel (additive) way

@ Local (constrained) Neumann and coarse solvers can be solved in an inexact
way (AMG-cycle instead of sparse direct solvers)

@ A multilevel extension of the method is possible (for extreme core counts)
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Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

© The method allows for a (mathematically supported) extremely aggressive
coarsening (10° — 10° size reduction between fine/coarse level)
@ The coarse matrix has a similar sparsity as the original matrix

© Coarse and local components can be computed in a parallel (additive) way

@ Local (constrained) Neumann and coarse solvers can be solved in an inexact
way (AMG-cycle instead of sparse direct solvers)

@ A multilevel extension of the method is possible (for extreme core counts)

@ (1)-(2) always exploited in BDDC implementations

@ Let us see how to exploit (3), in order to reduce synchromization and boost
scalability (overlapped implementation)
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© Overlapped BDDC implementation
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Typical parallel implementation
(e.g., PETSc. FreeFEM, BDDCML)

main MP| communicator

fine-grid
correction

<

time

B

coarse-grid !
correction |

v

@ All MPI tasks have f-g duties and
one/several have also c-g duties

@ Computation of f-g and c-g correction is
serialized (but they are independent!)

4
@ Tc grows as O(P?) and mem as O(P3)
— becomes a bottleneck with P
— mem per core rapidly exceeded

@ Parallel coarse solvers / multilevel
extensions reduce this effect
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Typical parallel implementation
(e.g., PETSc. FreeFEM, BDDCML)

main MP| communicator

fine-grid
correction

<

time

B

coarse-grid !
correction |

v

All MPI tasks have f-g duties and
one/several have also c-g duties

Computation of f-g and c-g correction is
serialized (but they are independent!)

4
Tc grows as O(P?) and mem as O(P3)
— becomes a bottleneck with P
— mem per core rapidly exceeded

Parallel coarse solvers / multilevel
extensions reduce this effect

Highly-scalable parallel implementation
Overlapping of fine-grid/coarse-grid duties

fine-grid MP| coarse-grid MP|
communicator communicator
,\4/;_, \ou \eq« \/qf” Q©
FEFSTE LS
| E—— — T T
[ global ication ]
Tc
I Pe
Tr

OpenMP-based coarse-grid
solution

MPI tasks have either f-g duties or c-g
duties (but not both)

Computation of f-g and c-g correction can
be overlapped in time (asynchronous)

Full node(s) resources (memory and cores)
can be devoted to coarse-grid duties

MPI-based or OpenMP-based (this work)
solutions are possible for c-g correction
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Typical parallel implementation Highly-scalable parallel implementation
(e.g., PETSc) Overlapping of fine-grid/coarse-grid duties

main MP| communicator

fine-grid MP| coarse-grid MP|
commumca(or communicator
A w’»\/ A\ W TN q* q/\/mr/‘/ AN Q©
S N I AEEE @ A Q@
! & § & & & &
| T T T T T T
fine-grid [ global communication ]
correction |
| Tc
i
i Po
V‘ time T, c
L3 I I I S
A
j
i
coarse-grid !
correction |
' MPI-based coarse-grid
\/ solution

@ All MPI tasks have f-g duties and

one/several have also c-g duties @ MPI tasks have either f-g duties or c-g

duties (but not both)
@ Computation of f-g and c-g correction is

serialized (but they are independent!) @ Computation of f-g and c-g correction can

be overlapped in time (asynchronous)

4
@ Tc grows as O(P?) and mem as O(P3) @ Full node(s) resources (memory and cores)
— becomes a bottleneck with P can be devoted to coarse-grid duties
— mem per core rapidly exceeded
@ MPI-based or OpenMP-based (this work)
@ Parallel coarse solvers / multilevel solutions are possible for c-g correction

extensions reduce this effect
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BDDC-PCG basic building blocks

Solve Ax = b via BDDC-PCG

Schur complement set-up (S)
Precond set-up (Mppc)

g = br — ArA; by

call PCG(S,MBppc.g.xr)

xi = Ay (b — Airxr)

e
Zjp1 := Mgppofi+
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Fine-grid tasks [ Coarse-grid task |
I Schur set-up (symbolic)

Symbolic factorization( GA(,-) )
it

Schur set-up (numeric)

Numerical factorization(Agj))

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(GA(f))
F

Construct GAC

Symbolic factorization (Ga.)
v

BDDC set-up (numeric)

Numerical factorization(Ag))
Compute ®;

AD = ot Ao,

Gather Ag)

Ac := assemble(AY)
LC: local communication (nearest neighbours) Nﬁmerical factor(izacti)on(AC)
GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |
Identify local coarse DoFs | Schur set-up (symbolic)
Construct GAC

Symb fact(Ga.) O(P

7 Symbolic factorization(GA(,-))
3 Il

)

Schur set-up (numeric)

Numerical factorization(Agj))

BDDC set-up (symbolic)

Symbolic factorization( GA(;) )
F

Symbolic factorization (Ga.)
v

BDDC set-up (numeric)

Numerical factorization(Ag))
Compute ®;

AD = ot Ao,

Gather Ag)

Ac := assemble(AY)
LC: local communication (nearest neighbours) Nﬁmerical factor(izacti)on(AC)
GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |
Identify local coarse DoFs | Schur set-up (symbolic)
Construct GAC

£l
Symb fact(G ()  O(n?) | Symb fact(Gac) O(P3)
F

i

Symbolic factorization( GA(,-) )
it

Schur set-up (numeric)

Numerical factorization(Agj))

BDDC set-up (symbolic)

Symbolic factorization( GA(,-) )
F

v

BDDC set-up (numeric)

Numerical factorization(Ag))
Compute ®;

AD = ot Ao,

Gather Ag)

Ac := assemble(Al)
LC: local communication (nearest neighbours) Nﬁmerical factor(izacti)on(AC)
GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |
Identify local coarse DoFs | Schur set-up (symbolic)
Construct GAC

£l
Symb fact(G,())  O(n?) | Symb fact(Gac) O(P3)
F

i

Symbolic factorization(GA(,-) )
I

4
Symb fact(G () O(n?)
Alr Schur set-up (numeric)

Numerical factorization(Agj))

BDDC set-up (symbolic)

v

BDDC set-up (numeric)

Numerical factorization(Ag))
Compute ®;

AD = ot Ao,

Gather Ag)

Ac := assemble(Al)
LC: local communication (nearest neighbours) Nﬁmerical factor(izacti)on(AC)
GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs | Schur set-up (symbolic)
Construct Ga

£l
Symb fact(G,())  O(n?) | Symb fact(Gac) O(P3)
F

4
Symb fact(G ;) o(n?)
it

Schur set-up (numeric)

Num fact(Ag)) o(n?)

i Numerical factorization(Agj))

BDDC set-up (symbolic)

v

BDDC set-up (numeric)

Numerical factorization(A(Fi) )
Compute ®;

AD = ot AN,
Gather Ag)

Ac = assemble(A(C"))
Numerical factorization(Ac)

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs | Schur set-up (symbolic)
Construct Ga
z
Symb fact(G y)  O(n?) | Symb fact(Ga.) O(P3)

;
AF

Symb fact(G () O(n?)
Ay

Schur set-up (numeric)

Num fact(Ag)) o(n?)

. - (0
Compute ®; O(n?) Numerical factorization(A;,’)

BDDC set-up (symbolic)

v

BDDC set-up (numeric)

Compute ®;
AD = ot AN,
Gather Ag)

Ac := assemble(Al)
LC: local communication (nearest neighbours) Nﬁmerical factor(izacti)on(AC)
GC: global communication (gather or scatter)
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z
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Symb fact(G () O(n?)
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Num fact(Ag)) o(n?)
Compute ®; O(n?)
AD = ot AV,
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v
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AD = ot AV,
Gather Ag)

Ac = assemble(A(C"))
Numerical factorization(Ac)
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs | Schur set-up (symbolic)
Construct Ga
z
Symb fact(G y)  O(n?) | Symb fact(Ga.) O(P3)

AF

Symb fact(G () O(n?)
Ay

Schur set-up (numeric)

Num fact(Ag)) o(n?)
Compute ®; O(n?)

AD = ot g,
() .
Gather A¢ BDDC set-up (symbolic)

Numerical factorization(Agj))

v

BDDC set-up (numeric)

()
Gather A

Ac := assemble(AY)
LC: local communication (nearest neighbours) Nﬁmerical factor(izacti)on(AC)
GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |
Identify local coarse DoFs | Schur set-up (symbolic)
Construct GAC

£l
Symb fact(G,())  O(n?) | Symb fact(Gac) O(P3)
F

Symb fact(G () O(n?)
Ay

Schur set-up (numeric)

Num fact(Ag)) o(n?)
Compute ®; O(n?)

AD = ot g,
0] A
Gather A BDDC set-up (symbolic)

Ac = assble(Ag))

Numerical factorization(Agj))

v

BDDC set-up (numeric)

Ac := assemble(AV)
LC: local communication (nearest neighbours) Nﬁmerical factofizacti)on(AC)
GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |
Identify local coarse DoFs | Schur set-up (symbolic)
Construct GAC

£l
Symb fact(G,())  O(n?) | Symb fact(Gac) O(P3)
F

Symb fact(G () O(n?)
Ay

Schur set-up (numeric)

Num fact(Ag)) o(n?)
Compute ®; O(n?)
AD = ot g,
0] A
Gather A i BDDC set-up (symbolic)
Ac = assble(A(C'))
Num fact(Ac)  O(P?)

Numerical factorization(Agj))

v

BDDC set-up (numeric)

LC: local communication (nearest neighbours) Numerical factorization(Ac)
GC: global communication (gather or scatter) y
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs | Schur set-up (symbolic)
Construct Ga
z
Symb fact(G y)  O(n?) | Symb fact(Ga.) O(P3)

;
AF

Symb fact(G () O(n?)
Ay

Schur set-up (numeric)

Num fact(Ag)) o(n?)
Compute ®; O(n?)
AD = ot g,

Numerical factorization(AS;.))

Gather A(C') BDDC set-up (symbolic)

Num fact(Ag;.)) O(n?) | Ac := assble(A?)
Num fact(Ac) O(P?)

v

BDDC set-up (numeric)

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter) y
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs
Construct Ga PCG
2 4
Symb fact(G,))  O(n?) | Symb fact(Gac) O(P3) g = br — ArA; b
F 4 n=g— Sxr
Symb fact(GAE;-)) o(n?) ;?) = IZBDDC ro
Num fact(AY)  O(n?) for j=0,..., till CONV do
4 =
Compute ®; o(n?) Si+1 = SPj
() ptaAD g, _
Al = 9 AT - zj41 = Mgppcliv
Gather A/ s
Num fact(Ag;)) O(n?) | Ac := assble(A?) end for J
g :=br — ArA; 'b O(n?) Num fact(Ac) O(P?) —
BDDC application
ri = I,-tr
Compute s,(_.')
rg) = ¢fr(i)
Gather r(ci)
rc = assemble(r(ci))
Solve ACZC =Irc .
Scatter z¢ into Z(c/)
sg) = d>,-z(ci)
0 = (D) 4 0
LC: local communication (nearest neighbours) “ (s + sc) D

GC: global communication (gather or scatter)
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[ Fine-grid tasks

[

Coarse-grid task

Identify local coarse

DoFs

Construct GAC

Symb fact(G,(») O(n3) | Symb fact(Ga.) O(P%)
4
Symb fact(GAE;-)) o(n?)
Num fact(AE:i)) O(ni)
Compute ®; (’)(n?)
AD = ot g,
Gather A(C')
Num fact(Ag;)) O(ni) Ac := assble(AV)
g = br — ArA; b O(n?) Num fact(Ac) O(P?)
ro =g — Sxr O(n?)

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)
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L m=L .
Zjy1 := Mgppolist

end for

v

BDDC application

r = I,-tr
Compute s,(_.')
rg) = ¢fr(i)

Gather r(ci)
rc = assemble(r(ci))
Solve ACZC =Irc .

Scatter z¢ into Z(c/)

sg) = d>,-z(ci)
20 = I,-(s,(,') + sg))




[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs
Construct Ga PCG
2 4
Symb fact(GAE:,-)) O(n3)| Symb fact(Ga.) O(P3)
4 _
Symb fact(GA(,-)) o(n?) Zp 1= MB]éDcfo
1 Po ‘= 20
Num fact(AY)  O(n?) for j=0,..., till CONV do
4 i1 = Sp;
Compute ®; o(n?) S+ = SPj
() ptaAD g, _
Al = 9 AT - zj41 = Mgppcliv
Gather A/ s
Num fact(Ag;)) O(ni) Ac := assble(AV) end for J
g = br — ArA; b O(n?) Num fact(Ac) O(P?)
4 - a
=g — Sx o(n3) BDDC application
A = Ifr ) = Ifr
Compute s,(_.i)
rg) = ¢fr(i)
(7
Gather r¢ .
rc = assemble(r(c'))
Solve ACZC =Irc .
Scatter z¢ into Z(c/)
sg) = d>,-z(ci)
0 — (D) 4 0
LC: local communication (nearest neighbours) il (5" + sc) y.

GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs
Construct Ga PCG
2 4
Symb fact(GAE:,-)) O(n3)| Symb fact(Ga.) O(P3)
4
4 — & i
Symb fact(GAE;-)) o(n?) ;?) = ZBDDCrO
Num fact(AY)  O(n?) for j=0,..., till CONV do
4 i1 = Sp;
Compute ®; o(n?) S+ = SPj
() .— pt AN . _
Al = 9 AT - zj41 = Mgppcliv
Gather A/ e
Num fact(Ag;)) O(ni) Ac := assble(AV) end for J
g = br — ArA; b O(n?) Num fact(Ac) O(P?)
4 - a
r =g — Sxr o(n3) BDDC application
.= I,-tr
r(cl) = o0 Compute s,(_.i)
r(Cw = ¢fr(")
Gather r(ci)
rc = assemble(r(ci))
Solve ACZC =Irc .
Scatter z¢ into Z(c/)
sg) = d>,-z(ci)
0 = (D) 4 0
LC: local communication (nearest neighbours) “ (s + sc) y.

GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs

Construct Ga PCG
2 4
Symb fact(G () O(n3)| Symb fact(Ga.) O(P3)
F
4 _
Symb fact(GA(,-)) o(n?) Zp 1= MB]éDcfo
1 Po ‘= 20
Num fact(AY)  O(n?) for j=0,..., till CONV do
4 o
Compute ®; o(n?) Sit1 = S
oo : . B
Al = oAV o; ] z11 = Mppohin
Gather A(C') oo
end for

v

Num fact(Ax)) O(ni) Ac := assble(A i))

(
g = br — ArA; b O(n?) Num fact(Ac) O(P?)
O(n%) BDDC application

=g — Sxr ;
.= I,-tr
ré') = ¢F’(/) ] Compute s,(_.i)
Gather r(c')
Gather rg)
= assemble(r(ci))
Solve ACZC =Irc .
Scatter z¢ into Z(c/)
sg) = d>,-z(c')
() .= f(s8) 4 s
LC: local communication (nearest neighbours) i (5" + ) y

GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs
Construct Ga PCG
2 4
Symb fact(GAE:,-)) O(n3)| Symb fact(Ga.) O(P3)
4 _
Symb fact(G ) O(n?) ) 5= MBéDCrO
Al Po = 2o
Num fact(AY)  O(n?) for j=0,..., till CONV do
4 o
Compute ®; o(n?) S+ = SPj
() ptaAD g, _
Al = 9 AT - zj41 = Mgppcliv
Gather A/ s
Num fact(Ag;)) O(ni) Ac := assble(AV) end for J
g = br — ArA; b O(n?) Num fact(Ac) O(P?)
4 - a
r =g — Sxr o(n3) BDDC application
ri = Itr
ré') = ¢F’(/) ] Compute s,(_.i)
Gather rg)
= assble(rg))
rc = assemble(rg))
Solve ACZC =Irc .
Scatter z¢ into Z(c/)
sg) = d>,-z(ci)
0 = (D) 4 0
LC: local communication (nearest neighbours) “ (s + sc) y.

GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs

Construct Ga PCG
2 4
Symb fact(G () O(n3)| Symb fact(Ga.) O(P3)
F
4 _
Symb fact(GA(,-)) o(n?) Zp 1= MB]éDcfo
1 Po ‘= 20
Num fact(AY)  O(n?) for j=0,..., till CONV do
4 o
Compute ®; o(n?) Sit1 = S
oo : . B
Al = oAV o; ] z11 = Mppohin
Gather A(C') oo
end for

Num fact(Ax)) O(n?) | Ac := assble(A i)) y

(
g = br — ArA; b O(n?) Num fact(Ac) O(P?)
O(n%) BDDC application

ni=g— St ;
/= Itr
A = ot ) _ Compute s¢
Gather rg)
rc = assble(rg))
Solve Aczc = rc O(P%)
Solve Aczc = rc
Scatter z¢ into Z(c/)
O e p(sD) 4 50
LC: local communication (nearest neighbours) i G e o

GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs
Construct Ga PCG
2 4
Symb fact(G () O(n3)| Symb fact(Ga.) O(P3)
F
4 _
Symb fact(GA(,-)) o(n?) Zp 1= MB]éDcfo
1 Po ‘= 20
Num fact(AY)  O(n?) for j=0,..., till CONV do
4 s,
Compute ®; o(n?) S+ = SPj
() — ptAD - _
Al = 9 AT - zj41 = Mgppcliv
Gather A/ s
Num fact(Ag;)) O(ni) Ac := assble(AV) end for J
g = br — ArA; b O(n?) Num fact(Ac) O(P?)
o =g — S O(n.%) BDDC application
ri = Itr
ré') = ofrl) ] Compute s,(:'.)
Gather rg)
rc = assble(rg))
. 4
Compute s O(n?) | Solve Acze = re O(P3)
Scatter z¢ into zg)
sg) = d>,-z(ci)
O — (s 4 0
LC: local communication (nearest neighbours) “ (s + sc) y.

GC: global communication (gather or scatter)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC



[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs
Construct Ga PCG
2 4
Symb fact(GAE:,-)) O(n3)| Symb fact(Ga.) O(P3)
4 _
Symb fact(G ) O(n?) ) 5= MBéDCrO
A!/ Po := 29
Num fact(AY)  O(n?) for j=0,..., till CONV do
4 s,
Compute ®; o(n?) S+ = SPj
() .— pt AN . _
Al = 9 AT - zj41 = Mgppcliv
Gather A/ s
Num fact(Ag;)) O(ni) Ac := assble(AV) end for J
g = br — ArA; b O(n?) Num fact(Ac) O(P?)
o =g — S O(n.%) BDDC application
ri = Itr
rg) = <I>Fr(")
Gather rg)
rc = assble(rg))
. 4
Compute s,(:') O(n?) | Solve Acz¢c = rc O(P%)
Scatter z¢ into z(c/) )
Scatter z¢ into Z(C/)
sg) = d>,-z(ci)
O — (s 4 0
LC: local communication (nearest neighbours) il (s + sc) y.

GC: global communication (gather or scatter)
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[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs
Construct Ga PCG
2 4
Symb fact(GAE:,-)) O(n3)| Symb fact(Ga.) O(P3)
4
4 — & i
Symb fact(GAE;-)) o(n?) ;?) = Q/IBDDCrO
| =20
Num fact(AY)  O(n?) for j=0,..., till CONV do
4 s,
Compute ®; o(n?) S+ = SPj
() .— pt AN . _
Ac = 9 AV, ] Zjt1 = MBrl)Dc’j+1
Gather A(C') oo
Num fact(Ag;)) O(ni) Ac := assble(AV) end for J
g = br — ArA; b O(n?) Num fact(Ac) O(P?)
4 - a
r =g — Sxr o(n3) BDDC application
ri = Itr
rg) = <I>Fr(")
Gather rg)
rc = assble(rg))
. 4
Compute s,(:') O(n?) | Solve Acz¢c = rc O(P%)
Scatter z¢ into zg)
) .— (0]
so = Pize :
s(cl) = ¢;Zg)
() — 1(s®) 1 )
LC: local communication (nearest neighbours) il (s +sc) y.

GC: global communication (gather or scatter)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC



[ Fine-grid tasks [ Coarse-grid task |

Identify local coarse DoFs
Construct Ga PCG
2 4
Symb fact(GAE:,-)) O(n3)| Symb fact(Ga.) O(P3)
4 _
Symb fact(GA(,-)) o(n?) Zp 1= MB]éDcfo
" Po = 2o
Num fact(AY)  O(n?) for j=0,..., till CONV do
4 s,
Compute ®; o(n?) S+ = SPj
() — ptAD - _
Al = 9 AT - zj41 = Mgppcliv
Gather A/ s
Num fact(Ag;)) O(ni) Ac := assble(AV) end for J
g = br — ArA; b O(n?) Num fact(Ac) O(P?)
4 - a
r =g — Sxr o(n3) BDDC application
ri = Itr
rg) = <I>Fr(")
Gather rg)
rc = assble(rg))
. 4
Compute s,(:') O(n?) | Solve Acz¢c = rc O(P%)
Scatter z¢ into zg)
s i= izl
T ) el
20 = I,-(s;:’) + s(c'))

LC: local communication (nearest neighbours) J
GC: global communication (gather or scatter)
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© Scalability analysis (overlapped)

S. Bal
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FEMPAR (in-house developed HPC software, free software GNU-GPL):

Finite Element Multiphysics PARallel software

@ Massively parallel sw for the FE simulation of Multiphysics problems governed
by PDEs

@ Scalable preconditioning of fully coupled and implicit system via block
preconditioning techniques (physics-based preconditioning)
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FEMPAR (in-house developed HPC software, free software GNU-GPL):

Finite Element Multiphysics PARallel software

@ Massively parallel sw for the FE simulation of Multiphysics problems governed
by PDEs

@ Scalable preconditioning of fully coupled and implicit system via block
preconditioning techniques (physics-based preconditioning)

@ Scalable preconditioning for one-physics (elliptic) PDEs relies on BDDC, BNN
— hybrid MPI/OpenMP implementation

@ Relies on highly-efficient vendor implementations of the dense/sparse BLAS
(Intel MKL, IBM ESSL, etc.)

o Provides interfaces to external multi-threaded sparse direct solvers (PARDISO,
HSL_MA87, etc.) and serial AMG preconditioners (HSL_MI20)
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Weak scalability for 3D Poisson

Target machine: HELIOS@IFERC-CSC
4,410 bullx B510 compute blades (2 Intel Xeon E5-2680 8-core CPUs; 64GB)

o Target problem: —Au = f on Q = [0,2] x [0,1] x [0,1]

@ Uniform global mesh of hexahedral Q1 finite elements

Uniform partition into rectangular grids of 4m x 2m x 2m cubic local meshes
m=2%3%...,12% blades (8,432, ...,27648 cores) devoted to fine-grid duties
Entire 16-core blade devoted to coarse-grid duties (multi-threaded PARDISO)

Direct solution (PARDISO) of Dirichlet, Neumann, and coarse-grid corrections

Gradually larger fixed local problem sizes % = 30%,40° FEs/core
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BDDC(corners-+edges) :: Poisson problem
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Weak scaling for BDDC(corners-+edges) :: Poisson problem

Total Wall clock time (secs.)

Weak scaling for BDDC(ce)

14 T
12
10
no overlapping MW
8 Coarse-grid on1core(s) O
Coarse-grid on 2 core(s) [
Coarse-grid on 4 core(s) 4 5
6 r‘nnrcp_grid n8 r‘nrp( ) /Q
Coarse-grid on 16 core(.;//
]
4 - = /Ex
2
H/h2=303 (27K) FEs/core ——
0 H/h®=40 (64K) FEs/core
128 2K 3.5K 5.5K 8K 11.7K 16K 21.3K 27.6K
#cores
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© Inexact BDDC
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Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

© The method allows for a (mathematically supported) extremely aggressive
coarsening
@ The coarse matrix has a similar sparsity as the original matrix

© Coarse and local components can be computed in a parallel (additive) way

@ Local (constrained) Neumann and coarse solvers can be solved in an inexact
way

@ A multilevel extension of the method is possible (for extreme core counts)

o (1)-(2)-(3) always exploited in our overlapped BDDC implementations

@ Let us see how to exploit (4), in order to boost scalability further and reduce
memory requirements (overlapped/inexact implementation)
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Inexact BDDC

@ The exact (using direct solvers) BDDC preconditioner leads to the most
effective preconditioner
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Inexact BDDC

@ The exact (using direct solvers) BDDC preconditioner leads to the most
effective preconditioner

@ However, also to the most computationally and memory demanding one
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Inexact BDDC

@ The exact (using direct solvers) BDDC preconditioner leads to the most
effective preconditioner

@ However, also to the most computationally and memory demanding one

@ In order to reduce these demands, one may solve only approximately some (or
even all) of the internal problems using, e.g., AMG-based solvers

@ Numerical analysis says that inexact BDDC preconditioners are also
algoritmically scalable [Dohrmann, 2007]
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Inexact BDDC

@ The exact (using direct solvers) BDDC preconditioner leads to the most
effective preconditioner

@ However, also to the most computationally and memory demanding one

@ In order to reduce these demands, one may solve only approximately some (or
even all) of the internal problems using, e.g., AMG-based solvers

@ Numerical analysis says that inexact BDDC preconditioners are also
algoritmically scalable [Dohrmann, 2007]

o Benefit has to be viewed in light of future parallel architectures: the most
scalable architectures (e.g., IBM BG) will have more limited memory per core

o Further, the coarse solver time increases as P instead of P2, much less
degradation for high core counts
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Inexact BDDC

4 different solvers in BDDC:

a1
@ Dirichlet problem: approximate (Ag,) in& = { 0 —A, Ar }

0 Ir

S. Badia A Highly Scalable Asynchronous Implementation of BDDC



Inexact BDDC

4 different solvers in BDDC:

() 0 —A'Ar
@ Dirichlet problem: approximate (A;’)™!in & = 0 f
.

@ Local Neumann problem: approximate (A(Ci))_l, where A(Ci) is the
(sub-assembled) local matrix A after eliminating the coarse corner

rows/columns
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Inexact BDDC

4 different solvers in BDDC:
0 —A'Ar }

@ Dirichlet problem: approximate (Ag, Y lin €= { 0 f
.

@ Local Neumann problem: approximate (A(Ci))_l, where A(Ci) is the
(sub-assembled) local matrix A after eliminating the coarse corner
rows/columns

@ Coarse problem: approximate (Ac)™*
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Inexact BDDC

4 different solvers in BDDC:
0 —A'Ar }

@ Dirichlet problem: approximate (Ag, Y lin €= { 0 f
.

@ Local Neumann problem: approximate (A(Ci))_l, where A(Ci) is the
(sub-assembled) local matrix A after eliminating the coarse corner
rows/columns

@ Coarse problem: approximate (Ac)™*

@ Computation of ®: approximate (A(c"))*l
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Inexact BDDC

4 different solvers in BDDC:
0 7A/71A1r :|

@ Dirichlet problem: approximate (Ag, Y lin €= { 0 f
.

@ Local Neumann problem: approximate (A(Ci))_l, where A(Ci) is the
(sub-assembled) local matrix A after eliminating the coarse corner
rows/columns

@ Coarse problem: approximate (Ac)™*
@ Computation of ®: approximate (A(c"))fl
From numerical analysis [Dohrmann, 2007]:
@ (2)-(3) can be replaced by optimal preconditioners, e.g., AMG-cycle

@ (1)-(4) more delicate, additional null space preservation required (not true in
general)

Key question to be experimentally assessed

Sensivity of the algorithm to every inexact solver?
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© Scalability analysis (overlapped /inexact)
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The effect of approximately solving the internal problems

Coarse-grid problem

@ The problem that can harm scalability (couples ALL subdomain)

o Fortunately, it can be highly perturbed without impact in the scalability
(AMG-cycle suffices)

Weak scaling for BDDC(ce) Weak scaling for BDDC(cef)

18 T 20

16 |4 18
2 14 o 16
& s
g g u
5 12 2
8 g
g 1 4
I g 10
O g o
g $ s
5 5
5 6 8
2 H]
t e °
2 4 3 4

HIn3=303 (27K) FEs/core —— HIh2=307 (27K) FEs/core ——
2 HIh'=40% (64K) FEs/corg > HIh?=40° (64K) FE:
[ Inexact coarse & inexact coarse S
5 10! — Exactcoarse [ o Exactcoarse [
1K 55K 117K 16K 213K 27.6K 1K 55K 21.3K 27.6K
#eores
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The effect of approximately solving the internal problems

Neumann Problem

Neumann problem can be highly perturbed without impact in the scalability
(AMG-cycle suffices)

Weak scaling for BDDC(ce) Weak scaling for BDDC(cef)
20
25
2 20 o 15
2 2
s S
I3 B
2 2
o 15 I}
® g 10
5 )
2 10 B
5 5
2 2 g
5
HII g:aog (27K) FEslcore —— Hi g:aog (27K) FEs/core ——
H/"=40 (64K) FEs/corg inexact Neumann o Hih*=40° (64K) FEs/corg Inexact Neumann ¢
o [ Exact Neumann @ o [ Exact Neumann @
128 1K 2K 35K 55K 8K 128 1K 2K 35K 55K 8K
#oores #cores
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The effect of approximately solving the internal problems

Dirichlet problem

o AMG-cycle wo/ null space preservation (deflation) not algorithmically scalable

@ But with loose tolerance enough to make it scalable

Weak scaling for BDDC(ce) Weak scaling for BDDC(cef)
45 == 35 =
HIn3=303 (27K) FES/core HIh3=303 (27K) FEs/core
40 H/h*=40" (64K) FEs/core H/h"=40" (64K) FES/CO!?
e 30 )
10
2 3 2
y I
g % - R e 9
Q Q
S 25 S 20
[ 13 Inexact Dirichlet ¢
3 g Exact Dirichlet &
g 20 g2 15
5 ]
f Bl e s 4 PR e e — s 4
g = £ 10
2 1 2
s 3
Inexact Dirichlet »
° Exact Dirichlet O o
128 432 1024 2000 3452 128 432 1024 2000 3452
#oores #eores
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The effect of approximately solving the internal problems

Dirichlet problem

o AMG-cycle w/ null space preservation (deflation) not algorithmically scalable

@ But with loose tolerance enough to make it scalable

Weak scaling for BDDC(ce) Weak scaling for BDDC(cef)
20
16
18
2 16 n &
2 H
2 2w
E M & 0§ L
b1 = |- S R R S———
Q Q
@ 12 g 10
- 13 Inexact Dirichlet ¢
a 2 g Exact Dirichlet..... 0.
4 g
8 %
6
H H
Z 4 g ¢
H/h§=30§ (27K) FEs/core H ni:zog (27K) FEs/core
2 h”=407 (64K) FEs/core. 2 = §
M nexact Dirichlet s M
a 102 Exact Dirichlet o i co==0
128 432 1024 2000 3452 128 432 1024 2000 3452
#oores #eores
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The effect of approximately solving the internal problems

Coarse-grid basis vectors

o AMG-cycle wo/ null space preservation not algorithmically scalable

@ But with loose tolerance enough to make it scalable

Weak scaling for BDDC(ce) Weak scaling for BDDC(cef)
60 == 30 =
HIN2=30° (27K) FES/core —— HIn3=303 (27K) FEs/core ——
HIK*=40° (64K) FEs/corg HIh*=40® (64K) FEs/core

50 2 25 P
o o
2 2
S g
8 8
g 40 g 20
a Q
o ] R
o] =
LT s S e e e 3 15
o S o
|4 <
5 s
22 gz 10
B ¥ E
5 5
2 - z

10 5

Inexact coarse-grid basis o Inexact coarse-grid basis o
o Exact coarse-grid basis @ o Exact coarse-grid basis &
128 1K 2 35K 55K 8K 128 1K 2K 35K 55K 8K
#oores #eores
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A set of strategically selected inexact variants

Target machine: JUQUEEN®@JSC
28,672 compute nodes (16-core, 64-way threaded IBM PPC A2; 16 GB)

Target problem: —Au = f on Q =[0,2] x [0,1] x [0,1]

Uniform global mesh of hexahedral Q1 finite elements

Uniform partition into rectangular grids of 4m x 2m X 2m cubic local meshes
m=2%3%...,16% nodes (8,432, ...,65535 cores) devoted to fine-grid duties

Entire node devoted to coarse-grid duties (restricted to only 1 core/GB)

@ Gradually larger fixed local problem sizes % = 60° FEs/core
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Inexact BDDC(corners—+edges) :: Poisson problem
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Weak scaling for inexact BDDC(corners+edges) :: Poisson problem

H
h

Weak scaling for approximate BDDC(ce)

= 60 (216K FEs/core)

Weak scaling for approximate BDDC(ce)

35 180

20 160 i e ]
% et e _ 140 e
s B §
2 & 120
g 20 g 100
g 15 é 80
é o § 60
E T a0

S Hin*=60° (216K) FEsicors 20 Hin?=60%.(216K) g

® T — var.1 & ® T — Var.1 &

1K 55K 11.7K16K 21.3K 27.6K 35.1K 43.9K 54.0K 65.5K 1K 55K 11.7K16K 21.3K 27.6K 35.1K 43.9K 54.0K 65.5K
#cores #cores
# of outer solver iterations Total time (secs.)
QOuter solver (] Dirichlet Neumann Coarse

Var. 1T FGMRES PCG-AMG(1071) PCG-AMG(10~%) AMG(1) AMG(1)
Var. 1L FGMRES PCG-AMG(1071') PCG-AMG(10~?) AMG(1) AMG(1)

Memory usage:
@ Fine proc’s: 538.6MB (< 1GB)

o Coarse proc’s (65.5K cores): 392.7MB (< 1GB)
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© Conclusions and future work
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Conclusions and future work

Conclusions:
o Highly scalable asynchronous implementation of BDDC
@ Overlapping of fine-grid and coarse-grid computations
@ OpenMP parallelization for coarse-grid problem in the exact case

o Exploitation of AMG-based solvers in the inexact case
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Conclusions and future work

Conclusions:
o Highly scalable asynchronous implementation of BDDC
Overlapping of fine-grid and coarse-grid computations
OpenMP parallelization for coarse-grid problem in the exact case

°
°
o Exploitation of AMG-based solvers in the inexact case
o Weakly scalable for many ranges of interest

°

Memory limitations clearly improved

High scalability in a memory constrained environment (JUQUEEN)
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Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

© The method allows for a (mathematically supported) extremely aggressive
coarsening
@ The coarse matrix has a similar sparsity as the original matrix

© Coarse and local components can be computed in a parallel (additive) way

@ Local (constrained) Neumann and coarse solvers can be solved in an inexact
way

@ A multilevel extension of the method is possible (for extreme core counts)

o (1)-(2)-(3)-(4) exploited in our inexact/overlapped BDDC implementations

o Next step: Exploit (5), for to boost scalability even further
(overlapped/inexact/multilevel implementation)
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