
A highly scalable asynchronous implementation of Balancing
Domain Decomposition by Constraints

Santiago Badia, Alberto F. Mart́ın and Javier Pŕıncipe

Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE)
Castelldefels, Spain

Universitat Politècnica de Catalunya
Barcelona, Spain

Sparse Days Meeting 2014
CERFACS, Toulouse, France

5-6 June, 2014

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Outline

1 BDDC preconditioner

2 Overlapped BDDC implementation

3 Scalability analysis (overlapped)

4 Inexact BDDC

5 Scalability analysis (overlapped/inexact)

6 Conclusions and future work

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Outline

1 BDDC preconditioner

2 Overlapped BDDC implementation

3 Scalability analysis (overlapped)

4 Inexact BDDC

5 Scalability analysis (overlapped/inexact)

6 Conclusions and future work

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Problem statement

Given a bounded domain Ω and a FE partition T , we build a
conforming (nodal) finite element (FE) space, i.e. Vh ⊂ H1

0 (Ω).

Variational problem: find u ∈ Vh such that

a(u, v) = (f , v), for any v ∈ Vh,

assuming a(·, ·) symmetric, coercive (e.g. Laplacian or linear elasticity)

Algebraic problem: Equivalent to find x ∈ Rn such that

Ax = b,

where A is a large and sparse symmetric positive definite matrix

Motivation:

Efficient exploitation of distributed-memory
machines for large scale FE problems ⇒
Domain decomposition framework

: interior DoFs (I); : interface dofs (Γ)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Problem statement

Given a bounded domain Ω and a FE partition T , we build a
conforming (nodal) finite element (FE) space, i.e. Vh ⊂ H1

0 (Ω).

Variational problem: find u ∈ Vh such that

a(u, v) = (f , v), for any v ∈ Vh,

assuming a(·, ·) symmetric, coercive (e.g. Laplacian or linear elasticity)

Algebraic problem: Equivalent to find x ∈ Rn such that

Ax = b,

where A is a large and sparse symmetric positive definite matrix

Motivation:

Efficient exploitation of distributed-memory
machines for large scale FE problems ⇒
Domain decomposition framework

: interior DoFs (I); : interface dofs (Γ)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Problem statement

Given a bounded domain Ω and a FE partition T , we build a
conforming (nodal) finite element (FE) space, i.e. Vh ⊂ H1

0 (Ω).

Variational problem: find u ∈ Vh such that

a(u, v) = (f , v), for any v ∈ Vh,

assuming a(·, ·) symmetric, coercive (e.g. Laplacian or linear elasticity)

Algebraic problem: Equivalent to find x ∈ Rn such that

Ax = b,

where A is a large and sparse symmetric positive definite matrix

Motivation:

Efficient exploitation of distributed-memory
machines for large scale FE problems ⇒
Domain decomposition framework

: interior DoFs (I); : interface dofs (Γ)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Interface (Schur complement) problem

The domain partition induces a block structure

Ax =

[
AII AIΓ

AΓI AΓΓ

] [
xI
xΓ

]
=

[
bI

bΓ

]
= b,

where
AII = diag

(
A

(1)
II ,A

(2)
II , . . . ,A

(P)
II

)
After the interior correction [A−1

II bI , 0], a reduced system for xΓ is obtained

SxΓ = g ,

where S = AΓΓ − AΓIA
−1
II AIΓ is the interface Schur complement

Approach: Consider a Krylov subspace solver for SxΓ = g
→ Preconditioning plays a major role for optimality and scalability

Alternatively, the preconditioner can be extended to Ax = f (equivalent as
soon as A−1

II exactly)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Interface (Schur complement) problem

The domain partition induces a block structure

Ax =

[
AII AIΓ

AΓI AΓΓ

] [
xI
xΓ

]
=

[
bI

bΓ

]
= b,

where
AII = diag

(
A

(1)
II ,A

(2)
II , . . . ,A

(P)
II

)
After the interior correction [A−1

II bI , 0], a reduced system for xΓ is obtained

SxΓ = g ,

where S = AΓΓ − AΓIA
−1
II AIΓ is the interface Schur complement

Approach: Consider a Krylov subspace solver for SxΓ = g
→ Preconditioning plays a major role for optimality and scalability

Alternatively, the preconditioner can be extended to Ax = f (equivalent as
soon as A−1

II exactly)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Interface (Schur complement) problem

The domain partition induces a block structure

Ax =

[
AII AIΓ

AΓI AΓΓ

] [
xI
xΓ

]
=

[
bI

bΓ

]
= b,

where
AII = diag

(
A

(1)
II ,A

(2)
II , . . . ,A

(P)
II

)
After the interior correction [A−1

II bI , 0], a reduced system for xΓ is obtained

SxΓ = g ,

where S = AΓΓ − AΓIA
−1
II AIΓ is the interface Schur complement

Approach: Consider a Krylov subspace solver for SxΓ = g
→ Preconditioning plays a major role for optimality and scalability

Alternatively, the preconditioner can be extended to Ax = f (equivalent as
soon as A−1

II exactly)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

[Dohrmann, Mandel, Cros, Fragakis,

Papadrakakis, Le Tallec, Vidrascu, . . .]

Idea: Solve global problem w/ reduced continuity

Replace Vh by Ṽh (reduced continuity)

Define the injection I : Ṽh −→ Vh

weight, comm and add

Find x̃h ∈ Ṽh such that:

a(x̃h, ṽh) = 〈I trh, ṽh〉, ∀ṽh ∈ Ṽh

and obtain zh = E I x̃h, where zh = M−1
BDDC rh

Last correction: E is the harmonic extension
of the boundary values, which implies local
Dirichlet solvers

Vh

6
I I t

?

Ṽh

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

[Dohrmann, Mandel, Cros, Fragakis,

Papadrakakis, Le Tallec, Vidrascu, . . .]

Idea: Solve global problem w/ reduced continuity

Replace Vh by Ṽh (reduced continuity)

Define the injection I : Ṽh −→ Vh

weight, comm and add

Find x̃h ∈ Ṽh such that:

a(x̃h, ṽh) = 〈I trh, ṽh〉, ∀ṽh ∈ Ṽh

and obtain zh = E I x̃h, where zh = M−1
BDDC rh

Last correction: E is the harmonic extension
of the boundary values, which implies local
Dirichlet solvers

Vh

6
I I t

?

Ṽh

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

[Dohrmann, Mandel, Cros, Fragakis,

Papadrakakis, Le Tallec, Vidrascu, . . .]

Idea: Solve global problem w/ reduced continuity

Replace Vh by Ṽh (reduced continuity)

Define the injection I : Ṽh −→ Vh

weight, comm and add

Find x̃h ∈ Ṽh such that:

a(x̃h, ṽh) = 〈I trh, ṽh〉, ∀ṽh ∈ Ṽh

and obtain zh = E I x̃h, where zh = M−1
BDDC rh

Last correction: E is the harmonic extension
of the boundary values, which implies local
Dirichlet solvers

Vh

6
I I t

?

Ṽh

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

[Dohrmann, Mandel, Cros, Fragakis,

Papadrakakis, Le Tallec, Vidrascu, . . .]

Idea: Solve global problem w/ reduced continuity

Alternatively,

Find x̃ ∈ Rñ such that:

Ãx̃ = I tr

and obtain z = E I x̃ , where z = M−1
BDDC r

Ã is a sub-assembled global matrix (only
assembled the red corners in the figure)

E =

[
0 −A−1

II AIΓ

0 IΓ

]

Vh

6
I I t

?

Ṽh

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

Let Ṽh = [ṽ ṽ] and decompose Ṽh as

Ṽh = ṼF ⊕ ṼC , with

{
ṼF = [ṽ 0]

ṼC ⊥Ã ṼF

Now, problem split into fine-grid (x̃F) and coarse-grid (x̃C) correction

Fine-grid correction (x̃F)

Find x̃F ∈ Rñ such that

Ãx̃F = I tr

constrained to (x̃F) = 0

Equivalent to P independent problems

Find x̃
(i)
F ∈ Rñ(i)

such that

A(i)x̃
(i)
F = I ti r

constrained to (x̃
(i)
F) = 0

Ṽh

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

Let Ṽh = [ṽ ṽ] and decompose Ṽh as

Ṽh = ṼF ⊕ ṼC , with

{
ṼF = [ṽ 0]

ṼC ⊥Ã ṼF

Now, problem split into fine-grid (x̃F) and coarse-grid (x̃C) correction

Fine-grid correction (x̃F)

Find x̃F ∈ Rñ such that

Ãx̃F = I tr

constrained to (x̃F) = 0

Equivalent to P independent problems

Find x̃
(i)
F ∈ Rñ(i)

such that

A(i)x̃
(i)
F = I ti r

constrained to (x̃
(i)
F) = 0

Ṽh

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

Let Ṽh = [ṽ ṽ] and decompose Ṽh as

Ṽh = ṼF ⊕ ṼC , with

{
ṼF = [ṽ 0]

ṼC ⊥Ã ṼF

Now, problem split into fine-grid (x̃F) and coarse-grid (x̃C) correction

Fine-grid correction (x̃F)

Find x̃F ∈ Rñ such that

Ãx̃F = I tr

constrained to (x̃F) = 0

Equivalent to P independent problems

Find x̃
(i)
F ∈ Rñ(i)

such that

A(i)x̃
(i)
F = I ti r

constrained to (x̃
(i)
F) = 0

Ṽh

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

Let Ṽh = [ṽ ṽ] and decompose Ṽh as

Ṽh = ṼF ⊕ ṼC , with

{
ṼF = [ṽ 0]

ṼC ⊥Ã ṼF

Now, problem split into fine-grid (x̃F) and coarse-grid (x̃C) correction

Coarse-grid correction (x̃C)

Computation of ṼC = span{Φ1,Φ2, . . . ,ΦnC }

Find Φ ∈ Rñ×nC such that

ÃΦ̃ = 0

constrained to Φ = I

Equivalent to P independent problems

Find Φ(i) ∈ Rñ×n
(i)
C such that

A(i)Φ(i) = 0

constrained to Φ
(i)

= I

Ṽh

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

Circle domain partitioned into 9
subdomains

Φj (ṼC ’s basis vector)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

Let Ṽh = [ṽ ṽ] and decompose Ṽh as

Ṽh = ṼF ⊕ ṼC , with

{
ṼF = [ṽ 0]

ṼC ⊥Ã ṼF

Now, problem split into fine-grid (x̃F) and coarse-grid (x̃C) correction

Coarse-grid correction (x̃C)

Assembly and solution of coarse-grid problem

AC = assembly(A
(i)
C) = assembly(ΦtA(i)Φ), Solve ACαc = Φt I tr , x̃C = ΦαC

coarse-grid problem is

Global, i.e. couples all subdomains

But much smaller than S (size nC)

Potential loss of parallel efficiency with P

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Coarse dofs definition

Key aspect: Selection of coarse dofs, i.e. continuity among subdomains

Properties of BDDC preconditioner

Optimality (κ(M−1S) bounded by a constant for fixed N/P and ↑ P)

N/P = (H/h)d large in practice (e.g. O(104) for sparse direct solvers)

In general, BDDC(ce) and BDDC(cef) require much less iterations in 3D

But at the expense of a more costly coarse-grid problem

Coarse dofs vs. κ(M−1S): d = 2 d = 3

Continuity on corners
[
1 + d−1log2

(
N
P

)]
N
P

[
1 + d−1log2

(
N
P

)]
Continuity of mean value on edges too

[
1 + d−1log2

(
N
P

)] [
1 + d−1log2

(
N
P

)]
Continuity of mean value on faces too -

[
1 + d−1log2

(
N
P

)]

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Balancing domain decomposition by constraints (BDDC)

Circle domain partitioned into 9
subdomains

Φj (ṼC ’s basis vector)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

1 The method allows for a (mathematically supported) extremely aggressive
coarsening (105 − 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse and local components can be computed in a parallel (additive) way

4 Local (constrained) Neumann and coarse solvers can be solved in an inexact
way (AMG-cycle instead of sparse direct solvers)

5 A multilevel extension of the method is possible (for extreme core counts)

(1)-(2) always exploited in BDDC implementations

Let us see how to exploit (3), in order to reduce synchromization and boost
scalability (overlapped implementation)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

1 The method allows for a (mathematically supported) extremely aggressive
coarsening (105 − 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse and local components can be computed in a parallel (additive) way

4 Local (constrained) Neumann and coarse solvers can be solved in an inexact
way (AMG-cycle instead of sparse direct solvers)

5 A multilevel extension of the method is possible (for extreme core counts)

(1)-(2) always exploited in BDDC implementations

Let us see how to exploit (3), in order to reduce synchromization and boost
scalability (overlapped implementation)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

1 The method allows for a (mathematically supported) extremely aggressive
coarsening (105 − 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse and local components can be computed in a parallel (additive) way

4 Local (constrained) Neumann and coarse solvers can be solved in an inexact
way (AMG-cycle instead of sparse direct solvers)

5 A multilevel extension of the method is possible (for extreme core counts)

(1)-(2) always exploited in BDDC implementations

Let us see how to exploit (3), in order to reduce synchromization and boost
scalability (overlapped implementation)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

1 The method allows for a (mathematically supported) extremely aggressive
coarsening (105 − 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse and local components can be computed in a parallel (additive) way

4 Local (constrained) Neumann and coarse solvers can be solved in an inexact
way (AMG-cycle instead of sparse direct solvers)

5 A multilevel extension of the method is possible (for extreme core counts)

(1)-(2) always exploited in BDDC implementations

Let us see how to exploit (3), in order to reduce synchromization and boost
scalability (overlapped implementation)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

1 The method allows for a (mathematically supported) extremely aggressive
coarsening (105 − 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse and local components can be computed in a parallel (additive) way

4 Local (constrained) Neumann and coarse solvers can be solved in an inexact
way (AMG-cycle instead of sparse direct solvers)

5 A multilevel extension of the method is possible (for extreme core counts)

(1)-(2) always exploited in BDDC implementations

Let us see how to exploit (3), in order to reduce synchromization and boost
scalability (overlapped implementation)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

1 The method allows for a (mathematically supported) extremely aggressive
coarsening (105 − 106 size reduction between fine/coarse level)

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse and local components can be computed in a parallel (additive) way

4 Local (constrained) Neumann and coarse solvers can be solved in an inexact
way (AMG-cycle instead of sparse direct solvers)

5 A multilevel extension of the method is possible (for extreme core counts)

(1)-(2) always exploited in BDDC implementations

Let us see how to exploit (3), in order to reduce synchromization and boost
scalability (overlapped implementation)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Outline

1 BDDC preconditioner

2 Overlapped BDDC implementation

3 Scalability analysis (overlapped)

4 Inexact BDDC

5 Scalability analysis (overlapped/inexact)

6 Conclusions and future work

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Typical parallel implementation

Highly-scalable parallel implementation

(e.g., PETSc. FreeFEM, BDDCML)

Overlapping of fine-grid/coarse-grid duties

global communication

fine-grid
correction

coarse-grid
correction

c
o
re

 1

c
o
re

 2

c
o
re

 3

c
o
re

 4

c
o
re

 P

TC

TF

time

idling

main MPI communicator

c
o
re

 1

c
o
re

 2

c
o
re

 3

c
o
re

 4

c
o
re

 P
F

global communication

fine-grid MPI
communicator

c
o
re

 1

c
o
re

 2

c
o
re

 P
C

coarse-grid MPI
communicator

TF

TC

PC

OpenMP-based coarse-grid
solution

All MPI tasks have f-g duties and
one/several have also c-g duties

Computation of f-g and c-g correction is
serialized (but they are independent!)

TC grows as O(P2) and mem as O(P
4
3)

→ becomes a bottleneck with P
→ mem per core rapidly exceeded

Parallel coarse solvers / multilevel
extensions reduce this effect

MPI tasks have either f-g duties or c-g
duties (but not both)

Computation of f-g and c-g correction can
be overlapped in time (asynchronous)

Full node(s) resources (memory and cores)
can be devoted to coarse-grid duties

MPI-based or OpenMP-based (this work)
solutions are possible for c-g correction

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Typical parallel implementation Highly-scalable parallel implementation
(e.g., PETSc. FreeFEM, BDDCML) Overlapping of fine-grid/coarse-grid duties

global communication

fine-grid
correction

coarse-grid
correction

c
o
re

 1

c
o
re

 2

c
o
re

 3

c
o
re

 4

c
o
re

 P

TC

TF

time

idling

main MPI communicator

c
o
re

 1

c
o
re

 2

c
o
re

 3

c
o
re

 4

c
o
re

 P
F

global communication

fine-grid MPI
communicator

c
o
re

 1

c
o
re

 2

c
o
re

 P
C

coarse-grid MPI
communicator

TF

TC

PC

OpenMP-based coarse-grid
solution

All MPI tasks have f-g duties and
one/several have also c-g duties

Computation of f-g and c-g correction is
serialized (but they are independent!)

TC grows as O(P2) and mem as O(P
4
3)

→ becomes a bottleneck with P
→ mem per core rapidly exceeded

Parallel coarse solvers / multilevel
extensions reduce this effect

MPI tasks have either f-g duties or c-g
duties (but not both)

Computation of f-g and c-g correction can
be overlapped in time (asynchronous)

Full node(s) resources (memory and cores)
can be devoted to coarse-grid duties

MPI-based or OpenMP-based (this work)
solutions are possible for c-g correction

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Typical parallel implementation Highly-scalable parallel implementation
(e.g., PETSc) Overlapping of fine-grid/coarse-grid duties

global communication

fine-grid
correction

coarse-grid
correction

c
o
re

 1

c
o
re

 2

c
o
re

 3

c
o
re

 4

c
o
re

 P

TC

TF

time

idling

main MPI communicator

c
o
re

 1

c
o
re

 2

c
o
re

 3

c
o
re

 4

c
o
re

 P
F

global communication

fine-grid MPI
communicator

c
o
re

 1

c
o
re

 2

c
o
re

 P
C

coarse-grid MPI
communicator

TF

TC

PC

MPI-based coarse-grid
solution

All MPI tasks have f-g duties and
one/several have also c-g duties

Computation of f-g and c-g correction is
serialized (but they are independent!)

TC grows as O(P2) and mem as O(P
4
3)

→ becomes a bottleneck with P
→ mem per core rapidly exceeded

Parallel coarse solvers / multilevel
extensions reduce this effect

MPI tasks have either f-g duties or c-g
duties (but not both)

Computation of f-g and c-g correction can
be overlapped in time (asynchronous)

Full node(s) resources (memory and cores)
can be devoted to coarse-grid duties

MPI-based or OpenMP-based (this work)
solutions are possible for c-g correction

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

BDDC-PCG basic building blocks

Solve Ax = b via BDDC-PCG

Schur complement set-up (S)
Precond set-up (MBDDC)

g := bΓ − AΓIA
−1
II bI

call PCG(S,MBDDC,g ,xΓ)

xI := A−1
II (bI − AIΓxΓ)

PCG

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs

Construct GAC
GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i)

Symb fact(GAC
) O(P

4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i)

AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i)

AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i)

Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i)

Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

Schur set-up (symbolic)

Symbolic factorization(G
A

(i)
II

)

Schur set-up (numeric)

Numerical factorization(A
(i)
II)

BDDC set-up (symbolic)

Identify local coarse DoFs
Symbolic factorization(G

A
(i)
F

)

Construct GAC
Symbolic factorization (GAC

)

BDDC set-up (numeric)

Numerical factorization(A
(i)
F)

Compute Φi

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C

AC := assemble(A
(i)
C)

Numerical factorization(AC)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i)

Solve AC zC = rC O(P
4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Fine-grid tasks Coarse-grid task

Identify local coarse DoFs
Construct GAC

GC

Symb fact(G
A

(i)
F

) O(n
4
3
i) Symb fact(GAC

) O(P
4
3)

Symb fact(G
A

(i)
II

) O(n
4
3
i)

Num fact(A
(i)
F) O(n2

i)

Compute Φi O(n
4
3
i)

A
(i)
C := Φt

i A
(i)Φi

Gather A
(i)
C GC

Num fact(A
(i)
II) O(n2

i) AC := assble(A
(i)
C)

g := bΓ − AΓIA
−1
II bI O(n

4
3
i) Num fact(AC) O(P2)

r0 := g − SxΓ O(n
4
3
i)

r (i) := I ti r LC

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C GC

rC := assble(r
(i)
C)

Compute s
(i)
F O(n

4
3
i) Solve AC zC = rC O(P

4
3)

Scatter zC into z
(i)
C GC

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C) LC

LC: local communication (nearest neighbours)
GC: global communication (gather or scatter)

PCG

g := bΓ − AΓIA
−1
II bI

r0 := g − SxΓ

z0 := M−1
BDDCr0

p0 := z0

for j = 0, . . . , till CONV do
sj+1 = Spj
. . .
zj+1 := M−1

BDDCrj+1

. . .
end for

BDDC application

r (i) := I ti r

Compute s
(i)
F

r
(i)
C := Φt

i r
(i)

Gather r
(i)
C

rC := assemble(r
(i)
C)

Solve AC zC = rC
Scatter zC into z

(i)
C

s
(i)
C := Φi z

(i)
C

z(i) := Ii (s
(i)
F + s

(i)
C)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Outline

1 BDDC preconditioner

2 Overlapped BDDC implementation

3 Scalability analysis (overlapped)

4 Inexact BDDC

5 Scalability analysis (overlapped/inexact)

6 Conclusions and future work

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Software

FEMPAR (in-house developed HPC software, free software GNU-GPL):
Finite Element Multiphysics PARallel software

Massively parallel sw for the FE simulation of Multiphysics problems governed
by PDEs

Scalable preconditioning of fully coupled and implicit system via block
preconditioning techniques (physics-based preconditioning)

Scalable preconditioning for one-physics (elliptic) PDEs relies on BDDC, BNN
→ hybrid MPI/OpenMP implementation

Relies on highly-efficient vendor implementations of the dense/sparse BLAS
(Intel MKL, IBM ESSL, etc.)

Provides interfaces to external multi-threaded sparse direct solvers (PARDISO,
HSL MA87, etc.) and serial AMG preconditioners (HSL MI20)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Software

FEMPAR (in-house developed HPC software, free software GNU-GPL):
Finite Element Multiphysics PARallel software

Massively parallel sw for the FE simulation of Multiphysics problems governed
by PDEs

Scalable preconditioning of fully coupled and implicit system via block
preconditioning techniques (physics-based preconditioning)

Scalable preconditioning for one-physics (elliptic) PDEs relies on BDDC, BNN
→ hybrid MPI/OpenMP implementation

Relies on highly-efficient vendor implementations of the dense/sparse BLAS
(Intel MKL, IBM ESSL, etc.)

Provides interfaces to external multi-threaded sparse direct solvers (PARDISO,
HSL MA87, etc.) and serial AMG preconditioners (HSL MI20)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Weak scalability for 3D Poisson

Target machine: HELIOS@IFERC-CSC
4,410 bullx B510 compute blades (2 Intel Xeon E5-2680 8-core CPUs; 64GB)

Target problem: −∆u = f on Ω = [0, 2]× [0, 1]× [0, 1]

Uniform global mesh of hexahedral Q1 finite elements

Uniform partition into rectangular grids of 4m × 2m × 2m cubic local meshes

m = 23, 33 . . . , 123 blades (8, 432, . . . , 27648 cores) devoted to fine-grid duties

Entire 16-core blade devoted to coarse-grid duties (multi-threaded PARDISO)

Direct solution (PARDISO) of Dirichlet, Neumann, and coarse-grid corrections

Gradually larger fixed local problem sizes H
h

= 303, 403 FEs/core

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

BDDC(corners+edges) :: Poisson problem

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Weak scaling for BDDC(corners+edges) :: Poisson problem

 0

 2

 4

 6

 8

 10

 12

 14

128 2K 3.5K 5.5K 8K 11.7K 16K 21.3K 27.6K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

Weak scaling for BDDC(ce)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

 0

 2

 4

 6

 8

 10

 12

 14

128 2K 3.5K 5.5K 8K 11.7K 16K 21.3K 27.6K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

Weak scaling for BDDC(ce)

no overlapping
Coarse-grid on 1 core(s)
Coarse-grid on 2 core(s)
Coarse-grid on 4 core(s)
Coarse-grid on 8 core(s)

Coarse-grid on 16 core(s)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Outline

1 BDDC preconditioner

2 Overlapped BDDC implementation

3 Scalability analysis (overlapped)

4 Inexact BDDC

5 Scalability analysis (overlapped/inexact)

6 Conclusions and future work

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

1 The method allows for a (mathematically supported) extremely aggressive
coarsening

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse and local components can be computed in a parallel (additive) way

4 Local (constrained) Neumann and coarse solvers can be solved in an inexact
way

5 A multilevel extension of the method is possible (for extreme core counts)

(1)-(2)-(3) always exploited in our overlapped BDDC implementations

Let us see how to exploit (4), in order to boost scalability further and reduce
memory requirements (overlapped/inexact implementation)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Inexact BDDC

The exact (using direct solvers) BDDC preconditioner leads to the most
effective preconditioner

However, also to the most computationally and memory demanding one

In order to reduce these demands, one may solve only approximately some (or
even all) of the internal problems using, e.g., AMG-based solvers

Numerical analysis says that inexact BDDC preconditioners are also
algoritmically scalable [Dohrmann, 2007]

Benefit has to be viewed in light of future parallel architectures: the most
scalable architectures (e.g., IBM BG) will have more limited memory per core

Further, the coarse solver time increases as P instead of P2, much less
degradation for high core counts

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Inexact BDDC

The exact (using direct solvers) BDDC preconditioner leads to the most
effective preconditioner

However, also to the most computationally and memory demanding one

In order to reduce these demands, one may solve only approximately some (or
even all) of the internal problems using, e.g., AMG-based solvers

Numerical analysis says that inexact BDDC preconditioners are also
algoritmically scalable [Dohrmann, 2007]

Benefit has to be viewed in light of future parallel architectures: the most
scalable architectures (e.g., IBM BG) will have more limited memory per core

Further, the coarse solver time increases as P instead of P2, much less
degradation for high core counts

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Inexact BDDC

The exact (using direct solvers) BDDC preconditioner leads to the most
effective preconditioner

However, also to the most computationally and memory demanding one

In order to reduce these demands, one may solve only approximately some (or
even all) of the internal problems using, e.g., AMG-based solvers

Numerical analysis says that inexact BDDC preconditioners are also
algoritmically scalable [Dohrmann, 2007]

Benefit has to be viewed in light of future parallel architectures: the most
scalable architectures (e.g., IBM BG) will have more limited memory per core

Further, the coarse solver time increases as P instead of P2, much less
degradation for high core counts

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Inexact BDDC

The exact (using direct solvers) BDDC preconditioner leads to the most
effective preconditioner

However, also to the most computationally and memory demanding one

In order to reduce these demands, one may solve only approximately some (or
even all) of the internal problems using, e.g., AMG-based solvers

Numerical analysis says that inexact BDDC preconditioners are also
algoritmically scalable [Dohrmann, 2007]

Benefit has to be viewed in light of future parallel architectures: the most
scalable architectures (e.g., IBM BG) will have more limited memory per core

Further, the coarse solver time increases as P instead of P2, much less
degradation for high core counts

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Inexact BDDC

4 different solvers in BDDC:

1 Dirichlet problem: approximate (A
(i)
II)−1 in E =

[
0 −A−1

II AIΓ

0 IΓ

]
2 Local Neumann problem: approximate (A

(i)
c)−1, where A

(i)
c is the

(sub-assembled) local matrix A(i) after eliminating the coarse corner
rows/columns

3 Coarse problem: approximate (AC)−1

4 Computation of Φ: approximate (A
(i)
c)−1

From numerical analysis [Dohrmann, 2007]:

(2)-(3) can be replaced by optimal preconditioners, e.g., AMG-cycle

(1)-(4) more delicate, additional null space preservation required (not true in
general)

Key question to be experimentally assessed

Sensivity of the algorithm to every inexact solver?

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Inexact BDDC

4 different solvers in BDDC:

1 Dirichlet problem: approximate (A
(i)
II)−1 in E =

[
0 −A−1

II AIΓ

0 IΓ

]
2 Local Neumann problem: approximate (A

(i)
c)−1, where A

(i)
c is the

(sub-assembled) local matrix A(i) after eliminating the coarse corner
rows/columns

3 Coarse problem: approximate (AC)−1

4 Computation of Φ: approximate (A
(i)
c)−1

From numerical analysis [Dohrmann, 2007]:

(2)-(3) can be replaced by optimal preconditioners, e.g., AMG-cycle

(1)-(4) more delicate, additional null space preservation required (not true in
general)

Key question to be experimentally assessed

Sensivity of the algorithm to every inexact solver?

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Inexact BDDC

4 different solvers in BDDC:

1 Dirichlet problem: approximate (A
(i)
II)−1 in E =

[
0 −A−1

II AIΓ

0 IΓ

]
2 Local Neumann problem: approximate (A

(i)
c)−1, where A

(i)
c is the

(sub-assembled) local matrix A(i) after eliminating the coarse corner
rows/columns

3 Coarse problem: approximate (AC)−1

4 Computation of Φ: approximate (A
(i)
c)−1

From numerical analysis [Dohrmann, 2007]:

(2)-(3) can be replaced by optimal preconditioners, e.g., AMG-cycle

(1)-(4) more delicate, additional null space preservation required (not true in
general)

Key question to be experimentally assessed

Sensivity of the algorithm to every inexact solver?

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Inexact BDDC

4 different solvers in BDDC:

1 Dirichlet problem: approximate (A
(i)
II)−1 in E =

[
0 −A−1

II AIΓ

0 IΓ

]
2 Local Neumann problem: approximate (A

(i)
c)−1, where A

(i)
c is the

(sub-assembled) local matrix A(i) after eliminating the coarse corner
rows/columns

3 Coarse problem: approximate (AC)−1

4 Computation of Φ: approximate (A
(i)
c)−1

From numerical analysis [Dohrmann, 2007]:

(2)-(3) can be replaced by optimal preconditioners, e.g., AMG-cycle

(1)-(4) more delicate, additional null space preservation required (not true in
general)

Key question to be experimentally assessed

Sensivity of the algorithm to every inexact solver?

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Inexact BDDC

4 different solvers in BDDC:

1 Dirichlet problem: approximate (A
(i)
II)−1 in E =

[
0 −A−1

II AIΓ

0 IΓ

]
2 Local Neumann problem: approximate (A

(i)
c)−1, where A

(i)
c is the

(sub-assembled) local matrix A(i) after eliminating the coarse corner
rows/columns

3 Coarse problem: approximate (AC)−1

4 Computation of Φ: approximate (A
(i)
c)−1

From numerical analysis [Dohrmann, 2007]:

(2)-(3) can be replaced by optimal preconditioners, e.g., AMG-cycle

(1)-(4) more delicate, additional null space preservation required (not true in
general)

Key question to be experimentally assessed

Sensivity of the algorithm to every inexact solver?

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Outline

1 BDDC preconditioner

2 Overlapped BDDC implementation

3 Scalability analysis (overlapped)

4 Inexact BDDC

5 Scalability analysis (overlapped/inexact)

6 Conclusions and future work

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

The effect of approximately solving the internal problems

Coarse-grid problem

The problem that can harm scalability (couples ALL subdomain)

Fortunately, it can be highly perturbed without impact in the scalability
(AMG-cycle suffices)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1K 5.5K 11.7K 16K 21.3K 27.6K

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(ce)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

M-1

10-1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1K 5.5K 11.7K 16K 21.3K 27.6K

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(ce)

Inexact coarse
Exact coarse

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1K 5.5K 11.7K 16K 21.3K 27.6K

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(cef)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

M-1

10-1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1K 5.5K 11.7K 16K 21.3K 27.6K

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(cef)

Inexact coarse
Exact coarse

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

The effect of approximately solving the internal problems

Neumann Problem

Neumann problem can be highly perturbed without impact in the scalability
(AMG-cycle suffices)

 0

 5

 10

 15

 20

 25

128 1K 2K 3.5K 5.5K 8K

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(ce)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

M-1

 0

 5

 10

 15

 20

 25

128 1K 2K 3.5K 5.5K 8K

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(ce)

Inexact Neumann
Exact Neumann

 0

 5

 10

 15

 20

128 1K 2K 3.5K 5.5K 8K

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(cef)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

M-1

 0

 5

 10

 15

 20

128 1K 2K 3.5K 5.5K 8K

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

Weak scaling for BDDC(cef)

Inexact Neumann
Exact Neumann

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

The effect of approximately solving the internal problems

Dirichlet problem

AMG-cycle wo/ null space preservation (deflation) not algorithmically scalable

But with loose tolerance enough to make it scalable

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

128 432 1024 2000 3452

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(ce)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

M-1

10-2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

128 432 1024 2000 3452

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(ce)

Inexact Dirichlet
Exact Dirichlet

 0

 5

 10

 15

 20

 25

 30

 35

128 432 1024 2000 3452

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(cef)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

M-1

10-2

 0

 5

 10

 15

 20

 25

 30

 35

128 432 1024 2000 3452

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(cef)

Inexact Dirichlet
Exact Dirichlet

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

The effect of approximately solving the internal problems

Dirichlet problem

AMG-cycle w/ null space preservation (deflation) not algorithmically scalable

But with loose tolerance enough to make it scalable

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

128 432 1024 2000 3452

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(ce)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

M-1

10-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

128 432 1024 2000 3452

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(ce)

Inexact Dirichlet
Exact Dirichlet

 0

 2

 4

 6

 8

 10

 12

 14

 16

128 432 1024 2000 3452

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(cef)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

M-1

10-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

128 432 1024 2000 3452

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(cef)

Inexact Dirichlet
Exact Dirichlet

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

The effect of approximately solving the internal problems

Coarse-grid basis vectors

AMG-cycle wo/ null space preservation not algorithmically scalable

But with loose tolerance enough to make it scalable

 0

 10

 20

 30

 40

 50

 60

128 1K 2K 3.5K 5.5K 8K

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(ce)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

M-1

10-1

 0

 10

 20

 30

 40

 50

 60

128 1K 2K 3.5K 5.5K 8K

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(ce)

Inexact coarse-grid basis
Exact coarse-grid basis

 0

 5

 10

 15

 20

 25

 30

128 1K 2K 3.5K 5.5K 8K

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(cef)

H/h3=303 (27K) FEs/core
H/h3=403 (64K) FEs/core

M-1

10-1

 0

 5

 10

 15

 20

 25

 30

128 1K 2K 3.5K 5.5K 8K

N
um

be
r

of
 P

C
G

/IP
C

G
 it

er
at

io
ns

#cores

Weak scaling for BDDC(cef)

Inexact coarse-grid basis
Exact coarse-grid basis

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

A set of strategically selected inexact variants

Target machine: JUQUEEN@JSC
28,672 compute nodes (16-core, 64-way threaded IBM PPC A2; 16 GB)

Target problem: −∆u = f on Ω = [0, 2]× [0, 1]× [0, 1]

Uniform global mesh of hexahedral Q1 finite elements

Uniform partition into rectangular grids of 4m × 2m × 2m cubic local meshes

m = 23, 33 . . . , 163 nodes (8, 432, . . . , 65535 cores) devoted to fine-grid duties

Entire node devoted to coarse-grid duties (restricted to only 1 core/GB)

Gradually larger fixed local problem sizes H
h

= 603 FEs/core

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Inexact BDDC(corners+edges) :: Poisson problem

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Weak scaling for inexact BDDC(corners+edges) :: Poisson problem

H
h

= 60 (216K FEs/core)

 0

 5

 10

 15

 20

 25

 30

 35

1K 5.5K 11.7K 16K 21.3K 27.6K 35.1K 43.9K 54.0K 65.5K

N
um

be
r

of
 P

F
G

M
R

E
S

 it
er

at
io

ns

#cores

Weak scaling for approximate BDDC(ce)

H/h3=603 (216K) FEs/core
L
T

 0

 5

 10

 15

 20

 25

 30

 35

1K 5.5K 11.7K 16K 21.3K 27.6K 35.1K 43.9K 54.0K 65.5K

N
um

be
r

of
 P

F
G

M
R

E
S

 it
er

at
io

ns

#cores

Weak scaling for approximate BDDC(ce)

Var. 1
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1K 5.5K 11.7K 16K 21.3K 27.6K 35.1K 43.9K 54.0K 65.5K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

Weak scaling for approximate BDDC(ce)

H/h3=603 (216K) FEs/core
L
T

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1K 5.5K 11.7K 16K 21.3K 27.6K 35.1K 43.9K 54.0K 65.5K

T
ot

al
 W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

Weak scaling for approximate BDDC(ce)

Var. 1

of outer solver iterations Total time (secs.)

Outer solver Φ Dirichlet Neumann Coarse
Var. 1T FGMRES PCG-AMG(10−1) PCG-AMG(10−4) AMG(1) AMG(1)
Var. 1L FGMRES PCG-AMG(10−1) PCG-AMG(10−2) AMG(1) AMG(1)

Memory usage:

Fine proc’s: 538.6MB (< 1GB)

Coarse proc’s (65.5K cores): 392.7MB (< 1GB)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Outline

1 BDDC preconditioner

2 Overlapped BDDC implementation

3 Scalability analysis (overlapped)

4 Inexact BDDC

5 Scalability analysis (overlapped/inexact)

6 Conclusions and future work

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Conclusions and future work

Conclusions:

Highly scalable asynchronous implementation of BDDC

Overlapping of fine-grid and coarse-grid computations

OpenMP parallelization for coarse-grid problem in the exact case

Exploitation of AMG-based solvers in the inexact case

Weakly scalable for many ranges of interest

Memory limitations clearly improved

High scalability in a memory constrained environment (JUQUEEN)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Conclusions and future work

Conclusions:

Highly scalable asynchronous implementation of BDDC

Overlapping of fine-grid and coarse-grid computations

OpenMP parallelization for coarse-grid problem in the exact case

Exploitation of AMG-based solvers in the inexact case

Weakly scalable for many ranges of interest

Memory limitations clearly improved

High scalability in a memory constrained environment (JUQUEEN)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

Good features of BDDC towards extreme scales

BDDC has some salient properties that make it an excellent candidate for extreme
scale solver design:

1 The method allows for a (mathematically supported) extremely aggressive
coarsening

2 The coarse matrix has a similar sparsity as the original matrix

3 Coarse and local components can be computed in a parallel (additive) way

4 Local (constrained) Neumann and coarse solvers can be solved in an inexact
way

5 A multilevel extension of the method is possible (for extreme core counts)

(1)-(2)-(3)-(4) exploited in our inexact/overlapped BDDC implementations

Next step: Exploit (5), for to boost scalability even further
(overlapped/inexact/multilevel implementation)

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

References

S. Badia, A. F. Mart́ın and J. Principe. Enhanced balancing Neumann-Neumann
preconditioning in computational fluid and solid mechanics. International Jour-
nal for Numerical Methods in Engineering. Vol. 96(4), pp. 203-230, 2013.

S. Badia, A. F. Mart́ın and J. Principe. Implementation and scalability anal-
ysis of balancing domain decomposition methods. Archives of Computational
Methods in Engineering. Vol. 20(3), pp. 239-262, 2013.

S. Badia, A. F. Mart́ın and J. Principe. A highly scalable parallel implementation
of balancing domain decomposition by constraints. SIAM Journal on Scientific
Computing. Vol. 36(2), pp. C190-C218, 2014.

S. Badia, A. F. Mart́ın and J. Principe. On the scalability of inexact balancing
domain decomposition by constraints with overlapped coarse/fine corrections.
In preparation, 2014.

Preprints available at http://badia.rmee.upc.edu/sbadia_ar.html

COMFUS team: https://web.cimne.upc.edu/groups/comfus/

Work funded by the European Research Council un-
der Starting Grant 258443 - COMFUS: Computational
Methods for Fusion Technology

2007 - 2012

European Research Council
Years of excellent IDEAS

S. Badia A Highly Scalable Asynchronous Implementation of BDDC

http://badia.rmee.upc.edu/sbadia_ar.html
https://web.cimne.upc.edu/groups/comfus/

