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Black-White Inpainting
Idea

Original image f with
inpainting domain D.

Inpainted image.

ω(x) =

{
0 if x ∈ D,
ω0 if x ∈ Ω \ D
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Black-White Inpainting
Damaged Zebra Image

n = 0 n = 57 n = 758
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Multi Phases
Multi-Phase Structure

Ω ⊂ Rd , d ∈ {1,2,3}
bla
u1 : Ω × (0,T)→ R
bla
u2 : Ω × (0,T)→ R
bla
u3 : Ω × (0,T)→ R
bla
...
blamixture of phases
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Multi Phases
Modeling of Multi-Phase Systems

number of phases N

vector-valued order parameter

u = (u1, . . . ,uN)T : Ω × (0,T)→ RN

ui ∈


{0} if phase i is absent,

(0,1) if phase i is present,
{1} if only phase i is present

admissible states belong to

G
N B

v ∈ RN

∣∣∣∣∣∣∣
N∑

i=1

vi = 1, vi ≥ 0 i = 1, . . . ,N


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Multi Phases
Regularized Subproblems

Systems of two coupled PDEs

∂tuν,i = (L∆wν)i

wν,i = −ε2∆uν,i +
∂ψ0(uν)
∂uν,i

+ θν(uν,i)−
1
N

N∑
j=1

(
θν(uν,j) +

∂ψ0(uν)
∂uν,j

)
∇uν,i · n = (L∇wν)i · n = 0 on ∂Ω

i = 1, . . . ,N

Mobility: L = I − 1
N 11T (L = I)
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Linear Systems and Preconditioning
Final Steps to the Linear Systems

Time discretization:

Implicit Euler scheme{ accurate

Convexity splitting (semi-implicit) for inpainting{ τ > 0

Nonlinear systems: (Semismooth) Newton method

Space discretization: Finite element method
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Linear Systems and Preconditioning
Optimal Preconditioners

K =

(
A −B
C D

)
A nonsingular
Schur complement S = D + CA−1B

P =

(
A 0
C −Ŝ

)
Ŝ = S:
Λ(P−1

K) = {1,−1}

[Murphy/Golub/Wathen ’00]

Goal

Good and easy to compute approximation Ŝ of the Schur
complement S.
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Linear Systems and Preconditioning
Linear Cahn–Hilliard Systems

K =

(
IN ⊗M −B

αLN ⊗ K IN ⊗ (βM + γK)

)
α, β > 0, γ ≥ 0

B contains the potential and{
1
ν if bound constraint is violated,
0 otherwise

Two Phases
N = 1
B indefinite
γ = 0

Inpainting
N = 1
B symmetric positive
(semi-)definite
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Linear Systems and Preconditioning
Schur Complement Approximation – Scalar Problems

K =

(
M −B

αK βM + γK

)
α, β > 0, γ ≥ 0

The Schur complement

S = βM + αKM−1
B+ γK

is approximated by

Ŝ =

AMG︷             ︸︸             ︷(√
βM +

√
αK

)
M−1

AMG︷               ︸︸               ︷(√
βM +

√
αB

)
= βM + αKM−1

B+
√
αβK +

√
αβB.

= +
√
αβB.

The shift
√
βM makes

(√
βM +

√
αB

)
positive definite.
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Ŝ =

AMG︷             ︸︸             ︷(√
βM +

√
αK

)
M−1

AMG︷               ︸︸               ︷(√
βM +

√
αB

)
= βM + αKM−1

B+
√
αβK +

√
αβB.

The shift
√
βM makes

(√
βM +

√
αB

)
positive definite.

Max Planck Institute Magdeburg J. Bosch, Preconditioning for various Cahn–Hilliard systems 17/27



Two Phases Black-White Inpainting Multi Phases Linear Systems and Preconditioning Numerical Results

Linear Systems and Preconditioning
Schur Complement Approximation – Scalar Problems

K =

(
M −B

αK βM + γK

)
α, β > 0, γ ≥ 0

The Schur complement

S = βM + αKM−1
B + γK

is approximated by
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B+ γK

is approximated by

Ŝ =

AMG︷             ︸︸             ︷(√
βM +

√
αK

)
M−1

AMG︷               ︸︸               ︷(√
βM +

√
αB

)
= βM + αKM−1

B+
√
αβK +

√
αβB.

The shift
√
βM makes

(√
βM +

√
αB

)
positive definite.
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Two Phases Black-White Inpainting Multi Phases Linear Systems and Preconditioning Numerical Results

Linear Systems and Preconditioning
Linear Multi-Phase Cahn–Hilliard Systems

For e.g. N = 3 phases, K is given as

K =



M 0 0 −B11 −B2 −B3
0 M 0 −B1 −B22 −B3
0 0 M −B1 −B2 −B33

τL1,1 K τL1,2 K τL1,3 K M 0 0
τL1,2 K τL2,2 K τL2,3 K 0 M 0
τL1,3 K τL2,3 K τL3,3 K 0 0 M


.

We need a Schur complement approximation of

S = I ⊗M + τ(L ⊗ K)(I ⊗M)−1
B.

1 Smooth potential{ ’simple’
2 Nonsmooth potential{ penalty terms in every block of B
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Two Phases Black-White Inpainting Multi Phases Linear Systems and Preconditioning Numerical Results

Linear Systems and Preconditioning
Smooth Potential – Approximation of the Block B

B =


B11 B2 B3
B1 B22 B3
B1 B2 B33

 (N = 3)

B̂ =


B̂ 0 0
0 B̂ 0
0 0 B̂


The block B is given for i = 1, . . . ,N as

Fi = diag
(
3
(
u(k)

i (xh)
)2
− 3u(k)

i (xh) +
1
2

)
Bii = ε2K +

(N − 1
N

)
FiMFi

Bi = −
1
N

FiMFi

−→

O(M) = h2

−→

B̂ = ε2K +
(N − 1

N

)
M

B̂i = 0
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Two Phases Black-White Inpainting Multi Phases Linear Systems and Preconditioning Numerical Results

Linear Systems and Preconditioning
Smooth Potential – Schur Complement Approximation

The Schur complement

S = I ⊗M + τ(L ⊗ K)(I ⊗M)−1
B

is then approximated by

Ŝ =

FFT + AMG (L=I− 1
N 11T )︷                        ︸︸                        ︷( N

N − 1
I ⊗M + τL ⊗ K

)
(I ⊗M)−1

AMG︷                        ︸︸                        ︷(N − 1
N

I ⊗M + ε2I ⊗ K
)

=
( N
N − 1

I ⊗M + τL ⊗ K
)

(I ⊗M)−1
B̂

= +
ε2N

N − 1
I ⊗ K .
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Ŝ =

FFT + AMG (L=I− 1
N 11T )︷                        ︸︸                        ︷( N

N − 1
I ⊗M + τL ⊗ K

)
(I ⊗M)−1

AMG︷                        ︸︸                        ︷(N − 1
N

I ⊗M + ε2I ⊗ K
)

=
( N
N − 1

I ⊗M + τL ⊗ K
)

(I ⊗M)−1
B̂

= I ⊗M + τ(L ⊗ K)(I ⊗M)−1
B̂+

ε2N
N − 1

I ⊗ K .

Max Planck Institute Magdeburg J. Bosch, Preconditioning for various Cahn–Hilliard systems 20/27



Two Phases Black-White Inpainting Multi Phases Linear Systems and Preconditioning Numerical Results

Linear Systems and Preconditioning
Smooth Potential – Schur Complement Approximation

The Schur complement

S = I ⊗M + τ(L ⊗ K)(I ⊗M)−1
B

is then approximated by
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Two Phases Black-White Inpainting Multi Phases Linear Systems and Preconditioning Numerical Results

Linear Systems and Preconditioning
FFT based Preconditioner [Stoll ’13]

( N
N − 1

I ⊗M + τL ⊗ K
)
y = g (1)

L = F diag(λ1, . . . , λN) FH [Chen ’87]

apply FFT to (1)

equivalent block-diagonal system

( N
N − 1

I ⊗M + τ diag(λ1, . . . , λN) ⊗ K
)
ỹ = g̃.
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Two Phases Black-White Inpainting Multi Phases Linear Systems and Preconditioning Numerical Results

Linear Systems and Preconditioning
Nonsmooth Potential – The Block B

B =


B11 B2 B3
B1 B22 B3
B1 B2 B33

 (N = 3)

The block B is given for i = 1, . . . ,N as

Gi = diag
(

1 if u(k)

i (xh) < 0,
0 otherwise

)
Bii = ε2K +

(N − 1
N

) (1
ν

GiMGi −M
)

Bi = −
1
N

(1
ν

GiMGi −M
)

ν� 1⇒ Cannot neglect this term!
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
B11 B2 B3
B1 B22 B3
B1 B2 B33

 (N = 3)

The block B is given for i = 1, . . . ,N as

Gi = diag
(

1 if u(k)

i (xh) < 0,
0 otherwise

)

Bii = ε2K +
(N − 1

N

) (1
ν

GiMGi −M
)

Bi = −
1
N

(1
ν

GiMGi −M
)

ν� 1⇒ Cannot neglect this term!
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Two Phases Black-White Inpainting Multi Phases Linear Systems and Preconditioning Numerical Results

Linear Systems and Preconditioning
Nonsmooth Potential – Schur Complement Approximation

The Schur complement

S = I ⊗M + τ(L ⊗ K)(I ⊗M)−1
B

is then approximated by

Ŝ =

FFT + AMG︷                           ︸︸                           ︷( N
N − 1

I ⊗M +
√
τL ⊗ K

)
(I ⊗M)−1

Jacobi + AMG︷                       ︸︸                       ︷(N − 1
N

I ⊗M +
√
τB

)
= I ⊗M + τ(L ⊗ K)(I ⊗M)−1

B+

√
τN

N − 1
B+

√
τ(N − 1)

N
L ⊗ K .

= +

√
τN

N − 1
B+

√
τ(N − 1)

N
L ⊗ K .

The shift with M makes the diagonal blocks of(N − 1
N

I ⊗M +
√
τB

)
positive definite.
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Two Phases Black-White Inpainting Multi Phases Linear Systems and Preconditioning Numerical Results

Numerical Results
Two Phases – BiCG Iteration Numbers

0 20 40 60 80 100
10

20

30

40

Time step

A
ve

ra
ge

nu
m

be
r

of
B

iC
G

st
ep

s
pe

r
N

ew
to

n
st

ep

m = 16641
m = 66049
m = 263169
m = 1050625

ε ≈ 9h
π

τ ≈ 4ε3

νmax = 10−7

Max Planck Institute Magdeburg J. Bosch, Preconditioning for various Cahn–Hilliard systems 24/27



Two Phases Black-White Inpainting Multi Phases Linear Systems and Preconditioning Numerical Results

Numerical Results
Smooth Multi-Phase Model – BiCG Iteration Numbers
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Figure: L = I − 1
N 11T , ε ≈ 9h

π , τ ≈ 4ε2

Whole system size: 2 ·m · N
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Numerical Results
Nonsmooth Multi-Phase Model – BiCG Iteration Numbers
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Numerical Results
Results and Outlook

Results
Smooth: Numerically mesh and phase independent
preconditioners.

Moreau–Yosida based solver for the handling of the
nonsmoothness.
Nonsmooth: Outperforming preconditioned version
compared to the unpreconditioned one.
More accurate results with the nonsmooth model.

Outlook

Proofs for the preconditioner.
Nonsmooth: Enhanced Schur complement approximation?
Grey/color inpainting.
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Two Phases Black-White Inpainting Multi Phases

Two Phases
Different Potentials

- u

6

0

ψ(u)

−1 1

T = 0.4Tc

T = 0.8Tc

T = 0.6Tc

[Blowey/Elliott ’91]
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Two Phases Black-White Inpainting Multi Phases

Two Phases
Phase Separation in 2D

n = 0 n = 5 n = 50 n = 500
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Two Phases Black-White Inpainting Multi Phases

Two Phases
Dumbbell in 3D

(a) n = 0 (b) n = 4 (c) n = 7 (d) n = 8

Ω = (−1,1)3

ε = 0.03
τ = 5 · 10−5

cmax = 10−5

h0 = 2−5

hmin = επ
9

hmax = 10 · hmin
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Two Phases Black-White Inpainting Multi Phases

Two Phases
Moreau–Yosida Semismooth Newton (SSN) Solver in 1D

max. SSN\BiCG
h cmax ‖ucmax ,h − uex,h‖2 iterations CPU time (s)
1
26 10−3 2.46337 · 10−2 2\14 0.34

10−6 3.05118 · 10−3 2\14 0.41
10−9 3.06076 · 10−3 2\14 0.50

1
27 10−3 3.58987 · 10−2 3\15 0.61

10−6 9.32589 · 10−4 3\16 0.87
10−9 9.31919 · 10−4 3\16 1.00

1
28 10−3 5.04977 · 10−2 3\15 1.17

10−6 6.92492 · 10−4 3\16 1.80
10−9 6.71485 · 10−4 3\17 2.12

1
29 10−3 7.10723 · 10−2 3\15 2.17

10−6 2.63167 · 10−4 3\16 3.55
10−9 1.99167 · 10−4 3\17 4.07
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Two Phases Black-White Inpainting Multi Phases

Two Phases
Semi-Implicit Time Discretization and Large Time Steps

Figure: Initial state.

Exact solution
Small red circle vanishes at time t = 1.85 · 10−3.
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Two Phases Black-White Inpainting Multi Phases

Two Phases
Semi-Implicit Time Discretization and Large Time Steps

τ = 5 · 10−4 τ = 1 · 10−4 τ = 3 · 10−5

Figure: Semi-implicit Cahn–Hilliard evolution with different time steps
τ. The figure shows the solutions at time t = 3 · 10−3.

Remember: In the exact solution the small red circle vanishes
at time t = 1.85 · 10−3.
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Two Phases Black-White Inpainting Multi Phases

Black-White Inpainting
Modified Cahn–Hilliard Model

∂tu(t) = −gradH−1E(u(t))−gradL2E2(u(t))

E2(u) =

∫
Ω

ω
2

(f − u)2 dx

Regularized modified Cahn–Hilliard subproblem

∂tuν = ∆
(
−ε∆uν +

1
ε
ψ′0(uν) + θν(uν)

)
+ω(f − uν)

∇uν · n = ∇(∆uν) · n = 0 on ∂Ω
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Two Phases Black-White Inpainting Multi Phases

Black-White Inpainting
Three-Dimensional Space

(a) n = 0 (b) n = 115 (c) n = 900

Ω = (−1,1)3

ε = 2→ 0.01
τ = 1
νmax = 10−4

ω0 = 10−5

h = 2−5
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Two Phases Black-White Inpainting Multi Phases

Black-White Inpainting
Smooth Potential – BiCG Iteration Numbers
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Two Phases Black-White Inpainting Multi Phases

Black-White Inpainting
Nonsmooth Potential – BiCG Iteration Numbers
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Two Phases Black-White Inpainting Multi Phases

Black-White Inpainting
Comparison to Other Methods

Figure: Initial state.
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Two Phases Black-White Inpainting Multi Phases

Black-White Inpainting
Comparison to Other Methods

(a) MATLAB (b) Heat (c) TV (d) TV4

(a) Nonsmooth,
FEM

(b) Smooth,
FEM

(c) Nonsmooth,
FFT

(d) Smooth,
FFT
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Two Phases Black-White Inpainting Multi Phases

Black-White Inpainting
FEM vs. FFT – Smooth Potential

n = 0

n = 880
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Two Phases Black-White Inpainting Multi Phases

Black-White Inpainting
FEM vs. FFT – Nonsmooth Potential

0 500 1,000 1,500
0

200

400

600

Time step

A
ve

ra
ge

nu
m

be
r

of
B

iC
G

st
ep

s
pe

r
N

ew
to

n
st

ep

FFT
FEM

ε = 0.8→ 0.01
τ = 1
ω0 = 105

νmax = 10−7

h = 2−7

Max Planck Institute Magdeburg J. Bosch, Preconditioning for various Cahn–Hilliard systems 40/27



Two Phases Black-White Inpainting Multi Phases

Black-White Inpainting
FFT with Regularization
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Two Phases Black-White Inpainting Multi Phases

Multi Phases
Final Steps to the Linear Systems

Time discretization: Implicit Euler scheme

τ <
4ε2

λ2
max(A) ‖L‖

(nonsmooth) ⇒ here: τ < 4ε2

[Blowey/Copetti/Elliott ’96]

Nonlinear systems: (Semismooth) Newton method

(min (0, v))′ { χA(v),

where A(v) B {x ∈ Ω : v(x) < 0}

Space discretization: Finite element method
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Two Phases Black-White Inpainting Multi Phases

Multi Phases
FFT based Preconditioner [Stoll ’13]

We formulate each of the N complex valued systems to 2 × 2
real valued block systems. As λ1 = 0 and λ2 = . . . = λN = 1 we
get two types[ N

N−1M (+τK) 0
0 N

N−1M (+τK)

] [
ỹr
ỹc

]
=

[
g̃r
g̃c

]
which are solved with a fixed number of steps of

Inexact Uzawa method

ỹ(l+1) = ỹ(l) + ωP−1
1 r(l),

where P1 is a block-diagonal AMG preconditioner.
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Two Phases Black-White Inpainting Multi Phases

Multi Phases
Evolution of Multi Phases

n = 0 n = 50 n = 500
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Two Phases Black-White Inpainting Multi Phases

Multi Phases
Smooth vs. Nonsmooth Evolution

n = 0 n = 20 n = 100

Figure: Smooth (above) and nonsmooth (below) computation for five
phases.
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Two Phases Black-White Inpainting Multi Phases

Multi Phases
Smooth vs. Nonsmooth Evolution

Time step
20 60 100

Min Smooth −0.02771 −0.02439 −0.02627
0 Nonsmooth −1.186 · 10−7

−1.172 · 10−7
−1.178 · 10−7

Max Smooth 0.9764 1.001 0.9972
1 Nonsmooth 1 1 1

Table: Minimum and maximum values of the phase variable u1 in the
smooth and nonsmooth model.
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Two Phases Black-White Inpainting Multi Phases

Multi Phases
Nonsmooth Potential – BiCG Iteration Numbers
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(b) N = 20

Figure: L = I − 1
N 11T , ε ≈ 9h

π , τ ≈ 4ε2

Whole system size: 2 ·m · N
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