Sparse Days June 5–6, 2014 CERFACS, Toulouse

Preconditioning for various Cahn–Hilliard systems

Jessica Bosch Martin Stoll

Max Planck Institute for Dynamics of Complex Technical Systems Numerical Linear Algebra for Dynamical Systems Magdeburg, Germany

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Black-White Inpainting

/lulti Phases

Linear Systems and Preconditioning

Numerical Results

Black-White Inpainting

/lulti Phases

Linear Systems and Preconditioning

Numerical Results

- 2 Black-White Inpainting
- 3 Multi Phases
- 4 Linear Systems and Preconditioning
- 5 Numerical Results

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Two Phases Two-Phase Structure

• $\Omega \subset \mathbb{R}^d, d \in \{1, 2, 3\}$

- $u: \Omega \times (0, T) \rightarrow \mathbb{R}$ concentration
- $u \in [-1, 1]$

ack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Two Phases Energy Functional

$$\mathcal{E}(u) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} \psi(u) \,\mathrm{d}\mathbf{x}$$

ack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Two Phases Energy Functional

$$\mathcal{E}(u) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} \psi(u) \, \mathrm{d} \mathbf{x}$$

$$\psi(u) = \frac{1}{4}(u^2 - 1)^2$$

ack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Two Phases

$$\mathcal{E}(u) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} \psi(u) \,\mathrm{d}\mathbf{x}$$

Smooth potential

$$\psi(u) = \frac{1}{4}(u^2 - 1)^2$$

Nonsmooth potential

$$\psi(u) = \begin{cases} \frac{1}{2}(1-u^2) & \text{if } |u| \le 1, \\ \infty & \text{otherwise} \end{cases}$$
$$= \psi_0(u) + I_{[-1,1]}(u)$$

Two Phases ○○●○ lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Two Phases Moreau–Yosida Regularization

$$\mathcal{E}(u) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} \left(\psi_0(u) + I_{[-1,1]}(u) \right) \, \mathrm{d}\mathbf{x}$$

Two Phases ○○●○ lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Two Phases Moreau–Yosida Regularization

$$\mathcal{E}(u) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} \left(\psi_0(u) + I_{[-1,1]}(u) \right) d\mathbf{x}$$

$$\downarrow$$

$$\vartheta_{\nu}(u_{\nu}) \coloneqq \frac{1}{2\nu} \left(|\max(0, u_{\nu} - 1)|^2 + |\min(0, u_{\nu} + 1)|^2 \right)$$

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Two Phases Moreau–Yosida Regularization

 $\mathcal{E}(u) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} \left(\psi_0(u) + I_{[-1,1]}(u) \right) \, \mathrm{d}\mathbf{x}$ $\vartheta_{\nu}(u_{\nu}) \coloneqq \frac{1}{2\nu} \left(|\max(0, u_{\nu} - 1)|^2 + |\min(0, u_{\nu} + 1)|^2 \right)$ $\mathcal{E}_{\nu}(u_{\nu}) = \int_{\Omega} \frac{\varepsilon}{2} |\nabla u_{\nu}|^2 + \frac{1}{\varepsilon} \psi_0(u_{\nu}) + \vartheta_{\nu}(u_{\nu}) \,\mathrm{d}\mathbf{x}$

 $\partial_t u(t) = -\operatorname{grad}_{H^{-1}} \mathcal{E}(u(t))$

 Two Phases
 Black-White Inpainting
 Multi Phases
 Linear Systems and Preconditioning
 N

 000
 000
 0000000000
 0000000000
 0000000000

Two Phases Regularized Subproblem

$$\partial_t u(t) = -\operatorname{grad}_{H^{-1}} \mathcal{E}(u(t))$$

System of two coupled PDEs

$$\partial_t u_{\nu} = \Delta w_{\nu}$$
$$w_{\nu} = -\varepsilon \Delta u_{\nu} + \frac{1}{\varepsilon} \psi'_0(u_{\nu}) + \theta_{\nu}(u_{\nu})$$
$$\nabla u_{\nu} \cdot \mathbf{n} = \nabla w_{\nu} \cdot \mathbf{n} = 0 \quad \text{on } \partial \Omega$$

Numerical Results

Two Phases Regularized Subproblem

System of two coupled PDEs

$$\partial_t u_{\nu} = \Delta w_{\nu}$$
$$w_{\nu} = -\varepsilon \Delta u_{\nu} + \frac{1}{\varepsilon} \psi'_0(u_{\nu}) + \theta_{\nu}(u_{\nu})$$
$$\nabla u_{\nu} \cdot \mathbf{n} = \nabla w_{\nu} \cdot \mathbf{n} = 0 \quad \text{on } \partial \Omega$$

$$\theta_{\nu}(u_{\nu}) \coloneqq \frac{1}{\nu} \left(\max\left(0, u_{\nu} - 1\right) + \min\left(0, u_{\nu} + 1\right) \right)$$

Black-White Inpaintin ●○○ Nulti Phases

Linear Systems and Preconditioning

Numerical Results

Black-White Inpainting

Idea

Original Cahn-Hilliard.

Inpainting version.

Max Planck Institute Magdeburg

J. Bosch, Preconditioning for various Cahn–Hilliard systems 8/27

lack-White Inpaintin

Aulti Phases

Linear Systems and Preconditioning

Numerical Results

Black-White Inpainting

Idea

Original image *f* with inpainting domain D.

Inpainted image.

lack-White Inpainting ●○ Aulti Phases

Linear Systems and Preconditioning

Numerical Results

Black-White Inpainting

Idea

Original image *f* with inpainting domain D.

Inpainted image.

$$\omega(x) = \begin{cases} 0 & \text{if } x \in D, \\ \omega_0 & \text{if } x \in \Omega \setminus D \end{cases}$$

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Black-White Inpainting

Damaged Zebra Image

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Multi Phases Multi-Phase Structure

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Multi Phases

Modeling of Multi-Phase Systems

number of phases N

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Multi Phases

Modeling of Multi-Phase Systems

- number of phases N
- vector-valued order parameter

$$\mathbf{u} = (u_1, \ldots, u_N)^T \colon \Omega \times (0, T) \to \mathbb{R}^N$$

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Multi Phases

Modeling of Multi-Phase Systems

- number of phases N
- vector-valued order parameter

$$\mathbf{u} = (u_1, \ldots, u_N)^T \colon \Omega \times (0, T) \to \mathbb{R}^N$$

•
$$u_i \in \begin{cases} \{0\} & \text{if phase } i \text{ is absent,} \\ (0, 1) & \text{if phase } i \text{ is present,} \\ \{1\} & \text{if only phase } i \text{ is present} \end{cases}$$

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Multi Phases Modeling of Multi-Phase Systems

- number of phases N
- vector-valued order parameter

$$\mathbf{u} = (u_1, \ldots, u_N)^T \colon \Omega \times (0, T) \to \mathbb{R}^N$$

•
$$u_i \in \begin{cases} \{0\} & \text{if phase } i \text{ is absent,} \\ (0, 1) & \text{if phase } i \text{ is present,} \\ \{1\} & \text{if only phase } i \text{ is present} \end{cases}$$

admissible states belong to

$$\mathcal{G}^N \coloneqq \left\{ \mathbf{v} \in \mathbb{R}^N \left| \sum_{i=1}^N v_i = 1, v_i \ge 0 \ i = 1, \dots, N \right\} \right\}$$

Black-White Inpainting

Multi Phase

Linear Systems and Preconditioning

Numerical Results

Multi Phases

Regularized Subproblems

Systems of two coupled PDEs

$$\partial_t u_{\nu,i} = (L\Delta \mathbf{w}_{\nu})_i$$
$$w_{\nu,i} = -\varepsilon^2 \Delta u_{\nu,i} + \frac{\partial \psi_0(\mathbf{u}_{\nu})}{\partial u_{\nu,i}} + \theta_\nu(u_{\nu,i}) - \frac{1}{N} \sum_{j=1}^N \left(\theta_\nu(u_{\nu,j}) + \frac{\partial \psi_0(\mathbf{u}_{\nu})}{\partial u_{\nu,j}} \right)$$
$$V u_{\nu,i} \cdot \mathbf{n} = (L\nabla \mathbf{w}_{\nu})_i \cdot \mathbf{n} = 0 \quad \text{on } \partial\Omega$$

 $i = 1, \ldots, N$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Multi Phases

Regularized Subproblems

Systems of two coupled PDEs

$$\partial_t u_{\nu,i} = (L\Delta \mathbf{w}_{\nu})_i$$
$$w_{\nu,i} = -\varepsilon^2 \Delta u_{\nu,i} + \frac{\partial \psi_0(\mathbf{u}_{\nu})}{\partial u_{\nu,i}} + \theta_\nu(u_{\nu,i}) - \frac{1}{N} \sum_{j=1}^N \left(\theta_\nu(u_{\nu,j}) + \frac{\partial \psi_0(\mathbf{u}_{\nu})}{\partial u_{\nu,j}} \right)$$
$$7 u_{\nu,i} \cdot \mathbf{n} = (L\nabla \mathbf{w}_{\nu})_i \cdot \mathbf{n} = 0 \quad \text{on } \partial\Omega$$

i = 1, . . . , *N*

Mobility:
$$L = I - \frac{1}{N} \mathbf{1} \mathbf{1}^T$$
 $(L = I)$

lack-White Inpainting

Aulti Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Final Steps to the Linear Systems

Time discretization:

Black-White Inpainting

Aulti Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

- Time discretization:
 - Implicit Euler scheme → accurate

Black-White Inpainting

Aulti Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

- Time discretization:
 - Implicit Euler scheme → accurate
 - Convexity splitting (semi-implicit) for inpainting $\rightsquigarrow \tau > 0$

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

- Time discretization:
 - Implicit Euler scheme → accurate
 - Convexity splitting (semi-implicit) for inpainting $\rightsquigarrow \tau > 0$
- Nonlinear systems: (Semismooth) Newton method

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

- Time discretization:
 - Implicit Euler scheme → accurate
 - Convexity splitting (semi-implicit) for inpainting $\rightsquigarrow \tau > 0$
- Nonlinear systems: (Semismooth) Newton method
- Space discretization: Finite element method

Black-White Inpainting

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Optimal Preconditioners

$$\mathcal{K} = \left(\begin{array}{cc} \mathsf{A} & -\mathsf{B} \\ \mathsf{C} & \mathsf{D} \end{array}\right)$$

- A nonsingular
- Schur complement $S = D + CA^{-1}B$

Linear Systems and Preconditioning

Optimal Preconditioners

$$\mathcal{K} = \left(egin{array}{cc} \mathsf{A} & -\mathsf{B} \ \mathsf{C} & \mathsf{D} \end{array}
ight)$$

• Schur complement $S = D + CA^{-1}B$

$$\mathcal{P} = \left(\begin{array}{cc} \mathbf{A} & \mathbf{0} \\ \mathbf{C} & -\hat{\mathbf{S}} \end{array} \right)$$

$$\hat{S} = S$$
:
 $\Lambda(\mathcal{P}^{-1}\mathcal{K}) = \{1, -1\}$

[MURPHY/GOLUB/WATHEN '00]

Linear Systems and Preconditioning

Optimal Preconditioners

Schur complement
$$S = D + CA$$

$$\mathcal{P} = \left(egin{array}{cc} A & 0 \\ C & -\hat{S} \end{array}
ight)$$
 • $\hat{S} = S$:
 $\wedge (\mathcal{P}^{-1}\mathcal{K}) = \{1, -1\}$

[MURPHY/GOLUB/WATHEN '00]

Goal

Good and easy to compute approximation \hat{S} of the Schur complement *S*.

Max Planck Institute Magdeburg

 ^{-1}B

Multi Phases

Linear Systems and Preconditioning
Linear Cahn–Hilliard Systems

$$\mathcal{K} = \begin{pmatrix} I_N \otimes M & -\mathcal{B} \\ \alpha L_N \otimes K & I_N \otimes (\beta M + \gamma K) \end{pmatrix} \qquad \alpha, \beta > 0, \gamma \ge 0$$

Multi Phases

Linear Systems and Preconditionin

Linear Cahn–Hilliard Systems

$$\mathcal{K} = \begin{pmatrix} I_N \otimes M & -\mathcal{B} \\ \alpha L_N \otimes K & I_N \otimes (\beta M + \gamma K) \end{pmatrix} \qquad \alpha, \beta > 0, \gamma \ge 0$$

${\mathcal B}$ contains the potential and penalty terms

Multi Phases

Linear Systems and Preconditionir

/o Phases

Linear Cahn-Hilliard Systems

$$\mathcal{K} = \begin{pmatrix} I_N \otimes M & -\mathcal{B} \\ \alpha L_N \otimes K & I_N \otimes (\beta M + \gamma K) \end{pmatrix} \qquad \alpha, \beta > 0, \gamma \ge 0$$

\mathcal{B} contains the potential and penalty terms

- if bound constraint is violated, otherwise $\begin{cases} \frac{1}{\nu} \\ 0 \end{cases}$

Linear Cahn-Hilliard Systems

$$\mathcal{K} = \begin{pmatrix} I_N \otimes M & -\mathcal{B} \\ \alpha L_N \otimes K & I_N \otimes (\beta M + \gamma K) \end{pmatrix} \qquad \alpha, \beta > 0, \gamma \ge 0$$

$\mathcal B$ contains the potential and penalty terms

if bound constraint is violated, otherwise $\begin{cases} \frac{1}{\nu} \\ 0 \end{cases}$

Two Phases

- N = 1
- \mathcal{B} indefinite
- $\gamma = 0$

Inpainting

● *N* = 1

• \mathcal{B} symmetric positive (semi-)definite

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Schur Complement Approximation – Scalar Problems

$$\mathcal{K} = \begin{pmatrix} M & -\mathcal{B} \\ \alpha K & \beta M + \gamma K \end{pmatrix}$$

$$\alpha,\beta>0,\gamma\geq 0$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Schur Complement Approximation – Scalar Problems

$$\mathcal{K} = \begin{pmatrix} M & -\mathcal{B} \\ \alpha K & \beta M + \gamma K \end{pmatrix}$$

$$\alpha, \beta > 0, \gamma \ge 0$$

The Schur complement

$$S = \beta M + \alpha K M^{-1} \mathcal{B} + \gamma K$$

is approximated by

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Schur Complement Approximation – Scalar Problems

$$\mathcal{K} = \begin{pmatrix} M & -\mathcal{B} \\ \alpha K & \beta M + \gamma K \end{pmatrix}$$

$$\alpha, \beta > 0, \gamma \ge 0$$

The Schur complement

$$\mathcal{S} = \beta \mathbf{M} + \alpha \mathbf{K} \mathbf{M}^{-1} \mathcal{B} + \gamma \mathbf{K}$$

is approximated by

$$\hat{\mathcal{S}} = \left(\sqrt{\beta}M + \sqrt{\alpha}K\right)M^{-1}\left(\sqrt{\beta}M + \sqrt{\alpha}\mathcal{B}\right)$$

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Schur Complement Approximation – Scalar Problems

$$\mathcal{K} = \begin{pmatrix} M & -\mathcal{B} \\ \alpha K & \beta M + \gamma K \end{pmatrix}$$

$$\alpha, \beta > 0, \gamma \ge 0$$

The Schur complement

$$\mathcal{S} = \beta \mathbf{M} + \alpha \mathbf{K} \mathbf{M}^{-1} \mathcal{B} + \gamma \mathbf{K}$$

is approximated by

$$\hat{S} = \left(\sqrt{\beta}M + \sqrt{\alpha}K\right)M^{-1}\left(\sqrt{\beta}M + \sqrt{\alpha}B\right)$$
$$= \beta M + \alpha K M^{-1}B + \sqrt{\alpha\beta}K + \sqrt{\alpha\beta}B.$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Schur Complement Approximation – Scalar Problems

$$\mathcal{K} = \begin{pmatrix} M & -\mathcal{B} \\ \alpha K & \beta M + \gamma K \end{pmatrix}$$

$$\alpha, \beta > 0, \gamma \ge 0$$

The Schur complement

$$S = \beta M + \alpha K M^{-1} \mathcal{B} + \gamma K$$

is approximated by

$$\hat{S} = \left(\sqrt{\beta}M + \sqrt{\alpha}K\right)M^{-1}\left(\sqrt{\beta}M + \sqrt{\alpha}B\right)$$
$$= \beta M + \alpha K M^{-1}B + \sqrt{\alpha\beta}K + \sqrt{\alpha\beta}B.$$

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Schur Complement Approximation – Scalar Problems

$$\mathcal{K} = \begin{pmatrix} M & -\mathcal{B} \\ \alpha K & \beta M + \gamma K \end{pmatrix}$$

$$\alpha, \beta > 0, \gamma \ge 0$$

The Schur complement

$$\mathcal{S} = \beta \mathbf{M} + \alpha \mathbf{K} \mathbf{M}^{-1} \mathcal{B} + \gamma \mathbf{K}$$

is approximated by

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Schur Complement Approximation – Scalar Problems

$$\mathcal{K} = \begin{pmatrix} M & -\mathcal{B} \\ \alpha K & \beta M + \gamma K \end{pmatrix}$$

$$\alpha, \beta > 0, \gamma \ge 0$$

The Schur complement

$$\mathcal{S} = \beta \mathbf{M} + \alpha \mathbf{K} \mathbf{M}^{-1} \mathcal{B} + \gamma \mathbf{K}$$

is approximated by

The shift $\sqrt{\beta}M$ makes $\left(\sqrt{\beta}M + \sqrt{\alpha}\mathcal{B}\right)$ positive definite.

Linear Multi-Phase Cahn–Hilliard Systems

For e.g. N = 3 phases, \mathcal{K} is given as

$$\mathcal{K} = \begin{pmatrix} M & 0 & 0 & -B_{11} & -B_2 & -B_3 \\ 0 & M & 0 & -B_1 & -B_{22} & -B_3 \\ 0 & 0 & M & -B_1 & -B_2 & -B_{33} \\ \hline \tau L_{1,1} K & \tau L_{1,2} K & \tau L_{1,3} K & M & 0 & 0 \\ \tau L_{1,2} K & \tau L_{2,2} K & \tau L_{2,3} K & 0 & M & 0 \\ \tau L_{1,3} K & \tau L_{2,3} K & \tau L_{3,3} K & 0 & 0 & M \end{pmatrix}.$$

×.

Linear Multi-Phase Cahn–Hilliard Systems

For e.g. N = 3 phases, \mathcal{K} is given as

$$\mathcal{K} = \begin{pmatrix} M & 0 & 0 & -B_{11} & -B_2 & -B_3 \\ 0 & M & 0 & -B_1 & -B_{22} & -B_3 \\ 0 & 0 & M & -B_1 & -B_2 & -B_{33} \\ \hline \tau L_{1,1} K & \tau L_{1,2} K & \tau L_{1,3} K & M & 0 & 0 \\ \tau L_{1,2} K & \tau L_{2,2} K & \tau L_{2,3} K & 0 & M & 0 \\ \tau L_{1,3} K & \tau L_{2,3} K & \tau L_{3,3} K & 0 & 0 & M \end{pmatrix}.$$

We need a Schur complement approximation of

 $S = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}.$

Multi Phases

Linear Systems and Preconditionin

wo Phases

Linear Multi-Phase Cahn–Hilliard Systems

For e.g. N = 3 phases, \mathcal{K} is given as

$$\mathcal{K} = \begin{pmatrix} M & 0 & 0 & -B_{11} & -B_2 & -B_3 \\ 0 & M & 0 & -B_1 & -B_{22} & -B_3 \\ 0 & 0 & M & -B_1 & -B_2 & -B_{33} \\ \hline \tau L_{1,1} K & \tau L_{1,2} K & \tau L_{1,3} K & M & 0 & 0 \\ \tau L_{1,2} K & \tau L_{2,2} K & \tau L_{2,3} K & 0 & M & 0 \\ \tau L_{1,3} K & \tau L_{2,3} K & \tau L_{3,3} K & 0 & 0 & M \end{pmatrix}.$$

We need a Schur complement approximation of

 $\mathcal{S} = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}.$

Smooth potential ~> 'simple'

Linear Multi-Phase Cahn–Hilliard Systems

For e.g. N = 3 phases, \mathcal{K} is given as

$$\mathcal{K} = \begin{pmatrix} M & 0 & 0 & -B_{11} & -B_2 & -B_3 \\ 0 & M & 0 & -B_1 & -B_{22} & -B_3 \\ 0 & 0 & M & -B_1 & -B_2 & -B_{33} \\ \hline \tau L_{1,1} K & \tau L_{1,2} K & \tau L_{1,3} K & M & 0 & 0 \\ \tau L_{1,2} K & \tau L_{2,2} K & \tau L_{2,3} K & 0 & M & 0 \\ \tau L_{1,3} K & \tau L_{2,3} K & \tau L_{3,3} K & 0 & 0 & M \end{pmatrix}.$$

We need a Schur complement approximation of

 $\mathcal{S} = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}.$

Smooth potential \rightarrow 'simple'

Onstant Potential \rightsquigarrow penalty terms in every block of \mathcal{B}

Multi Phase

Linear Systems and Precondition

lack-White Inpainting

Aulti Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Approximation of the Block ${\mathcal B}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N = 3)$$

lack-White Inpainting

Aulti Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Approximation of the Block $\ensuremath{\mathcal{B}}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N = 3)$$

The block \mathcal{B} is given for i = 1, ..., N as

$$F_i = \operatorname{diag}\left(3\left(u_i^{(k)}(\mathbf{x}_h)\right)^2 - 3u_i^{(k)}(\mathbf{x}_h) + \frac{1}{2}\right)$$

lack-White Inpainting

Aulti Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Approximation of the Block $\ensuremath{\mathcal{B}}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N=3)$$

The block \mathcal{B} is given for i = 1, ..., N as

$$F_i = \operatorname{diag}\left(3\left(u_i^{(k)}(\mathbf{x}_h)\right)^2 - 3u_i^{(k)}(\mathbf{x}_h) + \frac{1}{2}\right)$$

$$B_{ii} = \varepsilon^2 K + \left(\frac{N-1}{N}\right) F_i M F_i$$

$$B_i = -\frac{1}{N}F_iMF_i$$

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Approximation of the Block $\ensuremath{\mathcal{B}}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N=3)$$

The block \mathcal{B} is given for i = 1, ..., N as

$$F_{i} = \text{diag}\left(3\left(u_{i}^{(k)}(\mathbf{x}_{h})\right)^{2} - 3u_{i}^{(k)}(\mathbf{x}_{h}) + \frac{1}{2}\right) \underset{\sim}{\overset{\leftarrow}{=}} (-2.5, 3.5)$$

$$B_{ii} = \varepsilon^2 K + \left(\frac{N-1}{N}\right) F_i M F_i$$

$$B_i = -\frac{1}{N}F_iMF_i$$

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Approximation of the Block ${\mathcal B}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N = 3)$$

The block \mathcal{B} is given for i = 1, ..., N as

$$F_{i} = \text{diag}\left(3\left(u_{i}^{(k)}(\mathbf{x}_{h})\right)^{2} - 3u_{i}^{(k)}(\mathbf{x}_{h}) + \frac{1}{2}\right) \underset{\sim}{\overset{\leftarrow}{=}} (-2.5, 3.5)$$

lack-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Approximation of the Block ${\mathcal B}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N = 3)$$

The block \mathcal{B} is given for i = 1, ..., N as

$$F_{i} = \text{diag}\left(3\left(u_{i}^{(k)}(\mathbf{x}_{h})\right)^{2} - 3u_{i}^{(k)}(\mathbf{x}_{h}) + \frac{1}{2}\right) \underset{\sim}{\overset{\leftarrow}{=}} (-2.5, 3.5)$$

Max Planck Institute Magdeburg

J. Bosch, Preconditioning for various Cahn–Hilliard systems 19/27

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Approximation of the Block ${\mathcal B}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N = 3) \qquad \hat{\mathcal{B}} = \begin{pmatrix} \hat{B} & 0 & 0 \\ 0 & \hat{B} & 0 \\ 0 & 0 & \hat{B} \end{pmatrix}$$

The block \mathcal{B} is given for i = 1, ..., N as

$$F_{i} = \text{diag}\left(3\left(u_{i}^{(k)}(\mathbf{x}_{h})\right)^{2} - 3u_{i}^{(k)}(\mathbf{x}_{h}) + \frac{1}{2}\right) \underset{\sim}{\overset{\leftarrow}{=}} (-2.5, 3.5)$$

Max Planck Institute Magdeburg

J. Bosch, Preconditioning for various Cahn–Hilliard systems 19/27

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Schur Complement Approximation

The Schur complement

$$S = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

is then approximated by

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Schur Complement Approximation

The Schur complement

$$\mathcal{S} = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

is then approximated by

$$\hat{\mathcal{S}} = \left(\frac{N}{N-1}I \otimes M + \tau L \otimes K\right)(I \otimes M)^{-1}\left(\frac{N-1}{N}I \otimes M + \varepsilon^2 I \otimes K\right)$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Schur Complement Approximation

The Schur complement

$$\mathcal{S} = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

is then approximated by

$$\hat{S} = \left(\frac{N}{N-1}I \otimes M + \tau L \otimes K\right)(I \otimes M)^{-1}\left(\frac{N-1}{N}I \otimes M + \varepsilon^2 I \otimes K\right)$$
$$= \left(\frac{N}{N-1}I \otimes M + \tau L \otimes K\right)(I \otimes M)^{-1}\hat{B}$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Schur Complement Approximation

The Schur complement

$$\mathcal{S} = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

is then approximated by

$$\begin{split} \hat{\mathcal{S}} &= \Big(\frac{N}{N-1}I \otimes M + \tau L \otimes K\Big)(I \otimes M)^{-1}\Big(\frac{N-1}{N}I \otimes M + \varepsilon^2 I \otimes K\Big) \\ &= \Big(\frac{N}{N-1}I \otimes M + \tau L \otimes K\Big)(I \otimes M)^{-1}\hat{\mathcal{B}} \\ &= I \otimes M + \tau (L \otimes K)(I \otimes M)^{-1}\hat{\mathcal{B}} + \frac{\varepsilon^2 N}{N-1}I \otimes K. \end{split}$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Schur Complement Approximation

The Schur complement

$$S = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

is then approximated by

4

$$\hat{S} = \left(\frac{N}{N-1}I \otimes M + \tau L \otimes K\right)(I \otimes M)^{-1}\left(\frac{N-1}{N}I \otimes M + \varepsilon^2 I \otimes K\right)$$
$$= \left(\frac{N}{N-1}I \otimes M + \tau L \otimes K\right)(I \otimes M)^{-1}\hat{\mathcal{B}}$$
$$= I \otimes M + \tau (L \otimes K)(I \otimes M)^{-1}\hat{\mathcal{B}} + \frac{\varepsilon^2 N}{N-1}I \otimes K.$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Smooth Potential – Schur Complement Approximation

The Schur complement

$$S = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

is then approximated by

4

$$\hat{S} = \overbrace{\left(\frac{N}{N-1}I \otimes M + \tau L \otimes K\right)}^{\mathsf{FFT} + \mathsf{AMG}} \underbrace{\left(L = I - \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathsf{T}}\right)}_{\mathsf{AMG}} \underbrace{\mathsf{AMG}}_{\mathsf{AMG}}$$

$$= \underbrace{\left(\frac{N}{N-1}I \otimes M + \tau L \otimes K\right)}_{\mathsf{AMG}} (I \otimes M)^{-1} \widehat{\mathcal{B}}$$

$$= I \otimes M + \tau (L \otimes K)(I \otimes M)^{-1} \widehat{\mathcal{B}} + \frac{\varepsilon^2 N}{N-1}I \otimes K.$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

FFT based Preconditioner [STOLL '13]

$$\frac{N}{N-1}I \otimes M + \tau L \otimes K \Big) \mathbf{y} = \mathbf{g}$$
(1)

FFT based Preconditioner [STOLL '13]

$$\left(\frac{N}{N-1}I\otimes M+\tau L\otimes K\right)\mathbf{y}=\mathbf{g} \tag{1}$$

•
$$L = F \operatorname{diag}(\lambda_1, \ldots, \lambda_N) F^H$$
 [Chen '87]

FFT based Preconditioner [STOLL '13]

$$\left(\frac{N}{N-1}I\otimes M+\tau L\otimes K\right)\mathbf{y}=\mathbf{g} \tag{1}$$

•
$$L = F \operatorname{diag}(\lambda_1, \dots, \lambda_N) F^H$$
 [Chen '87]

apply FFT to (1)

Multi Phases

Linear Systems and Preconditionin

$$(F^{H} \otimes I) \left(\frac{N}{N-1} I \otimes M + \tau L \otimes K \right) (F \otimes I) (F^{H} \otimes I) \mathbf{y} = (F^{H} \otimes I) \mathbf{g}$$
(1)

- $L = F \operatorname{diag}(\lambda_1, \ldots, \lambda_N) F^H$ [Chen '87]
- apply FFT to (1)

Multi Phases

Linear Systems and Precon

$$(F^{H} \otimes I) \left(\frac{N}{N-1} I \otimes M + \tau L \otimes K \right) (F \otimes I) (F^{H} \otimes I) \mathbf{y} = (F^{H} \otimes I) \mathbf{g}$$
(1)

•
$$L = F \operatorname{diag}(\lambda_1, \ldots, \lambda_N) F^H$$
 [Chen '87]

equivalent block-diagonal system

$$\left(\frac{N}{N-1}I\otimes M+\tau \operatorname{diag}(\lambda_1,\ldots,\lambda_N)\otimes K\right)\tilde{\mathbf{y}}=\tilde{\mathbf{g}}.$$

Nonsmooth Potential – The Block ${\mathcal B}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N=3)$$

Multi Phases

Linear Systems and Preconditionin

Phases

Nonsmooth Potential – The Block ${\mathcal B}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N = 3)$$

The block \mathcal{B} is given for i = 1, ..., N as

$$G_i = \operatorname{diag} \left(\begin{array}{cc} 1 & \operatorname{if} u_i^{(k)}(\mathbf{x}_h) < 0, \\ 0 & \operatorname{otherwise} \end{array} \right)$$

Multi Phases

Linear Systems and Preconditionin

Nonsmooth Potential – The Block ${\mathcal B}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N = 3)$$

The block \mathcal{B} is given for i = 1, ..., N as

$$G_{i} = \operatorname{diag} \begin{pmatrix} 1 & \text{if } u_{i}^{(K)}(\mathbf{x}_{h}) < 0, \\ 0 & \text{otherwise} \end{pmatrix}$$
$$B_{ii} = \varepsilon^{2} K + \left(\frac{N-1}{N}\right) \left(\frac{1}{\nu} G_{i} M G_{i} - M\right)$$
$$B_{i} = -\frac{1}{N} \left(\frac{1}{\nu} G_{i} M G_{i} - M\right)$$

Multi Phases

Linear Systems and Preconditio

vo Phases
Linear Systems and Preconditioning

Nonsmooth Potential – The Block ${\mathcal B}$

$$\mathcal{B} = \begin{pmatrix} B_{11} & B_2 & B_3 \\ B_1 & B_{22} & B_3 \\ B_1 & B_2 & B_{33} \end{pmatrix} \qquad (N = 3)$$

The block \mathcal{B} is given for i = 1, ..., N as

$$G_{i} = \operatorname{diag} \begin{pmatrix} 1 & \text{if } u_{i}^{(K)}(\mathbf{x}_{h}) < 0, \\ 0 & \text{otherwise} \end{pmatrix}$$
$$B_{ii} = \varepsilon^{2} K + \left(\frac{N-1}{N}\right) \left(\frac{1}{\nu} G_{i} M G_{i} - M\right)$$
$$B_{i} = -\frac{1}{N} \left(\frac{1}{\nu} G_{i} M G_{i} - M\right)$$

 $\nu \ll 1 \Rightarrow$ Cannot neglect this term!

Max Planck Institute Magdeburg

J. Bosch, Preconditioning for various Cahn–Hilliard systems 22/27

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Nonsmooth Potential – Schur Complement Approximation

The Schur complement

$$S = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Nonsmooth Potential – Schur Complement Approximation

The Schur complement

$$S = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

$$\hat{\mathcal{S}} = \left(\frac{N}{N-1}I \otimes M + \sqrt{\tau}L \otimes K\right)(I \otimes M)^{-1}\left(\frac{N-1}{N}I \otimes M + \sqrt{\tau}\mathcal{B}\right)$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Nonsmooth Potential – Schur Complement Approximation

The Schur complement

$$\mathcal{S} = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

$$\hat{S} = \left(\frac{N}{N-1}I \otimes M + \sqrt{\tau}L \otimes K\right)(I \otimes M)^{-1} \left(\frac{N-1}{N}I \otimes M + \sqrt{\tau}B\right)$$
$$= I \otimes M + \tau(L \otimes K)(I \otimes M)^{-1}B + \frac{\sqrt{\tau}N}{N-1}B + \frac{\sqrt{\tau}(N-1)}{N}L \otimes K.$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Nonsmooth Potential – Schur Complement Approximation

The Schur complement

$$S = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

$$\hat{S} = \left(\frac{N}{N-1}I \otimes M + \sqrt{\tau}L \otimes K\right)(I \otimes M)^{-1} \left(\frac{N-1}{N}I \otimes M + \sqrt{\tau}B\right)$$
$$= I \otimes M + \tau(L \otimes K)(I \otimes M)^{-1}B + \frac{\sqrt{\tau}N}{N-1}B + \frac{\sqrt{\tau}(N-1)}{N}L \otimes K.$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Nonsmooth Potential – Schur Complement Approximation

The Schur complement

$$\mathcal{S} = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Linear Systems and Preconditioning

Nonsmooth Potential – Schur Complement Approximation

The Schur complement

$$\mathcal{S} = I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B}$$

is then approximated by

$$\hat{S} = \overbrace{\left(\frac{N}{N-1}I \otimes M + \sqrt{\tau}L \otimes K\right)}^{\text{FFT} + \text{AMG}} (I \otimes M)^{-1} \overbrace{\left(\frac{N-1}{N}I \otimes M + \sqrt{\tau}B\right)}^{\text{Jacobi + AMG}}$$
$$= I \otimes M + \tau (L \otimes K) (I \otimes M)^{-1} \mathcal{B} + \frac{\sqrt{\tau}N}{N-1} \mathcal{B} + \frac{\sqrt{\tau}(N-1)}{N} L \otimes K.$$

The shift with *M* makes the diagonal blocks of $\left(\frac{N-1}{N}I \otimes M + \sqrt{\tau}\mathcal{B}\right)$ positive definite.

Max Planck Institute Magdeburg

J. Bosch, Preconditioning for various Cahn–Hilliard systems 23/27

Black-White Inpainting

Aulti Phases

Linear Systems and Preconditioning

Numerical Results

Numerical Results

Two Phases – BiCG Iteration Numbers

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Numerical Results

Smooth Multi-Phase Model – BiCG Iteration Numbers

Max Planck Institute Magdeburg

J. Bosch, Preconditioning for various Cahn–Hilliard systems 25/27

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Numerical Results

Nonsmooth Multi-Phase Model – BiCG Iteration Numbers

Max Planck Institute Magdeburg

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Numerical Results

Results and Outlook

Results

• Smooth: Numerically mesh and phase independent preconditioners.

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Results and Outlook

Results

- Smooth: Numerically mesh and phase independent preconditioners.
- Moreau–Yosida based solver for the handling of the nonsmoothness.

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Results and Outlook

Results

- Smooth: Numerically mesh and phase independent preconditioners.
- Moreau–Yosida based solver for the handling of the nonsmoothness.
- Nonsmooth: Outperforming preconditioned version compared to the unpreconditioned one.

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Results and Outlook

Results

- Smooth: Numerically mesh and phase independent preconditioners.
- Moreau–Yosida based solver for the handling of the nonsmoothness.
- Nonsmooth: Outperforming preconditioned version compared to the unpreconditioned one.
- More accurate results with the nonsmooth model.

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Results and Outlook

Results

- Smooth: Numerically mesh and phase independent preconditioners.
- Moreau–Yosida based solver for the handling of the nonsmoothness.
- Nonsmooth: Outperforming preconditioned version compared to the unpreconditioned one.
- More accurate results with the nonsmooth model.

Outlook

• Proofs for the preconditioner.

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Results and Outlook

Results

- Smooth: Numerically mesh and phase independent preconditioners.
- Moreau–Yosida based solver for the handling of the nonsmoothness.
- Nonsmooth: Outperforming preconditioned version compared to the unpreconditioned one.
- More accurate results with the nonsmooth model.

Outlook

- Proofs for the preconditioner.
- Nonsmooth: Enhanced Schur complement approximation?

Black-White Inpainting

Multi Phases

Linear Systems and Preconditioning

Numerical Results

Results and Outlook

Results

- Smooth: Numerically mesh and phase independent preconditioners.
- Moreau–Yosida based solver for the handling of the nonsmoothness.
- Nonsmooth: Outperforming preconditioned version compared to the unpreconditioned one.
- More accurate results with the nonsmooth model.

Outlook

- Proofs for the preconditioner.
- Nonsmooth: Enhanced Schur complement approximation?
- Grey/color inpainting.

Black-White Inpainting

Multi Phases

Two Phases Different Potentials

Max Planck Institute Magdeburg

Black-White Inpainting

Multi Phases

Two Phases

Two Phases **Dumbbell in 3D**

- $\Omega = (-1, 1)^3$
- $\varepsilon = 0.03$
- $\tau = 5 \cdot 10^{-5}$
- $c_{max} = 10^{-5}$
- $h_0 = 2^{-5}$ • $h_{\min} = \frac{\varepsilon \pi}{9}$
 - $h_{\rm max} = 10 \cdot h_{\rm min}$

(a) n = 0

-

-

Moreau-Yosida Semismooth Newton (SSN) Solver in 1D

C max	$\ u_{c_{\max},h}-u_{\mathrm{ex},h}\ _2$	max. SSN\BiCG iterations	CPU time (s)
10 ⁻³	2.46337 · 10 ⁻²	2\14	0.34
10 ⁻⁶	3.05118 · 10 ^{−3}	2\14	0.41
10 ⁻⁹	3.06076 · 10 ⁻³	2\14	0.50
10 ⁻³	3.58987 · 10 ⁻²	3\15	0.61
10 ⁻⁶	9.32589 · 10 ⁻⁴	3\16	0.87
10 ⁻⁹	$9.31919 \cdot 10^{-4}$	3\16	1.00
10 ⁻³	5.04977 · 10 ⁻²	3\15	1.17
10 ⁻⁶	6.92492 · 10 ⁻⁴	3\16	1.80
10 ⁻⁹	6.71485 · 10 ⁻⁴	3\17	2.12
10 ⁻³	7.10723 · 10 ⁻²	3\15	2.17
10 ⁻⁶	2.63167 · 10 ⁻⁴	3\16	3.55
10 ⁻⁹	$1.99167 \cdot 10^{-4}$	3\17	4.07
	$\begin{array}{c} C_{max} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \end{array}$	$\begin{array}{c c} c_{max} & u_{c_{max},h} - u_{ex,h} _2 \\ \hline 10^{-3} & 2.46337 \cdot 10^{-2} \\ 10^{-6} & 3.05118 \cdot 10^{-3} \\ 10^{-9} & 3.06076 \cdot 10^{-3} \\ 10^{-3} & 3.58987 \cdot 10^{-2} \\ 10^{-6} & 9.32589 \cdot 10^{-4} \\ 10^{-9} & 9.31919 \cdot 10^{-4} \\ 10^{-3} & 5.04977 \cdot 10^{-2} \\ 10^{-6} & 6.92492 \cdot 10^{-4} \\ 10^{-9} & 6.71485 \cdot 10^{-4} \\ 10^{-3} & 7.10723 \cdot 10^{-2} \\ 10^{-6} & 2.63167 \cdot 10^{-4} \\ 10^{-9} & 1.99167 \cdot 10^{-4} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Black-White Inpainting

Multi Phases

Two Phases

Semi-Implicit Time Discretization and Large Time Steps

Figure: Initial state.

Exact solution

Small red circle vanishes at time $t = 1.85 \cdot 10^{-3}$.

Black-White Inpainting

Multi Phases

Two Phases

Semi-Implicit Time Discretization and Large Time Steps

Figure: Semi-implicit Cahn–Hilliard evolution with different time steps τ . The figure shows the solutions at time $t = 3 \cdot 10^{-3}$.

Remember: In the exact solution the small red circle vanishes at time $t = 1.85 \cdot 10^{-3}$.

Black-White Inpainting ●○○○○○○ Multi Phases

Black-White Inpainting

Modified Cahn-Hilliard Model

$$\partial_t u(t) = -\operatorname{grad}_{H^{-1}} \mathcal{E}(u(t)) - \operatorname{grad}_{L^2} \mathcal{E}_2(u(t))$$

$$\mathcal{E}_2(u) = \int_{\Omega} \frac{\omega}{2} (f-u)^2 \,\mathrm{d}\mathbf{x}$$

Regularized modified Cahn-Hilliard subproblem

$$\partial_t u_{\nu} = \Delta \left(-\varepsilon \Delta u_{\nu} + \frac{1}{\varepsilon} \psi_0'(u_{\nu}) + \theta_{\nu}(u_{\nu}) \right) + \omega (f - u_{\nu})$$
$$\nabla u_{\nu} \cdot \mathbf{n} = \nabla (\Delta u_{\nu}) \cdot \mathbf{n} = 0 \quad \text{on } \partial \Omega$$

Max Planck Institute Magdeburg

Black-White Inpainting

Multi Phases

Black-White Inpainting

Three-Dimensional Space

Black-White Inpainting

Multi Phases

Black-White Inpainting

Black-White Inpainting

Multi Phases

Black-White Inpainting

Nonsmooth Potential – BiCG Iteration Numbers

Black-White Inpainting

Multi Phases

Black-White Inpainting

Comparison to Other Methods

Figure: Initial state.

Black-White Inpainting

Multi Phases

Black-White Inpainting

Comparison to Other Methods

Max Planck Institute Magdeburg

J. Bosch, Preconditioning for various Cahn–Hilliard systems 38/27

Black-White Inpainting

Multi Phases

Black-White Inpainting FEM vs. FFT – Smooth Potential

Black-White Inpainting

Multi Phases

Black-White Inpainting

Black-White Inpainting

Multi Phases

Black-White Inpainting

FFT with Regularization

Multi Phases Final Steps to the Linear Systems

• Time discretization: Implicit Euler scheme

$$\tau < \frac{4\varepsilon^2}{\lambda_{\max}^2(A) \|L\|}$$
 (nonsmooth) \Rightarrow here: $\tau < 4\varepsilon^2$

[BLOWEY/COPETTI/ELLIOTT '96]

Nonlinear systems: (Semismooth) Newton method

 $(\min(0, v))' \rightsquigarrow \chi_{\mathcal{A}(v)},$

where $\mathcal{A}(v) \coloneqq \{ \mathbf{x} \in \Omega : v(\mathbf{x}) < 0 \}$

Space discretization: Finite element method

Multi Phases FFT based Preconditioner [STOLL '13]

We formulate each of the *N* complex valued systems to 2×2 real valued block systems. As $\lambda_1 = 0$ and $\lambda_2 = \ldots = \lambda_N = 1$ we get two types

$$\begin{bmatrix} \frac{N}{N-1}M(+\tau K) & 0\\ 0 & \frac{N}{N-1}M(+\tau K) \end{bmatrix} \begin{bmatrix} \tilde{y}_r\\ \tilde{y}_c \end{bmatrix} = \begin{bmatrix} \tilde{g}_r\\ \tilde{g}_c \end{bmatrix}$$

which are solved with a fixed number of steps of

Inexact Uzawa method

$$\tilde{\mathbf{y}}^{(l+1)} = \tilde{\mathbf{y}}^{(l)} + \omega \mathcal{P}_1^{-1} \mathbf{r}^{(l)},$$

where \mathcal{P}_1 is a block-diagonal AMG preconditioner.

Black-White Inpainting

Multi Phases

Multi Phases Evolution of Multi Phases

Black-White Inpainting

Multi Phases

Multi Phases Smooth vs. Nonsmooth Evolution

n = 0

n = 20

n = 100
Black-White Inpainting

Multi Phases Smooth vs. Nonsmooth Evolution

			Time step	
		20	60	100
Min	Smooth	-0.02771	-0.02439	-0.02627
0	Nonsmooth	-1.186 · 10 ⁻⁷	-1.172 · 10 ⁻⁷	-1.178 · 10 ⁻⁷
Max	Smooth	0.9764	1.001	0.9972
1	Nonsmooth	1	1	1

Table: Minimum and maximum values of the phase variable u_1 in the smooth and nonsmooth model.

Black-White Inpainting

Multi Phases

Nonsmooth Potential – BiCG Iteration Numbers

Max Planck Institute Magdeburg

Black-White Inpainting

Multi Phases

Multi Phases

