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Two Phases

Two-Phase Structure

phase A
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interface
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@ u: Qx(0,T) — R concentration
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&(u) = fQ %qulz-i—%l,b(u)dx
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Smooth potential

P(u) = 7(P =17
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Energy Functional

&(u) = fQ %qulz-i—%l,b(u)dx
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> >
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u u
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1,2 .32 11 -w?) iflu <1
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Two Phases

Moreau-Yosida Regularization

&) = [ 51V + £ (volu) + o1, (0) dx
8

1 ,
() = 50 (| max (0, u, — 1) + | min (0, u, + 1)|2)
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Two Phases

Moreau-Yosida Regularization

&(u) = j; % IVuP? + %(%(U) + 1,1y (u)) dx
8
S (wy) = 217 (Imax (0, u, — 1) + [min (0, u, + 1)P)

1

Ev(u) = fQ %IVUVIZ + %wo(uv) + 9,(uy) dx
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diu(t) = —grady-1E(u(t))
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Regularized Subproblem

diu(t) = —grady-1E(u(t))
System of two coupled PDEs
i, = Aw,

1,
WV = —EAUV + E#}O(UV) + Gv(uv)

Vu,-n=Vw,-n=0 ondQ
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Two Phases

Regularized Subproblem

diu(t) = —grady-1E(u(t))

System of two coupled PDEs

i, = Aw,

1,
WV = —EAUV + E#}O(UV) + Gv(uv)

Vu,-n=Vw,-n=0 ondQ

0,(uy) = % (max (0,u, — 1)+ min (0, u, + 1))
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Multi Phases

Multi-Phase Structure

QcRY del1,2,3}

phase A u: Qx(0,T)» R
phase B up: Qx(0, T) » R

phase C u3: 2x(0, T) = R

interface mixture of phases
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@ number of phases N
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Multi Phases
Modeling of Multi-Phase Systems

@ number of phases N
@ vector-valued order parameter

u=(ug,...,un)": Qx (0, T) » RN

{0} if phase iis absent,
@ uje{ (0,1) ifphaseiis present,
{1} if only phase i is present
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Multi Phases @)
Modeling of Multi-Phase Systems

@ number of phases N
@ vector-valued order parameter

u=(ug,...,un)": Qx (0, T) » RN

{0} if phase iis absent,
@ uje{ (0,1) ifphaseiis present,
{1} if only phase i is present

@ admissible states belong to

N
Zv,-:1, vi>0 i:1,...,N}

i=1

GN = {v e RN
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Regularized Subproblems

Systems of two coupled PDEs

8tu1,,,- = (LAWV),'

N
w— e, s o) o Z(@< b 8¢o<uv>)

Uy, v, j

Vu,i-n=(LVw,);-n=0 ondQ
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Regularized Subproblems

Systems of two coupled PDEs

atUV,,' = (LAWV),'

N
Wy, = —e2 AU, + 81/)o(uv) y(Uyi)— N ZA (@ (uy) alP(L(UV))

BUV, i v,j

Vu,i-n=(LVw,);-n=0 ondQ

Mobility: L =/-4117 (L=1)
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Linear Systems and Preconditioning

Final Steps to the Linear Systems

@ Time discretization:
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Final Steps to the Linear Systems

@ Time discretization:
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@ Time discretization:
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@ Nonlinear systems: (Semismooth) Newton method
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Linear Systems and Preconditioning

Final Steps to the Linear Systems

@ Time discretization:
o Implicit Euler scheme ~» accurate
o Convexity splitting (semi-implicit) for inpainting ~ 7 > 0

@ Nonlinear systems: (Semismooth) Newton method

@ Space discretization: Finite element method

Max Planck Institute Magdeburg J. Bosch, Preconditioning for various Cahn—Hilliard systems ~ 14/27



Linear Systems and Preconditioning
L]

Linear Systems and Preconditioning

Optimal Preconditioners

( A -B ) @ A nonsingular
K =
¢c D @ Schur complement S =D + CA™'B
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Linear Systems and Preconditioning

Optimal Preconditioners

A -B @ A nonsingular
K =
¢c D @ Schur complement S =D + CA™'B
A 0 e S=S:
P = .
¢ -S NP'K) = {1,-1}
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Linear Systems and Preconditioning

Optimal Preconditioners

A -B @ A nonsingular
K =
¢c D @ Schur complement S =D + CA™'B
A 0 e S=S:
P = .
¢ -S NP'K) = {1,-1}

[MurpHY/GoLus/WATHEN "00]

Good and easy to compute approximation S of the Schur
complement S.
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Linear Systems and Preconditioning

Linear Cahn-Hilliard Systems

[ In®M _B
_( alne@K In® (BM+ yK) ) a,>0,y>0
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Linear Systems and Preconditioning

Linear Cahn-Hilliard Systems

INn@M -B
(“’—N®K IN®(ﬁM+yK)) a,f>0,72>0

B contains the potential and penalty terms
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Linear Cahn-Hilliard Systems

INn@M -B
(“’—N®K IN®(ﬁM+yK)) a,f>0,72>0

B contains the potential and penalty terms

% if bound constraint is violated,
0 otherwise
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Linear Systems and Preconditioning

Linear Cahn-Hilliard Systems

[ In®M -B
_([XLN®K IN®(,BM+)/K)) Oé,ﬁ>0,)/zo

B contains the potential and penalty terms

% if bound constraint is violated,
0 otherwise

Inpainting

o N=1 o N=1
@ $Bindefinite @ B symmetric positive
@ y=0 (semi-)definite
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Schur Complement Approximation — Scalar Problems

M -8B
W:(aK ﬁM+)/K) oc,ﬁ>0,)/20
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Schur Complement Approximation — Scalar Problems

M -8B
W:(aK /3M+)/K) a,>0,y>0

The Schur complement
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is approximated by
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Schur Complement Approximation — Scalar Problems

M -8B
W:(aK /3/\/7+)/K) a,>0,y>0

The Schur complement
S =M+ aKM' B + yK

is approximated by

S =(yBM+ VaK)M™' (\BM + VaB)
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Linear Systems and Preconditioning

Schur Complement Approximation — Scalar Problems

M -8B
W:(aK /3/\/7+)/K) a,>0,y>0

The Schur complement
S =M+ aKM' B + yK

is approximated by
AMG AMG

S=(VBM+ VaK)M™" ({BM + VaB)
=M + aKM™'B + \JapK + \JapB.
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Linear Systems and Preconditioning

Schur Complement Approximation — Scalar Problems

M -8B
W:(aK /3/\/7+)/K) a,>0,y>0

The Schur complement
S =M+ aKM' B + yK

is approximated by
AMG AMG

S = (M + vaK) M| (\BM + VaB)
= BM + aKM™' B + \JapK + JapB.
The shift M makes | (y/BM + VaB)|positive definite.
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Linear Systems and Preconditioning

Linear Multi-Phase Cahn-Hilliard Systems

For e.g. N = 3 phases, K is given as

M 0 0 -By1 -Bo -B3

0 M 0 -B;y —-Bx -Bs

g — 0 0 M | =By -B, -Bas
i1 K tLisK tlizK| M 0 0
TL1,2 K TL2,2 K TL2,3 K 0 M 0
tlisK 7tlosK 1tl3sK 0 0 M
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Linear Systems and Preconditioning

Linear Multi-Phase Cahn-Hilliard Systems

For e.g. N = 3 phases, K is given as

M 0 0 -By1 -Bo -B3

0 M 0 -B;y —-Bx -Bs

g — 0 0 M | =By -B, -Bas
i1 K tLisK tlizK| M 0 0
TL1,2 K TL2,2 K TL2,3 K 0 M 0
tlisK 7tlosK 1tl3sK 0 0 M

We need a Schur complement approximation of

Max Planck Institute Magdeburg

S=IeM+t(LeK)(IeM) 8.
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Linear Multi-Phase Cahn-Hilliard Systems

For e.g. N = 3 phases, K is given as

M 0 0 -By1 -Bo -B3
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g — 0 0 M | =By -B, -Bas
i1 K tLisK tlizK| M 0 0
TL1,2 K TL2,2 K TL2,3 K 0 M 0
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We need a Schur complement approximation of
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Linear Systems and Preconditioning
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Linear Systems and Preconditioning

Linear Multi-Phase Cahn-Hilliard Systems

For e.g. N = 3 phases, K is given as

M 0 0 -By1 -Bo -B3

0 M 0 -B;y —-Bx -Bs

g — 0 0 M | =By -B, -Bas
i1 K tLisK tlizK| M 0 0
TL1,2 K TL2,2 K TL2,3 K 0 M 0
tlisK 7tlosK 1tl3sK 0 0 M

We need a Schur complement approximation of

S=IeM+t(LeK)(IeM) 8.

@ Smooth potential ~ ’simple’
© Nonsmooth potential ~» penalty terms in every block of B
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Linear Systems and Preconditioning

Smooth Potential — Approximation of the Block 8

Biy1 B2 Bs
B=| B Bx Bs (N =3)
By B> Bass
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Linear Systems and Preconditioning

Smooth Potential — Approximation of the Block 8

Biy1 B2 Bs
B=| B Bx Bs (N =3)
By B> Bass

The block Bis givenfori=1,...,Nas
2
VY

F; = diag (3 (U xn))” = 3ul(xp) + %)
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Linear Systems and Preconditioning

Smooth Potential — Approximation of the Block 8

Biy1 B2 Bs
B=| B Bx Bs (N =3)
By B> Bass

The block Bis givenfori=1,...,Nas

1
Fi = dlag(S(()( )) 3ufk)(xh)+§)
B,,_52K+(NN1)FMF

1
B, =~ FiMF;
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Linear Systems and Preconditioning

Smooth Potential — Approximation of the Block 8

Biy1 B2 Bs
B=| B Bx Bs (N =3)
By B> Bass

The block Bis givenfori=1,...,Nas

Fi= dlag(S(()( )) 3u.(k)(xh)+%) € (-2.5,3.5)

I

B,,_52K+(NN1)FMF

1
B, =~ FiMF;
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Linear Systems and Preconditioning

Smooth Potential — Approximation of the Block 8

Biy1 B2 Bs
B=| B Bx Bs (N =3)
By B> Bass

The block Bis givenfori=1,...,Nas

Fi= dlag(S(()( )) 3u.(k)(xh)+%) € (-2.5,3.5)

I

B,,_52K+(NN1)FMF o
O(M) = h?
1
B; = —1;FiMFi —
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Llnear Systems and Preconditioning

Smooth Potential — Approximation of the Block 8

Biy1 B2 Bs
B=| B Bx Bs (N =3)
By B> Bass

The block Bis givenfori=1,...,Nas

Fi = dlag(S(()( )) 3ufk)(xh)+%)

€(-2.5,3.5)

)M

N1
B,,_52K+( - )FMF o B_EZKJF(NF
o(M) =
1 —
B = - FIMF; 5o
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Llnear Systems and Preconditioning

Smooth Potential — Approximation of the Block 8 N
Bi1 B> Bs ) B oo
B=| By B Bs (N=3) B=]10 B 0
Bi B, Bas 0 0 B
The block Bis givenfori=1,...,Nas
1
F; — diag (3( (9 (x,))” 3uf")(xh) + §) e (-25,35)
N -1
By = 2K + (~~ | FiMF; — 3_52K+(N—1)M
N
Oo(M) =
1 —
B = —NF,-MF,- B -0
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Linear Systems and Preconditioning
[ ]

Linear Systems and Preconditioning

Smooth Potential — Schur Complement Approximation

The Schur complement
S=IeM+1(LeK)(leM) '8

is then approximated by
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Linear Systems and Preconditioning

Smooth Potential — Schur Complement Approximation

The Schur complement
S=IeM+1(LeK)(leM) '8

is then approximated by

S- (%I@MJrTL®K)(I®M)‘1(¥I®M+821® K)
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Linear Systems and Preconditioning

Smooth Potential — Schur Complement Approximation

The Schur complement
S=IeM+1(LeK)(leM) '8

is then approximated by

3 (%I@MJrTL®K)(I®M)‘1(¥I®M+821® K)

(%I®M+7L®K)(I® M) B
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Linear Systems and Preconditioning
[ ]

Linear Systems and Preconditioning

Smooth Potential — Schur Complement Approximation

The Schur complement
S=IeM+1(LeK)(leM) '8

is then approximated by

S- (%I@MJrTL®K)(I®M)‘1(¥I®M+821® K)
— (LI®M+1L®K)(I® M) B

N -1
. &N
= IeM+ (LK)l M) '8+ N1

I® K.
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Linear Systems and Preconditioning

Smooth Potential — Schur Complement Approximation

The Schur complement
S=I1eM+t(LeK)(leM) '8

is then approximated by

S- (%I@MJrTL®K)(I®M)‘1(¥I®M+821® K)
— (LI®M+1L®K)(I® M) B

N -1
. €N
=IeM+ (LK)l M) '8 + N1

I® K.
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Linear Systems and Preconditioning
[ ]

Linear Systems and Preconditioning

Smooth Potential — Schur Complement Approximation

The Schur complement
S=IeM+1(LeK)(leM) '8

is then approximated by

FFT + AMG (L=/-§117) AMG
S= (%I@MJﬂcL ®K)(I® M)~ (¥/®M+ 21® K)
— (%I@M—FTL ®K)(/®M)-1z§

&N
N -1

—leM+1(LeK)(IeM) '8+ I® K.
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L]

Linear Systems and Preconditioning
FFT based Preconditioner [StoLL '13]

N
(HI®M+TL®K)y:g (1)
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Linear Systems and Preconditioning
FFT based Preconditioner [StoLL '13]

N
(HI®M+TL®K)y:g (1)

o L = Fdiag(Ay,...,AN) FH  [CHen '87]
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Linear Systems and Preconditioning
FFT based Preconditioner [StoLL '13]

N
(HI®M+TL®K)y:g (1)

o L = Fdiag(Ay,...,AN) FH  [CHen '87]
@ apply FFT to (1)
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Linear Systems and Preconditioning
FFT based Preconditioner [StoLL '13]

(FH®I)(%I®M+TL ®K)(F® NFr ey = (Fle g
(1)
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Linear Systems and Preconditioning
FFT based Preconditioner [StoLL '13]

(FM @ I)(%I@MJrTL ®K)(F® NFr ey = (Fle g
(1)

o L = Fdiag(Ay,...,AN) F" [CHen87]
@ apply FFT to (1)

@ equivalent block-diagonal system

(%I@M-ﬁ-’l’ diag(/h,...,AN)@K)y =4g.
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Nonsmooth Potential — The Block 8

By B> Bs
B=| B Bxn Bs (N = 3)
Bi B> Bss
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Nonsmooth Potential — The Block 8

By B> Bs
B=| B Bxn Bs (N = 3)
By B> Bas

The block Bis givenfori=1,...,Nas

1 it u(xn) <0, )

Gi = dlag( 0 otherwise
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Nonsmooth Potential — The Block 8

By B> Bs
B=| B Bxn Bs (N = 3)
By B> Bas

The block Bis givenfori=1,...,Nas

1 itd®x,) <o,
Gi = dlag( 0 otherwise
B = K + (M) (L GiMG; - m)
N v
11
B = - (5 GMai - M)
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Llnear Systems and Preconditioning
Nonsmooth Potential — The Block 8

By B> Bs
B=| B Bxn Bs (N = 3)
By B> Bas

The block Bis givenfori=1,...,Nas

(1 ifu®x) <0,
Gi = dlag( 0 otherwise
B = K + (M) (L GiMG; - m)
N v

11
B = —N(;G;MG,-—M)

v < 1 = Cannot neglect this term!
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Linear Systems and Preconditioning

Nonsmooth Potential — Schur Complement Approximation

The Schur complement
S=IeM+t(LeK)(leM) '8

is then approximated by
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The Schur complement
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is then approximated by
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Nonsmooth Potential — Schur Complement Approximation

The Schur complement
S=IeM+t(LeK)(leM) '8

is then approximated by

3:(%I®M+ \/_L®K) I& M)~ (¥/®M+ «/EB)
N N -1
—IeM+7(LeK)(IeM) '8 + ‘/:1B+ Nt N )L®K.
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Linear Systems and Preconditioning

Nonsmooth Potential — Schur Complement Approximation

The Schur complement
S=IeM+t(LeK)(leM) '8

is then approximated by
FFT + AMG Jacobi + AMG

3:(L1®M+ \/_L®K) I& M)~ (E/®M+ x/EB)

N-1 N
«/‘NB+«fN 1)

—IeM+7(LeK)(IeM) '8 + N N

L®K.
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Llnear Systems and Preconditioning

Nonsmooth Potential — Schur Complement Approximation

The Schur complement
S=IeM+t(LeK)(leM) '8

is then approximated by
FFT + AMG Jacobi + AMG

3:(L1®M+ \/_L®K) I& M)~ (EI®M+ \/?B)

N-1 N
VAN . Vi(N-1)
_1B-|- N

—IeM+7(LeK)(IeM) '8 + LeK.

The shift with M makes the diagonal blocks of
N

(%m M+ \/?B) positive definite.
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Numerical Results
Smooth Multi-Phase Model — BiCG Iteration Numbers
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Average number of BiCG
steps per Newton step
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Average number of BiCG
steps per Newton step
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(a)N=7 (b) h =278 (m = 66049)
9

Figure: L =1—F117, e » 8, 7 ~ 4¢2

Ve

|Whole system size: 2-m- N|
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Nonsmooth Multi-Phase Model — BiCG Iteration Numbers
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Numerical Results

Results and Outlook

Results

@ Smooth: Numerically mesh and phase independent
preconditioners.

@ Moreau—Yosida based solver for the handling of the
nonsmoothness.

@ Nonsmooth: Outperforming preconditioned version
compared to the unpreconditioned one.

@ More accurate results with the nonsmooth model.
Outlook

@ Proofs for the preconditioner.
@ Nonsmooth: Enhanced Schur complement approximation?
@ Grey/color inpainting.
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Two Phases

Different Potentials

T=04T,
u

-1 0 1
[BLowey/ELLiotT '91]
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Two Phases

Phase Separation in 2D
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Inpainting

Two Phases )
Dumbbell in 3D

0 Q=(-1,1)3
—o ©0-0 00 o0 o ¢ =003
@e7=5-10"°

°CmaX:10_5

°h0=2_5

(@n=0 ((b)n=4 (cjn=7 (dn=28

@ Nmin = %
@ hmax = 10 - hpin
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Two Phases

Moreau-Yosida Semismooth Newton (SSN) Solver in 1D

max. SSN\BiCG

h Cmax  Ucma,h — Uex,nll2 iterations CPU time (s)
2‘—6 108 2.46337 1072 2\14 0.34
10® 3.05118-1078 2\14 0.41
10° 3.06076-107° 2\14 0.50
2% 10°  3.58987-107? 3\15 0.61
10¢ 9.32589-10~* 3\16 0.87
10°  9.31919-10~ 3\16 1.00
2‘—8 108 5.04977-102 3\15 1.17
10¢  6.92492.10~ 3\16 1.80
10° 6.71485-10~* 3\17 2.12
2‘—9 102 7.10723-1072 3\15 2.17
10¢ 2.63167-10* 3\16 3.55
10°  1.99167-10~* 3\17 4.07
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Two Phases

Semi-Implicit Time Discretization and Large Time Steps

Figure: Initial state.

Exact solution

Small red circle vanishes at time t = 1.85- 1073,
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00000@

Two Phases

Semi-Implicit Time Discretization and Large Time Steps

t=5-10"* t=1-10"* 1=3-107°

Figure: Semi-implicit Cahn—Hilliard evolution with different time steps
7. The figure shows the solutions at time t =3 - 1073.

Remember: In the exact solution the small red circle vanishes
attimet =1.85-1073.
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Black-White Inpainting

Modified Cahn—Hilliard Model

diu(t) = —grady-1E(u(t))—grad; 2 E2(u(t))

82(u):fﬁg(f—u)2dx

Regularized modified Cahn—Hilliard subproblem

U, A(—eAuv n %%(uv) + ev(uv))w(f _u)
Vu,-n=V(Au,)-n=0 ondQ
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Black-White Inpainting

Three-Dimensional Space
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Smooth Potential — BiCG Iteration Numbers
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Black-White Inpainting

Black-White Inpainting Multi Pha

Nonsmooth Potential — BiCG Iteration Numbers
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Black-White Inpainting

Comparison to Other Methods

Figure: Initial state.
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Black-White Inpainting @

Comparison to Other Methods

a) MATLAB b) Heat d) Tv4
(a) Nonsmooth, b) Smooth, c) Nonsmooth, d) Smooth,
FEM FEM FFT FFT
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Black-White Inpainting

FEM vs. FFT — Smooth Potential
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Black-White Inpainting

FEM vs. FFT — Nonsmooth Potential
600

400 |

200 |

Average number of BiCG
steps per Newton step

| | |
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Black-White Inpainting

FFT with Regularization
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Multi Phases )

Final Steps to the Linear Systems

@ Time discretization: Implicit Euler scheme

42
(A)IILI

max

(nonsmooth) =  here: T < 4¢?

[BLoweY/CopeTTI/ELLIOTT "96]
@ Nonlinear systems: (Semismooth) Newton method
(min (0, v))" ~ Xa),
where A(v) = {x € Q: v(x) <0}

@ Space discretization: Finite element method
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Multi Phases )
FFT based Preconditioner [StoLL '13]

We formulate each of the N complex valued systems to 2 x 2

real valued block systems. As Ay =0and A, =... = Ay =1 we
get two types
%M("‘TK) 0 g’r _ gr
0 M (+1K) || o 9c

which are solved with a fixed number of steps of

Inexact Uzawa method

§OHD — g 4 P71,

where P4 is a block-diagonal AMG preconditioner.

Max Planck Institute Magdeburg J. Bosch, Preconditioning for various Cahn—Hilliard systems  43/27



Black-White Inpainting Multi Phases

Multi Phases

Evolution of Multi Phases

n =500
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Multi Phases

Smooth vs. Nonsmooth Evolution
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Multi Phases

Smooth vs. Nonsmooth Evolution

Time step
20 60 100
Min Smooth -0.02771 —0.02439 -0.02627
0 Nonsmooth | —1.186-107 —-1.172-1077 —-1.178-1077
Max Smooth 0.9764 1.001 0.9972
1 Nonsmooth 1 1 1

Table: Minimum and maximum values of the phase variable u; in the
smooth and nonsmooth model.
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Nonsmooth Potential — BiCG Iteration Numbers

Average number of BiCG
steps per Newton step
Average number of BiCG
steps per Newton step
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| Whole system size: 2-m - N|
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Nonsmooth Potential — Preconditioning vs. No Preconditioning
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