v d

: informatics g mathematics

New Computational Ordering to Reach
High Performance in the Time-domain
BEM for the Wave Equation

Berenger Bramas ¢, Olivier Coulaud?®, Guillaume Sylvandb

Sparse Days 2014

2 Inria Bordeaux — Sud-Ouest, 33405 Talence, France

b Airbus Group Innovations, Applied Mathematics and Simulation, Toulouse, France

Introduction

I

Introduction

Time Domain Boundary Element Method (TD-BEM) for wave
equation
» Simulates the propagation of a wave on a mesh

» In Electromagnetism/Acoustics for example
» TD-BEM less studied than frequency-domain BEM

» One time-domain computation is equivalent to many
frequency-domain computations

Context

» Airbus Group and Inria collaboration
» We focus on the implementation/optimizations

» The

>

>
>
>

resulting software:

will replace an old implementation

is a layer of a computational work-flow
uses black boxes all around

should run industrial simulations

Interaction Matrices, Formulation & Algorithm

Interaction /Convolution matrices

Properties of the system:

» a wave w (with a velocity ¢ and a wavelength \)

» a boundary Q2 of N unknowns

Interaction /Convolution matrices

&

Properties of the system:
» a wave w (with a velocity ¢ and a wavelength \)
» a boundary Q2 of N unknowns

Interaction /Convolution Matrix M¥:
> Sizeis N x N

» Has a NNZ value at (7, j) if unknowns are far from =~ k.c.At
The number of non-zero values depends on the distance
between the unknowns and the physical properties

» Positive definite and sparse

» For k > K,nqe the matrices M* are null
(Kmaz = 2+ lmax/(cAt), with £y, = max(x,y)EQXQ(’x —yl)
the maximum distance between two unknowns)

» Computed once if the mesh is static

-

ZLA—

Interaction /Convolution matrices - Example

> 2>
>w
>0
>
> @
> O
> >
> m
>0
> >
> w
>0

> In the example: three unknowns A, B, C in 1D

> A wave emitted from each unknown is represented at every
time steps

» All matrices M* with k > 3 are zero since the highest
distance between elements is < 3.c.At

I&W—

Formulation

Convolution system.

Kmaw
> MFarE=1n (1)
k>0

> n: the time step

» MP": the convolution matrices

» [™: the incident wave emitted by a source on the unknowns

> a": the state of the system at time n

ol

Formulation

Convolution system.

Kmaw
> MFarE=1n (1)
k>0

> n: the time step

» MP": the convolution matrices

» [™: the incident wave emitted by a source on the unknowns

> a": the state of the system at time n

The objective is to compute a™:
Kmaac
(MO (Z Mk n—) (2)

I&W—

Algorithm - Formal view

a™ is calculated in two steps:

» First step: the summation stage using the past

Kmax

s"o= Z MF . qnk (3)
k=1

sto= 1" =s" (4)

» Second step: the factorization

MO =3 (5)

I&W—

Algorithm - Formal view

a™ is calculated in two steps:

» First step: the summation stage using the past

Kmax

s = Z MFE . gk (3)
k=1

"= " —s" (4)

» Second step: the factorization

MO =3 (5)

The summation is the most expensive part!

I&W—

Algorithm - Schematic view

Kmaz
-1 " — . a k
k=1

Computational order of the summation

g T e

Possible order of computation

Front (k)/ SpMV

LSISNS"(G) = 303 ML) xa" () (7)

Possible order of computation

Possible order of computation

i

g=cr

Front (k)/ SpMV Top (i)

LSISNS"(G) = 303 ML) xa" () (7)

Structure of a slice

A Slice’:

» When outer loop index is j

» The concatenation of column j of the interaction matrices M
(except M)

» Size (N X (Kppaz — 1))

» There is one vector per line

» Sliced (i, k) = M*(i,5) # 0
with ks = d(i,7)/(cAt) and ks < k < ks+p

I"M—-—

Structure of a slice

A Slice’:
» When outer loop index is j
» The concatenation of column j of the interaction matrices M
(except M)
Size (N X (Kpmaz — 1))
There is one vector per line
Slice? (i, k) = M*(i,5) #0
with ks = d(i,7)/(cAt) and ks < k < ks+p

v

v

v

One vector per row!

I"M—-—

Slice Computation

Computation with slices

Pasti(t-1:t-4) = a°<"(j)
=

V72
——

2,77

S
A\

)
o

n
A\

]
|
|
|
|
|
|
|
|
%

P

N

N\

A\

Several Summations Per Iteration

Several Summations Per Iteration

Several Summations Per Iteration

///I// N\

//%

C W0 »-i)
[00a°<"(j
C Wioooa-

V>

2<1()

@

When grouping we need a radiation stage (because the future

Past/(t-1:t-4)

. /
summation s”<™ vectors depends on not yet computed a"<P <™)

Several Summations Per Iteration

[000a°*"()]

)\ O

N
y//MI

C 777 0 2)]
L V7 oo

0 FE)
C Wioooa-

2<1()

Past/(t-1:t-4)

@

When grouping we need a radiation stage (because the future

. /
summation s"<™ vectors depends on not yet computed a"<P <)

Multi-vectors/vector product
With vector length v = 4 and group size ngy = 4:

0
v, n_ , 1
- 2
0 011213 3
1 11213|4 4
2 213|415 5
13 314]5]6 1 6 |
[abcd]r [abed|r]r]r]r [abed|r|r]r]r]
Vector/vector Vector/matrix Multi-vectors/vector
product product product

B ||

Multi-vectors/vector product
With vector length v = 4 and group size ngy = 4:

0
v, n_ 1
- 2
0 0j1]2]3 3
1 11234 4
2 213|415 5
13 314|516 16
[abcd]r [abed|r]r]r]r [abed|r|r]r]r]
Vector/vector Vector/matrix Multi-vectors/vector
product product product

To perform v x ng x 2 Flop:
» Vectors product loads
» 2v + 1 per vector product, total : ny(2v+1)

I&m—

Multi-vectors/vector product
With vector length v = 4 and group size ngy = 4:

0
v, n_ 1
- 2
0 011213 3
1 11213|4 4
2 213|415 5
13 314|516 16
[abcd]r [abed|r]r]r]r [abed|r|r]r]r]
Vector/vector Vector/matrix Multi-vectors/vector
product product product

To perform v x ng x 2 Flop:
» Vectors product loads
» 2v + 1 per vector product, total : ny(2v+1)
» Vector/matrix product loads
» v+ng(v+1)

IML—

Multi-vectors/vector product
With vector length v = 4 and group size ngy = 4:

0
v, n_ 1
- 2
0 011213 3
1 11213|4 4
2 213|415 5
13 314|516 16
[abcd]r [abed|r]r]r]r [abed|rfr]r]r]
Vector/vector Vector/matrix Multi-vectors/vector
product product product

To perform v x ng x 2 Flop:
» Vectors product loads
» 2v + 1 per vector product, total : ny(2v+1)

» Vector/matrix product loads
» v+ng(v+1)

» Multi-vectors/vector product loads
> (v+ng — 1)+ (v) + (ng)

.6’&1421—-

Multi-vectors/vector product Algorithm

Example using Axpy:

for k from 0 to n_g-1 do
res(i, k) = v * past(starts(i) + k)
endfor

0

1]

2

4] . 10234

5 2|3|4|5

6 o 3|4|5]6
labed]rfrfr]r

I&m—

Multi-vectors/vector product Algorithm

Optimizations:
» Re-use the past values
» Minimize the load of the slices values
» Use SIMD (SSE, AVX) by hand

0

1

2] @ ol U4 2 3 o 0 1 2| |3

2 - S

;] - sl o8 A HEH

: 2|]34 |5 A H M

p . 1/4/5/6 b ‘4‘ 5 M
[Iclclr] [abecd|r

Iﬁm—

Slice data structure

» starts: a vector of size N to store the starting column of
each slice-vector
» lengths : a vector of size N to store the length of each

slice-vector
» values : A block of values to store the slice-vector values in
row major
Starts Lengths Values
1 2) (1)
0 4 3 i
2 1 4 12
2 3 5 34
6 56/ 7|8 N=5
7 9
8 101112
9
10
11
J12)

Multi-vectors/vector product

The Multi-vectors/vector product operator:
» Has a good ratio of data loaded against flop
» Is implemented and optimized (C, SSE, AVX, Assembly, etc.)
» But needs a radiation stage if n, > 1 because we pad the past
vector with 0

I‘”‘L—

Results & Performance study

Configuration

Hardware:
» SSE-Host

» 2 Quad-core Nehalem Intel Xeon X5550 (2,66G H z)
» 24GB (DDR3) of shared memory

» AVX-Host

» 2 Deca-core lvy-Bridge Intel Xeon E5-2670 v2 (2,50G H z)
» 128G B (DDR3) of shared memory

Software:
> Gcc 4.7.2 compiler + Aggressive compilation flags
> In double + single precision floating point numbers
» Open-MPI 1.6.5 + State of the art direct solver Mumps 4.10.0

lf"m—-—

Performance evaluation of the multi-vectors/vector

SSE-Host, in Double precision, with n, = 8, slices have dimensions

N, X v.
10 — 10 —
—_— SSE-Asm
N —x— SSE-Intrinsic
% 8 B N 8 B N ——+— Compiler Version
&= 6 7 6 7
S
> 4+ : 4+ :
3
3 2 : 2 :
| | | | | |
0 0 200 400 0 0 200 400
Length of vectors (v) Length of vectors (v)
Figure: N, = 1000 Figure: N, = 20000

l‘;‘m—

Performance evaluation of the multi-vectors/vector

AVX-Host, with N, = 1000, ngy = 8, slices have dimensions

N, X v.
20 20
—x— AVX-ASM

? —x— AVX-Intrinsic
= 15f 151] —— sse-Asm
-2 y —+— SSE-Intrinsic
L‘L. ki RS, —o— Compiler-C
) 10} 10| o
_8 I ¥ 7
8 5| 5t
%)

X \ | 0 | |

0 200 400 0 200 400

Length of vectors (v) Length of vectors (v)
Figure: Single Precision Figure: Double Precision

l""ﬂ*‘—-—

Performance evaluation of the multi-vectors/vector

AVX-Host, with N, = 20000, ngy = 8, slices have dimensions

N, X v.
20 20
—— AVX-ASM

? —x— AVX-Intrinsic
= 15 15 || —+— sSE-AsMm
-2 —+— SSE-Intrinsic
L‘L. —o— Compiler-C
&) 10 10
< ,
& 5 5|
)

? | | 0 ® | |

0 200 400 0 200 400

Length of vectors (v) Length of vectors (v)
Figure: Single Precision Figure: Double Precision

l""ﬂ*‘—-—

Test case

We use an airplane test case:
» Composed of 23962 unknowns
» With 10823 time iterations
There are 341 interaction matrices M* (~ 5.5 x 10° NNZ)
Computing one summation s™ requires 11 GFlop
The total simulation costs 130 651 GF'lop
In Double

v

v

v

v

Parallel Efficiency - Definition

All the simulation data takes 70 GB, in order to stay in-core we
use at least 4 nodes.

We use a modified version of the parallel efficiency:

. (rxT)
o (p*Tp) ®)

> TP: the time taken by p Cores

» 7 the minimum number of Cores (used as reference)

(original formula is e, = T /(Tp * p))

l‘;‘m—

Parallel Efficiency
In the airplane test case
» v is between 1 and 15 (average is 9.5)
» SSE-Asm — 3.9GFlop/s | Compiler Version — 1.7 GFlop/s

m T T T T 1 B T T T T i
—1,500 =
o
= 9
1,000 |- 8 kS
5 qu‘; 0.5} *
3 500 .
LL< | —— Hybrid-MP1/OpenMP
O | | | | O | | | |
4 10 20 30 4 10 20 30
Number of nodes Number of nodes
Figure: Execution time Figure: Parallel efficiency ¢,

(SSE-Host, using 4 to 32 nodes, 8 CPU per node and ngy = 8)
l brzia—

Conclusion

» High flop-rate
» Good efficiency

> Nice improvement against the previous implementation

e e

Conclusion

» High flop-rate
» Good efficiency

> Nice improvement against the previous implementation

Perspective:

» Run big simulations

l““‘*—*—

Acknowledgement

Experiments using the PLAFRIM experimental test bed.

This work is supported by the Airbus Group Defense & Space,
Airbus Group Innovations, Inria and Conseil Régional

d’'Aquitaine initiative.

Thanks - Questions?

rd

5 Informotics S mathematics

