A sparse multifrontal solver using hierarchically
semi-separable frontal matrices

Pieter Ghysels

Lawrence Berkeley National Laboratory

Joint work with: Xiaoye S. Li (LBNL), Artem Napov (ULB), Francois-Henry
Rouet (LBNL)

Sparse Days Meeting 2014 at CERFACS, Toulouse, June 5-6

Introduction

Consider solving
Ax=b or MTTA=M1b

with a preconditioned iterative method (CG, GMRES, etc.)

» Fast convergence if good preconditioner M &~ A is available

1. Cheap to construct, store, apply, parallelize
2. Good approximation of A

Contradictory goals — trade-off

» Standard design strategy
» Start with a direct factorization (like multifrontal LU)
» Add approximations to make it cheaper (cf. 1)
while (hopefully/provably) affecting little (2)

» Nonstandard approximation idea: use low-rank approximation

The multifrontal method [Duff & Reid '83]

obefglgliels i -
05 07 2% 150 17 % i
.n.](23. ‘J.lr)
02 04 @22 12 14
ol o3 e2lellel3

4
5
> Nested dissection reordering defines an 1 3
elimination tree. 4 4
5
» Bottom-up traversal of the e-tree.
2
» At each frontal matrix, partial 3
factorization and computation of a
contribution block (Schur complement). Elimination tree

» Parent nodes “sum” the contribution
blocks of their children.

Low-rank property

v

In many applications, frontal matrices exhibit some low-rank
blocks (“data sparsity”).

- What about the inverse or a factorization?
Compression with SVD, Rank-Revealing QR,. ..

- SVD: optimal but too expensive.
- RRQR: QR with column pivoting.

v

v

Exact compression or with a compression threshold ¢.

v

Recursively, diagonal blocks have low-rank subblocks too.
- What to do with off-diagonal blocks?

Low-rank representations

Most low-rank representations belong to the class of #-matrices
[Bebendof, Bérm, Hackbush, Grasedyck,...]. Embedded in both dense and
sparse solvers:

Hierarchically Hierarchically Block-low rank (BLR)
Off-Diag. Low Rank Semiseparable (HSS) [Amestoy et al.]
(HODLR) [Chandrasekaran, Dewilde, Simple 2D
[Ambikasaran, Cecka, Gu, Li, Xia,...] partitioning. Recently
Darve...] Nested basis. in MUMPS.

Also: H? (includes HSS and FMM), SSS. ..
Choice: simple representations apply to broad classes of problems but
provide less gains in memory/operations than specialized/complex ones.

Embedding low-rank techniques in a multifrontal solver

1. Choose which frontal matrices are compressed (size, level...).
2. Low-rankness: weak interactions between “distant” variables.
—> need suitable ordering/clustering of each frontal matrix.
Fully-summed variables:
» Geometric setting (3D grid): FS variables = 2D plane
separator.
> Need clusters with small diameters.
» Hierarchical formats, merged clusters need small diameter too.

Split domain into squares and order with Morton ordering.

11112115]16 9+10| 13414
314 | 7TK8 142 546
12 5% +3+4 | +7+8

» Algebraic: add some kind of halo to (complete) graph of FS
variables and call a graph partitioner [Amestoy et al., Napov].

Contribution blocks: same, or inherit from FS of ancestors.
3. Compress: part or whole front? Interleaving with
factorization?

HSS representations

The structure is represented by a tree:

(VU By @ () B ©
U,Vi U, Vo Uy, Vi Us, Vs
D, D, Dy Ds

» Number of leaves depends on the problem (geometry) and
number of processors to be used.

» Building the HSS structure and all the usual operations
(multiplying. ..) consist of traversals of the tree.

Embedding HSS kernels in a multifrontal solver

HSS for frontal matrices:

Fully structured: HSS on the whole frontal
matrix. No dense matrix.

Partial+: HSS on the whole frontal matrix.
Dense frontal matrix.

Partially structured: HSS on the Fi1, F1o
and Fp1 parts only. Dense frontal matrix,
dense CB = Fyy — F21F1_11F12 in stack.

More complicated
Kiowsw s40y

v

Partially structured can do regular extend-add.

v

In partially structured, HSS compression of dense matrix.
After HSS compression, ULV factorization of Fi; block.
- Compared to classical LU in dense case.

v

v

Low rank Schur complement update.

HSS compression via randomized sampling

[Martinsson '11, Xia '13]

HSS compression of a matrix A.
Ingredients:
» R" and R random matrices with d columns.
» d = r + p with r estimated max rank; p = 10 in practice.
p: probability of “good” approximation ~ (1 — p~P).
» S" = AR" and 5 = AT R samples of matrix A.
Can benefit from a fast matvec.
» Interpolative Decomposition: A = A(:, J) X.
A is linear combination of selected columns of A.
» Two sided ID: S¢7 = S°T(:, JS)X€ and ST = ST (:, J)X",

A= XCA(I, INX"T

HSS compression via randomized sampling — 2

Algorithm (symmetric): from fine to coarse do

» Leaf node 7:
1. Sample: Sioc = S(/;,:) — DR(I,:)
2. 1D: Sioc = Ur Sioc(Jr,2)
3. Update: S; = Sioc(Jr, 1)
R, = UT R(I,,")
L =1(J::)

» Inner node 7 with children vy, vs:

51/1 - A(IV17 /Vz) RVz
51/2 - A(/Vz’ IVI) Rl/1:|
2. ID: Sioc = Ur Sioc(Jr, 1)

3. Update: S; = Sioc(Jr, 1)

= UI [RVI; RVz]

= [hy 1,](J7,)

1. Sample: Sjoc =

=9

HSS compression via randomized sampling — 3

>

If A# AT, do this for columns as well (simultaneously)

/
Bases have special structure: U, =Tl lE]
-

Extract elements from frontal matrix:
D; = A(l;,1I;) and By, ,, = A(h,, L,)
Frontal matrix is combination of separator and HSS children

Extracting element from HSS matrix requires traversing the
HSS tree and multiplying basis matrices.

Limiting number of tree traversals is crucial for performance.

Benefits:

>

>

Extend-add operation is simplified: only on random vectors.
Gains in complexity: O(r?Nlog N) iso O(rN?) for
non-randomized algorithm. log N due to extracting elements
from HSS matrix

Randomized sampling — extend-add

Assembly in regular multifrontal: F, = A, <> CB,, <}> CB,.
Sample:
Sp = FpRp = (Ap % CBq ‘% CBe,)Rp = ApRp $ Yo $ Yo

» | 1D extend-add (only along rows); much simpler

> Y, and Y., samples of CB of children.

» R, =Ry | Re, (+random rows for missing indices).
Stages:

» Build random vectors from random vectors of children.

» Build sample from samples of CB of children.

» Multiply separator part of frontal matrix with random vectors:

ApRp
» Compression of F, using S, and R,

HSS ULV factorization

» Exploit structure of U; (from ID) to introduce zero's

B I C[-E a7 o
oon (] n=[F o~ au-]

HSS ULV factorization

» Exploit structure of U; (from ID) to introduce zero's
B / C[-E AT ~Jo
wnf] an[E e e

95} Dy UiBioVy | Wi BioVy
Q| | VB V) D; T BV W,

HSS ULV factorization

» Exploit structure of U; (from ID) to introduce zero's

B I C[-E a7 o
o-n (] n=[F o~ au-]

95} Dy UiBioVy | Wi BioVy
Q| | VB V) D; T BV W,

» Take (full) LQ decomposition

Ly
Ly 0] Q- Wi, Q5 B2V Q1| [@
WT:{[]] N [Wi2Q5] [L122 5] [1 Qz}

WT;2 2
[B2aV Q] [We2Q3]

__m
|!
L L]

HSS ULV factorization

Exploit structure of U, (from ID) to introduce zero's

B I C[-E a7 o
v fl] a=[E nr o e =]

v

1951 D, BV | | W BiaVy
Q| | VBV D, BV W,
» Take (full) LQ decomposition

Ly
W, = [[LT 0] Qr] | e e e

WT;2 QZ:|

[B2,1 V| Q7] 2[W2;2Q§‘]
Rows for L, can be eliminated, others are passed to parent
At root node:

LU solve of reduced D

vy

|!
L L]

HSS ULV factorization

Exploit structure of U, (from ID) to introduce zero's

B I C[-E a7 o
v fl] a=[E nr o e =]

v

>
Q Dy BV | | wm Bio V"
Q| |UV:B21 V) D> T BV W
» Take (full) LQ decomposition

Ly
(LAt I i s [
[B2,1 V| Q7] [Wa2 Q5]

Rows for L, can be eliminated, others are passed to parent
At root node:

LU solve of reduced D
ULV-like: €2, not orthonormal,
forward /backward solve phases

vy

v

Low rank Schur complement update

Schur Complement update
Fa Fi2

Faz — FarFii Fia = Fop — UgBg Vi Fii' UkBig V|

v

Fi' via ULV solve
VI F U — O(rN?)

Dy is reduced HSS matrix O(r x r)

v

Foo — Uquk(\N/kTD_l Uk)qu VqT

VID0 — o)
Fop — W T v, o ~ O(rN)

v

Ug and V;: traverse g subtree

v

Cheap multiply with random vectors

Rank pattern and solver complexity

With r the maximum rank of a block:

» HSS construction: ©(r*>N log V)
iso ©(rN?) for non-randomized.

» ULV factorization: ©(r?N).
» HSS solution: O(rlV).

Typical r': [Chandrasekaran et al.] (*): with some very strong assumptions.)
2D Poisson o(1) »
2D Helmholtz | ©(log k))
3D Poisson
3D Helmholtz

3D Helmholtz:

Mem Flops

MF-HSS O(Nlog N) | ©(N*3log N)

MF-HSS + RS | ©(N) O(N/% log N)

with regular dense MF for £ < £5 and HSS for £ > /.

Numerical example

Maximum rank over all frontal matrices and all HSS blocks

max rank

max rank

2D Poisson k x k

30 350
28 |- P A 300
N

2r YN] 250
24 / 4

2 L 4 & 200
20 |- 1 é 150
18 i 100
16 -

14 i 50
12 0

0 400 800 1200 1600 2000
Kk
2D Helmholtz k x k
130 500
120 450
110 400
100 350
20 < 300
©
80 S 250
70 g 200
60 150
50 100
40 50
30 1 1 1 0
0 400 800 1200 1600 2000
k

3D Poisson k x k x k

10 20 30 40 50
k
3D Helmholtz k x k x k
i i i
10 20 30 40 50

Parallel implementation

We have a serial code (StruMF [Napov 11-121)
» Some performance issues

- Currently generates random vectors for all nodes in e-tree
- How to estimate the rank? Currently guess and start over
when too small

Parallel implementation is a work in progress
» Distributed memory HSS compression of dense matrix
- MPI, BLACS, PBLAS, BLAS, LAPACK
» Shared memory multifrontal code

- OpenMP task parallelism for tree traversal for both elimination
tree ans HSS tree
- Next step is parallel dense algebra

Parallel HSS compression — MPI code

» Topmost separator of a 3D problem,
generated with exact multifrontal method

k 100 200 300

N || 10,000 | 40,000 | 90,000

MPI processes / cores 64 256 1024

Nodes 4 16 64

Levels 6 7 8

Tolerance le-3 le-3 1-e3

Non-randomized 8.3 51.5 193.4

Randomized 2.9 16.0 37.2

Dense LU ScaLAPACK 42 57.6 175.9

» On 1024 cores

» achieved 5.3TFlops/s
» very good flop balance: min / max = 0.93
» 17% communication overhead

Task based parallel tree traversal — OpenMP

» HSS Compression of dense frontal matrix
TN 1 (N 1 [W A 1 [[[

» Multifrontal

Blue: E-tree node, Red: HSS compression, Green: ULV-fact

» Extraction of elements from HSS matrix forms bottleneck
» Considering other runtime task schedulers

» Intel TBB, StarPU, Quark
» The Quark scheduler from PLASMA could allow integration of
PLASMA parallel (tiled) BLAS/LAPACK

Conclusions

HSS is restricted format, large gains possible for certain
applications, not for all

v

v

Some performance issues need to be addressed
Separate distributed and shared memory codes
- Needs to be combined in hybrid MPI+X code
Prepare for next generation NERSC supercomputer
- Intel MIC based, > 60 cores

v

v

Conclusions

HSS is restricted format, large gains possible for certain
applications, not for all

v

v

Some performance issues need to be addressed
Separate distributed and shared memory codes
- Needs to be combined in hybrid MPI+X code
Prepare for next generation NERSC supercomputer
- Intel MIC based, > 60 cores

v

v

Thank you! Questions?

