# A sparse multifrontal solver using hierarchically semi-separable frontal matrices

#### Pieter Ghysels

Lawrence Berkeley National Laboratory

Joint work with: Xiaoye S. Li (LBNL), Artem Napov (ULB), François-Henry Rouet (LBNL)

Sparse Days Meeting 2014 at CERFACS, Toulouse, June 5-6

#### Introduction

## Consider solving

$$Ax = b$$
 or  $M^{-1}A = M^{-1}b$ 

with a preconditioned iterative method (CG, GMRES, etc.)

- ▶ Fast convergence if good preconditioner  $M \approx A$  is available
  - 1. Cheap to construct, store, apply, parallelize
  - 2. Good approximation of A

Contradictory goals  $\rightarrow$  trade-off

- Standard design strategy
  - Start with a direct factorization (like multifrontal LU)
  - Add approximations to make it cheaper (cf. 1) while (hopefully/provably) affecting little (2)
- Nonstandard approximation idea: use low-rank approximation

# The multifrontal method [Duff & Reid '83]



- Nested dissection reordering defines an elimination tree.
- Bottom-up traversal of the e-tree.
- At each frontal matrix, partial factorization and computation of a contribution block (Schur complement).
- Parent nodes "sum" the contribution blocks of their children.



Elimination tree

## Low-rank property

- In many applications, frontal matrices exhibit some low-rank blocks ("data sparsity").
  - What about the inverse or a factorization?
- Compression with SVD, Rank-Revealing QR,...
  - SVD: optimal but too expensive.
  - RRQR: QR with column pivoting.
- **Exact compression or with a compression threshold**  $\varepsilon$ .
- Recursively, diagonal blocks have low-rank subblocks too.
  - What to do with off-diagonal blocks?

## Low-rank representations

Most low-rank representations belong to the class of  $\mathcal{H}$ -matrices [Bebendof, Börm, Hackbush, Grasedyck,...]. Embedded in both dense and sparse solvers:



Hierarchically
Off-Diag. Low Rank
(HODLR)
[Ambikasaran, Cecka,
Darve. . . ]



Hierarchically
Semiseparable (HSS)
[Chandrasekaran, Dewilde,
Gu, Li, Xia,...]
Nested basis.



Block-low rank (BLR) [Amestoy et al.] Simple 2D partitioning. Recently in MUMPS.

Also:  $\mathcal{H}^2$  (includes HSS and FMM), SSS...

Choice: simple representations apply to broad classes of problems but provide less gains in memory/operations than specialized/complex ones.

# Embedding low-rank techniques in a multifrontal solver

- 1. Choose which frontal matrices are compressed (size, level...).
- Low-rankness: weak interactions between "distant" variables.
   need suitable ordering/clustering of each frontal matrix.
   Fully-summed variables:
  - Geometric setting (3D grid): FS variables = 2D plane separator.
    - Need clusters with small diameters.
    - ► Hierarchical formats, merged clusters need small diameter too. Split domain into squares and order with Morton ordering.

| 11 | 12 | 15 | <u>1</u> 6 |
|----|----|----|------------|
| 9  | 10 | 13 | 14         |
| 3  | 4  | 7/ | 8          |
| 1  | 2  | 5  | 6          |

| 9+10   | 13+14  |
|--------|--------|
| +11+12 | +15+16 |
| 1+2    | 5+6    |
| +3+4   | +7+8   |

- ► Algebraic: add some kind of halo to (complete) graph of FS variables and call a graph partitioner [Amestoy et al., Napov].
- Contribution blocks: same, or inherit from FS of ancestors.
- 3. Compress: part or whole front? Interleaving with factorization?



# **HSS** representations

The structure is represented by a tree:





- Number of leaves depends on the problem (geometry) and number of processors to be used.
- ▶ Building the HSS structure and all the usual operations (multiplying...) consist of traversals of the tree.

# Embedding HSS kernels in a multifrontal solver

#### HSS for frontal matrices:



Fully structured: HSS on the whole frontal matrix. No dense matrix.

Partial+: HSS on the whole frontal matrix.

Dense frontal matrix.

Partially structured: HSS on the  $F_{11}$ ,  $F_{12}$  and  $F_{21}$  parts only. Dense frontal matrix, dense  $CB = F_{22} - F_{21}F_{11}^{-1}F_{12}$  in stack.

| F <sub>11</sub> | F <sub>12</sub> | l |
|-----------------|-----------------|---|
| F <sub>21</sub> | F <sub>22</sub> |   |

- ▶ Partially structured can do regular extend-add.
- In partially structured, HSS compression of dense matrix.
- ▶ After HSS compression, ULV factorization of  $F_{11}$  block.
  - Compared to classical LU in dense case.
- Low rank Schur complement update.

# HSS compression via randomized sampling

[Martinsson '11, Xia '13]

HSS compression of a matrix A. Ingredients:

- $ightharpoonup R^r$  and  $R^c$  random matrices with d columns.
- ▶ d = r + p with r estimated max rank; p = 10 in practice. p: probability of "good" approximation  $\simeq (1 p^{-p})$ .
- ►  $S^r = AR^r$  and  $S^c = A^T R^c$  samples of matrix A. Can benefit from a fast matvec.
- ► Interpolative Decomposition: A = A(:, J) X.
  A is linear combination of selected columns of A.
- ▶ Two sided ID:  $S^{cT} = S^{cT}(:, J^c)X^c$  and  $S^{rT} = S^{rT}(:, J^r)X^r$ ,

$$A = X^c A(I^c, I^r) X^{rT}$$

# HSS compression via randomized sampling – 2

#### Algorithm (symmetric): from fine to coarse do

- ▶ Leaf node  $\tau$ :
  - 1. Sample:  $S_{loc} = S(I_{\tau}, :) DR(I_{\tau}, :)$
  - 2. ID:  $S_{loc} = U_{\tau} S_{loc}(J_{\tau},:)$
  - 3. Update:  $S_{\tau} = S_{loc}(J_{\tau},:)$   $R_{\tau} = U_{\tau}^{T} R(I_{\tau},:)$  $I_{\tau} = I_{\tau}(J_{\tau},:)$



1. Sample: 
$$S_{loc} = \begin{bmatrix} S_{\nu_1} - A(I_{\nu_1}, I_{\nu_2}) R_{\nu_2} \\ S_{\nu_2} - A(I_{\nu_2}, I_{\nu_1}) R_{\nu_1} \end{bmatrix}$$

2. ID:  $S_{loc} = U_{\tau} S_{loc}(J_{\tau},:)$ 

3. Update: 
$$S_{\tau} = S_{loc}(J_{\tau},:)$$
  
 $R_{\tau} = U_{\tau}^{T} [R_{\nu_{1}}; R_{\nu_{2}}]$   
 $I_{\tau} = [I_{\nu_{1}}I_{\nu_{2}}](J_{\tau},:)$ 





# HSS compression via randomized sampling – 3

- ▶ If  $A \neq A^T$ , do this for columns as well (simultaneously)
- ▶ Bases have special structure:  $U_{\tau} = \Pi_{\tau} \begin{bmatrix} I \\ E_{\tau} \end{bmatrix}$
- ▶ Extract elements from frontal matrix:

$$D_{ au}= extit{A}( extit{I}_{ au}, extit{I}_{ au})$$
 and  $extit{B}_{
u_1,
u_2}= extit{A}( extit{I}_{
u_1}, extit{I}_{
u_2})$ 

- Frontal matrix is combination of separator and HSS children
- Extracting element from HSS matrix requires traversing the HSS tree and multiplying basis matrices.
- Limiting number of tree traversals is crucial for performance.

#### Benefits:

- Extend-add operation is simplified: only on random vectors.
- ▶ Gains in complexity:  $\mathcal{O}(r^2N\log N)$  iso  $\mathcal{O}(rN^2)$  for non-randomized algorithm. log N due to extracting elements from HSS matrix

## Randomized sampling – extend-add

Assembly in regular multifrontal:  $F_p = A_p \Leftrightarrow CB_{c_1} \Leftrightarrow CB_{c_2}$ . Sample:

$$S_p = F_p R_p = (A_p \Leftrightarrow CB_{c_1} \Leftrightarrow CB_{c_2}) R_p = A_p R_p \updownarrow Y_{c_1} \updownarrow Y_{c_2}$$

- ▶ ‡ 1D extend-add (only along rows); much simpler
- $Y_{c_1}$  and  $Y_{c_2}$  samples of CB of children.
- ▶  $R_p = R_{c_1} \updownarrow R_{c_2}$  (+random rows for missing indices).

## Stages:

- ▶ Build random vectors from random vectors of children.
- Build sample from samples of CB of children.
- ▶ Multiply separator part of frontal matrix with random vectors:  $A_pR_p$
- ▶ Compression of  $F_p$  using  $S_p$  and  $R_p$

**Exploit** structure of  $U_{\tau}$  (from ID) to introduce zero's

$$U_{ au} = \Pi_{ au} \begin{bmatrix} I \\ E_{ au} \end{bmatrix}, \quad \Omega_{ au} = \begin{bmatrix} -E_{ au} & I \\ I & 0 \end{bmatrix} \Pi_{ au}^{T} \quad o \quad \Omega_{ au} U_{ au} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$



**Exploit** structure of  $U_{\tau}$  (from ID) to introduce zero's

$$U_{\tau} = \Pi_{\tau} \begin{bmatrix} I \\ E_{\tau} \end{bmatrix}, \quad \Omega_{\tau} = \begin{bmatrix} -E_{\tau} & I \\ I & 0 \end{bmatrix} \Pi_{\tau}^{T} \quad \rightarrow \quad \Omega_{\tau} U_{\tau} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$

$$\begin{bmatrix} \Omega_1 & \\ & \Omega_2 \end{bmatrix} \begin{bmatrix} D_1 & U_1 B_{1,2} V_2^T \\ U_2 B_{2,1} V_1^T & D_2 \end{bmatrix} = \begin{bmatrix} W_1 & B_{1,2} V_2^T \\ B_{2,1} V_1^T & W_2 \end{bmatrix}$$





**Exploit** structure of  $U_{\tau}$  (from ID) to introduce zero's

$$U_{ au} = \Pi_{ au} \begin{bmatrix} I \\ E_{ au} \end{bmatrix}, \quad \Omega_{ au} = \begin{bmatrix} -E_{ au} & I \\ I & 0 \end{bmatrix} \Pi_{ au}^T \quad o \quad \Omega_{ au} U_{ au} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$

$$\begin{bmatrix} \Omega_1 & \\ \Omega_2 \end{bmatrix} \begin{bmatrix} D_1 & U_1 B_{1,2} V_2^T \\ U_2 B_{2,1} V_1^T & D_2 \end{bmatrix} = \begin{bmatrix} W_1 & B_{1,2} V_2^T \\ B_{2,1} V_1^T & W_2 \end{bmatrix}$$

► Take (full) *LQ* decomposition

$$W_{ au} = egin{bmatrix} \left[egin{matrix} L_{ au} & 0 \ W_{ au;2} \end{matrix}
ight] & 
ightarrow & egin{bmatrix} L_{1} \ [W_{1;2}Q_{1}^{*}] & [B_{1,2}V_{2}^{T}Q_{2}^{*}] \ [B_{2,1}V_{1}^{T}Q_{1}^{*}] & [W_{2;2}Q_{2}^{*}] \end{bmatrix} egin{bmatrix} Q_{1} \ Q_{2} \end{bmatrix}$$







**Exploit** structure of  $U_{\tau}$  (from ID) to introduce zero's

$$U_{\tau} = \Pi_{\tau} \begin{bmatrix} I \\ E_{\tau} \end{bmatrix}, \quad \Omega_{\tau} = \begin{bmatrix} -E_{\tau} & I \\ I & 0 \end{bmatrix} \Pi_{\tau}^{T} \quad \rightarrow \quad \Omega_{\tau} U_{\tau} = \begin{bmatrix} 0 \\ I \end{bmatrix}$$
$$\begin{bmatrix} \Omega_{1} & \\ \Omega_{2} \end{bmatrix} \begin{bmatrix} D_{1} & U_{1}B_{1,2}V_{2}^{T} \\ D_{2} \end{bmatrix} = \begin{bmatrix} W_{1} & B_{1,2}V_{2}^{T} \\ B_{2,1}V_{1}^{T} & W_{2} \end{bmatrix}$$

► Take (full) LQ decomposition

$$W_{ au} = egin{bmatrix} \left[egin{matrix} L_{ au} & 0 \ W_{ au;2} \end{matrix}
ight] & 
ightarrow & egin{bmatrix} L_{1} \ [W_{1;2}Q_{1}^{*}] & [B_{1,2}V_{2}^{T}Q_{2}^{*}] \ [B_{2,1}V_{1}^{T}Q_{1}^{*}] & [W_{2;2}Q_{2}^{*}] \end{bmatrix} egin{bmatrix} Q_{1} \ Q_{2} \end{bmatrix}$$

- $\triangleright$  Rows for  $L_{\tau}$  can be eliminated, others are passed to parent
- ► At root node:

LU solve of reduced  $\tilde{D}$ 



**Exploit** structure of  $U_{\tau}$  (from ID) to introduce zero's

$$U_{\tau} = \Pi_{\tau} \begin{bmatrix} I \\ E_{\tau} \end{bmatrix}, \quad \Omega_{\tau} = \begin{bmatrix} -E_{\tau} & I \\ I & 0 \end{bmatrix} \Pi_{\tau}^{T} \quad \rightarrow \quad \Omega_{\tau} U_{\tau} = \begin{bmatrix} \mathbf{0} \\ I \end{bmatrix}$$
$$\begin{bmatrix} \Omega_{1} & D_{1} & U_{1}B_{1,2}V_{2}^{T} \\ U_{2}B_{2,1}V_{1}^{T} & D_{2} \end{bmatrix} = \begin{bmatrix} W_{1} & B_{1,2}V_{2}^{T} \\ B_{2,1}V_{1}^{T} & W_{2} \end{bmatrix}$$

▶ Take (full) LQ decomposition

$$W_{\tau} = \begin{bmatrix} \begin{bmatrix} L_{\tau} & 0 \end{bmatrix} & Q_{\tau} \\ W_{\tau,2} \end{bmatrix} \quad \rightarrow \quad \begin{bmatrix} L_{1} & & & \\ [W_{1;2}Q_{1}^{*}] & & [B_{1,2}V_{2}^{T}Q_{2}^{*}] \\ & L_{2} & & \\ [B_{2,1}V_{1}^{T}Q_{1}^{*}] & & [W_{2;2}Q_{2}^{*}] \end{bmatrix} \begin{bmatrix} Q_{1} & & \\ & Q_{2} \end{bmatrix}$$

- $\triangleright$  Rows for  $L_{\tau}$  can be eliminated, others are passed to parent
- At root node:
  LU solve of reduced D
- ULV-like:  $\Omega_{\tau}$  not orthonormal, forward/backward solve phases

# Low rank Schur complement update

Schur Complement update

$$F_{22} - F_{21}F_{11}^{-1}F_{12} = F_{22} - \overbrace{U_q B_{qk} V_k^T}^{F_{21}} F_{11}^{-1} \overbrace{U_k B_{kq} V_q^T}^{F_{12}}$$

 $ightharpoonup F_{11}^{-1}$  via *ULV* solve

$$V_k^T F_{11}^{-1} U_k \rightarrow \mathcal{O}(rN^2)$$

 $ightharpoonup ilde{D}_k$  is reduced HSS matrix  $\mathcal{O}(r \times r)$ 

$$F_{22} - U_q B_{qk} (\tilde{V}_k^T \tilde{D}^{-1} \tilde{U}_k) B_{kq} V_q^T$$
  $\tilde{V}_k^T \tilde{D}^{-1} \tilde{U}_k o \mathcal{O}(r^3)$   $F_{22} - \Psi \Phi^T \qquad \Psi, \Phi \sim \mathcal{O}(rN)$ 

- $ightharpoonup U_q$  and  $V_q$ : traverse q subtree
- Cheap multiply with random vectors



# Rank pattern and solver complexity

With r the maximum rank of a block:

- ► HSS construction:  $\Theta(r^2 N \log N)$  iso  $\Theta(rN^2)$  for non-randomized.
- ▶ ULV factorization:  $\Theta(r^2N)$ .
- ▶ HSS solution:  $\Theta(rN)$ .

Typical r: [Chandrasekaran et al.] ((\*): with some very strong assumptions.)

| 2D Poisson   | Θ(1) (*)             |
|--------------|----------------------|
| 2D Helmholtz | $\Theta(\log k)$ (*) |
| 3D Poisson   | $\Theta(k)$          |
| 3D Helmholtz | $\Theta(k)$          |

#### 3D Helmholtz:

| Mem         |                    | Flops                     |  |
|-------------|--------------------|---------------------------|--|
| MF-HSS      | $\Theta(N \log N)$ | $\Theta(N^{4/3} \log N)$  |  |
| MF-HSS + RS | $\Theta(N)$        | $\Theta(N^{10/9} \log N)$ |  |

with regular dense MF for  $\ell < \ell_s$  and HSS for  $\ell \ge \ell_s$ .

## Numerical example

#### Maximum rank over all frontal matrices and all HSS blocks



## Parallel implementation

We have a serial code (StruMF [Napov 11'-12'])

- Some performance issues
  - Currently generates random vectors for all nodes in e-tree
  - How to estimate the rank? Currently guess and start over when too small

### Parallel implementation is a work in progress

- Distributed memory HSS compression of dense matrix
  - MPI, BLACS, PBLAS, BLAS, LAPACK
- Shared memory multifrontal code
  - OpenMP task parallelism for tree traversal for both elimination tree ans HSS tree
  - Next step is parallel dense algebra

# Parallel HSS compression – MPI code

 Topmost separator of a 3D problem, generated with exact multifrontal method

| k                     | 100    | 200    | 300    |
|-----------------------|--------|--------|--------|
| N                     | 10,000 | 40,000 | 90,000 |
| MPI processes / cores | 64     | 256    | 1024   |
| Nodes                 | 4      | 16     | 64     |
| Levels                | 6      | 7      | 8      |
| Tolerance             | 1e-3   | 1e-3   | 1-e3   |
| Non-randomized        | 8.3    | 51.5   | 193.4  |
| Randomized            | 2.9    | 16.0   | 37.2   |
| Dense LU ScaLAPACK    | 4.2    | 57.6   | 175.9  |

- On 1024 cores
  - achieved 5.3TFlops/s
  - very good flop balance: min / max = 0.93
  - ▶ 17% communication overhead

# Task based parallel tree traversal - OpenMP

HSS Compression of dense frontal matrix



Multifrontal



Blue: E-tree node, Red: HSS compression, Green: ULV-fact

- Extraction of elements from HSS matrix forms bottleneck
- Considering other runtime task schedulers
  - Intel TBB, StarPU, Quark
  - ► The Quark scheduler from PLASMA could allow integration of PLASMA parallel (tiled) BLAS/LAPACK

#### Conclusions

- ► HSS is restricted format, large gains possible for certain applications, not for all
- Some performance issues need to be addressed
- Separate distributed and shared memory codes
  - Needs to be combined in hybrid MPI+X code
- Prepare for next generation NERSC supercomputer
  - Intel MIC based, > 60 cores

#### Conclusions

- HSS is restricted format, large gains possible for certain applications, not for all
- Some performance issues need to be addressed
- Separate distributed and shared memory codes
  - Needs to be combined in hybrid MPI+X code
- Prepare for next generation NERSC supercomputer
  - Intel MIC based, > 60 cores

Thank you! Questions?