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Introduction

Consider solving

Ax = b or M−1A = M−1b

with a preconditioned iterative method (CG, GMRES, etc.)
I Fast convergence if good preconditioner M ≈ A is available

1. Cheap to construct, store, apply, parallelize
2. Good approximation of A

Contradictory goals → trade-off

I Standard design strategy
I Start with a direct factorization (like multifrontal LU)
I Add approximations to make it cheaper (cf. 1)

while (hopefully/provably) affecting little (2)
I Nonstandard approximation idea: use low-rank approximation



The multifrontal method [Duff & Reid ’83]

I Nested dissection reordering defines an
elimination tree.

I Bottom-up traversal of the e-tree.
I At each frontal matrix, partial

factorization and computation of a
contribution block (Schur complement).

I Parent nodes “sum” the contribution
blocks of their children.
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Low-rank property

I In many applications, frontal matrices exhibit some low-rank
blocks (“data sparsity”).

- What about the inverse or a factorization?
I Compression with SVD, Rank-Revealing QR,. . .

- SVD: optimal but too expensive.
- RRQR: QR with column pivoting.

I Exact compression or with a compression threshold ε.
I Recursively, diagonal blocks have low-rank subblocks too.

- What to do with off-diagonal blocks?



Low-rank representations
Most low-rank representations belong to the class of H-matrices
[Bebendof, Börm, Hackbush, Grasedyck,. . . ]. Embedded in both dense and
sparse solvers:

Hierarchically
Off-Diag. Low Rank
(HODLR)
[Ambikasaran, Cecka,
Darve. . . ]
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Hierarchically
Semiseparable (HSS)
[Chandrasekaran, Dewilde,
Gu, Li, Xia,. . . ]
Nested basis.

Block-low rank (BLR)
[Amestoy et al.]
Simple 2D
partitioning. Recently
in MUMPS.

Also: H2 (includes HSS and FMM), SSS. . .
Choice: simple representations apply to broad classes of problems but
provide less gains in memory/operations than specialized/complex ones.



Embedding low-rank techniques in a multifrontal solver
1. Choose which frontal matrices are compressed (size, level. . . ).
2. Low-rankness: weak interactions between “distant” variables.

=⇒ need suitable ordering/clustering of each frontal matrix.
Fully-summed variables:

I Geometric setting (3D grid): FS variables = 2D plane
separator.

I Need clusters with small diameters.
I Hierarchical formats, merged clusters need small diameter too.

Split domain into squares and order with Morton ordering.
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I Algebraic: add some kind of halo to (complete) graph of FS
variables and call a graph partitioner [Amestoy et al., Napov].

Contribution blocks: same, or inherit from FS of ancestors.
3. Compress: part or whole front? Interleaving with

factorization?



HSS representations

The structure is represented by a tree:
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I Number of leaves depends on the problem (geometry) and
number of processors to be used.

I Building the HSS structure and all the usual operations
(multiplying. . . ) consist of traversals of the tree.



Embedding HSS kernels in a multifrontal solver

HSS for frontal matrices:
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Fully structured: HSS on the whole frontal
matrix. No dense matrix.
Partial+: HSS on the whole frontal matrix.
Dense frontal matrix.
Partially structured: HSS on the F11,F12
and F21 parts only. Dense frontal matrix,
dense CB = F22 − F21F −1

11 F12 in stack.

F21

F12F11

F22

I Partially structured can do regular extend-add.
I In partially structured, HSS compression of dense matrix.
I After HSS compression, ULV factorization of F11 block.

- Compared to classical LU in dense case.
I Low rank Schur complement update.



HSS compression via randomized sampling
[Martinsson ’11, Xia ’13]

HSS compression of a matrix A.
Ingredients:

I R r and Rc random matrices with d columns.
I d = r + p with r estimated max rank; p = 10 in practice.

p: probability of “good” approximation ' (1− p−p).
I Sr = AR r and Sc = AT Rc samples of matrix A.

Can benefit from a fast matvec.
I Interpolative Decomposition: A = A(:, J) X .

A is linear combination of selected columns of A.
I Two sided ID: Sc T = Sc T (:, Jc)X c and Sr T = Sr T (:, J r )X r ,

A = X cA(Ic , I r )X r T



HSS compression via randomized sampling – 2

Algorithm (symmetric): from fine to coarse do

I Leaf node τ :
1. Sample: Sloc = S(Iτ , :)− D R(Iτ , :)
2. ID: Sloc = Uτ Sloc(Jτ , :)
3. Update: Sτ = Sloc(Jτ , :)

Rτ = UT
τ R(Iτ , :)

Iτ = Iτ (Jτ , :)

I Inner node τ with children ν1, ν2:
1. Sample: Sloc =

[
Sν1 − A(Iν1 , Iν2 ) Rν2

Sν2 − A(Iν2 , Iν1 ) Rν1

]
2. ID: Sloc = Uτ Sloc(Jτ , :)
3. Update: Sτ = Sloc(Jτ , :)

Rτ = UT
τ [Rν1 ; Rν2 ]

Iτ = [Iν1 Iν2 ](Jτ , :)



HSS compression via randomized sampling – 3

I If A 6= AT , do this for columns as well (simultaneously)

I Bases have special structure: Uτ = Πτ

[
I

Eτ

]
I Extract elements from frontal matrix:

Dτ = A(Iτ , Iτ ) and Bν1,ν2 = A(Iν1 , Iν2)
I Frontal matrix is combination of separator and HSS children
I Extracting element from HSS matrix requires traversing the

HSS tree and multiplying basis matrices.
I Limiting number of tree traversals is crucial for performance.

Benefits:
I Extend-add operation is simplified: only on random vectors.
I Gains in complexity: O(r2N logN) iso O(rN2) for

non-randomized algorithm. logN due to extracting elements
from HSS matrix



Randomized sampling – extend-add

Assembly in regular multifrontal: Fp = Ap l↔ CBc1 l↔ CBc2 .
Sample:
Sp = FpRp = (Ap l↔ CBc1 l↔ CBc2)Rp = ApRp l Yc1 l Yc2

I l 1D extend-add (only along rows); much simpler
I Yc1 and Yc2 samples of CB of children.
I Rp = Rc1 l Rc2 (+random rows for missing indices).

Stages:
I Build random vectors from random vectors of children.
I Build sample from samples of CB of children.
I Multiply separator part of frontal matrix with random vectors:

ApRp
I Compression of Fp using Sp and Rp



HSS ULV factorization
I Exploit structure of Uτ (from ID) to introduce zero’s
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I Rows for Lτ can be eliminated, others are passed to parent
I At root node:

LU solve of reduced D̃
I ULV-like: Ωτ not orthonormal,

forward/backward solve phases
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Low rank Schur complement update
Schur Complement update

F22 − F21F −1
11 F12 = F22 −

F21︷ ︸︸ ︷
UqBqkV T

k F −1
11

F12︷ ︸︸ ︷
UkBkqV T

q

I F −1
11 via ULV solve

V T
k F −1

11 Uk → O(rN2)

I D̃k is reduced HSS matrix O(r × r)

F22 − UqBqk(Ṽ T
k D̃−1Ũk)BkqV T

q

Ṽ T
k D̃−1Ũk → O(r3)

F22 −ΨΦT Ψ,Φ ∼ O(rN)
I Uq and Vq: traverse q subtree
I Cheap multiply with random vectors

F11 F12

F21 F22

k q



Rank pattern and solver complexity
With r the maximum rank of a block:

I HSS construction: Θ(r2N logN)
iso Θ(rN2) for non-randomized.

I ULV factorization: Θ(r2N).
I HSS solution: Θ(rN).

Typical r : [Chandrasekaran et al.] ((∗): with some very strong assumptions.)

2D Poisson Θ(1) (∗)

2D Helmholtz Θ(log k) (∗)

3D Poisson Θ(k)
3D Helmholtz Θ(k)

3D Helmholtz:
Mem Flops

MF-HSS Θ(N logN) Θ(N4/3 logN)
MF-HSS + RS Θ(N) Θ(N10/9 logN)

with regular dense MF for ` < `s and HSS for ` ≥ `s .



Numerical example
Maximum rank over all frontal matrices and all HSS blocks
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Parallel implementation

We have a serial code (StruMF [Napov 11’-12’])
I Some performance issues

- Currently generates random vectors for all nodes in e-tree
- How to estimate the rank? Currently guess and start over
when too small

Parallel implementation is a work in progress
I Distributed memory HSS compression of dense matrix

- MPI, BLACS, PBLAS, BLAS, LAPACK
I Shared memory multifrontal code

- OpenMP task parallelism for tree traversal for both elimination
tree ans HSS tree

- Next step is parallel dense algebra



Parallel HSS compression – MPI code

I Topmost separator of a 3D problem,
generated with exact multifrontal method

k 100 200 300
N 10,000 40,000 90,000

MPI processes / cores 64 256 1024
Nodes 4 16 64
Levels 6 7 8

Tolerance 1e-3 1e-3 1-e3
Non-randomized 8.3 51.5 193.4

Randomized 2.9 16.0 37.2
Dense LU ScaLAPACK 4.2 57.6 175.9

I On 1024 cores
I achieved 5.3TFlops/s
I very good flop balance: min /max = 0.93
I 17% communication overhead



Task based parallel tree traversal – OpenMP
I HSS Compression of dense frontal matrix
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I Extraction of elements from HSS matrix forms bottleneck
I Considering other runtime task schedulers

I Intel TBB, StarPU, Quark
I The Quark scheduler from PLASMA could allow integration of

PLASMA parallel (tiled) BLAS/LAPACK



Conclusions

I HSS is restricted format, large gains possible for certain
applications, not for all

I Some performance issues need to be addressed
I Separate distributed and shared memory codes

- Needs to be combined in hybrid MPI+X code
I Prepare for next generation NERSC supercomputer

- Intel MIC based, > 60 cores

Thank you! Questions?
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