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WHY STUDYING COMMUNICATION COSTS? 2

� Algorithms have two costs (cost in time, energy, power):
(1) Computation: Cost to perform computation

� # of operations to be performed

(2) Communication: Cost to move data
� volume of data to be moved (bandwidth)
� # of messages (latency)

� Motivations
(1) Time. On current architecture, communication is much slower than

computation. Trend is not in favor of communication.

(2) Energy/Power. Communication (moving data) consumes a lots of energy,
power

(3) Co-design.



SEQUENTIAL MODEL 3

Mission Statement
We study communication costs for the ordinary dense (OD)
matrix-matrix multiplication in the sequential model.

� dense: because we wanted to totally be on topic for the Sparse Days.
� sequential: two levels of memory

» fast memory of size M
» slow memory
» computation happens in fast memory
» just look at volume of communication (bandwidth), no latency

� ordinary: we compute all (n3)

cijk = aik · bkj

(consequence: Strassen-like matrix-matrix multilplications are not
allowed.)
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OTHER MODELS 4

Important to realize that this generalizes to
� # of messages (latency related) (as opposed to “total volume of

messages”, bandwidth related)
� parallel distributed
� hierarchical memories
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Mission Statement
We study communication costs for the ordinary dense (OD)
matrix-matrix multiplication in the sequential model.

Communication Cost for (OD) Matrix-Matrix Multiplication
Dense matrix-matrix multiplication moves n2 data for n3 computation.

C

n

n + = A × B

� Computation cost is 2n3

for i=1:n, for j=1:n, for k=1:n, cij = cij + aik bkj ; end; end; end;

� Communication cost is 3n2

Conclusion of the study
When n increases, communication cost (n2) becomes negligible with
respect to computation cost (n3).
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β−1 = 108words/sec γ−1 = 1010flops/sec M = 106words
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� Limitation of the previous study: The previous study assumes that
the three n-by-n matrix A, B, and C fit in cache.

� Note: this is a pretty serious limitation ...
(In particular when n goes to infinity ... )

� Easy fix: A common easy fix is to block the matrix-matrix
multiplication with square blocks so that the square blocks fit in cache.

Let M be the size of our cache. Let b =
√

M
3 (so that 3b2 = M). Then,

for i=1:n/b, for j=1:n/b, for k=1:n/b,
Cij

b

b + = Aik × Bkj

end; end; end;

Then, at each loop, we are moving 2b2 data and computing 2b3 so ...
(Note: Cij stays in cache.)

� Computation cost is
( n

b

)3 (2b3
)
→ 2n3 → perfect.

� Communication cost is
( n

b

)3 (2b2
)
→

( 2
b

)
n3 → oopsee.
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We see that the previous algorithm
� performs 2n3 floating point operations
� performs a volume of data movement of(

2
√

3√
M

)
n3.

Therefore the time of a OD matrix-matrix multiplication is(
2
√

3√
M

)
βn3 + 2γn3

(1) assuming no overlap between communication and computations; (2) with β being the
time to move one unit of data (inverse of bandwidth) and γ being the time to perform one
floating-point operation.
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Study with n. Communication is not negligible against computation.
Both computation and communication are of order n3.
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Study with n. Communication is not negligible against computation.
Both computation and communication are of order n3.

If β/
√

M << γ then, communication is negligible against computation.



SEQUENTIAL LOWER BOUNDS FOR MATRIX-MATRIX MULTIPLICATION 10

Consider any ordinary dense matrix-matrix multiplication algorithm for
multiplying an m–by–n matrix with an n–by–p matrix, consider a
computer with fast memory of size M, then

Theorem (Hong and Kung, 1981)

Theorem (Irony, Toledo, and Tiskin, 2004)
the number of words transferred between slow and fast memory is at
least

1
2
√

2
mnp√

M
−M.
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Consider any ordinary dense matrix-matrix multiplication algorithm for
multiplying an n–by–n matrix with an n–by–n matrix, consider a
computer with fast memory of size M, then

Upper bound :: square tile matrix-matrix multiplication
The number of words transferred between slow and fast memory is at
most

3.46
(

n3
√

M

)
.

Lower Bound :: Irony, Toledo, and Tiskin, 2004
The number of words transferred between slow and fast memory is at
least

0.35
(

n3
√

M

)
−M.
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The time of an OD matrix-matrix multiplication is

(?)βn3 + 2γn3

(1) assuming no overlap between communication and computations; (2) with β being the
time to move one unit of data (inverse of bandwidth) and γ being the time to perform one
floating-point operation.

We know that (?) is between 0.35 and 3.46.


