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2 Institut de Mathématiques de Toulouse (IMT)

This work is supported by the CIMI Excellence Laboratory

May 11, 2014

1/46



Toward Fast Transform Learning

Introduction

1 Introduction

2 Problem studied

3 ALS Algorithm

4 Approximation experiments

5 Convergence experiments

2/46



Toward Fast Transform Learning

Introduction

Introduction to sparse representation

Notations

Objects u live in RP where P is a set of pixels (such as {1, . . . ,N}2).

In image processing, many problems are underdetermined. For example, in
dictionary learning, we want to solve

min ‖α‖∗ subject to ‖Dα−u‖2 ≤ τ

Principle of sparse representation/approximation

For many applications, ‖.‖∗ should be ‖.‖0.

‖α‖0 =#{j ; αj 6= 0}

Issue

The sparse representation problem is (in general) NP-hard. However,
successful algorithms exist when the columns of D are almost orthogonal.
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Toward Fast Transform Learning

Introduction

Dictionary learning

Choosing a dictionary (Fourier,
wavelets,...)

+ fast transform

- limited sparsity

Learning the dictionary on the data

- no fast transform

+ better sparsity

The DL problem

Learn an efficient representation frame for an image class, solving

argminD,α ∑
u

(
µ‖Dα−u‖2

2 +‖α‖∗
)

DL problems are often resolved in two steps
argminα −→ Sparse coding stage,
argminD −→ Dictionary update stage.
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Introduction

Motivations (1)

#P image size




...
...

...
...

...
...

... D
...

...
...

...
...

...
...


︸ ︷︷ ︸

#D number of atoms


α




#D =

u


#P

Usually, #D�#P .

Computing Dα costs O(#D#P )> O(#P 2) operations.

Computing sparse codes is very expensive.

Storing D is very expensive.
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Introduction

Motivations (2)

Our objectives:

Define a fast transform to compute Dα.

Ensure a fast update so that larger atoms can be learned.
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Introduction

Model

Model for a dictionary update with a single atom H ∈ RP .
How to include every possible translation of H ?

∑
p′∈P

αp′ Hp−p′ = (α∗H)p

Model

Image is a sum of weighted translations of one atom

u = α∗H +b, (1)

where u ∈ RP is the image data, α ∈ RP is the code, H ∈ RP the target and
b is noise.
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Introduction

Fast Transform

How ?

Atoms computed with a composition of K
convolutions

H ≈ h1 ∗h2 ∗ · · · ∗hK

Kernels (hk)1≤k≤K have constrained
supports defined by a mapping Sk :

∀k ∈ {1, . . . ,K}, supp
(
hk)⊂ rg

(
Sk)

where rg
(
Sk
)
= {Sk(1), . . . ,Sk(S)}

contains all the possible locations of the
non-zero elements of hk .

Notation : h = (hk)1≤k≤K ∈ (RP )K .

Figure: Tree structure for a dictionary.
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Introduction

Example of support mapping

Figure: Supports (Sk )1≤k≤4 of size S = 3×3 upsampled by a factor k .
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Problem studied

(P0)

First formulation

(P0) : argmin
(hk )1≤k≤K ∈(RP )K

‖α∗h1 ∗ · · · ∗hK − u‖2
2 s.t. supp

(
hk)⊂ rg

(
Sk)

Energy gradient

∂E0(h)
∂hk = 2H̃k ∗ (α∗h1 ∗ · · · ∗hK −u), (2)

where
Hk = α∗h1 ∗ · · · ∗hk−1 ∗hk+1 ∗ · · · ∗hK , (3)

and where the .̃ operator is defined for any h ∈ RP as

h̃p = h−p, ∀p ∈ P . (4)
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Problem studied

(P0)

Shortcoming

If h1 = h2 = 0,
∇E0(h) = 0 but not a global minimum.

Another view

∀(µk)1≤k≤K ∈ RK such that ∏
K
k=1 µk = 1, we have

E0
[
(µk hk)1≤k≤K

]
= E0 (h) ,

for any k ∈ {1, . . . ,K},

∂E0

∂hk

[
(µk hk)1≤k≤K

]
=

1
µk

∂E0

∂hk (h) .

The gradient depends on quantities which are irrelevant regarding the value
of the objective function.
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Problem studied

New formulation: Problem (P1)

Second formulation

(P1) : argminλ≥0,h∈D ‖λα∗h1 ∗ · · · ∗hK − u‖2
2,

with

D =
{

h ∈ (RP )K | ∀k ∈ {1, . . . ,K},‖hk‖2 = 1 and supp
(
hk)⊂ rg

(
Sk)}

Reminder : h = (hk)1≤k≤K ∈ (RP )K .

See On the best rank-1 and rank-(R 1, R 2,..., Rn) approximation of higher-order tensors, L. De

Lathauwer, B. De Moor, J. Vandewalle, SIAM Journal on Matrix Analysis and Applications 21 (4),

1324-1342, 2000.
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Problem studied

Existence of a solution of (P1)

Proposition. [Existence of a solution]

For any (u,α,(Sk)1≤k≤K ) ∈
(
RP ×RP × (P S)K

)
, if

∀h ∈D, α∗h1 ∗ . . .∗hK 6= 0, (5)

then the problem (P1) has a minimizer.

Proof.

Idea : use compacity of D and λ-coercivity of the objective function.
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Problem studied

Link between (P0) and (P1)

Proposition. [(P1) is equivalent to (P0)]

Let (u,α,(Sk )1≤k≤K ) ∈
(
RP ×RP × (P S)K

)
be such that (5) holds. For any

(λ,h) ∈ R× (RP )K , we consider the kernels g = (gk)1≤k≤K ∈ (RP )K

defined by
g1 = λ h1 and gk = hk , ∀k ∈ {2, . . . ,K}. (6)

The following statements hold:

1 if (λ,h) ∈ R× (RP )K is a stationary point of (P1) and λ > 0 then g is a
stationary point of (P0).

2 if (λ,h) ∈ R× (RP )K is a global minimizer of (P1) then g is a global
minimizer of (P0).

15/46



Toward Fast Transform Learning

ALS Algorithm
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ALS Algorithm

Principle of the algorithm

Block formulation of (P1)

Problem (Pk)

(Pk) :

{
argmin

λ≥0,h∈RP ‖λα∗h1 ∗ · · · ∗hk−1 ∗h ∗hk+1 ∗ . . .∗hK −u‖2
2,

s.t. supp(h)⊂ rg
(
Sk
)

and ‖h‖2 = 1

where the kernels (hk ′
p )p∈P are fixed ∀k ′ 6= k .
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ALS Algorithm

Principle of the algorithm

Algorithm overview

Algorithm 1: Overview of the ALS algorithm
Input:
u: target measurements;
α: known coefficients;
(Sk)1≤k≤K : supports of the kernels (hk)1≤k≤K .
Output:
λ and kernels (hk)1≤k≤K such that λh1 ∗ . . .∗hK ≈ H.

begin
Initialize the kernels (hk)1≤k≤K ;
while not converged do

for k = 1 ,..., K do
Update λ and hk with a minimizer of (Pk).
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ALS Algorithm

Computations

Matrix formulation of (Pk)

(Pk)

(Pk) : argminλ≥0,h∈RS ‖λCk h − u‖2
2 s.t. ‖h‖2 = 1

Alternative: (P ′k)

(P ′k) : argminh∈RS ‖Ck h − u‖2
2.

(P ′k) has a minimizer h∗ ∈ RS .
Computation of a stationary point yields

h∗ = (CT
k Ck)

−1CT
k u, (7)
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ALS Algorithm

Computations

Update rule

Find h∗ solution of (P ′k)

Update

λ = ‖h∗‖2 and hk =

{
h∗
‖h∗‖2 , if ‖h∗‖2 6= 0,
1√
S
1{1,...,S} , otherwise,

(8)
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ALS Algorithm

Computations

Matrix Ck

Ck h = #P



Hk
p−Sk (s)


︸ ︷︷ ︸

S

hs

S

CT
k u︸︷︷︸

S×1

= S


 Hk

p−Sk (s)


︸ ︷︷ ︸

#P


...

up
...


#P = S 〈. . . , . . .〉RP complexity O(S#P )

CT
k Ck︸ ︷︷ ︸

S×S

=

 Hk
p−Sk (s)


Hk

p−Sk (s)

 = S2 〈. . . , . . .〉RP complexity O(S2#P )
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ALS Algorithm

Computations

ALS algorithm

Algorithm 2: Detailed ALS algorithm
Input:
u: target measurements;
α: known coefficients;
(Sk)1≤k≤K : supports of the kernels (hk)1≤k≤K .
Output:
(hk)1≤k≤K : convolution kernels such that h1 ∗ . . .∗hK ≈ H.

begin
Initialize the kernels ((hk

p)p∈P )1≤k≤K ;
while not converged do

for k = 1 ,..., K do
Compute Hk according to (3) O((K −1)S#P )

Compute CT
k Ck and CT

k u O((S+1)S#P )

Compute h∗ according to (7); O(S3)

Update hk and λ according to (8); O(S)

O(KS(K +S)#P ) per iteration of the while loop
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ALS Algorithm

Computations

Convergence of the algorithm

Convergence of Algorithm 2

For any (u,α,(Sk)1≤k≤K ) ∈
(
RP ×RP × (P S)K

)
, if

α∗h1 ∗ . . .∗hK 6= 0, ∀h ∈D, (9)

then the following statements hold:
1 The sequence generated by Algorithm 2 is bounded and its limit points

are in R×D . The value of the objective function is the same for all
these limit points.

2 For any limit point (λ∗,h∗) ∈ R×D , if for all k ∈ {1, . . . ,K}, the matrix
Ck generated using Tk(h∗) is full column rank and CT

k u 6= 0, then
(λ∗,h∗) = T (h∗) and (λ∗,h∗) is a stationary point of the problem (P1).

23/46



Toward Fast Transform Learning

ALS Algorithm

Computations

Convergence proof

Proof.
1 The sequence of kernels generated by the algorithm belongs to D and

D is compact. The objective function of (P1) is coercive with respect to
λ when (9) holds. The objective function decreases during the iterative
process and is continuous.

2 Consider a subsequence converging to a limit point (λ∗,h∗). The
objective function is continuous. When applying the loop to the
subsequence, the objective function value converges to F(λ∗,h∗).
The “for” loop T is a continuous mapping in a neighborhood of (λ∗,h∗),
so

F (T (h∗)) = F(λ∗,h∗).

For all k , the objective function value is the minimal value of (Pk )
(unique if Ck is full column rank). So (λ∗,h∗) is also a stationary point of
(Pk), and thus of (P1).
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ALS Algorithm

Initialization and restart

Initialization and restarts

Kernel coefficients are initialized uniformly on
D =

{
h ∈ (RP )K |∀k ∈ {1, . . . ,K},‖hk‖2 = 1 and supp

(
hk
)
⊂ rg

(
Sk
)}

.

Drawing R initializations and returning the result for which the objective
function is the smallest will yield a global minimimum with probability

P(global) = 1− [P(h 6∈ I)]R
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Approximation experiments

Approximation experiments setting

Build H (a wavelet, a curvelet, a cosine . . . )
Build α (Dirac delta function, Bernoulli-Gaussian . . . )
Build u = α∗H +b
Estimate λ,(hk)1≤k≤K from α and u, with ALS.

PSNRH

PSNRH = 10. log10

(
r2/MSEH

)
.

where r = maxp∈P (Hp)−minp∈P (Hp). and

MSEH =
‖λh1 ∗ · · · ∗hK −H‖2

2

#supp(H)
.

NRE

NRE =
‖λα∗h1 ∗ · · · ∗hK −u‖2

2

‖u‖2
2

. (10)
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Approximation experiments

Curvelet

H obtained by inverse curvelet transform of a Dirac function in a 128×128
image. K = 7,S = 5×5. α is a Dirac function, #supp(H)

KS ∼ 43.

Approximation λh1 ∗ · · · ∗hK True curvelet atom H
PSNRH = 44.30
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Approximation experiments

Curvelet

Figure: Kernels (hk )1≤k≤K
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Approximation experiments

Cosine function

Target atom is a 2D 64×64 cosine.
The code α is Bernoulli-Gaussian distributed.

Code α
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Approximation experiments

Cosine function

Reconstruction of H, K = 7, S = 5×5 σ2 = 0.5, #supp(H)
KS ∼ 23.

Atom H u = α∗H +b λ∗h1 ∗ · · · ∗hK

PSNRH = 41.44

31/46



Toward Fast Transform Learning

Approximation experiments

Wavelet

H chosen as 3-level horizontal detail wavelet.
Code α obtained by 23 upsampling the IWT of 3-level horizontal coefficients.

Wavelet decomposition Code α
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Approximation experiments

Approximation of H with u obtained as IWT of horizontal detail coefficients
Noise power σ2 = 5, K = 6,S = 3×3. The reachable support is a size
42×42 window.

λ∗h1 ∗ · · · ∗hK Atom H
PSNRH = 36.61
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Approximation experiments

Sinc function

Zoom ×3 of a N0 = 128 signal with a N = 384 sinc generated with a length
128 step function in the Fourier domain. K = 9,S = 9, ]supp(H) = 384,
#supp(H)

KS ∼ 4.7.

Figure: Code α
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Approximation experiments

Sinc function

Reconstruction of H, σ2 = 0 :
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Approximation experiments

Sinc function

Reconstruction of H, σ2 = 5 (PSNRH = 44.5dB) :
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Approximation experiments

Observations

PSNRH (dB) K = 3 K = 5 K = 7 K = 9 K = 11
S = 3×3 11.79 12.27 13.81 25.15 30.09
S = 5×5 11.94 15.97 41.44 38.94 39.82

Table: 2D Cosine: PSNRH .

NRE K = 3 K = 5 K = 7 K = 9 K = 11
S = 3×3 1.02 0.89 0.41 0.04 0.02
S = 5×5 0.96 0.24 0.01 0.01 0.01

Table: 2D Cosine: NRE.

2D Cosine approximation: PSNRH and NRE for several values of K and S.
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Approximation experiments

Observations

Noiseless experiments

+ PSNRH improves with K and S.

+ NRE improves with K and S.

Noisy experiments

- Improvement of PSNRH not
stable because of the lack of
regularization.

+ Several occurences of the atom
(through the code) improves
noise robustness.

Keep an eye on the conditioning
of the convolution with the code.
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Approximation experiments

Conclusions

Composition of sparse convolution can be optimized:
Algorithm complexity linear with respect to the image size.
Small search space for large atoms in large images.

A composition of convolutions accurately approximate atom-like
signals and images.
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Approximation experiments

Thank you for your attention !

Find the paper and a few experiments: google: Malgouyres Toulouse
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Convergence experiments
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Convergence experiments

Principle

This section evaluates P(h ∈ I)
for 1D signals of length #P = 128 and (K ,S) ∈ {2, . . . ,7}×{2, . . . ,10}.

∀k ∈ {1, . . . ,K},
Random support mappings: rg

(
Sk
)
∼U{1,...,10}

Independent random kernels:

hk
p

{
∼N (0,1) , if p ∈ rg

(
Sk
)

= 0 , otherwise.

The image u is obtained by convolving the kernels

u = h1 ∗ · · · ∗hK +b

where b ∼N (0,σ2).
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Convergence experiments

Performance measure

We consider that Algorithm 2 has converged to a global minimum if

‖α∗h
1 ∗ . . .∗h

K −u‖2
2 ≤ σ

2 (#S)+10−4‖u‖2
2. (11)
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Convergence experiments

Performance measure

For any fixed (K ,S) ∈ {2, . . . ,7}×{2, . . . ,10},
Generate L = 50K 2 experiments. For each experiment, draw R = 25 random
initializations according to a uniform distribution in D .
Estimation of the probability of reaching a global minimum of (P1):

P(global minimizer)' 1
LR

L

∑
l=1

R

∑
r=1

1(l, r).

with

1(l, r) =

{
1, if (11) holds for the r th result obtained from the l th input,
0, otherwise.
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Results (noise-free case)
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