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Introduction to sparse representation

Objects u live in R? where 2 is a set of pixels (such as {1,...,N}?).

In image processing, many problems are underdetermined. For example, in
dictionary learning, we want to solve

min ||a|. subjectto |[Da—ul2 <7
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In image processing, many problems are underdetermined. For example, in
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Principle of sparse representation/approximation
.||« should be ||.|o-

For many applications,

llodjo = #{j; o # 0}
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Introduction

Introduction to sparse representation

Objects u live in R where P is a set of pixels (such as {1,...,N}?).

In image processing, many problems are underdetermined. For example, in
dictionary learning, we want to solve

min ||a|. subjectto |[Da—ul2 <7

Principle of sparse representation/approximation
.||« should be ||.|o-

For many applications,
lodlo = #4j; 05 # 0} |

The sparse representation problem is (in general) NP-hard. However,
successful algorithms exist when the columns of D are almost orthogonal.

v
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Dictionary learning

Choosing a dictionary (Fourier,

Learning the dictionary on the data
wavelets,...)

- no fast transform
fast transform

- limited sparsity better sparsity

The DL problem

Learn an efficient representation frame for an image class, solving

argminp, g Y., (| Doc— ulf3 + ot
u

DL problems are often resolved in two steps
argmin, — Sparse coding stage,
argminp — Dictionary update stage.
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Motivations (1)

7P image size - p - o #D = |u P

#D number of atoms

Usually, #D > #P.

Computing Do costs O(#D#P) > O(#P?) operations.
Computing sparse codes is very expensive.

Storing D is very expensive.
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Motivations (2)

Our objectives:
@ Define a fast transform to compute Da.
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Motivations (2)

Our objectives:
@ Define a fast transform to compute Da.
@ Ensure a fast update so that larger atoms can be learned.
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Model

Model for a dictionary update with a single atom H € R,
How to include every possible translation of H ?

Y oy Hypy = (axH),
peP

Image is a sum of weighted translations of one atom

u=a*H+b, (1)

where u € R? is the image data, o € R? is the code, H € R? the target and
b is noise.
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Fast Transform

Atoms computed with a composition of K
convolutions

Hah' kP x.--xh

Kernels (h)1<x<k have constrained
supports defined by a mapping S*:

Vk € {1,...,K}, supp () C rg(S")

where rg (S¥) = {S*(1),..., S*(S)}
contains all the possible locations of the
non-zero elements of h¥.

Notation : h = (hk)1§k§K € (RT)K.
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Example of support mapping

Support S* Support S2
Support S* Support S*

Figure: Supports ( S )1<k<a Of size S =3 x 3 upsampled by a factor k.

INSTITUT
doMATHEMATIQUES
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G))

First formulation

(Po): argmin  [loxh' x---x A€ — u|5 st supp (H¥) C rg (S¥)
(H)1<k<k €RT)K
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Problem studied

G))

First formulation

(Po): argmin  [loxh' x---x A€ — u|5 st supp (H¥) C rg (S¥)

(F)1<k<k ERT)K

Energy gradient
9Eo(h) ik 1 K
=2H" x(oxh x---xh" —u), 2
= ( ) @
where
HE = o h' s T s (3)
and where the ~ operator is defined for any h € R? as
hy=h_p, YpeP. (4)
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G))

lf h' = H? =0,
VEy(h) =0 but not a global minimum.
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Problem studied

G))

Shortcoming

It h' = H =0,
VEy(h) =0 but not a global minimum.

| N

Another view

V(,uk)15k§/( € RX such that Hf:1 ux =1, we have
Eo [(ukh*)1<k<k] = Eo (h),

forany k € {1,...,K},

1 dE

(k") 1<k<k] = ” 3% ()

)
ohk

The gradient depends on quantities which are irrelevant regarding the value
of the objective function.

A
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New formulation: Problem (P )

Second formulation
(P1): argming - hep || Aot R' 5. xhf — qu,
with

D= {h € (R?)¥|Vk € {1,...,K}, || H||> = 1 and supp (H) C rg (sk)}

Reminder : h = (hk)1§k§K € (RT)K.

See On the best rank-1 and rank-(R 1, R 2,..., Rn) approximation of higher-order tensors, L. De
Lathauwer, B. De Moor, J. Vandewalle, SIAM Journal on Matrix Analysis and Applications 21 (4),
1324-1342, 2000.
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Existence of a solution of (P;)

Proposition. [Existence of a solution]
For any (u,a, (S*)1<k<k) € (R? x RT x (P5)K), if

YVhe D, axh'x...xh+£0, (5)

then the problem (P;) has a minimizer.
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Link between (Py) and (P;)

Proposition. [(P;) is equivalent to (Po)]

Let (u, 0, (S%)1<k<k) € (R x RT x (P5)¥) be such that (5) holds. For any
(A, h) € R x (R?)X, we consider the kernels g = (g*)1<k<k € (R?)K
defined by

g'=Ah"andg" =h, Vke{2,.. K} (6)
The following statements hold:
@ if (A, h) € R x (R?)X is a stationary point of (P;) and A > 0 then g is a
stationary point of (Po).
Q if (A,h) € R x (R?)X is a global minimizer of (P;) then g is a global
minimizer of (Pp).
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© ALS Algorithm
@ Principle of the algorithm
@ Computations
@ |nitialization and restart
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Principle of the algorithm

Block formulation of (Py)

Problem (Px)

(P argming 5o pcpe [|AGx A -5 AT s b KT hKC— |3,
/"1 st supp(h) C rg(S¥) and ||A|2 = 1

where the kernels (h’,;’ )pce are fixed VK" # k.

17/46



Toward Fast Transform Learning
ALS Algorithm
Principle of the algorithm

Algorithm overview

Algorithm 1: Overview of the ALS algorithm

Input:

u: target measurements;

oi: known coefficients;

(S¥)1<k<k: supports of the kernels (h*)1<x<k.
Output:

L and kernels (H*)1<x<k such that Ah' % ...« hf ~ H.

begin
Initialize the kernels ()1 <k<k;
while not converged do
fork=1,.,Kdo
L | Update A and H* with a minimizer of (Px).
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Matrix formulation of (P)

(Px): argming-g peps |A Ckh — ul3 st b2 =1
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Matrix formulation of (P)

(Px): argming-g peps |A Ckh — ul3 st b2 =1

Alternative: (Py,)

(Py): argmin,cgs ||Ckh — ull5.

(P}) has a minimizer h* € RS.
Computation of a stationary point yields

n* = (clck)'clu,
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Update rule

@ Find h* solution of (P})
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Update rule

@ Find h* solution of (P})

@ Update
h* .
A=|H|2 and K ={ Tl Jif |h*]l2 #0, @
ﬁ]l{u...,s} , otherwise,
= ;E
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Matrix Ck
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ALS algorithm

Algorithm 2: Detailed ALS algorithm

Input:

u: target measurements;

o: known coefficients;

(S¥)1<k<k: supports of the kernels (h*)1<x<k-

Output:

(H*)1<k<k: convolution kernels such that h' x...x h* ~ H.

begin
Initialize the kernels ((h%)pee)1<k<k:
while not converged do

fork=1,.,Kdo
Compute H* according to (3) O((K —1)S#P)
Compute C/ Cx and C/u O((5+1)S#P)
Compute h* according to (7); o(s%)
Update h* and A according to (8);  o(s) i pd =T
O(KS(K + S)#P) per iteration of the while loop o
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Convergence of the algorithm

Convergence of Algorithm 2

For any (u,a, (S")1<k<k) € (R x R? x (P9)K), if
axh'«...«h£0, VheD, 9)

then the following statements hold:

@ The sequence generated by Algorithm 2 is bounded and its limit points
are in R x D. The value of the objective function is the same for all
these limit points.

@ For any limit point (A*,h*) € R x D, ifforall k € {1,...,K}, the matrix
Ck generated using Tx(h*) is full column rank and C/ u # 0, then
(A*,h*) = T(h*) and (L*,h*) is a stationary point of the problem (Py).

‘th
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Convergence proof

@ The sequence of kernels generated by the algorithm belongs to D and
D is compact. The objective function of (Py) is coercive with respect to
A when (9) holds. The objective function decreases during the iterative
process and is continuous.
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Convergence proof

("]

@ Consider a subsequence converging to a limit point (A*,h*). The
objective function is continuous. When applying the loop to the
subsequence, the objective function value converges to F(A*, h*).

The “for” loop T is a continuous mapping in a neighborhood of (A*, h*),
Yo)
F(T(h")) = F(A*,h%).

For all k, the objective function value is the minimal value of ( Py)
(unique if Cy is full column rank). So (A*,h*) is also a stationary point of
(Px), and thus of (Py).
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Initialization and restarts

Kernel coefficients are initialized uniformly on
D={he R?)Vk e {1,...,K},||H||2 =1 and supp (h*) Crg(S¥)}.

Objective function

Feasible set

Drawing R initializations and returning the result for which the objective
function is the smallest will yield a global minimimum with probability

P(global) = 1 —[P(h £1)]7
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0 Approximation experiments
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Approximation experiments

Approximation experiments setting

27/46

Build H (a wavelet, a curvelet, a cosine ...)

Build o (Dirac delta function, Bernoulli-Gaussian .. .)
Buldu=oxH+b

Estimate A, (h¥)1<x<k from o and u, with ALS.
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Approximation experiments

Approximation experiments setting

Build H (a wavelet, a curvelet, a cosine ...)

Build o (Dirac delta function, Bernoulli-Gaussian .. .)
Buldu=oxH+b

Estimate A, (h¥)1<x<k from o and u, with ALS.

PSNRy
PSNRy, = 10.1ogy (r?/MSEy) .

where r = maxycp(Hp) — minyep(Hp). and

AR %% HK — H||2
#supp (H)

MSEy =
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Approximation experiments setting

Build H (a wavelet, a curvelet, a cosine ...)

Build o (Dirac delta function, Bernoulli-Gaussian .. .)
Buldu=oxH+b

Estimate A, (h¥)1<x<k from o and u, with ALS.

PSNRy

PSNRy, = 10.1ogy (r?/MSEy) .

where r = maxpce(Hp) — minpep(Hp). and

AR %% HK — H||2
#supp (H)

MSEy =

A\

NRE

[Aous At % -+ AK — u||2

NRE =
lull3
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Approximation experiments

Curvelet

H obtained by inverse curvelet transform of a Dirac function in a 128 x 128
image. K =7,S =5 x 5. ais a Dirac function, %ﬂl ~ 43.

Approximation Ah! x - - Bf True curvelet atom H
PSNRy = 44.30 i =-nir
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Approximation experiments

Curvelet

n
[ ]

kernel hy kernel h, kernel hy
kernel h, kernel hg kernel hg
1
o

INSTITUT
doMATHEMATIQUES

kernel h,
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Approximation experiments

Cosine function

Target atom is a 2D 64 X 64 cosine.
The code o is Bernoulli-Gaussian distributed.

INSTITUT
doMATHEMATIQUES

30/46



Toward Fast Transform Learning

Approximation experiments

Cosine function

Reconstruction of H, K =7, S=5x5 62 = 0.5, #S*E(H) ~ 23.

Atom H u=oaxH+b Axhl % % hK
PSNRy = 41.44

31/46



Toward Fast Transform Learning

Approximation experiments

Wavelet

H chosen as 3-level horizontal detail wavelet.
Code o obtained by 23 upsampling the IWT of 3-level horizontal coefficients.

Wavelet decomposition

INSTITUT
doMATHEMATIQUES
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Approximation of H with u obtained as IWT of horizontal detail coefficients
Noise power 62 =5, K = 6,S = 3 x 3. The reachable support is a size
42 x 42 window.

Axhl .- xhE Atom H
PSNRy = 36.61

INSTITUT
doMATHEMATIQUES
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Approximation experiments

Sinc function

Zoom x3 of a Ny = 128 signal with a N = 384 sinc generated with a length

128 step function in the Fourier domain. K =9,S = 9, ffsupp (H) = 384,
#supp(H) _, 4 7
KS i

200
180
160
140
1201.....
100
L
60
40
20

I | I
0 50 100 150 200 250 300 350

Figure: Code o
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Approximation experiments

Sinc function

Reconstruction of H, 6° =0 :

0.35

——True atom
~---- Composition of convolution:

0.3~

0.25

0.2

0.15- :

0.1~ i

0.05

L
0 50 100 150 200 250 300 350 400

m
ATHEMATIQUES
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Approximation experiments

Sinc function

Reconstruction of H, 62 = 5 (PSNRy = 44.5dB) :

0.35

——True atom
--------- Composition of convolution:

0.3~

0.25

0.2

0.15- 1

0.1- |

. I
50 100 150 200 250 300 350 400

m
ATHEMATIQUES
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Approximation experiments

Observations

PSNRy(dB) | K=3 K=5 K=7 K=9 K=11
S=3x3 11.79 1227 13.81 25.15 30.09
S=5x%x5 11.94 1597 4144 38.94 39.82

Table: 2D Cosine: PSNRy.
NRE K=3 K=5 K=7 K=9 K=11
S=3x3 1.02 0.89 0.41 0.04 0.02
S=5x5 1| 0.96 0.24 0.01 0.01 0.01

Table: 2D Cosine: NRE.

2D Cosine approximation: PSNRy and NRE for several values of K and S.
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Approximation experiments

Observations

Noisy experiments

- Improvement of PSNR 4 not
stable because of the lack of

Noiseless experiments regularization.
+ PSNRy improves with K and S. + Several occurences of the atom
+ NRE improves with K and S. (through the code) improves

noise robustness.

Keep an eye on the conditioning
of the convolution with the code.
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Approximation experiments

Conclusions

@ Composition of sparse convolution can be optimized:

o Algorithm complexity linear with respect to the image size.
o Small search space for large atoms in large images.

@ A composition of convolutions accurately approximate atom-like
signals and images.
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Thank you for your attention !

Find the paper and a few experiments: google: Malgouyres Toulouse
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© Convergence experiments
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Convergence experiments

42/46

Principle

This section evaluates P (h € T)
for 1D signals of length #2? =128 and (K,S) € {2,...,7} x {2,...,10}.

Vke{1,...,K},
Random support mappings:  rg (S¥) ~ Uy 10}
Independent random kernels:

hk{ ~N(0.1) . ifperg(s)

Pl =0 , otherwise.
The image u is obtained by convolving the kernels
u=nh#%---xh+b

where b ~ A[(0,62).
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Convergence experiments

Performance measure

We consider that Algorithm 2 has converged to a global minimum if

ook 5. xR — 03 < P (#8) + 10 ul)2. (11)
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Performance measure

For any fixed (K,S) € {2,...,7} x {2,...,10},

Generate L = 50K? experiments. For each experiment, draw R = 25 random
initializations according to a uniform distribution in D.

Estimation of the probability of reaching a global minimum of (P;):

| LR
P(global — 1(/
(global minimizer) LR,;; (1,r)

with

1(l,r) = 1, if (11) holds for the rth result obtained from the /th input,
71 0, otherwise.
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Convergence experiments

Results (noise-free case)

Average Convergence Rate
T

=

Success rate

o o o o
N Lo @

N

5

6
Support Size
Estimated Number of Restarts

6
Support Size

INSTITL
o MATHEMATIQUES
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Convergence experiments

Results (noisy case)

Average Convergence Rate

o
o

I
o

Success rate

I I I I | |
0.4 5 6 7
Support Size

Estimated Number of Restarts
T T T

6
Support Size

INSTITL
o MATHEMATIQUES
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