Toward Fast Transform Learning

Olivier Chabiron¹, François Malgouyres², Jean-Yves Tourneret¹, Nicolas Dobigeon¹

¹ Institut de Recherche en Informatique de Toulouse (IRIT) ² Institut de Mathématiques de Toulouse (IMT)

This work is supported by the CIMI Excellence Laboratory

May 11, 2014

Introduction

- ALS Algorithm
- Approximation experiments
- 5 Convergence experiments

Introduction to sparse representation

Notations

Objects *u* live in $\mathbb{R}^{\mathcal{P}}$ where \mathcal{P} is a set of pixels (such as $\{1, \ldots, N\}^2$).

In image processing, many problems are underdetermined. For example, in dictionary learning, we want to solve

min $\|\alpha\|_*$ subject to $\|D\alpha - u\|_2 \leq \tau$

Introduction to sparse representation

Notations

Objects *u* live in $\mathbb{R}^{\mathcal{P}}$ where \mathcal{P} is a set of pixels (such as $\{1, \ldots, N\}^2$).

In image processing, many problems are underdetermined. For example, in dictionary learning, we want to solve

min $\|\alpha\|_*$ subject to $\|D\alpha - u\|_2 \leq \tau$

Principle of sparse representation/approximation

For many applications, $\|.\|_*$ should be $\|.\|_0$.

 $\|\alpha\|_0=\#\{j\,;\,\alpha_j\neq 0\}$

Introduction to sparse representation

Notations

Objects *u* live in $\mathbb{R}^{\mathcal{P}}$ where \mathcal{P} is a set of pixels (such as $\{1, \ldots, N\}^2$).

In image processing, many problems are underdetermined. For example, in dictionary learning, we want to solve

min $\|\alpha\|_*$ subject to $\|D\alpha - u\|_2 \leq \tau$

Principle of sparse representation/approximation

For many applications, $\|.\|_*$ should be $\|.\|_0$.

 $\|\alpha\|_{0}=\#\{j\,;\,\alpha_{j}\neq0\}$

Issue

The sparse representation problem is (in general) NP-hard. However, successful algorithms exist when the columns of *D* are almost orthogonal.

MATIQUES

Dictionary learning

Choosing a dictionary (Fourier, wavelets,...)

- + fast transform
- limited sparsity

Learning the dictionary on the data

- no fast transform
- + better sparsity

The DL problem

Learn an efficient representation frame for an image class, solving

$$\operatorname{argmin}_{D,\alpha}\sum_{u}\left(\mu\|D\alpha-u\|_{2}^{2}+\|\alpha\|_{*}\right)$$

DL problems are often resolved in two steps $\operatorname{argmin}_{\alpha} \longrightarrow$ Sparse coding stage, $\operatorname{argmin}_{D} \longrightarrow$ Dictionary update stage.

Motivations (1)

Usually, $\#D \gg \#P$.

Computing $D\alpha$ costs $O(\#D\#P) > O(\#P^2)$ operations.

Computing sparse codes is very expensive.

Storing D is very expensive.

Motivations (2)

Our objectives:

• Define a fast transform to compute *D*α.

Motivations (2)

Our objectives:

- Define a fast transform to compute $D\alpha$.
- Ensure a fast update so that larger atoms can be learned.

Model for a dictionary update with a single atom $H \in \mathbb{R}^{\mathcal{P}}$. How to include every possible translation of H?

$$\sum_{p'\in \mathscr{P}} lpha_{p'} H_{p-p'} = (lpha * H)_p$$

Model

Image is a sum of weighted translations of one atom

$$u = \alpha * H + b, \tag{1}$$

where $u \in \mathbb{R}^{\mathcal{P}}$ is the image data, $\alpha \in \mathbb{R}^{\mathcal{P}}$ is the code, $H \in \mathbb{R}^{\mathcal{P}}$ the target and *b* is noise.

Fast Transform

How ?

Atoms computed with a composition of *K* convolutions

 $H\approx h^1*h^2*\cdots*h^K$

Kernels $(h^k)_{1 \le k \le K}$ have constrained supports defined by a mapping S^k :

$$orall k \in \{1,\ldots,K\}, \, ext{supp}\left(h^k
ight) \subset ext{rg}\left(\mathcal{S}^k
ight)$$

where rg $(S^k) = \{S^k(1), \dots, S^k(S)\}$ contains all the possible locations of the non-zero elements of h^k .

Notation :
$$\mathbf{h} = (h^k)_{1 \le k \le K} \in (\mathbb{R}^{\mathcal{P}})^K$$
.

Figure: Tree structure for a dictionary.

Example of support mapping

Figure: Supports $(S^k)_{1 \le k \le 4}$ of size $S = 3 \times 3$ upsampled by a factor *k*.

 (P_0)

First formulation

$$(P_0): \qquad \underset{(h^k)_{1 \le k \le K} \in (\mathbb{R}^{\mathscr{P}})^K}{\operatorname{argmin}} \| \alpha * h^1 * \cdots * h^K - u \|_2^2 \quad \text{s.t. } \operatorname{supp} \left(h^k \right) \subset \operatorname{rg} \left(S^k \right)$$

$$(P_0)$$

First formulation

$$(P_0): \qquad \underset{(h^k)_{1 \le k \le K} \in (\mathbb{R}^{\mathscr{P}})^K}{\operatorname{argmin}} \| \alpha * h^1 * \cdots * h^K - u \|_2^2 \quad \text{s.t. } \operatorname{supp} \left(h^k \right) \subset \operatorname{rg} \left(S^k \right)$$

Energy gradient

$$\frac{\partial E_0(\mathbf{h})}{\partial h^k} = 2\tilde{H}^k * (\alpha * h^1 * \dots * h^K - u),$$
(2)

where

$$H^{k} = \alpha * h^{1} * \dots * h^{k-1} * h^{k+1} * \dots * h^{K}, \qquad (3)$$

and where the $\tilde{.}$ operator is defined for any $h \in \mathbb{R}^{\mathscr{P}}$ as

$$\tilde{h}_{\rho} = h_{-\rho}, \quad \forall \rho \in \mathcal{P}.$$
 (4)

ъ

$$(P_0)$$

Shortcoming

If $h^1 = h^2 = 0$, $\nabla E_0(\mathbf{h}) = 0$ but not a global minimum.

$$(P_0)$$

Shortcoming

If $h^1 = h^2 = 0$, $\nabla E_0(\mathbf{h}) = 0$ but not a global minimum.

Another view

$$\forall (\mu_k)_{1 \leq k \leq K} \in \mathbb{R}^K$$
 such that $\prod_{k=1}^K \mu_k = 1$, we have

$$E_0\left[(\mu_k h^k)_{1\leq k\leq K}\right]=E_0\left(\mathbf{h}\right),$$

for any $k \in \{1, ..., K\}$,

$$\frac{\partial E_0}{\partial h^k} \left[(\mu_k h^k)_{1 \le k \le K} \right] = \frac{1}{\mu_k} \frac{\partial E_0}{\partial h^k} (\mathbf{h}).$$

The gradient depends on quantities which are irrelevant regarding the value of the objective function.

MATIQUES

New formulation: Problem (P_1)

Second formulation

$$(P_1): \quad \operatorname{argmin}_{\lambda \geq 0, \mathbf{h} \in \mathcal{D}} \|\lambda \alpha * h^1 * \cdots * h^K - u\|_2^2,$$

with

$$\mathcal{D} = \left\{ \mathbf{h} \in (\mathbb{R}^{\mathscr{P}})^{K} | \forall k \in \{1, \dots, K\}, \| \boldsymbol{h}^{k} \|_{2} = 1 \text{ and } \operatorname{supp} \left(\boldsymbol{h}^{k} \right) \subset \operatorname{rg} \left(\boldsymbol{\mathcal{S}}^{k} \right) \right\}$$

Reminder : $\mathbf{h} = (h^k)_{1 \le k \le K} \in (\mathbb{R}^{\mathscr{P}})^K$.

See On the best rank-1 and rank-(R 1, R 2,..., Rn) approximation of higher-order tensors, L. De Lathauwer, B. De Moor, J. Vandewalle, SIAM Journal on Matrix Analysis and Applications 21 (4), 1324-1342, 2000.

Existence of a solution of (P_1)

Proposition. [Existence of a solution]

For any $(u, \alpha, (S^k)_{1 \le k \le K}) \in (\mathbb{R}^{\mathscr{P}} \times \mathbb{R}^{\mathscr{P}} \times (\mathscr{P}^S)^K)$, if

$$\forall \boldsymbol{h} \in \mathcal{D}, \qquad \boldsymbol{\alpha} \ast \boldsymbol{h}^{1} \ast \ldots \ast \boldsymbol{h}^{\mathcal{K}} \neq \boldsymbol{0},$$

then the problem (P_1) has a minimizer.

(5)

Existence of a solution of (P_1)

Proposition. [Existence of a solution]

For any $(u, \alpha, (S^k)_{1 \le k \le K}) \in (\mathbb{R}^{\mathscr{P}} \times \mathbb{R}^{\mathscr{P}} \times (\mathscr{P}^S)^K)$, if

$$\forall \mathbf{h} \in \mathcal{D}, \qquad \alpha * h^1 * \ldots * h^K \neq \mathbf{0},$$

then the problem (P_1) has a minimizer.

Proof.

Idea : use compacity of \mathcal{D} and λ -coercivity of the objective function.

(5)

Link between (P_0) and (P_1)

Proposition. $[(P_1) \text{ is equivalent to } (P_0)]$

Let $(u, \alpha, (S^k)_{1 \le k \le K}) \in (\mathbb{R}^{\mathscr{P}} \times \mathbb{R}^{\mathscr{P}} \times (\mathscr{P}^S)^K)$ be such that (5) holds. For any $(\lambda, \mathbf{h}) \in \mathbb{R} \times (\mathbb{R}^{\mathscr{P}})^K$, we consider the kernels $\mathbf{g} = (g^k)_{1 \le k \le K} \in (\mathbb{R}^{\mathscr{P}})^K$ defined by

$$g^1 = \lambda h^1 \text{ and } g^k = h^k, \quad \forall k \in \{2, \dots, K\}.$$
 (6)

The following statements hold:

if (λ, h) ∈ ℝ× (ℝ)^𝐾 is a stationary point of (𝒫₁) and λ > 0 then g is a stationary point of (𝒫₀).

if (λ, h) ∈ ℝ × (ℝ)^𝐾 is a global minimizer of (P₁) then g is a global minimizer of (P₀).

Toward Fast Transform Learning ALS Algorithm Principle of the algorithm

Block formulation of (P_1)

Problem (P_k)

$$(P_k): \begin{cases} \operatorname{argmin}_{\lambda \ge 0, h \in \mathbb{R}^{\mathscr{P}}} \|\lambda \alpha * h^1 * \cdots * h^{k-1} * h * h^{k+1} * \cdots * h^K - u\|_2^2, \\ \text{s.t. } \operatorname{supp}(h) \subset \operatorname{rg}(S^k) \text{ and } \|h\|_2 = 1 \end{cases}$$

where the kernels $(h_{\rho}^{k'})_{\rho \in \mathscr{P}}$ are fixed $\forall k' \neq k$.

Algorithm overview

Algorithm 1: Overview of the ALS algorithm

Input:

u: target measurements;

α: known coefficients;

 $(S^k)_{1 \le k \le K}$: supports of the kernels $(h^k)_{1 \le k \le K}$.

Output:

 λ and kernels $(h^k)_{1 \le k \le K}$ such that $\lambda h^1 * \ldots * h^K \approx H$.

begin

```
Initialize the kernels (h^k)_{1 \le k \le K};

while not converged do

for k = 1, ..., K do

Update \lambda and h^k with a minimizer of (P_k).
```


Matrix formulation of (P_k)

(P_k) $(P_k): \quad \operatorname{argmin}_{\lambda \ge 0, h \in \mathbb{R}^S} \|\lambda C_k h - u\|_2^2 \quad \text{s.t. } \|h\|_2 = 1$

Matrix formulation of (P_k)

Update rule

• Find h^* solution of (P'_k)

Update rule

- Find h^* solution of (P'_k)
- Update

$$\lambda = \|h^*\|_2 \quad \text{and} \quad h^k = \begin{cases} \frac{h^*}{\|h^*\|_2} &, \text{ if } \|h^*\|_2 \neq 0, \\ \frac{1}{\sqrt{S}} \mathbb{1}_{\{1,\dots,S\}} &, \text{ otherwise,} \end{cases}$$
(8)

Toward Fast Transform Learning ALS Algorithm Computations

Matrix C_k

$$C_{k}h = \#\mathcal{P}\left\{\left(\begin{array}{c} \left(H_{p-S^{k}(s)}^{k}\right)\left(h_{s}\right)\right\}S\right\}$$

$$\underbrace{C_{k}^{T}u}_{S\times1} = S\left\{\left(\begin{array}{c} \left(H_{p-S^{k}(s)}^{k}\right)\left(\stackrel{\vdots}{u_{p}}\right)\right\}\#\mathcal{P} = S\langle\dots,\dots\rangle_{\mathbb{R}^{\mathcal{P}}} \text{ complexity } O(S\#\mathcal{P})\right\}$$

$$\underbrace{C_{k}^{T}C_{k}}_{S\timesS} = \left(\begin{array}{c} \left(H_{p-S^{k}(s)}^{k}\right)\left(H_{p-S^{k}(s)}^{k}\right)\right) = S^{2}\langle\dots,\dots\rangle_{\mathbb{R}^{\mathcal{P}}} \text{ complexity } O(S^{2}\#\mathcal{P})$$

$$\underbrace{C_{k}^{T}C_{k}}_{S\timesS} = \left(\begin{array}{c} \left(H_{p-S^{k}(s)}^{k}\right)\left(H_{p-S^{k}(s)}^{k}\right)\right) = S^{2}\langle\dots,\dots\rangle_{\mathbb{R}^{\mathcal{P}}} \text{ complexity } O(S^{2}\#\mathcal{P})$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ALS algorithm

Algorithm 2: Detailed ALS algorithm

Input:

u: target measurements;

α: known coefficients;

 $(S^k)_{1 \le k \le K}$: supports of the kernels $(h^k)_{1 \le k \le K}$.

Output:

 $(h^k)_{1 \le k \le K}$: convolution kernels such that $h^1 * \ldots * h^K \approx H$.

begin

```
Initialize the kernels ((h_{\rho}^{k})_{\rho \in \mathcal{P}})_{1 \le k \le K};

while not converged do

for k = 1, ..., K do

Compute H^{k} according to (3) O((K-1)S\#\mathcal{P})

Compute C_{k}^{T}C_{k} and C_{k}^{T}u O((S+1)S\#\mathcal{P})

Compute h^{*} according to (7); O(S^{3})

Update h^{k} and \lambda according to (8); O(S)

O(KS(K+S)\#\mathcal{P}) per iteration of the while loop
```

Convergence of the algorithm

Convergence of Algorithm 2

For any $(u, \alpha, (S^k)_{1 \le k \le K}) \in (\mathbb{R}^{\mathscr{P}} \times \mathbb{R}^{\mathscr{P}} \times (\mathscr{P}^{\mathcal{S}})^K)$, if

$$\alpha * h^1 * \ldots * h^K \neq 0, \qquad \forall \mathbf{h} \in \mathcal{D},$$
(9)

then the following statements hold:

- The sequence generated by Algorithm 2 is bounded and its limit points are in ℝ × D. The value of the objective function is the same for all these limit points.
- **2** For any limit point $(\lambda^*, \mathbf{h}^*) \in \mathbb{R} \times \mathcal{D}$, if for all $k \in \{1, \dots, K\}$, the matrix C_k generated using $T_k(\mathbf{h}^*)$ is full column rank and $C_k^T u \neq 0$, then $(\lambda^*, \mathbf{h}^*) = T(\mathbf{h}^*)$ and $(\lambda^*, \mathbf{h}^*)$ is a stationary point of the problem (P_1) .

Convergence proof

Proof.

• The sequence of kernels generated by the algorithm belongs to \mathcal{D} and \mathcal{D} is compact. The objective function of (P_1) is coercive with respect to λ when (9) holds. The objective function decreases during the iterative process and is continuous.

MATIQUES

Convergence proof

Proof.

- 1
- Consider a subsequence converging to a limit point (λ*, h*). The objective function is continuous. When applying the loop to the subsequence, the objective function value converges to *F*(λ*, h*). The "for" loop *T* is a continuous mapping in a neighborhood of (λ*, h*), so

$$F(T(\mathbf{h}^*)) = F(\lambda^*, \mathbf{h}^*).$$

For all *k*, the objective function value is the minimal value of (P_k) (unique if C_k is full column rank). So $(\lambda^*, \mathbf{h}^*)$ is also a stationary point of (P_k) , and thus of (P_1) .

(日)

Toward Fast Transform Learning ALS Algorithm Initialization and restart

Initialization and restarts

Kernel coefficients are initialized uniformly on $\mathcal{D} = \big\{ \mathbf{h} \in (\mathbb{R}^{\mathscr{P}})^{K} | \forall k \in \{1, \dots, K\}, \|h^{k}\|_{2} = 1 \text{ and } \operatorname{supp} (h^{k}) \subset \operatorname{rg} (S^{k}) \big\}.$

Drawing *R* initializations and returning the result for which the objective function is the smallest will yield a global minimimum with probability

$$\mathbb{P}(\text{global}) = 1 - \left[\mathbb{P}(\mathbf{h} \notin \mathbb{I})\right]^{R}$$

Approximation experiments setting

- Build H (a wavelet, a curvelet, a cosine ...)
- Build α (Dirac delta function, Bernoulli-Gaussian ...)
- Build $u = \alpha * H + b$
- Estimate λ , $(h^k)_{1 \le k \le K}$ from α and u, with ALS.

Approximation experiments setting

- Build H (a wavelet, a curvelet, a cosine ...)
- Build α (Dirac delta function, Bernoulli-Gaussian ...)
- Build $u = \alpha * H + b$
- Estimate λ , $(h^k)_{1 \le k \le K}$ from α and u, with ALS.

PSNR_H

$$\mathrm{PSNR}_{H} = 10.\log_{10}\left(r^{2}/\mathrm{MSE}_{H}\right).$$

where
$$r = \max_{\rho \in \mathscr{P}}(H_{\rho}) - \min_{\rho \in \mathscr{P}}(H_{\rho})$$
. and

$$MSE_{H} = \frac{\|\lambda h^{1} \ast \cdots \ast h^{K} - H\|_{2}^{2}}{\# \operatorname{supp}(H)}$$

Approximation experiments setting

- Build H (a wavelet, a curvelet, a cosine ...)
- Build α (Dirac delta function, Bernoulli-Gaussian ...)
- Build $u = \alpha * H + b$
- Estimate λ , $(h^k)_{1 \le k \le K}$ from α and u, with ALS.

PSNR_H

$$\mathrm{PSNR}_{H} = 10.\log_{10}\left(r^{2}/\mathrm{MSE}_{H}\right).$$

where
$$r = \max_{\rho \in \mathscr{P}}(H_{\rho}) - \min_{\rho \in \mathscr{P}}(H_{\rho})$$
. and

$$MSE_{H} = \frac{\|\lambda h^{1} \ast \cdots \ast h^{K} - H\|_{2}^{2}}{\# \operatorname{supp}(H)}$$

NRE

NRE =
$$\frac{\|\lambda \alpha * h^1 * \dots * h^K - u\|_2^2}{\|u\|_2^2}$$
. (10)

Toward Fast Transform Learning Approximation experiments

Curvelet

H obtained by inverse curvelet transform of a Dirac function in a 128×128 image. $K = 7, S = 5 \times 5$. α is a Dirac function, $\frac{\# \text{supp}(H)}{KS} \sim 43$.

Approximation $\lambda h^1 * \cdots * h^K$ PSNR_H = 44.30

Curvelet

Cosine function

Target atom is a 2D 64 \times 64 cosine. The code α is Bernoulli-Gaussian distributed.

 $\mathsf{Code}\; \alpha$

Cosine function

Reconstruction of *H*, K = 7, $S = 5 \times 5 \sigma^2 = 0.5$, $\frac{\# \text{supp}(H)}{KS} \sim 23$.

Atom H

 $u = \alpha * H + b$

 $\lambda * h^1 * \cdots * h^K$ PSNR_H = 41.44

Toward Fast Transform Learning Approximation experiments

Wavelet

H chosen as 3-level horizontal detail wavelet.

Code α obtained by 2³ upsampling the IWT of 3-level horizontal coefficients.

Approximation of *H* with *u* obtained as IWT of horizontal detail coefficients Noise power $\sigma^2 = 5$, K = 6, $S = 3 \times 3$. The reachable support is a size 42×42 window.

 $\lambda * h^1 * \cdots * h^K$ PSNR_H = 36.61

Sinc function

Zoom ×3 of a $N_0 = 128$ signal with a N = 384 sinc generated with a length 128 step function in the Fourier domain. $K = 9, S = 9, \sharp \text{supp}(H) = 384, \frac{\# \text{supp}(H)}{KS} \sim 4.7.$

34/46

Toward Fast Transform Learning Approximation experiments

Sinc function

Reconstruction of *H*, $\sigma^2 = 0$:

TUT ATHEMATIQUES

Sinc function

Reconstruction of *H*, $\sigma^2 = 5$ (PSNR_{*H*} = 44.5*dB*) :

TUT ATHEMATIQUES

Observations

$PSNR_{H}(dB)$	K = 3	K = 5	K = 7	K = 9	<i>K</i> = 11
$S = 3 \times 3$	11.79	12.27	13.81	25.15	30.09
$S = 5 \times 5$	11.94	15.97	41.44	38.94	39.82

Table: 2D Cosine: PSNR_H.

NRE	K = 3	K = 5	K = 7	K = 9	<i>K</i> = 11
$S = 3 \times 3$	1.02	0.89	0.41	0.04	0.02
$S = 5 \times 5$	0.96	0.24	0.01	0.01	0.01

Table: 2D Cosine: NRE.

2D Cosine approximation: $PSNR_H$ and NRE for several values of K and S.

Observations

Noiseless experiments

- + $PSNR_H$ improves with K and S.
- + NRE improves with K and S.

Noisy experiments

- Improvement of PSNR_H not stable because of the lack of regularization.
- + Several occurences of the atom (through the code) improves noise robustness.

Keep an eye on the conditioning of the convolution with the code.

Conclusions

• Composition of sparse convolution can be optimized:

- Algorithm complexity linear with respect to the image size.
- Small search space for large atoms in large images.
- A composition of convolutions accurately approximate atom-like signals and images.

Thank you for your attention !

Find the paper and a few experiments: google: Malgouyres Toulouse

Principle

This section evaluates $\mathbb{P}(\mathbf{h} \in \mathbb{I})$ for 1D signals of length $\#\mathcal{P} = 128$ and $(K, S) \in \{2, ..., 7\} \times \{2, ..., 10\}$.

 $\begin{aligned} \forall k \in \{1, \dots, K\}, \\ \text{Random support mappings:} \quad \text{rg}\left(\mathcal{S}^k\right) \sim \mathcal{U}_{\{1, \dots, 10\}} \\ \text{Independent random kernels:} \end{aligned}$

$$h_{p}^{k} \left\{ egin{array}{ll} \sim \mathcal{N}(0,1) & ext{, if } p \in \operatorname{rg}ig(\mathcal{S}^{k}ig) \ = 0 & ext{, otherwise.} \end{array}
ight.$$

The image *u* is obtained by convolving the kernels

$$u = h^1 * \cdots * h^K + b$$

where $b \sim \mathcal{N}(0, \sigma^2)$.

Performance measure

We consider that Algorithm 2 has converged to a global minimum if

$$\|\alpha * \overline{h}^{1} * \dots * \overline{h}^{K} - u\|_{2}^{2} \le \sigma^{2}(\#S) + 10^{-4} \|u\|_{2}^{2}.$$
 (11)

Performance measure

For any fixed $(K, S) \in \{2, ..., 7\} \times \{2, ..., 10\}$, Generate $L = 50K^2$ experiments. For each experiment, draw R = 25 random initializations according to a uniform distribution in \mathcal{D} . Estimation of the probability of reaching a global minimum of (P_1) :

$$\mathbb{P}(ext{global minimizer}) \simeq rac{1}{LR} \sum_{l=1}^L \sum_{r=1}^R \mathbb{1}(l,r).$$

with

 $\mathbb{1}(l,r) = \begin{cases} 1, & \text{if (11) holds for the } r \text{th result obtained from the } l \text{th input,} \\ 0, & \text{otherwise.} \end{cases}$

Results (noise-free case)

INSTITUT de MATHEMATIQUES

Results (noisy case)

