
THESE

pour obtenir

LE TITRE DE DOCTEUR DE L’INSTITUT NATIONAL

POLYTECHNIQUE DE TOULOUSE

Spécialité: Informatique et Télécommunications

par

Christof VÖMEL
CERFACS

Contributions à la recherche en calcul scientifique haute
performance pour les matrices creuses

Contributions to research in high performance scientific computing
for sparse matrices

Thèse présentée le 20 mars 2003 devant le jury composé de:

P. R. Amestoy Mâıtre de conférence, enseeiht Directeur de thèse
M. Arioli Directeur de recherche, ral
I. S. Duff Directeur de recherche, cerfacs et ral
E. Ng Directeur de recherche, nersc, lbnl Rapporteur
A. Pothen Professeur, odu
J. Roman Professeur, enseirb Rapporteur, Président

Résumé

Dans cette thèse, nous présentons le résultat de nos recherches dans le domaine
du calcul en algèbre linéaire creuse. En particulier, nous nous intéressons au dé-
veloppement d’un nouvel algorithme pour estimer la norme d’une matrice de manière
incrémentielle, à l’implantation d’un modèle de référence des ’Basic Linear Alge-
bra Subprograms for sparse matrices (Sparse BLAS)’, et à la réalisation d’un nou-
veau gestionnaire de tâches pour un solver multifrontal creux pour architectures à
mémoire répartie.

Notre méthode pour estimer la norme d’une matrice a l’avantage de s’appliquer à
tout type de matrices, dense et creux, contrairement aux algorithmes incrémentiels
existants auparavant. Elle peut s’avérer utile par exemple dans le cadre des factori-
sations QR, Cholesky, ou LU.

En ce qui concerne le BLAS creux, notre modèle de référence en Fortran 95 est
actuellement la seule implantation existante des interfaces spécifiées par le standard.
Afin de laisser assez de liberté à l’implantation la plus efficace, le standard définit des
interfaces génériques et reste général quant à la structure des données. Nous avons
donc été amenés à répondre aux questions complexes concernant la représentation
et la gestion des données.

Le séquencement de tâches devient un enjeu important dès que nous travaillons
sur un grand nombre de processeurs (entre 100 et 500). L’algorithme introduit
dans cette thèse permet d’améliorer le passage à l’échelle du solveur d’une façon
significative. Une étude des gains en mémoire et en temps de calcul obtenus sur
une architecture possédant plus de 500 processeurs montre tout l’intérêt de cette
nouvelle approche.

Mots clés: Algorithmique numérique, calcul à mémoire répartie, systèmes linéaires
creux, élimination de Gauss multifrontal, séquencement dynamique de tâches, struc-
tures de données creuses, standard de programmation, BLAS creux, norme d’une
matrice, conditionnement, estimation incrémentielle.

Abstract

In this thesis, we present our research on methods in high performance scientific com-
puting for sparse matrices. Specifically, we are concerned with the development of a
new algorithm for incremental norm estimation, the reference model implementation
of the standard for Basic Linear Algebra Subprograms for sparse matrices (Sparse
BLAS), and the design of a new task scheduler for MUMPS, an asynchronous dis-
tributed memory multifrontal direct solver for sparse linear systems.

Our new incremental norm estimator has the advantage of being applicable
to both dense and sparse systems, in contrast to previously existing incremental
schemes. Applications include for example monitoring of a QR, a Cholesky, or an
LU factorization.

Our Fortran 95 reference model is currently the only existing implementation of
the interfaces in the standard for the Sparse BLAS. We identify many of the compli-
cated issues regarding the representation and the handling of sparse data structures
that underlie the high-level description of sparse vector and matrix operations in
the standard but are avoided there in order to leave enough freedom for vendors to
provide efficient implementations.

With our new task scheduler for MUMPS, we address concerns about lack of
scalability and performance on large numbers of processors that arose in a compar-
ison with the SuperLU parallel solver. In the new approach, we determine, during
the analysis of the matrix, candidate processes for the tasks that will be dynamically
scheduled during the subsequent factorization. This approach significantly improves
the scalability of the solver in terms of time and memory needed, as we show by
comparison with the previous version.

Keywords: High performance computing, sparse linear systems, MUMPS, multi-
frontal Gaussian elimination, distributed memory code, dynamic task scheduling,
sparse data structures, programming standard, Sparse BLAS, reference implemen-
tation, matrix norm, condition number, incremental estimators.

Acknowledgements

I am grateful to I. Duff for allowing me to write my thesis at CERFACS, for letting
me find my way, and for supporting my ideas and projects. I also thank P. Amestoy
for his continuing interest in my work, his constructive criticism, and his guidance.
I recognize that without their help, this thesis would not have been possible.

I wish to thank Mr J. Roman and Mr E. Ng for their interest in my work and act-
ing as referees on my thesis commitee. Likewise, I acknowledge with gratitude Mr
M. Arioli and Mr A. Pothen as members of my jury.

It is my great pleasure to thank all members of the Parallel Algorithms Group who,
explicitly or implicitly through their friendship, in many ways contributed to this
work. Merci, Brigitte, Bruno, Daniel, Dominique, Elisabeth, Emeric, Enric, Hamid,
Jean-Christophe, Julien, Luc, Marielba, Martin, Serge, Songklod, Stéphane, Tadas.

Contents

Introduction 1

Part I 7

1 Incremental Norm Estimation for Dense and Sparse Matrices 9
1.1 Introduction to incremental estimation 10
1.2 Incremental estimators . 12

1.2.1 The original incremental condition estimator (ICE) 12
1.2.2 Incremental norm estimation by approximate left singular vec-

tors . 14
1.2.3 Incremental norm estimation by approximate right singular

vectors . 16
1.2.4 Quality of incremental norm estimates 17
1.2.5 Incremental norm estimation for sparse matrices 21
1.2.6 The relationship between incremental norm and condition es-

timation . 22
1.2.7 Computational costs of incremental norm estimation 23

1.3 Triangular factorizations with inverse factors 23
1.3.1 The QR factorization with simultaneous inversion of R 24
1.3.2 Stability issues of triangular matrix inversion 25

1.4 Inverses in sparse factored form . 25
1.4.1 Sparse storage of triangular inverses 25
1.4.2 Incremental norm estimation for sparse factored inverses . . . 28

1.5 Numerical tests . 28
1.6 Conclusions and future work . 32

Part II 35

2 Computational kernels for unstructured sparse matrices 37
2.1 Introduction, history, and overview of the development of the Sparse

BLAS . 38
2.2 The Sparse BLAS functionalities . 39

2.2.1 Level 1 Sparse BLAS functionalities 40
2.2.2 Level 2 Sparse BLAS functionalities 40
2.2.3 Level 3 Sparse BLAS functionalities 40

2.2.4 Routines for the creation of sparse matrices 40
2.2.5 Remarks on the Sparse BLAS functionalities 42

2.3 Representation of sparse matrices and vectors 43
2.3.1 The representation of sparse vectors 43
2.3.2 Internal data structures for sparse matrix data 43

2.4 Sparse BLAS operations on sparse matrices and vectors 50
2.4.1 Sparse vector operations . 50
2.4.2 Product of a sparse matrix with one or many dense vectors . . 50
2.4.3 Solution of a sparse triangular system with one or many dense

right-hand sides . 52
2.4.4 Releasing matrix handles . 53
2.4.5 Some remarks on using Fortran 95 53

2.5 Sample programs . 54
2.5.1 A sample program . 54
2.5.2 An application: the power method 56

2.6 Conclusions and future work . 59

Part III 61

3 Task scheduling in a multifrontal sparse linear solver 63
3.1 Introduction to MUMPS . 64
3.2 Multifrontal solution of sparse linear systems 66

3.2.1 General principles of sparse Gaussian elimination 66
3.2.2 Tasks and task dependencies in the multifrontal factorization . 67

3.3 Parallelism in the multifrontal factorization 70
3.3.1 The different types of parallelism 70
3.3.2 Parallel task scheduling: main principles 71

3.3.2.1 Geist-Ng mapping and layers in the assembly tree . . 71
3.3.2.2 The proportional mapping of Pothen and Sun 73
3.3.2.3 Dynamic task scheduling for type 2 parallelism . . . 73

3.4 Modifications to the assembly tree . 74
3.4.1 The benefits and drawbacks of amalgamation 74
3.4.2 The benefits and drawbacks of splitting 75
3.4.3 Delayed pivots and numerical stability 76

3.5 Combining the concept of candidates with dynamic task scheduling . 77
3.5.1 Issues of dynamic scheduling 77
3.5.2 Candidate processors for type 2 parallel nodes 78

3.6 Task mapping and task scheduling in MUMPS 79
3.6.1 Task mapping algorithm during the analysis phase 79
3.6.2 Task scheduling during the factorization phase 81

3.7 Details of the improved task mapping and scheduling algorithms . . . 82
3.7.1 The relaxed proportional mapping 82
3.7.2 The Geist-Ng construction of layer L0 83
3.7.3 Choosing the number of candidates for a type 2 node 84

3.7.4 Layer-wise task mapping . 85
3.7.5 Post-processing of the assembly tree for an improved memory

balance in the LU factorization 86
3.7.6 The dynamic scheduling algorithm used at run time 87

3.8 The test environment . 88
3.8.1 Regular grid test problems . 89
3.8.2 General symmetric and unsymmetric matrices 89

3.9 Experimental investigation of algorithmic details 91
3.9.1 The impact of kmax on volume of communication and memory 91
3.9.2 The impact of kmax on performance 94
3.9.3 Modifying the freedom offered to dynamic scheduling 95
3.9.4 Improved node splitting . 97
3.9.5 Improved node amalgamation 98
3.9.6 Post-processing for a better memory balance 99

3.10 Performance analysis . 100
3.10.1 Nested dissection ordering . 100
3.10.2 Hybrid nested dissection with SCOTCH 102
3.10.3 Approximate Minimum Fill (AMF) ordering 104
3.10.4 Analysis of the speedup for regular grid problems 104
3.10.5 Performance analysis on general symmetric and unsymmetric

matrices . 105
3.11 Perspectives and future work . 107

3.11.1 Adapting the new scheduling algorithm to include communi-
cation costs . 108

3.11.2 Future directions of research 110
3.12 Summary and conclusions . 111

Bibliography 113

Introduction

The solution of large linear systems of equations is a central part of many scientific
calculations. Whatever physical phenomenon might be modelled, at the end of the
discretization process usually a linear system must be solved for unknowns that
represent the physical quantities of the underlying problem. We are particularly
interested in the class of sparse matrices which arise from diverse fields such as
finite element models in mechanics, finite volume discretizations in fluid dynamics,
or circuit theory in electrical engineering.

We call a matrix sparse if it is advantageous, for example with respect to work
and storage, to exploit the zero entries. By focusing only on the nonzero part of
the matrix entries, sparse matrix algorithms can considerably reduce computations
and memory space, and thus be much more efficient than their dense counterparts.
However, the amount of work required for developing the sparse version of a given
algorithm can be important and involve complicated issues like the efficient handling
of sparse data structures.

Because of its prominent role and the complexity of the related issues, research on
the efficient solution of sparse linear systems is being given a great deal of attention
and is going through an exciting evolution that we describe in the following.

In the first part of this introductory chapter, we give an overview of the area of
high performance scientific computing for the direct solution of sparse linear systems.
In particular, we identify those issues that have inspired our own research. Then,
in the second part, we present the results that we have obtained in the framework
of this thesis.

Current topics of research in high performance scientific com-

puting for the direct solution of sparse linear systems

As an introduction to the results of our research, we describe in this section recent
work on the efficient solution of sparse linear systems. However, we are mainly
concerned with direct methods for unstructured sparse matrices, that is matrices
without a special form. These methods are often preferable to iterative solvers
when trying to solve an ill-conditioned system. Furthermore, they are commonly
exploited to construct preconditioners when because of limited storage, an iterative
approach must be used [46]. The iterative solution of sparse linear systems and the
calculation of eigenvalues are complicated issues in their own right, and we refer
the reader to the recent surveys [69] and [121]. Furthermore, direct techniques for

2 Introduction

structured sparse matrices, for example in tridiagonal or general banded form, are
reviewed in [47, 56].

The evolution of computer architectures and programming paradigms has greatly
influenced research and developments in sparse matrix computations. To make ef-
ficient use of modern machines with a multi-layered memory hierarchy, algorithm
designers now try to increase the ratio of computational operations to memory ac-
cess [41, 56]. In order to facilitate this task, but also to provide a level of abstraction
for programming and to allow a greater robustness and program portability, the Ba-
sic Linear Algebra Subprograms (BLAS) were developed [39, 40, 100]. This initial
set of standardized kernels for operations with dense matrices was adopted by ven-
dors who provided optimised implementations, offering to users a high performance
API for their programs. Thanks to this support, the gains through using BLAS
kernels on modern system architectures are so high that we usually cannot afford
not to use them. Another illustration of their huge impact on software develop-
ment is given by the fact that standard numerical libraries like the Linear Algebra
PACKage (LAPACK [13]) make heavy use of the BLAS kernels [42]. With this suc-
cess of the BLAS, other efforts followed: first, the development of the Basic Linear
Algebra Communication Routines (BLACS [43]) used within the framework of the
ScaLAPACK [29] project, then the Automatically Tuned Linear Algebra Software
(ATLAS [44]), and finally the design of a new, extended BLAS standard [1, 24]
including kernels for mixed precision calculations [103] and sparse matrices [50, 57].

The performance of numerical algorithms on modern computer architectures is
often limited by the speed of data movement between different layers of the memory
hierarchy rather than by the performance of the floating point processing units of
the processor executing the numerical operations of the algorithm itself [41]. In con-
sequence, a key strategy of the BLAS is to partition the data into blocks which are
subsequently loaded into the cache or the local memory with the goal of maximizing
reuse and increasing the ratio of floating point to memory access operations. In this
respect, an important application of the BLAS in the framework of sparse matrices
is the class of blocked algorithms such as supernodal [16, 54] and multifrontal meth-
ods [54, 55]. There, one obtains a significant gain in performance through using
the BLAS, that is dense matrix kernels, for the frontal matrices. One example of
such a code making use of the Level 3 BLAS is MA41 [7, 12] from HSL [91]. While
MA41 was designed for shared memory computers, the development of distributed
memory machines and the message passing paradigm for communication in the 90’s
required the design of new multifrontal codes and led, for example, to the recent
development of MUMPS [9, 10, 11] and WSMP [72, 73]. Furthermore, alternative
distributed memory codes, based for example on supernodal techniques, were devel-
oped, including PaStiX [79, 80, 81], SPOOLES [15], and SuperLU [35, 36]. For a
complete review on the history of these different techniques, we refer to [41, 56, 76].
For any of these direct solvers, a crucial issue when working with sparse matrices
is the ordering of the rows and columns so that the factorization preserves sparsity
and/or less work needs to be performed. Furthermore, in a parallel environment, the
ordering must offer parallelism for the solver. Classic orderings based on a minimum

Introduction 3

degree heuristic [126] or the nested dissection approach [65] have been refined and
have led to the development of modern algorithms including approximate minimum
degree (AMD [6]) and approximate minimum fill (AMF [109, 119]) orderings as
well as hybrid techniques [17, 78, 123] which are implemented in ordering packages
such as CHACO [77], METIS [98], and SCOTCH [112, 113]. Moreover, in order
to facilitate pivoting or to avoid it entirely, one often tries to permute large matrix
entries to the diagonal [51, 52]. While the stability of an LU factorization with di-
agonal pivoting cannot be guaranteed even with this permutation, it can still mean
that the number of off-diagonal pivots is substantially reduced in solvers like MA41,
MUMPS, and WSMP. In the SuperLU distributed memory solver, static pivoting
is used instead of threshold-based partial pivoting, that is off-diagonal pivots are
entirely avoided. Small or zero diagonal entries are perturbed when encountered
and the computation of a solution proceeds via iterative refinement [47, 85, 86].
Thus, the permutation of large entries to the diagonal is also very beneficial in this
context [102].

In the special case of symmetric positive definite systems, the Cholesky fac-
torization is preferable to the LU factorization because it is backward stable [86]
and needs only half of the number of operations. Furthermore, since no pivoting
is required, the sparse Cholesky factorization can avoid the use of dynamic data
structures and work instead with static memory, as do for example PSPASES [74]
and PaStiX [79, 80, 81].

Also from the point of view of scheduling, the sparse Cholesky factorization is
very attractive. Due to the absence of pivoting, the elimination process depends only
on the matrix structure and can be simulated efficiently without taking account of
the values of the matrix entries. In particular, in a parallel environment, it is possible
to calculate a static schedule prior to factorization that balances the work among the
parallel processes based on a careful estimation of the speed of communication and
of the computational operations of the underlying computer architecture, as does for
example PaStiX [79, 80, 81]. Dynamic load balancing during the actual factorization
as used by MUMPS [9, 10, 11] is generally less important in this case. However,
the scheduling problems arising in the context of sparse multifrontal factorization,
as far as they concern the minimisation of the overall completion time for the jobs
to be scheduled, are NP hard in general [62]. Consequently, one usually calculates
only an approximate solution based on relatively inexpensive heuristics or so-called
approximating algorithms in order not to increase the overall complexity of the linear
solver [89, 101].

Once we have solved a linear system, another important step consists of de-
termining the quality of the numerical solution that has been computed in finite
precision. As already mentioned in the discussion of SuperLU, iterative refinement
can be used to improve the accuracy of the computed solution. While backward
error bounds usually are computed from a residual [86], the computation of forward
error bounds requires knowledge of the matrix condition number. As the compu-
tation of singular values is costly, these are commonly not computed exactly but
obtained via relatively inexpensive so-called condition estimators. These are in-

4 Introduction

cluded in standard numerical libraries such as LINPACK [30] or LAPACK [75, 88]
for dense matrices, for a survey we refer also to [83, 86]. Furthermore, an alternative,
so-called incremental, approach was designed specifically to monitor the condition-
ing of a triangular factorization on the fly [22]. However, the application of this
incremental technique to sparse matrices is difficult and requires additional care,
see [23, 59]. A related question concerns the determination of the numerical null
space of a matrix by a direct factorization and led to the development of the class of
so-called rank-revealing methods, see for example [26, 27, 28, 110]. Initially, these
were designed for dense matrices but have recently been adopted also for sparse
solvers, see [114]. In all these methods, a condition estimator plays a central role
for determining the rank-revealing factor.

A description of our research and the contents of this ma-
nuscript

In the first part of this introduction, we have given an overview of recent research on
the direct solution of sparse linear systems. We now give an outline of the subsequent
chapters of this thesis. Specifically, we describe our contributions to the different
topics of research that we have identified before. Our presentation consists of three
parts.

• The first part of this thesis is concerned with the development of a new in-
cremental algorithm for norm estimation. Offering more flexibility than pre-
viously existing schemes, our new algorithm not only adapts well to dense but
also to sparse matrices. We give both a theoretical analysis of the properties
of the new technique and test its performance in practice. Through our inves-
tigation, we demonstrate the reliability of the new algorithm which is related
to condition estimation and has applications in rank-revealing algorithms.

• In the second part of this thesis we describe the design and the implementation
of the Sparse BLAS kernels, providing Basic Linear Algebra Subprograms for
sparse matrices. These are defined by the BLAS Technical Forum with the
principal goal of aiding in the development of modern iterative solvers like
Krylov subspace methods for large sparse linear systems. The Sparse BLAS
standard, as part of the BLAS project, specifies interfaces for a high-level
description of vector and matrix operations for the algorithm developer but
also leaves enough freedom for vendors to provide the most efficient imple-
mentation of the underlying algorithms for their specific architectures. Our
Fortran 95 reference model implementation of the Sparse BLAS is currently
the only existing complete implementation. It represents a first step towards
widely available efficient kernels, as we identify many of the underlying com-
plicated issues of the representation and the handling of sparse matrices and
give suggestions to other implementors of how to address them.

• The development of a new scheduling algorithm for MUMPS, a MUltifrontal

Introduction 5

Massively Parallel Solver, is presented in the third part of this thesis. Our
new approach addresses concerns about the scalability of MUMPS on a large
number of processors with respect to computation time and use of memory that
arose in a comparison with SuperLU, another state-of-the-art parallel direct
solver for linear systems. An investigation shows that the dynamic scheduling
has a significant impact on the performance of MUMPS as a major part of the
computational work is distributed dynamically. We develop new algorithms to
improve the treatment of the assembly tree during the static analysis and to
better guide the dynamic task scheduler during factorization. With this new
approach, we can increase the scalability of the solver in terms of time and
memory needed.

6 Introduction

I

Chapter 1

Incremental Norm Estimation for
Dense and Sparse Matrices

Error analysis is a very important field in numerical computation. In this field, we
try to measure the quality of a solution that has been computed in finite precision.
According to [47], we call a problem ill-conditioned if small changes in the data can
produce large changes in the solution. In the special case of the solution of linear
systems Ax = b , we assign a condition number

κ(A) = ‖A‖ ‖A−1‖ (1.1)

to the matrix A and speak of the matrix being ill-conditioned if κ(A)� 1 .
Standard bounds on the forward error in the numerical solution of a linear system

are usually expressed in terms of the matrix condition number [83, 86]. Furthermore,
it can be shown that the common approach of improving the numerical solution of
a linear system through fixed precision iterative refinement is guaranteed to yield a
relative forward error bounded by the unit roundoff times the condition number, as
long as the matrix A is not too ill-conditioned and the solver is not too unstable.
For a precise presentation of this result, we refer to [86].

However, we want to know in general only the magnitude of the error and not
the precise value. For this reason, we often accept estimates that are correct up to
a certain factor but are significantly cheaper to compute than the solution itself.
For dense linear systems, we are interested in algorithms that compute an estimate
with about O(n2) operations and that is correct to within a factor 10 [83, 86]. One
example of such an algorithm is the matrix 1 -norm power method that is available
in LAPACK [13].

In the direct solution of linear systems where we compute a triangular factor-
ization of the initial matrix A , condition estimators for triangular matrices are of
particular interest. According to [86], the first condition estimator of this kind that
was widely used is the one included in LINPACK [30]. Several other estimators
were developed later on; for a survey on these methods we refer to [83, 86]. Here, we
are particularly interested in a method developed by Bischof in [22], the so called
incremental condition estimation (ICE). This algorithm allows us to monitor an

10 Incremental Norm Estimation for Dense and Sparse Matrices

ongoing triangular factorization to detect ill-conditioning. However, while working
well in the dense case, ICE is difficult to adapt to sparse matrices, an observation
that motivated our research.

In this chapter of the thesis, we present a new incremental approach to 2 -norm
estimation. Our investigation covers both dense and sparse matrices which can
arise for example from a QR , a Cholesky, or an LU factorization. If the explicit
inverse of a triangular factor is available, as in the case of an implicit version of the
LU factorization, we can relate our results to ICE. This will be explained later on.
Incremental norm estimation (INE) extends directly from the dense to the sparse
case without needing the modifications that are necessary for the sparse version of
ICE. INE can be applied to complement ICE, since the product of the two estimates
gives an estimate for the matrix condition number. Furthermore, when applied to
matrix inverses, INE can be used as the basis of a rank-revealing factorization.

In order to avoid confusion of the reader, we point out that the term condition
estimation frequently refers to estimating the norm of the matrix inverse. In the
special case of the Euclidean norm, this corresponds to estimating the size of the
smallest singular value of a matrix. The algorithm we present in the following is
explicitly designed to estimate the largest singular value of a given matrix. Fur-
thermore, in contrast to Bischof who implicitly works with the matrix inverse, our
algorithm is based on the triangular matrix itself. For these reasons, and in order
to underline the ingenuity of our approach, we refer to our scheme as incremental
norm estimator. However, both Bischof’s and our incremental algorithm can pro-
vide estimates of the largest and smallest singular values, hence both can be used
as condition number estimators.

1.1 Introduction to incremental estimation

There are many cases when it is interesting and important to detect the ill-conditioning
of a square matrix A from the triangular factors arising in its LU or QR factor-
ization. Applications include the calculation of forward error bounds based on the
condition number of A and robust pivot selection criteria.

Another particularly interesting field of applications is provided by rank-revealing
factorizations. During the process of determining a rank-revealing permutation, sev-
eral (and, in the extreme case, an exponential number of) leading or trailing subma-
trices have to be investigated for their conditioning, see for example the survey [28].
A condition estimator is used to determine the conditioning of these matrices. Con-
ceptually, there are two major classes of these estimators. The estimators belonging
to the first class are static in the sense that they estimate the condition number of a
fixed triangular matrix. These methods are surveyed in [83]. The second class can
be used for dynamic estimation when a triangular matrix is calculated one column
or row at a time. These incremental schemes (often called incremental condition
estimation or ICE) for estimating ill-conditioning in the Euclidean norm were origi-
nally presented in [22] and are particularly attractive for monitoring a factorization
as it proceeds. This was exploited in [114] where a generalization of the original

1.1 Introduction to incremental estimation 11

scheme to sparse matrices [23] was incorporated in a multifrontal QR algorithm to
generate a good initial permutation for rank-revealing ‘on-the-fly’. Finally, the idea
of incremental updates was also applied in an algorithm for the calculation of the
condition number in the Frobenius norm [125]. This algorithm computes the condi-
tion number rather than estimating it. However, it is comparatively expensive and
has, as far as we know, not found widespread use.

A completely different rank-revealing strategy is proposed in [108]. Instead of
using condition estimation together with the triangular factors from a LU factor-
ization (as for example in [26, 92, 93, 110]), a method based on an implicit LU
factorization is employed. This so-called Direct Projection Method [20] calculates
an upper triangular matrix Z such that AZ = L is a lower triangular matrix,
with Z = U−1 where U is the triangular factor of Crout’s LU factorization. To our
knowledge, this is the first time information on the inverse of a triangular factor was
used to detect ill-conditioning. Speaking in terms of the Euclidean matrix norm, all
the previous approaches only used the triangular factors themselves so that the con-
dition estimators had to estimate the reciprocal of the smallest singular value. On
the contrary, working with the matrix inverse implies the estimation of the largest
singular value. This motivated us to think about the design of an efficient norm
estimator which can be applied in that framework.

When we were reformulating the ICE scheme from [22] to the task of norm esti-
mation, we discovered that this scheme has a major shortcoming. Namely that the
scheme allows the use of approximate vectors for only one side; that is, approximate
right singular vectors for lower triangular matrices and approximate left singular
vectors for upper triangular matrices. While this might at first glance not seem
very critical, it has a severe implication on the use of ICE on sparse matrices and
can degrade the quality of the estimates drastically. This has been observed in [23]
where sophisticated modifications have been introduced to adapt the scheme to the
sparse case.

The topic of this chapter of the thesis is the development of an incremental 2 -
norm estimation (INE) scheme that can be based on approximate singular vectors
of either the left or the right side. We observe from experiments on dense matrices
that INE estimates the largest singular value with the same quality as ICE estimates
the smallest one. The great advantage of the norm estimator is that it applies
without modifications to the sparse case. The right incremental approach for sparse
matrices will prove to be as reliable as it is for dense ones. An immediate application
of our scheme lies in its combination with ICE in order to obtain an incremental
estimator for the Euclidean condition number. Another interesting application arises
from calculations that involve matrix inverses, for example the Direct Projection
Method [20] and the rank-revealing approach of [108]. Here, INE can be used to
estimate the smallest singular value.

In Section 1.2, we first briefly discuss the original condition estimation scheme
of Bischof [22] and then describe how we calculate the matrix norm of a triangular
matrix in incremental fashion. We show for which matrices the incremental approach
leads to exact results and investigate its behaviour in the sparse case. Afterwards,

12 Incremental Norm Estimation for Dense and Sparse Matrices

we give an assessment of its work and storage demands.
Of course, our norm estimation is of particular interest when the inverse of the

triangular factor is available. In Section 1.3, we consider, as an example, a QR
factorization with inverted triangular factor. This algorithm will later be used for
testing our norm estimator.

The inversion of sparse matrices is additionally associated with the problem of
fill-in. However, in the case of triangular matrices fill-in can be avoided by storing
the inverse in factored form as proposed by [4]. We describe the details of this
approach in Section 1.4 and illustrate problems that can occur when we try to
detect ill-conditioning from the factored form.

We show the reliability of our incremental norm estimator in Section 1.5, by pre-
senting results obtained from a variety of dense and sparse test cases from standard
matrix collections [48, 84].

Finally, we give our conclusions in Section 1.6.

1.2 Incremental estimators

In this section, we present the details of our incremental norm estimator. The princi-
pal conceptual difference between our scheme and the original incremental condition
estimator (ICE) [22] is that ours uses matrix-vector multiplications whereas ICE is
based on the solution of triangular systems. A more detailed comparison between
the schemes is given in Section 1.2.6.

1.2.1 The original incremental condition estimator (ICE)

In order to appreciate the general difficulties of determining the conditioning by
examining the triangular factors, we first present two classical test matrices from
Kahan [97]:

Example 1.2.1 Consider Tn ∈ Rn×n where

Tn =

1 −γ . . . −γ

0
. . .

. . .
...

...
. . .

. . . −γ
0 . . . 0 1

with γ > 0 . The components of the inverse T−1

n = (αij) satisfy the recursion
(αi−1j) = (1 + γ)(αij), i = j − 2, . . . , 1 , hence it is given by

αij =

1, i = j
γ(1 + γ)j−i−1, i < j
0, i > j.

1.2 Incremental estimators 13

Example 1.2.2 Consider Kn(c) ∈ Rn×n with

Kn(c) = diag(1, s, s2, . . . , sn−1)

1 −c . . . −c

0
. . .

. . .
...

...
. . .

. . . −c
0 . . . 0 1

where c, s ∈ (0, 1) with c2 + s2 = 1 . Its inverse is given by K−1

n (c) = (αij) with

αij =

s1−i, i = j
s1−ic(1 + c)j−i−1, i < j
0, i > j.

Both matrices are very ill-conditioned which is easy to see from the entries of the
inverses but is not evident from the entries of the matrices themselves. A House-
holder QR factorization with column pivoting [70] will reveal the ill-conditioning of
Example 1.2.1 but will not work on Example 1.2.2. We will use both these matrices
in our experiments in Section 1.5.

In [22], an elegant approach to condition estimation is presented which updates
an estimate of the smallest singular value of a triangular matrix when it is aug-
mented by adding another column. We now describe this approach applied to upper
triangular matrices.

Given an upper triangular matrix T ∈ Rn×n , we can calculate its smallest
singular value by finding a vector d ∈ Rn of unit length so that the solution x of
xT T = dT has maximum norm. That is, we find

d∗ = arg max
‖d‖2=1

‖dTT−1‖2.

Once we have solved this problem (at least approximately), it is shown in [22]
how to compute a cheap estimate of the smallest singular value for the augmented
matrix

T̂ =

[
T v

γ

]
.

The right-hand side d̂ for the augmented system x̂T T̂ = d̂T can be chosen as

d̂ = d̂(s, c) =

(
sd
c

)
, (1.2)

where s2 + c2 = 1 , and the solution to this augmented system has the form

x̂ =

(
sx

c−sα
γ

)
(1.3)

with α = xT v . In other words, x̂T T̂ = d̂T can be solved for x̂ without any back-
substitution involving T .

14 Incremental Norm Estimation for Dense and Sparse Matrices

The parameters (s, c) ∈ R2 are chosen to maximize the norm of x̂ . This
maximization problem can be treated analytically, and we refer the reader to the
very elegant demonstration in [22].

The low cost of this approach together with the quality of the estimates obtained
have made it an attractive safeguard for the computation of the QR factorization,
as was already suggested in [22] and later on was successfully employed in the sparse
multifrontal rank revealing QR factorization [114].

In [60], it is shown that one step of Lanczos iteration for improving an incremental
estimate can be applied in an incremental fashion at a cost of O(n) , where n is
the order of the matrix. This yields a better estimate while preserving the overall
costs of order O(n) for an incremental step.

1.2.2 Incremental norm estimation by approximate left sin-
gular vectors

Analogously to Section 1.2.1, we seek a cheap incremental norm estimator when
augmenting an upper triangular matrix. We can design an efficient scheme by
proceeding in a very similar way to the ICE construction.

Computing the matrix norm using a left singular vector means we wish to find
a vector y of unit length such that

y∗ = arg max
‖y‖2=1

‖yTT‖2.

An incremental norm estimator has then to specify a cheap heuristic for the com-
putation of ŷ corresponding to the augmented matrix

T̂ =

[
T v

γ

]
. (1.4)

We will see that we can avoid a matrix-vector product in this computation if we
restrict the search to vectors ŷ of the form

ŷ = ŷ(s, c) =

(
sy
c

)
, (1.5)

where s2 + c2 = 1 .
Since

‖ŷT T̂‖22 = ŷT T̂ T̂ T ŷ

=
(
syT , c

) [T v
γ

] [
T T

vT γ

](
sy
c

)
= (s, c)

[
yTTT T y + (yTv)2 γ(yTv)

γ(yTv) γ2

](
s
c

)
= (s, c)B

(
s
c

)
,

we can rewrite the objective function as a quadratic form, where B ∈ R2×2 .

1.2 Incremental estimators 15

Theorem 1.2.1 The matrix B is symmetric positive definite (s.p.d.) if T̂ is non-
singular. Hence the maximization problem

max
‖(s,c)‖2=1

‖ŷ(c, s)T T̂‖22 (1.6)

has as solution the eigenvector (s∗, c∗) of unit length belonging to the largest eigen-
value of B .

The calculation of ‖ŷT T̂‖2 by a matrix-vector product at every step can be
avoided by using the updating formula

‖ŷT T̂‖2 =

√
s2‖yTT‖22 + (s(yTv) + cγ)2 (1.7)

which is a consequence of

ŷT T̂ =

(
syTT

syT v + cγ

)
. (1.8)

If we introduce the quantities

α = yTv, δ = ‖yTT‖2

and

η2 = α2 + δ2, µ = δγ, ν = αγ,

we find as the solution of (1.6):

for the case α �= 0(
s
c

)
=

u

‖u‖2 , u =

(
η2 − γ2 +

√
η4 + 2ν2 − 2µ2 + γ4

2ν

)
for the case α = 0

(
s
c

)
=

(
1
0

)
, if δ > |γ|,

(
0
1

)
otherwise.

Using (1.7), we can completely omit the calculation of ŷT T̂ and compute δ̂
directly from δ .

16 Incremental Norm Estimation for Dense and Sparse Matrices

1.2.3 Incremental norm estimation by approximate right

singular vectors

In the previous section, we showed how to construct incrementally an approximation
of the left singular vector corresponding to the largest singular value. We will now
develop the scheme for the corresponding right singular vector. This might seem
very natural, however we emphasize that it is not possible to extend the original
ICE scheme described in Section 1.2.1 to right singular vectors. In Section 1.2.6, we
look more closely at this problem of extending ICE. In order to make the following
derivation more transparent, we point out that the key idea lies in focusing on the
vector Tz rather than the approximate right singular vector z .

For an upper triangular matrix T , the issue is now to find a vector z of unit
length so that

z∗ = arg max
‖z‖2=1

‖Tz‖2.

With the augmented matrix T̂ defined as in (1.4), our approximate right singular
vector is assumed to be of the form

ẑ = ẑ(s, c) =

(
sz
c

)
, (1.9)

where s2 + c2 = 1 , exactly as in (1.5).
We state again the objective function as a quadratic form

‖T̂ ẑ‖22 = (s, c)

[
zT T TTz zT T T v
vT Tz vT v + γ2

](
s
c

)
= (s, c)C

(
s
c

)
,

and see, by the same arguments as in Section 1.2.2, that the solution (s∗, c∗) can
be calculated analytically.

By exploiting the recurrence

T̂ ẑ =

(
sTz + cv

cγ

)
, (1.10)

we see that, as in Section 1.2.2, we can avoid a matrix-vector product at each stage.
If we define

β = vTTz, ε = ‖Tz‖2 κ2 = vT v + γ2, (1.11)

we have

for the case β �= 0(
s
c

)
=

u

‖u‖2 , u =

(
ε2 − κ2 +

√
ε4 + 4β2 − 2ε2κ2 + κ4

2β

)

1.2 Incremental estimators 17

and for the case β = 0

(
s
c

)
=

(
1
0

)
, if ε > |γ|,

(
0
1

)
otherwise.

Then, we can compute ε̂ from

ε̂ = ‖T̂ ẑ‖2 =
√

s2ε2 + 2scβ + c2κ2. (1.12)

We point out that our algorithm works only with the vector Tz , the approx-
imate right singular vector z is neither needed nor computed. However, it might
become useful to know z . In this case, we suggest multiplying Tz by T T and
normalizing the result. This strategy of performing one step of power iteration with
an appropriately chosen vector z was originally used by the LINPACK condition
estimator [30], but we choose z differently.

1.2.4 Quality of incremental norm estimates

We investigate in this section when the updating formulae (1.5) and (1.9) lead to
exact norm estimates.

We consider the singular value decomposition T = UΣV T with singular values
σ1 ≥ . . . ≥ σn and orthogonal matrices U = [u1, . . . , un] and V = [v1, . . . , vn] .

We define as before

T̂ =

[
T v

γ

]
,

and assume in the following that v �= 0 . Then

T̂ T̂ T =

[
TT T + vvT γv

γvT γ2

]
=

[
U

1

] [
Σ2 + UT vvT U γUT v

γvTU γ2

] [
UT

1

]
=

[
U

1

]{[
Σ2

0

]
+

(
UT v
γ

)(
vT U γ

)}[UT

1

]
,

and an eigenvalue λ of T̂ T̂ T is a solution of

0 = det

([
Σ2 − λI

−λ

]
+

(
UT v
γ

)(
vT U γ

))
= det(D − λI + mmT).

18 Incremental Norm Estimation for Dense and Sparse Matrices

Theorem 1.2.2 If the vector m has no zero components, and the entries di of the
diagonal matrix D satisfy d1 > . . . > dn+1 = 0 , then any eigenvalue λ of T̂ T̂ T is
a solution of

det

(
I +

[
Σ2 − λI

−λ

]−1(
UT v
γ

)(
vT U γ

))
= 0.

We have to show that for each eigenvalue λi of T̂ T̂ T and vi �= 0 satisfying
(D + mmT)vi = λivi , the matrix D − λiI is nonsingular. If D − λiI is singular,
then there exists a corresponding unit vector ei with (D − λiI)ei = 0 . As 0 =
eT

i (D − λiI + mmT)vi = (eT
i m)(mT vi) , it follows that (mT vi) = 0 since m has

no zero components. But then, (D + mmT)vi = Dvi = λivi and vi has to be
also a multiple of ei , since the eigenvalues of D are distinct and all eigenspaces
one-dimensional. Then 0 = (mT vi) = (mT ei) is a contradiction to the assumption
that the vector m has only nonzero components.

Theorem 1.2.3 Under the assumptions of Theorem 1.2.2, any eigenvalue λ of
T̂ T̂ T is a solution of the secular equation

0 = 1 +
n∑

i=1

(vTui)
2

σ2
i (T)− λ

− γ2

λ
. (1.13)

An eigenvector ũi of the matrix D + mmT corresponding to λi is a multiple of
(D − λiI)−1m .

The first part of this theorem is an immediate consequence of the previous one
and the well known formula for the determinant of a rank-one update of the identity
matrix det(I + xyT) = 1 + yTx . Furthermore, since (D − λiI)ũi + (mT ũi)m = 0
and (D − λiI) is nonsingular, ũi and (D − λiI)−1m must be linearly dependent.

Theorem 1.2.4 Let T be upper triangular and T = UΣV T its singular value
decomposition, with singular values σ1 > . . . > σn > 0 and orthogonal matrices
U = [u1, . . . , un] and V = [v1, . . . , vn] . If

T̂ =

[
T v

γ

]
,

then the vector recurrence û1 = (suT
1 , c)T can only lead to an exact left singular

vector belonging to the maximum singular value σ̂1 of T̂ , if u1 and v are parallel.

By Theorem 1.2.3, an eigenvector of the matrix D +mmT corresponding to the
eigenvalue λi is given by ũi = α(D − λiI)−1m . Since

T̂ T̂ T =

[
U

1

]
(D + mmT)

[
UT

1

]
,

1.2 Incremental estimators 19

the corresponding eigenvector of the matrix T̂ T̂ T is given by

ûi = α

[
U

1

]
(D − λiI)−1m.

Assume that u1 is the exact left singular vector belonging to the maximum singular
value of T and û1 can be expressed by the recurrence relation (1.5) as û1 =
(suT

1 , c)T . Since for all j

ûT
1

(
uj

0

)
= suT

1 uj = αmT (D − λ1I)−T

[
UT

1

](
uj

0

)
= α̃mT ej ,

it follows from uT
1 uj = 0 for j = 2, . . . , n that m(1 : n) is a multiple of e1 . By

the definition of

m =

(
UT v
γ

)
,

the left singular vector u1 and v must be parallel.
An investigation of the recurrence for the corresponding right singular vector

leads to the same necessary condition as in Theorem 1.2.4.

Theorem 1.2.5 Let T = UΣV T and T̂ be defined as before. The vector recur-
rence v̂1 = (svT

1 , c)T can only lead to an exact right singular vector belonging to the
maximum singular value σ̂1 of T̂ if u1 and v are parallel.

From v̂1 = (svT
1 , c)T and

σ̂1v̂
T
1 = ûT

1 T̂

= αmT (D − λiI)−T

[
UT

1

] [
T v

γ

]
= αmT (D − λiI)−T

[
ΣV T UT v

γ

]

follows again mj = 0 for j = 2, . . . , n , because

v̂T
1

(
vj

0

)
= αmT (D − λ1I)−T

[
ΣV T UT v

γ

](
vj

0

)
= αmT (D − λ1I)−T

(
σjej

0

)
.

The next theorem says that the necessary condition |uT
1 v| = ‖v‖2 from Theo-

rem 1.2.4 and 1.2.5 is also sufficient and gives an explicit formula for the 2-norm of
the augmented triangular matrix. This formula has already appeared in [22].

20 Incremental Norm Estimation for Dense and Sparse Matrices

Theorem 1.2.6 Let T = UΣV T and T̂ be defined as in Theorem 1.2.4 and 1.2.5.
If the condition |uT

1 v| = ‖v‖2 holds, then

‖T̂‖22 = σ̂2
1 =

τ

2
+

√
τ 2

4
− σ2

1γ
2, τ = σ2

1 + ‖v‖22 + γ2. (1.14)

Moreover, if the left singular vector u1 of the matrix T is taken as the initial vector,
then the vector û1 constructed by the left incremental norm estimator is exact, that
is, it satisfies ‖ûT

1 T̂‖2 = σ̂1 . Likewise, the right incremental estimate v̂1 satisfies
‖T̂ v̂1‖2 = σ̂1 , if the right singular vector v1 is taken as the initial vector.

If |uT
1 v| = ‖v‖2 holds, then, because of the pairwise orthogonality of the vectors

ui , the secular equation (1.13) is simplified to

0 = 1 +
‖v‖22

σ2
1(T)− λ

− γ2

λ
,

which has as largest root λ1 = σ̂2
1 from (1.14).

From the proof of Theorem 1.2.4 follows with uT
1 v = ±‖v‖2e1 that the singular

vector û1 can be expressed as

û1 = α

[
U

1

]
(D − λ1I)−1m

= α

[
U

1

]
(D − λ1I)−1

(±‖v‖2e1

γ

)
=

(
s̃u1

c̃

)
,

hence û1 satisfies the vector recurrence (1.5) defining the incremental construction
of the approximate left singular vectors. Since û1 corresponds to the maximum
singular value, it holds that

(s̃, c̃) = arg max
‖(s,c)‖2=1

‖û1(c, s)
T T̂‖22,

and the incremental estimate is exact. Analogously, we have from the proof of
Theorem 1.2.5 that

v̂1 =
α

σ̂1

[
V Σ
vT U γ

]
(D − λ1I)−1

(±‖v‖2e1

γ

)
=

(
s̄v1

c̄

)
,

therefore v̂1 satisfies the vector recurrence (1.9). The incremental estimate is exact
because

(s̄, c̄) = arg max
‖(s,c)‖2=1

‖T̂ v̂1(c, s)‖22.

1.2 Incremental estimators 21

1.2.5 Incremental norm estimation for sparse matrices

The incremental condition estimator described in Section 1.2.1 is intended to be
used with dense matrices. In its original form, ICE cannot be applied to sparse
matrices as we illustrate through Example 1.2.3.

Example 1.2.3 Consider the triangular matrix A ∈ R(nB+nC+nD)×(nB+nC+nD) with

A =

 B 0 EB

0 C EC

0 0 D

}nB

.

After step nB , we obtain from ICE an approximate left singular vector xB . In
the next step, the first column of the second block column is appended, where γ =
a(nB + 1, nB + 1) is the only nonzero entry. ICE will now take either x̂ = (xB, 0)T

or x̂ = (0, 1)T as an approximate left singular vector for the augmented triangular
matrix. But once a component in the approximate left singular vector is set to zero,
this choice cannot be undone later in the calculation, independent of the entries in
the right border. Thus, the sparsity of the matrix A can cause the quality of the
estimate to be very poor.

The modifications proposed to ICE in [23] to overcome this problem are as fol-
lows: for each block on the diagonal generate a separate approximate left singular
vector, and then merge these subvectors together where the weights of each subvec-
tor are computed using a block version of ICE. This again requires the computation
of the eigenvector belonging to the largest eigenvalue of a s.p.d. matrix, but this
matrix will be of order k where k is the number of diagonal blocks rather than of
order 2 . As this eigenvector (for k > 4) can no longer be computed analytically,
the solution of a secular equation using rational approximations is used.

The reason for the failure of ICE on sparse matrices is that, while the upper
triangular matrix is augmented column by column, the incremental condition esti-
mator uses left approximate singular vectors and thus calculates a weighted linear
combination of the rows. This problem would not occur if it was possible to base
ICE on approximate right singular vectors.

What does this imply for the incremental norm estimation? By the same reason-
ing as in the case of ICE, we expect to encounter similar problems to the incremental
norm estimator for sparse matrices if we use approximate singular vectors from the
left side. Fortunately, we can use approximate right singular vectors in the case of
columnwise augmentation of the matrix as we have shown in Section 1.2.3. This
allows us to use the scheme for dense matrices in the sparse case, too. Mathemati-
cally, the difference between the left and the right incremental norm estimator can
be seen by comparing the two update formulas (1.5) and (1.10). The update of the
approximate left singular vector ŷ = (syT , c)T does not change a vector component
once it becomes zero; this can result in poor estimates as shown in the example
above. However, the formula (1.10)

T̂ ẑ =

(
sTz + cv

cγ

)

22 Incremental Norm Estimation for Dense and Sparse Matrices

shows that the vector T̂ ẑ is essentially a linear combination of the old vector Tz
and the new column appended to the triangular matrix. Even if a component
of Tz has become zero during the previous steps of the algorithm, it can change
again if the corresponding component of the vector v is nonzero. In this sense, the
right incremental norm estimator can ’recover’ from zeros introduced by sparsity, in
contrast to the left scheme.

1.2.6 The relationship between incremental norm and con-
dition estimation

We now present a more detailed investigation of the relationship between the in-
cremental norm and incremental condition estimators described in the previous sec-
tions. In particular, we show why incremental condition estimation is less flexible
with respect to the use of approximate singular vectors from both sides.
For the following discussion, we use the nomenclature

T̂ =

[
T v

γ

]
, T̂−1 =

[
T−1 u

γ−1

]
.

Let us first look at the incremental condition estimator ICE. The scheme con-
structs from a vector d of unit norm the next vector d̂ incrementally as

d̂ = d̂(s, c) =

(
sd
c

)
.

The elegance of the scheme lies in the fact that it is not necessary to solve the
equation x̂T T̂ = d̂T if the solution of the previous equation xT T = d is known.
Instead, x̂ can be computed directly from x through the update formula given in
equation (1.3).

The problem is that the analogous update formula for ICE based on approximate
right singular vectors is not practical. An investigation of the equation T̂ ẑ = d̂
reveals the update formula

ẑ =

(
sz + cu

c/γ

)
. (1.15)

Note that this formula involves the vector u which is part of the inverse matrix
T̂−1 . (Theoretically, u could be computed from u = −1/γ T−1v , however, this
would increase the costs of one incremental step from O(n) to O(n2) !) As was
shown in Sections 1.2.2 and 1.2.3, the incremental norm estimator does not have the
same problem. Estimators based on both left as well as right singular vectors have
update formulae that involve only terms of the original matrix T (see equations (1.8)
and (1.10)).

The incremental approach to norm estimation is a direct generalization of the
concepts used in ICE. Indeed it is the case that the application of the incremen-
tal norm estimator, using approximate left singular vectors, to the matrix T−1 is

1.3 Triangular factorizations with inverse factors 23

mathematically equivalent to applying the incremental condition estimator ICE to
the matrix T . This follows by substituting the matrix T by its inverse T−1 in the
derivation of Section 1.2.2.

1.2.7 Computational costs of incremental norm estimation

We now give an analysis of the work and storage demands of the incremental norm
estimators. We regard the transition from the triangular matrix T ∈ Rn×n to the
augmented matrix T̂ ∈ R(n+1)×(n+1) .

We begin with the left incremental norm estimator described in Section 1.2.2.
The key formulas for this technique are given by the update of the approximate
left singular vector (1.5) and the update of the norm estimate (1.7). From (1.7),
it follows that the norm estimate δ = ‖yTT‖2 and the approximate left singular
vector y of the matrix T are required for the computation of the new norm estimate
δ̂ = ‖ŷT T̂‖2 . The storage requirements for the update are therefore n + 1 . The
new approximate singular vector ŷT is essentially a scaling of y , and the expensive
part of the norm estimate update is given by the dot product yTv . Thus, the total
computational costs of the update step are approximately 3n .

We now consider the right incremental norm estimator described in Section 1.2.3.
Fundamental for this algorithm is the update of the vector Tz as given in (1.10)
and the update of the norm estimate (1.12). We see that ε = ‖Tz‖2 needs to be
stored for the computation of the new estimate ε̂ = ‖T̂ ẑ‖2 , and Tz is needed for
T̂ ẑ . Overall, we need to store n + 1 numbers as for the left incremental norm
estimator. However, the right incremental norm estimator is more expensive as can
be seen from (1.10) and the constants defined in (1.11). The computation of the
vector T̂ ẑ costs 3n operations, since the sum of the scaled vector Tz and the
scaled rightmost column of T̂ has to be formed. The update of the norm estimate
requires the computation of the two dot products vT (Tz) and vT v + γ2 , together
4n operations. Thus, the overall costs for the update step are 7n .

The above analysis applies for the case of a dense matrix T and shows that in this
case, the left incremental approach is clearly better with respect to computational
costs. If we assume that the vector v is sparse with m� n entries, the difference
between the two schemes becomes significantly less important. Since also in the case
of a sparse T , both the left and the right approximate singular vectors are generally
dense, the scaling of y and Tz by the scalar s will still cost n operations. However,
the cost of any operation involving v will now be reduced from n to m . Therefore,
we obtain n+2m as the operation count for the left incremental scheme and n+6m
for the right incremental scheme.

1.3 Triangular factorizations with inverse factors

In this section, we briefly describe the incorporation of the inversion of a triangular
factor into a QR factorization. This algorithm will be the basis for our numerical

24 Incremental Norm Estimation for Dense and Sparse Matrices

tests which are reported in Section 1.5. We remark that the explicit computation of
matrix inverses arises for example in signal processing applications [31, 111].

1.3.1 The QR factorization with simultaneous inversion of

R

There are several ways to combine a standard QR factorization with a simulta-
neous inversion of R . It is important to consider both the performance and the
stability of the inversion algorithm. Both aspects were investigated in [45]. Of all
the methods discussed in that paper, we decided to implement a method rich in
Level 2 BLAS matrix-vector multiplies. This algorithm was already considered by
Householder [90]. Lemma 1.3.1 describes the basis of the inversion algorithm.

Lemma 1.3.1 Assume that R ∈ Ri×i and that the first i−1 columns of Y = R−1

have already been computed. Then, the ith column of Y can be computed from

Y (i, i) ∗R(i, i) = 1,

Y (1 : i− 1, i) ∗R(i, i) = −Y (1 : i− 1, 1 : i− 1) ∗R(1 : i− 1, i).

This is a consequence of a columnwise evaluation of Y R = I .
If we combine a QR factorization based on the modified Gram-Schmidt algo-

rithm [70] with the simultaneous inversion described by Lemma 1.3.1, we get Algo-
rithm 1.

Algorithm 1 QR factorization with simultaneous inversion.

[n, n] = size(A);
Q = zeros(m, n);
R = zeros(n);
Y = zeros(n);
for i = 1:n do

R(i, i) = norm(A(:, i), 2);
Q(:, i) = A(:, i)/R(i, i);
for j = i+1:n do

R(i, j) = (Q(:, i))′ ∗ A(:, j);
A(:, j) = A(:, j)− R(i, j) ∗Q(:, i);

end for
Y (i, i) = 1/R(i, i);
if i > 1 then

Y (1 : i− 1, i) = Y (1 : i− 1, 1 : i− 1) ∗R(1 : i− 1, i);
Y (1 : i− 1, i) = −Y (i, i) ∗ Y (1 : i− 1, i);

end if
end for

1.4 Inverses in sparse factored form 25

1.3.2 Stability issues of triangular matrix inversion

The numerical stability properties of general triangular matrix inversion were inves-
tigated in [45]. The inversion in Algorithm 1 is just Method 2 from [45] adapted
for upper triangular matrices. An error analysis similar to the one performed there
establishes the following componentwise residual bound for the computed inverse
Ȳ :

|Ȳ R− I| ≤ cnu|Ȳ ||R|+O(u2)

where cn denotes a constant of order n and u the unit roundoff. The interpretation
of this result is that the residual Ȳ R−I can be bounded componentwise by a small
multiple of the unit roundoff times the size of the entries in Ȳ and R . The bound
illustrates the reliability of our algorithm for matrix inversion, but the remark on
page 18 of [45] should be recalled:
. . . we wish to stress that all the analysis here pertains to matrix inversion alone.
It is usually the case that when a computed inverse is used as part of a larger compu-
tation the stability properties are less favourable, and this is one reason why matrix
inversion is generally discouraged.
Indeed, the authors give an example illustrating that the solution of Rx = b by the
evaluation R−1b need not be backward stable if R−1 has first to be computed from
R .

We conclude that one would not compute R−1 instead of R just to replace ICE
by INE. ICE is the condition estimator for standard factorizations in the classical
sense of giving an estimate of the smallest singular value. However, if an inverse
matrix arises from the application, the norm estimator INE can serve as a condition
estimator.

1.4 Inverses in sparse factored form

1.4.1 Sparse storage of triangular inverses

The inverse of a sparse matrix A is generally less sparse than A itself and indeed,
if the matrix is irreducible, its inverse is structurally dense, see for example [47]. As
was observed by the pioneers in linear programming some few decades ago [19], [61],
the inverse of a sparse triangular matrix can be stored with exactly the same storage
as the matrix itself, that is without fill-in. This is described in Lemma 1.4.1.

Lemma 1.4.1 Let R ∈ Rn×n be an upper triangular matrix. Denote by Ri an
elementary matrix, equal to the identity matrix except for row i where it is identical
to the i -th row of R . Then:

1. R = RnRn−1 . . . R1

2. Let Si = R−1
i . Then Si has exactly the same sparsity structure as Ri and is,

apart from row i equal to the identity matrix. Note that Si does not contain
the i -th row of Y .

26 Incremental Norm Estimation for Dense and Sparse Matrices

Both results can be checked by calculation.
The lemma suggests that we can obtain a no fill-in representation of the inverse

by storing the factors Si, i = 1, . . . , n instead of R−1 .
Although this is very good from the point of view of sparsity it unfortunately

causes problems for the detection of ill-conditioning. For example, the factored
representation of T−1

n , where Tn is the matrix of Example 1.2.1, is given by the
tableau

1 γ . . . γ

0
. . .

. . .
...

...
. . .

. . . γ
0 . . . 0 1

 .

Here, row i of Y holds the non-trivial row of the elementary matrix Si . We see that
the exponential growth of the matrix entries does not show up in the factored form,
that is the ill-conditioning is hidden by this implicit representation of the inverse.
From this example, we conclude that we need to calculate the inverse explicitly to
avoid hiding the ill-conditioning. For most matrices, it is not possible to do this
without fill-in, however, in [4], it is shown how the number of factors in the sparse
factored form of the inverse can be reduced while still avoiding fill-in so long as the
matrix satisfies a certain condition. The original intention of [4] was to enhance
parallelism in the solution of triangular systems, but we use the idea here to help
detect ill-conditioning.

In order to explain the method, we introduce the following nomenclature:
For an upper triangular matrix R ∈ Rn×n , its directed acyclic graph G(R) is the
pair (V, E) where V = {1, . . . , n} and E = {(i, j)|i �= j and R(i, j) �= 0} . For
(i, j) ∈ E , i is called a predecessor of j and j a successor of i . The transitive
closure of a directed graph G = (V, E) is the graph G′ = (V, E ′) where E ′ =
{(i, j)|∃ path i→ j in G} .

Theorem 1.4.2 [67] Let R be a nonsingular upper triangular matrix. Then

G(R−1) = (G(R))′.

This theorem allows us to extend Lemma 1.4.1 by showing that the restriction
to using elementary matrices as factors is not necessary. Instead, we can consider
blocks of rows of R where the corresponding generalized elementary matrix has a
transitively closed directed graph. By generalized elementary matrix, we mean the
matrix which is equal to the identity except for the rows belonging to the block
where it is identical to the corresponding rows of R .

Example 1.4.1 Consider the matrix

R =

11 12 13 14

22 23 0
33 34

44

 =

1

1
33 34

44

11 12 13 14
22 23 0

1
1

 .

1.4 Inverses in sparse factored form 27

From Theorem 1.4.2, we see that each of the factors can be inverted without fill-in.

It is desirable to look for a representation of the inverse with the smallest number
of factors possible. The inclusion of this row blocking strategy into Algorithm 1 will
then result in a hybrid algorithm that uses the sparse representation of the inverse
but also reveals possible hidden ill-conditioning of dense submatrices. In particular,
this algorithm can handle the pathological matrices in Examples 1.2.1 and 1.2.2.

To formalize the objectives, the algorithm should find a partition 0 = e1 < e2 <
. . . < em+1 = n so that

R−1 = S1 . . . Sm (1.16)

where Sk is the inverse of the generalized elementary matrix corresponding to the
rows ek + 1, . . . , ek+1 of R and the number of factors m is as small as possible.

The following Lemma is now an immediate consequence of Theorem 1.4.2.

Lemma 1.4.3 Assume that the generalized elementary matrix corresponding to the
rows ek +1, . . . , j−1 of R is invertible without fill-in. Then the augmented gener-
alized elementary matrix corresponding to the rows ek + 1, . . . , j of R is invertible
without fill-in if and only if the Condition 1.4.1 is satisfied.

Condition 1.4.1 Every successor s of j is also a successor of all predecessors
p ≥ ek + 1 of j .

The following theorem shows the optimality of the partition.

Theorem 1.4.4 [4] A partitioning with maximum row blocking based on Condi-
tion 1.4.1 leads to a sparse representation of R−1 with the smallest possible number
of factors.

It is interesting to see how easily the row blocking can be incorporated into our
inversion algorithm for triangular matrices. The following analogue to Lemma 1.3.1
shows how Algorithm 1 has to be modified.

Lemma 1.4.5 Assume that Condition 1.4.1 holds for ek + 1, . . . , i and that the
columns ek + 1, . . . , i− 1 of Sk have already been computed. Then, the ith column
of Sk can be computed from

Y (i, i) ∗R(i, i) = 1,

Y (ek + 1 : i− 1, i) ∗R(i, i) = −Y (ek + 1 : i− 1, ek + 1 : i− 1)

∗R(ek + 1 : i− 1, i).

We remark that the stability of the partitioned inverse method in the context of
solving triangular linear systems has been studied in [87]. Generally, the comments
given at the end of Section 1.3.2 also apply here.

28 Incremental Norm Estimation for Dense and Sparse Matrices

1.4.2 Incremental norm estimation for sparse factored in-

verses

The application of any incremental scheme to a factored representation is a difficult
problem. As can be seen from (1.7) and (1.10), it is always assumed that we have
access to the full column being appended. However, in the factored approach a
column might not be stored explicitly because of fill-in, see Section 1.4. The column
could be generated but the high cost of its computation from the factors might spoil
the effectiveness of the scheme.

Although we cannot give a full solution to this problem, we suggest at least a
partial remedy as follows:

1. It is possible to use

‖R−1‖2 ≈
m∏

i=1

‖Si‖2. (1.17)

to obtain an estimated upper bound for the condition number of Y = R−1 .
In our tests, we found that the product on the right-hand side is often a se-
vere overestimation of ‖R−1‖2 , even if each factor ‖Si‖2 is an underestimate.
Although there are circumstances where an overestimate is useful (for exam-
ple, if the value is not too large then we are fairly sure the matrix is not
ill-conditioned), the use of (1.17) can be very unreliable.

2. The cost for the computation of an off-diagonal block depends on the number
of factors in the sparse representation, the graph G(R−1) , and the position of
the block. The example

Y =

 S11 S12 S13

I
I

 I
S22 S23

I

 I
I

S33

=

 S11 S12S22 (S12S23 + S13)S33

S22 S23S33

S33

illustrates this. If R−1 is very sparse, the computation of the columns of Y
from its factors becomes affordable. We can use a blocked version of our scheme
to first calculate approximate singular vectors corresponding to the diagonal
blocks and afterwards merge them together to obtain an approximate singular
vector for the whole system.

1.5 Numerical tests

In this section, we present tests of our incremental schemes with dense and sparse
matrices. We use the algorithm described in Section 1.3.1 which allows us to use
our norm estimator on both the triangular factor and its inverse.

1.5 Numerical tests 29

In Table 1.1, we show the incremental estimates for the QR factorization of
sparse matrices from the Harwell-Boeing collection [48]. Here, the second column
displays the exact matrix norm of R as calculated by MATLAB, the third and fourth
columns show estimations based on approximate left singular vectors (Section 1.2.2)
and on approximate right singular vectors (Section 1.2.3), respectively. If we denote
by cl the costs for applying the left incremental estimator to the matrix R , we
obtain from Section 1.2.7 that cl =

∑n
i=1 i + 2nnz(R) = n2/2 + 2nnz(R), where n

denotes the size of the matrix and nnz(R) the number of nonzero elements. Likewise,
we obtain cr = n2/2 + 6nnz(R) as costs for the right incremental estimator. The
cost quotient qc = cr/cl is given in the fifth column of the table. The following four
columns of the table hold the corresponding numbers for the inverse factor R−1 .
Furthermore, preordering the matrix A is potentially beneficial for the sparsity of
the triangular factors R and R−1 . Following the suggestions in [21] and [25], we
test our scheme also on AΠ , where Π is the column minimum degree ordering. The
results for the permuted matrices are reported below those for the corresponding
unpermuted ones and are marked by colmmd.

In general, both of our estimators give a good approximation to the norm of
R . Note that, because we compute the norm using an approximate singular vector,
our estimate will always be a lower bound for the norm. We cannot find a general
superiority of the right incremental estimates over the left incremental ones. How-
ever, as indicated in Section 1.2.5, the incremental approach for upper triangular
matrices based on approximate left singular vectors can lead to problems for sparse
matrices and we see this in a few of our test cases, most noticeably the case of the
matrix arc130 and its inverse, where the incremental approach based on right sin-
gular vectors gives a much better estimate than the one using left singular vectors.
While the column minimum degree ordering does not generally improve the norm
estimate, our results show that in most cases it reduces substantially the costs of the
schemes. Furthermore, the difference between the two schemes in terms of costs can
become significantly less pronounced as for example seen for the permuted matrices
bfw398a and impcol c.

In Table 1.2, we show the incremental estimates for the norm of R−1 from
the QR factorization of dense matrices from the Matlab Test Matrix Toolbox [84].
Specifically, we use the matrices from Example 1.2.1, called condex in [84], and
Example 1.2.2, named kahan. Furthermore, we include tests with Hilbert matrices
(hilb). We apply our incremental norm estimator to the inverse of the matrices,
since the ill-conditioning is evident there rather than in the matrices themselves.
We note that both of our estimates are always very close to the real norm, however,
as the cost difference between the two schemes is cr− cl = 4nnz(R) = 2n2 for dense
matrices, the left incremental scheme is preferable.

In Tables 1.3 and 1.4, we show the incremental estimates for the QR factorization
of random matrices with uniform and exponentially distributed singular values, re-
spectively. For each of the different matrix sizes n , we created 50 random matrices
A = UΣV T choosing different random matrices U ,V , and singular values either

30 Incremental Norm Estimation for Dense and Sparse Matrices

Name ‖R‖2 l-est. r-est. qc ‖R−1‖2 l-est. r-est. qc

arc130 2.39e+5 1.91e+2 2.37e+5 2.3 2.52e+5 2.15e+2 2.52e+5 2.3
(colmmd) 2.39e+5 2.37e+5 2.37e+5 1.7 2.52e+5 2.15e+2 1.81e+5 1.9
bfw398a 1.04e+1 9.45e+0 8.69e+0 2.2 2.87e+2 9.06e+1 2.86e+2 2.3
(colmmd) 1.04e+1 8.28e+0 9.32e+0 1.5 2.87e+2 2.91e+1 2.77e+2 1.9
cavity04 7.12e+1 3.53e+1 6.39e+1 1.9 4.97e+4 1.03e+4 4.87e+4 2.0
(colmmd) 7.12e+1 5.33e+1 6.99e+1 1.8 4.97e+4 5.70e+3 4.94e+4 1.9
e05r0400 4.59e+1 1.79e+1 4.13e+1 2.2 1.10e+4 2.67e+3 1.06e+4 2.3
(colmmd) 4.59e+1 3.64e+1 3.86e+1 2.1 1.10e+4 2.76e+3 1.09e+4 2.2
fidap001 1.30e-1 1.14e-1 1.19e-1 2.0 2.53e+5 1.81e+5 2.08e+5 2.3
(colmmd) 1.30e-1 1.23e-1 1.27e-1 2.0 2.53e+5 1.79e+5 2.09e+5 2.3
fs 183 1 1.12e+9 8.22e+8 1.27e+7 2.3 1.94e+4 1.08e+3 1.93e+4 2.3
(colmmd) 1.12e+9 1.12e+9 1.12e+9 1.9 1.94e+4 1.88e+4 1.94e+4 2.2
impcol b 8.63e+0 3.18e+0 8.48e+0 2.0 1.89e+4 1.30e+4 1.89e+4 2.3
(colmmd) 8.63e+0 2.41e+0 8.58e+0 1.7 1.89e+4 8.74e+3 1.89e+4 2.0
impcol c 1.20e+2 9.77e+0 1.20e+2 1.9 1.47e+2 3.54e+1 1.47e+2 2.3
(colmmd) 1.20e+2 1.20e+2 1.20e+2 1.4 1.47e+2 4.59e+1 1.47e+2 1.9
lns 131 9.77e+9 9.54e+9 9.10e+9 2.2 1.30e+5 5.83e+4 1.30e+5 2.3
(colmmd) 9.77e+9 3.98e+9 6.32e+9 1.6 1.30e+5 5.84e+4 1.30e+5 2.0
saylr1 4.83e+8 4.14e+8 4.81e+8 1.6 1.61e+0 7.61e-1 1.10e+0 2.3
(colmmd) 4.83e+8 2.37e+8 4.35e+8 1.5 1.61e+0 6.02e-1 1.59e+0 1.9
steam1 2.17e+7 1.88e+7 2.17e+7 2.1 1.30e+0 6.58e-1 1.18e+0 2.3
(colmmd) 2.17e+7 8.71e+6 2.17e+7 1.7 1.30e+0 1.29e+0 1.29e+0 2.1
str 0 1.39e+1 7.33e+0 1.39e+1 1.1 1.96e+1 2.97e+0 1.69e+1 1.3
(colmmd) 1.39e+1 1.03e+1 1.31e+1 1.2 1.96e+1 9.26e+0 1.95e+1 1.5
west0381 1.71e+3 1.39e+3 1.71e+3 2.2 7.31e+2 2.10e+2 7.18e+2 2.3
(colmmd) 1.71e+3 5.36e+2 1.71e+3 1.7 7.31e+2 9.37e+1 7.16e+2 2.1

Table 1.1: Results with matrices from the Harwell-Boeing collection. The column
headers l-est. and r-est. denote left and right estimates, respectively. The cost
quotient qc describes the ratio of costs between right and left estimates in number
of operations.

uniformly distributed as

σi = norm(A)/i, 1 ≤ i ≤ n,

or exponentially distributed as

σi = αi, 1 ≤ i ≤ n, αn = norm(A),

where the norm of A was chosen in advance. The random orthogonal matrices U
and V were generated using a method of Stewart [124] which is available under
the name qmult in [84]. The values displayed in the table are the averages from 50
tests each. These tests seem to indicate that in the case of dense upper triangular
matrices, the norm estimation based on approximate right singular vectors is more
accurate than that based on approximate left singular vectors. However, we don’t
have a theoretical foundation for this.

1.5 Numerical tests 31

Name Size ‖R−1‖2 l-est. r-est. cr − cl

condex(n,3) 50 3.75e+14 3.72e+14 3.75e+14 5000
75 1.26e+22 1.25e+22 1.26e+22 11250

100 4.23e+29 4.19e+29 4.23e+29 20000
kahan(n) 50 6.43e+07 6.09e+07 6.43e+07 5000

75 8.50e+11 8.06e+11 8.50e+11 11250
100 1.12e+16 1.07e+16 1.12e+16 20000

hilb(n) 50 8.95e+17 3.74e+17 8.37e+17 5000
75 1.77e+18 5.29e+17 1.71e+18 11250

100 1.82e+18 7.26e+17 1.63e+18 20000

Table 1.2: Results with matrices from the Matlab Test Matrix Toolbox. The column
headers l-est. and r-est. denote left and right estimates, respectively. The rightmost
column shows the difference between the costs for right and left estimate cr − cl in
number of operations.

Size ‖R‖2 l-est. r-est.
50 1.00e+01 8.82e+00 9.24e+00

1.00e+06 8.79e+05 9.21e+05
1.00e+12 8.77e+11 9.20e+11

75 1.00e+01 8.82e+00 9.23e+00
1.00e+06 8.82e+05 9.24e+05
1.00e+12 8.80e+11 9.21e+11

100 1.00e+01 8.81e+00 9.22e+00
1.00e+06 8.78e+05 9.18e+05
1.00e+12 8.73e+11 9.17e+11

Table 1.3: Results (averages) with random matrices, σi uniformly distributed. The
column headers l-est. and r-est. denote left and right estimates, respectively.

When we regard the results of all tests together, we find it difficult to give a
general statement on which heuristics should be preferred. From its derivation, it
is clear that, for sparse matrices, the right incremental approach is more accurate
than the left incremental one. However, even for sparse matrices it is possible that
the left incremental estimator gives a better approximation. For better robustness,
we suggest applying the left and right incremental estimator together and take the
best of the two estimates, as in all our tests at least one of them is accurate.

32 Incremental Norm Estimation for Dense and Sparse Matrices

Size ‖R‖2 l-est. r-est.
50 1.00e+01 8.55e+00 9.10e+00

1.00e+06 8.52e+05 9.59e+05
1.00e+12 8.89e+11 9.92e+11

75 1.00e+01 8.52e+00 9.11e+00
1.00e+06 8.20e+05 9.52e+05
1.00e+12 8.32e+11 9.82e+11

100 1.00e+01 8.54e+00 9.11e+00
1.00e+06 8.08e+05 9.31e+05
1.00e+12 8.20e+11 9.58e+11

Table 1.4: Results (averages) with random matrices, σi exponentially distributed.
The column headers l-est. and r-est. denote left and right estimates, respectively.

1.6 Conclusions and future work

In the context of the direct solution of linear systems, one often employs condition
estimators for triangular matrices in order to have a cheap but reliable statement
on the quality of the computed solution. The obtained estimates for the condition
numbers of the triangular systems allow to estimate the magnitude of the error in the
solution. Incremental condition estimators are particularly adapted to monitoring an
ongoing triangular factorization to detect ill-conditioning. However, while working
well in the dense case, previously existing schemes have been difficult to adapt to
sparse matrices.

In this chapter of the thesis, we have shown how a new incremental norm esti-
mator can be developed for a triangular factor. We have pointed out the suitability
of the scheme for both dense and sparse matrices due to the fact that it can use
approximate singular vectors both from the left and the right side. We have stated
necessary and sufficient conditions for the applicability of the new algorithm. Fur-
thermore, we have given an analysis of its complexity in terms of floating point
operations and memory. To demonstrate the efficacy of our approach in practice,
we have shown results on standard test examples including both sparse and dense
matrices. These studies have been published in [59]. We point out that while we
have been concerned with estimating the largest singular value of a matrix, we can
also generalize the new incremental approach of Section 1.2.3 to estimate the small-
est singular value. This can be done by looking in each incremental step for the pair
(s, c) that minimizes the norm of ẑ in (1.9).

Some topics remain subject of further research. A first question concerns matrix
inverses which are stored in sparse factored form. These are difficult to treat by
incremental estimators because they need access to appended columns, whereas in
the factored approach, a column might not be stored explicitly because of fill-in, A
second direction of research concerns the application of incremental norm estimation
in the framework of the implicit LU factorization and, more generally, in the context

1.6 Conclusions and future work 33

of rank revealing. In particular, apart from [114] little has been done to explore the
potential of rank revealing methods for sparse matrices where the capabilities of our
algorithm to treat also these matrices could become important.

34 Incremental Norm Estimation for Dense and Sparse Matrices

II

Chapter 2

Computational kernels for
unstructured sparse matrices

A sparse matrix is a matrix many of whose entries are zero and for which some
advantage can be taken of this fact, either for storage or operations with the matrix.
In this part of the thesis, we consider the design and implementation of the Sparse
BLAS, a set of computational kernels for unstructured sparse matrices. These Basic
Linear Algebra Subprograms for sparse matrices are part of the new BLAS stan-
dard [1] which has been developed by the BLAS Technical Forum, and for which we
have provided a reference implementation [57]. Our implementation of the Sparse
BLAS has occurred in parallel to the design of the standard. In fact, our experience
actually has influenced the final definition of the standard [50]. For example, the
error flags in the interface were introduced in the final version of the standard after
the implementation of an earlier version. These diagnostic error flags are used to in-
dicate the success or failure of a computation in order to provide verifiable reliability
to users.

The development of the Sparse BLAS standard is motivated by a shortage of
sparse matrix support in the original BLAS. The Basic Linear Algebra Subprograms
in their initial version [39, 40] have some support for sparse matrices, specifically,
banded and packed matrices, and LAPACK [13] provides kernels for tridiagonal
matrices, but neither library offers functionalities for matrices with more irregular
sparsity patterns.

The problem of providing kernels for unstructured matrices arises from the fact
that data access changes from one matrix to another, depending on its pattern. This
stands in contrast to regularly structured sparse and dense matrices, where one a
priori knows the shape of the matrix and can tune data structures and data access
accordingly. Furthermore, the way of storing and accessing the nonzero entries of a
sparse matrix often depends on the underlying application, see the remarks in [50].

However, it is important to provide a common programming interface for sparse
matrix computations that is not limited to one specific storage format or matrix lay-
out. With such interfaces, an application programmer can write portable, generic
algorithms for sparse matrices without having to care about the underlying data

38 Computational kernels for unstructured sparse matrices

handling. The programmer then can perform high-level operations such as matrix-
vector multiplications with abstract matrix representations with a single call of a
Sparse BLAS subroutine, which aids the development of algorithms. Furthermore,
depending on the specific machine architecture, a vendor can provide efficient im-
plementations of the algorithms that are hidden behind the Sparse BLAS interfaces.
Thus, from the viewpoint of application development, the standardized Sparse BLAS
kernels ensure easier coding as well as enhanced code portability.

2.1 Introduction, history, and overview of the de-

velopment of the Sparse BLAS

The Basic Linear Algebra Subprograms (BLAS), which provide essential function-
alities for dense matrix and vector operations, are a milestone in the history of
numerical software. BLAS have been proposed for operations on dense matrices for
some time, with the original paper for vector operations (Level 1 BLAS) appearing
in 1979 [100]. This was followed by the design of kernels for matrix-vector opera-
tions (Level 2 BLAS) [40] and matrix-matrix operations (Level 3 BLAS) [39]. The
Level 3 BLAS have proved to be particularly powerful for obtaining close to peak
performance on many modern architectures since they amortize the cost of obtaining
data from main memory by reusing data in the cache or high level memory.

For some years it has been realized that the BLAS standard needed updating
and a BLAS Technical Forum was coordinated and has recently published a new
standard [1]. Some of the main features included in the new standard are added
functionality for computations in extended and mixed precision, and basic subpro-
grams for sparse matrices (the Sparse BLAS). The need for the latter is particularly
important for the iterative solution of large sparse systems of linear equations and
eigenvalue problems.

As in the dense case, the Sparse BLAS enables the algorithm developer to rely on
a standardized library of frequently occurring linear algebra operations and allows
code to be written in a meta-language that uses these operations as building blocks.
Additionally, vendors can provide implementations that are specifically tuned and
tested for individual machines to promote the use of efficient and robust codes.
The development of the Sparse BLAS standard has its roots in [37], [38] and [53],
the first proposals for Level 1 and Level 3 kernels for the Sparse BLAS. While
the final standard [50] has evolved from these proposals, these papers are not only
of historical interest but also contain suggestions for the implementor which are
deliberately omitted in the final standard.

Similarly to the BLAS, the Sparse BLAS provides operations at three levels,
although it includes only a small subset of the BLAS functionality. Level 1 covers
basic operations on sparse and dense vectors, Level 2 and Level 3 provide sparse
matrix multiplication and sparse triangular solution on dense systems that may be
vectors (Level 2) or matrices (Level 3). We emphasize that the standard is mainly
intended for sparse matrices without a special structure. This has a significant

2.2 The Sparse BLAS functionalities 39

influence on the complexity of the internal routines for data handling. Depending
on the matrix, the algorithm used, and the underlying computing architecture, an
implementor has to choose carefully an internal representation of the sparse matrix.

However, there is one important difference between the Sparse BLAS and the
other BLAS interfaces in the standard. The Sparse BLAS supports the use of
abstract matrix representations. Level 2 and Level 3 operations take as input not
a data structure holding the matrix entries, but rather a pointer, or a handle to a
previously created sparse matrix object. The result is a more general, portable code
that can be run under different implementations of the Sparse BLAS that might be
optimized for a special machine, a given matrix, or an application. The internal
representation of the matrix data within the sparse matrix object is hidden from
the user who accesses and manipulates the data through the available kernels.

The standard defines the following procedure for the use of the Sparse BLAS.
First, the given matrix data has to be passed to an initialization routine that cre-
ates a handle referencing the matrix. Afterwards, the user can call the necessary
Sparse BLAS routines with the handle as a means to reference the data. The imple-
mentation chooses the data-dependent algorithms internally, without the user being
involved. When the matrix is no longer needed the matrix handle can be released
and a cleanup routine is called to free any internal storage resources associated with
that handle.

In the following sections, we describe in more detail each step of the above
procedure and comment on our implementation [57] in Fortran 95. First, we give
an overview of the Sparse BLAS functionalities in Section 2.2. In Section 2.3, we
discuss how we organize, create, and use the data structures in Fortran for the
sparse data. In Section 2.4 we discuss by the corresponding Fortran 95 interfaces
the Sparse BLAS operations for the different Levels 1, 2, and 3. We illustrate the
features of the Sparse BLAS by sample programs in Section 2.5. Finally we discuss
the availability of our software in Section 2.6.

2.2 The Sparse BLAS functionalities

In this section, we briefly review the functionalities provided by the Sparse BLAS
so that we can reference them in later sections where they are described further
together with their implementation. For a complete specification, we refer to the
standard [1].

Our notation is as follows. For the Level 1 BLAS, r and α are scalars, x is a
compressed sparse vector and y a dense vector. Furthermore, the symbol y|x refers
to the entries of y that have the same indices as the stored nonzero components of
the sparse vector x . For the Level 2 and 3 BLAS, both x and y represent dense
vectors, and α is a scalar. Moreover, A represents a general sparse matrix, T a
sparse triangular matrix, and B and C are dense matrices.

40 Computational kernels for unstructured sparse matrices

2.2.1 Level 1 Sparse BLAS functionalities

The Level 1 Sparse BLAS covers basic operations on sparse and dense vectors, see
Table 2.1. The functionalities provided are a sparse dot product (USDOT), a sparse
vector update (USAXPY), sparse gather operations (USGA, USGZ), and a sparse scatter
function (USSC). Here, US stands for ’Unstructured Sparse’ data.

USDOT sparse dot product r ← xT y,
r ← xHy

USAXPY sparse vector update y ← αx + y
USGA sparse gather x← y|x
USGZ sparse gather and zero x← y|x; y|x ← 0
USSC sparse scatter y|x ← x

Table 2.1: Level 1 Sparse BLAS: sparse vector operations.

2.2.2 Level 2 Sparse BLAS functionalities

Table 2.2 lists the Level 2 operations on sparse matrices and a dense vector. The
functionalities available are matrix-vector multiplication with a sparse matrix A or
its transpose (USMV) and the solution of sparse triangular systems (USSV).

USMV sparse matrix-vector multiplication y ← αAx + y
y ← αATx + y
y ← αAHx + y

USSV sparse triangular solution x← αT−1x
x← αT−Tx
x← αT−Hx

Table 2.2: Level 2 Sparse BLAS: sparse matrix-vector operations.

2.2.3 Level 3 Sparse BLAS functionalities

The Level 3 Sparse BLAS provides kernels for sparse matrices operating on dense
matrices, those are listed in Table 2.3. The functionalities are similar to those of
Level 2 and consist of matrix-matrix multiplication (USMM) and solution of sparse
triangular systems with several right-hand sides (USSM).

2.2.4 Routines for the creation of sparse matrices

The routines for the creation of a sparse matrix representation and its associated
handle are listed in Table 2.4.

The Sparse BLAS can deal with general sparse matrices and with sparse block
matrices with a fixed or variable block size. After the creation of the correspond-
ing handle with USCR_BEGIN, USCR_BLOCK_BEGIN,or USCR_VARIABLE_BLOCK_BEGIN,

2.2 The Sparse BLAS functionalities 41

USMM sparse matrix-matrix multiplication C ← αAB + C
C ← αAT B + C
C ← αAHB + C

USSM sparse triangular solution B ← αT−1B
B ← αT−T B
B ← αT−HB

Table 2.3: Level 3 Sparse BLAS: sparse matrix-matrix operations.

USCR_BEGIN begin point-entry construction
USCR_BLOCK_BEGIN begin block-entry construction
USCR_VARIABLE_BLOCK_BEGIN begin variable block-entry construction
USCR_INSERT_ENTRY add point-entry
USCR_INSERT_ENTRIES add list of point-entries
USCR_INSERT_COL add a compressed column
USCR_INSERT_ROW add a compressed row
USCR_INSERT_CLIQUE add a dense matrix clique
USCR_INSERT_BLOCK add a block entry
USCR_END end construction
USSP set matrix property
USGP get/test for matrix property
USDS release matrix handle

Table 2.4: Sparse BLAS: operations for the handling of sparse matrices.

the entries must be input using the appropriate insertion routines. A single point
entry can be added by using USCR_INSERT_ENTRY, a list of multiple entries by
USCR_INSERT_ENTRIES. For insertion of a list of row or column entries, one uses
USCR_INSERT_ROW and USCR_INSERT_COL, respectively. Cliques are dense submatri-
ces that arise for example in finite-element computations, these can be inserted by
USCR_INSERT_CLIQUE. For a block matrix, we also can use USCR_INSERT_BLOCK to
add a block entry.

Furthermore, we can optionally specify via USSP various properties of the matrix
in order to assist possible optimization of storage and computation. As an example,
we mention blas_lower_symmetric which indicates that the matrix is symmetric
and only the lower half of the entries is given during construction. Calls to USSP

should be made after a call to the BEGIN routine but before the first call to an
INSERT routine for the same handle. A complementary routine, USGP, can be used
to obtain information about the properties of a sparse matrix. Table 2.5 lists and
explains the properties that can be associated with a sparse matrix representation.
The construction is finished by calling USCR_END.

42 Computational kernels for unstructured sparse matrices

blas_non_unit_diag nonzero diagonal entries are stored (Default)
blas_unit_diag diagonal entries are not stored and assumed to be 1.0
blas_no_repeated_indices indices are unique (Default)
blas_repeated_indices nonzero values of repeated indices are summed
blas_lower_symmetric only lower half of symmetric matrix is specified by user.
blas_upper_symmetric only upper half of symmetric matrix is specified by user.
blas_lower_hermitian only lower half of Hermitian matrix is specified by user.
blas_upper_hermitian only upper half of Hermitian matrix is specified by user.
blas_lower_triangular sparse matrix is lower triangular
blas_upper_triangular sparse matrix is upper triangular
blas_zero_base indices of inserted items are 0-based (Default for C)
blas_one_base indices of inserted items are 1-based (Default for Fortran)
blas_rowmajor dense blocks stored in row major order (C-default)
blas_colmajor dense blocks stored in column major order (Fortran-default)
blas_irregular general unstructured matrix
blas_regular structured matrix
blas_block_irregular unstructured matrix best represented by blocks
blas_block_regular structured matrix best represented by blocks
blas_unassembled matrix is best represented by cliques

Table 2.5: Matrix properties of Sparse BLAS matrices.

2.2.5 Remarks on the Sparse BLAS functionalities

Compared to the dense BLAS, the Sparse BLAS provides much less functionality.
In particular, the Level 2 and 3 kernels exclusively support the product of a sparse
matrix with a dense vector or matrix. Operations on two sparse structures are not
supported. The reason given in [50] is the complexity of potentially mixing different
representations of the two sparse structures, which is believed too complicated for
efficient low-level kernels.

Arguably, there are many cases where such operations can be avoided and where
it is computationally more efficient to do so: for example, the product ABx of
two sparse matrices A and B and the dense vector x which can be computed as
A ∗ (B ∗ x) rather than (A ∗B) ∗ x . In particular, this applies to the development
and use of iterative solvers and eigenvalue methods, two fields of primary interest
for the Sparse BLAS [50].

However, there exist numeric libraries that provide routines for use in situations
where the multiplication of two sparse matrices is requested. Examples are given by
SMMP [18] and SPARSKIT [120].

2.3 Representation of sparse matrices and vectors 43

2.3 Representation of sparse matrices and vectors

The data structures for sparse matrices are often much more complicated than the
ones for sparse vectors and can depend on the underlying application, the machine
architecture, and other factors. For this reason, the Sparse BLAS standard deliber-
ately avoids the prescription of a data structure for storing the matrix entries and
allows the implementor to choose for his purposes the best implementation of the
interfaces. In this section, we first give a short presentation of the data structures
for sparse vectors and afterwards describe in detail the sparse matrix data structures
that are used in the reference implementation [57].

2.3.1 The representation of sparse vectors

Sparse vectors are exclusively used in Level 1 operations. Their storage is much less
complicated than that for sparse matrices and greatly facilitates the implementation
of the Level 1 routines.

Generally, only the nonzero entries of a sparse vector x will be stored which
leads to a representation of x by a pair of one-dimensional arrays, one for the real
or complex nonzero entries, and the other one for their indices. A major motiva-
tion for prescribing this data structure in the standard is the observation that the
representation by two arrays is one of the most commonly used, straightforward to
implement, and avoiding possible overhead of derived data types or structures in
Fortran or C, respectively [50].

For example, the sparse vector

x = (1.0, 0, 3.0, 4.0, 0)T

can be represented as

VAL = (1.0, 3.0, 4.0),
INDX = (1, 3, 4).

(2.1)

In contrast to sparse matrices, the standard does not allow repeated indices in
sparse vectors. Furthermore, the internal ordering of the vector elements in the
two arrays is not specified, and multiple equivalent storage representations for the
same sparse vector are valid. The index base of the sparse vector, that is whether
one starts entry numbering at zero or one, can be chosen. A zero index base is
commonly used in the C programming language, whereas Fortran arrays usually
start with one. Thus, the representation in the above example corresponds to the
Fortran convention of starting with index one for the first vector entry.

2.3.2 Internal data structures for sparse matrix data

The Sparse BLAS standard advocates the use of handles to refer to a sparse matrix
data structure that has been created. The user inputs the matrix entries which
are copied into internal storage. Then the matrix can be manipulated through the

44 Computational kernels for unstructured sparse matrices

various kernels that access the corresponding data through its handle. In practice,
the storage of the matrix entries depends on the nonzero structure of the matrix,
and the user can aid matrix storage by specifying additional matrix properties, for
example symmetry.

In this section, we discuss the internal data structures and manipulation related
to the creation of a matrix handle that will be used to represent the sparse matrix in
the later calls to the Sparse BLAS reference implementation [57]. From the imple-
mentor’s point of view, the choice of the internal data structures is perhaps the most
important part of the implementation as it will influence the design, implementation,
and performance of all subsequent operations.

Conceptually, the Sparse BLAS distinguishes between three different types of
sparse matrices; ordinary sparse matrices consisting of a set of single point entries,
sparse matrices with a regular block structure, and sparse matrices with a variable
block structure. These are discussed in the following.

1. Point entry matrices.
The entries of this type of matrix are simple scalar values. The sparsity struc-
ture describes the layout of these entries in the matrix. An example is given
in (2.2).

2. Block entry matrices with constant block size.
Entries in these matrices are dense matrices themselves, such that all entries
have the same row and column dimension. Block entry matrices can be char-
acterized by any two of the following three different types of dimensions. The
first one is the number of block rows and columns, the second one is the num-
ber of row and columns in the block entries (which is the same for each entry),
and third one is the number of equations and variables, counted as standard
row and column dimensions, respectively. We give an example in (2.3).

3. Block entry matrices with varying block sizes.
Entries in these matrices are also dense matrices, but block sizes may vary
from block row to block row. The blocks on the matrix diagonal are assumed
to be square. One example for a variable block matrix is given in (2.4).

A =

11 0 13 14 0
0 0 23 24 0

31 32 33 34 0
0 42 0 44 0

51 52 0 0 55

 (2.2)

2.3 Representation of sparse matrices and vectors 45

B =

11 12 0 0 15 16
21 22 0 0 25 26
0 0 33 0 35 36
0 0 43 44 45 46

51 52 0 0 0 0
61 62 0 0 0 0

 , (2.3)

C =

4 2 0 0 0 1 0 0 0 −1 1
1 5 0 0 0 2 0 0 0 0 −1
0 0 6 1 2 2 0 0 0 0 0
0 0 2 7 1 0 0 0 0 0 0
0 0 −1 2 9 3 0 0 0 0 0
2 1 3 4 5 10 4 3 2 0 0
0 0 0 0 0 4 13 4 2 0 0
0 0 0 0 0 3 3 11 3 0 0
0 0 0 0 0 0 2 0 7 0 0
8 4 0 0 0 0 0 0 0 25 3
−2 3 0 0 0 0 0 0 0 8 12

. (2.4)

Block entry matrices naturally occur in mathematical models where multiple
degrees of freedom are associated with a single physical location. Examples are
given by discretizations of problems in mechanical engineering where field equations
couple several physical quantities. There, a single spatial mesh point is associated
with a value of each of the quantities, whose internal coupling is described by the
values in the associated matrix block. Variable block entry matrices occur when
some degrees of freedom are tracked in one subregion and not another. In [50], the
authors mention the example of chemical species concentration.

Furthermore, the distinction between the different matrix classes will allow a
vendor to provide optimized algorithms for blocked data. First, one can save on
integer storage by indexing matrix blocks instead of single entries. Second, compu-
tations with dense block entries can often be tuned to achieve higher performance.
If the block size is large enough, dense BLAS kernels can be used that improve
cache reuse and increase the ratio of floating point operations over memory access,
resulting in a speedup of the code [41].

We now consider the process of constructing appropriate internal data structures
for sparse matrices in our Fortran 95 reference implementation [57]. The actual
creation of a sparse matrix with its handle consists of three or four basic steps and
involves the routines listed in Table 2.4.

1. An internal data structure is initialized by calling one of the USCR_BEGIN

routines.

2. (Optionally, the user can set matrix properties by USSP.)

46 Computational kernels for unstructured sparse matrices

3. The matrix data is passed to the internal data structure by one or more calls
to USCR_INSERT routines.

4. The construction is completed by calling the USCR_END routine.

Intentionally, the standard [1] is written so that that a user need not know
during the creation procedure how many matrix entries will be input. Instead, he
can simply pass the data to the Sparse BLAS using the insert routines. Thus, for the
kernel implementor it is not possible a priori to predict how much memory should
be allocated. Consequently, the Sparse BLAS must use dynamic memory allocation
and a dynamic data structure for the construction phase of the matrix. We use
linked lists which are augmented dynamically when new matrix entries are added.
The nodes of the lists contain the matrix entries together with their indices and
a pointer to the next list node. In order to limit the size of the list, we keep the
matrix entries grouped together in the same way and in the same order as the user
passes them to the Sparse BLAS. If a single matrix entry is inserted, the list node
contains only this single entry; if a row, a column, or a block is inserted, a different
list is used and the list node contains all entries of the row, the column, or the block,
respectively. In order to identify which kind of data is associated with each node,
we use different pointers for row, column, and block data, respectively. However,
using this structure for the Level 2 and Level 3 algorithms would imply a serious
performance loss because of the amount of indirect addressing involved. At the call
to USCR_END, all the data for the matrix is known. We now allocate one contiguous
block of memory with appropriate size and copy the data into a static data structure
for better performance. Additionally, it is possible to sort the matrix entries during
this copying process so that the matrix data is held by rows or columns if this is
beneficial for the performance of the Level 2 and Level 3 algorithms.

Before we describe the layout of the static internal storage schemes, we discuss
alternative approaches to handling the dynamic memory allocation. Generally, it
is important to limit memory fragmentation by allocating storage by blocks. We
respect this by allocating the space for matrix rows, columns or blocks ‘in one shot’.
Another possibility is to preallocate a certain amount of memory and add the matrix
entries as long as space is available; more space can be allocated when it is needed.
This preallocation allows us to allocate contiguous memory blocks independently
from the way a user inserts the matrix data.

We now present the details of our internal storage schemes:

1. Ordinary sparse matrices consisting of point entries are stored in coordinate
format (COO), that is the entries of the matrix are stored along with their
corresponding row and column indices. This requires the three arrays:

• VAL - a real or complex array containing the entries of A , in any order.

• INDX - an integer array containing the corresponding row indices of the
entries of A .

• JNDX - an integer array containing the corresponding column indices of
the entries of A .

2.3 Representation of sparse matrices and vectors 47

For example, a representation of the matrix A in equation (2.2) in COO
format could be:

VAL = (11 51 31 32 34 52 13 23 33 14 24 42 55 44),
INDX = (1 5 3 3 3 5 1 2 3 1 2 4 5 4),
JNDX = (1 1 1 2 4 2 3 3 3 4 4 2 5 4).

2. Systems with a regular block structure, where each entry is an LB-by-LB dense
block, are stored internally in block coordinate format (BCO). Systems of this
form typically arise, for example, when there are multiple unknowns per grid
point of a discretized partial differential equation. Typically LB is a small
number, less than twenty, determined by the number of quantities measured
at each grid point, for example velocity, pressure, temperature, etc. The BCO
format is defined similarly to the COO format. Entries are stored block-wise
together with their block row and block column indices. This again requires
three arrays.

• VAL - a real or complex array containing the entries of the matrix,
grouped and stored as dense blocks.

• BINDX - an integer array containing the block row indices.

• BJNDX - an integer array containing the block column indices.

For example, a representation of the matrix B in equation (2.3) in BCO
format could be:

VAL = (11, 21, 12, 22, 15, 25, 16, 26, 33, 43,
0, 44, 35, 45, 36, 46, 51, 61, 52, 62),

BINDX = (1, 1, 2, 2, 3),
BJNDX = (1, 3, 2, 3, 1).

Note that we choose the block internal storage to be in ‘Fortran style’, that is
in column major order.

3. Systems with an irregular block structure are stored internally in the Variable
Block Row format (VBR). VBR stores the nonzero block entries in each of the
block rows as a sparse vector of dense matrices. The matrix is not assumed
to have uniform block partitioning, that is, the blocks may vary in size. The
VBR data structure is defined as follows. Consider an m -by- k sparse matrix
along with a row partition Pr = {i1, i2, . . . , imb+1} and column partition Pc =
{j1, j2, . . . , jkb+1} such that i1 = j1 = 1 , imb+1 = m + 1 , jkb+1 = k + 1 ,
ip < ip+1 for p = 1, . . . , mb , and jq < jq+1 for q = 1, . . . , kb . The matrix
C in equation (2.4) is an example of a block matrix where the blocks Cij are
defined according to the row and column partition shown. The block entries
are stored block row by block row and each block entry is stored as a dense
matrix in standard column major form. Six arrays are associated with this
form of storage.

48 Computational kernels for unstructured sparse matrices

• VAL - a real or complex array containing the block entries of C . Each
block entry is a dense rectangular matrix stored column by column.

• INDPTR - an integer array, the i -th entry of INDPTR points to the
location in VAL of the (1,1) entry of the i -th block entry.

• BINDX - An integer array containing the block column indices of the
nonzero blocks of C .

• RPNTR - An integer array of length mb +1 containing the row partition
Pr of C . RPNTR(i) is set to the row index of the first row in the i -th
block row.

• CPNTR - An integer array of length kb +1 containing the column parti-
tion Pc of C . CPNTR(j) is set to the column index of the first column
in the j -th block column.

• BPNTR - An integer array of length mb such that BPNTR(i) points
to the location in BINDX of the first nonzero block entry of block row
i . If the i -th block row contains only zeros then set BPNTR(i + 1) =
BPNTR(i) .

For example, the matrix C in equation (2.4) is stored in VBR format as
follows:

VAL = (4, 1, 2, 5, 1, 2, −1, 0, 1, −1, 6, 2,
−1, 1, 7, 2, 2, 1, 9, 2, 0, 3, 2, 1,

3, 4, 5, 10, 4, 3, 2, 4, 3, 0, 13, 3,
2, 4, 11, 0, 2, 3, 7, 8, −2, 4, 3,

25, 8, 3, 12),
INDPTR = (1, 5, 7, 11, 20, 23, 25, 28, 29, 32, 35, 44,

48, 52),
BINDX = (1, 3, 5, 2, 3, 1, 2, 3, 4, 3, 4, 1,

5),
RPNTR = (1, 3, 6, 7, 10, 12),
CPNTR = (1, 3, 6, 7, 10, 12),
BPNTR = (1, 4, 6, 10, 12, 15),

We emphasize that our choice of the internal storage schemes is only one among
several possibilities. The coordinate representation is very simple and is, for exam-
ple, used as the basis for the Matrix Market sparse matrix storage format. However,
the drawback of both the COO and the BCO storage format is that the matrix
entries are not necessarily ordered and can degrade the efficiency of the Level 2 and
Level 3 algorithms. Alternative matrix formats include the storage of the matrix
entries by compressed columns or rows. Specifically, the Compressed Sparse Column
(CSC) storage scheme is used for the matrices of the Harwell-Boeing collection [48]
and forms also the basis of the Rutherford-Boeing format [49]. It is up to the vendor
to choose the most appropriate representation.

2.3 Representation of sparse matrices and vectors 49

We now present the fundamental datatype that accommodates all the data be-
longing to a sparse matrix. Its design is derived from [53]. When USCR_END is called,
an instantiation of this datatype is created that will then be referenced by its handle
in the calls to the Level 2 and Level 3 routines.

TYPE DSPMAT

INTEGER :: M,K

CHARACTER*5 :: FIDA

CHARACTER*11 :: DESCRA

INTEGER, DIMENSION(10) :: INFOA

REAL(KIND=DP), POINTER, DIMENSION(:) :: VALUES

INTEGER, POINTER, DIMENSION(:) :: IA1,IA2,PB,PE,BP1,BP2

END TYPE DSPMAT

(This is the datatype for a matrix with real entries in double precision. The other
datatype formats are analogous. Here, the Fortran KIND parameters sp and dp

specifying single and double precision are selected as SELECTED_REAL_KIND(6,37)

and SELECTED_REAL_KIND(15,307), respectively.)

Since the meaning of most of the components is already obvious from the above
discussion of the internal storage formats, we give only short general remarks on
them.

• The integers M and K represent the dimensions of the sparse matrix.

• FIDA holds a string representation of the matrix format, for example, ‘COO’.

• DESCRA stores possible matrix properties such as symmetry.

• INFOA holds complementary information on the matrix such as the number of
nonzero entries.

• The array VALUES keeps the values of the matrix entries. The way in which
these entries are stored can be deduced from the following character and integer
arrays.

• The arrays IA1,IA2,PB,PE,BP1,BP2 are used to provide the necessary infor-
mation on the sparsity structure of the matrix. The pointer arrays PB,PE,BP1,BP2
are only used for block matrices. Note that we use generic array names, since
their use depends on the matrix format. For example, in COO format, the
arrays IA1 and IA2 represent INDX and JNDX , while in VBR format, they
represent BINDX and INDPTR .

We decided to group the administration of all handle-matrix pairs according
to their floating-point data type, that is, we keep a separate list of all valid matrix
handles for each of the five floating-point data types supported by the Sparse BLAS.

50 Computational kernels for unstructured sparse matrices

2.4 Sparse BLAS operations on sparse matrices

and vectors

In this section, we discuss in more detail the Sparse BLAS interface for Levels 1, 2,
and 3 and remark on the kernel design in the Fortran 95 reference implementa-
tion [57]. As discussed in Section 2.3.1, the Sparse BLAS explicitly prescribes a
data structure for the representation of sparse vectors. The choice of a single vector
representation makes the implementation of the Level 1 kernels of the Sparse BLAS
much less complex than one of the Level 2 and 3 routines for sparse matrices. In the
Sparse BLAS Levels 2 and Level 3, the matrix is referenced by its handle referencing
the internal matrix presentation that has been constructed before. The discussion
in Section 2.3.2 on the different internal storage schemes shows that every Level 2
and Level 3 routine must be implemented for each scheme. Hidden from the user
who uses the matrix handle in a generic subroutine call, the software chooses the
appropriate routine according to the type of data.

2.4.1 Sparse vector operations

The storage of sparse vectors is much less complicated than that for sparse matrices
and greatly facilitates the implementation of the Level 1 routines.

The Sparse BLAS Level 1 functionalities are described in Section 2.2.1, and
the interface implementation is similar to the one used for the Level 1 kernels of
the dense BLAS [1, 39, 40] for which a reference implementation is available from
Netlib [2].

In our implementation [57], we generally do not assume that the entries of sparse
vectors are ordered. By ordering and grouping the sparse vector according to its
indices, it can be ensured that the dense vector involved in the Level 1 operations
is accessed in blocks and cache reuse is enhanced. However, this is not prescribed
by the Sparse BLAS standard [1].

One peculiarity of the Level 1 routines, in contrast to the sparse matrix oper-
ations of Level 2 and Level 3, is that the sparse vector operations do not return
an error flag. Level 2 and Level 3 routines have to provide some checking of the
input arguments, for example matching matrix dimensions, and can detect at least
some of these errors and signal them to the user by setting an error flag. Because
of the simplicity, the representation of sparse vectors is left to the user who is thus
responsible for ensuring the correctness of the data. Furthermore, the overhead for
checking in the Level 2 and Level 3 operations is less important because of their
greater granularity.

2.4.2 Product of a sparse matrix with one or many dense

vectors

In this section, we discuss the interface of the multiplication of a sparse matrix with
a dense vector or a dense matrix. We concentrate on the matrix-vector multiplica-

2.4 Sparse BLAS operations on sparse matrices and vectors 51

tion, since in our code, the multiplication of a sparse matrix and a dense matrix is
performed columnwise. Thus, we discuss the realization of

y ← αAx + y,

and

y ← αAT x + y.

Compared to the corresponding matrix-vector multiplication kernel in the dense
BLAS [2], the interface of the Sparse BLAS is lacking a scalar β for the scaling of
the vector y . In [50], the authors argue that such a scaling operation should be
performed by using the scaling available from the dense BLAS.

In our reference implementation, we use the generic functions of Fortran 95
extensively, allowing the software to choose the appropriate kernel according to the
type of data.

We provide the following interface for the support of the different types

interface usmv

module procedure susmv

module procedure dusmv

module procedure cusmv

module procedure zusmv

module procedure iusmv

end interface

with an implementation for matrices in double precision as follows:

subroutine dusmv(a, x, y, ierr, transa, alpha)

integer, intent(in) :: a

real(kind=dp), dimension(:), intent(in) :: x

real(kind=dp), dimension(:), intent(inout) :: y

integer, intent(out) :: ierr

integer, intent(in), optional :: transa

real(kind=dp), intent(in), optional :: alpha

where

• a denotes the matrix handle.

• x , y denote the dense vectors.

• ierr is used as an error flag.

• transa allows the optional use of the transposed sparse matrix.

• alpha is an optional scalar factor.

52 Computational kernels for unstructured sparse matrices

The error flag encoding used in the Sparse BLAS is consistent with the error-
handling framework described in Section 1.8 of the BLAS Standard [1]. Return codes
are assigned to signify the success or failure of the operation. Typically, a Sparse
BLAS routine returns a value of 0 (zero) if its operation completed successfully.

In the case of ’COO’ sparse matrix storage, we perform the multiplication entry
by entry, whereas for both regular block matrices in ’BCO’ and irregular block
matrices in ’VBR’ format, we perform a dense matrix-vector multiplication with
the subblocks.

We remark that, even if we perform the multiplication of a sparse matrix and
a dense matrix column by column, there can be more efficient ways of doing this.
Depending on the size of the dense matrix, a vendor could use blocking also on the
dense matrix to gain performance.

2.4.3 Solution of a sparse triangular system with one or

many dense right-hand sides

In this section, we show the interface of the solution of a sparse triangular system
with a dense vector or a dense matrix. As in Section 2.4.2, we focus on the case of
a single right-hand side:

x ← α T−1x,

and

x ← α T−T x.

Similarly to the multiplication routines, we provide a generic interface for the sup-
port of the different types in a similar way to that discussed for usmv in the previous
section. The implementation of the different floating-point data types, for example
dussv, is given by the following header:

subroutine dussv(a,x,ierr,transa,alpha)

integer, intent(in) :: a

real(kind=dp), intent(inout) :: x(:)

integer, intent(out) :: ierr

integer, intent(in), optional :: transa

real(kind=dp), intent(in), optional :: alpha

where the parameters are defined as for usmv, see Section 2.4.2.
For block matrices in either ’BCO’ or ’VBR’ format, the triangular solution is

blocked and uses dense matrix kernels for matrix-vector multiplication and triangu-
lar solution on the subblocks.

In the case of a simultaneous triangular solution for more than one right-hand
side, we have chosen internally to perform the solution step separately on each of
them. However, the remark given at the end of Section 2.4.2 applies here, too.
Blocking should be applied to the right-hand side if the matrix is big enough and
offers enough potential for efficient dense matrix kernels.

2.4 Sparse BLAS operations on sparse matrices and vectors 53

2.4.4 Releasing matrix handles

In the Sparse BLAS, matrix handles and the corresponding internal data structures
are created dynamically. Thus, as an implementor, we have to be careful with our
memory management. In particular, we will want to return allocated memory to
the system when we do not need it any more. The Sparse BLAS provides a routine
for releasing a created matrix handle and freeing all associated memory.

The Fortran 95 binding of the handle release routine is:

subroutine usds(a,ierr)

integer, intent(in) :: a

integer, intent(out) :: ierr

Here, a denotes the matrix handle to be released and ierr a variable to signal
possible internal errors occurring on the attempt to release the handle.

We have already remarked in Section 2.3.2 that we use different internal data
structures for the handle initialization and the Level 2 and Level 3 routines. The
linked lists used in the handle initialization procedure can already be deallocated
when USCR_END is called. The call to USDS will then result in a deallocation of the
memory associated with the fundamental internal datatype shown at the end of
Section 2.3.2.

When a matrix handle is released, one can either re-use the handle, that is, its
integer value, for the next matrix that will be created, or prevent it from being used
again. We decided to assign a new handle to each created matrix and not to re-use
the released handles. This ensures that matrices are not confused by accident, as no
matrix handle can represent more than one matrix simultaneously in the context of
the program.

2.4.5 Some remarks on using Fortran 95

Fortran is widely recognized as very suitable for numerical computation. Fortran 95
includes Fortran 77 as a subset but additionally includes some useful features of
other modern programming languages.

In our reference implementation [57], we benefit from the following features of
Fortran 95:

1. Modules allow the code to be structured by grouping together related data
and algorithms. An example is given by the Sparse BLAS module itself as it
is used by the test programs described in Section 2.5.

2. Generic interfaces as shown in Sections 2.4.2 and 2.4.3 allow the same subrou-
tine call to be used for each of the 5 floating-point data types supported.

3. Dynamic memory allocation allows us to create the linked lists for matrix entry
management, as described in Sections 2.3.2 and 2.4.4.

54 Computational kernels for unstructured sparse matrices

4. Vector operation facilities instead of loops are employed wherever possible in
the Level 2 and Level 3 algorithms from Sections 2.4.2 and 2.4.3, in particular
for block matrix algorithms.

5. Numerical precision is consistently defined via the KIND parameters sp and
dp for single and double precision, respectively. These are set in the module
blas sparse. We gave an example in the definition of the datatype DSPMAT

at the end of Section 2.3.2.

2.5 Sample programs

We now demonstrate use of the Sparse BLAS by two examples. The sample program
in Section 2.5.1 demonstrates the use of all Level 2 and Level 3 kernels by a triangular
matrix. In Section 2.5.2, we present the power method for eigenvalue calculations
as an application.

2.5.1 A sample program

In this section, we show how to use the Sparse BLAS by the example of a sparse
triangular matrix T . We illustrate all steps from the creation of the matrix handle
for the sample matrix T and the calls to Level 2 and Level 3 routines up to the
release of the handle.

It is worth mentioning that the whole Sparse BLAS is available as a Fortran 95
module which has to be included by the statement use blas sparse as shown in the
fourth line of the source code. This module contains all Sparse BLAS routines and
predefined named constants like the matrix properties mentioned in Section 2.2.4.

program test

!

!----------------- Use the Sparse BLAS module ----------------------

use blas_sparse

!

!----------------- The test matrix data --------------------------

!

! / 1 1 1 1 1\

! | 1 1 1 1|

! T= | 1 1 1|

! | 1 |

! \ 1/

!

implicit none

real(kind=dp),dimension(14):: T_VAL=1.0_dp

integer,dimension(14):: T_indx=(/1,1,2,1,2,3,1,2,3,4,1,2,3,5/)

integer,dimension(14):: T_jndx=(/1,2,2,3,3,3,4,4,4,4,5,5,5,5/)

2.5 Sample programs 55

integer,parameter:: T_m=5, T_n=5, T_nz=14

real(kind=dp):: Tx(5) =(/15.0_dp,14.0_dp,12.0_dp,4.0_dp,5.0_dp/)

!

!----------------- Declaration of variables -----------------------

real(kind=dp),dimension(:),allocatable:: x, y, z

real(kind=dp),dimension(:,:),allocatable:: dense_B,dense_C,dense_D

integer:: i,prpty,a,ierr

!

open(UNIT=5,FILE=’output’,STATUS=’new’)

!

!----------------- Begin point entry construction -----------------

call duscr_begin(T_m, T_n, a, istat)

!

!----------------- Insert all entries ------------------------------

call uscr_insert_entries(a, T_VAL, T_indx, T_jndx, istat)

!

!----------------- Set matrix properties ---------------------------

prpty = blas_upper_triangular + blas_one_base

call ussp(a, prpty,istat)

!

!----------------- End of construction ----------------------------

call uscr_end(a, istat)

!

allocate(x(5),y(5),z(5),&

dense_B(size(y),3),dense_C(size(x),3),&

dense_D(size(x),3),STAT=ierr)

if(ierr.ne.0) then

write(UNIT=5, FMT=’(A)’) ’Allocation error’

close(UNIT=5)

stop

endif

do i=1, size(x)

x(i) = dble(i)

end do

y=0.

z = x

do i = 1, 3

dense_B(:, i) = x

dense_C(:, i) = 0.

dense_D(:, i) = Tx

end do

!

!----------------- Matrix-Vector product --------------------------

write(UNIT=5, FMT=’(A)’) ’* Test of MV multiply *’

56 Computational kernels for unstructured sparse matrices

call usmv(a, x, y, istat)

write(UNIT=5, FMT=’(A)’) ’Error : ’

write(UNIT=5, FMT=’(D12.5)’) maxval(abs(y-Tx))

!

!----------------- Matrix-Matrix product ---------------------------

write(UNIT=5, FMT=’(A)’) ’* Test of MM multiply *’

call usmm(a, dense_B, dense_C, istat)

write(UNIT=5, FMT=’(A)’) ’Error: ’

write(UNIT=5, FMT=’(D12.5)’) maxval(abs(dense_C-dense_D))

!

!----------------- Triangular Vector solve -------------------------

write(UNIT=5, FMT=’(A)’) ’* Test of tri. vec. solver *’

call ussv(a, y, istat)

write(UNIT=5, FMT=’(A)’) ’Error : ’

write(UNIT=5, FMT=’(D12.5)’) maxval(abs(y-x))

!

!----------------- Triangular Matrix solve -------------------------

write(UNIT=5, FMT=’(A)’) ’* Test of tri. mat. solver *’

call ussm(a, dense_C, istat)

write(UNIT=5, FMT=’(A)’) ’Error : ’

write(UNIT=5, FMT=’(D12.5)’) maxval(abs(dense_C-dense_B))

!

!------------------ Deallocation -----------------------------------

deallocate(x,y,z,dense_B,dense_C,dense_D)

call usds(a,istat)

close(UNIT=5)

end program test

2.5.2 An application: the power method

The power method is a well-known iteration for calculating the dominant eigenvalue
and the corresponding eigenvector of a diagonizable matrix A [70].

Algorithm 2 The power method.

Given a random vector z1 �= 0
for k = 1, . . . , niter do

qk = zk/‖zk‖2
zk+1 = Aqk

λk = qT
k Aqk = zT

k+1qk

end for

In the program below, we show how the Sparse BLAS can be used to implement
Algorithm 2. The essential part of the algorithm is the matrix-vector product USMV
with a sparse matrix represented by its handle. At the end of the program, that is

2.5 Sample programs 57

when the maximum number of iterations is reached, the eigenvalue approximation
λ is printed.

program power_method_test

!

!----------------- Use the Sparse BLAS module ----------------------

use blas_sparse

!----------------- Declaration of variables -----------------------

implicit none

integer,parameter:: nmax= 4, nnz= 6

integer:: a,i,n,niters,istat

integer,dimension(:),allocatable:: indx,jndx

real(kind=dp),dimension(:),allocatable:: val,q,work

real(kind=dp):: lambda

allocate (val(nnz),indx(nnz),jndx(nnz))

allocate (q(nmax),work(nmax))

!

!----------------- The test matrix data --------------------------

val = (/ 1.1_dp, 2.2_dp, 2.4_dp, 3.3_dp, 4.1_dp, 4.4_dp/)

indx = (/ 1, 2, 2, 3, 4, 4/)

jndx = (/ 1, 2, 4, 3, 1, 4/)

n = nmax

!

!----------------- Begin point entry construction -----------------

call duscr_begin(n, n, a, istat)

!

!----------------- Insert all entries ------------------------------

call uscr_insert_entries(a, val, indx, jndx, istat)

!

!----------------- End of construction ----------------------------

call uscr_end(a, istat)

!

!----------------- Call power method routine -----------------------

! q - eigenvector approximation.

! lambda - eigenvalue approximation.

niters = 100

call POWER_METHOD(a, q, lambda, n, niters, work, istat)

if (istat.ne.0) then

write(UNIT=5,*) ’error in power_method = ’,istat

else

write(UNIT=5,*) ’number of iterations = ’,niters

write(UNIT=5,*) ’approximate dominant eigenvalue = ’,lambda

endif

!

58 Computational kernels for unstructured sparse matrices

!------------------ Release matrix handle --------------------------

call usds(a,istat)

CONTAINS

subroutine POWER_METHOD(a, q, lambda, n, niters, z, istat)

!

!----------------- Use the Sparse BLAS module ----------------------

use blas_sparse

implicit none

real(kind=dp),dimension(:),intent(inout):: q(n),z(n)

real(kind=dp),intent(out):: lambda

integer,intent(in):: a,n,niters

integer,intent(out):: istat

integer:: i,iter,iseed

real(kind=dp):: normz

real(kind=sp):: y

intrinsic random_number,dot_product

!

!----------------- Fill z by random numbers -----------------------

do i = 1,n

call random_number(harvest=y)

z(i)=dble(y)

end do

do iter = 1, niters

!

!----------------- Compute 2-norm of z ----------------------------

normz = sqrt(dot_product(z(1:n),z(1:n)))

!

!----------------- Normalize z ------------------------------------

if (normz.ne.0) z(1:n) = z(1:n)/normz

!

!----------------- Copy z to q ------------------------------------

q=z

!

!----------------- Set z to 0 -------------------------------------

z=0.0_dp

!

!----------------- Matrix-Vector product: Compute new z ------------

call usmv(a, q, z, istat)

if (istat.ne.0) return

!

!----------------- Calculate new eigenvalue approximation lambda --

2.6 Conclusions and future work 59

lambda = dot_product(q,z)

end do

return

end subroutine POWER_METHOD

!

end program power_method_test

2.6 Conclusions and future work

In this chapter, we have described the design and part of the implementation of the
Sparse BLAS. The Sparse BLAS standard is defined by the BLAS Technical forum [1]
and provides interfaces for portable, high-performance kernels for operations with
sparse vectors and matrices. Rationals of the Sparse BLAS design are described
in [50], a reference model implementation in Fortran 95 has been developed in the
framework of this thesis. A description of the implementation has been published
in [57], and the software is available in the CALGO repository of ACM TOMS [58].

Our contributions are twofold: As our implementation has been developed in par-
allel to the design of the standard, it has influenced and shaped its design. Moreover,
the standard avoids the discussion of data structures as well as language-dependent
implementation issues. In this respect, we have proposed and described decisions
taken in our software concerning these topics.

Our software is currently the only existing reference implementation. Both the
C and the Fortran 77 reference implementation are still under development and
user guides are planned [82]. The internal report [118] is currently the only existing
reference. Vendors may supply optimized versions which exploit special features of
high performance computing architectures. Suggestions for such optimizations have
been given in the relevant sections of this chapter.

However, there is scope for more sophisticated optimizations that can be part
of a future implementation. As an example, we point out the Sparsity project at
the University of California in Berkeley which provides kernels for sparse matrix-
vector multiplication that are automatically tuned for a given matrix on a given
machine [94, 95, 96]. The major techniques which are investigated there consist of
register and cache blocking as well as the careful design of the underlying sparse
matrix data structures.

In the overall framework of the BLAS project, the design of the standard and
the development of the reference implementation are only a first step. The success
of the Sparse BLAS depends on future efforts of programmers, commercial library
developers, and computer vendors to design optimized and efficient implementations.

60 Computational kernels for unstructured sparse matrices

III

Chapter 3

Task scheduling in a multifrontal
sparse linear solver

The direct solution of sparse linear systems by Gaussian elimination is more robust
than iterative solution methods, and is thus often the preferred approach when trying
to solve an ill-conditioned system. However, the problem of designing an efficient
sparse direct solver is very complicated, as it involves numerical issues such as the
careful control of fill-in and pivoting as well as computer science related questions
on how to exploit modern architectures with a multi-layer memory hierarchy or a
parallel distributed environment.

The asynchronous distributed memory multifrontal solver MUMPS is an exam-
ple of such a modern algorithm addressing all these issues. Specifically, it pro-
vides fill-reducing matrix orderings during the analysis and dynamic data structures
to support threshold pivoting during the numerical factorization. Furthermore, it
makes use of BLAS kernels and data blocking to enhance cache reuse, exploits par-
allelism arising from independent computations due to sparsity, and allows dynamic
task scheduling during factorization in order to automatically adapt to a varying
computer load. Additionally, it includes features such as automatic error analysis,
iterative refinement, matrix scaling, support for matrix input in elemental format,
and determination of the null space basis of a rank-deficient matrix.

MUMPS can solve a wide range of problems including symmetric and unsymmet-
ric systems with real or complex entries by either an LU or an LDLT factorization.
It has initially been developed in the framework of the PARASOL Project and is
now in the public domain.

In this chapter of the thesis, we are concerned with the question of designing a
new efficient task scheduler for MUMPS that improves scalability on a large number
of processors. In our approach, we determine, during the analysis of the matrix,
candidate processes for the tasks that will be dynamically scheduled during the
subsequent factorization. The new algorithm significantly improves the scalability
of the solver on a large number of processors in terms of execution time and storage,
as we show by experiments with matrices from regular grids and irregular ones from
real-life applications.

64 Task scheduling in a multifrontal sparse linear solver

3.1 Introduction to MUMPS

We consider the direct solution of sparse linear systems on distributed memory
computers. Two state-of-the-art codes for this task, MUMPS and SuperLU, have
been extensively studied and compared in [10]. Specifically, the authors show that
on a large number of processors, the scalability of the multifrontal approach used
by MUMPS [9, 10] with respect to computation time and use of memory could be
improved. This observation is the starting point for this current work.

The solution of a linear system of equations using MUMPS consists of three
phases. In the analysis phase, the matrix structure is analysed and a suitable order-
ing and data structures for an efficient factorization are produced. In the subsequent
factorization phase, the numerical factorization is performed. The final solution
phase computes the solution of the system by forward and backward substitutions
using the factors that were just computed.

The numerical factorization is the most expensive of these three phases, and we
now describe how parallelism is exploited in this phase. The task dependency graph
of the multifrontal factorization is a tree, the so-called assembly tree. A node of
this tree corresponds to the factorization of a dense submatrix, and an edge from
one node to another describes the order in which the corresponding submatrices
can be factorized. In particular, independent branches of the assembly tree can be
factorized in parallel as the computations associated with one branch do not depend
on those performed in the others. Furthermore, each node in the tree can itself be
a source of parallelism. The ScaLAPACK library [29] provides an efficient parallel
factorization of dense matrices and is used for the matrix associated with the root of
the assembly tree. But MUMPS offers another possibility for exploiting parallelism
for those nodes that are large enough. Such nodes can be assigned a master process
during analysis that chooses, during numerical factorization, a set of slave processes
to work on subblocks of the dense matrix. This dynamic decision about the slaves
is based on the load of the other processors, only the less loaded ones are selected
to participate as slaves.

In order to address the scalability issues, we have modified this task scheduling
and the treatment of the assembly tree during analysis and factorization. We now
give a brief description of these new modifications to Version 4.1 of MUMPS (to
which we sometimes refer as the old code or the previous version of MUMPS).

The objective of the dynamic task scheduling is to balance the work load of
the processors at run time. However, two major problems arise from offering too
much freedom to the dynamic scheduling. In the previous version of MUMPS, a
master process is free to choose its slaves among all available processes. Since this
choice is taken dynamically during the factorization phase, we have to anticipate it
by providing enough memory on every process for the corresponding computational
tasks. Since typically not all processes are actually used as slaves (and, on a large
number of processors, often only relatively few are needed), the prediction of the
required workspace will be overestimated. Thus, the size of the problems that can
be solved is reduced unnecessarily because of this difference between the prediction

3.1 Introduction to MUMPS 65

and the allocation of memory by the analysis phase and the memory actually used
during the factorization. Secondly, decisions concerning a node should take into
account global information on the assembly tree to localize communication. For
example, by mapping independent subtrees to disjoint sets of processors so that all
data movements related to a subtree are performed within the set, we can improve
locality of communication and increase performance.

With the concept of candidate processors, it is possible to guide the dynamic
task scheduling and to address these issues. The concept originates in an algorithm
presented in [115, 117] and has also been used in the context of static task scheduling
for sparse Cholesky factorization [81]. In this chapter of the thesis, we show how it
also extends efficiently to dynamic scheduling. For each node that requires slaves
to be chosen dynamically during the factorization, we introduce a limited set of
processors from which the slaves can be selected. While the master previously chose
slaves from among all less loaded processors, the freedom of the dynamic scheduling
is reduced so that the slaves are only chosen from among the candidates. This
allows us to exclude all non-candidates from the estimation of workspace during
the analysis phase and leads to a more realistic prediction of the workspace needed.
Furthermore, the candidate concept allows us to better structure the computation
since we can explicitly restrict the choice of the slaves to a certain group of processors
and enforce for example a ‘subtree-to-subcube’ mapping principle [66]. (Throughout
this chapter, we assume that every processor has one single MPI process associated
with it so that we can unambiguously identify a processor and a corresponding MPI
process.)

We illustrate the benefits of the new approach by tests using a number of perfor-
mance metrics including execution time, memory usage, communication volume, and
scalability. Our results demonstrate significant improvements for all these metrics,
in particular when performing the calculations on a large number of processors.

The rest of this chapter is organized as follows. In Section 3.2, we review briefly
the general concepts of the multifrontal direct solution of sparse linear systems, most
notably the assembly tree. We describe in Section 3.3 the possibilities for exploiting
parallelism. Section 3.4 gives a short presentation of possible improvements to the
assembly tree, and we then introduce, in Section 3.5, the concept of candidate
processors. In Section 3.6, we give an overview of how the candidate concept fits
into the scheduling algorithm and present the algorithmic details in Section 3.7.
Section 3.8 gives an overview of the test problems used. The presentation of our
experimental results begins with parameter studies and detailed investigations of the
improved algorithms in Section 3.9. Afterwards, we present a systematic comparison
of the previous with the new version of the code on regular grid problems and general
matrices in Section 3.10. Finally, we discuss possible extensions of our algorithm in
Section 3.11 and present our conclusions and a brief summary in Section 3.12.

66 Task scheduling in a multifrontal sparse linear solver

3.2 Multifrontal solution of sparse linear systems

We consider the direct solution of large sparse systems of linear equations

Ax = b

on distributed memory parallel computers using multifrontal Gaussian elimination.
For an unsymmetric matrix, we compute its LU factorization; if the matrix is
symmetric, its LDLT factorization is computed.

The multifrontal method was initially developed for indefinite sparse symmetric
linear systems [54] and was then extended to unsymmetric matrices [55]. Because
of numerical stability, pivoting is required in these cases in contrast to symmetric
positive definite sparse systems where pivoting can be avoided. We are concerned
with general unsymmetric and symmetric indefinite matrices in the following, for
an overview of the multifrontal method for symmetric positive definite systems we
refer to [47, 54, 106].

3.2.1 General principles of sparse Gaussian elimination

The multifrontal direct solution of sparse linear systems generally consists of three
steps [47, 54]:

1. The analysis phase works mostly with the matrix structure and ignores nu-
merical values. (However, numerical values might be used in a preprocessing
step, for example to permute large matrix entries to the diagonal [51, 52, 99].)
From a symbolic analysis of the matrix, it is possible to estimate the work
and storage requirements, and to set up the work space for the subsequent
factorization and solution phases. By reordering the matrix through a per-
mutation of the rows and columns, we can usually reduce the memory and
floating-point operations required during the subsequent steps, and possibly
also improve their parallelism. (We remark that the ordering step may also
include numerical values.)

2. The factorization phase computes the triangular factors L and U of the
matrix A by Gaussian elimination, or the matrices L and D in the case
of a symmetric A . The multifrontal approach is governed by the so-called
assembly tree which describes the tasks and task dependencies of the algorithm.
Each node of the assembly tree is associated with the factorization of a dense
frontal matrix of A which can be performed once all the frontal matrices in
the subtree below the node have been processed. This partial ordering can
be exploited effectively by the parallel algorithm. The stability of Gaussian
elimination depends on the choice of the pivots. A pivot should be chosen
so that the growth in the magnitude of the factors is bounded, as this will
limit the effects of roundoff error. However, for sparse matrices, we have not

3.2 Multifrontal solution of sparse linear systems 67

only to consider numerical stability but also the fill-in. This occurs when the
fundamental operation of Gaussian elimination

aij
(k+1) = aij

(k) − aik
(k) × akj

(k)

akk
(k)

at step k of the factorization creates a nonzero entry aij
(k+1) when aij

(k)

is zero. For this reason, partial pivoting with a threshold criterion (so called
threshold pivoting) is often the method of choice because it gives some freedom
to choose pivots to reduce fill-in [47].

3. The solution phase computes the solution of the linear system by using the
factors determined during the previous phase. The solution process is again
driven by the assembly tree. A subsequent error analysis can reveal the accu-
racy of the computed solution and iterative refinement can be used if required.

3.2.2 Tasks and task dependencies in the multifrontal fac-

torization

In this section, we describe the tasks arising in the factorization phase of a multi-
frontal algorithm. Specifically, we investigate the work associated with the factor-
ization of individual frontal matrices and the order in which these factorizations can
be performed.

We start with the description of task dependencies in the multifrontal Cholesky
factorization. While we will be concerned with the more general case of unsymmet-
ric and symmetric indefinite matrices, the fundamental concept of the elimination
tree [54, 105, 122] originates from the Cholesky factorization and can be described
most clearly for the symmetric positive definite case.

We consider the computation of the Cholesky factor L of a sparse symmet-
ric positive definite matrix of order n . We define an associated graph with ver-
tices v ∈ {1, . . . , n} representing the columns of L and a set of undirected edges
e = {j, ij} , j = 1, . . . , n − 1, ij > j connecting the vertex of column j with that
corresponding to its first off-diagonal nonzero ij in L . Assuming that, in each col-
umn of L except the last, there exists at least one such nonzero off-diagonal entry,
the graph is connected and is also acyclic since it consists of n vertices and n − 1
edges. Hence, the defined graph is a tree which is commonly called the elimination
tree of the sparse symmetric positive definite matrix A . The importance of the
elimination tree stems from the fact that it represents the order in which the matrix
can be factorized, that is, in which the unknowns from the underlying linear system
of equations can be eliminated. Each pivot associated with a vertex (or node) of
the elimination tree can only be eliminated after all the pivots associated with the
subtree below the node are eliminated. For a dense matrix, the elimination tree is
a chain and defines a complete ordering of the eliminations. However, for a gen-
eral sparse matrix, the definition yields only a partial ordering which allows some
freedom for the sequence in which pivots can be eliminated. For example, the leaf

68 Task scheduling in a multifrontal sparse linear solver

nodes of the tree can be processed in any order. We note that the construction of
the elimination tree can be done symbolically (if we neglect coincidental numerical
cancellation) and is usually done during the analysis phase of a direct solver. For
information on the reordering of nodes to reduce the size of the work space for the
solution process, we refer to [71, 104].

There are two main possibilities for extending the concept of the elimination
tree to an unsymmetric matrix A . The first approach works with the symmetrized
pattern of A + AT which may imply an increased demand on storage but which
has the advantage of offering a unified concept for an integrated solver for both
symmetric and unsymmetric matrices, for example MUMPS [9, 10]. The second
approach considers dependency graphs separately for the L and the U factor, this
concept of elimination dags was introduced in [68] and is used in SuperLU [35, 36]
and UMFPACK/MA38 [33, 34]. In the following discussion, we focus on the first
approach that is used by MUMPS.

One central concept of the multifrontal approach [54] is to group (or amalga-
mate) columns with the same sparsity structure to create bigger supervariables or
supernodes [54, 107] in order to make use of efficient dense matrix kernels. We will
discuss later the advantages and dangers of amalgamation in the context of a dis-
tributed memory multifrontal code. We mention here that it is common to relax
the criterion for amalgamation and permit the creation of coarser supernodes with
extra fill-in that, however, improve the performance of the factorization, see [14, 54].
The amalgamated elimination tree is called the assembly tree.

We illustrate these concepts by the following example. Figure 3.1 shows the
nonzero pattern of a symmetric positive definite matrix A together with the pattern
of its Cholesky factor L , the fill-in is indicated by • . In Figure 3.2 we show
the elimination tree of A and in Figure 3.3 the resulting assembly tree when we
amalgamate the nodes 3 , 5 , and 6 together which form a dense submatrix in the
filled matrix L + LT . If the amalgamation was relaxed to allow the zero entry in
the (4, 3) position of L to be stored, we could also amalgamate node 4 together
with 3 , 5 , and 6 .

× ×
× × ×
× × ×

× × × ×
× × ×
× × ×

×
×
×

× × ×
× × • ×
× × • ×

Figure 3.1: Matrix A and Cholesky factor L .

We have already emphasized the importance of the assembly tree as a data
structure for driving the factorization and the solution phases of the multifrontal
algorithm. We now investigate more closely the work associated with the factor-
ization of the frontal matrix at an individual node of the assembly tree. Frontal

3.2 Multifrontal solution of sparse linear systems 69

4

21

5

6

3

Figure 3.2: Elimination tree of
matrix A from Figure 3.1.

3,5,6

21

4

Figure 3.3: Assembly tree of ma-
trix A from Figure 3.1.

matrices are always considered as dense matrices. We can make use of the efficient
BLAS kernels and avoid indirect addressing, see for example [41]. Frontal matrices
can be partitioned as shown in Figure 3.4.

fully summed rows �

partially summed rows �

fully summed columns

�

partially summed columns

�[
F11 F12

F21 F22

]
Figure 3.4: A frontal matrix.

Here, pivots can be chosen only from within the block of fully summed variables
F11 . Once all eliminations have been performed, the Schur complement matrix
F22 − F21F

−1
11 F12 is computed and used to update later rows and columns of the

overall matrix which are associated with the parent nodes. We call this Schur
complement matrix the contribution block of the node.

The notion of children nodes which send their contribution block to their parents
leads to the following interpretation of the factorization process. When a node of
the assembly tree is being processed, it assembles the contribution blocks from all
its children nodes into its frontal matrix. Afterwards, the pivotal variables from
the fully summed block are eliminated and the contribution block computed. The
contribution block is then sent to the parent node to be assembled once all children
of the parent (which are the siblings of the current node) have been processed. This
is illustrated in Figure 3.5 for the matrix from Figure 3.1.

We remark that possibly some variables cannot be eliminated safely from a
frontal matrix because of possible numerical instability. In this case, their elimi-
nation will be delayed until stable pivots can be found. The corresponding fully
summed rows and columns are moved to the contribution block and are assembled
at the parent node. The contribution block becomes larger than was predicted dur-
ing the analysis phase, and the data structure used in the factorization needs to be

70 Task scheduling in a multifrontal sparse linear solver

4

6

5 6

5

3,5,6

21

4

Indicates contribution blocks

Eliminated variables bold

2

4

1 4
4
5

2

4
1

6
5
3

3 5 6

4 5

Figure 3.5: Illustration of the multifrontal factorization driven by an assembly tree.

modified dynamically. For this reason, it is common to provide some extra memory
for the factorization in case delayed pivoting occurs.

3.3 Parallelism in the multifrontal factorization

In the following, we identify different sources of parallelism in the multifrontal fac-
torization and describe how these are exploited in MUMPS [9].

3.3.1 The different types of parallelism

In Section 3.2.2, we mentioned that the tasks of multifrontal Gaussian elimination
for sparse matrices are only partially ordered and that the task dependencies are
represented by the assembly tree. A pair of nodes where neither is an ancestor
of the other can be factorized independently from each other, in any order or in
parallel. Consequently, independent branches of the assembly tree can be processed
in parallel, and we refer to this as tree parallelism or type 1 parallelism.

A fundamental concept for the complete static mapping of assembly trees from
model grid problems, the subtree-to-subcube mapping, was given by George, Liu, and
Ng [66]. This algorithm was then generalized for problems with irregular sparsity
structure and unbalanced trees to the bin-pack mapping scheme by Geist and Ng [63]
and the proportional mapping approach by Pothen and Sun [115, 117]. We will
describe these algorithms in Section 3.3.2.

It is obvious that in general, tree parallelism can be exploited more efficiently in
the lower part of the assembly tree than near the root node. Experimental results
presented in [8] showed a typical speedup obtained from tree parallelism of less than
five on 32 processors. These results are related to the observation [7] that often
more than 75% of the computations are performed in the top three levels of the
assembly tree where tree parallelism is limited. For better scalability, additional

3.3 Parallelism in the multifrontal factorization 71

parallelism is created from parallel blocked versions of the algorithms that handle
the factorization of the frontal matrices.

The computation of the Schur complement of frontal matrices with a large enough
contribution block can be performed in parallel using a Master-Slave computational
model. The contribution block is partitioned and each part of it assigned to a
slave. The master processor is responsible for the factorization of the block of fully
summed variables and sends the triangular factors to the slave processors which then
update their own share of the contribution block independently from each other and
in parallel. We refer to this approach as type 2 parallelism and call the concerned
nodes type 2 nodes.

Furthermore, the factorization of the dense root node can be treated in parallel
with ScaLAPACK [29]. The root node is partitioned and distributed to the proces-
sors using a 2D block cyclic distribution. This is referred to as type 3 parallelism.
Note that a 2D distribution could also be used for frontal matrices other than the
root node, but this is not exploited in MUMPS.

3.3.2 Parallel task scheduling: main principles

From the point of view of scheduling, the different types of parallelism vary in their
degree of difficulty. Apart from looking at each type of parallelism individually, it is
also necessary to investigate their interaction. The main objectives of the scheduling
approaches are to control the communication costs, and to balance the memory
and computation among the processors. We describe in this section the techniques
implemented in Version 4.1 of MUMPS which is described in [8, 9], and which has
been extensively tested and compared with SuperLU [10] and WSMP [73, 72]. We
also present the proportional mapping by Pothen and Sun [115, 117] from which we
develop, in Section 3.5, our idea of the candidate-based scheduling that is used in
the new version of MUMPS.

3.3.2.1 Geist-Ng mapping and layers in the assembly tree

We mentioned in Section 3.3.1 that in general, only the lower part of an assembly tree
can be exploited efficiently for tree parallelism. Our previous scheduling approach
consists therefore of two phases. At first, we find the lower part of the assembly tree
where enough tree parallelism can be obtained. Afterwards we process the remaining
upper part of the tree exploiting additionally type 2 and type 3 parallelism.

The mapping algorithm by Geist and Ng [63] allows us to find a layer in the
assembly tree so that the subtrees rooted at the nodes of this layer can be mapped
onto the processors for a good balance with respect to floating-point operations.
Processor communication is avoided by mapping each subtree completely to a single
designated processor. We call the constructed layer L0 . It marks the boundary
between the lower part where scheduling exploits only tree parallelism (type 1), and
the upper part where all three types of parallelism are used.

We consider the following top-down tree-processing approach [63]. We take as
potential layer L0 the root nodes (or the root node, for an irreducible matrix) of

72 Task scheduling in a multifrontal sparse linear solver

the assembly tree. We check whether the nodes can be mapped onto the processors
so that the load on each processor is balanced up to a threshold. In general, this will
not be the case, in particular if the number of processors used for the factorization
is larger than the number of root nodes. We then modify the potential layer L0

by replacing the node whose subtree has largest computational cost by its children.
Again, we check if the mapping of the new layer is balanced up to the threshold,
otherwise we repeat the previous substitution step for the node which has now the
highest computational subtree costs, and so forth. The algorithm stops once the
nodes in the potential layer L0 allow a threshold-balanced mapping. Intuitively, we
can think of the algorithm descending down in the assembly tree, as illustrated in
Figure 3.6.

cba

Figure 3.6: Geist-Ng algorithm for the construction of layer L0 .

The constructed initial layer L0 induces a layer partition of the upper part of
the assembly tree. Before the frontal matrix belonging to a node of the tree can be
processed, all contributions from the descendants of the node have to be gathered.
This leads to the following recursive definition. Given a node in layer Li−1 , the
parent of this node belongs to Li if and only if all the children of this parent node
belong to the layers L0, . . . , Li−1 . As the nodes in one layer can be only processed if
all their children, belonging to the lower layers, have already been treated, the layer
partition not only represents dependency but also concurrency of the multifrontal
factorization. An example is shown in Figure 3.7.

L

Subtree roots

L0

3

L

1L

2

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

Figure 3.7: Layers in the assembly tree.

3.3 Parallelism in the multifrontal factorization 73

3.3.2.2 The proportional mapping of Pothen and Sun

The proportional mapping approach by Pothen and Sun [115, 117] represents an
alternative approach to task scheduling in both regular and possibly irregular as-
sembly trees. It consists of a recursive assignment of processors to subtrees according
to their associated computational work.

The assembly tree is processed from top to bottom, starting with the root nodes.
For each root node, we calculate the work associated with the factorization of all
nodes in its subtree, and the available processors are distributed among the root
nodes according to their weight. Each node thus gets its set of so-called preferential
processors. The same partitioning is now repeated recursively. The processors that
have been previously assigned to a node are now distributed among the children
proportional to their weight given by the computational costs of their subtrees. The
recursive partitioning stops once a subtree has only one processor assigned to it.

A main benefit of the proportional mapping is that communication is effectively
localized among the processors assigned to a given subtree, with the partitioning
guided from a global point of view taking account of the weight of subtrees. An
illustration of the proportional mapping algorithm is given in Figure 3.8.

P5 P6

P1 P2

P4P3

P5P6 7P P8

P1P2P3P4P5P6 7P P8

P4P5P6 7P P8P1P2P3

P1P2

7P P8P6P5

P87P

Figure 3.8: Proportional mapping of an assembly tree on eight processors.

While the proportional mapping approach has not been previously used in MUMPS,
we mention it here because of its central importance for other sparse linear solvers
like PaStiX [79, 80, 81] and because the concept of candidate processors for type 2
parallel nodes presented later on exploits this idea.

3.3.2.3 Dynamic task scheduling for type 2 parallelism

It is possible to extend the static mapping to the tasks arising in the Master-Slave
computational model for the factorization of type 2 parallel nodes. However, the

74 Task scheduling in a multifrontal sparse linear solver

static mapping is performed during the analysis phase on the basis of estimated costs
of computational work and communication. These estimates can be inaccurate if
pivots have to be delayed for numerical reasons. For a better equilibration of the ac-
tual computational work at run time, both the number and the choice of the slaves
of type 2 nodes are determined dynamically during factorization in the following
way [8, 9]. When the master of a type 2 node receives the symbolic information on
the structure of the contribution blocks of the children, the slaves for the factoriza-
tion are selected based on their current work load, the least loaded processors being
chosen. The master then informs the processes handling the children nodes which
slaves are participating in the factorization of the node so that they can send the
entries in their contribution blocks directly to the appropriate slaves.

The previous version of MUMPS exploits type 2 parallelism above layer L0 as
follows. If a node possesses a contribution block larger than a given threshold and
the number of eliminated variables in its pivot block is large enough, then it will
be declared a type 2 node and will be involved in the dynamic decision to schedule
new activities. In the new version of MUMPS, we leave this concept principally
unchanged; however, we restrict the freedom for the dynamic choice of the slaves.
While, in the earlier algorithm, potentially every processor could be chosen as a slave
during run time, in the new approach we restrict this selection to the candidates
that have been chosen for a given node during the analysis phase. This is explained
in detail in Section 3.5.2.

3.4 Modifications to the assembly tree

In this section, we present and illustrate the concepts of amalgamation and splitting
as possible modifications to an assembly tree during the analysis phase in order
to improve the subsequent factorization. In this context, we also describe delayed
pivoting which constitutes an on-the-fly modification of the assembly tree during
factorization.

The concepts of amalgamation and splitting were already exploited in Version 4.1
of MUMPS. However, the capabilities were relatively limited. Amalgamation was
only performed near leaf nodes, and splitting was used only up to a certain distance
from the root nodes.

In the new version of MUMPS, we have significantly increased the possibilities
for splitting and amalgamation; we refer to Sections 3.6 and 3.7 for the details.
The positive impact of these modifications on the performance of the algorithm is
illustrated by the results in Sections 3.9.4 and 3.9.5.

3.4.1 The benefits and drawbacks of amalgamation

Amalgamation of a node with its parent is performed when the node has a large
contribution block but only a few fully summed variables. The frontal matrices
of parent and child are merged and treated together instead of being processed
sequentially.

3.4 Modifications to the assembly tree 75

The immediate impact of node amalgamation is on the memory. If a large
contribution block has to be kept on one processor and then sent to another one,
the communication buffer must be large enough to hold the data. If the node is
amalgamated, it effectively disappears from the tree, its stacking is avoided and
the buffer can possibly be smaller. Amalgamated nodes may still have a large
contribution block that could be a problem for the stack and buffer size. However,
we can often exploit type 2 parallelism more efficiently for such nodes since the
number of fully summed rows has been increased. In this case, the update of the
contribution block is done in parallel on several slaves which eliminates the need for
stacking the whole block on the master. Instead, each slave stacks its own, smaller
part of the contribution block, and communication from one process to another will
involve smaller amounts of data corresponding to only part of the contribution block.

Furthermore, it has been observed in [5] that even in a multifrontal factorization
on a single processor, the assembly process runs at a much lower megaflop rate
than the elimination process. Since, in a distributed environment, the assembly
requires additional data movement from the master processor of the parent node
with all processors working on the children of the node, the costs of assembly, and
consequently the benefits of amalgamation, can be even higher.

However, we have to also consider possible negative effects of amalgamation. Its
main drawback stems from the fact that it increases the front size of the parent
node and creates extra fill-in and operations. While the total amount of data to be
stacked and/or communicated is reduced, the memory for the storage of the matrix
factors is increased. This is illustrated in Figure 3.9.

2

��
��
��
��

��
��
��
��

1 2 3 8

N

���
���
���
���
���

���
���
���
���
���

3 4 5 6 7 8
5 6 7 8

��
��
��

��
��
��
���
���
���
���

Fill−in due to amalgamation

N

��
��
��
��

1

1 2 3 4

��
��
��

��
��
��

���
���
���
���
���
���

���
���
���
���
���
��� 1A

Eliminated variables bold

Indicates contribution blocks

Figure 3.9: Amalgamation of two nodes N1 and N2 into a single node A1 .

3.4.2 The benefits and drawbacks of splitting

MUMPS performs the factorization of the pivot rows of a frontal matrix on a single
processor. This can lead to performance problems, particularly if the frontal matrix

76 Task scheduling in a multifrontal sparse linear solver

has a large block of fully summed variables and only a relatively small contribution
block. However, if the front size is big enough, it is possible to create artificial type 2
parallelism in the following way.

The factorization of the pivot block is divided into two parts performed sequen-
tially one after the other. Instead of factorizing the pivot block at once and then
updating the contribution block, a two-step process is invoked. The first part of the
pivot block is factorized and the remaining part of the frontal matrix is updated,
that is, the original contribution block and the second part of the pivot block. Af-
terwards, the second part of the pivot block is factorized and the update applied
to the contribution block. Conceptually, we can think of this process as splitting a
node of the assembly tree into a chain of two nodes, see Figure 3.10.

7 8

2

7 81 2 3 4 5 6

��
��
��

��
��
��

��
��
��

��
��
��

N

����
����
����
����
����
����
����

����
����
����
����
����
����
����

1 2 3 4 5 6 7 8

1

��
��
��
��

��
��
��
��

4 5 6

S
1

S

Indicates contribution blocks

Eliminated variables bold

Figure 3.10: Splitting of a node N1 into S1 and S2 .

Potential benefits of splitting can be expected in the first step of the process.
The outer product update with the factors of the first part of the pivot block is
applied to a larger contribution block (consisting of the original contribution block
and the second part of the pivot block) which offers possible potential for type 2
parallelism.

When deciding whether or not a node should be split, we also have to consider
the drawbacks. While the number of factorization operations doesn’t change, the
number of assembly operations increases. Moreover, the type 2 parallel update
of the contribution block is associated with additional costs for the communication
between master and slaves. Lastly, if splitting is applied recursively, then long chains
of nodes might be created that could lead to more imbalanced assembly trees. A
node should therefore only be split if the benefits from splitting clearly outweigh the
additional costs.

3.4.3 Delayed pivots and numerical stability

Numerical pivoting is required for the numerical stability of the factorization of each
frontal matrix. In general, partial pivoting with a threshold criterion is used [41, 47].

3.5 Combining the concept of candidates with dynamic task scheduling77

If a fully summed variable cannot be eliminated within a frontal matrix because
of numerical stability, then the elimination is postponed and the non-eliminated
block is sent to the parent node.

The delay of eliminations corresponds to a dynamic modification of the assembly
tree during the factorization phase. In contrast to amalgamation and splitting,
discussed in Sections 3.4.1 and 3.4.2, that are performed during the analysis phase
prior to the factorization, the delay corresponds to an a posteriori modification of
the assembly tree [9]. It introduces so-called numerical fill-in as is illustrated in
Figure 3.11.

��
��
��

��
��
��

��
��
��
��

D

Fill−in due to delayed pivots

���
���
���
���
���

���
���
���
���
���

��

1

������

�
�
�
�

2 3 4 5 6 7 8

��
��
��
��

��
��
��
��

1 2 3 7

3 7

1N

���
���
���
���
���

���
���
���
���
���

3 4

N1

5 6 7 8

2

��
��
��
��

��
��
��
��

1 2

N

Eliminated variables bold

Indicates contribution blocks

Figure 3.11: The elimination of a pivot in node N1 is postponed, the delayed pivot
is assembled into node D1 .

3.5 Combining the concept of candidates with dy-

namic task scheduling

The dynamic choice of the slaves of type 2 nodes during the factorization phase is an
attempt to detect and adjust an imbalance of the workload between the processors
at run time. It was shown to work very well on a small to medium (64) number
of processors [9, 10]. However, the straightforward extension of this technique to a
large number of processors often offers more freedom to the dynamic scheduling than
can be exploited effectively. In this section, we first give a more detailed illustration
of these shortcomings, and then propose as a solution an algorithm that exploits the
concept of candidate processors.

3.5.1 Issues of dynamic scheduling

The first issue of dynamic scheduling concerns the memory management. In MUMPS,
the amount of memory needed for each processor is estimated during the analysis

78 Task scheduling in a multifrontal sparse linear solver

phase and is reserved as workspace for the factorization. Consequently, if every
processor can be possibly taken as a slave of a type 2 node, then enough workspace
has to be reserved on each processor during the analysis phase for the potential
corresponding computational task. However, during the factorization, typically not
all processors are actually used as slaves. In particular, it is common that when
using a large number of processors, only relatively few slaves are needed for most of
the type 2 nodes in the tree. This leads to a severe overestimation by the analysis
phase of the required work space with the possible consequence of exhausting the
memory available on the processors.

Secondly, the choice of the slaves is completely local. When a type 2 node is to be
processed, its master greedily takes the slaves that seem best to it; those processors
that are less loaded (with respect to the number of floating-point operations) than
itself at the time of the scheduling decision are selected as slaves. Thus, the decision
about the slaves depends crucially on the instant when the master chooses the slaves
(locality in time). Furthermore, no account is taken of other type 2 nodes in the tree
that have to be processed (locality in space). Instead of sharing the available slaves
so that other nodes can be processed in parallel, a master might decide to take all
of them, hindering the work on the other type 2 nodes and the treatment of other
branches of the assembly tree. Furthermore, it is not possible in this approach to
guarantee any locality of communication and data movement as, in principle, every
processor can work on any type 2 node in the assembly tree. However, controlling
locality is of great importance for modern computer architectures, for example SMPs
like the IBM SP, where, for an MPI programming model, data movement within the
shared memory of a node is cheap compared to communication across nodes.

3.5.2 Candidate processors for type 2 parallel nodes

In the following, we present a concept of candidate processors that naturally ad-
dresses the issues raised in Section 3.5.1. For each type 2 node that requires slaves
to be chosen dynamically during the factorization because of the size of its contri-
bution block, we introduce a limited set of processors from which the slaves can
be selected. (We postpone here a detailed algorithmic description and refer to Sec-
tions 3.7.3 and 3.7.4.) While the master previously chose slaves from among all
less loaded processors, slaves are now only chosen from this list of candidates. This
effectively allows us to exclude all non-candidates from the estimation of workspace
during the analysis phase and leads to a tighter and more realistic estimation of the
workspace needed. Secondly, we can expect a performance gain in cases as described
in the previous section where greedy decisions of one type 2 master can no longer
hinder processors from processing another node.

The candidate concept can be thought of as an intermediate, or semi-static, step
between full static and full dynamic scheduling. While we leave some freedom for
dynamic decisions at run time, this is guided by static decisions about the candidate
assignment during the analysis phase. We refer to Section 3.7.6 for a full description
of the algorithmic details.

3.6 Task mapping and task scheduling in MUMPS 79

In Section 3.3.2.1, we described the layer structure of the assembly tree. As
each layer of the assembly tree represents a view of concurrent execution, all type 2
nodes on the same layer are potential rivals for slave processors, see Section 3.5.1.
By assigning the candidates to all type 2 nodes of a given layer simultaneously, we
avoid isolated treatment of nodes and direct our candidate concept from a global
view of complete layers.

The assignment and the choice of the candidate processors are guided using a
proportional mapping as described in Sections 3.3.2.2 and 3.6.1. We partition the
set of processors recursively, starting from the root, so that for each subtree there
is a well defined subset of preferential processors which guides the selection of the
candidates.

With this approach, we achieve

• Locality of communication as we limit the communication to those processors
belonging to the subtree.

• Independence of computation as we limit the interaction of the processing of
one subtree with the treatment of another independent one.

3.6 Task mapping and task scheduling in MUMPS

In this section, we give a generic description of the algorithm used by Version 4.1 of
MUMPS [9, 10] and discuss in general terms our improvements to it as they have
been integrated into the new version. A detailed discussion of the key modifications
is given in Section 3.7. We speak, in the following, of task mapping when we refer to
the assignment of master processors and candidates during the analysis phase, and
of task scheduling when we refer to the dynamic choice of type 2 slaves during the
factorization phase.

3.6.1 Task mapping algorithm during the analysis phase

We consider the task mapping during the analysis phase and compare the previous
with the new version of MUMPS. A first major point to emphasize is the greater
flexibility and adaptivity of the new algorithm when mapping the upper part of the
assembly tree (that is, above layer L0). The former version, shown in Algorithm 3,
performs a simple mapping of only the master nodes, while the new version, shown
in Algorithm 4, treats the upper part layer-wise, mapping both master nodes and
type 2 candidates. Using a layer-wise approach we take better account of the task
dependency that will control the later factorization phase and, by analysing the
quality of mapping decisions taken on previous layers, we can try to correct problems
by influencing the mapping of the current layer. This adaptivity was conceptually
impossible in the old mapping algorithm.

The second contribution of the new algorithm is of course the added features.
A very important feature is the candidate concept guided by a proportional map-
ping partition of the processors. Furthermore, we have added to the treatment of

80 Task scheduling in a multifrontal sparse linear solver

each layer a preprocessing step that performs amalgamations and node splitting.
Moreover, we have improved the construction of layer L0 for better memory scal-
ability. Lastly, we treat memory imbalances due to type 2 node mapping using a
post-processing step.

We now present in more detail the previous version of the task mapping (Algo-
rithm 3) and compare it afterwards with the new one, Algorithm 4.

Algorithm 3 Old task mapping algorithm.

(1) Given the assembly tree of a sparse matrix A
(2) Build and map initial layer L0

(3) Decide type of parallelism for nodes in upper part of tree
(4) Map master nodes of upper part of tree

The starting point (1) of the original algorithm is the assembly tree that was
constructed from the elimination tree of a given sparse matrix using basic amalgama-
tion and node splitting. From this assembly tree, the algorithm constructs, in step
(2), an initial layer L0 following the Geist-Ng approach presented in Section 3.3.2.1
with the objective of balancing the work among the processors. Afterwards, it is
decided for which nodes type 2 or type 3 parallelism is exploited (3), and finally the
masters of all nodes above layer L0 are mapped (4) with the objective of balancing
the memory. The choice of the slave processors for the type 2 nodes is left entirely
to the dynamic scheduler during factorization, see Section 3.6.2.

Algorithm 4 New task mapping algorithm.

(1′) Given the assembly tree of a sparse matrix A
(2′) Calculate relaxed proportional mapping, i.e. the preferential processors
(3′) Build and map modified initial layer L0

current layer = 1
while there exist unmapped nodes on or above current layer do

(4′) Perform tree modifications if necessary
(5′) Decide type of parallelism for the nodes on current layer
(6′) Map the tasks associated with the nodes on current layer
current layer = current layer + 1

end while
(7′) Post-processing of the candidate selection to improve memory balance

The starting point (1′) of the new algorithm is the same assembly tree as for the
old approach (1). In step (2′), we calculate a variant of the proportional mapping
as introduced in Section 3.3.2.2 and whose algorithmic description is given later in
Section 3.7.1. For each node in the assembly tree, we obtain a set of preferential
processors that will guide the selection and mapping of the candidate processors in
step (6′). Step (3′) differs from the corresponding step (2) in the old algorithm
insofar as the constructed initial layer has one additional property. Not only can it be
mapped so that the computational work is balanced between the processors, but we

3.6 Task mapping and task scheduling in MUMPS 81

also control better the memory demands of the subtree roots, see Section 3.7.2 for the
details. Step (4′) performs amalgamations and node splitting to improve the nodes
of the current layer. In step (5′), we decide which type of parallelism we exploit for
the nodes of the current layer. Nodes are of type 2 when their contribution block is
large enough, that is greater than a minimum block size. The list of tasks associated
with the current layer includes the masters for the type 1 and type 2 nodes, and
the type 2 candidates which are derived from the proportional mapping (2′), see
Section 3.7.1. For the task mapping, we use a list scheduling algorithm that is
described in Section 3.7.4. The main difference of the new mapping (6′) from the old
one (4) is that we now pre-assign candidate processors for the type 2 nodes while in
the former version, every processor was a potential type 2 slave. The post-processing
step (7′) affects mostly the LU factorization: as the flop-based equilibration of the
mapping step (6′) can lead to a particularly bad memory balance, we perform a
remapping of the type 2 masters for improved memory balance, as described in
Section 3.7.5.

3.6.2 Task scheduling during the factorization phase

In this section, we describe the task management of a processor during the factor-
ization phase. Here, the old and the new version of the algorithm differ only in the
way the type 2 slaves are chosen. In the previous algorithm, every processor was a
potential slave for a type 2 node, whereas now only the candidates can be selected
to work on the parallel update of the contribution block.

Algorithm 5 Dynamic task scheduling performed on each processor during the fac-
torization.

(1) Given the task pool of one processor
while (2) Not all tasks processed do

if Work is received from another processor then
(3) Store work in pool of tasks

else
(4) Extract work from the task pool
if Task is master of type 2 node then

(5) Choose and notify the slaves for the type 2 node
end if
(6) Perform pivot elimination and/or contribution block update

end if
end while

The task pool (1) of a processor can contain the following tasks: master of a
type 1 node, master of a type 2 node, or slave of a type 2 node. MUMPS uses
a stack as the data structure for the task pool; the processor adds new tasks (3)
or extracts them from the pool (4), respectively. If, during the factorization, the
task pool of the processor is empty, it will wait until it receives new tasks and then
re-enter loop (2). If the processor works as a type 2 master, it chooses the slaves

82 Task scheduling in a multifrontal sparse linear solver

that will participate in the parallel contribution block update (5) before it starts the
elimination of the pivotal block (6). Otherwise, if the processor is a type 1 master
or a type 2 slave, it begins directly with the pivot elimination or the contribution
block update, respectively (6).

In the new version of the algorithm, only step (5) is modified to ensure that the
type 2 slaves are selected from among the candidates allocated for the type 2 node.
We give the details of the algorithm for choosing the slaves in Section 3.7.6.

3.7 Details of the improved task mapping and

scheduling algorithms

After the general comparison of the old and new versions of MUMPS task mapping
and scheduling in Section 3.6, we describe in this section the key points of the new
algorithm in detail.

3.7.1 The relaxed proportional mapping

We give below an algorithmic description of one step of the proportional mapping
presented in Section 3.3.2.2. The preferential processors given to a node are dis-
tributed among its children according to their weight. Note that we can relax the
strict proportional mapping by multiplying the number of preferential processors na

by a relaxation factor ρ ≥ 1 in step (2).

Algorithm 6 One step of proportional mapping.

Given a node n with preferential processors p1, . . . , pna(n) and children s1, . . . , si

for each child s of n do
(1) Calculate relative costs cr(s) of child s , 0 ≤ cr(s) ≤ 1
(2) Calculate number of preferentials na(s) = min {ρ× cr(s)× na(n), na(n)}

for child s
end for
(3) Cyclic assignment of the preferential processors for all children s1, . . . , si

In step (1), we calculate the relative costs cr(s) of a child s, s ∈ {s1, . . . , si}
from the costs c(s) for the factorization of all nodes in the subtree rooted at s as

cr(s) =
c(s)∑i

k=1 c(sk)
. (3.1)

From the relative weight of child s , we obtain its share of preferential processors
in step (2) that can be relaxed by the factor ρ . A fundamental property of the
proportional mapping is that the preferential processors of a child s are a subset of
the preferential processors of its parent node n . This is ensured because na(s) ≤
na(n) in (2) and we always choose from the preferential processors of the parents
at step (3). Here, we also make sure that each child has at least one processor,

3.7 Details of the improved task mapping and scheduling algorithms 83

even if its cost is negligible. After we have calculated the number of preferential
processors for all children, we distribute in step (3) the processors p1, . . . , pna(n)

among the children. If the proportional mapping is strict (ρ = 1) and the number
of preferential processors calculated from the relative weight cr(s) in equation 3.1
is an integer, each processor is assigned exactly to one child. Otherwise, and in
particular if the proportional mapping is relaxed with ρ > 1 , processors can become
preferential for more than one child. Consequently, large values of ρ will dilute the
strict partition of the processors so that in the extreme case, ρ→∞ , all processors
become preferential for each node.

3.7.2 The Geist-Ng construction of layer L0

We now give an algorithmic description of the construction of the initial layer L0

that extends the Geist-Ng approach presented in Section 3.3.2.1.

Algorithm 7 The Geist-Ng algorithm.

(1) Let L0 contain all root nodes of the assembly tree
(2) Map layer L0

while (3) Layer L0 is not acceptable do
(4) Find node in L0 with highest computational costs
(5) Replace this node by its children in L0

(6) Map new layer L0

end while

Starting with a potential layer L0 consisting of the root nodes of the assembly
tree (1), we first compute (2) a mapping of L0 with the list scheduling heuristics
described in Section 3.7.4. The former criterion for accepting the layer in step (3)
demands that the load imbalance between the processors is smaller than a threshold.
Here, the work associated with a node in L0 is defined as the costs for computing the
factors of the subtree rooted at the node and can be estimated during the analysis
phase. We discuss below what problems can arise and why we have modified this
criterion of acceptability for L0 . If the mapping of layer L0 is not acceptable, then
the node with the highest costs is eliminated from the layer and replaced by its
children (4, 5). A new mapping is computed (6) with the same algorithm as in (2).

The main problem of the algorithm is that balancing the computational work
does not necessarily imply balancing the memory. Consider a node with a very small
number of pivots but a big contribution block. The costs for the factorization depend
mainly on the size of the pivotal block and are small, while the memory required
to stack the contribution block is large. In order to take care of such situations,
we propose the following approach. If a node with a large contribution block was
in the upper part of the tree above L0 , it could either be amalgamated with its
parent or become a type 2 node, and, in both cases, the memory problems would
vanish. Thus, by eliminating such nodes from layer L0 and replacing them by their
children, we control the memory required for the subtrees in addition to balancing

84 Task scheduling in a multifrontal sparse linear solver

the work on layer L0 . The idea is to treat critical nodes in the latter part of the
algorithm by moving them into the upper part of the tree.

Summarizing, we modify the criterion of acceptability (3) to demand that both
the load imbalance for the mapping of L0 is smaller than a threshold and that L0

contains no nodes that would need to be amalgamated.

3.7.3 Choosing the number of candidates for a type 2 node

We now describe the role of the proportional mapping for the decision of which
processors become candidates for a type 2 node. Our approach consists of two
steps. For a given layer, we first determine for each type 2 node the number of
candidate processors. In the second step, we choose the candidates from the available
processors. (Thus, for a given node n we determine first the number of candidate
processors, nc(n) , that have to be chosen in the second step.) The selection of a
candidate processor is conceptually similar to the selection of the master processors
for the type 1 and type 2 nodes; all these are tasks that need to be mapped onto the
set of processors. In Section 3.7.4, we describe the algorithm that we use to map
the tasks associated with one layer in the assembly tree. By mapping the master
and candidate processors together, we hope to obtain better load balancing.

We have experimented with two different ways for determining the number of
candidates for a given type 2 node and describe these in Algorithm 8. In the first
approach, we select its preferential processors as candidates, thus setting the number
of candidates equal to the number of preferentials. We emphasize that this approach
is not equivalent to a relaxed proportional mapping as the candidates are only po-
tential slaves for the factorization. In a second approach, we employ an additional
post-processing step where we redistribute the candidates of the layer according to
the relative weight of the nodes. As described in Section 3.3.2.2, the proportional
mapping is calculated from the costs of complete subtrees, not individual nodes. So
it might happen that a small node has a large number of preferentials because it is
the root of a large subtree, while a relatively large node on the same layer has only
a small number of preferentials. In order to correct this, we can reassign candidates
from small type 2 nodes as candidates of large type 2 nodes on the same layer by
the optional step in Algorithm 8.

Algorithm 8 Determining the number of candidates using the preferentials.

Given a layer in the assembly tree
for each Type 2 node n with na(n) preferential processors in the layer do

(1) Determine the number of candidates by nc(n) = na(n) .
end for
(2) OPTIONAL: Redistribute the total number of candidates of the layer among

the layer’s type 2 nodes according to their relative weight.

3.7 Details of the improved task mapping and scheduling algorithms 85

3.7.4 Layer-wise task mapping

The algorithm that we use for the mapping of the tasks of each layer is a variant
of the well known list scheduling algorithm [89] where we first make a list of the
tasks sorted by decreasing costs, and then maps the tasks in this order one after
another to the processor that has the least work assigned so far. We remark that
this heuristic can be proved to construct a schedule whose total makespan (that
is, the time by which all jobs complete their processing) never exceeds twice the
makespan of an optimal schedule [89].

As described in the previous sections, the tasks associated with a layer can
include the following:

• The masters of all type 1 and type 2 nodes.

• For each type 2 node, the number of candidate processors determined using
the node’s preferential processors, see Section 3.7.3.

• The type 3 parallel node.

In the case of layer L0 , we employ the original list scheduling, however, for all
upper layers L1, L2, . . . our algorithm is more complicated for two reasons. First,
we want to guide mapping decisions by the proportional mapping representing a
global view of the tree. Second, we have to take care of constraints that arise either
from explicit user-given limits on memory or work for each processor, or implicitly
from the fact that any two candidate processors or any candidate and the master of
a type 2 node have to be different from each other.

Algorithm 9 Generic mapping algorithm.

(1) Create an ordered task list
while Task list not empty do

(2) Extract the next task ti from the list
(3) Make a preference list for the processors
while Task ti not mapped to a processor do

(4) Try to map ti to next processor from the preference list
end while

end while

The first two steps (1) and (2) of Algorithm 9 are identical to the original list
scheduling approach: we create a list of all tasks that have to be mapped on the
layer, that is, the work of the type 1 node masters, of type 2 node masters, and of
type 2 node candidates (which have been obtained from the proportional mapping,
as described in Section 3.7.1). This list is then ordered by decreasing costs and the
tasks are mapped in the order that they appear in the list.

Steps (3) and (4) are the generalization of the idea of mapping to the least
loaded processor. In order to take account of the proportional mapping, we can
simply propose mapping the task on the least loaded of the preferential processors

86 Task scheduling in a multifrontal sparse linear solver

coming from the proportional mapping. However, this is actually too simple as the
mapping constraints for type 2 nodes that we mentioned above have to be respected.
Our solution is that we create a preference list containing all the processors, at first
the preferential ones ordered by decreasing workload and then the non-preferential
ones ordered separately. The first processor in the preference list that doesn’t violate
the mapping constraints will be the one to which the task is mapped.

3.7.5 Post-processing of the assembly tree for an improved
memory balance in the LU factorization

.
The mapping algorithm from Section 3.7.4 tries to balance the work between

the processors. However, there is an important difference between symmetric and
unsymmetric factorization with respect to memory. In the LDLT factorization, the
master of a type 2 node only holds the pivotal block whereas, in the LU factor-
ization, the master stores the complete fully summed rows. The additional memory
that a master requires for storing its part of the factors in the LU factorization
(with respect to the LDLT factorization) is illustrated in Figure 3.12. In both the
LU and the LDLT factorization, a type 2 slave reserves space for a part of the
L factor below the pivotal block as shown in Figure 3.13. Thus, in the case of the
LU factorization, the work equilibration can lead to memory imbalances if the same
processor becomes master of several type 2 nodes.

L

U

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

PIVOTAL
BLOCK

Figure 3.12: Additional memory
needed by a type 2 master in the
unsymmetric factorization.

L

L

T

������
������
������
������

������
������
������
������

PIVOTAL
BLOCK

Figure 3.13: Memory reserved for
the L factor on a type 2 slave in
both LU and LDLT factoriza-
tion.

We propose the following simple remedy. After the whole tree is mapped with
the objective of balancing the work, we use a post-processing step to correct obvious
memory problems.

We process the upper part of the assembly tree from the top down (1), as the
type 2 nodes creating the biggest problems are often near a root of the tree. By
swapping a master processor with one of the candidates, we still guarantee the
benefits of the proportional mapping used in the candidate assignment, but locally
improve the memory imbalance (steps 2 and 3).

3.7 Details of the improved task mapping and scheduling algorithms 87

Algorithm 10 Post-processing for better memory equilibration in the LU factor-
ization.

(1) Process the type 2 nodes in the tree from the root downwards
(2) For a node n with master pM(n) select candidate c∗(n) with smallest memory
if memory imbalance can be improved by swapping pM(n) and c∗(n) then

(3) Exchange the roles of master and candidate processor pM(n)⇔ c∗(n)
end if

3.7.6 The dynamic scheduling algorithm used at run time

We describe the dynamic scheduling algorithm used in MUMPS for the mapping
of the slaves of a type 2 node at run time [9] and show how the candidate concept
influences the original approach. Furthermore, we identify and describe the role
of the algorithmic parameter kmax controlling the minimum granularity for type 2
parallelism at run time.

Algorithm 11 Dynamic choice of the slaves of a type 2 node.

Given a type 2 node n with master processor pM(n) and children s1, . . . , si

(1) The masters of the children pM(s1), . . . , pM(si) send symbolic data to pM(n)
(2) pM(n) analyses its information concerning the load of all processors
(3) pM(n) decides the partitioning of the frontal matrix of node n and chooses

the slave processors pS
1 (n), . . . , pS

j (n)
(4) pM(n) informs all processors working on the children about the partition
(5) The numerical data is sent directly to the slaves pS

1 (n), . . . , pS
j (n)

Instead of first assembling all numerical data on the master of the type 2 node
and distributing it afterwards to the slaves, a two-phase assembly process is used. At
step (1), the master receives only the integer data describing the symbolic structure
of the front. At step (2), the master analyses the information on the work-load of
the other processors: Each processor is responsible for monitoring its own work-
load status and for broadcasting significant changes to all other processors so that
everyone has accurate information on the overall progress of the factorization. At
step (3), the master processor pM(n) selects the least loaded among all processors as
slaves. As a general rule, all processors that are less loaded than pM(n) are chosen
as slaves. Then, a partition of the frontal matrix onto the slaves is calculated.

The following constraint on the number of slaves, ns , for a type 2 node selected
during factorization is imposed. It must always satisfy

ns ≥ max(� ncb

kmax
�, 1), (3.2)

where ncb denotes the number of rows in the contribution block. (The result of
the division on the right-hand side is truncated to the next smaller integer but must
always be at least one.) The parameter kmax controls the maximum work of a type 2

88 Task scheduling in a multifrontal sparse linear solver

slave and thus the maximum buffer size permitted for the factorization of a type 2
node.

Once the slaves participating in the parallel update of the contribution block
have been selected, they obtain the part of the symbolic information from the mas-
ter pM(n) that is relevant for their work (4). Furthermore, they receive the corre-
sponding numerical data from the processors working on the children (5).

In the candidate-based scheduling approach, we modify step (3) so that the
slaves are always chosen among the candidates provided for the node. At first, we
select all those candidates that are less loaded than the master processor. If the
inequality (3.2) is not satisfied, additional candidates are chosen so that it holds. In
order to be able to choose the slaves at factorization time among the candidates so
that (3.2) is never violated, we must take care to provide enough candidates during
analysis. If we provide only a minimum number of candidates so that (3.2) holds
as equality, we enforce a static scheduling. In this case, all candidates must be
selected as slaves during factorization. We have freedom for dynamic choices during
the factorization only if we provide a number of candidates greater than ncb/kmax .
Consequently, the freedom offered to the dynamic scheduling can be measured by
the number of extra candidates given for a type 2 node. On the other hand, the
larger the number of candidates for a given node, the closer we come to the case of
fully dynamic scheduling with all the possible drawbacks discussed in Section 3.5.1.
In the following experiments, we will see that the dynamic scheduling works most
effectively when kmax is large and (3.2) does not impose a significant restriction.
Because of overall memory constraints, the scope for increasing the parameter is
limited; however, we will see that the better memory estimates from the candidate
approach greatly increase the range from which kmax can be chosen.

We remark that, in the case of the LDLT factorization, MUMPS precomputes
a partition of the contribution block in order to guarantee that each of the slaves
performs approximately the same amount of work [8]. As the frontal matrix is
symmetric (and only the lower triangular part is stored), rows at the bottom of the
frontal matrix are longer (and thus associated with more work) than rows at the
top.

3.8 The test environment

In this section, we present the test matrices that we use to illustrate the behaviour of
our algorithm. Specifically, we consider in Section 3.8.1 matrices from regular grids
and in Section 3.8.2 irregular ones from real-life applications. We mention that our
set of regular grid problems includes those used in [10] which allows us to compare
the performance of the new code with results already published.

For our tests, we use both a CRAY T3E-900 (512 processors, 256 MBytes
RAM and 900 peak MFlops per processor) and an SGI Origin 2000 (32 proces-
sors, 16 GBytes shared memory, 500 peak MFlops per processor). We consider
different orderings including nested dissection from SPARSPAK [64], METIS [98],
and SCOTCH [112, 113], and Approximate Minimum Fill [119, 109].

3.8 The test environment 89

3.8.1 Regular grid test problems

We consider a set of test matrices obtained from an 11-point discretization of the
Laplacian on 3D grids of either cubic or rectangular shape, the grid sizes are reported
in Table 3.1. The set of problems is chosen as in [10] and is designed so that when
the number of processors increases, the number of operations per processor in the
LU factorization stays approximately constant when employing a nested dissection
ordering [64].

Processors Rectangular Cubic
grid sizes grid size

1 96 24 12 29
2 100 20 20 33
4 120 30 15 36
8 136 32 16 41

16 152 38 19 46
32 168 42 21 51
48 172 44 22 55
64 184 46 23 57

128 208 52 26 64
256 224 56 28 72
512 248 62 31 80

Table 3.1: 3D grid problems.

In Tables 3.2 and 3.3, we show for the grid problems the distribution of work for
type 1 masters (T1), type 2 masters (T2M) and slaves (T2S), and the type 3 root
node (T3). It can be seen that, when increasing the problem size and the number of
processors used, the work of the type 2 slaves becomes a major part of the overall
work. Thus, improving the mapping of the type 2 slaves through the candidate
concept will have a great influence on the overall performance of the factorization,
in particular on larger problems.

3.8.2 General symmetric and unsymmetric matrices

The matrices described in this section all arise from industrial applications and
include test matrices from the PARASOL Project [3], the Rutherford-Boeing Col-
lection [49], and the University of Florida sparse matrix collection [32].

In Table 3.4, we describe the characteristics of the test matrices arising from real
life problems. In Table 3.5, we show for the irregular problems on 64 processors
the distribution of work for type 1 masters (T1), type 2 masters (T2M) and slaves
(T2S), and the type 3 root node (T3). We see that the work distribution depends
heavily on the ordering used. The AMF ordering produces assembly trees that are
rich in type 2 parallelism; on the other hand, the root nodes are so small that

90 Task scheduling in a multifrontal sparse linear solver

LU LDLT

Processors T1 T2M T2S T3 T1 T2M T2S T3
1 100 0 0 0 100 0 0 0
2 85 0 0 15 85 0 0 15
4 45 7 34 14 45 2 39 14
8 28 7 49 14 28 2 56 14

16 18 5 63 14 18 2 65 15
32 7 4 75 14 8 1 77 14
48 7 4 75 15 8 1 77 14
64 5 3 78 14 5 1 81 13

Table 3.2: Percentage distribution of work for 3D cubic grid problems (nested dis-
section ordering).

LU LDLT

Processors T1 T2M T2S T3 T1 T2M T2S T3
1 100 0 0 0 100 0 0 0
2 88 0 0 12 88 0 0 12
4 84 1 3 12 84 1 3 12
8 49 5 34 12 49 3 36 12

16 25 5 58 12 25 2 61 12
32 16 4 68 12 16 2 70 12
48 14 4 70 12 12 2 74 12
64 10 4 74 12 10 1 77 12

Table 3.3: Percentage distribution of work for 3D rectangular grid problems (nested
dissection ordering).

Matrix Matrix Matrix Nmb. Origin
name type order entries
bbmat symmetric 38744 1771722 Rutherford-Boeing
ecl32 symmetric 51993 380415 Rutherford-Boeing
g7jac200 symmetric 59310 837936 University of Florida
twotone symmetric 120750 1224224 Rutherford-Boeing
ship003 unsymmetric 121728 8086034 PARASOL
bmwcra 1 unsymmetric 148770 10644002 PARASOL

Table 3.4: Matrix order, type, and number of entries for the irregular test matrices.

type 3 parallelism cannot be exploited effectively, in contrast to both SCOTCH and
METIS. For all matrices apart from bbmat, the major part of the work is associated

3.9 Experimental investigation of algorithmic details 91

with the factorization of type 2 nodes, similar to the regular grid problems.

AMF METIS SCOTCH
Matrix T1 T2M T2S T3 T1 T2M T2S T3 T1 T2M T2S T3
bbmat 43 3 54 0 57 7 30 6 75 3 19 3
ecl32 14 8 78 0 29 8 52 11 25 9 51 15
g7jac200 9 2 89 0 12 5 71 12 3 12 69 16
twotone 6 6 90 0 7 8 79 6 11 7 52 30
ship003 7 7 85 1 14 10 65 11 15 12 63 10
bmwcra 1 22 8 70 0 36 12 51 1 40 9 49 2

Table 3.5: Percentage distribution of work for irregular problems on 64 processors
with different orderings.

3.9 Experimental investigation of algorithmic de-

tails

In this section, we study the influence and scope of parameters in the algorithms used
by Version 4.1 [9, 10] and by the new version of MUMPS. Furthermore, we present a
detailed investigation of isolated parts of the improved algorithm by typical examples
of phenomena that we have observed in our experiments.

3.9.1 The impact of kmax on volume of communication and
memory

We first show the impact of the parameter kmax that controls the minimum granu-
larity of the type 2 parallelism, on the volume of communication and memory.

Our test matrix is from Section 3.8.1 and comes from an 11-point discretization
of the Laplacian on a cubic grid of order 46 , ordered by nested dissection. Here,
we perform an LU factorization on an SGI Origin 2000 with 16 processors. This
platform is well suited for testing the kmax parameter over a wide range of val-
ues because of its shared-memory architecture where a large amount of memory is
available to all processors.

At first, we study the behaviour of Version 4.1 of MUMPS and then compare it
with the new code.

The two graphs in the upper row of Figure 3.14 illustrate that with increasing
kmax , both the total volume of communication and the number of messages asso-
ciated with dynamic scheduling decrease. If kmax is small, the required minimum
number of slaves for a type 2 node and the corresponding communication volume
will be large. With increasing kmax , a single type 2 slave might be authorized to

92 Task scheduling in a multifrontal sparse linear solver

0 500 1000 1500 2000
1000

1500

2000

2500

3000

3500
Total volume of communication

k
max

co
m

m
vo

l [
M

B
yt

es
]

0 500 1000 1500 2000
3

3.2

3.4

3.6

3.8

4
x 10

4

k
max

M
es

sa
ge

s

Total number of messages

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

k
max

M
em

or
y

[M
B

yt
es

]

Estimated and real average memory

est
real

0 10 20 30 40
0

100

200

300

400

500

k
max

M
em

or
y

[M
B

yt
es

]

Average estimated memory

Buffer
LU factors
Stack

Figure 3.14: Impact of kmax on volume of communication and memory in Version 4.1
of MUMPS (Origin 2000, 16 processors).

work on larger parts of a contribution block and the minimum number of slaves re-
quired during factorization becomes smaller. With kmax sufficiently large and thus
the guaranteed minimum number of slaves from inequality (3.2) being no longer a
constraint, the dynamic scheduling can freely choose slaves among the least loaded
processors. Thus, further increases in kmax do not further reduce the volume of
communication.

The graph in the left lower corner of Figure 3.14 shows the increase in estimated
and actually used memory with increasing kmax , and the graph in the right lower
corner shows the decomposition of the estimated memory into the space reserved
for the communication buffers, the LU factors, and the stack. As potentially ev-
ery processor can be selected as a slave during the factorization and the memory
predicted depends monotonically on kmax , the prediction during the analysis phase
will lead to an increasing gap between real and estimated memory as can be seen in
the graph on the lower left. On the lower right, we see that the main contribution
to the overestimation of the memory is the stack. As slaves stack their part of the
contribution block until it can be received by the processors working on the parent of
the node, the stack has to grow when kmax increases. Furthermore, a single type 2
slave is authorized to work on larger parts of a contribution block.

When weighing memory estimation and communication volume against each
other, the best value for kmax is so that it reduces the memory over-estimation but
at the same time limits the communication volume sufficiently.

3.9 Experimental investigation of algorithmic details 93

0 500 1000 1500 2000
1000

1500

2000

2500

3000

3500
Total volume of communication

k
max

co
m

m
vo

l [
M

B
yt

es
]

0 500 1000 1500 2000
3

3.2

3.4

3.6

3.8

4
x 10

4

k
max

M
es

sa
ge

s

Total number of messages

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

k
max

M
em

or
y

[M
B

yt
es

]

Estimated and real average memory

est
real

0 500 1000 1500 2000
0

100

200

300

400

500

k
max

M
em

or
y

[M
B

yt
es

]

Average estimated memory

Buffer
LU factors
Stack

Figure 3.15: Impact of kmax on volume of communication and memory in the new
version of MUMPS (Origin 2000, 16 processors).

We now investigate the behaviour of the new candidate-based code on the same
test matrix. Candidates are assigned without relaxation and layerwise redistribu-
tion, following the proportional mapping of the assembly tree. From the two graphs
in the bottom row of Figure 3.15 we observe the expected better estimation of mem-
ory. Compared to the corresponding graphs in Figure 3.14, the growth of the gap
between estimated and real memory is significantly smaller. As the type 2 slaves can
only be chosen from the candidates, the non-candidates can be excluded thus mak-
ing the estimation tighter and more realistic. Furthermore, the two graphs in the
top row of Figure 3.15 indicate that the communication volume in the new version
of MUMPS drops faster with increasing kmax than it does for the previous version.
This can be explained by the restricted freedom for the dynamic scheduling, so that
actually less parallelism is created and fewer slaves are chosen during factorization.
Thus, if we want to reduce the communication volume in the new code, we are not
obliged to increase kmax substantially with the consequent drawback of overestimat-
ing the memory. Instead, we can choose kmax relatively small and have the benefits
of a relatively realistic memory estimation together with a reduced communication
volume.

94 Task scheduling in a multifrontal sparse linear solver

3.9.2 The impact of kmax on performance

In the following example, we show the impact of the parameter kmax on the factor-
ization time.

Our test matrix arises from an 11-point discretization of the Laplacian on a cubic
grid of order 51 , ordered by nested dissection; we perform an LU factorization on
a CRAY T3E with 64 processors. (Compared to Table 3.1, we have reduced the
problem size to have enough flexibility with respect to memory for this parameter
study.) Furthermore, because of limited memory and in order to separate the differ-
ent algorithmic parameters, we use a candidate assignment without relaxation. For
a study of the influence of relaxation we refer to Section 3.9.3.

The T3E is well suited for providing reliable timing for performance measures
because the processors are guaranteed to run in dedicated mode for a single task.
On the other hand, the T3E has a distributed-memory architecture with a fairly
small amount of memory per processor, so that we can vary the parameter kmax

only in a relatively small range compared to the range possible on the Origin 2000
which has a shared memory.

20 40 60 80 100 120 140 160 180
25

30

35

40

45

50

55

60

65

70

k
max

tim
e

[s
ec

]

Factorization time as function of k
max

orig
new

Figure 3.16: Impact of kmax on the performance of the original and the new version
of the LU factorization time (CRAY T3E, 64 processors).

From Figure 3.16, we see that with increasing kmax , the factorization time de-
creases in both versions of the code as the minimum number of slaves required during
factorization gets smaller and the dynamic scheduler is free to decrease unnecessary
parallelism. However, the previous version of MUMPS needs much more memory
than the candidate-based version, and thus the flexibility for increasing kmax is more
strictly limited.

3.9 Experimental investigation of algorithmic details 95

Once kmax is sufficiently large, a further increase in kmax shows no further
improvements in performance. This corresponds to the results on the limited reduc-
tion in the volume of communication obtained in Section 3.9.1. We note that for the
larger values of kmax , the new version of the code performs better. We will confirm
this observation by systematic studies on our set of test matrices in Section 3.10.

3.9.3 Modifying the freedom offered to dynamic scheduling

We now investigate the behaviour of the new code when modifying the assignment
of candidates. We study two different approaches. As described in Section 3.7.3,
we can increase the number of candidates given to a node by relaxing its number
of preferentials through the proportional mapping. Furthermore, according to Al-
gorithm 8, we can modify the candidate assignment for a given layer by an optional
redistribution of the candidates that takes account of the weight of the nodes relative
to each other.

We first compare the performance of the candidate assignment with and without
layerwise redistribution. Afterwards, we show the impact of relaxation on the two
assignment strategies.

20 40 60 80 100 120 140 160 180
25

30

35

40

45

50

55

60

65

70

k
max

tim
e

[s
ec

]

Factorization time as function of k
max

no redist.
redist.

Figure 3.17: Comparison of the candidate assignment with (solid) and without
(dotted) layer-wise candidate redistribution when increasing minimum granularity
(LU factorization time on CRAY T3E, 64 processors, no candidate relaxation).

For our study, we use the same test case as in Section 3.9.2. Figure 3.17 shows
the factorization time of the new version of MUMPS for the candidate assignment
with and without layer-wise candidate redistribution as a function of the minimum
granularity. We cannot find significant differences in the behaviour of the two ap-

96 Task scheduling in a multifrontal sparse linear solver

proaches. This example is representative for the results we obtain on the complete
set of test problems. With or without layer-wise redistribution of the candidates,
the performance of the algorithm is similar.

We now investigate the impact of relaxation on the volume of communication,
memory, and performance. In Figures 3.18 and 3.19, the horizontal axis denotes
the percentage relaxation factor. We present the behaviour of the new version
of MUMPS for the candidate assignment with and without layer-wise candidate
redistribution as a function of the relaxation.

0 10 20 30 40 50 60 70 80 90 100
8500

9000

9500

10000

10500

relax

c
o
m

m
v
o
l
[M

B
y
te

s
]

Total volume of communication

no redist.
redist.

0 10 20 30 40 50 60 70 80 90 100
8

8.5

9

9.5

10

10.5

11
x 10

4

relax

M
e
s
s
a
g
e
s

Total number of messages

no redist.
redist.

Figure 3.18: Amount of communica-
tion in original and modified candidate
assignment when increasing the relax-
ation (CRAY T3E, 64 processors).

0 10 20 30 40 50 60 70 80 90 100
50

60

70

80

90

100

relax

M
e
m

o
ry

 [
M

B
y
te

s
]

Estimated and real average memory

est. (no redist.)
est (redist.)
real

0 10 20 30 40 50 60 70 80 90 100
20

25

30

35

40

relax

ti
m

e
 [
s
e
c
]

Factorization time

no redist.
redist.

Figure 3.19: Memory estimation and
performance of original and modified
candidate assignment when increasing
the relaxation (CRAY T3E, 64 proces-
sors).

The two graphs in Figure 3.18 illustrate that, with increasing relaxation, both
the total volume of communication and the number of messages related to dynamic
scheduling increase because the flexibility for choosing the slaves during factorization
becomes greater. Likewise, the memory estimation grows with increasing relaxation,
see Figure 3.18. However, we do not observe a positive impact of relaxation on
the performance of the algorithm; a possible interpretation is that, through the
relaxation, we create additional parallelism that is not actually needed at run time.
In general, we already have without relaxation enough freedom for a dynamic choice
of the slaves. While this observation holds for all the experiments we have conducted,
we are convinced that relaxation might show a positive impact on irregular problems
from real-life applications. Unfortunately, the irregular problems available to us are
not large enough to effectively exploit parallelism on a large number of processors,
and we plan to investigate this further in the future, see the remarks in Section 3.11.2.

In conclusion, we note that the candidate approach without layer-wise redistribu-
tion and without additional relaxation already offers good results in our experiments.

3.9 Experimental investigation of algorithmic details 97

In the following, we focus therefore on the presentation of the results obtained with
this algorithmic configuration.

3.9.4 Improved node splitting

We illustrate the additional capabilities for node splitting on the set of test matrices
from Section 3.8.1. Those matrices are obtained from an 11-point discretization of
the Laplacian on 3D cubic or rectangular grids with Approximate Minimum Fill
(AMF) ordering and are described in Table 3.1. The AMF ordering produces long
and thin trees from the regular grid problems which we can use to illustrate the
problems of the splitting criterion used in the previous version of the code. Splitting
was done in a preprocessing step and before the layer structure of the assembly tree
was known. In order to prevent useless splitting below layer L0 where no type 2
parallelism is exploited, the algorithm authorized node splitting only up to a fixed
distance from the root node, where this distance depended only on the number
of processors but not on the matrix. So it could happen that even though there
were nodes in the upper part of the tree that should have been split for better
performance, the splitting was not performed.

Cubic grids (AMF) Rectangular grids (AMF)
Number of splittings Number of splittings
added by total in Nodes in Added by Total in Nodes in

Processors new code new code upper tree new code new code upper tree
1 0 0 1 0 0 1
2 0 0 13 0 0 118
4 0 0 14 0 0 285
8 2 5 31 0 0 246

16 2 7 41 0 2 188
32 7 21 96 0 2 175
48 8 37 120 3 10 136
64 14 32 140 1 4 194

128 2 13 192 0 7 196
256 2 33 348 50 80 414
512 Not enough memory in analysis 61 107 830

Table 3.6: Improved splitting of the new code.

The new algorithm incorporates the splitting systematically in the upper part
of the tree. Once layer L0 is known, we can authorize splitting everywhere in the
upper part of the tree to create more parallelism if this is useful. We illustrate the
additional splitting in Table 3.6 for both cubic and rectangular grids. For each grid
type, we show in the first of the three columns the additional number of splittings
of the new code and compare them to the total number of splittings (including the
splittings already performed by Version 4.1 of the code) and the total number of

98 Task scheduling in a multifrontal sparse linear solver

nodes in the upper part of the tree after splitting in the second and third columns,
respectively. For example, for the rectangular grid on 512 processors, and with the
same splitting criteria, the new code performs 61 splittings in addition to those
already done by the old code, so that altogether 107 splittings are performed,
resulting in an assembly tree with 830 nodes. In other words, in this example, the
previous version of MUMPS missed 57% of the possible splittings.

We illustrate, in Table 3.7, the properties and benefits of the improved splitting
in the case of the cubic grid of order 57 on 64 processors. The additional splitting
slightly increases the number of assembly operations and also the average amount
of memory per processor. However, it creates additional parallelism by augmenting
the number of type 2 nodes. This significantly improves the performance of the
factorization. Moreover, memory can be balanced better between the processors
because of the additional type 2 parallelism.

Nmb Operations Mem. est. Mem. real Facto.
Algorithm type 2 elim. assem. max avg max avg time
no splitting 126 7.98e+11 1.10e+09 196 143 141 92 182

with splitting 140 7.98e+11 1.30e+09 167 150 119 96 145

Table 3.7: Comparison of the candidate-based LU factorization with and without
improved node splitting, cubic grid of order 57 on CRAY T3E with 64 processors
(AMF).

3.9.5 Improved node amalgamation

In this section, we illustrate the improvements we have made concerning node amal-
gamation by using our test examples from Table 3.1 with a nested dissection order-
ing.

In Table 3.8, we show, for both cubic and rectangular grids, the number of extra
amalgamations the new code performed in layer L0 of the Geist-Ng algorithm as
described in Section 3.7.2 and the total number of extra amalgamations performed
on all layers of the tree. We also give the total number of nodes in the upper part
of the tree after all amalgamations have been performed.

We emphasize that, in the new version, we use the same amalgamation criteria as
in the previous version and show, in the table, the amalgamations that are performed
in addition to those performed before. Amalgamation in the previous version was
only possible between a parent node and its oldest child; the greater freedom in the
new code allows many more amalgamations as can be seen in particular for the large
test matrices on 512 processors. For example, for the cubic grid on 512 processors,
the new code performed 119 additional amalgamations, that is, 119 amalgamations
more than the old code with the same amalgamation criteria. Among the additional
amalgamations of the new code are 77 for layer L0 , so that the amalgamated
assembly tree has 1371 nodes in the upper part.

3.9 Experimental investigation of algorithmic details 99

Cubic grids (ND) Rectangular grids (ND)
extra amalg total extra amalg total

Processors L0 total nodes L0 total nodes
1 0 0 1 0 0 1
2 0 0 1 0 0 1
4 2 2 5 0 0 3
8 2 3 18 0 0 17

16 1 4 43 0 1 53
32 7 12 121 2 2 90
48 13 18 126 0 1 104
64 9 14 157 3 5 156

128 0 7 250 2 2 271
256 36 54 528 2 7 525
512 77 119 1371 66 93 1326

Table 3.8: Improved amalgamation of the new code.

We illustrate in Table 3.9 the properties and benefits of the improved amalga-
mation in the case of the cubic grid of order 46 on 16 processors. The additional
amalgamation decreases the number of assembly operations and allows a better
memory balance because the stacking of several large type 1 nodes can be avoided.

Type of Operations Mem Mem real Fact.
amalgamation assem. elim. max avg max avg time

Old 2.44e+08 5.91e+10 187 121 175 97 19.4
New 2.35e+08 5.91e+10 108 95 82 71 18.7

Table 3.9: Comparison of the candidate-based LDLT factorization with and with-
out improved node amalgamation, cubic grid of order 46 on CRAY T3E with 17
processors.

3.9.6 Post-processing for a better memory balance

On the CRAY T3E, we illustrate a shortcoming that we detected when testing an
initial version of the candidate-based LU factorization. We consider the cubic grid
problem of order 72 from Table 3.1 ordered by nested dissection. We show the
benefits obtained by remapping the masters of type 2 nodes for better memory
balance as described in Section 3.7.5 and conclude that the post-processing is also
crucial for obtaining good speedup.

Looking at the first rows (no postp.) of Table 3.10, we see that the flop-based
equilibration of the scheduling algorithm leads to severe memory imbalance both
in the estimated and the actual memory. In particular, the process needing the

100 Task scheduling in a multifrontal sparse linear solver

largest amount of (estimated) memory requests 179 megabytes, about 70% of the
memory of the processor. For performance reasons, it is necessary to increase kmax ,
see Section 3.9.2. However, this is impossible because of the strong memory imbal-
ance, as augmenting kmax increases the memory estimations of the analysis phase
considerably.

Max Avg Max Avg Fact.
Algorithm kmax est est real real time
no postp. 80 179 117 172 102 165.5

160 Not enough memory
w. postp. 80 136 117 123 102 152.1

160 193 164 162 132 123.6

Table 3.10: Memory (in MBytes) and factorization time (in seconds) of the
candidate-based LU factorization with and without post-processing, cubic grid of
order 72 with nested dissection.

In the last two rows of Table 3.10, we show the memory statistics when the
post-processing is performed. We observe that the difference between average and
maximum values for both the estimated and actual memory are much reduced. This
allows us to double the kmax parameter for this test case and obtain better perfor-
mance for the factorization. However, note that the estimate for the most loaded
processor is more accurate without post-processing. This is because the differences
between memory estimation and actually used memory are mainly related to a pro-
cessor being a type 2 candidate but not being chosen as a slave during factorization.
Without post-processing, the major activity for the most loaded processor probably
involves work associated with being master of several type 2 nodes, see Section 3.7.5.
But after the post-processing, the processor exchanges its role as master with an-
other and becomes a type 2 candidate so that its memory estimate can become less
accurate.

3.10 Performance analysis

In the following, we compare the performance of the new MUMPS code with the
previous version [10] on the complete set of test problems presented in Section 3.8.
All these tests were performed on the CRAY T3E of the NERSC computing center
at Lawrence Berkeley National Lab in Berkeley, California.

3.10.1 Nested dissection ordering

In this section, we use the test matrices from Table 3.1 ordered by nested dissection.
We observe, from the results in Table 3.11, that for up to 64 processors, the

new version has similar performance to the good results of the previous version.

3.10 Performance analysis 101

However, when more processors are used and the matrices become larger, the new
code performs significantly better. Looking at the results on 128, 256 and 512
processors, we note the greatly improved scalability of the candidate-based code.

Cubic grids (ND) Rectangular grids (ND)
Processors flops old new old new

1 7.2e+09 23.2 23.2 4.5e+09 16.6 16.6
2 1.6e+10 29.1 29.0 9.5e+09 17.2 17.1
4 2.7e+10 27.4 23.9 1.8e+10 16.6 16.9
8 6.0e+10 30.1 29.5 3.7e+10 20.6 19.2

16 1.2e+11 30.8 31.8 7.3e+10 22.4 23.3
32 2.3e+11 43.3 42.2 1.4e+11 25.7 27.4
48 3.6e+11 53.0 57.5 1.8e+11 26.0 23.9
64 4.5e+11 59.0 52.9 2.4e+11 31.2 30.2

128 8.9e+11 93.4 72.7 4.9e+11 44.9 38.5
256 1.8e+12 163.5 119.4 7.7e+11 75.4 47.1
512 3.4e+12 599.6 189.1 1.4e+12 135.5 73.7

Table 3.11: Performance of the old and new LU factorization (time in seconds on
the CRAY T3E).

Another major advantage of the new candidate-based code is that it better es-
timates the memory used for the factorization. In Table 3.12, we show the mem-
ory space for the LU factors of the old and the new version of MUMPS. We see
that the candidate-based code significantly reduces the overestimation of the stor-
age required, and that the gains increase with the matrix size and the number of
processors.

The big gains of the new candidate-based code are a result of the individual
improvements concerning splitting and amalgamation, reduced communication and
the better locality of the computation as illustrated in Section 3.9. Furthermore, we
need to decrease kmax in the large problems for the old version of MUMPS because
of memory. This limits the performance as we saw in Section 3.9.2. On the other
hand, we do not need to decrease kmax in the candidate-based code as the tighter
estimates stay within the memory available.

As all regular test matrices are symmetric, we can also compare the old with
the new candidate-based LDLT factorization. The results presented in Table 3.13
confirm those obtained for the LU factorization. The candidate-based code shows
a much better performance in particular for the large problems on a large number of
processors due to improved locality of communication and computation, and because
of the bigger scope for increasing the kmax parameter.

Note that thanks to the improvements in the scalability of the new code, MUMPS
now compares favourably to SuperLU on a large number of processors. (The factor-
ization time for SuperLU on 128 processors and the same nested dissection ordering
according to [10] is 71.1 seconds for the cubic and 56.1 seconds for the rectangular

102 Task scheduling in a multifrontal sparse linear solver

Cubic grids (ND) Rectangular grids (ND)
space Estimate Estimate space Estimate Estimate

Processors used old new used old new
1 11.4 11.4 11.4 10.2 10.2 10.2
2 19.7 19.7 19.7 17.2 17.2 17.2
4 28.1 28.1 28.1 26.5 26.6 26.6
8 49.1 49.2 49.2 43.9 44.6 44.0

16 77.9 84.3 78.6 70.4 82.3 70.9
32 121.2 181.5 122.8 107.7 166.8 110.0
48 165.9 289.5 170.7 130.2 255.5 134.7
64 193.7 412.6 203.8 158.4 407.2 166.7

128 309.7 897.9 357.0 260.1 1108.0 296.4
256 504.4 2678.5 924.6 353.9 2420.5 478.0
512 780.4 4594.0 1369.7 541.6 5759.0 921.5

Table 3.12: Space for the LU factors (number of reals ×106).

Cubic grids (ND) Rectangular grids (ND)
Processors flops old new flops old new

1 3.6e+09 19.1 18.7 2.2e+09 13.5 13.1
2 8.0e+09 21.3 20.7 4.8e+09 13.1 12.9
4 1.3e+10 19.7 16.7 9.0e+09 11.5 12.4
8 3.0e+10 18.1 18.3 1.8e+10 15.2 12.9

16 5.9e+10 18.8 19.8 3.6e+10 13.8 13.2
32 1.1e+11 25.8 22.2 6.8e+10 15.5 15.3
48 1.8e+11 28.7 30.4 9.0e+10 14.2 14.8
64 2.2e+11 30.7 25.6 1.2e+11 17.6 16.8

128 4.4e+11 45.6 33.0 2.4e+11 33.5 20.3
256 9.1e+11 109.1 43.0 3.8e+11 45.2 18.4
512 1.7e+12 421.9 64.0 7.1e+11 195.5 24.3

Table 3.13: Performance of the LDLT factorization (time in seconds on the CRAY
T3E).

grid. MUMPS results are reported in Table 3.11.)

3.10.2 Hybrid nested dissection with SCOTCH

In this section, we consider the previous set of test matrices ordered by SCOTCH [112,
113] which uses a hybrid method of nested dissection and the Halo Approximate Min-
imum Degree ordering. On regular grids, the SCOTCH ordering usually produces
quite well balanced assembly trees but requires more memory so that we are only
able to show results for up to 64 processors.

3.10 Performance analysis 103

Cubic grids (SCOTCH) Rectangular grids (SCOTCH)
Processors flops old new flops old new

1 6.1e+09 18.7 18.7 3.3e+09 12.0 12.0
2 1.3e+10 21.3 21.3 7.1e+09 13.1 13.1
4 2.4e+10 19.2 19.2 1.3e+10 12.0 12.0
8 6.0e+10 26.1 25.6 3.0e+10 15.3 14.6

16 1.2e+11 32.4 32.0 6.5e+10 18.2 18.6
32 2.5e+11 37.9 38.2 1.1e+11 20.0 20.3
48 3.1e+11 41.4 40.7 1.8e+11 27.0 26.3
64 3.9e+11 46.4 41.4 2.1e+11 26.8 25.7

Table 3.14: Performance of the LU factorization (time in seconds on the CRAY
T3E).

For the results of both the LU and the LDLT factorization presented in Ta-
bles 3.14 and 3.15, we do not see a significantly improved scalability of the new
code. This is not surprising since we saw in Section 3.10.1 that the major gains
came on the largest problems on more than 128 processors. Additionally, the test
matrices were designed so that the number of operations per processor is approxi-
mately constant when using the nested dissection ordering from Section 3.10.1, but
this does not hold for the SCOTCH ordering as we show by the flop counts in the
table. We see, for example, that when doubling the number of processors from 4 to
8, the number of operations for the elimination increases by a factor of 2.5 so that
we cannot expect the factorization time to be nearly constant.

Cubic grids (SCOTCH) Rectangular grids (SCOTCH)
Processors flops old new flops old new

1 3.0e+09 15.1 15.1 1.7e+09 9.8 9.8
2 6.3e+09 14.9 14.9 3.6e+09 9.8 9.8
4 1.2e+10 13.1 13.2 6.6e+09 9.3 9.2
8 3.0e+10 15.9 16.1 1.5e+10 10.3 9.3

16 6.3e+10 16.8 16.7 3.2e+10 11.2 11.1
32 1.2e+11 19.6 21.5 5.4e+10 12.0 12.6
48 1.6e+11 20.4 22.7 7.0e+10 10.8 11.0
64 1.9e+11 21.8 24.2 1.1e+11 12.6 14.7

Table 3.15: Performance of the LDLT factorization (time in seconds on the CRAY
T3E).

104 Task scheduling in a multifrontal sparse linear solver

3.10.3 Approximate Minimum Fill (AMF) ordering

Recently a fairly large number of experiments have been conducted with several
heuristics to reduce the fill-in (deficiency) during the elimination process [109, 119].
The approximation of the deficiency used in our AMF code is based on the observa-
tion that, because of the approximate degree, we count variables twice that belong
to the intersection of two elements adjacent to a variable in the current pivot list.
This property of the approximate degree can be exploited to improve the estimation
of the deficiency and the accuracy of the approximation proposed in [119].

The AMF ordering produces trees that are difficult to exploit in MUMPS. The
upper part of the tree where type 2 and type 3 parallelism can be exploited is
usually a long and thin chain. In Table 3.16, we show the memory required to
store the factors of the LU factorization for the different orderings. In the case of
the cubic grid, the real space used by the factors is significantly larger than when
using the nested dissection or SCOTCH ordering. Furthermore, we note that for the
rectangular grid, AMF actually needs the least space for the factors. However, the
shape of the assembly tree still offers less potential for parallelism and we expect the
factorization time for AMF-ordered matrices to be considerably longer than for the
case of nested dissection or SCOTCH. This is confirmed by the results in Tables 3.17
and 3.18. We remark that, because of the increased space necessary for the factors,
we are unable to perform the analysis for the matrix from the largest cubic grid
because of insufficient memory.

AMF ND SCOTCH
Grid Factors Factors Factors
Cubic 247,804,999 193,785,687 176,628,109
Rect 148,102,032 158,402,018 154,038,836

Table 3.16: Number of entries in the factors by ordering for the LU factorization
on 64 processors, grid sizes according to Table 3.1.

3.10.4 Analysis of the speedup for regular grid problems

We now summarize the results of the previous sections by presenting a comparison
of the speedup on the 3D grid problems.

Let tj denote the time to execute a given job involving opsj floating point
operations on j parallel processors. Then, we define the scaled speedup, Sp , for p
processors to be

Sp =
t1/ops1

tp/opsp
. (3.3)

In Figures 3.20 and 3.21, we show the scaled speedup for the matrices ordered
by nested dissection, and in Figures 3.22 and 3.23 for SCOTCH and in Figures 3.24

3.10 Performance analysis 105

Cubic grids (AMF) Rectangular grids (AMF)
Processors flops old new flops old new

1 8.6e+09 25.7 25.7 3.1e+09 13.4 13.7
2 2.1e+10 47.4 48.3 5.8e+09 21.7 22.1
4 3.8e+10 35.1 35.0 1.0e+10 22.5 23.7
8 1.0e+11 54.5 47.8 2.2e+10 27.8 27.6

16 1.9e+11 55.5 54.9 5.4e+10 34.8 32.6
32 3.8e+11 96.3 81.3 1.0e+11 50.7 49.8
48 4.8e+11 114.6 98.2 1.9e+11 71.0 67.4
64 8.0e+11 188.0 145.4 1.8e+11 46.4 43.3

128 1.7e+12 302.6 242.7 4.6e+11 118.9 114.6
256 4.1e+12 740.9 484.1 8.6e+11 262.5 208.6
512 Not enough memory in analysis 1.2e+12 325.7 264.7

Table 3.17: Performance of the LU factorization (time in seconds on the CRAY
T3E).

Cubic grids (AMF) Rectangular grids (AMF)
Processors flops old new flops old new

1 4.3e+09 19.5 19.5 1.6e+09 11.3 11.3
2 1.1e+10 32.8 33.8 2.9e+09 18.6 18.7
4 1.9e+10 24.0 24.6 5.2e+09 19.5 19.9
8 5.1e+10 28.0 27.9 1.1e+10 15.0 14.9

16 9.5e+10 29.0 29.2 2.7e+10 15.4 16.7
32 1.9e+11 34.1 33.8 5.1e+10 20.1 20.9
48 2.4e+11 36.3 36.5 9.3e+10 24.6 25.0
64 4.0e+11 51.8 48.6 8.9e+10 23.6 23.7

128 8.4e+11 86.1 67.8 2.3e+11 38.6 34.5
256 2.1e+12 237.7 117.3 4.3e+11 74.6 67.7
512 Not enough memory in analysis 6.2e+11 196.1 73.0

Table 3.18: Performance of the LDLT factorization (time in seconds on the CRAY
T3E).

and 3.25 for AMF ordering, respectively. We see that the scaled speedup for the
new candidate-based code is significantly improved on a large number of processors.

3.10.5 Performance analysis on general symmetric and un-
symmetric matrices

In this section, we compare the performance of the new mapping algorithm with
the previous version on general symmetric and unsymmetric matrices. The main
problem with this comparison is that our algorithm offers the biggest performance

106 Task scheduling in a multifrontal sparse linear solver

1 2 4 8 16 32 48 64 128 256 512
0

10

20

30

40

50

60

Processors

S
pe

ed
up

LU cubic grids (nested dissection)

orig
cand

1 2 4 8 16 32 48 64 128 256 512
0

20

40

60

80

Processors

S
pe

ed
up

LU rectangular grids (nested dissection)

orig
cand

Figure 3.20: Comparison of the
speedup of the LU factorization for 3D
grid problems ordered by nested dissec-
tion.

1 2 4 8 16 32 48 64 128 256 512
0

50

100

150

Processors

S
pe

ed
up

LDLT cubic grids (nested dissection)

orig
cand

1 2 4 8 16 32 48 64 128 256 512
0

50

100

150

200

Processors

S
pe

ed
up

LDLT rectangular grids (nested dissection)

orig
cand

Figure 3.21: Comparison of the
speedup of the LDLT factorization for
3D grid problems ordered by nested dis-
section.

1 2 4 8 16 32 48 64
0

5

10

15

20

25

30

Processors

S
pe

ed
up

LU cubic grids (SCOTCH)

orig
cand

1 2 4 8 16 32 48 64
0

5

10

15

20

25

30

Processors

S
pe

ed
up

LU rectangular grids (SCOTCH)

orig
cand

Figure 3.22: Comparison of the
speedup of the LU factorization for 3D
grid problems ordered by SCOTCH.

1 2 4 8 16 32 48 64
0

10

20

30

40

50

Processors

S
pe

ed
up

LDLT cubic grids (SCOTCH)

orig
cand

1 2 4 8 16 32 48 64
0

10

20

30

40

50

60

Processors

S
pe

ed
up

LDLT rectangular grids (SCOTCH)

orig
cand

Figure 3.23: Comparison of the
speedup of the LDLT factorization for
3D grid problems ordered by SCOTCH.

gains only on a large number of processors. However, the unsymmetric matrices
available to us are either too small to offer enough potential for scalability on more
than 64 processors, or they are too large to do the analysis (which is performed on
only one processor). This was already observed in the analysis of the scalability of
both MUMPS and SuperLU [10] .

In order to compare the quality of the different orderings, we show the number
of entries in the factors for the test matrices in Table 3.19.

While it is not always the best ordering, METIS consistently provides a good
overall performance with respect to the number of entries in the factors.

From Table 3.20 we see that in general the new mapping algorithm performs
similarly to the old one. As already noted, we would expect significant improvements

3.11 Perspectives and future work 107

1 2 4 8 16 32 48 64 128 256
0

5

10

15

20

25

30

Processors

S
pe

ed
up

LU cubic grids (AMF)

orig
cand

1 2 4 8 16 32 48 64 128 256 512
0

5

10

15

20

25

Processors

S
pe

ed
up

LU rectangular grids (AMF)

orig
cand

Figure 3.24: Comparison of the
speedup of the LU factorization for 3D
grid problems ordered by AMF.

1 2 4 8 16 32 48 64 128 256
0

20

40

60

80

100

Processors

S
pe

ed
up

LDLT cubic grids (AMF)

orig
cand

1 2 4 8 16 32 48 64 128 256 512
0

10

20

30

40

50

60

Processors

S
pe

ed
up

LDLT rectangular grids (AMF)

orig
cand

Figure 3.25: Comparison of the
speedup of the LDLT factorization for
3D grid problems ordered by AMF.

Matrix AMF METIS SCOTCH
name Factors Flops Factors Flops Factors Flops
bbmat 37,734,384 2.8e+10 37,429,544 2.8e+10 37,347,812 2.5e+10
ecl32 31,862,069 3.5e+10 25,190,381 2.1e+10 29,030,953 2.6e+10
g7jac200 33,245,736 3.5e+10 43,496,678 5.5e+10 76,451,656 1.6e+11
twotone 22,653,594 2.9e+10 25,537,506 2.9e+10 24,882,282 2.6e+10
ship003 68,199,143 9.6e+10 71,388,126 8.3e+10 77,085,965 9.2e+10
bmwcra 1 95,816,634 9.9e+10 78,012,686 6.1e+10 140,412,515 2.6e+11

Table 3.19: Number of entries in the factors and number of operations during fac-
torization by ordering (LDLT factorization for symmetric and LU factorization
for unsymmetric matrices).

on large matrices and on a large number of processors greater than 64. However, we
notice some improvements for the AMF ordering on bbmat and g7jac200. But since
both METIS and SCOTCH generally provide better orderings, those improvements
on AMF are in fact not so relevant and only show the capacity of our algorithm to
correctly handle irregular trees.

3.11 Perspectives and future work

We now present possible extensions of our new scheduling algorithm. With the IBM
SP, an architecture based on clusters of shared memory (SMP) nodes, we consider a
distributed environment where the costs of communications are non-uniform. Here,
the candidate concept allows us to enforce locality of communication and thus to
improve performance. Then, we discuss other future directions of research.

108 Task scheduling in a multifrontal sparse linear solver

Matrix Order Alg 4 8 16 32 64
bbmat AMF old 119.7 71.1 50.5 44.3 44.1

new 114.2 69.6 44.1 27.6 21.7
METIS old 39.5 24.2 14.5 11.8 9.6

new 37.7 22.2 14.1 10.8 8.8
SCOTCH old 20.9 13.4 8.3 6.4 5.4

new 21.0 12.0 7.4 5.6 4.9
ecl32 AMF old 45.2 25.7 19.9 16.6 16.0

new 44.4 24.2 19.0 16.0 14.5
METIS old 28.4 16.7 10.7 7.7 6.3

new 29.4 16.0 11.4 7.7 5.6
SCOTCH old 24.7 13.7 8.6 6.6 5.7

new 23.0 13.2 9.1 6.6 5.4
g7jac200 AMF old 166.0 77.3 63.4 40.2 41.8

new 171.6 78.3 61.3 38.6 33.7
METIS old - 48.2 27.4 20.3 15.7

new - 41.4 26.7 19.9 13.6
SCOTCH old - 69.2 50.0 43.8 33.3

new - 68.3 44.0 35.1 28.2
twotone AMF old 105.8 47.1 28.3 20.8 19.1

new 102.4 47.4 29.0 20.9 18.7
METIS old - 26.9 19.1 13.3 11.4

new - 27.9 17.7 11.9 11.2
SCOTCH old 22.2 13.0 8.8 6.7 6.1

new 23.8 13.2 9.7 7.1 5.8
ship003 AMF old - 66.0 34.0 24.4 22.1

new - 62.2 33.5 24.2 20.4
METIS old - - 29.2 18.2 12.3

new - - 28.4 18.0 12.0
SCOTCH old - - 25.2 15.6 11.5

new - - 23.5 16.7 13.4
bmwcra 1 AMF old - - 44.6 30.3 27.6

new - - 42.4 28.5 26.9
METIS old - 36.6 20.1 13.5 8.5

new - 35.7 20.9 13.2 8.4
SCOTCH old - - - 53.5 30.8

new - - - 49.9 31.3

Table 3.20: Performance of old and new code on the irregular test matrices (factor-
ization time in seconds on the CRAY T3E).

3.11.1 Adapting the new scheduling algorithm to include

communication costs

We discuss an approach for SMP architectures presented in [116]. In order to take
account of the system architecture, both the task mapping during the analysis phase

3.11 Perspectives and future work 109

and the task scheduling during the factorization phase are slightly modified. In the
analysis phase, the mapping is changed to decrease the costs of the communications
associated with the static mapping. For the dynamic choice of the type 2 slaves in
the factorization phase, processors which would require expensive communications
are penalized so that the master-slave communication costs are reduced.

We first describe the modifications to the mapping decisions during the analysis
phase. As discussed in Section 3.7.4, the mapping of a task is done via a preference
list giving priority to the preferential processors from the proportional mapping.
The proportional mapping is modified so that the recursive assignment of the pro-
cessors to subtrees also takes account of communication costs. It turns out that a
small modification suffices to adapt the assignment of the preferential processors.
Instead of assigning the preferentials cyclicly by processor numbers as described in
Section 3.7.1, we can also perform the cyclic assignment from a processor list that is
ordered so that the average communication cost between list neighbours is as small
as possible. As an example, we consider a simple communication cost model where
data movement within an SMP node is cheap, and where it is expensive between two
SMP nodes. Then, a well ordered list holds the processors of one SMP node next
to each other, followed by those of another SMP node, a further SMP node, and
so forth. Ideally, the cyclic assignment of the preferentials from the ordered proces-
sor list will then map subtrees to SMP nodes and limit expensive communications
between different nodes.

The modifications to the scheduling decisions during the factorization phase are
as follows. As described in Section 3.6.2, all candidates that are less loaded than
the master of a type 2 node are chosen as its slaves. In order to give preference to
the candidates within the SMP node of the master, the workload information for
the processors outside the SMP node is modified so that expensive communication
is penalized. When the master selects its slaves from among the candidates, it uses
the modified workload information as a basis for its decision. Thus, when a master
chooses its slaves, it gives priority to those processors that are located on the same
SMP node.

ND SCOTCH AMF
Proc grid old new ext. old new ext. old new ext.

16 184 × 46 × 23 34.9 35.2 35.2 36.2 37.9 37.9 34.0 43.3 43.3
32 208 × 52 × 26 66.9 59.7 49.4 72.1 63.3 60.5 101.5 82.4 71.6
64 224 × 56 × 28 95.4 70.1 56.8 93.2 76.6 68.6 212.2 199.0 163.9

128 248 × 62 × 31 303.8 97.5 83.8 365.9 136.1 111.9 544.6 298.0 212.0

Table 3.21: Performance of the old, the new, and the extended implementation
of the LU factorization on 3D rectangular grids problems (factorization time in
seconds on the IBM SP3).

In the following, we present some results obtained in [116] that show the per-
formance improvements of this extension of the new scheduling algorithm. The

110 Task scheduling in a multifrontal sparse linear solver

experiments are conducted on an IBM SP3 at CINES which consists of 29 SMP
nodes of 16 processors each. For the analysis phase, the simple two-cost model de-
scribed above is used. In the factorization phase, the workload penalty function for
processors outside of the master’s SMP node depends on the size of the message to
be communicated. For small messages, the penalty function is linear in the workload
of the processor. For large messages, the function practically excludes all proces-
sors outside of the SMP node from being a slave (when the number of candidates
from within the node already satisfies the restriction (3.2) imposed by kmax , see
Section 3.7.6.)

ND SCOTCH AMF
Proc grid old new ext. old new ext. old new ext.

16 573 72.6 70.8 70.8 56.7 60.9 60.9 131.4 132.9 132.9
32 643 140.1 136.2 120.8 96.5 86.8 82.4 304.3 264.8 280.8
64 723 243.7 229.8 204.2 252.7 229.8 204.2 755.8 686.5 626.2

128 803 890.2 446.7 366.1 896.8 294.6 272.9 2190.8 1250.0 1011.4

Table 3.22: Performance of the old, the new, and the extended implementation of
the LU factorization on 3D cubic grids problems (factorization time in seconds on
the IBM SP3).

Table 3.21 shows the results for the rectangular grids; the results for the cubic
grids are presented in Table 3.22. We compare the old version of MUMPS with the
new candidate-based version and the new extended version which takes account of
communication costs. In order to increase the volume of communication and because
of the greater amount of memory available, the grid size with respect to Table 3.1
has been modified: the grids for the 16 processors of the IBM SP correspond to
those used on 64 processors of the CRAY T3E, the 32 processor grids for the IBM
SP are those used on 128 processors of the T3E, and so on.

The experimental results on 16 processors are obtained on a single SMP node
where the new extended version does not bring benefits. Looking at the set of results
reported, it can be seen that the gains from the new candidate-based algorithm can
again be increased through the new extended version.

3.11.2 Future directions of research

In this section, we summarize the open questions that need further investigation.

In Section 3.9.3, we investigated the behaviour of the new code when modifying
the assignment of candidates through relaxation and layer-wise redistribution. On
the test cases that we have studied in the framework of this chapter of the thesis,
these modifications have not shown a positive effect on the overall performance
of the code. Still, there is an intuitive argument suggesting further experiments.
The analysis phase tries to predict the actual factorization of the matrix and takes

3.12 Summary and conclusions 111

mapping decisions based on this symbolic factorization. However, there are cases
where this approach might not be accurate enough. First, one example where the
symbolic factorization is inaccurate is the case of delayed pivots. Second, another
problem is our assumption during the analysis that all candidate processors of type 2
nodes can be chosen as slaves during factorization, which might not be the case.
Third, and probably the most critical, is the fact that our static mapping decisions
are based on flop equilibration which might not accurately model the time. For
example, we do not take into account costs of communication between the processors
as is done, for example, by the static scheduler of PaStiX [79, 80, 81]. Thus, mapping
decisions might need to be corrected, for example, by the dynamic scheduler. An
approach combining the techniques presented in this chapter of the thesis could
result from the following observation. Since, during factorization, the assembly tree
is treated from bottom up, we might expect mapping problems to have more severe
influence towards the root of the tree. For this reason, we could decide to offer more
freedom to dynamic scheduling near the root nodes so that unfortunate mapping
decisions can be corrected dynamically there.

Furthermore, we have presented in Section 3.10.5 test results on a few large
irregular test matrices from real life applications. We have already remarked that
these matrices are still relatively small and do not offer enough sources of parallelism
on a large number of processors. This study needs to be extended in order to be
able to give reliable statements on the scalability of the new code also in real life
applications.

3.12 Summary and conclusions

Previous studies of MUMPS, a distributed memory direct multifrontal solver for
sparse linear systems, indicated that its scalability with respect to computation
time and use of memory should be improved. In this chapter of the thesis, we have
presented a new task scheduling algorithm designed to address these problems. It
consists of an approach that treats the assembly tree layer by layer and integrates
tree modifications, such as amalgamation and splitting, with the mapping decisions.
As a major feature, we have introduced the concept of candidate processors that are
determined during the analysis phase of the solver in order to guide the dynamic
scheduling during the factorization.

We have illustrated key properties of the new algorithm by detailed case studies
on selected problems. Afterwards, by comparison of the old with the new code on a
large set of regular and irregular test problems, we have illustrated the main benefits
of the new approach. These include an improved scalability on a large number of
processors, reduced memory demands and a smaller volume of communication, and
the easier handling of parameters relevant for the performance of the algorithm.
Finally, we have discussed possible extensions of our algorithm, in particular with
respect to its use on SMP architectures.

We remark that the semi-static approach of our new scheduling algorithm could
also be used for sparse linear solvers other than MUMPS. As long as such a solver

112 Task scheduling in a multifrontal sparse linear solver

is driven by an assembly tree and uses dynamic scheduling, we can implement our
two-phase approach. In a first static phase, choices taking account of global tree
information are made that will afterwards, in the second phase, influence and guide
dynamic decisions. As in the context of MUMPS, this can improve the performance
of the solver through better control of activities related to dynamic scheduling.

Bibliography

[1] BLAS Technical Forum Standard. The International Journal of High Perfor-
mance Computing Applications 15(3-4), 2001.

[2] BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas,
2002.

[3] PARASOL test data. http://www.parallab.uib.no/parasol/data.html,
2002.

[4] F. L. Alvarado and R. Schreiber. Optimal parallel solution of sparse triangular
systems. SIAM J. Sci. Comput., 14(2):446–460, 1993.

[5] P. R. Amestoy. Factorization of large sparse matrices based on a multi-
frontal approach in a multiprocessor environment. Ph.D. thesis, Institut
National Polytechnique de Toulouse, 1991. Available as CERFACS report
TH/PA/91/2.

[6] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree
ordering algorithm. SIAM J. Matrix Anal. Appl., 17:886–905, 1996.

[7] P. R. Amestoy and I. S. Duff. Memory management issues in sparse mul-
tifrontal methods on multiprocessors. Int. J. Supercomputer Appl., 7:64–82,
1993.

[8] P. R. Amestoy, I. S. Duff, and J. Y. L’Excellent. Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers. Computer Methods in Appl.
Mech. Eng., pages 501–520, 2000.

[9] P. R. Amestoy, I. S. Duff, J. Y. L’Excellent, and J. Koster. A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling. SIAM J.
Matrix Anal. Appl., 23(1):15–41, 2001.

[10] P. R. Amestoy, I. S. Duff, J. Y. L’Excellent, and X. S. Li. Analysis, Tun-
ing and Comparison of Two General Sparse Solvers for Distributed Memory
Computers. ACM Trans. Math. Software, 27(4):388–421, 2001.

[11] P. R. Amestoy, I. S. Duff, and C. Vömel. Task scheduling in an asynchronous
distributed memory multifrontal solver. Technical Report TR/PA/02/105,

114 BIBLIOGRAPHY

CERFACS, Toulouse, France, 2002. Submitted to SIAM Journal of Matrix
Analysis and Applications.

[12] P. R. Amestoy and C. Puglisi. An unsymmetrized multifrontal LU factoriza-
tion. SIAM J. Matrix Anal. Appl., 24:553–569, 2002.

[13] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-
PACK User’s Guide. SIAM, Philadelphia, 3. edition, 1999.

[14] C. Ashcraft and R. G. Grimes. The influence of relaxed supernode partitions
on the multifrontal method. ACM Trans. Math. Software, 15:291–309, 1989.

[15] C. Ashcraft and R. G. Grimes. SPOOLES: An object-oriented sparse matrix
library. In Proceedings of the Ninth SIAM Conference on Parallel Processing
for Scientific Computing, San Antonio, Texas, 1999.

[16] C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D. Simon.
Progress in sparse matrix methods for large linear systems on vector comput-
ers. Int. J. Supercomputer Appl., 1(4):10–30, 1987.

[17] C. Ashcraft and J. W. H. Liu. Robust ordering of sparse matrices using
multisection. SIAM J. Matrix Anal. Appl., 19(3):816–832, 1998.

[18] R. E. Bank and C. C. Douglas. Sparse matrix multiplication package (SMMP).
Advances in Computational Mathematics, 1:127–137, 1993.

[19] R. H. Bartels and G. H. Golub. The simplex method of linear programming
using LU decompositions. Comm. ACM, 12:266–268, 1969.

[20] M. Benzi and C. D. Meyer. A direct projection method for sparse linear
systems. SIAM J. Sci. Comput., 16:1159–1176, 1995.

[21] M. Benzi and M. Tuma. Orderings for factorized sparse approximate inverse
preconditioners. SIAM J. Sci. Comput., 21:1851–1868, 2000.

[22] C. H. Bischof. Incremental condition estimation. SIAM J. Matrix Anal. Appl.,
11:312–322, 1990.

[23] C. H. Bischof, D. J. Pierce, and J. G. Lewis. Incremental condition estimation
for sparse matrices. SIAM J. Matrix Anal. Appl., 11:644–659, 1990.

[24] L. S. Blackford, J. Demmel, J. J. Dongarra, I. S. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
K. Remington, and R. C. Whaley. An Updated Set of Basic Linear Alge-
bra Subprograms (BLAS). ACM Trans. Math. Software, 28(2):135–151, 2002.

[25] R. Bridson and W.-P. Tang. Ordering, anisotropy and factored approximate
inverses. SIAM J. Sci. Comput., 21:867–882, 1999.

BIBLIOGRAPHY 115

[26] T. F. Chan. On the existence and computation of LU-factorizations with small
pivots. Math. Comp., 42:535–547, 1984.

[27] T. F. Chan. Rank revealing QR-factorizations. Linear Algebra and Appl.,
88/89:67–82, 1987.

[28] S. Chandrasekaran and I. Ipsen. On rank-revealing QR factorizations. SIAM
J. Matrix Anal. Appl., 15(2):592–622, 1994.

[29] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK: A portable linear
algebra library for distributed memory computers - design issues and perfor-
mance. Computer Physics Communications, 97:1–15, 1996. (also as LAPACK
Working Note #95).

[30] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson. An estimate
for the condition number of a matrix. SIAM J. Numer. Anal., 16:368–375,
1979.

[31] G. Cybenko. Fast Toeplitz orthogonalization using inner products. SIAM J.
Sci. Stat. Comput., 8:734–740, 1987.

[32] T. A. Davis. University of Florida sparse matrix collection, 2002.
http://www.cise.ufl.edu/research/sparse/matrices/.

[33] T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for
sparse LU factorization. SIAM J. Matrix Anal. Appl., 18(1):140–158, 1997.

[34] T. A. Davis and I. S. Duff. A Combined Unifrontal/Multifrontal Method for
Unsymmetric Sparse Matrices. ACM Trans. Math. Software, 25(1):1–19, 1999.

[35] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A
supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl.,
20(3):720–755, 1999.

[36] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supern-
odal algorithm for sparse Gaussian elimination. SIAM J. Matrix Anal. Appl.,
20(4):915–952, 1999.

[37] D. S. Dodson, R. G. Grimes, and J. G. Lewis. Algorithm 692: Model imple-
mentation and test package for the Sparse Basic Linear Algebra Subroutines.
ACM Trans. Math. Software, 17(2):264–272, 1991.

[38] D. S. Dodson, R. G. Grimes, and J. G. Lewis. Sparse extensions to the Fortran
Basic Linear Algebra Subprograms. ACM Trans. Math. Software, 17(2):253–
263, 1991.

116 BIBLIOGRAPHY

[39] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level
3 Basic Linear Algebra Subprograms. ACM Trans. Math. Software, 16:1–17,
1990.

[40] J. J. Dongarra, J. J. Du Croz, S. Hammarling, and R. J. Hanson. An ex-
tented set of Fortran Basic Linear Algebra Subprograms. ACM Trans. Math.
Software, 14:1–17, 1988.

[41] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical
Linear Algebra for High-Performance Computers. SIAM Press, Philadelphia,
1998.

[42] J. J. Dongarra and D. W. Walker. Software libraries for linear algebra compu-
tations on high performance computers. SIAM Review, 37(2):151–180, 1995.

[43] J. J. Dongarra and R. C. Whaley. A user’s guide to the blacs v1.0. Techni-
cal Report UT CS-95-281, University of Tennessee, 1995. (also as LAPACK
Working Note #94).

[44] J. J. Dongarra and R. C. Whaley. Automatically tuned linear algebra software.
Technical Report UT-CS-97-366, University of Tennessee, 1997.

[45] J. J. Du Croz and N. J. Higham. Stability of methods for matrix inversion.
IMA J. Numer. Anal., 12:1–19, 1992.

[46] I. S. Duff. Sparse numerical linear algebra: direct methods and precondition-
ing. In I. S. Duff and G. A. Watson, editors, The State of the Art in Numerical
Analysis, pages 27–62, Oxford, 1997. Oxford University Press.

[47] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, London, 1986.

[48] I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM
Trans. Math. Software, 15:1–14, 1989.

[49] I. S. Duff, R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing Sparse
Matrix Collection. Technical Report RAL-TR-97-031, Atlas Centre, Ruther-
ford Appleton Laboratory, 1997. Also Technical Report ISSTECH-97-017 from
Boeing Information & Support Services and Report TR/PA/97/36 from CER-
FACS, Toulouse.

[50] I. S. Duff, M. Heroux, and R. Pozo. The Sparse BLAS. ACM Trans. Math.
Software, 28(2):239–267, 2002.

[51] I. S. Duff and J. Koster. The design and use of algorithms for permuting
large entries to the diagonal of sparse matrices. SIAM J. Matrix Anal. Appl.,
20(4):889–901, 1999.

BIBLIOGRAPHY 117

[52] I. S. Duff and J. Koster. On algorithms for permuting large entries to the
diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl., 22(4):973–996,
2001.

[53] I. S. Duff, M. Marrone, G. Radicati, and C. Vittoli. Level 3 Basic Linear
Algebra Subprograms for sparse matrices: a user level interface. ACM Trans.
Math. Software, 23(3):379–401, 1997.

[54] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse sym-
metric linear systems. ACM Trans. Math. Software, 9:302–325, 1983.

[55] I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of
linear systems. SIAM J. Sci. Stat. Comput., 5:633–641, 1984.

[56] I. S. Duff and H. A. van der Vorst. Developments and trends in the parallel
solution of linear systems. Parallel Computing, 25(13-14):1931–1970, 1999.

[57] I. S. Duff and C. Vömel. Algorithm 818: A Reference Model Implementation of
the Sparse BLAS in Fortran 95. ACM Trans. Math. Software, 28(2):268–283,
2002.

[58] I. S. Duff and C. Vömel. Algorithm 818: A Reference Model Implementation of
the Sparse BLAS in Fortran 95. http://www.netlib.org/netlib/toms/818,
2002.

[59] I. S. Duff and C. Vömel. Incremental Norm Estimation for Dense and Sparse
Matrices. BIT, 42(2):300–322, 2002.

[60] W. R. Ferng and D. Pierce. Incremental Lanczos Condition Estimation (or The
Robustification of ICE). Technical Report AMS-TR-184, Boeing Computer
Services, 1992.

[61] J. J. H. Forrest and J. A. Tomlin. Updating triangular factors of the basis to
maintain sparsity in the product form simplex method. Math. Prog., 2(3):263–
278, 1972.

[62] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. W. H. Freeman, New York, 1979.

[63] A. Geist and E. Ng. Task scheduling for parallel sparse Cholesky factorization.
Int J. Parallel Programming, 18:291–314, 1989.

[64] A. George and E. Ng. SPARSPAK: Waterloo sparse matrix package user’s
guide for SPARSPAK-B. Research Report CS-84-37, Dept. of Computer Sci-
ence, University of Waterloo, 1984.

[65] J. A. George. Nested dissection of a regular finite-element mesh. SIAM J.
Numer. Anal., 10:345–363, 1971.

118 BIBLIOGRAPHY

[66] J. A. George, J. W. H. Liu, and E. G.-Y. Ng. Communication results for
parallel sparse Cholesky factorization on a hypercube. Parallel Computing,
10:287–298, 1989.

[67] J. R. Gilbert. Predicting structure in sparse matrix computations. SIAM J.
Matrix Anal. Appl., 15(1):62–79, 1994.

[68] J. R. Gilbert and J. W. H. Liu. Elimination structures for unsymmetric sparse
LU factors. SIAM J. Matrix Anal. Appl., 14(2):334–352, 1993.

[69] G. H. Golub and H. A. van der Vorst. Eigenvalue Computations in the 20th
Century. J. Comp. Appl. Math., 123:35–65, 2000.

[70] G. H. Golub and C. van Loan. Matrix Computations. The John Hopkins
University Press, Baltimore, Maryland, 3. edition, 1996.

[71] A. Guermouche, J.-Y. L’Excellent, and G. Utard. Impact of sparse matrix
reordering techniques on the memory usage of a parallel multifrontal solver. In
Proceedings of the 2nd International Workshop on Parallel Matrix Algorithms
and Applications (PMMA’02), 2002.

[72] A. Gupta. Improved symbolic and numerical factorization algorithms for un-
symmetric sparse matrices. SIAM J. Matrix Anal. Appl., 24(2):529–552, 2002.

[73] A. Gupta. Recent advances in direct methods for solving unsymmetric sparse
systems of linear equations. ACM Trans. Math. Software, 28(3):301–324, 2002.

[74] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for
sparse matrix factorization. IEEE Trans. Parallel and Distributed Systems,
8:502–520, 1997.

[75] W. W. Hager. Condition estimates. SIAM J. Sci. Stat. Comput., 5(2):311–316,
1984.

[76] M. T. Heath, E. G. Ng, and B. W. Peyton. Parallel algorithms for sparse
linear systems. SIAM Review, 33:420–460, 1991.

[77] B. Hendrickson and R. Leland. The CHACO User’s Guide. Version 2.0. Techni-
cal Report SAND94-2692, Sandia National Laboratories, Albuquerque, 1994.

[78] B. Hendrickson and E. Rothberg. Improving the run time and quality of nested
dissection ordering. SIAM J. Sci. Comput., 20(2):468–489, 1999.

[79] P. Hénon, P. Ramet, and J. Roman. A Mapping and Scheduling Algorithm
for Parallel Sparse Fan-In Numerical Factorization. In Proceedings of Eu-
roPAR’99, Toulouse, France, number 1685 in Lecture Notes in Computer Sci-
ence, pages 1059–1067. Springer Verlag, 1999.

BIBLIOGRAPHY 119

[80] P. Hénon, P. Ramet, and J. Roman. PaStiX: A Parallel Sparse Direct Solver
Based on a Static Scheduling for Mixed 1D/2D Block Distributions. In Pro-
ceedings of Irregular’2000, Cancun, Mexique, number 1800 in Lecture Notes
in Computer Science, pages 519–525. Springer Verlag, 2000.

[81] P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel
Direct Solver for Sparse Symmetric Definite Systems. Parallel Computing,
28(2):301–321, 2002.

[82] M. Heroux and R. Pozo. Personal communication.

[83] N. J. Higham. A survey of condition number estimation for triangular matrices.
SIAM Review, 29:575–596, 1987.

[84] N. J. Higham. The Test Matrix Toolbox for Matlab (Version 3.0). Numerical
Analysis Report No. 276, Manchester Centre for Computational Mathematics,
Manchester, England, 1995.

[85] N. J. Higham. Iterative refinement for linear systems and LAPACK. IMA J.
Numer. Anal., 17(4):495–509, 1997.

[86] N. J. Higham. Accuracy and Stabilty of Numerical Algorithms. SIAM,
Philadelphia, 2. edition, 2002.

[87] N. J. Higham and A. Pothen. Stability of the partitioned inverse method
for parallel solution of sparse triangular systems. SIAM J. Sci. Comput.,
15(1):139–148, 1994.

[88] Nicholas J. Higham. Algorithm 674: FORTRAN codes for estimating the one-
norm of a real or complex matrix, with applications to condition estimation.
ACM Trans. Math. Software, 14(4):381–396, 1988.

[89] D. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems, chap-
ter Approximation algorithms for scheduling, pages 1–45. PWS Publishing,
Boston, 1996.

[90] A. S. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell
Publishing Co., New York, 1964.

[91] HSL. HSL 2002: A collection of Fortran codes for large scale scientific com-
putation, 2002. http://www.cse.clrc.ac.uk/nag/hsl.

[92] T.-M. Hwang, W.-W. Lin, and D. Pierce. Improved Bound for Rank Revealing
LU-factorizations. Linear Algebra and Appl., 261:173–186, 1997.

[93] T.-M. Hwang, W.-W. Lin, and E. K. Yang. Rank Revealing LU-factorizations.
Linear Algebra and Appl., 175:115–141, 1992.

120 BIBLIOGRAPHY

[94] E. Im. Optimizing the Performance of Sparse Matrix-Vector Multiplication.
PhD thesis, University of California, Berkeley, 2000.

[95] E. Im and K. Yelick. Optimizing Sparse Matrix-Vector Multiplication on
SMPs. In Ninth SIAM Conference on Parallel Processing for Scientific Com-
puting. SIAM, 1999.

[96] E. Im and K. Yelick. Optimizing Sparse Matrix-Vector Multiplication for
Register Reuse in SPARSITY. In International Conference on Computational
Science, San Francisco, California, pages 127–136, 2001.

[97] W. Kahan. Numerical linear algebra. Canadian Mathematical Bulletin, 9:757–
801, 1966.

[98] G. Karypis and V. Kumar. MeTis - A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Or-
derings of Sparse Matrices - Version 4.0. University of Minnesota, 1998.

[99] J. Koster. On the parallel solution and the reordering of unsymmetric sparse
matrices. Ph.D. thesis, Institut National Polytechnique de Toulouse, 1997.
Available as CERFACS report TH/PA/97/51.

[100] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for Fortran usage. ACM Trans. Math. Software, 5:308–
323, 1979.

[101] A. Legrand and Y. Robert. Algorithmique Parallèle – Cours et exercices cor-
rigés. Dunod, 2002.

[102] X. S. Li and J. W. Demmel. A scalable sparse direct solver using static
pivoting. In Proceedings of the Ninth SIAM Conference on Parallel Processing
for Scientific Computing, San Antonio, Texas, 1999.

[103] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Ka-
han, S. Y. Kang, A. Kapur, M. C. Martin, B. J. Thompson, T. Tung, and D. J.
Yoo. Design, Implementation and Testing of Extended and Mixed Precision
BLAS. ACM Trans. Math. Software, 28(2):152–205, 2002.

[104] J. W. H. Liu. Equivalent sparse matrix reordering by elimination tree rota-
tions. SIAM J. Sci. Stat. Comput., 9:424–444, 1988.

[105] J. W. H. Liu. The Role of Elimination Trees in Sparse Factorization. SIAM
J. Matrix Anal. Appl., 11:134–172, 1990.

[106] J. W. H. Liu. The multifrontal method for sparse matrix solution: Theory
and Practice. SIAM Review, 34:82–109, 1992.

[107] J. W. H. Liu, E. G. Ng, and W. Peyton. On finding supernodes for sparse
matrix computations. SIAM J. Matrix Anal. Appl., 14:242–252, 1993.

BIBLIOGRAPHY 121

[108] C. D. Meyer and D. Pierce. Steps towards an iterative rank-revealing method.
Technical Report ISSTECH-95-013, Boeing Information and Support Services,
1995.

[109] E. Ng and P. Raghavan. Performance of greedy heuristics for sparse Cholesky
factorization. SIAM J. Matrix Anal. Appl., 20:902–914, 1999.

[110] C.-T. Pan. On the existence and computation of rank-revealing LU factoriza-
tions. Linear Algebra and Appl., 316:199–222, 2000.

[111] C.-T. Pan and R. J. Plemmons. Least squares modifications with inverse
factorizations: parallel implications. J. Comp. Appl. Math., 27:109–127, 1989.

[112] F. Pellegrini and J. Roman. Sparse matrix ordering with Scotch. In Proceedings
of HPCN’97, Vienna, LNCS 1225, pages 370–378, April 1997.

[113] F. Pellegrini, J. Roman, and P. Amestoy. Hybridizing nested dissection and
halo approximate minimum degree for efficient sparse matrix ordering. Con-
currency: Practice and Experience, 12(2-3):69–84, 2000.

[114] D. J. Pierce and J. G. Lewis. Sparse multifrontal rank revealing QR factor-
ization. SIAM J. Matrix Anal. Appl., 18(1):159–180, 1997.

[115] A. Pothen and C. Sun. A Mapping Algorithm for Parallel Sparse Cholesky
Factorization. SIAM J. Sci. Comput., 14(5):1253–1257, 1993.

[116] S. Pralet. Study of a parallel sparse direct linear solver on an SMP architecture.
Technical report, CERFACS, Toulouse, France, 2002. (in preparation).

[117] P. Raghavan. Distributed sparse matrix factorization: QR and Cholesky de-
compositions. Ph.D. thesis, Department of Computer Science, Pennsylvania
State University, 1991.

[118] K. A. Remington and R. Pozo. NIST Sparse BLAS user’s guide. Internal Re-
port NISTIR 6744, National Institute of Standards and Technology, Gaithers-
burg, MD, USA, May 2001.

[119] E. Rothberg and S. C. Eisenstat. Node selection strategies for bottom-up
sparse matrix ordering. SIAM J. Matrix Anal. Appl., 19(3):682–695, 1998.

[120] Y. Saad. SPARSKIT: A basic tool kit for sparse computations, VERSION
2. Technical report, Computer Science Department, University of Minnesota,
June 1994.

[121] Y. Saad and H. A. van der Vorst. Iterative Solution of Linear Systems in the
20-th Century. J. Comp. Appl. Math., 123:1–33, 2000.

[122] R. Schreiber. A new implementation of sparse Gaussian elimination. ACM
Trans. Math. Software, 8:256–276, 1982.

122 BIBLIOGRAPHY

[123] J. Schulze. Towards a tighter coupling of bottom-up and top-down sparse
matrix ordering methods. BIT, 41(4):800–841, 2001.

[124] G. W. Stewart. The efficient generation of random orthogonal matrices with
an application to condition estimators. SIAM J. Numer. Anal., 17:403–404,
1980.

[125] G. W. Stewart. Incremental condition calculation and column selection. Tech-
nical Report TR-90-87, Institute for Advanced Computer Studies, University
of Maryland, College Park, MD20742, 1990.

[126] W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations
by optimally ordered triangular factorization. In Proceeedings of the IEEE,
volume 55, pages 1801–1809, 1967.

