

 et discipline ou spécialité

 Jury :

le

Institut National Polytechnique de Toulouse (INP Toulouse)

Rafael Lago

jeudi 13 juin 2013

A study on block flexible iterative solvers with applications to Earth imaging

problem in geophysics

ED MITT : Domaine STIC : Sureté de logiciel et calcul de haute performance

Hélène Barucq, Referee, Henri Calandra, Member of jury, Luiz Mariano Carvalho, Invited

Member, Jocelyne Erhel, Member of jury, Serge Gratton, PhD advisor, Felix Herrmann,

Member of jury, Hassane Sadok, Referee, Xavier Vasseur, Senior Researcher

GRATTON, Serge and VASSEUR, Xavier

ii

Dissertation for the degree of doctor in Mathematics, Computer
Science and Telecommunications (ED MITT)

A study on block flexible iterative solvers with
applications to Earth imaging problem in geophysics

Rafael Lago (PhD student, CERFACS and INPT)

Hélène Barucq Research director, INRIA France Referee
and University of Pau

Henri Calandra Senior advisor, TOTAL France Member of jury
Luiz Mariano Carvalho Professor, IME-UERJ Brazil Invited Member
Jocelyne Erhel Professor, INRIA France Member of jury
Serge Gratton Professor, ENSEEIHT and INPT/IRIT France PhD advisor
Felix Herrmann Professor, University of British Columbia Canada Member of jury
Hassane Sadok Professor, ULCO France Referee
Xavier Vasseur Senior researcher, CERFACS France PhD co-advisor

September 30, 2013

ii

Thesis Summary

This PhD thesis concerns the development of flexible Krylov subspace iterative solvers for the solution
of large sparse linear systems of equations with multiple right-hand sides. Our target application is the
solution of the acoustic full waveform inversion problem in geophysics associated with the phenomena of
wave propagation through an heterogeneous model simulating the subsurface of Earth. When multiple
wave sources are being used, this problem gives raise to large sparse complex non-Hermitian and nonsym-
metric linear systems with thousands of right-hand sides. Specially in the three-dimensional case and at
high frequencies, this problem is known to be difficult. The purpose of this thesis is to develop a flexible
block Krylov iterative method which extends and improves techniques already available in the current
literature to the multiple right-hand sides scenario. We exploit the relations between each right-hand side
to accelerate the convergence of the overall iterative method. We study both block deflation and single
right-hand side subspace recycling techniques obtaining substantial gains in terms of computational time
when compared to other strategies published in the literature, on realistic applications performed in a
parallel environment.

iii

iv

Résumé de la Thèse

Les travaux de ce doctorat concernent le développement de méthodes itératives pour la résolution de
systèmes linéaires creux de grande taille comportant de nombreux seconds membres. L’application visée
est la résolution d’un problème inverse en géophysique visant à reconstruire la vitesse de propagation
des ondes dans le sous-sol terrestre. Lorsque de nombreuses sources émettrices sont utilisées, ce problème
inverse nécessite la résolution de systèmes linéaires complexes non symétriques non hermitiens comportant
des milliers de seconds membres. Dans le cas tridimensionnel ces systèmes linéaires sont reconnus comme
difficiles à résoudre plus particulièrement lorsque des fréquences élevées sont considérées. Le principal
objectif de cette thèse est donc d’étendre les développements existants concernant les méthodes de Krylov
par bloc. Nous étudions plus particulièrement les techniques de déflation dans le cas multiples seconds
membres et recyclage de sous-espace dans le cas simple second membre. Des gains substantiels sont
obtenus en terme de temps de calcul par rapport aux méthodes existantes sur des applications réalistes
dans un environnement parallèle distribué.

v

vi

Contents

1 Introduction 1
1.1 Notation . 4

2 Introduction to Block Iterative Solvers 7
2.1 Introduction . 7
2.2 Subspaces and Minimum Block Residual . 8
2.3 The Block Krylov Subspace . 10
2.4 Preconditioning the Correction Subspace . 13
2.5 The Block Arnoldi Algorithm . 17
2.6 Breakdown in Block Arnoldi . 20
2.7 Block GMRES . 21
2.8 Convergence Criteria in MBR Methods . 22
2.9 Stagnation in BGMRES . 24
2.10 Conclusions . 26

3 Deflation 27
3.1 Introduction . 27
3.2 Deflated Block Arnoldi . 29
3.3 Deflated Minimal Block Residual . 31
3.4 Choosing the Unitary Deflation Operator . 34
3.5 Connections With Existing Methods . 39

3.5.1 Connections with BGMRES-R . 39
3.5.2 Connections with BFGMRESD . 40

3.6 Breakdown in DMBR . 42
3.7 Alternative Fj for large p . 43
3.8 Computational Cost and Memory Requirements . 45
3.9 Numerical Experiments . 46

3.9.1 Poisson Problem . 46
3.9.2 Convection-Diffusion Problem . 50
3.9.3 Complex-valued advection diffusion reaction problem 50
3.9.4 Acoustic Full Waveform Inversion . 53

3.10 Conclusions . 57

4 Acoustic Full Waveform Inversion 59
4.1 Introduction . 59
4.2 The Inverse Problem . 60
4.3 Discretizing the Forward Problem . 63

4.3.1 The Helmholtz Equation . 63
4.3.2 Perfectly Matched Layers . 63
4.3.3 Discrete Formulation . 64

vii

viii CONTENTS

4.3.4 Advanced Discretization Schemes . 67
4.4 Preconditioning the Helmholtz Equation . 68

4.4.1 The Perturbed Geometric Two-Level Preconditioner 70
4.5 Software Implementation . 71
4.6 Numerical Experiments . 72

4.6.1 Forward Problem: Smoothed SEG/EAGE Salt Dome 73
4.6.2 Forward Problem: Mid Frequency Case . 76

4.7 Conclusions . 76

5 Flexible GCRO-DR 79
5.1 Foreword . 79
5.2 Flexible GCRO with Deflated Restarting . 80

5.2.1 Introduction . 80
5.2.2 Flexible Krylov methods with restarting . 81
5.2.3 General setting . 81
5.2.4 Flexible GMRES with deflated restarting . 82
5.2.5 Flexible GCRO with deflated restarting . 85
5.2.6 Algorithms . 87
5.2.7 Analysis of FGMRES-DR and FGCRO-DR . 87
5.2.8 Equivalent preconditioning matrix . 88
5.2.9 Relations between Zm and Wm and Z̃m and Ṽm . 89
5.2.10 Analysis of the FGMRES-DR and FGCRO-DR methods 90
5.2.11 Further features of FGCRO-DR(m, k) . 97
5.2.12 Computational cost . 97
5.2.13 Storage requirements . 98
5.2.14 Solution of sequence of linear systems . 98
5.2.15 Conclusion and perspectives . 100

6 Conclusions 103

Appendices 105

A User Guide 105
Introduction . 105
FORTRAN03 Basic Guidelines . 105

EXTENDS Keyword . 106
ABSTRACT Keyword . 106
PASS and NOPASS Keyword . 106
DEFERRED Keyword . 107
CLASS Keyword . 107

Polymorphism and Inheritance . 108
libEina Basic Documentation . 110

Modules M_Eina, M_OptimizationFlag and M_Topology 110
Module M_Error . 110
Module M_Class . 111

libOperator Basic Documentation . 113
Module M_Operator . 113
Module M_StencilCollection . 113
Module M_Diag7pts . 114
Module M_Standard27pts . 115
Module M_Transformation, M_FullInterpolation and M_FullRestriction 116

libSolver Basic Documentation . 118

CONTENTS ix

Module M_Solver . 118
Module M_BFGMRES . 118
Modules M_NoSolver, M_GaussSeidel, M_FGMRES and M_LinAlg 122
Module M_DMBR . 122
Module M_GeoMultigrid . 125

Conclusions . 127

x CONTENTS

List of Figures

2.1 Representation of a block lower Hessenberg matrix . 21
2.2 Representation of a block lower Hessenberg matrix after a partial breakdown 21

3.1 Evolution of kj versus iterations in BFGMRES-R, BFGMRESD and DMBR 57

4.1 Earth imaging illustration - subsurface with a reflective layer 59
4.2 Graphical representation of the velocity model SEG/EAGE Overthrust 60
4.3 Illustration of difference between observed data and computed data 61
4.4 A graphical representation of the PML in two-dimensions 64
4.5 Graphical representation of three-dimensional uniform finite difference Cartesian stencils. . 65

a 7-point Cartesian stencil . 65
b 27-point Cartesian stencil . 65

4.7 Pattern of the Helmholtz matrix discretized with a 7-point stencil 67
4.8 Combination of several 7-point stencil resulting in a 27-point stencil [93] 67
4.9 Information about the academic SEG/EAGE Salt dome velocity model 69
4.10 Graphical representation of a basic V -cycle geometrical multigrid 69
4.11 Basic representation of polymorphism in inheritance . 72
4.12 Graphical representation of the interior of the velocity model SEG/EAGE Salt Dome 73
4.13 SEG/EAGE Salt dome velocity field, and its respective wavefield for 5Hz 74
4.14 Smoothed×1 version of SEG/EAGE Salt dome velocity field, and its respective wavefield

for 5Hz . 74
4.15 Smoothed×2 version of SEG/EAGE Salt dome velocity field, and its respective wavefield

for 5Hz . 75
4.16 Smoothed×3 version of SEG/EAGE Salt dome velocity field, and its respective wavefield

for 5Hz . 75
4.17 Evolution of kj along the iterations of DMBR(5) preconditioned by a two-level perturbed

multigrid V-cycle (cf. Table 4.1) for each SEG/EAGE Salt dome velocity field and its
respective smoothed versions. 76

4.18 SEG/EAGE Salt dome velocity field, and its respective wavefield for 12Hz 77

5.1 Convergence histories of different flexible methods applied to Ax = b 96

A.1 Example of EXTENDS usage . 106
A.2 Example of ABSTRACT usage . 106
A.3 Example of PASS and NOPASS usage . 107
A.4 Example of deferred procedure usage . 107
A.5 Example of implementation of deferred procedures . 108
A.6 Example of usage of C_Diag7pts . 115
A.7 Example of usage of C_Standard27pts . 117
A.8 Example of usage of C_BFGMRES . 120

xi

xii LIST OF FIGURES

A.9 Example of usage of C_BFGMRES . 121
A.10 Example of usage of C_DMBR . 124
A.11 Example of usage of C_GeoMultigrid . 126
A.12 Example of usage of C_GeoMultigrid for creating three or more levels 126

List of Tables

3.1 Computational cost of a cycle of DMBR(m) . 45
3.2 Numerical experiment: Poisson problem with 5 cycles of BGMRES(5) as variable precon-

ditioner . 48
3.3 Numerical experiment: Poisson problem with 3 cycles of BGMRES(3) as variable precon-

ditioner . 49
3.4 Numerical experiment: Poisson problem with 5 cycles of BGMRES(5) as variable precon-

ditioner and kmax = 20 . 49
3.5 Numerical experiment: convection-diffusion problem with 5 cycles of BGMRES(5) as vari-

able preconditioner . 51
3.6 Numerical experiment: convection-diffusion problem with 3 cycles of BGMRES(3) as vari-

able preconditioner . 52
3.7 Numerical experiment: convection-diffusion problem with 5 cycles of BGMRES(5) as vari-

able preconditioner and kmax = 20 . 52
3.8 Numerical experiment: two-dimensional complex-valued advection diffusion problem 54
3.9 Numerical experiment: acoustic full waveform inversion . 55

4.1 Numerical experiment: SEG/EAGE Salt Dome smoothing 78

5.1 Scalar product vTk+2ṽk+2 during the first five cycles of FGCRO-DR 97
5.2 Computational cost of a generic cycle of FGMRES-DR and FGCRO-DR 98
5.3 Numerical experiment: Solution of a d-dimensional elliptic partial differential equation

problem . 100

xiii

xiv LIST OF TABLES

List of Algorithms

2.5.1 Block flexible Arnoldi . 18
2.5.2 Block flexible Arnoldi iteration . 18
2.7.1 Restarted block flexible GMRES (BFGMRES) . 22

3.2.1 Deflated block flexible Arnoldi iteration . 30
3.3.1 Restarted Flexible DMBR . 32
3.4.1 Choosing Fj - Largest Singular Values of Rj−1Dj−1 . 36
3.5.1DMBR . 40
3.5.2BGMRES-R . 40
3.5.3 Comparison between DMBR and BGMRES-R . 40
3.5.4DMBR . 41
3.5.5BFGMRESD . 41
3.5.6 Comparison between DMBR and BFGMRESD . 41
3.7.1 Choosing Fj - Largest Singular Values of Rj−1Dj−1 . 44

4.2.1 Generic acoustic FWI algorithm using steepest descent method 62
4.4.1 Perturbed geometric two-level multigrid cycle . 71

5.2.1 Flexible GCRO-DR(m, k) and Flexible GMRES-DR(m, k) 88
5.2.2 Initial generation of V sm+1, Zsm and W s

m when subspace recycling is used 99

xv

Chapter 1

Introduction

In this thesis we are concerned with the development of iterative solvers for large sparse linear systems
with multiple right-hand sides with application to an industrial problem in geophysics and geology, the
acoustic full waveform inversion [20, 28]. It consists of an optimization problem which targets to generate
an approximate model of the velocity of propagation of acoustic waves in the subsurface of Earth. Ex-
perimental data is gathered by triggering an acoustic wave source at a certain position in Earth’s surface,
and as these waves propagate through the subsurface and encounter discontinuities, they are scattered
and propagated back. Special tools called geophones (a special type of microphone) record information
concerning the waves that were propagated back. This process is repeated for several positions and the
data is again recorded several times. The acoustic full waveform inversion then builds and improves a
velocity model (supposing that a proper initial guess model is known) of the subsurface iteratively until
a reliable approximation is obtained. To determine whether an approximation is reliable or not it is thus
necessary to simulate how the waves would have propagated through the velocity model. In this thesis,
we are concerned with simulating the wave propagation phenomena given a velocity model using the
Helmholtz equation

−∆u(x)−
(

2πf

v(x)

)2

u(x) = s(x), x ∈ R3

where u(x) denotes the wave pressure, v(x) is the velocity of the propagation of the wave and s(x)
is the source term, and using perfectly matched layers [13] (or PML) as boundary condition in order to
simulate an infinite domain. The discretization of the Helmholtz equation with PML using finite difference
techniques yields a sparse linear system of the form

AX = B,

where A ∈ Cn×n is a nonsingular, non-Hermitian and non-symmetric matrix, B ∈ Cn×p is supposed to
be full rank, X ∈ Cn×p and p is the number of acoustic wave sources triggered (usually of the order of
O(104)). The difficulties for solving this problem come when the acoustic wave sources are triggered at
a high frequency. In this case, n can be of the order of O(109) meaning that the memory needed for
solving this problem with direct solvers might be prohibitively large. In this situation iterative solvers
are preferred since they allow the control of the memory used. Also, at high frequencies, the matrix
A may present properties that complicate the preconditioning of iterative solvers, culminating in a slow
convergence [52]. Recent publications show the interest of using geometric multigrid based techniques with
an approximate coarse solution as preconditioner [24, 96], characterizing thus a variable preconditioner
and imposing the use of flexible block Krylov subspace methods.

Several approaches have been used in the literature to solve the resulting linear system. Among the
direct and hybrid solver solutions we mention [18, 67, 93, 121], but these often require a prohibitively
large memory storage which grows proportionally with frequency being used, being thus suitable only for

1

2 CHAPTER 1. INTRODUCTION

low and medium frequencies range. Recent publications [3, 137, 138, 139] use the low-rank approximation
techniques to reduce the memory cost of direct solvers for Helmholtz, being thus to successfully solve
three-dimensional problems for high-frequencies. Other techniques as the sweeping preconditioner [47, 97]
report low storage cost for solving problems at mid frequencies.

Nevertheless, due to their optimal memory control and scalability, we opt for focusing on Krylov itera-
tive methods. The solution of systems with multiple right-hand sides using Krylov subspace methods has
been addressed in the literature. The so called block Krylov subspace methods are increasingly popular in
many application area in computational science and engineering (e.g. electromagnetic scattering (monos-
tatic radar cross section analysis) [19, 78, 119], lattice quantum chromodynamics [110], model reduction
in circuit simulation [53], stochastic finite element with uncertainty restricted to the right-hand side [45],
and sensitivity analysis of mechanical systems [12] to name a few). Denoting by X0 ∈ Cn×p the initial
guess for the system and by R0 = B −AX0 the initial block residual associated with such initial guess, a
block Krylov space method for solving the p systems is an iterative method that generates approximations
Xm ∈ Cn×p with m ∈ N such that

range (Xm −X0) ⊂ K�
m(A,R0)

where the block Krylov space K�
m(A,R0) (in the unpreconditioned case) is a generalization of the well

known Krylov subspace, defined as

K�
m(A,R0) = range

([
R0 AR0 . . . Am−1R0

])
⊂ Cn.

We refer the reader to [64] for a recent detailed overview on block Krylov subspace methods and note that
most of the standard Krylov subspace methods have a block counterpart (see, e.g., block GMRES [134],
block BiCGStab [63], block IDR(s) [38] and block QMR [54]). To be effective in terms of computational
operations it is recognized that block iterative methods must incorporate a strategy for detecting when a
linear combination of the systems has approximately converged [64]. A simple strategy to remove useless
information from a block Krylov subspace - called initial deflation - consists in detecting possible linear
dependency in the block right-hand side B or in the initial block residual R0 ([64, §12] and [78, §3.7.2]).
When a restarted block Krylov subspace method is used, this block size reduction can be also performed
at each initial computation of the block residual, i.e., at the beginning of each cycle [64, Section 14].
In addition Arnoldi deflation [64] may be also considered; it aims at detecting a near rank deficiency
occurring in the block Arnoldi procedure to later reduce the current block size. These strategies based on
rank-revealing QR-factorizations [21] or singular value decompositions [60] have been notably proposed
both in the Hermitian [89, 104] and non-Hermitian cases [2, 9, 32, 54, 81, 92] for block Lanczos methods.
They have been shown to be effective with respect to standard block Krylov subspace methods.

While initial deflation or deflation at the beginning of a cycle are nowadays popular, BGMRES based
methods incorporating deflation at each iteration have been rarely studied. In [103] Robbé and Sadkane
have introduced the notion of inexact breakdown to study block size reduction techniques in block GMRES.
Two criteria have been proposed either based on the numerical rank of the generated block Krylov basis
(W-criterion) or on the numerical rank of the block residual (R-criterion). Numerical experiments on
academic problems of small dimension with a reduced number of right-hand sides illustrated the advantages
and drawbacks of each variant versus standard block GMRES. Further numerical experiments can be
found in [76]. Another method relying on such a strategy is the Dynamic BGMRES (DBGMRES) [33],
which is an extension of block Loose GMRES [10]. However, the combination of block Krylov subspace
methods performing deflation at each iteration and variable preconditioning has been rarely addressed in
the literature.

As an alternative to block methods, it was proposed in the literature the subspace recycling techniques
[1, 95], for the case in which the right-hand sides are not all known a priori, but instead, the solution of one
system is used to compute the right-hand side of the next linear system. Traditionally augmented methods
or methods with deflated restart (e.g. [11, 35, 41, 86, 106]) could retain their augmented subspace or the
harmonic Ritz pairs (which approximate the smallest eigenvalue and its respective eigenvector of a matrix;

3

cf. [85]) from the solution of one linear system to accelerate the convergence of the next linear system, if
the proper modifications in the algorithm are performed. In [95] the GCRO-DR, a variant of GMRES-DR
[88] is proposed with the ability to recycle harmonic Ritz information. This is also particularly interesting
for the case in which multiple left-hand sides situation is being addressed

A(i)X(i) = B,

for 1 ≤ i ≤ l and some relations between each A(i) hold. In the full waveform inversion scenario, the
multiple left-hand sides situation is not all uncommon, as some techniques may generate l different models
per iteration, thus requiring the solution of l block linear systems with p right-hand sides.

The main purpose of this thesis is to derive a class of flexible minimal block residual methods that
incorporate block size reduction at each iteration. We carefully extend the theory available for single right-
hand side case to a unified view in the block case, and we draw important conclusions for the variable
preconditioner scenario which to the best of our knowledge is new for both single and multiple right-hand
sides scenario (cf. Theorem 2.4.3). Using the theory we developed, we will introduce a method belonging
to this class, the deflated minimal block residual or DMBR. It consists of a variant of BGMRES using
a generalization of the deflation technique depicted in [103] which is able to discard subspaces at the
beginning of each iteration. Our proposed variant uses the singular values of the scaled block residual to
decide which part of the block Krylov subspace should be built for the current iteration, saving matrix-
vector operations and preconditioner applications. Since we are considering flexible preconditioner which
are potentially the most expensive part of the iterative procedure, avoiding preconditioner applications
can bring a substantial computational gain to the overall method. We compare DMBR with recently
proposed flexible block space methods using deflation at the beginning of the cycle only [22, 23] as well as
with the method proposed in [103], which is able to deflate at the end of each iteration. We observe the
advantage of deflating at the beginning of each iteration in practice in several of our real life application
numerical experiments.

Along with that, in the single right-hand side scenario, we extended the GCRO-DR method for the
variable preconditioner case, as subspace recycling techniques might be of interest in our geophysical
application. We then compared FGMRES-DR [58] method with our new proposed method FGCRO-DR
[27], and we demonstrate that for the variable preconditioner case, FGMRES-DR and FGCRO-DR are not
algebraically equivalent unless a specific collinearity condition hold for every iteration. We thus show the
interest of using subspace recycling techniques with variable preconditioner with numerical experiments.

The outline of this thesis is thus as follows:

• In Chapter 2 we study restarted flexible block methods that satisfy a minimum norm property. We
discuss key aspects of minimum norm methods and we extend and generalize concepts as well as
properties which are well known for the single right-hand side case. Among the key generalizations,
we mention partial convergence (in Definition 2.8.1), partial breakdown (in Definition 2.6.1) and
partial stagnation (in Definition 2.9.1), concepts which are not trivially obtained from the single
right-hand side case. The definitions and properties discussed in this chapter are going to be exten-
sively used in the Chapter 3 when deflation is discussed. Also in Chapter 2 we demonstrate that
the flexible block Arnoldi algorithm (cf. Algorithm 2.5.1) always spans a block Krylov subspace
whenever the variable preconditioner holds a rank-preserving condition. This result is new to the
best of our knowledge and helps the understanding of flexible Krylov methods both for single and
multiple right-hand sides.

• In Chapter 3 we use the development of Chapter 2 to characterize which information we would
like to deflate at the beginning of each iteration of the BGMRES algorithm. We show the relation
between the block residual and the block Krylov subspace being built in absence of partial stagnation
phenomena, and that using the singular values of the scaled block residual we are able to focus on the
minimization of the residual associated only with the right-hand sides which did not converge yet,
thus avoiding to perform expensive computations to further improve already converged approximate
solutions. The final deflation strategy we propose in this chapter is based on [103] but it is not

4 CHAPTER 1. INTRODUCTION

algebraically equivalent whenever restarting occurs in the algorithm. We compare our proposed
algorithm, which we call deflated minimal block residual or DMBR, with other methods which are
known to be efficient for solving the Helmholtz problem, and we obtain substantial gains in terms
of computational time when performing experiments on real life problems.

• In Chapter 4 we introduce in more detail the acoustic full waveform inversion, clarifying some of
the recent developments done in several areas to improve its performance. We discuss several issues
involving the preconditioning and discretization of the Helmholtz equation and we finally discuss
a software implementation using FORTRAN03 and object orientation strategies in order to obtain
a modular code which can be easily adapted and modified to conform the newest technologies and
techniques for the solution of the full waveform inversion. We use this software to perform numerical
experiments of considerable dimension (from O(108) to O(109)) at a relevant frequency range (from
5HZ to 12Hz) using no more than 128 cores. We successfully compute, using block Krylov methods,
the wavefield for multiple sources given at once using an average of 11.8 Gb of memory per shot
for realistic problems at 5Hz. This numerical experiments reinforces the interest in using deflation
techniques for multisource scenario.

• In Chapter 5 we discuss the subspace recycling techniques, more specifically the development and
analysis of FGCRO-DR method and how it is related to FGMRES-DR method in the single right-
hand side case. We conclude that in spite of the similarities, the methods are not algebraically
equivalent and produce different iterates in our numerical experiments. We conclude that an alge-
braic equivalence could be achieved if a certain collinearity condition holds for every iteration, but
that such situation is rare in practice. Numerical experiments allow us to witness the advantages of
using subspace recycling techniques when solving sequences of linear systems.

• In Chapter 6 we present the final remarks of this thesis and the plans for future research.

1.1 Notation

Through this entire thesis we denote by ei the i-th vector of the canonical basis of the appropriate
dimension. We write ||.|| for any unitarily invariant norm. Some important norms used include the
Frobenius norm denoted by ||.||F , the spectral norm ||.||2 when used for a matrix or the well known
Euclidean norm when referring to a vector and the psi-norm ||.||ψ defined as

||M ||ψ = max
i
||mi||2

where mi is the i-th column of M (this norm can be found, for instance, in [111, 134] and it is unitarily
invariant).

We denote the condition number in the ‖.‖2 of a nonsingular matrix A by

κ(A) =‖A‖2
∥∥∥A−1

∥∥∥
2

and X∗ as the exact solution for AX = B.
We use Ik ∈ Ck×k to denote the identity matrix of dimension k and 0i×j ∈ Ci×j the zero rectangular

matrix with i rows and j columns. The superscript H denotes the transpose conjugate operation. Given
a vector d ∈ Ck with components di, D = diag(d1 . . . dk) is the diagonal matrix D ∈ Ck×k such that
Dii = di. If C ∈ Ck×l we denote the singular values of C by

σ1(C) ≥ · · · ≥ σmin(k,l)(C) ≥ 0.

Whenever we mention that a given matrix V ∈ Cn×t with n ≥ t is orthonormal, it means that it has
orthonormal columns meaning that V HV = It×t. When t = n we say that the matrix is unitary instead.

1.1. NOTATION 5

Regarding the algorithmic part, we adopt notation similar to those of MATLAB in the presentation.
For instance, U(i, j) denotes the Uij entry of matrix U , U(1 : m, 1 : j) refers to the submatrix made of
the first m rows and first j columns of U and U(:, j) corresponds to its jth column.

Whenever we refer to a subspace V, we implicitly suppose that V is a subset of H, where H is the
Hilbert subspace. The notation V (W reads “V is a proper subset of W” (i.e. V is contained in W but
V 6= W) and the notation V ⊂ W reads “V is a subset of W” (i.e. V is contained in W and V = W may
be true). Also, for any matrix V ∈ Cn×p

range (V) , rank (V) ,null (V)

denote respectively the range of V , the rank of V and the nullity of V . We also use dim(V) to denote the
dimension of the subspace V.

Let P ∈ Ca×c and Q ∈ Cc×b. Following Matlab standards, we abuse the notation allowing c = 0
resulting in operations as

M =
[
N P

]
=
[
P N

]
= N

for any N ∈ Ca×d for a given positive integer d. We reinforce that in such a situation P is undefined as a
mathematical entity, and we are simply defining

[
P N

]
= N . Similarly, we allow

S =

[
Q
T

]
=

[
T
Q

]
= T

with T ∈ Cd×b for a given positive integer d. In our pseudo-code examples, we write P = [] and Q = []
without specifying dimensions.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Introduction to Block Iterative Solvers

2.1 Introduction
In this chapter we address the basis for the development of methods for solving the problem

AX = B (2.1.1)

where A ∈ Cn×n is any nonsingular complex non-Hermitian nonsymmetric matrix, and X,B ∈ Cn×p,
always considering p � n, and that rank (B) = p, and for the sake of simplicity, we consider the zero
initial guess (that is, X0 = 0) for the moment.

Although some of the content of this chapter can be found in other publications (as [40, 103, 64, 65,
134]), here we present, reorder and generalize these key concepts aiming at establishing grounds for the
more advanced techniques we are going to show in further chapters. We explicitly mention whenever new
concepts or proofs are presented. Notably we bring to the attention of the reader the results formalized
later in Theorem 2.4.3 and Proposition 2.5.3.

To solve (2.1.1) the most straightforward approach is to separate such system in p linear systems as

AXei = Bei, i = 1, ..., p

where ei represents the i-th vector of the canonical basis in Cp, and then apply the known preconditioned
GMRES [108] method (or any other convenient iterative solver) to each system independently. A tech-
nique known as “subspace recycling” [36, 95, 37] could be used here to gather information from A (as
information concerning the approximation of the invariant subspace, approximate spectral information
such as harmonic Ritz pairs [85], etc) when solving AXek = Bek and use this knowledge to accelerate the
convergence of the chosen method for solving AXek+1 = Bek+1. This strategy is particularly common for
the cases in which Bek+1 depends on Xek, meaning that each linear system has to be solved in sequence.
In this chapter however, we do not address the situation, and we suppose that all the columns of the
right-hand side B are known beforehand.

In such a scenario, we can thus consider a generalization of iterative methods like GMRES for mul-
tiple right-hand side (see [64] for a recent detailed overview on block Krylov subspace methods). This
generalization is often called in the literature “block iterative method”. Among the reasons for considering
such a generalization is the possibility of exploiting BLAS-3 operations rather than BLAS-2. From a more
theoretical point of view, block iterative solvers span a larger search subspace than its single right-hand
side counterpart and thus potentially finds an approximation for (2.1.1) with less computational effort.
This behaviour has been shown experimentally in a number of publications [23, 64, 103, 134] and we
discuss it with more details through this chapter.

We focus on restarted block methods that satisfy a minimum norm property as introduced in [107,
§6.12]. We first discuss key aspects of minimum norm methods and we extend properties which are known
in the single right-hand side case to the block case. We propose a generalization of concepts common to

7

8 CHAPTER 2. INTRODUCTION TO BLOCK ITERATIVE SOLVERS

the single right-hand side scenario as convergence (cf. Definition 2.8.1), breakdown (Definition 2.6.1) and
stagnation (Definition 2.9.1) to the multiple right-hand side scenario. We present also in this chapter the
block Arnoldi (Algorithm 2.5.1) in Section 2.5 and the block GMRES (BGMRES, in Algorithm 2.7.1) in
Section 2.7 and we briefly discuss some few differences between GMRES and BGMRES. In Section 2.10
we provide the final remarks for this chapter.

During all the developments of this chapter, except when explicitly mentioned, we consider exact
arithmetic.

2.2 Subspaces and Minimum Block Residual

We reproduce the following definitions which can be found, for instance, in [40, (3.1)] for the sake of
completeness.

Definition 2.2.1 (Nested Subspaces). Let the sequence of subspace Vi ⊂ Cn be given for 1 ≤ i ≤ j.
If it holds that

{0} = V0 (V1 (V2... (2.2.1)

we then say that (2.2.1) is a nested sequence of . �

It is important to notice that the sequence of subspaces in Definition 2.2.1 is finite by definition, since
dim

(
Vj−1

)
< dim(Vj) ≤ n has to hold for every j ≥ 1, meaning that once we find a k such that Vk = Cn,

the sequence stops and Vk+1 is undefined. Also, the number of elements in this sequence is bounded by n.
We define now our main object of study for this chapter:

Definition 2.2.2 (Minimum block residual family). A minimum block residual (MBR) method is an
iterative method that, at each step j solves

min
range(X̄)⊂Zj

 p∑
i=1

∥∥Bei −AX̄ei∥∥2

2

 (2.2.2)

for a given sequence of nested subspaces Zj (cf. Definition 2.2.1). �

By definition, methods belonging to the Euclidean minimum block residual family will converge in a
finite number of steps (at worst, when Zj = Cn) because the subspace Zj has to grow with j.

Definition 2.2.2 is in fact an attempt to generalize the concept of “minimum residual family” (or MR
family) proposed in [40]. Therein, we find a definition analogous to Definition 2.2.2 for the single right-
hand side case which considers any norm‖.‖N in a specific vectorial subspace, i.e. ‖.‖N does not necessarily
have to be a norm in the entire Cn. We opt for a simpler approach in Definition 2.2.2, considering only
the Euclidean norm. This choice allows us to simplify equation (2.2.2) to

min
range(X̄)⊂Zj

∥∥B −AX̄∥∥
F
. (2.2.3)

Here the Frobenius norm is specially suitable because we can consider it as a block vector norm instead
of a matrix norm (cf. [64, p.8]). Moreover, if we require X̄ to have minimum Frobenius norm, since A is
nonsingular, the problem (2.2.3) has an unique solution.

Next we show Definition 2.2.5 and Definition 2.2.3 which are due to [40] and are just reproduced here
for the sake of completeness. We highlight that in [40] it is expected that dim(Zj−1−Zj) = 1, ∀j = 2, ...,
whereas we expect dim(Zj−1 − Zj) ≥ 1, ∀j = 2, ... (cf. Definition 2.2.4) due to the block nature of the
problem.

2.2. SUBSPACES AND MINIMUM BLOCK RESIDUAL 9

Definition 2.2.3 (Correction Subspace). Consider a given MBR method and its sequence of nested
subspaces Zj for j = 1, We define the sj-dimensional subspace Zj ⊂ Cn as the “correction1 subspace”.
�

Definition 2.2.4. We define

kj = dim
(
Zj −Zj−1

)
, k1 = dim (Z1) , and therefore, sj =

j∑
i=1

ki,

that is, kj represents how much the correction subspace grew from iteration j − 1 to iteration j. �

Definition 2.2.5 (Residual Approximation Subspace). We denote sj-dimensional subspace Wj = AZj
as “approximation subspace”. Since A is nonsingular, it also follows that

Wj−1 ⊂ Wj

for every j > 1. Since {Zj}j is a nested sequence of subspaces, then {Wj}j is also a sequence of nested
subspaces. �

Let the columns of Z̆j ∈ Cn×sj represent any basis for Zj . Then

Yj = arg min
Ȳ ∈Csj×p

∥∥∥B −AZ̆j Ȳ
∥∥∥
F
, (2.2.4)

defines an approximate solution as Xj = Z̆jYj . It is a well known result ([60, p.257], for instance) that
the solution of (2.2.4) is given by

Yj = (AZ̆j)
†B. (2.2.5)

We define the block residual of such approximation as

Rj = B −AXj = B −AZ̆j(AZ̆j)
†B,

= (I −AZ̆j(AZ̆j)
†)B

(2.2.6)

which is clearly an orthogonal projection onto (AZj)⊥. If we define Wj = PWj
B where Wj is the

approximation subspace according to Definition 2.2.5, we see that

Rj = B −Wj , (2.2.7)

and in such fashion, we can interpret Wj as the approximation of B in Wj subspace. For this reason, we
call Wj “residual approximation subspace” or simply “approximation subspace”.

The two following results (Property 2.2.6 and Property 2.2.7) are a generalization of results found in
[103], using the concepts of Definition 2.2.3 and Definition 2.2.5. Our contribution in these particular
statements is that [103] relies on a specific choice of correction subspace Zj . Having such a result for any
nested subspace instead is crucial for our further discussions in Chapter 3.

From equation (2.2.6) and from the fact that B has full rank, we immediately deduce the following
property:

Property 2.2.6 (Residual Nullity). For any MBR method, it holds that

null
(
Rj
)

= dim
(
Wj ∩ range (B)

)
.

The following property can be trivially deduced from Property 2.2.6 by just using the nonsingularity
of A.

1Following the notation in Eiermann and Ernst [40], if we have an initial guess X0, we try to find a correction Cj ∈ Cn×p
where range

(
Cj
)
⊂ Zj such that Xj = X0 + Cj minimizes the residual.

10 CHAPTER 2. INTRODUCTION TO BLOCK ITERATIVE SOLVERS

Property 2.2.7 (Exact Solution Intersection). For any MBR method, it holds that

null
(
Rj
)

= dim
(
Zj ∩ range (X∗)

)
,

where X∗ is the exact solution of AX = B.

In other words, whenever the nullity of the residual is different from zero, it means that we have found
the exact solution of one or more (or a linear combination of) linear systems inside Zj . Several strategies
that will be studied later are heavily based on this property of minimum block residual methods.

Because we assumed that Zj is a nested subspace, every Z̆j can be decomposed in a recursion as

Z̆j =
[
Z̆j−1 Z̆j

]
=
[
Z̆1 Z̆2 . . . Z̆j

]
(2.2.8)

where each Z̆i ∈ Cn×ki , 1 ≤ i ≤ j is a full rank matrix and ki is given in Definition 2.2.4.
Next we define some figures useful for describing how we expand the subspace Zj to Zj+1.

Definition 2.2.8 (Expansion Subspace). Let Sj ⊂ Cn be a given subspace of dimension pj + nj for
some pj , nj ∈ N such that

nj = dim
(
Zj ∩ Sj

)
and naturally pj = dim

(
Sj
)
− nj .

We expand the subspace Zj as

Zj+1 = Zj + Sj .

�

In Section 2.3 we show that most methods perform an expansion of subspace according to Defini-
tion 2.2.8, in the sense that it disposes of a subspace to be “added” to Zj , but nothing guarantees that a
direct sum holds.

Remark 2.2.9. In a more advanced scenario, instead of disposing of a subspace Sj of dimension pj+nj
to add to Zj , we dispose of a subspace K̂j of dimension pj + nj instead, where

K̂j = Sj ⊕ Pj
dim

(
Sj
)

= kj+1 + nj , dim
(
Pj
)

= dj+1

pj = kj+1 + dj+1.

These methods use a subspace of dimension kj+1 to update Zj and neglect a subspace of dimension dj+1

(either discarding it or saving it for other purposes). This scenario is going to be discussed in details in
Chapter 3. For the purpose of this chapter, we simply assume that dj = 0,∀j ≥ 1, meaning that kj+1 = pj
i.e. we use all the subspace available to expand the correction subspace Zj . �

2.3 The Block Krylov Subspace

In this section we define the so called block Krylov subspace. Altough many authors (cf. [64]) use a
matrices subspace for that purpose, we choose here to define it as a subspace of Cn as in [44] :

Definition 2.3.1 (Block Krylov Subspace). We define a block Krylov subspace, as

K�
k (A,B) = range

([
B AB ... A(k−1)B

])
∈ Cn (2.3.1)

2.3. THE BLOCK KRYLOV SUBSPACE 11

This can be rewritten as

K�
k (A,B) =

j∑
i=1

Kk (A,Bei) (2.3.2)

= Kk (A,Be1) +Kk (A,Be2) + ...+Kk
(
A,Bep

)
, (2.3.3)

(cf. [44, (2.12)]) where Kk(A,Bei) denotes the k-th Krylov subspace of A with relation to Bei. �

Nothing guarantees that a direct sum holds in (2.3.3), therefore these subspaces might have a nonzero
intersection - a key property which we explore in Section 3.6 of Chapter 3.

Having in mind what was discussed in the previous section, it is a common practice to set Zj =
K�
j (A,B), giving rise to the so called block Krylov subspace iterative method. Examples of block Krylov

iterative methods are block GMRES [134] (presenting minimal block residual properties as in Defini-
tion 2.2.2), block BiCGStab [63], block IDR(s) [38] (another class of methods, focusing on orthogonal
residual properties which we do not address in this thesis) and block QMR [54] (presenting a quasi-
minimal residual property, that is, it minimizes the residual only with respect to a given subspace rather
than the entire Cn). This strategy is popular because one can ensure that the exact solution lies inside a
block Krylov subspace, as the following corollary shows:

Corollary 2.3.2. Let X∗ be the block solution of AX = B and `(i) the degree of the minimum polynomial
of A with respect to Bei. Then

range (X∗) ⊂ K�
` (A,B)

where ` = max{`(i)}pi=1. We call ` the block grade of A with respect to B.

Proof. It is a well known result that the exact solution of each AXei = Bei lies in K`(i)(A,Bei) (see [74],
for instance). From equation (2.3.3) we have the proof completed.

We refer to [64, §3] for details on the block grade of a matrix with respect to a given block right-hand
side, specially to Lemma 5 (where we find an equivalent definition for the block grade) and Theorem 9
(for an equivalent version of Corollary 2.3.2).

Since each `(i) is equal or smaller than2 n, it is always advantageous to look for a solution in K�
` (A,B)

rather than in Cn, but it is specially interesting for the cases in which dim(K�
` (A,B)) is much smaller

than n. Also the block Krylov subspaces allow us to derive some properties in the minimum block residual
scenario, which we discuss along this chapter.

Using the notation in Definition 2.2.8, we imply from the definition of the block Krylov subspace (2.3.1)
that for building such a subspace, we set Sj = range(AjB) every iteration j ≥ 1, with Z1 = range(B).
For this specific choice then, according to Definition 2.2.3, for every j we obtain

sj = dim
(
K�
j (A,B)

)
nj = dim

(
K�
j (A,B) ∩ range

(
AjB

))
pj = kj+1 = p− nj .

An important result for the single right-hand side case (i.e. p = 1) is that if range
(
AjB

)
⊂ Kj(A,B),

then3 range (X∗) ⊂ Kj(A,B) , meaning that the exact solution for the system AX = B is already known
and that j ≥ `, where ` is the block grade of A with respect to B. Following our notation, for p = 1,

2this result can be found, for instance, in [72, p.142, Theorem 3.3.1]
3this can be found, for instance, in [74]

12 CHAPTER 2. INTRODUCTION TO BLOCK ITERATIVE SOLVERS

range
(
AjB

)
⊂ Kj(A,B) implies in nj = 1 and thus pj = 0. This is called in the literature happy

breakdown or Arnoldi breakdown4.
In the multiple right-hand side scenario (i.e. p > 1) an analogous phenomenon is observed. In fact,

whenever p− pj > 0, it can be proved that a linear combination of solutions already lies inside K�
j (A,B)

(cf. [103]). The following proposition formalizes this concept.

Proposition 2.3.3. At each iteration j of a MBR method using block Krylov subspace as correction
subspace, it holds that a linear combination of p− pj solutions lie inside K�

j (A,B).

Proof. We have that

dim
(

range (B) ∩AK�
j (A,B)

)
= dim

(
range (B)

)
+ dim

(
AK�

j (A,B)
)

− dim
(

range (B) +AK�
j (A,B)

)
But

range (B) +AK�
j (A,B) = K�

j+1(A,B).

Moreover from the nonsingularity of A we have that

dim
(
AK�

j (A,B)
)

= dim
(
K�
j (A,B)

)
therefore,

dim
(

range (B) ∩AK�
j (A,B)

)
= dim

(
range (B)

)
+ dim

(
K�
j (A,B)

)
− dim

(
K�
j+1(A,B)

)
= p+ sj − sj+1

= p− kj+1 = p− pj .

Again from the nonsingularity of A, we obtain

p− pj = dim

(
range

(
A−1B

)
∩ K�

j (A,B)

)
= dim

(
range (X∗) ∩ K�

j (A,B)
)

where X∗ denotes the exact solution of AX = B finalizing the proof.

Note that for this choice of Zj , if we always set Sj = range(AjB) we have that dim(Sj) = p, thus
p − pj = nj for any j. However, in further discussions we show that practical algorithms based on this
idea do not always span a subspace Sj of dimension p, and thus nj 6= p − pj for every j, reason why we
choose to present Proposition 2.3.3 (and specially Corollary 2.3.4 at the end of this section) with p − pj
instead.

To clearly understand Proposition 2.3.3, let X̄∗ ∈ Cn×(p−pj) represent a basis for the subspace

range (X∗) ∩ K�
j (A,B).

Since X̄∗ can be written as a linear combination of a basis both of range(X∗) and K�
j (A,B), it follows

immediately that there are full-rank complex matrices L1 and L2 of suitable dimension such that

X̄∗ = ZjL1 and X̄∗ = X∗L2,

4the origin of the name is not related to Krylov subspaces but to the well known Arnoldi algorithm (which can be found
in [5] or [107, §6.12], for instance) which generates a stable basis for the Krylov subspace. We study the block version of this
algorithm and the occurrence of breakdowns in more details in Section 2.5.

2.4. PRECONDITIONING THE CORRECTION SUBSPACE 13

where Zj ∈ Cn×sj is a basis to K�
j (A,B), and consequently

X∗L2 = ZjL1,

showing that one can write a part of X∗ as a linear combination of Zj .
Although an analogous of the following corollary can also be found in [103, Corolary 1], we reproduce

it here for the sake of completeness. It is a direct implication of Proposition 2.3.3 and Property 2.2.7.

Corollary 2.3.4. At each iteration j of a MBR method using block Krylov subspace as correction
subspace, it holds that

null
(
Rj
)

= p− pj .

2.4 Preconditioning the Correction Subspace
A practice even more common than choosing Zj as K�

j (A,B) is to choose a “preconditioned block Krylov
subspace” instead. It consists in choosing a nonsingular preconditioning matrix M ∈ Cn×n such that AM
presents better numerical properties, to then solve the system

AMM−1X = AMT = B (2.4.1)

instead. Once T is known, we take X = MT to retrieve the solution of the original system. For solving
(2.4.1) one then uses

Zj = M × span

{[
B AMB ... (AM)(j−1)B

]}
= MK�

j (AM , B) (2.4.2)

as correction subspace5.
An even more general concept is the use of nonlinear variable preconditioners. It consists in applying

a (nonlinear) preconditioning operator which depends on the iteration. For a given iteration j and matrix
V ∈ Cn×p, we represent the application of the preconditioner on V with

Z =Mj(V) (2.4.3)

where Z ∈ Cn×p is the preconditioned V . Also, for the sake of simplicity, we always consider that the
operator Mj(.) is rank-preserving for every j (that is, rank (V) = rank (Z)) and that it satisfies the
following definition.

Definition 2.4.1 (Rank-Preserving Variable Nonlinear Preconditioner). Suppose we dispose of a matrix
Vj =

[
V1 V2 ... Vj

]
where each Vi ∈ Cn×ki for some sequence of values of ki with 1 ≤ i ≤ j, and

that we obtain Zj =
[
M1(V1) M2(V2) ... Mj(Vj)

]
by applying the sequence of (possibly) nonlinear

operatorsMi, 1 ≤ i ≤ j. If rank
(
Zj

)
= rank

(
Vj
)
, we say that the sequence of preconditioner operator

Mi, 1 ≤ i ≤ j is rank-preserving.

We then establish the following lemma.

Lemma 2.4.2 (Equivalent Preconditioner Matrix). Given Vj a full rank matrix, for any sequence
of rank-preserving preconditioner operators Mi, 1 ≤ i ≤ j, there is at least one nonsingular matrix
Mj ∈ Cn×n such that

Zj = MjVj (2.4.4)

holds.
5 because range (T) ⊂ K�

` (AM , B) according to Corollary 2.3.2, we know that range (X) ⊂ MK�
` (AM , B); thus

MK�
` (AM , B) is a more suitable correction subspace than K�

` (AM , B)

14 CHAPTER 2. INTRODUCTION TO BLOCK ITERATIVE SOLVERS

Proof. One example of such a matrix is

Mj =
[
Zj Z ⊥j

] [
Vj V ⊥j

]−1

where Z ⊥j (respectively V ⊥j) is the orthogonal complement of Zj (respectively Vj) in Cn.

Lemma 2.4.2 also implies that there is a matrix Mi such that

Zi = MiVi

for every 1 ≤ i ≤ j. We prefer the notation on (2.4.4) over the one in (2.4.3) throughout this thesis, but
they are equivalent.

Both flexible and fixed preconditioners are relevant and widely applied, and the choice between either
is problem dependent. Perhaps the most well known class of fixed preconditioners are the incomplete fac-
torizations [109, Chapter 10]. Concerning variable preconditioners we can exemplify inner-outer iteration
methods (see [113]). Quoting [113] about variable preconditioners, “one can also consider preconditioners
which might improve using information from previous iterations” (see [8, 48, 75]). Because the variable
preconditioner also covers fixed preconditioner and unpreconditioned case, in this whole thesis we con-
sider that a variable preconditioner is being used unless otherwise noted, and we always suppose that the
matrices Mi ∈ Cn×n, 1 ≤ i ≤ j as well as Mj were properly chosen.

The block Krylov correction subspace using a variable preconditioner is thus introduced as follows

Zj = span
{[
M1B M2AM1B ... MjA...AM2AM1B

]}
, (2.4.5)

for a given sequence of nonsingular preconditioning matrices Mi ∈ Cn×n. It is not trivial to write (2.4.5)
as a (block) Krylov subspace, but the following theorem shows that if the sequence of preconditioning
operators Mi is rank-preserving this is always possible.

Theorem 2.4.3. Define the sj-dimensional subspaces

Zj = span
{[
M1B M2AM1B ... MjA...AM2AM1B

]}
,

where the sequence of variable preconditioners Mi ∈ Cn×n, 1 ≤ i ≤ j is rank-preserving (see Defini-
tion 2.4.1). There is always a nonsingular matrix Mj ∈ Cn×n such that

Zj = MjK�
j (AMj , B).

Proof. For the theorem to be proved, there should be a matrix Mj ∈ Cn×n such that the subspace

Zj = MjK�
j (AMj , B)

= Mj × span
{[
B AMjB . . . (AMj)

j−1B
]}

equals (2.4.5). One possible case in which this is true is when there is a matrix Mj such that all the
equalities

MjB = M1B

MjAMjB = M2AM1B

Mj(AMj)
2B = M3AM2AM1B

...

Mj(AMj)
j−1B = MjA . . .M3AM2AM1B

(2.4.6)

2.4. PRECONDITIONING THE CORRECTION SUBSPACE 15

hold. However, substituting the first equality in the subsequent, we can rewrite the requirement as

MjB = M1B

MjAM1B = M2AM1B

MjAMjAM1B = M3AM2AM1B

...

Mj(AMj)
j−2AM1B = MjA . . .M3AM2AM1B.

Substituting the second equality on the subsequent, and doing so recursively implies that this requirement
can be written as

MjB = M1B

MjAM1B = M2AM1B

MjAM2AM1B = M3AM2AM1B

...
MjA . . .M3AM2AM1B = MjA . . .M3AM2AM1B.

Denoting S̆k = AMk−1 . . . AM1B, for 1 < k < j and S̆1 = B we finally have that

MjS̆1 = M1S̆1

MjS̆2 = M2S̆2

MjS̆3 = M3S̆3

...

MjS̆j = MjS̆j .

This means that we are looking for a nonsingular matrix Mj such that

Mj

[
S̆1 S̆2 . . . S̆j

]
=
[
M1S̆1 M2S̆2 . . . MjS̆j

]
. (2.4.7)

Because we assumed that the sequence of variable preconditioners Mi ∈ Cn×n is rank-preserving,

rank

([
S̆1 S̆2 . . . S̆j

])
= rank

([
M1S̆1 M2S̆2 . . . MjS̆j

])
allowing us to use Lemma 2.4.2 to show that there is always a nonsingular matrix Mj such that (2.4.7)
holds, proving the theorem.

The following corollary is another way to state Theorem 2.4.3.

Corollary 2.4.4. Define the sj-dimensional subspaces

Zj = span
{[
M1B M2AM1B ...,MjA...AM2AM1B

]}
,

where the sequence of variable preconditioners Mi ∈ Cn×n is rank-preserving (see Definition 2.4.1). There
is always a nonsingular matrix Tj ∈ Cn×n such that

Zj = K�
j (TjA,Z1).

where Z1 = M1B.

16 CHAPTER 2. INTRODUCTION TO BLOCK ITERATIVE SOLVERS

Proof. Analogous to Theorem 2.4.3.

To the best of our knowledge Theorem 2.4.3 (followed by Corollary 2.4.4) is the first demonstration on
how to describe subspaces of the form (2.4.5) as a (block) Krylov subspace for both single and multiple
right-hand side case, being one of the main theoretical contributions of this chapter of the thesis.

Notice that Corollary 2.4.4 clarifies what was stated in [114, p.27] for the single right-hand side case:
“there may not exist any Krylov subspace containing Zj”. In fact, the proof of Theorem 2.4.3 relies on
the rank-preserving assumption of the variable preconditioner, and in a general case, we do not guarantee
that Zj can be written as a block Krylov subspace. Although theoretically speaking this assumption is
rather strong, in practice, a rank-deterioration rarely happens due to the preconditioner application, thus
justifying our assumption.

Also, it is not trivial to define the concept of block grade (cf. Corollary 2.3.2) for a flexibly precondi-
tioned (block) Krylov subspace because the matrix Mj changes every time we expand the subspace Zj .
i.e

Zj = MjK�
j (AMj , B) but Zj+1 6⊂MjK�

j+1(AMj , B).

However, as long as the subspace Zj grows with j, the respective MBR method is convergent (cf. [114,
p.27]). In practice, when using a variable preconditioner, we expect to build a variable preconditioned
block Krylov subspace such that

range (X∗) ⊂MkK�
k (AMk, B) ⊂ K�

` (A,B)

where dim(MkK�
k (AMk, B)) < dim(K�

` (A,B)) but such inequality holds only if the variable precondi-
tioning matrices Mi were properly chosen, and such a choice is highly problem dependent.

We rewrite Proposition 2.3.3 for the flexibly preconditioned case.

Proposition 2.4.5. At each iteration j of a MBR method using

Zj = span
{[
M1B M2AM1B ... MjA...AM2AM1B

]}
, (2.4.8)

as correction subspace for a given sequence of rank-preserving variable preconditioning nonsingular matri-
ces Mi ∈ Cn×n, it holds that a linear combination of p− pj solutions lies inside Zj.

Proof. Thanks to Theorem 2.4.3 we know that Zj = MjK�
j (AMj , B) for some nonsingular matrix Mj ∈

Cn×n. Thus

dim
(

range (B) ∩AMjK�
j (AMj , B)

)
= dim

(
range (B)

)
+ dim

(
AMjK�

j (AMj , B)
)

− dim
(

range (B) +AMjK�
j (AMj , B)

)
But

range (B) +AMjK�
j (AMj , B) = K�

j+1(AMj , B).

Moreover from the nonsingularity of AMj we have that

dim
(
AMjK�

j (AMj , B)
)

= dim
(
K�
j (AMj , B)

)
therefore,

dim
(

range (B) ∩AMjK�
j (AMj , B)

)
= dim

(
range (B)

)
+ dim

(
K�
j (AMj , B)

)
− dim

(
K�
j+1(AMj , B)

)
= p+ sj − dim

(
K�
j+1(AMj , B)

)
.

2.5. THE BLOCK ARNOLDI ALGORITHM 17

To find out the dimension of K�
j+1(AMj , B) we use once again the rank-preserving assumption of the

variable preconditioner. It holds that

Zj+1 = span
{[
M1B M2AM1B ... Mj+1AMj ...AM1B

]}
and

K�
j+1(AMj , B) = range (B) +AMjK�

j (AMj , B) = range (B) +AZj

= span
{[
B AM1B AM2AM1B ... AMj ...AM1B

]}
.

Because of the rank-preserving assumption on the variable preconditioner, we conclude that dim(Zj+1) =
dim(K�

j+1(AMj , B)), and as so

dim
(

range (B) ∩AMjK�
j (AMj , B)

)
= p+ sj − dim

(
K�
j+1(AMj , B)

)
= p+ sj − sj+1

= p− pj .

Again from the nonsingularity of A, we obtain

p− pj = dim

(
range

(
A−1B

)
∩MjK�

j (AMj , B)

)
= dim

(
range (X∗) ∩ Zj

)
where X∗ denotes the exact solution of AX = B, finalizing the proof.

Although the unpreconditioned case shown in Proposition 2.3.3 can be found in other publications (cf.
[103]), Proposition 2.4.5 is new to the best of our knowledge. This result will be used in Section 3.6.

For a detailed study over variable preconditioners for iterative solvers, we recommend the reading of
[107, §9.4], [113, 105, 27, 23].

2.5 The Block Arnoldi Algorithm
As mentioned previously, looking for an approximate solution inside the (preconditioned) block Krylov
subspace is a common strategy. However, the (block) Krylov basis can be very ill-conditioned if it is
built naïvely according to its definition (2.3.3) and it is desirable to construct an orthonormal basis to
K�
j (A,B) (or K�

j (AMj , B)) for stability reasons. We refer to [78] for a deep study on the conditioning
of Gram-Schmidt-based algorithms for generating orthonormal bases and its stability when considering
finite precision arithmetic.

We consider that the reader is familiar with variable preconditioners and preconditioned Arnoldi al-
gorithm (as in [107, p.256]). We introduce now the block flexible Arnoldi method (Algorithm 2.5.1) and
the block flexible Arnoldi iteration (Algorithm 2.5.2), which are commonly used not only for generating a
stable orthonormal basis for a block Krylov subspace, but also in a number of applications such as solving
eigenvalues problems (see [79, 122] for instance).

Remark 2.5.1. Algorithm 2.5.2 is presented such that it will remove linear dependent columns of S (if
any; cf. line 5 of Algorithm 2.5.2) ensuring thus that Vj+1 has full rank: a rank-revealing QR (RRQR)[17]
algorithm would be used to determine both the deficiency nj and the decomposition SΠc = QT (with Πc

designing a column permutation matrix). In the literature, removing the linear dependent columns of S
is called “Arnoldi deflation” [64].

As discussed later, a deficiency of S characterizes a breakdown in the block Arnoldi procedure. We
will show in Section 3.6 that this behaviour is rare in practice because it means that a linear combination
of p − pj exact solutions has been found. Thus it is more realistic to consider that the relations nj = 0
and pj = p do hold for every iteration j. Consequently a standard QR decomposition based on modified
Gram-Schmidt is then used instead. �

18 CHAPTER 2. INTRODUCTION TO BLOCK ITERATIVE SOLVERS

Algorithm 2.5.1: Block flexible Arnoldi

1 Compute the QR decomposition B = V1Λ0 obtaining n0 = null (B) = 0, p0 = rank (B) = p,
V1 ∈ Cn×p0 and Λ0 ∈ Cp0×p;

2 Define s0 = 0, and V1 = V1;
3 for j = 1, ... do
4 Apply one block flexible Arnoldi iteration (Algorithm 2.5.2)
5 end for

Algorithm 2.5.2: Block flexible Arnoldi iteration: completion of Zj ∈ Cn×sj , Vj+1 ∈ Cn×(sj+pj),
Hj ∈ C(sj+pj)×sj with Vi, Zi ∈ Cn×pi−1 for 1 ≤ i ≤ j, such that (Vj+1)HVj+1 = I

1 Zj = MjVj ;
2 S = AZj ;
3 Hj = V H

j S, where Hj ∈ C(sj−1+pj−1)×pj−1 ;
4 S = S − VjHj ;
5 Compute the QR decomposition S = Vj+1Hj+1,j obtaining nj = null (S), pj = pj−1 − nj ,
Vj+1 ∈ Cn×pj and Hj+1,j ∈ Cpj×pj−1 ;

6 Define sj = sj−1 + pj−1, kj+1 = pj ;
7 Define Zj =

[
Z1 ... Zj

]
, Vj+1 =

[
V1 ... Vj+1

]
;

8 Define Hj =

[
Hj−1 Hj

0pj×sj−1 Hj+1,j

]
, or H1 =

[
H1

H2,1

]
if j = 1;

Remark 2.5.2. Steps 3 and 4 of Algorithm 2.5.2 amount for the orthogonalization of the basis, which
may lack of stability if not performed properly. Indeed in Algorithm 2.5.2 we just present a naïve per-
spective for the sake of clearness, and an advanced method is suggested for such orthogonalization when
implementing this method in practice. Examples cover CGS2 (Classical Gram-Schmidt with reorthogo-
nalization), or BMGS (block Modified Gram-Schmidt) or Ruhe’s variant of BMGS [104]. We refer to [59]
and [78, Chapter 1] for a deep study on the stability of these methods. �

Proposition 2.5.3. After j iterations of Algorithm 2.5.1, it holds that

range
(
Vj
)

= K�
j (AMj , B)

range
(
Zj

)
= MjK�

j (AMj , B)
(2.5.1)

for some nonsingular matrix Mj ∈ Cn×n representing the action of the variable preconditioner up to
iteration j. Moreover, Vj ∈ Cn×sj is a full rank orthonormal matrix, and Zj ∈ Cn×sj has full rank.

Proof. It is easy to infer from Algorithm 2.5.2 that

VjHj,j−1 = (I − Vj−1V
H
j−1)AMj−1Vj−1 (2.5.2)

for every j ≥ 2, and because VjHj,j−1 arises from an economic QR decomposition, it always holds that

range(VjHj,j−1) = range(Vj).

for every j ≥ 2. From line 1 of Algorithm 2.5.1 we find that range (V1) = range (B).
We prove then that

range
(
Vj
)

= range
(
AMj−1...AM1B

)
− range

(
Vj−1

)
(2.5.3)

for every j ≥ 2. From (2.5.2), we find that

V2H2,1 = (I − V1V
H

1)AM1V1.

2.5. THE BLOCK ARNOLDI ALGORITHM 19

and thus

range (V2) = range
(
V2H2,1

)
= range

(
(I − V1V

H
1)AM1V1

)
= range

(
(I − V1V

H
1)AM1B

)
= range (AM1B)− range (V1)

Assuming it is correct for j − 1, we find out that

range
(
Vj
)

= range
(
VjHj,j−1

)
= range

(
(I − Vj−1V

H
j−1)AMj−1Vj−1

)
= range

(
(I − Vj−1V

H
j−1)AMj−1...AM1B

)
= range

(
AMj−1...AM1B

)
− range

(
Vj−1

)
proving (2.5.3) by induction. Using this knowledge for every j show us that

range
(
Vj
)

= range
([
V1 V2 . . . Vj

])
= range (V1) + range (V2) + . . .+ range

(
Vj
)

= range (B) + range (AM1B) + range (AM2AM1B)

+ . . .+ range
(
AMj−1...AM1B

)
= span

{[
B AM1B . . . AMj−1...AM1B

]}
.

In the very same fashion, noticing that Zj = MjVj by definition (and the rank-preserving assumption of
the variable preconditioner; see Definition 2.4.1), we obtain that

range
(
Zj

)
= span

{[
M1B M2AM1B . . . MjAMj−2...AM1B

]}
.

From Theorem 2.4.3 we know that there is always a nonsingular matrix Mj such that

range
(
Zj

)
= span

{[
M1B M2AM1B . . . MjAMj−2...AM1B

]}
= MjK�

j (AMj , B).

To show that range
(
Vj
)

= K�
j (AMj , B) we use the proof of Theorem 2.4.3. To satisfy both equalities

in (2.5.1) at once, a possibility is to find a nonsingular matrix Mj ∈ Cn×n such that all the equalities in
(2.4.6) hold as well as

AMjB = AM1B

AMjAMjB = AM2AM1B

AMj(AMj)
2B = AM3AM2AM1B

...

AMj(AMj)
j−2B = AMj−1A . . .M3AM2AM1B.

(2.5.4)

Using the nonsingularity of A, and multiplying from the left every equation in (2.5.4) by A−1 we verify that
all the conditions in (2.5.4) are already contained in (2.4.6), and thus, any nonsingular matrix Mj ∈ Cn×n
satisfying (2.4.6) also satisfies (2.5.4).

To finalize the proof, we highlight that Vj is orthonormal and full rank by construction, and that Zj

has full rank because of the assumption of a rank-preserving variable preconditioner.

20 CHAPTER 2. INTRODUCTION TO BLOCK ITERATIVE SOLVERS

To the best of our knowledge, Proposition 2.5.3 is the first proof that the block flexible Arnoldi
algorithm indeed generates a basis for a block Krylov subspace, being this one of the contributions of this
thesis. Even considering p = 1, we are unaware of such a demonstration in the flexible case, although for
a fixed preconditioner (or unpreconditioned case) this result is well-known.

Remark 2.5.4. We recall that we represent the application of the flexible preconditionerMj(.) on Vj
by MjVj , that is

Mj(Vj) = MjVj . (2.5.5)

However, in a general scenario

Mj(B) 6= MjB. (2.5.6)

In Proposition 2.5.3 we just clarify that there always exists a linear operator Mj such that the referred
subspaces are Krylov subspaces. �

Even though Vj is an orthonormal basis to the block Krylov subspace, Zj is not an orthonormal basis
to the correction subspace proposed in Section 2.4 though it is considered a reliable and stable basis
[107, 112]. We also note that applying the block Arnoldi algorithm is not equivalent to apply p times
the Arnoldi algorithm, because the later would generate p orthonormal basis to p different subspaces
but these bases need not to be orthonormal among each other. There is an extra computation effort
whenever we prefer the block methods. However, block methods can greatly improve the convergence by
using information from all subspaces simultaneously. There are also computational gains whenever we are
considering a massively parallel computation environment, but we detail this in the end of Chapter 3.

2.6 Breakdown in Block Arnoldi

In this subsection we define the generalization of the concept of Arnoldi breakdown, or happy breakdown
for block Arnoldi algorithm. We postpone some more generic proofs and concepts to Section 3.6 in
Chapter 3, and we present only some basic concepts here.

In line 5, if S has full rank (that is, nj = 0 and pj = pj−1), then Hj+1,j will be square and nonsingular.
In such case, we will have Vj+1 = SH−1

j+1,j which resembles the traditional Arnoldi algorithm for the single
right-hand side case, where Hj+1,j would be in fact ||S||2.

Again considering p = 1, the so called “happy breakdown” or “Arnoldi breakdown” is a situation in
which the Arnoldi algorithm can not proceed its execution because range (S) ⊂ range

(
Vj
)
. Since steps 3

and 4 of Algorithm 2.5.2 can be summarized as

S = (I − VjV
H
j)S,

at the beginning of step 5 of Algorithm 2.5.2 we will have S = 0. In the traditional Arnoldi algorithm for
single right-hand side, step 5 of Algorithm 2.5.2 is replaced by Vj+1 = SH−1

j+1,j , and thus, it generates a di-
vision by zero reason why this phenomena is called “breakdown”. This is, however, a “happy” breakdown in
the sense that, as mentioned previously (see Proposition 2.4.5), whenever range (S) ⊂ range(K�

j (A,B)) =
range(Vj) we can ensure that the solution X∗ lies inside Zj .

For the multiple right-hand side scenario, we have a similar concept. It is worthy to note that because
the QR decomposition always exists, Algorithm 2.5.2 never interrupts its execution, yet we still call such
phenomena “breakdown”.

Definition 2.6.1 (Partial Breakdown). At the j-th iteration of Algorithm 2.5.1, we say that nj partial
Arnoldi breakdowns (or simply partial breakdowns) have been detected. Whenever nj = pj−1, we say that
a full Arnoldi breakdown (or simply full breakdown) has been detected.

2.7. BLOCK GMRES 21

Figure 2.1: Representation of a block lower Hessen-
berg matrix with a band of p elements in its lower
off-diagonal.

Figure 2.2: Representation of Hj generated by Al-
gorithm 2.5.1 after the occurrence of a partial break-
downs at iteration i and anther in iteration k.

If we use Algorithm 2.5.1 for p = 1 we see that the concept of of breakdown as stated in Definition 2.6.1
also applies to the single right-hand side case, except that any breakdown is a full breakdown. Also, likewise
in the single right-hand side case, Algorithm 2.5.1 generates a decomposition which we formalize with the
following definition.

Definition 2.6.2 (Block Arnoldi Decomposition). Considering the notation in Algorithm 2.5.1 and
Algorithm 2.5.2, we refer to

AZj = Vj+1Hj (2.6.1)

as the block Arnoldi relation or block Arnoldi decomposition. �

Here we note that the matrix Hj is not an upper Hessenberg matrix as in the ordinary Arnoldi
decomposition. In case of no breakdown occurrence, Hj is block Hessenberg, that is, if no breakdown
occurred until iteration j, there is a band of width p of nonzeros below the main diagonal of Hj (see
Figure 2.1). Whenever a breakdown occurs in the block Arnoldi algorithm, the size of the diagonal block
decreases. Figure 2.2 shows a graphical representation of the Hj generated by Algorithm 2.5.2 supposing
that one breakdown occurred at iteration i and at iteration k.

2.7 Block GMRES

In this section we quickly present the Block GMRES (BGMRES) method first introduced by Vital in
[134]. Analogously to GMRES, BGMRES uses the block Arnoldi method (Algorithm 2.5.2) to generate a
block Arnoldi decomposition (Definition 2.6.2). The advantage of using a block Krylov subspace in this
case goes beyond ensuring that a solution will be found in a finite number of steps. In fact, the cost for
solving the problem (2.2.2) can be greatly decreased thanks to the block Arnoldi relation (2.6.1) .

Defining6

Λj =

[
Λj−1

0pj×p

]
∈ C(sj+pj)×p, ∀j ≥ 1,

we can write (2.2.2) as

min
range(X)⊂Zj

‖B −AX‖F = min
Y ∈Csj×p

∥∥B −AZjY
∥∥
F

= min
Y ∈Csj×p

∥∥Vj+1Λj − Vj+1HjY
∥∥
F

= min
Y ∈Csj×p

∥∥Λj −HjY
∥∥
F

6The matrix Λ0 ∈ Cp0×p is obtained from the first line of Algorithm 2.5.2

22 CHAPTER 2. INTRODUCTION TO BLOCK ITERATIVE SOLVERS

whose solution is given by

Yj = H †
j Λj . (2.7.1)

Since Hj ∈ C(sj+pj)×sj and (AZj) ∈ Cn×sj , as long as (sj + pj) < n it is more advantageous to solve
(2.7.1) than (2.2.5). Finally we set the approximate solution as

Xj = X0 + ZjYj .

Naturally BGMRES falls into Definition 2.2.2, and shares all the properties mentioned in Section 2.2.
For the sake of completion we present in Algorithm 2.7.1 a pseudocode for restarted block flexible GMRES
(BFGMRES).

Algorithm 2.7.1: Restarted block flexible GMRES (BFGMRES)

1 Choose an initial guess X0 ∈ Cn×p, a restart parameter m and define a convergence criterion and
its scaling matrix;

2 for cycle = 1, . . . ,m do
3 Compute the initial true block residual R0 = B −AX0;
4 Compute the QR decomposition R0 = V1Λ0 obtaining n0 = null (R0), p0 = p− n0, V1 ∈ Cn×p0

and Λ0 ∈ Cp0×p;
5 Define V1 = V1, s0 = 0 and s1 = p0;
6 for j = 1, . . . ,m do
7 Completion of Vj+1, Zj and Hj: Apply Algorithm 2.5.2 to obtain

AZj = Vj+1 Hj with Vj+1 =
[
V1, V2, . . . , Vj+1

]
, (2.7.2)

sj and pj , with Zj ∈ Cn×sj , Vj+1 ∈ Cn×(sj+pj) and Hj ∈ C(sj+pj)×sj ;

8 Set Λj ∈ C(sj+pj)×p as Λj =

[
Λj−1

0p×p

]
;

9 Set Yj ∈ Csj×p as the unique minimum Frobenius norm solution of the problem

min
Y ∈Csj×p

∥∥Λj −HjY
∥∥
F

(2.7.3)

;
10 if full convergence detected (see Definition 2.8.1) then break;
11 ;
12 end for
13 X0 = X0 + ZmYm;
14 end for

2.8 Convergence Criteria in MBR Methods

In this section we discuss a generalization to the multiple right-hand side scenario of common stopping
criteria known for the single right-hand side. In Definition 2.8.1 we propose the partial convergence, a key
concept which we explore in later sections and chapters.

The intention of MBR methods in most cases is not to find an exact solution for the problem AX = B,
but only an approximation according to a chosen criterion, usually relying on the norm of the scaled
residual, defined as

RjDj ,

2.8. CONVERGENCE CRITERIA IN MBR METHODS 23

where Dj ∈ Cp×p is a nonsingular “scaling matrix ”. The choice for Dj is application dependent, but
common choices are the relative residual criterion

DR
j =

1

‖R0e1‖2
1

‖R0e2‖2
. . .

1∥∥R0ep
∥∥

2

,

the backward error

DB
j =

1

‖A‖2
∥∥Xje1

∥∥
2

+‖R0e1‖2
. . .

1

‖A‖2
∥∥Xjep

∥∥
2

+
∥∥R0ep

∥∥
2

 ,

or the backward error with respect to A

DA
j =

1

‖A‖2
∥∥Xje1

∥∥
2

. . .
1

‖A‖2
∥∥Xjep

∥∥
2

 .

The relative residual criterion is constant over j, whereas the backward error and the backward error with
respect to A varies with j. For the sake of generality, we always consider a generic matrix Dj which may
or may not vary at each iteration j.

The goal of the algorithm is then to find a solution Xj such that∥∥(B −AXj)Dj

∥∥
F

=
∥∥RjDj

∥∥
F
≤ ε (2.8.1)

for a given threshold ε ≥ 0 (notice that if we set ε = 0 we are looking for Xj = X∗). Another possibility
rather than (2.8.1) is to look for an approximation of the solution Xj such that∥∥(B −AXj)Dj

∥∥
ψ

=
∥∥RjDj

∥∥
ψ
≤ ε (2.8.2)

but since satisfying (2.8.1) implies satisfying (2.8.2), for the moment we choose the former approach for
the sake of simplicity.

As mentioned earlier, during the execution of Algorithm 2.7.1 (or any MBR method), in some situations
it may be known that we have found the exact solution for a linear combination of right-hand sides, namely
when Rj is rank deficient. However, we are interested in finding approximations for the solution of a linear
combination of right-hand sides rather than the exact solution itself. In fact, according to equation (2.2.2)
in Definition 2.2.2, if

∥∥Bei −AX̄ei∥∥2
is large for i = k and small for all i 6= k, the Frobenius norm of Rj

will be at least as large as ‖Bek −AXek‖2, hiding the information that some of the linear systems might
have already converged.

Another possibility is to compute the norm of each individual column of the block residual and then
use the scaled residual for checking convergence individually for each one of them. However, again it
doesn’t give any information about the linear combination of the solution. The relative block residual

24 CHAPTER 2. INTRODUCTION TO BLOCK ITERATIVE SOLVERS

may happen to have two linear dependent columns (therefore Rj is rank deficient) and nothing guarantees
that the norm of those individual columns will be small.

For this reason we propose a “near-rank deficiency” of the block residual, based on a threshold ε
according to the following definition.

Definition 2.8.1 (Partial Convergence). If at the end of the j-th iteration of any MBR method there
is a full rank orthonormal matrix W ∈ Cp×t such that

∥∥RjDjW
∥∥
F
≤
√
t

p
ε

holds, then we say that t partial convergences have been detected at iteration j. If t = p (thus ||RjDjW ||F =
||RjDj ||F ≤ ε) we say that a full convergence has been detected at iteration j. �

2.9 Stagnation in BGMRES

In this section we propose a new generalization of the concept of stagnation for multiple right-hand side.
This concept will be used later on section Section 3.4.

When p = 1, it is commonly said that we have a stagnation in iteration j whenever

Rj = Rj−1.

This phenomenon implies a series of other conclusions for the single right-hand side case that are not
trivially extended to the multiple right-hand side case. To the best of our knowledge, a generalization of
this concept and these properties for multiple right-hand side has not been already addressed.

We propose in Definition 2.9.1 a new definition of stagnation for multiple right-hand side scenario,
and we dedicate the remaining of this section showing the equivalence of this definition with the single
right-hand side case, and showing that some common behaviours associated with the single right-hand
side stagnation are also analogous for this definition of stagnation.

Definition 2.9.1 (Partial Stagnation). Define

tj = pj − rank
(

(I − VjV
H
j)Rj

)
Whenever tj > 0 at the end of the j-th iteration of BFGMRES (Algorithm 2.7.1), we say that tj partial
stagnations have been detected at iteration j. If tj = pj then we say that a full stagnation has been
detected instead. �

With Proposition 2.9.3 and Proposition 2.9.4 we show some consequences of the occurrence of partial
stagnation according to Definition 2.9.1.

Lemma 2.9.2. Consider the j-th iteration of Algorithm 2.7.1 and define

(
Λj −HjYj

)
=

[
R̂sj
R̂pj

]
and

(
Λj−1 −Hj−1Yj−1

)
= R̂j−1

with R̂sj ∈ Csj×p, R̂pj ∈ Cp×p, R̂j−1 ∈ Csj×p, and assume that ni = 0, 1 ≤ i ≤ j . If null
(
R̂pj

)
= t, then

there exists an orthonormal matrix L1 ∈ Cp×t such that

R̂sjL1 = R̂j−1L1.

2.9. STAGNATION IN BGMRES 25

Proof. We write [
R̂sj
R̂pj

]
=

[
Λj−1

0

]
−
[
Hj−1 Hj

0 H(j+1,j)

][
Y sj
Y pj

]

with Y Tj = [(Y sj)T (Y pj)T], Y sj ∈ Csj−p×p, Y pj ∈ Cp×p. Then[
R̂sj
R̂pj

]
=

[
Λj−1 −Hj−1Y

s
j

0p×p

]
−

[
HjY

p
j

H(j+1,j)Y
p
j

]
and thus

R̂pj = −H(j+1,j)Y
p
j .

If null
(
R̂pj

)
= t then there is an orthonormal matrix L1 ∈ Cp×t such that

R̂pjL1 = −H(j+1,j)Y
p
j L1 = 0.

Because we assumed ni = 0, 1 ≤ i ≤ j, we have that H(j+1,j) is nonsingular, so that

H(j+1,j)Y
p
j L1 = 0 ⇐⇒ Y pj L1 = 0

and consequently [
R̂sj
R̂pj

]
L1 =

[
Λj−1 −Hj−1Y

s
j

0p×p

]
L1.

Noticing that Yj−1 solves the problem

min
Y ∈Csj−p×p

∥∥Λj−1 −Hj−1Y
∥∥
F

and the solution for this minimization is always unique, we deduce that Y sj L1 = Yj−1L1 and

R̂sjL1 =
(
Λj−1 −Hj−1Yj−1

)
L1 = R̂j−1L1

finalizing the proof.

Proposition 2.9.3. Suppose that each ni = 0 for 1 ≤ i ≤ j. Then, for every iteration j of Algo-
rithm 2.7.1 it holds that

dim
(

range
(
Rj
)
∩ range

(
Rj−1

))
= tj (2.9.1)

where tj is given in Definition 2.9.1.

Proof. Following the notation from Lemma 2.9.2, the following always holds

(In − VjV
H
j)Rj = (In − VjV

H
j)

[
Vj Vj+1

] [R̂sjj
R̂pj

]
= (In − VjV

H
j)VjR̂

sj
j + (In − VjV

H
j)Vj+1R̂

p
j

= Vj+1R̂
p
j ,

(2.9.2)

and therefore

tj = null
(

(In − VjV
H
j)Rj

)
= null

(
Vj+1R̂

p
j

)
= null

(
R̂pj

)
.

From Lemma 2.9.2 the proposition is proved.

26 CHAPTER 2. INTRODUCTION TO BLOCK ITERATIVE SOLVERS

The immediate consequence of Lemma 2.9.2 and Proposition 2.9.3 is that a stagnation implies that
the residual Rj is linear dependent with the residual Rj−1, that is, a linear combination of residuals did
not change from iteration j−1 to iteration j, establishing the connection between the multiple right-hand
side and the single right-hand side case.

The next proposition shows a result which is going to be particular useful in Section 3.4 later on.

Proposition 2.9.4. For every iteration j of Algorithm 2.7.1, it holds that

range
(
Vj+1

)
⊇ range

(
(In − VjV

H
j)Rj

)
. (2.9.3)

If no partial stagnation (see Definition 2.9.1) has occurred, then

range
(
Vj+1

)
= range

(
(In − VjV

H
j)Rj

)
. (2.9.4)

Proof. From (2.9.2) in the demonstration of Proposition 2.9.3 we already know that (2.9.3) holds.
If no partial stagnation occurs, then we have that

rank
(

(In − VjV
H
j)Rj

)
= pj

and since rank
(
Vj+1

)
= pj by definition, we prove (2.9.4).

2.10 Conclusions
In this chapter we have studied a generalization of the well known GMRES algorithm for multiple right-
hand side scenario, the block GMRES. We have developed a theoretical basis related to the subspaces being
spanned by BGMRES in the presence of a variable preconditioner. The result found in Theorem 2.4.3 is
new to the best of our knowledge even in the single right-hand side case. Some other new properties have
been demonstrated (e.g. Proposition 2.5.3 which is a consequence of Theorem 2.4.3).

We also determined a generalization of a set of concepts which are common in the single right-hand
side scenario, but not globally formalized for the multiple right hands side scenario (as Definition 2.6.1,
Definition 2.8.1 and Definition 2.9.1). Among those, we remark the definition of partial stagnation (cf.
Definition 2.9.1) which is not trivially deduced from the single right-hand side case. The importance of
these definitions will come clear as we advance in a more complex scenario, in Chapter 3.

Chapter 3

Deflation

3.1 Introduction
In the previous chapter we have studied Block GMRES (BGMRES) due to Vital [134] for solving the
problem AX = B, with A ∈ Cn×n nonsingular, B,X ∈ Cn×p where n� p and rank (B) = p. We extended
concepts common in the single right-hand side scenario for the block scenario, as partial convergence (when
a linear combination of approximate solutions is found rather than the approximate solution of the entire
block system) and the partial breakdown (which is basically a linear combination of happy breakdowns).
BGMRES has ever since been improved based on the assumption that a subspace of the correction subspace
can be discarded, a process called deflation [64, 78, 103]. It is recognized that to be effective in terms
of computational operations, block iterative methods must incorporate a deflation strategy [64], most
notably when a partial convergence is detected.

We briefly summarize now the most common deflation techniques available in the literature. In [23, 64,
78, 96] it is proposed the initial deflation. It consists in performing a block size reduction of the (scaled)
initial residual R0 relying on its (near) rank deficiency. BFGMRESD [23, 78, 96] computes

R0 = QT (QR decomposition)
TD0 = U+Σ+W

H
+ + U−Σ−W

H
− + (singular value decomposition) (3.1.1)

where all the singular values larger or equal than a threshold εd lie in Σ+ and those smaller lie in Σ−,
and D0 is the nonsingular scaling matrix. This gives raise to the low rank approximation of R0 as
Cn×k1 3 R̃0 = QU+Σ+W

H
+ . The algorithm then proceeds with one cycle of nonsingular BGMRES,

minimizing R̃0 − AX̃ rather than R0 − AX. The cost per iteration is thus reduced since every Vj has k1

columns instead of p. At the end of the said cycle, some manipulations are performed in order to retrieve
the approximate solution for the original problem. A truncated variant called BFGMREST [23, 78, 96]
allows the user to set a maximum number of columns allowed in R̃0 thus truncating the block initial
residual even if the singular values of the residual are not smaller than εd. This strategy aims at reducing
the memory requirements of the method when many right-hand sides are considered at once. Furthermore,
both BFGMRESD and BFGMREST are proposed for variable preconditioner scenario.

The BlMResDefl [64] uses a very similar technique, but relying on a rank-revealing QR decomposition
to obtain the decomposition

R0 =
[
V1 V ∆

1

] [Λ0

Λ∆
0

]
ΠH
c

(cf. [64, (12.1)]), where Πc is a permutation matrix responsible for reordering the columns of R0 such that
the elements in the diagonal of [(Λ0)T (Λ∆

0)T]T are given in nonincreasing order. BlMResDefl then sets
the new initial residual to V1Λ0 and proceeds executing one cycle of BGMRES algorithm, as BFGMRESD.

27

28 CHAPTER 3. DEFLATION

The BlMResDefl [64] proposes not only initial deflation techniques, but also the so called “Arnoldi
deflation”, already discussed in Remark 2.5.1. It consists of determining which columns of S in line 5 of
Algorithm 2.5.2 are linear dependent to ensure that Vj+1 is not rank deficient. In case of linear dependency,
these columns are removed from Vj+1 (characterizing thus the deflation), and the required manipulations
are performed over Hj . This deflation is reported in [64] to never become active in practical numerical
experiments.

In [103] a deflation technique similar to Arnoldi deflation is proposed for BGMRES-W, therein called
inexact (Arnoldi) breakdown. Supposing that no deflation was performed, BGMRES-W deflates whenever
S is near rank deficient, basing this choice on the singular values of Hj+1,j and a threshold εd. The
deflation incurs some modifications in the block Arnoldi iteration, and the subsequent deflation relies on
a submatrix of Hj instead of Hj+1,j . We refer the reader to [103] for more details. Nevertheless, as
the authors observe, BGMRES-W tends to deflate only at the end of the convergence history, and this
observation is confirmed in [76].

In the same publication [103], BGMRES-R is proposed as an alternative to BGMRES-W relying on
the singular values of the (scaled) residual Rj every iteration j. Similarly to BFGMRESD, it computes
a decomposition as (3.1.1) for Rj , and using a submatrix of U+ to choose which columns of Vj are going
to be carried out for the next block Arnoldi iteration, postponing the remaining ones. The postponed
columns are used in the block Arnoldi algorithm for orthogonalization purposes only. A FOM variant of
BGMRES-W and BGMRES-R can be found in [102], and further numerical experiments in [76].

Besides the aforementioned methods, strategies based on rank-revealing QR-factorizations [21] or sin-
gular value decomposition [60] have been notably proposed both in the Hermitian [89, 104] and non-
Hermitian cases [2, 9, 32, 54, 81, 92] for block Lanczos methods. They have been shown to be effective
with respect to standard block Krylov subspace methods, but since we are focusing on iterative methods
showing a minimal residual property for non-Hermitian problems, we do not focus on the study of these
methods.

Variable preconditioning is often required when solving large linear systems. This is notably the
case when inexact solutions of the preconditioning system using, e.g., nonlinear smoothers in multigrid
[96] or approximate interior solvers in domain decomposition methods [127, Section 4.3] are considered.
The combination of block methods performing deflation at each iteration and variable preconditioning
has been rarely addressed in the literature, although the combination of initial deflation with variable
preconditioning has been already explored in [96, 22, 23]. Thus the main purpose of this chapter is to
derive a class of flexible minimal block residual methods for non-Hermitian problems that incorporate
deflation at each iteration.

This chapter is organized as follows. In Section 3.2 we propose a generalization of the concepts
established in Chapter 2 aiming at a method able to judiciously choose which (block) Krylov directions
are interesting for expanding the correction subspace Zj every iteration j, to then present and re-interpret
a block iterative procedure firstly introduced in [103] which is able to build an orthonormal basis for the
chosen directions only (the “deflated block Arnoldi”). In Section 3.3 a general framework for deflated block
Krylov subspace methods is presented. We show that the resulting method (named “deflated minimal
block residual” method or DMBR for short) always minimizes the Frobenius norm of the block residual
and that the singular values of the scaled block residual are always nonincreasing. In Section 3.4 we
propose a criterion for choosing which directions to take into account when expanding Zj at iteration j,
which is mostly based on Section 2.9 as well as [103] and [78]. Then, in Section 3.6 we show that DMBR
using the proposed criterion never breaks down, thus guaranteeing convergence (considering a large enough
restart size) along with other properties. In Section 3.5 we use DMBR as a framework to describe existing
algorithms as BGMRES, BGMRES-R and BFGMRESD and in which situations these algorithms could
be considered as equivalent to DMBR. Then in Section 3.9 we demonstrate the effectiveness of DMBR on
three academic illustrations and one real life application, showing that in practical cases, none of these
methods are algebraically or numerically equivalent to DMBR. These conclusions are later extended with
further experiments in Section 4.6. Finally we draw some conclusions in Section 3.10.

3.2. DEFLATED BLOCK ARNOLDI 29

3.2 Deflated Block Arnoldi
In this section we present a generalization of the block Arnoldi method (cf. Algorithm 2.5.2 in Section 2.5),
which we call here “deflated block Arnoldi”, whose focus it to take into account Remark 2.2.9 to then
generate a basis of a subspace of smaller dimension.

The deflated block Arnoldi was firstly proposed in [103] although the authors do not define a specific
name for the method. The main idea is to redefine line 5 of Algorithm 2.5.1 to

S = Vj+1Hj+1,j +Qj with range
(
Qj
)
⊥ range

(
Vj+1

)
(3.2.1)

where Qj is chosen such that it takes into account the numerical rank in the QR factorization. It proceeds
orthogonalizing every Qi against Vj+1, obtaining Q̃j = (I −Vj+1V H

j+1)[Q1 ... Qj] and generating what
is called in [103] the inexact block Arnoldi relation

AZj = Vj+1L j + Q̃j

where L j = V H
j+1AZj (cf. [103, (26),(28)]). To obtain such a relation a series of other modifications is

required in the original block Arnoldi algorithm. We refer to [103, §5] and to Subsection 3.5.1 for more
details on BGMRES-R algorithm.

We propose in this section a reformulation of the deflated block Arnoldi to fit the discussion of Chap-
ter 2, specifically Section 2.2 (specially Remark 2.2.9) and Section 2.9. Also, in contrast with [103] in our
redefinition the criterion for splitting (3.2.1) is generalized and decoupled from the orthonormalization
procedure itself. We address possible criterion later in Section 3.4 and Section 3.7.

Letting Kj−1 ∈ Cn×pj−1 denote a full rank matrix whose range contains all the latest pj−1 Krylov
directions available at the end of iteration (j − 1) (with 1 ≤ pj−1 ≤ p), the most expensive part of
Algorithm 2.5.2 at the j-th iteration - when n is large - lies in the pj−1 applications of the preconditioner
(see line 1) and the subsequent pj−1 matrix-vector products (see line 2).

As discussed later in Section 3.4, subspaces of range
(
Kj−1

)
may no longer be needed for ensuring

convergence along the iterative procedure. The goal of deflated block Arnoldi is thus to exploit this
knowledge spanning a smaller correction subspace, avoiding preconditioner application and matrix-vector
products over the uninteresting directions, as well as reducing the orthogonalization cost for the next
iteration. Suppose that we are able to judiciously decompose range

(
Kj−1

)
into:

range
(
Kj−1

)
= range

(
Vj
)
⊕ range

(
Pj−1

)
,[

Vj Pj−1

]H [
Vj Pj−1

]
= Ipj−1

,
(3.2.2)

where Vj ∈ Cn×kj , Pj−1 ∈ Cn×dj with kj + dj = pj−1. For the sake of generality, having in mind the
notation established in Section 1.1, we define[

Vi Pi−1

]
= Vi, whenever di = 0, (3.2.3)

since Pi−1 is undefined in such a case, and we consider that d0 is always equal to zero.
At iteration j we consider the kj Krylov directions contained in range(Vj), while leaving aside (or

deflating) dj directions contained in range(Pj−1), performing matrix-vector products and preconditioner
applications only over the chosen kj directions of Vj . We show the j-th iteration of deflated block Arnoldi
method using a variable preconditioner in Algorithm 3.2.1.

As in standard block Arnoldi (cf. Algorithm 2.5.2), Algorithm 3.2.1 orthonormalizes AZj against Vj
but additionally against Pj−1 also (line 4 and 5 of Algorithm 3.2.1). Here also Remark 2.5.2 is applicable:
a naïve orthonormalization algorithm is presented in Algorithm 3.2.1, but a version of block Arnoldi due
to Ruhe [104] or block Householder orthonormalization [8, 123] could be used as well. Notice also that
whenever dj = 0, using (3.2.3), we find that one iteration of Algorithm 3.2.1 is equivalent to one iteration
of Algorithm 2.5.1, having kj = pj−1, Ĥj = Hj and V̂j+1 = Vj+1.

In Proposition 3.2.1 we show the flexible Arnoldi relation that is obtained when using the deflated
block Arnoldi procedure shown in Algorithm 3.2.1.

30 CHAPTER 3. DEFLATION

Algorithm 3.2.1: Deflated block flexible Arnoldi iteration: completion of Zj ∈ Cn×sj , V̂j+1 ∈ Cn×(sj+pj),
Ĥj ∈ C(sj+pj)×sj with Vi, Zi ∈ Cn×ki for 1 ≤ i ≤ j, such that (V̂j+1)H V̂j+1 = I

1 Receives
[
Vj Pj−1

]
∈ Cn×pj−1 with Vj ∈ Cn×kj and pj−1 = kj + dj where

[
V1 ... Vj Pj−1

]
is

orthonormal;
2 Zj = MjVj ;
3 S = AZj ;
4 Hj =

[
Vj Pj−1

]H
S, where Hj ∈ C(sj−1+pj−1)×kj ;

5 S = S −
[
Vj Pj−1

]
Hj ;

6 Compute the QR decomposition S = V̂j+1Hj+1,j obtaining nj = null (S), V̂j+1 ∈ Cn×(kj−nj) and
Hj+1,j ∈ C(kj−nj)×kj ;

7 Define sj = sj−1 + kj and pj = pj−1 − nj ;
8 Define Zj =

[
Z1 ... Zj

]
, V̂j+1 =

[
V1 ... Pj−1 V̂j+1

]
;

9 Define Ĥj =

[
Hj−1 Hj

0(kj−nj)×sj−1
Hj+1,j

]
, or Ĥ1 =

[
H1

H2,1

]
for j = 1 ;

Proposition 3.2.1. With the notation of Algorithm 3.2.1, given Zj−1 ∈ Cn×sj−1 ,Vj ∈ Cn×sj , Hj−1 ∈
C(sj−1+pj−1)×sj−1 ,

[
Vj Pj−1

]
∈ Cn×pj−1 and Vj ∈ Cn×kj , satisfying

AZj−1 =
[
Vj Pj−1

]
Hj−1

with sj = sj−1 +kj, pj−1 = kj +dj and [Vj Pj−1]H [Vj Pj−1] = I(sj+dj), after applying Algorithm 3.2.1
we obtain the block flexible Arnoldi relation

AZj = V̂j+1Ĥj . (3.2.4)

where V̂j+1 is orthonormal.

Proof. We can summarize one iteration of Algorithm 3.2.1 as

V̂j+1Hj+1,j =
(
I −

[
Vj Pj−1

] [
Vj Pj−1

]H)
AZj .

Taking Hj according to line 4 of Algorithm 3.2.1, the equation above lead us to

AZj = V̂j+1

[
Hj

Hj+1,j

]
and this together with the line 1 of Algorithm 3.2.1 yields[

AZj−1 AZj
]

=

[[
Vj Pj−1

]
Hj−1 V̂j+1

[
Hj

Hj+1,j

]]

A
[
Zj−1 Zj

]
=
[
Vj Pj−1 V̂j+1

] [Hj−1 Hj

0(kj−nj)×sj−1
Hj+1,j

]
AZj = V̂j+1Ĥj .

The orthonormality of V̂j+1 comes from the fact that we considered
[
Vj Pj−1

]
already orthonormal and

that V̂j+1 was orthonormalized using Classical Gram-Schmidt.

Notice that (3.2.4) is identical to the standard block flexible Arnoldi relation (cf. Definition 2.6.2)
except that Vj+1 and Hj are replaced respectively by V̂j+1 and Ĥj . Also, Algorithm 3.2.1 does not
address the choice of Pj−1 or how to define respectively Vj+1 and Hj from V̂j+1 and Ĥj for its next
iteration, which is intimately related to the splitting we mentioned in (3.2.2).

3.3. DEFLATED MINIMAL BLOCK RESIDUAL 31

3.3 Deflated Minimal Block Residual

We propose in this section the “deflated minimal block residual” method (hence, DMBR), as BGMRES-R
[103], uses the deflated block Arnoldi iteration (cf. Algorithm 2.5.2), to build an orthonormal basis for the
approximation subspace. We postpone to Section 3.5 a major comparison between DMBR and BGMRES-
R, but briefly mention here that the main difference is that DMBR is able to deflate at the beginning of
each iteration, whereas BGMRES-R can deflates only at the end of the iteration. For doing so, DMBR
performs an extra step while deflating. This difference between the methods gives raise to a considerably
different behaviour as we discuss in Section 3.5 and as we show in practice in Section 3.9.

Also in this section we introduce in our framework a unitary deflation matrix Fj whose dimension is
yet to be defined. The purpose of this matrix is to represent the action of reorganizing or recombining
the columns of a matrix according to a criteria to be established. For instance, letting K be any matrix
of proper dimensions, K is said to be undeflated whereas KFj is said to be deflated in the sense that
the first (or last) columns of KFj satisfy the chosen criteria (to be discussed in Section 3.4), allowing the
method itself to delete these last columns of KFj or to reuse them for a different purpose. Similarly, FH

j

can also be used to reorganize and recombine the rows of a matrix.
We introduce in Algorithm 3.3.1 a pseudocode for DMBR following the mentioned framework. Therein

the deflation is performed on V̂j+1 and reflected on the rows of Ĥj (cf. line 9-10 of Algorithm 3.3.1) as
in BGMRES-R, but in addition, the rows of Λ̂j are deflated, being this the reason why DMBR is able to
deflate at the beginning of each iteration. Also, as in BGMRES-R, because Fj is unitary its application
do not delete the direction which are not chosen, but simply postpone them. We remark that in [103] no
unitary deflation matrix as Fj is presented for BGMRES-R because the formulation of the methods are
different, but as we discuss later in Section 3.5, under certain conditions, both methods are algebraically
equivalent.

After applying the unitary deflation operator Fj in line 9 of Algorithm 3.3.1 during iteration j, we
obtain

AZj−1 = V̂jFjF
H
j Ĥj−1 =

[
Vj Pj−1

]
Hj−1 (3.3.3)

which is precisely the relation we need for the j-th iteration of Algorithm 3.2.1 to generate the decomposi-
tion (3.2.4). Also, thanks to the fact that Fj is unitary, we guarantee that [Vj Pj−1] is still orthonormal.

We show now that regardless of the choice of Fj and kj , DMBR minimizes the block residual over Zj .

Lemma 3.3.1. In Algorithm 3.3.1, at the end of the j-th iteration for any 1 ≤ j ≤ m and any chosen
unitary matrix Fj ∈ C(sj+dj)×(sj+dj), we have

R0 = V̂j+1Λ̂j .

Proof. For j = 0 it follows directly from line 4 of Algorithm 3.3.1 that the lemma is correct. Assuming it
is true for j = k − 1

V̂kΛ̂k−1 = R0,

recalling that every Fk is unitary, from Algorithm 3.3.1 we obtain

V̂k+1Λ̂k =
[
Vk Pk−1 V̂k+1

] [Λk
0(kk−nk)×p

]
(3.3.4)

=
[
Vk Pk−1

]
Λk (3.3.5)

= V̂kFkF
H
k Λk−1 (3.3.6)

= R0 (3.3.7)

proving by induction.

32 CHAPTER 3. DEFLATION

Algorithm 3.3.1: Restarted Flexible DMBR

1 Choose an initial guess X0 ∈ Cn×p, a restart parameter m and define a convergence criterion and
its scaling matrix;

2 for cycle = 1, . . . ,m do
3 Compute the initial block residual R0 = B −AX0;
4 V̂1Λ̂0 = R0 (thin QR decomposition) and determine p0 = rank (R0), with V̂1 ∈ Cn×p0 and

Λ̂0 ∈ Cp0×p;
5 Define s0 = 0 and H0Y0 = 0p0×p;
6 for j = 1, . . . ,m do
7 Choose the scalar 1 ≤ kj ≤ pj−1, set sj = sj−1 + kj and dj = pj−1 − kj ;
8 Choose the unitary deflation operator Fj ∈ C(sj+dj)×(sj+dj);
9 Update

[
Vj Pj−1

]
= V̂jFj , with Vj ∈ Cn×sj as the first sj columns of V̂jFj ;

10 Update Λj = FH
j Λ̂j−1 with Λj ∈ Csj×p and also Hj−1 = FH

j Ĥj−1 with Hj−1 ∈ Csj×sj (if
j > 1);

11 Completion of V̂j+1, Zj and Ĥj: Apply Algorithm 3.2.1 to obtain

AZj = V̂j+1 Ĥj with V̂j+1 =
[
V1, . . . , Vj , Pj−1, V̂j+1

]
(3.3.1)

as well as the constants pj and nj ;

12 Set Λ̂j ∈ C(sj+pj)×p as Λ̂j =

[
Λj

0(kj−nj)×p

]
;

13 Set Yj ∈ Csj×p as the unique minimal Frobenius norm solution to the problem

min
Y ∈Csj×p

∥∥∥Λ̂j − ĤjY
∥∥∥
F

(3.3.2)

;
14 if full convergence detected (see Definition 2.8.1) then break;
15 ;
16 end for
17 X0 = X0 + ZmYm;
18 end for

Thanks to Lemma 3.3.1 we can write the following proposition.

Corollary 3.3.2 (Block Residual Minimization). Consider that j iterations of Algorithm 3.3.1 have
been carried out in a given cycle for any chosen sequence of unitary matrices Fi and 1 ≤ ki ≤ pi−1, with
1 ≤ i ≤ j. Then ZjYj solves the problem

min
range (Z) ⊂ range

(
Zj

)‖R0 −AZ‖F . (3.3.8)

Proof. We rewrite the problem (3.3.8) as

min
Y ∈Csj×p

∥∥R0 −AZjY
∥∥
F
.

Using Lemma 3.3.1 and (3.3.1) we obtain∥∥R0 −AZjY
∥∥
F

=
∥∥∥V̂j+1Λ̂j − V̂j+1ĤjY

∥∥∥
F

=
∥∥∥Λ̂j − ĤjY

∥∥∥
F
.

3.3. DEFLATED MINIMAL BLOCK RESIDUAL 33

Since Yj is defined as the unique minimal Frobenius norm solution for this problem (see (3.3.2) in Algo-
rithm 3.3.1) and since such solution always exists, the corollary is proven.

Remarking that Rj = B−AXj = B−A(X0 +ZjYj) = R0−AZjYj , Corollary 3.3.2 shows that DMBR
method is in fact minimizing the block residual Rj over the entire range

(
Zj

)
+ range (X0) subspace,

regardless of the choice of Fj and kj . The following corollary follows directly from Corollary 3.3.2.

Corollary 3.3.3. Let Rj be the block residual generated at the j-th iteration of Algorithm 3.3.1 in a
given cycle. Then,

∥∥Rj∥∥F ≤∥∥Rj−1

∥∥
F
.

We can guarantee not only that the Frobenius norm is monotonically decreasing, but also the singular
values of the block residual as we show next.

Proposition 3.3.4. Let Rj be the residual at the end of the j-th iteration of Algorithm 3.3.1 in a given
cycle, and suppose that the sequence of preconditioners Mi ∈ Cn×n is rank-preserving. It holds that

σi(Rj) ≤ σi(Rj−1), 1 ≤ i ≤ p.

Proof. Due to the minimization property (see Corollary 3.3.2) we can write each Ri as

Ri = V̂i+1(Isi − ĤiĤ
†
i)Λ̂i

= V̂i+1Λ̂i − V̂i+1ĤiĤ
†
i V̂ H

i+1V̂i+1Λ̂i

= R0 − V̂i+1ĤiĤ
†
i V̂ H

i+1R0

= (In − V̂i+1Ĥi(V̂i+1Ĥi)
†)R0

= (In −AZi(AZi)
†)R0

Consider that we dispose of an orthonormal basis Wj to range
(
AZj

)
where Wj can be defined recursively

as Wj = [Wj−1 Wj],W1 = W1. Then using the idempotence property of projectors we obtain

Ri = (In −WiW
H
i)(In −WiW

H
i)R0

= (In −WiW
H
i)(In −Wi−1W

H
i−1 −WiW

H
i)R0

= (In −WiW
H
i)(Ri−1 −WiW

H
i R0)

= (In −WiW
H
i)Ri−1

From [71, Theorem 3.3.16], the proof is finished.

In fact, since Proposition 3.3.4 relies only on the orthogonality with respect to the updated basis,
it is in fact applicable to any block method presenting minimal residual properties, which comprises
BGMRES, DMBR, BGMRES-R among others. It is not applicable to BFGMRESD or BFGMREST
however, because these methods rely on a low rank approximation of the initial residual R0 which is
computed at the beginning of each cycle, characterizing thus a different scenario.

Let R(k)
j denote the true block residual obtained at the end of j-th iteration of the k-th cycle of

DMBR, where 1 ≤ j ≤ m (that is, the restart size is m). Because R(k+1)
0 = R

(k)
m , we can ensure also

that σi(R
(k+1)
1) ≤ σi(R

(k)
m) meaning that DMBR ensures the monotonically nonincreasing behaviour of

the singular values of the true block residual, not only along the iterations, but also along the cycles
regardless of the choice of Fj and kj , a property also present in BGMRES-R method. This property can
be easily extended to the Frobenius norm or the Euclidean norm of the true block residual, and could be
extended to any unitarily invariant norm, see [23, Section 3.3] for a similar proof related to block flexible
Krylov subspace methods with deflation performed at restart only.

The nonincreasing behaviour of the singular values will appear as particularly important when de-
termining the unitary deflation operator in Section 3.4. Also, although we can not guarantee that for
an arbitrary choice of Dj the singular values of RjDj will be also monotonically decreasing, for a fixed
Dj = D we trivially obtain that Proposition 3.3.4 also holds for RjD.

34 CHAPTER 3. DEFLATION

3.4 Choosing the Unitary Deflation Operator

In this section we discuss in detail a criterion for choosing the unitary deflation operator Fj , consist-
ing of a reformulation of the so called R-criterion proposed in [103, §5] for BGMRES-R, adapted to fit
the discussion in Definition 2.2.8 in Section 2.2 and our previous discussion on the decomposition Equa-
tion 3.2.2. We stress that in [103, §5] there is no mention of Fj introduced in Section 3.3, and that we
use this framework to be able to deduce different possibilities for deflation in block iterative solvers based
on BGMRES.

Generalizing Proposition 2.9.4 to DMBR and in view of (3.2.2), we obtain that

range
(
Kj

)
= range

(
(In − Vj−1V

H
j−1)Rj−1

)
∀j > 1

with range (K1) = range (R0). The BFGMRES method uses the whole range
(
Kj

)
to expand the correction

subspace (that is, it aims at setting
range

(
Zj
)

= AMjrange
(
Kj

)
, reminding that range

(
Kj

)
= range

(
Vj
)
in this setting when no partial

stagnation occurs, cf. Proposition 2.9.4) for iteration j, but as mentioned in Section 3.2 we want to be
able to judiciously split range

(
Kj

)
.

Recalling that Dj−1 is the chosen scaling matrix for iteration (j − 1) (cf. Section 2.8), consider that
we are at the beginning j-th iteration of Algorithm 3.3.1 and that dj > 0 was already chosen, and that
we dispose of the following thin singular value decomposition [60, p.72 §2.5.4](

Λ̂j−1 − Ĥj−1Yj−1

)
Dj−1 = (3.4.1)

[
U+ U−

] [Σ+ 0 0kj×(p−pj−1)

0 Σ− 0dj×(p−pj−1)

]WH
+

WH
−

WH
0

 = (3.4.2)

U+Σ+W
H
+ + U−Σ−W

H
− (3.4.3)

with U+ ∈ C(sj+dj)×kj , U− ∈ C(sj+dj)×dj , Σ+ ∈ Ckj×kj ,Σ− ∈ Cdj×dj , W+ ∈ Cp×kj , W0 ∈ Cp×(p−pj−1)

and W− ∈ Cp×dj where pj−1 = kj +dj , and the singular values are given in nonincreasing order. Knowing
that this gives us the thin singular decomposition of the scaled block residual as

Rj−1Dj−1 = V̂j
(
U+Σ+W

H
+ + U−Σ−W

H
−

)
,

and denoting R+
j−1 = Rj−1Dj−1W+ and R−j−1 = Rj−1Dj−1W−, we then conclude that∥∥∥R+

j−1

∥∥∥
F

=
∥∥Rj−1Dj−1W+

∥∥
F

=‖Σ+‖F∥∥∥R−j−1

∥∥∥
F

=
∥∥Rj−1Dj−1W−

∥∥
F

=‖Σ−‖F∥∥Rj−1Dj−1W0

∥∥
F

= 0

If ||Σ−||F <
√

(p− kj)/p ε where ε is the convergence tolerance, then we have found (p − kj) partial
convergence according to Definition 2.8.1. Namely, Xj−1[W− W0] is an approximate solution of AV =
B[W− W0].

In such a case, we no longer need to expand the correction subspace Zj−1 = range
(
Zj−1

)
targeting

further minimization of ||B[W− W0] − AX||F (which is associated to R−j−1 and the nullspace of the
residual) but only to further minimize ||BW+ −AX||F (which is related to R+

j−1).
Inspired by Proposition 2.9.4, the criterion proposed in [103] for choosing Fj consists thus in splitting

3.4. CHOOSING THE UNITARY DEFLATION OPERATOR 35

range
(
Kj

)
as

range
(
Vj
)

= range
(

(In − Vj−1V
H
j−1)R+

j−1

)
,

range
(
Pj−1

)
= range

(
(In − Vj−1V

H
j−1)R−j−1

)
,

range
(
Kj

)
= range

(
(In − Vj−1V

H
j−1)Rj−1

)
= range

(
Vj
)
⊕ range

(
Pj−1

)
.

If we further split the matrices

[
U+ U−

]
=

U+
k1

U−k1
U+
k2

U−k2
...

...
U+
kj−1

U−kj−1

U+
pj−1

U−pj−1

 ,

with U+
ki
∈ Cki×kj ,U−ki ∈ Cki×dj for 1 ≤ i ≤ (j − 1), U+

pj−1
∈ Cpj−1×kj and U−pj−1

∈ Cpj−1×dj , then

R+
j−1 = V̂jU+Σ+ =

(j−1)∑
i=1

ViU
+
ki

+
[
Pj−2 V̂j

]
U+
pj−1

Σ+

R−j−1 = V̂jU−Σ− =

(j−1)∑
i=1

ViU
−
ki

+
[
Pj−2 V̂j

]
U−pj−1

Σ−.

This directly drives us to the conclusion that

(In − Vj−1V
H
j−1)R+

j−1 =
[
Pj−2 V̂j

]
U+
pj−1

Σ+ (3.4.4)

(In − Vj−1V
H
j−1)R−j−1 =

[
Pj−2 V̂j

]
U−pj−1

Σ− (3.4.5)

and thus

range
(
Vj
)

= range

([
Pj−2 V̂j

]
U+
pj−1

)
range

(
Pj−1

)
= range

([
Pj−2 V̂j

]
U−pj−1

)
.

Let

FjT =
[
U+
pj−1

U−pj−1

]
be a full QR decomposition of [U+

pj−1
U−pj−1

] ∈ Cpj−1×pj−1 , with Fj ∈ Cpj−1×pj−1 and T ∈ Cpj−1×pj−1 .
One possible orthonormal basis of range

(
Vj
)
(or range

(
Pj−1

)
) can be obtained by simply setting Vj (or

Pj−1) as the first kj (or last dj) columns of [Pj−2 V̂j]Fj , i.e.[
Vj Pj−1

]
=
[
Pj−2 V̂j

]
Fj . (3.4.6)

With this particular choice of Vj and Pj−2, a natural choice for Fj such that line 9 of Algorithm 3.3.1
holds is

Fj =

[
Isj−1

0
0 Fj

]

36 CHAPTER 3. DEFLATION

yielding [
Vj−1 Pj−2 V̂j

]
︸ ︷︷ ︸

V̂j

[
Isj−1 0

0 Fj

]
︸ ︷︷ ︸

Fj

=

[
Vj−1

[
Pj−2 V̂j

]
Fj

]
,

=
[
Vj−1 Vj Pj−1

]
Naturally, this discussion is valid only for the case in which dj > 0, otherwise no deflation is needed

and setting Fj = Isj suffices. We finally formalize this criterion for determining Fj and choosing kj in
Algorithm 3.4.1.
Algorithm 3.4.1: Choosing Fj - Largest Singular Values of Rj−1Dj−1

1 Receive Rj−1Dj−1 =
[
Vj Pj−1

]
(Λ̂j−1 − Ĥj−1Yj−1)Dj−1 and the parameters 1 ≤ kmax ≤ pj−1 and

εd;
2 UΣWH = (Λ̂j−1 − Ĥj−1Yj−1)Dj−1 (Thin SVD) with U ∈ C(sj+dj)×pj−1 , Σ ∈ Cpj−1×p and
W ∈ Cp×p;

3 Choose k̃j such that σl(Rj−1Dj−1) ≥
√

1/p εd for all 1 ≤ l ≤ k̃j ;
4 Upj−1

= U(sj−1 + 1 : sj−1 + pj−1, 1 : pj−1), with Upj−1
∈ Cpj−1×pj−1 (that is, the pj−1 last rows of

U);
5 Define FjT = Upj−1

, (full QR Decomposition) with Fj ∈ Cpj−1×pj−1 ;
6 Set kj = min(k̃j , kmax);

7 Define Fj =

[
Isj−1

0
0 Fj

]
∈ C(sj+dj)×(sj+dj);

Remark 3.4.1. Even if no deflation has occurred until iteration (j−1) (that is, ki = p for 1 ≤ i ≤ (j−1)),
Algorithm 3.4.1 builds a matrix Fj which is different from the identity in a general scenario. In such
a case, we can then force Fj = Ipj for every iteration until a deflation happens, meaning that we are
neglecting the application of Fj in line 9 and line 10 since the respective subspaces remain the same. This
change aims at saving computational times. �

Remark 3.4.2. One disadvantage of Algorithm 3.4.1 is that when a partial stagnation occurs (cf.
Definition 2.9.1), then the block residual Rj−1 lacks of information concerning the last directions, that is

range
(
Kj

)
⊃ range

(
(In − Vj−1V

H
j−1)Rj−1

)
.

When a partial stagnation occurs, then Upj−1 is rank deficient in line 5 of Algorithm 3.4.1. Because
Algorithm 3.4.1 builds the Fj matrix out of a full QR decomposition, we still can guarantee that

range
(
Kj

)
= range

([
Pj−2 V̂j

])
= range

([
Vj Pj−1

])
.

(see also Proposition 3.4.3 ahead) even if a stagnation occurs, but we can not guarantee that the whole sub-
space of range

(
Kj

)
associated with R+

j−1 (respectively R−j−1) lies in range(Vj) (respectively range(Pj−1)).
We remark that a stagnation as in Definition 2.9.1 is a rare phenomenon1 and that it has not been observed
in our numerical experiments. Algorithm 3.4.1 never breakdowns, even in case of a full stagnation. �

The following discussion (Proposition 3.4.3 and Proposition 3.4.4) aims at showing that the subspace
dim(Zj) is monotonically increasing (cf. Corollary 3.4.5). The goal of such a proof is to satisfy the
condition previously established in Definition 2.2.1 for nested subspaces.

1a more common case would be a near stagnation, where the rank of (I − Vj−1V H
j−1)Rj−1 is computed using a threshold

εt. We do not address this situation in this thesis

3.4. CHOOSING THE UNITARY DEFLATION OPERATOR 37

Proposition 3.4.3. After j iterations of Algorithm 3.3.1 with Algorithm 3.4.1 for choosing each Fi,
1 ≤ i ≤ j, it holds that

rank
([
Vj Pj−1

])
= rank

([
Pj−2 V̂j

])
= pj−1,

where
[
Pj−2 V̂j

]
= V̂j if dj−1 = 0 or if j = 1.

Proof. Each V̂i has full rank and orthogonal to Pi−2 (if defined) by construction. To show that each Pi
has full rank whenever they are defined, we use a simple induction: P0 has full rank by construction. If
Pi−1 has full rank, then

[
Pi−1 V̂i+1

]
has full rank, and since Fi is unitary,

[
Vi+1 Pi

]
will be full rank,

completing the proof.

Proposition 3.4.4. After j iterations of Algorithm 3.3.1 with Algorithm 3.4.1 for choosing each Fi,
1 ≤ i ≤ j, it holds that

rank(V̂j+1) = rank(
[
Vj+1 Pj

]
) = sj + pj .

If additionally the sequence of variable preconditioners Mi, 1 ≤ i ≤ j is rank-preserving (cf. Defini-
tion 2.4.1), we can ensure that

rank
(
Ĥj

)
= rank

(
Hj

)
= sj .

Proof. Proposition 3.4.3 already states that rank (Vi) = pi for every 1 ≤ i ≤ j. Noting that each Vi is
orthogonal to Vj by construction with 1 ≤ i ≤ j, we find out that rank(Vj) =

∑j
i=1 ki = sj . This together

with Proposition 3.4.3 proves that rank(V̂j+1) = sj + pj .
Supposing that the sequence of variable preconditioning operatorsMi, 1 ≤ i ≤ j is rank-preserving, we

find that rank(V̂j+1Ĥj) = rank(AZj) = sj . Since V̂j+1 has full rank, rank(Ĥj) = sj and the proposition
is proven.

Corollary 3.4.5. Assume that j iterations of DMBR (Algorithm 3.3.1) with Algorithm 3.4.1 have
been performed in a given cycle, and that a full convergence has not been detected until iteration j. If
the sequence of variable preconditioners Mi, 1 ≤ i ≤ j is rank-preserving, then {Zi}ji=1 is a sequence of
nested subspaces, where each Zi = range(Zi), 1 ≤ i ≤ j.

Proof. This corollary is an implication of Proposition 3.4.3, Proposition 3.4.4 and the rank-preserving
assumption on the variable preconditioner. Because rank(Zj) = dim(Zj) = sj and also because Zi−1 ⊂
Zi 1 < i ≤ j by construction, we just have to show that si−1 < si 1 < i ≤ j. But si = si−1 + ki, and
ki ≥ 1 (cf. line 6).

Thanks to Corollary 3.4.5 we conclude that DMBR with Algorithm 3.4.1 spans a nested correction
subspace (as in Definition 2.2.1) and thus it can indeed be classified as a method belonging to the MBR
family of methods (cf. Definition 2.2.2). Before proceeding to the next section we establish one additional
relation concerning the correction subspace constructed by DMBR with Algorithm 3.4.1.

Proposition 3.4.6 (Block Krylov Subspace Membership). Consider that we have performed j iterations
of Algorithm 3.3.1 with Algorithm 3.4.1 for choosing each Fi in a given cycle, and that each Mi = M ,
1 ≤ i ≤ j, where M is an nonsingular square matrix. It holds that

range
(
V̂j+1

)
⊂ K�

j+1(AM−1, R0).

38 CHAPTER 3. DEFLATION

Proof. We have range
(
V̂1

)
⊂ K�

1 (AM−1, R0) = range (R0). Supposing that range
(
V̂j
)
⊂ K�

j (AM−1, R0)

we deduce that

range
(
V̂j+1

)
⊂ range

(
AM−1

j Vj

)
⊂ AM−1range

([
Vj Pj−1

])
= AM−1range

([
Pj−2 V̂j

]
Fj−1

)
⊂ AM−1K�

j (AM−1, R0)

⊂ K�
j+1(AM−1, R0),

proving the proposition.

Proposition 3.4.6 states that in the case of a fixed preconditioner case, DMBR spans a subspace
contained in a block Krylov subspace. However, in the flexible case, we do not guarantee that such a
property holds, or any statement analogous to Proposition 2.5.3. For instance, knowing that

range (R0) = range (V1)⊕ range (P0)

range
(
V̂2

)
= range

(
(I −

[
V1 P0

] [
V1 P0

]H
)AM1V1

)
it is clear that range

(
V̂2

)
⊆ span

{[
R0 AM1R0

]}
. But if Algorithm 3.4.1 sets

V2 = P0 and P1 = V̂2,

then

range
(
V̂3

)
⊆ span

{[
R0 AM1R0 AM2R0

]}
.

We could explore the existence of a matrix M̂2 ∈ Cn×n such that

range
(
V̂3

)
⊆ span

{[
R0 AM̂2R0

]}
.

instead, allowing the characterization of Zj as a subspace of a Krylov subspace, but this issue is beyond
the scope of this thesis, and it is subject for future studies.

This characterization of the correction subspace spanned by DMBR explains why its behaviour differs
from the behaviour of other similar methods, as BFGMRESD and BGMRES-R as well as BGMRES.
In fact, each one of these methods spans a different correction subspace, and after the first cycle there
is no guarantee that there is an intersection between the correction subspace spanned by each method,
explaining thus why their convergence behaviour tend to be significantly different when compared with
equivalent parameters. We explore with more details the difference between these methods in Section 3.5.

Lastly, the following corollary guarantees that if a fixed scaling matrix D is used, then the value of kj
is monotonically nonincreasing, not only along the iterations but also along the cycles.

Corollary 3.4.7. For every iteration j > 1 of DMBR (Algorithm 3.3.1) with Algorithm 3.4.1, if
Di = D for every 1 ≤ i ≤ j for a given square matrix D ∈ Cp×p, it holds that kj ≥ kj−1. This property
also holds along the cycles of DMBR.

Proof. This corollary is an implication of the choice of each kj in Algorithm 3.4.1 and Proposition 3.3.4.

Despite of the similarities between DMBR and BGMRES-R, the later cannot guarantee that Corol-
lary 3.4.7 holds along the cycles, but only within one cycle. That happens because BGMRES-R deflates
only in the end of each iteration, and as so it cannot choose k1 < p0. We discuss this and other differences
between these methods in Subsection 3.5.1, and we analyse the numerical experiments in Section 3.9.

3.5. CONNECTIONS WITH EXISTING METHODS 39

3.5 Connections With Existing Methods
In this section we discuss the similarities and disparities between DMBR and other methods published
in the literature. We show that most of these methods can be deduced from Algorithm 3.3.1 by simply
choosing Fj properly. In Subsection 3.5.1 we discuss the connections with BGMRES-R [103].

3.5.1 Connections with BGMRES-R
We now consider a comparison between DMBR and BGMRES-R [103]. For the sake of generality we
consider a variant with variable preconditioner even though in [103] the algorithm is considered in the
case of fixed preconditioner only. Recalling our previous discussion in the beginning of Section 3.2,
BGMRES-R generates the inexact (block) Arnoldi relation

AZj = Vj+1L j + Q̃j ,

where L j = V H
j+1AZj . Instead of storing Q̃j ∈ Cn×sj however, BGMRES-R uses a clever algebraic

manipulation storing the QR decomposition

Q̃j = PjGj ,

where Pj ∈ Cn×dj+1 and Gj ∈ Cdj+1×sj . Using our notation, without considering major algebraic details,
we state that

Hj =

[
L j

Gj

]
.

Moreover, BGMRES-R computes a Fj matrix according to Algorithm 3.4.1, and deflates V̂j+1 and Ĥj

at the end of every iteration. We show in Algorithm 3.5.3 a simplified pseudocode for both methods,
highlighting the differences.

Notice that in BGMRES-R, because there is no deflation at the beginning of the first iteration, it holds
that

FH
2 Λ̂1 =

[
Λ̂0

FH2 0(p0−n1)×p

]
=

[
Λ̂0

0p1×p

]
,

and thus, for every j we have that

FH
j+1Λ̂j = Λ̂j ,

that is, it is unnecessary to deflate Λ̂j in BGMRES-R. Both methods are thus algebraically equivalent
for every cycle in which DMBR chooses k1 = p0, and not equivalent otherwise. The lack of deflation at
the beginning of the first iteration of BGMRES-R brings some crucial drawbacks for BGMRES-R, as we
highlight next:

• When the deflations happen early in the convergence history. According to our numerical experi-
ments, this behaviour seems to be common among the tested problems. The value of kj tends to
quickly decrease in the first cycles, having km small (often equal to one) at the end of the cycle
(cf. Figure 3.1). Considering the extreme case in which km = 1, BGMRES-R then performs in the
following cycle p0 +m− 1 matrix vector and preconditioner applications, whereas DMBR performs
only m. Also, notice that in such a case [Vj Pj+1] has 2p0 +j columns in BGMRES-R and j+p0−1
columns in DMBR, meaning that BGMRES-R has a more expensive orthogonalization than DMBR.

• When the restart size m is small. Since in BGMRES-R k1 = p0, a small restart makes the afore-
mentioned behaviour more evident.

40 CHAPTER 3. DEFLATION

Algorithm 3.5.3: Comparison between DMBR and BGMRES-R
1 Choose X0, m and a convergence criterion with its scaling matrix;
2 for cycle = 1, . . . ,m do
3 Compute R0 = B −AX0;
4 V̂1Λ̂0 = R0 (thin QR decomposition);

DMBR
5a Define k1 = p0 and V1 = V̂1;
6a for j = 1, . . . ,m do
7a Choose kj and Fj ;
8a Deflate:

[
Vj Pj−1

]
= V̂jFj ;

9a Deflate: Λj = FH
j Λ̂j−1;

10a Deflate: Hj−1 = FH
j Ĥj−1;

11a Apply Algorithm 3.2.1 obtaining
AZj = V̂j+1Ĥj ;

12a Set Λ̂j =

[
Λj

0(kj−nj)×p

]
;

13a Solve: min
∥∥∥Λ̂j − ĤjY

∥∥∥
F
;

14a if full convergence detected then break;
15a ;
16a Choose kj+1 and Fj+1;
17a Deflate:

[
Vj+1 Pj

]
= V̂j+1Fj+1;

18a Deflate: Hj = FH
j+1Ĥj ;

19a end for

BGMRES-R
5b Define k1 = p0 and V1 = V̂1;
6b for j = 1, . . . ,m do
7b Choose kj and Fj ;
8b Deflate:

[
Vj Pj−1

]
= V̂jFj ;

9b Deflate: Λj = FH
j Λ̂j−1;

10b Deflate: Hj−1 = FH
j Ĥj−1;

11b Apply Algorithm 3.2.1 obtaining
AZj = V̂j+1Ĥj ;

12b Set Λ̂j =

[
Λ̂j−1

0(kj−nj)×p

]
;

13b Solve: min
∥∥∥Λ̂j − ĤjY

∥∥∥
F
;

14b if full convergence detected then break;
15b ;
16b Choose kj+1 and Fj+1;
17b Deflate:

[
Vj+1 Pj

]
= V̂j+1Fj+1;

18b Deflate: Hj = FH
j+1Ĥj ;

19b end for

20 Update R0 = B −AX0;
21 X0 = X0 + ZmYm;
22 end for

• When the number of right-hand sides p0 is large. Same as above.

One of the main novelties of DMBR over BGMRES-R is hence the deflation of Λ̂j , which allows the
deflation steps to take place in the beginning of the iteration while still minimizing the norm of the
true residual R0 − AXj . Other novelties we propose are the truncation (that is, setting kmax < p0 in
Algorithm 3.4.1) and the flexible preconditioner, as well as decoupling the deflation strategy from the
method itself (that is, allowing any unitary Fj to be chosen). We refer to Section 3.9 for more details on
the numerical experiments and the practical difference between the behaviour of the two methods.

3.5.2 Connections with BFGMRESD
We now consider now a comparison between DMBR and BFGMRESD (as well as BFGMREST) [23, 78,
96]. Recalling what was mentioned in the beginning of this chapter, BFGMRESD performs a block size
reduction of the (scaled) initial residual R0 relying on its (near) rank deficiency. Rewriting (3.1.1) with
our notation, BFGMRESD computes

R0 = V̂1Λ̂0 (QR decomposition) (3.5.1)

Λ̂0D0 = U+Σ+W
H
+ + U−Σ−W

H
− (singular values decomposition) (3.5.2)

where (3.5.2) has exactly the same dimensions as (3.4.1)-(3.4.3) (assuming H0Y0 = 0k1×p) and where D0

is the chosen nonsingular scaling matrix. Denoting the structures of BFGMRESD with a # superscript,
it then proceeds setting

Λ#
1 = Σ+W

H
+

V #
1 = V̂1U+.

3.5. CONNECTIONS WITH EXISTING METHODS 41

Notice however that during the first iteration of DMBR using Algorithm 3.4.1 we have that F1 =
F1 =

[
U+ U−

]
and thus

Λ1 =
[
U+ U−

]H
Λ̂0 =

[
Σ+W

H
+

Σ−W
H
−

]
D−1

0[
V1 P0

]
= V̂1

[
U+ U−

]
,

that is, V1 = V #
1 and the first k1 rows of Λ1 are equal to Λ#

1 D
−1
0 . Therefore, apart from the scaling, we

can rewrite BFGMRESD using DMBR framework: P0 is discarded as well as the last d1 rows of Λ1, and
p0 is defined as k1 and the deflation happens during the first iteration (or right before the first iteration).
We show in Algorithm 3.5.6 a comparison between both methods.

Algorithm 3.5.6: Comparison between DMBR and BFGMRESD
1 Choose X0, m and a convergence criterion with its scaling matrix;
2 for cycle = 1, . . . ,m do
3 Compute R0 = B −AX0;
4 V̂1Λ̂0 = R0 (thin QR decomposition);

DMBR
5a Choose k1 and F1;
6a Deflate:

[
V1 P0

]
= V̂1F1;

7a Deflate: Λ1 = FH
1 Λ̂0;

8a Discard P0 and last d1 rows of Λ1, and set
p0 = k1;

9a for j = 1, . . . ,m do
10a Choose kj and Fj ;
11a Deflate:

[
Vj Pj−1

]
= V̂jFj ;

12a Deflate: Λj = FH
j Λ̂j−1;

13a Deflate: Hj−1 = FH
j Ĥj−1;

14a Apply Algorithm 3.2.1 obtaining
AZj = V̂j+1Ĥj ;

15a Set Λ̂j =

[
Λj

0(kj−nj)×p

]
;

16a Solve: min
∥∥∥Λ̂j − ĤjY

∥∥∥
F
;

17a if full convergence detected then break;
18a ;
19a end for

BFGMRESD
5b Choose k1 and F1;
6b Deflate:

[
V1 P0

]
= V̂1F1;

7b Deflate: Λ1 = FH
1 Λ̂0;

8b Discard P0 and last d1 rows of Λ1, and set
p0 = k1;

9b for j = 1, . . . ,m do
10b Choose kj and Fj ;
11b Deflate:

[
Vj Pj−1

]
= V̂jFj ;

12b Deflate: Λj = FH
j Λ̂j−1;

13b Deflate: Hj−1 = FH
j Ĥj−1;

14b Apply Algorithm 2.5.1 obtaining
AZj = Vj+1Hj ;̂|;

15b Set Λj =

[
Λj

0(kj−nj)×p

]
;

16b Solve: min
∥∥Λj −HjY

∥∥
F
;
∥∥∥̂|∥∥∥;

17b if full convergence detected then break;
18b ;
19b end for

20 Update R0 = B −AX0;
21 X0 = X0 + ZmYm;
22 end for

Thus one cycle of DMBR is algebraically equivalent to BFGMRESD only when no deflation occurs (in
which case both algorithms are equivalent to BFGMRES). This happens because BFGMRESD generates
a different correction subspace, since it discards P0 and does not orthogonalize V2 against it.

Another remark is that the truncation of Λ#
1 means in other words that the least squares problem

minimizes only (a linear combination of) k1 columns of the true block residual Rj (namely those which
did not converge yet) neglect the remaining ones, which is what we are aiming for in a deflated scenario.
This is however not true in the case of BFGMREST, which consists of BFGMRESD where kmax < p0.
BFGMREST truncates Λ#

1 even if the singular values of the scaled true residual are not small, meaning
that BFGMREST potentially neglect (a linear combination of) columns of Rj which did not converge yet.

As demonstrated in Section 3.4, this is not the case for DMBR, which always minimizes the norm of
the whole true block residual Rj every iteration, regardless of the chosen kj or kmax. This behaviour is one

42 CHAPTER 3. DEFLATION

of the main contributions of DMBR over BFGMREST for the case of truncated scenario, and has shown
to provide a considerable computational gain in our numerical experiments. Naturally, another feature
present in DMBR and not in BFGMRESD or BFGMREST is the possibility of deflation every iteration.

3.6 Breakdown in DMBR
In this section we continue the study of breakdowns initially mentioned in Section 2.6. We focus on the
possibility of occurrence of a breakdown during the execution of DMBR (Algorithm 3.3.1) with Algo-
rithm 3.4.1. We show that the study of breakdowns in DMBR is relevant mainly from the theoretical
point of view, since they are associated with the computation of the exact solution (or a linear combina-
tion of exact solutions), and the method tends to present a full convergence before the occurrence of any
partial breakdown in most practical cases. Because DMBR can be perceived as a generalization of Block
GMRES presented in Section 2.7, this section covers both cases.

The concept of (partial) breakdown we use for the deflated scenario is identical to the one used for the
undeflated scenario (cf. Definition 2.6.1 in Section 2.6), but we reproduce it here for convenience.

Definition 3.6.1 (Partial Breakdown). At the j-th iteration of Algorithm 3.2.1, we say that nj partial
Arnoldi breakdowns (or simply partial breakdowns) have been detected. Whenever nj = pj−1, we say that
a full Arnoldi breakdown (or simply full breakdown) has been detected.

The following theorem aims at showing that any breakdown in DMBR with Algorithm 3.4.1 is indeed
a “beneficial” breakdown.

Theorem 3.6.2. After j iterations of DMBR (Algorithm 3.3.1) with Algorithm 3.4.1 if the sequence
of variable preconditioners Mi, 1 ≤ i ≤ j is rank-preserving (cf. Definition 2.4.1), then the exact solution
of at least p− pj linear combinations of systems is already known.

Proof. Due to the assumption of rank preservation of Zj , we know from Proposition 3.4.4 that rank(Ĥj) =

sj . Using Lemma 3.3.1 and remarking that Yj = Ĥ †
j Λ̂j , we find that

Rj = V̂j+1

(
Λ̂j − ĤjYj

)
= V̂j+1

(
I(sj+pj) − ĤjĤ

†
j

)
Λ̂j

Thanks to Proposition 3.4.4, V̂j has full rank and we thus conclude that

rank
(
Rj
)

= rank

((
I(sj+pj) − ĤjĤ

†
j

)
Λ̂j

)
.

It is known that (I(sj+pj) − ĤjĤ
†
j) is the orthogonal projector onto the orthogonal complement of Ĥj ,

whose dimension is pj . In such a case, the projection of the p columns of Λ̂j onto such subspace could not
possibly span a subspace of dimensions larger than pj , and we can ensure that

rank
(
Rj
)

= rank

((
I(sj+pj) − ĤjĤ

†
j

)
Λ̂j

)
≤ pj ,

proving that null(Rj) ≥ p− pj . From Property 2.2.7 the proof is completed.

Corollary 3.6.3. For every iteration j of Algorithm 3.3.1 with Algorithm 3.4.1 for choosing each Fi,
1 ≤ i ≤ j, it holds that rank

(
Rj
)
≤ pj.

Corollary 3.6.4. If a full breakdown has been found in j iterations of Algorithm 3.3.1 with Algo-
rithm 3.4.1 for choosing each Fi, 1 ≤ i ≤ j, then range (X∗) ⊂ Zj.

3.7. ALTERNATIVE Fj FOR LARGE P 43

Theorem 3.6.2 shows that any occurrence of a breakdown can be considered to be the analogous of the
“happy breakdown” for the single right-hand side case. Also it links the occurrence of a partial breakdown
with the rank deficiency of the block residual Rj .

Remark 3.6.5. Note here that partial breakdowns do not stop the execution of the algorithms, and
all the previous properties still hold. Only the full breakdown forces the algorithm to stop since it does
not exist 1 ≤ kj ≤ pj−1 = 0 in line 7 of Algorithm 3.3.1.

We have shown that DMBR with Algorithm 3.4.1 will always converge to the exact solution if the
restart size is large enough. However, in practice we are not looking for the exact solution (nor can we
afford a restart size as large as n or ` in most cases) but for a full partial convergence (cf. Definition 2.8.1).
Unless we are considering ε being close to the machine precision, the partial breakdown phenomena is
rather uncommon since the algorithm tends to find an approximation satisfying Definition 2.8.1 before
the block true residual shows an exact rank deficiency.

3.7 Alternative Fj for large p

The objective of this section is to propose a computationally cheaper alternative criterion for choosing Fj

instead of Algorithm 3.4.1, which preserves some of the previously discussed properties of DMBR. The
criterion we propose in this section is purely academic and we were unable to find a real life application
in which the use of such a criterion is advised, reason why we briefly discuss this criterion exclusively in
this section.

When the assumption n � p does not hold, using Algorithm 3.4.1 may be prohibitive due to the
singular value decomposition involving (Λ̂j − ĤjYj), which has dimension (sj + p) × p. It is possible to
choose an inferior but cheaper deflation criterion, only assuming that it is possible to perform the QR
decomposition in line 4 of Algorithm 3.3.1 (which may be as well prohibitive for large values of p). For
the sake of simplicity, in this section we always consider that pj = p.

Suppose that Fi = Ip, ∀i < j− 1 (that is, no deflation has been performed so far) in DMBR. Consider
that we dispose of a permutation matrix Tj−1 ∈ Cp×p such that the scalars

τ ij−1 =
∥∥∥Rj−1Dj−1Tj−1e

i
∥∥∥

2
(3.7.1)

=
∥∥∥(Λ̂j−1 − Ĥj−1Yj−1)Dj−1Tj−1e

i
∥∥∥

2
, i = 1, ..., p (3.7.2)

are given in nonincreasing order, that is, τ1
j−1 ≥ τ2

j−1 ≥ ... ≥ τpj−1. Defining kj ≤ p such that τkjj−1 <√
1/p ε and dj = p − kj , we split Tj−1 =

[
T+
j−1 T−j−1

]
, T+

j−1 ∈ Cp×kj , T+
j−1 ∈ Cp×dj and we conclude

that ∥∥∥Rj−1Dj−1T
−
j−1

∥∥∥
F

=

√√√√ p∑
i=kj

(
τ ij−1

)2

≤
√
dj/p ε,

characterizing a partial convergence (cf. Definition 2.8.1) and thus we can deflate the information asso-
ciated with Rj−1Dj−1T

−
j−1 . Since we supposed pi = p, Fi = Ip, ∀i < j, we can ensure that V̂jei is the

direction associated with Rj−1e
i and thus the directions we want to keep are V̂jT+

j−1 and the ones we want
to postpone are V̂jT−j−1 giving us the relation[

Vj Pj−1

]
= V̂jTj−1

showing thus that

Fj = Tj−1 and Fj =

[
Isj−1

0
0 Fj

]

44 CHAPTER 3. DEFLATION

is the suitable deflation matrix for iteration j according to this criterion.
For subsequent iterations, we have to retrieve the original ordering instead. Splitting Fj =

[
F+
j F−j

]
,

F+
j ∈ Cp×kj , F+

j ∈ Cp×dj , we know that Pj−1 was reordered in iteration j and corresponds to V̂jF−j ,
whereas V̂j+1 corresponds to the update of V̂jF+

j . Supposing that the QR decomposition in line 6 of
Algorithm 3.2.1 does not reorder any information in V̂j+1 (which is possible if using a Gram-Schmidt-
based QR algorithm without pivoting, for instance) we find out that the matrix with the correct ordering
is [

Pj−1 V̂j+1

]
T̄jF

H
j with T̄j =

[
0 Idj
Ikj 0

]
where T̄j is a matrix responsible for swapping the position of Pj−1 and V̂j+1 without modifying the ordering
of the columns of each matrix.

Writing the residual Rj as

Rj = V̂j+1

[
Isj 0
0 T̄jF

H
j

][
Isj 0
0 Fj T̄

H
j

]
(Λ̂j − ĤjYj)

we want to find the matrix Tj such that the scalars

τ ij =
∥∥∥RjDjTje

i
∥∥∥

2
, (3.7.3)

=
∥∥∥(Λ̂j − ĤjYj)DjTje

i
∥∥∥

2
(3.7.4)

for i = 1, ..., p are given in nonincreasing order. Having such a matrix, we set

Fj+1 = T̄jF
H
j Tj and Fj+1 =

[
Isj 0
0 Fj+1

]
as our deflation matrix. A pseudocode for performing such a choice is depicted in Algorithm 3.7.1.

Algorithm 3.7.1: Choosing Fj - Largest Singular Values of Rj−1Dj−1

1 Receive Rj−1Dj−1 =
[
Vj Pj−1

]
(Λ̂j−1 − Ĥj−1Yj−1)Dj−1 and the parameters 1 ≤ kmax ≤ pj−1 and

εd;
2 Obtain the permutation matrix Tj−1 such that the sequence
{||(Λ̂j−1 − Ĥj−1Yj−1)Dj−1Tj−1e

i||2}pi=1 is given in nonincreasing order;
3 Choose k̃j such that ||(Λ̂j−1 − Ĥj−1Yj−1)Dj−1Tj−1e

l||2 ≥ εd for all 1 ≤ l ≤ k̃j ;
4 Set kj = min(k̃j , kmax);

5 Set T̄j =

[
0 Idj
Ikj 0

]
with k0 = p and d0 = 0;

6 Fj = T̄jF
H
j−1Tj ;

7 Define Fj =

[
Isj−1

0
0 Fj

]
∈ C(sj+dj)×(sj+dj);

We remark that each τ ij can be found by simply ordering the values of Tj , which can be done in
p log p operations. Also each Fj can be stored as a vector of dimension p, because Tj , Fj−1 and T̄j are
all permutation matrices. Also, during iteration j we need only Fj−1, Tj and the τ ij which means that
an extra storage of 3p is needed when compared to BGMRES. Notice that in this case the application of
Fj+1 does not require any extra operation: it is simply a reordering of columns.

3.8. COMPUTATIONAL COST AND MEMORY REQUIREMENTS 45

Although this strategy requires nearly no extra cost for computing Fj even for values of p close to
n, it tends to perform very close to BGMRES in practice, and whenever it is possible, Algorithm 3.4.1
is preferred instead. Therefore we do not focus our attention on Algorithm 3.7.1 but on Algorithm 3.4.1
instead.

3.8 Computational Cost and Memory Requirements
We discuss now the computation cost for applying one cycle of DMBR, including the costs associated with
the deflated block Arnoldi iteration (cf. Algorithm 3.2.1) and computing the unitary deflation operator
(we always suppose here that Algorithm 3.4.1 is used).

We summarize in Table 3.1 the costs occurring during a given cycle of DMBR(m)2, excluding matrix-
vector products and preconditioning operations which are problem dependent. We have included the
costs proportional to both the size of the original problem n and the maximal number of right-hand
sides p, assuming a QR factorization based on modified Gram-Schmidt and a Golub-Reinsch SVD3; see,
e.g, [60, Section 5.4.5] and [70, Appendix C] for further details on operation counts. The total cost
of a given cycle is then found to grow as C1np

2 + C2p
3 + C3np and we note that this cost is always

nonincreasing along convergence due to block size reduction. Compared to methods including deflation
at restart only, additional operations are related to the computations of F1, Λ1, Fj+1,

[
Vj+1 Pj

]
,

Λj+1 and Hj , operations that behave respectively as p3 and np2. The computation of
[
Vj+1 Pj

]
is in

practice the most expensive one in a given iteration of DMBR(m). Concerning the truncated variant, the
computational cost of a cycle will be reduced only when k̃j > kmax since the upper bound on kj+1 will be
then active. This situation occurs at the beginning of the convergence due to the nonincreasing behaviour
of the singular values of the block residual.

Step Computational cost

QR factorization of R0 2np2 + np
Computation of F1 4p0p

2 + 8p3 + 2p3
0

Computation of
[
V1 P0

]
2np2

0

Computation of Λ1 2p2
0p

Block Arnoldi procedure1 Cj
Computation of Yj 2(sj + pj)s

2
j + ps2

j

Computation of Λ̂j − ĤjYj (sj + pj)p+ 2(sj + pj)sjp
Computation of Fj+1 4(sj + pj)p

2 + 8p3 + 2p3
j

Computation of
[
Vj+1 Pj

]
2np2

j

Computation of Λj+1 2p2
jp

Computation of Hj 2p2
jp

Computation of Xm np+ 2nsmp+ smp

Table 3.1: Computational cost of a cycle of DMBR(m) (Algorithm 3.3.1). This excludes the cost of matrix-vector
operations and preconditioning operations.

2that is, DMBR with restart parameter equal to m
3The Golub-Reinsch SVD decomposition R = UΣV H with R ∈ Cm×n requires 4mn2 + 8n3 operations when only Σ and

V have to be computed.

1Algorithm 3.2.1: the block Arnoldi method based on modified Gram-Schmidt requires
m∑
j=1

j∑
i=1

(4nkikj + nkj + 4ndjkj)

operations (line 4 to 5) plus
m∑
j=1

2nk2j operations for the QR decomposition of S (line 6). Thus Cj =

m∑
j=1

(

j∑
i=1

(4nkikj +nkj +

4ndjkj) + 2nk2j).

46 CHAPTER 3. DEFLATION

We do not include in Table 3.1 the cost associated with computing and updating the scaling matrix
Dj or applying it to the residual Rj , as it is dependent of the scaling strategy being used.

Concerning storage proportional to the problem size n, DMBR(m) requires Rm, X0, Xm, Vm+1 and
Zm respectively leading to a memory requirement of 2nsm +npm + 3np at the end of a given cycle. Since
sm varies from cycle to cycle an upper bound of the memory requirement can be given as n(2m+1)p0+3np
when p0 linear systems have to be considered at the beginning of a given cycle. We note that the storage
is monotonically decreasing along convergence, a feature than can be for instance exploited if dynamic
memory allocation is used.

3.9 Numerical Experiments

In this section we investigate the numerical behaviour of block flexible Krylov subspace methods including
deflation at each iteration on different problems. We start with three academic illustrations, where two of
them (namely in Subsection 3.9.1 and Subsection 3.9.2) are meant to reproduce results found previously
in [23], and then we extend the numerical experiments to the forward problem associated with wave
propagation phenomena where the multiple right-hand side situation frequently occurs. It consists of a
challenging realistic application in geophysics, which we describe in more detail in Chapter 4.

Nevertheless, in wave propagation applications normally variable preconditioners are used. Multigrid
techniques using Krylov iterative methods both as smoother and coarse grid correction have been used
in the current literature and have reported very good performance in massively parallel environment
[22, 23, 96]. We discuss in depth the preconditioning issue for this problem in Section 4.4, but since the
wave propagation our main application in this thesis, we investigate here the behaviour of the block Krylov
methods specifically when using variable preconditioners.

Except for the illustration in Subsection 3.9.2, all the right-hand sides correspond to canonical vectors.
Thus the block right-hand side B ∈ Cn×p is extremely sparse (only one nonzero element per column) and
the initial block residual corresponds to a full rank matrix. This also has connections with our geophysical
application described in Chapter 4, where the right-hand sides are often sparse.

We compare both BFGMRES-R(m) and DMBR(m) with other preconditioned iterative methods based
on flexible BGMRES(m) for the solution of these problems with a zero initial guess (X0) and a small value
of the restart parameter m when using a variable preconditioner. The choice of small values of m here
is suitable since we are considering mostly inner-outer methods [112]. It is known that for this kind of
method, the dimension of the Krylov subspace being built is in fact a combination of the outer and inner
subspace.

We use the same stopping criterion for all experiments also. We attempt to find an approximate
solution satisfying ||RjDj ||ψ ≤ ε, where the scaling matrix is always set as

D−1
j = diag(||Be1||2, ||Be2||2, ..., ||Bep||2)

for every j, for all the experiments (thus Dj is a fixed scaling matrix).
Our goal is to analyse the performance of block Krylov subspace methods including deflation at each

iteration versus classical methods discussed in Section 3.5. A primary concern will be to evaluate if
DMBR(m) can be efficient when solving problems with multiple right-hand sides both in terms of precon-
ditioner applications and total computational cost.

3.9.1 Poisson Problem

In this experiment we use a Matlab [82] implementation of the referred methods and we attempt to
reproduce the results for BFGMRESD in [96] (see Table 2.6 in [96]). It consists of the two-dimensional
Poisson problem

−∆u = g

3.9. NUMERICAL EXPERIMENTS 47

with Dirichlet boundary conditions, discretized with a second-order finite differences scheme for a vertex-
centred grid, with a mesh-grid equal to 1/128. The coefficient matrix was taken using Matlab’s routine
gallery(’poisson’,128).

In all numerical experiments, the convergence and deflation threshold are set as ε = εd = 10−6. We
are interested in analysing the behaviour of the deflation as the number of right-hand sides increases. We
start with 5 right-hand sides and proceed by doubling the number of right-hand sides until 160 right-hand
sides. All right-hand sides are canonical vectors in this test.

We show in the Tables 3.2 to 3.4 the number of iterations (It), the number of matrix-vector products
on a single vector (MV P) and number of preconditioner applications on a single vector (Pr) required
for various restarted block flexible Krylov subspace methods performing no deflation (BFGMRES(m)),
deflation at the beginning of cycle only (BFGMRESD(m)) and deflation at each iteration (BFGMRES-
R(m) and DMBR(m)). We note that all selected methods solve the minimization problem over a subspace
of similar maximal dimension (mp). Since the algorithm we propose aims at saving matrix-vector product
and preconditioner application, for this numerical experiment we only focus on this factor (cf. Remark 3.9.1
for some comments on the orthogonalization cost).

Remark 3.9.1. During iteration j, DMBR orthogonalizes kj vectors against sj + dj vectors, whereas
BFGMRESD orthogonalizes k1 vectors against j × k1. Since kj ≤ k1 and sj ≤ j × k1 (both due to
Corollary 3.4.7), DMBR may actually perform less orthogonalizations per iterations than BFGMRESD.

Therefore, we highlight that although we do not detail the orthogonalization cost for this illustration,
the number of orthogonalization steps performed by DMBR is equal or smaller than those performed
by BGMRES and BGMRES-R, and in some cases also smaller than those performed by BFGMRESD
depending on how early in the cycle the deflation takes place. In Subsection 3.9.3 and Subsection 3.9.4 we
show numerical experiments addressing the total computational time, including matrix-vector products,
preconditioner applications and orthogonalization. �

For the first experiment, in Table 3.2 we use 5 cycles of BGMRES(5) as variable preconditioner,
meaning that each preconditioning application involves 25 matrix vector products. We provide in the ρ
column the following ratio:

ρ(method) =
MV P (method(m)) + 25× Pr(method(m))

MV P (DMBR(m)) + 25× Pr(DMBR(m))
. (3.9.1)

which scales the number of matrix-vector product operations performed with respect to the DMBR
method. A value of ρ greater than one indicates that the given block subspace method performs more
matrix-vector products than DMBR. We set the restart parameter m = 5 and kmax = p. The second
experiment, in Table 3.3, we increase the number of iterations per cycle, but reduce the quality of the
preconditioner in order to observe the behaviour along several cycles. We use 3 cycles of BGMRES(3) as
variable preconditioner (thus, each preconditioning application involves 9 matrix vector products), restart
parameter m = 5 and kmax = p, and we update the ratio to

ρ̂(method) =
MV P (method(m)) + 9× Pr(method(m))

MV P (DMBR(m)) + 9× Pr(DMBR(m))
. (3.9.2)

instead of ρ(method). The third experiment, shown in Table 3.4, considers a more limited memory
setting. We set use again 5 cycles of BGMRES(5) as variable preconditioner, but we set kmax = 20
while maintaining the other parameters unchanged. We start with p = 40 and proceed by adding 20
right-hand sides until it reaches the 160 limit. Since BGMRES-R cannot limit the memory in such fashion
(p1 is always equal to p in BGMRES-R), we let it aside in this test, and we compare only DMBR with
BFMGREST, using ρ(method) from (3.9.1).

Table 3.2 reveals that for this particular problem, DMBR performance is clearly superior to BGMRES-
R and BFGMRESD, and that the gap between DMBR and the other methods increases with the number of
right-hand sides. Notice that, since the restart size is small, BFGMRESD converges performing less matrix-
vector products and preconditioning applications than BFGMRES-R. This behaviour is expected since

48 CHAPTER 3. DEFLATION

Poisson equation - Grid : 128× 128

m = 5, no truncation (kmax = p)

p = 5 p = 10
It MV P Pr ρ It MV P Pr ρ

BFGMRES 18 115 90 2.75 19 240 190 4.08
BFGMRES-R 22 77 47 1.45 24 139 79 1.72
BFGMRESD 22 72 42 1.30 23 133 73 1.60

DMBR 23 62 32 1 25 105 45 1
p = 20 p = 40

It MV P Pr ρ It MV P Pr ρ
BFGMRES 16 420 320 4.46 15 760 600 5.13

BFGMRES-R 25 260 140 1.98 26 578 298 2.60
BFGMRESD 27 272 132 1.88 31 566 246 2.17

DMBR 26 208 68 1 27 389 109 1
p = 80 p = 160

It MV P Pr ρ It MV P Pr ρ
BFGMRES 14 1440 1120 5.65 11 2400 1760 5.35

BFGMRES-R 26 1127 567 2.92 27 2199 1079 3.35
BFGMRESD 29 1019 459 2.38 28 1983 863 2.70

DMBR 28 742 182 1 28 1417 297 1

Table 3.2: Poisson equation discretized with h = 1/128 with 5 cycles of BGMRES(5) as variable preconditioner,
restart size 5 and a number of right-hand sides given at once ranging from p = 5 to p = 160. It denotes the number
of iterations, MV P the number of matrix-vector applications on a single vector, Pr the number of preconditioner
applications on a single vector and ρ a scaled measure of efficiency in terms of number of matrix-vector products
performed both by the method and its preconditioner.

3.9. NUMERICAL EXPERIMENTS 49

Poisson equation - Grid : 128× 128

m = 15, no truncation (kmax = p)

p = 5 p = 10
It MV P Pr ρ̂ It MV P Pr ρ̂

BFGMRES 49 275 245 2.99 52 590 520 4.67
BFGMRES-R 55 132 97 1.21 60 221 151 1.39
BFGMRESD 52 137 102 1.27 67 247 167 1.54

DMBR 57 115 80 1 60 177 107 1
p = 20 p = 40

It MV P Pr ρ̂ It MV P Pr ρ̂
BFGMRES 48 1080 960 5.59 38 1720 1520 5.63

BFGMRES-R 65 429 269 1.62 67 791 471 1.82
BFGMRESD 72 472 292 1.76 73 883 523 2.02

DMBR 68 321 161 1 70 568 248 1
p = 80 p = 160

It MV P Pr ρ̂ It MV P Pr ρ̂
It MVP PC Ratio It MVP PC Ratio

BFGMRES 29 2640 2320 5.23 27 4960 4320 6.02
BFGMRES-R 65 1498 858 2.02 69 2844 1564 2.29
BFGMRESD 70 1610 970 2.27 75 3235 1795 2.63

DMBR 67 1039 399 1 69 1907 627 1

Table 3.3: Poisson equation discretized with h = 1/128 with 3 cycles of BGMRES(3) as variable preconditioner,
restart size 15 and a number of right-hand sides given at once ranging from p = 5 to p = 160. It denotes the number
of iterations, MV P the number of matrix-vector applications on a single vector, Pr the number of preconditioner
applications on a single vector and ρ̂ a scaled measure of efficiency in terms of number of matrix-vector products
performed both by the method and its preconditioner.

Poisson equation - Grid : 128× 128

m = 5, truncation with kmax = 20

p = 40 p = 80
It MV P Pr ρ It MV P Pr ρ

BFGMREST 26 531 251 2.06 27 1066 506 1.98
DMBR 27 397 117 1 26 806 246 1

p = 120 p = 160
It MV P Pr ρ It MV P Pr ρ

BFGMREST 40 1880 800 1.94 52 2952 1032 1.80
DMBR 31 1359 399 1 32 1846 566 1

Table 3.4: Poisson equation discretized with h = 1/128 with 5 cycles of BGMRES(5) as variable preconditioner,
with a number of right-hand sides given at once ranging from p = 40 to p = 160 and using truncation (kmax = 20).
It denotes the number of iterations, MV P the number of matrix-vector applications on a single vector, Pr the
number of preconditioner applications on a single vector and ρ a scaled measure of efficiency in terms of number
of matrix-vector products performed both by the method and its preconditioner.

50 CHAPTER 3. DEFLATION

BFGMRESD is supposed to benefit from small restart sizes. In Table 3.3, as expected, we observe that
BFGMRES-R benefits from the larger restart size and performs considerably less matrix-vector products
and preconditioner applications than BFGMRESD. However, DMBR method is still the cheapest in terms
of matrix-vector and preconditioner applications. In the more memory constrained test, in Table 3.4, we
see that once again the reduction on the number of matrix-vector products of DMBR over BFGMREST is
considerable, but this time the difference between the methods does not seem to increase with the number
of right-hand sides p.

3.9.2 Convection-Diffusion Problem

We continue Matlab experiments taking into account the matrix-vector products and preconditioner ap-
plications cost only. In this subsection we test the behaviour of the deflated methods for a non-Hermitian
problem, the convection-diffusion equation given by{

−∆u+ cux + duy = g in Ω,

u = 1 on ∂Ω

where Ω =]0, 1[2 is the interior of the domain and ∂Ω = (0, 1)2 is the boundary. We take c = d = 256
for our experiments, and discretize the convection-diffusion equation using finite differences in a 5-point
Cartesian stencil, once again with mesh size equal to 1/128. We generate a random exact solution satisfying
the boundary condition to then obtain the right-hand sides. This experiment is meant to reproduce the
results in [96], Table 2.8.

Our setting is very similar to the one in Subsection 3.9.1: first we use 5 cycles of BGMRES(5) as
variable preconditioner, ε = εd = 10−6 with restart parameter m = 5 and kmax = p in Table 3.5. Then
in Table 3.6 we use 3 cycles of BGMRES(3) but increase the restart size to m = 15. Finally, in Table 3.7
we consider the limited memory setting with kmax = 20 while using 5 cycles of BGMRES(5) as variable
preconditioner and m = 5. We also reproduce in the column ρ the same ratio previously mentioned in
(3.9.1) and in the column ρ̂ the ratio in (3.9.2), and although we do not address orthogonalization costs,
Remark 3.9.1 is still valid.

In Table 3.7 we see that DMBR method is always able to save matrix-vector product computations by
performing deflation every iteration. Observe however that in contrast with Table 3.5 where the number
of iterations of each method remains almost unchanged as p increases, in Table 3.7, DMBR performs
considerably less iterations than BFMGREST. This speedup has indeed a reason: due to Corollary 3.3.2,
we guarantee that DMBR minimizes the entire residual every iteration (regardless of the value of kj),
whereas BFGMREST chooses just a subset of the residual do minimize every cycle (as discussed in
Section 3.5). We consider that this is indeed a critical feature of DMBR mainly if p is considerably large
(of the order of hundreds).

Also, comparing Table 3.5 with Table 3.6 we see that once again BFGMRES-R profits from long
restart sizes whereas BFGMRESD profits from small restart size, but DMBR performs well in both cases.
Also, for p = 160 in Table 3.6 only one cycle is performed (all methods converge in 14 iteration) and
that BFGMRESD is equivalent to BGMRES and DMBR is equivalent to BFGMRES-R. This behaviour
is expected as we explained in Section 3.5.

3.9.3 Complex-valued advection diffusion reaction problem

For this more realistic Matlab experiment, we consider a complex-valued partial differential equation of
advection diffusion reaction type in two-dimensions defined on a square domain Ω = [0, 1]2. Recently
Haber and MacLachlan [66] have proposed a continuous transformation of the acoustic wave equation
based on the Rytov decomposition that requires the solution of a partial differential equation that is more
amenable to efficient numerical methods than the original indefinite Helmholtz equation. This equation

3.9. NUMERICAL EXPERIMENTS 51

Convection-diffusion equation with c = d = 256 - Grid : 128× 128

m = 5, no truncation (kmax = p)

p = 5 p = 10
It MV P Pr ρ It MV P Pr ρ

BFGMRES 30 185 150 1.45 29 360 290 1.57
BFGMRES-R 34 156 116 1.12 32 293 213 1.16
BFGMREST 33 153 113 1.10 30 265 195 1.06

DMBR 32 143 103 1 31 263 183 1
p = 20 p = 40

It MV P Pr ρ It MV P Pr ρ
BFGMRES 28 700 560 1.85 20 1000 800 1.74

BFGMRES-R 30 493 353 1.17 27 867 587 1.29
BFGMREST 29 474 334 1.11 30 795 515 1.13

DMBR 29 441 301 1 28 734 454 1
p = 80 p = 160

It MV P Pr ρ It MV P Pr ρ
BFGMRES 16 1680 1280 1.75 11 2400 1760 1.60

BFGMRES-R 22 1428 948 1.30 22 2539 1579 1.45
BFGMREST 27 1407 847 1.17 22 2397 1437 1.32

DMBR 23 1204 724 1 23 2041 1081 1

Table 3.5: Convection-diffusion equation, with h = 1/128 and c = d = 256, with 5 cycles of BGMRES(5) as
variable preconditioner, restart size 5 and a number of right-hand sides given at once ranging from p = 5 to p = 160.
It denotes the number of iterations, MV P the number of matrix-vector applications on a single vector, Pr the
number of preconditioner applications on a single vector and ρ a scaled measure of efficiency in terms of number
of matrix-vector products performed both by the method and its preconditioner.

52 CHAPTER 3. DEFLATION

Convection-diffusion equation with c = d = 256 - Grid : 128× 128

m = 15, no truncation (kmax = p)

p = 5 p = 10
It MV P Pr ρ̂ It MV P Pr ρ̂

BFGMRES 90 485 450 1.38 89 960 890 1.61
BFGMRES-R 108 390 345 1.06 92 659 579 1.05
BFGMRESD 102 382 342 1.05 102 692 612 1.11

DMBR 103 365 325 1 92 631 551 1
p = 20 p = 40

It MV P Pr ρ̂ It MV P Pr ρ̂
BFGMRES 72 1560 1440 1.65 45 1960 1800 1.52

BFGMRES-R 104 1105 945 1.09 62 1519 1279 1.09
BFGMRESD 98 1158 998 1.15 69 1554 1314 1.12

DMBR 97 1028 868 1 65 1416 1176 1
It MV P Pr ρ̂ It MV P Pr ρ̂
It MVP PC Ratio It MVP PC Ratio

BFGMRES 26 2320 2080 1.64 14 2560 2240 1.24
BFGMRES-R 45 1699 1379 1.10 14 2116 1796 1.00
BFGMRESD 60 2035 1635 1.30 14 2560 2240 1.24

DMBR 46 1651 1251 1 14 2116 1796 1

Table 3.6: Convection-diffusion equation, with h = 1/128 and c = d = 256, with 3 cycles of BGMRES(5) as
variable preconditioner, restart size 15 and a number of right-hand sides given at once ranging from p = 5 to
p = 160. It denotes the number of iterations, MV P the number of matrix-vector applications on a single vector,
Pr the number of preconditioner applications on a single vector and ρ̂ a scaled measure of efficiency in terms of
number of matrix-vector products performed both by the method and its preconditioner.

Convection-diffusion equation with c = d = 256 - Grid : 128× 128

m = 5, truncation with kmax = 20

p = 40 p = 80
It MV P Pr ρ It MV P Pr ρ

BFGMREST 40 1015 655 1.24 60 2240 1200 1.30
DMBR 33 847 527 1 46 1800 920 1

p = 120 p = 160
It MV P Pr ρ It MV P Pr ρ

BFGMREST 85 3860 1700 1.37 105 5620 2100 1.34
DMBR 62 2920 1240 1 78 4280 1560 1

Table 3.7: Convection-diffusion equation, with h = 1/128 and c = d = 256, with 5 cycles of BGMRES(5) as
variable preconditioner, with a number of right-hand sides given at once ranging from p = 40 to p = 160 and using
truncation (kmax = 20). It denotes the number of iterations, MV P the number of matrix-vector applications on a
single vector, Pr the number of preconditioner applications on a single vector and ρ a scaled measure of efficiency
in terms of number of matrix-vector products performed both by the method and its preconditioner.

3.9. NUMERICAL EXPERIMENTS 53

with Dirichlet boundary conditions reads as follows:

−∂
2u

∂x2
− ∂2u

∂y2
− 2iωc(αx

∂u

∂x
+ αy

∂u

∂y
) + ω2(c2 − κ2)u = gs(x) (3.9.3)

x = (x, y) ∈ Ω, (3.9.4)
u = 0 on ∂Ω, (3.9.5)

where ω, c, αx, αy, κ are real-valued coefficients. The source term gs(x) = δ(x − xs)e
−ic(αxxs+αyys)

represents a harmonic point source located at (xs, ys) in Ω. We consider the pure advection diffusion
case (c = κ = 1) and set the following values for the parameters ω = π, αx = 1/

√
2 , αy = 1/

√
2 . The

discrete problem is obtained after second-order finite difference discretization of (3.9.3) with a second-
order upwind scheme for the treatment of the advection terms as in [66]. The right-hand side we choose
for this problem correspond to Dirac sources. The inner preconditioner is based on one cycle of non
preconditioned GMRES(m) corresponding to pm additional matrix-vector products when considering a
linear system with p right-hand sides. Thus flexible outer Krylov subspace methods are required since
the preconditioner is then variable. With this simple preconditioner we note that we can derive a purely
matrix-free implementation. Both the tolerance and the deflation threshold are set as ε = εd = 10−5 in
the numerical experiments.

Table 3.8 collects the number of outer iterations (It) and number of preconditioner applications on
a single vector (Pr) required for various restarted block flexible Krylov subspace methods performing
no deflation (BFGMRES(m)), deflation at the beginning of cycle only (BFGMRESD(m)) and deflation
at each iteration (BFGMRES-R(m) and DMBR(m)) for two different values of the restart parameter
(respectively m = 5 and m = 10). We have also included results related to restarted flexible GMRES
when solving in sequence the p linear systems independently. We note that all selected methods solve
the minimization problem over a subspace of similar maximal dimension (mp). In opposition to the two
previous numerical experiments, in this one we consider every floating point operation rather than simply
the matrix-vector product performed by both methods. We determine the computational complexity of all
algorithms including costs related to QR factorization, singular value decomposition, orthonormalization
(as listed in Table 3.1), matrix-vector products and preconditioning and define a measure of efficiency τ
as

τ(method) =
flops(FGMRES(mp))

flops(method)
.

Thus a value of τ greater than one indicates that the given block subspace method leads to a computational
improvement with respect to flexible GMRES applied on the given sequence of linear systems. Table 3.8
reveals that block Krylov subspace methods including deflation either at restart only or at each iteration
usually are to be preferred. Indeed those methods always lead to efficiencies τ greater than one. On
this application standard block Krylov subspace method (BFGMRES) is not efficient with respect to
FGMRES(mp). This highlights the fact that to be effective block subspace methods must incorporate
block size reduction or deflation [64]. On the two sets of numerical experiments, whatever the value of
the restart parameter m, DMBR(m) always leads to the minimal number of preconditioner applications.
Similarly DMBR(m) also delivers the best efficiency (see bold values in Table 3.8). Finally we note that
BFGMRES-R(m) is penalized when the number of outer cycles is large since this method does not include
initial deflation at the beginning of the cycle. On this academic problem we have shown the interest of
using block Krylov subspace methods that include deflation at each iteration. DMBR(m) is indeed found
to be competitive with respect to Krylov subspace methods including deflation at restart only.

3.9.4 Acoustic Full Waveform Inversion
We focus on a specific application in geophysics related to the simulation of wave propagation phenomena
in the Earth [133]. Given a three-dimensional physical domain Ωp, the propagation of a wave field in a

54 CHAPTER 3. DEFLATION

Complex-valued advection diffusion problem - Grid : 128× 128

m = 5
p = 4 p = 8

Method It Pr τ It Pr τ
FGMRES(5p) 75 75 1.00 155 155 1.00
BFGMRES(5) 43 172 0.41 39 312 0.37
BFGMRESD(5) 50 80 0.95 45 100 1.33
BFGMRES-R(5) 39 80 0.90 39 127 0.96
DMBR(5) 44 67 1.06 43 87 1.38

p = 16 p = 32

Method It Pr τ It Pr τ
FGMRES(5p) 315 315 1.00 635 635 1.00
BFGMRES(5) 26 416 0.40 17 544 0.39
BFGMRESD(5) 49 150 1.27 45 235 0.97
BFGMRES-R(5) 39 214 0.85 40 386 0.62
DMBR(5) 45 121 1.42 43 181 1.14

m = 10
p = 4 p = 8

Method It Pr τ It Pr τ
FGMRES(10p) 75 75 1.00 155 155 1.00
BFGMRES(10) 22 88 0.57 20 160 0.57
BFGMRESD(10) 22 63 0.96 24 104 0.96
BFGMRES-R(10) 23 51 1.43 23 78 1.43
DMBR(10) 23 46 1.69 23 65 1.69

p = 16 p = 32

Method It Pr τ It Pr τ
FGMRES(10p) 315 315 1.00 635 635 1.00
BFGMRES(10) 17 272 0.47 16 512 0.31
BFGMRESD(10) 26 186 0.70 30 350 0.43
BFGMRES-R(10) 23 126 1.32 22 216 1.00
DMBR(10) 23 98 1.63 22 156 1.29

Table 3.8: Two-dimensional complex-valued advection diffusion problem. Case of h = 1/128, ω = π, αx =
1/
√

2 , αy = 1/
√

2 with a number of right-hand sides given at once ranging from p = 4 to p = 32 for two different
values of the restart parameter m = 5 (upper part) and m = 10 (lower part). It denotes the number of iterations,
Pr the number of preconditioner applications on a single vector and τ a scaled measure of efficiency in terms of
computational operations.

heterogeneous medium can be modelled by the Helmholtz equation written in the frequency domain:

−∂
2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
− (2πf)2

c2(x, y, z)
u = gs(x), x = (x, y, z) ∈ Ωp. (3.9.6)

u represents the pressure field in the frequency domain, c the variable acoustic-wave velocity in ms−1,
and f the frequency in Hertz. The source term gs(x) = δ(x − xs) represents a harmonic point source
located at (xs, ys, zs). A popular approach — the Perfectly Matched Layer formulation (PML) [13, 14] —
has been used in order to obtain a satisfactory near boundary solution, without many artificial reflections.
As in [23] we consider a second-order finite difference discretization of the Helmholtz equation (3.9.6) on
an uniform equidistant Cartesian grid of size nx × ny × nz. The same stability condition (12 points per
wavelength) relating f the frequency with h the mesh grid size and c(x, y, z) the heterogeneous velocity

3.9. NUMERICAL EXPERIMENTS 55

field has been considered:

f =
min(x,y,z)∈Ωh

c(x, y, z)

12h
.

In consequence A is a sparse complex matrix which is non-Hermitian and nonsymmetric due to the
PML formulation that leads to complex-valued variable coefficients in the partial differential equation [96,
Appendix A]. Due also to their lack of definiteness and symmetry, the resulting linear systems are known
to be challenging for iterative methods [50, 52]. We refer also to Chapter 4 for more details about this
problem.

We consider the same perturbed geometric two-level preconditioner presented in [23] that has been
shown to be relatively efficient for the solution of three-dimensional heterogeneous Helmholtz problems
in geophysics. We refer the reader to [23, Algorithm 5] for a complete description of the geometric
preconditioner and to [96] for additional theoretical properties in relation with Krylov subspace methods.
Also, later in Subsection 4.4.1 we detail this preconditioner. Since we are in the multiple right-hand
sides scenario, we suppose that the perturbed two-grid preconditioner is applied independently once for
each right-hand side. Next investigate the performance of the block flexible Krylov methods presented in
Section 3.3 on this challenging real-life application. Both the tolerance and the deflation threshold are
set as ε = εd = 10−5 in the numerical experiments. The source terms correspond to Dirac sources. The
numerical results have been obtained on Babel, a Blue Gene/P computer located at IDRIS (PowerPC 450
850 Mhz with 512 MB of memory on each core) using a Fortran 90 implementation with MPI in single
precision arithmetic. This code was compiled by the IBM compiler suite with standard compiling options
and linked with the vendor BLAS and LAPACK subroutines.

Acoustic full waveform inversion - Grid : 433× 433× 126

p = 4 p = 8 p = 16

Method It Pr T It Pr T It Pr T
FGMRES(5p) 56 56 624 112 112 629 224 224 665
BFGMRES(5) 14 56 622 14 112 631 14 224 668
BFGMRESD(5) 14 43 489 15 70 401 15 120 371
BFGMRES-R(5) 16 44 503 16 74 431 16 134 417
DMBR(5) 16 39 452 16 57 339 18 102 328
BFGMREST(5,p/2) 24 48 542 23 80 447 20 140 410
DMBR(5,p/2) 16 40 459 15 68 392 17 124 384
Combined(5,p/2) 15 41 471 15 62 359 15 103 323
Combined(5,p/4) 18 41 474 15 59 346 15 102 320

p = 32 p = 64 p = 128

Method It Pr T It Pr T It Pr T
FGMRES(5p) 434 434 670 1152 1152 925 2531 2531 1187
BFGMRES(5) 14 448 713 18 1152 962 19 2432 1187
BFGMRESD(5) 15 225 371 20 490 422 25 1015 509
BFGMRES-R(5) 18 283 466 25 618 537 28 1489 762
DMBR(5) 19 181 316 25 413 375 28 915 497
BFGMREST(5,p/2) 20 255 396 25 550 444 28 1125 524
DMBR(5,p/2) 16 189 310 24 444 396 29 976 523
Combined(5,p/2) 15 184 305 20 409 348 25 899 442
Combined(5,p/4) 20 191 320 20 398 342 25 898 448

Table 3.9: Acoustic full waveform inversion (SEG/EAGE Overthrust model). Case of f = 3.64 Hz (h = 50 m),
with p = 4 to p = 128 right-hand sides given at once. It denotes the number of iterations, Pr the number of
preconditioner applications on a single vector and T denotes the total computational time in seconds.

As in [23] we consider the velocity field issued from the public domain SEG/EAGE Overthrust model
and analyse the performance of the numerical methods at a given frequency f = 3.64 Hz. Both the

56 CHAPTER 3. DEFLATION

problem dimension (about 23 million of unknowns) and the maximal number of right-hand sides to be
considered (128) correspond to a task that geophysicists typically must face on a daily basis. Thus efficient
numerical methods must be then developed for that purpose. In [23] we have considered block flexible
Krylov subspace methods including deflation at restart only on this application for a reduced number of
right-hand sides (from 4 to 16). We continue this detailed analysis and investigate the performance of both
DMBR(m) and BFGMRES-R(m) with a larger number of right-hand sides. We also consider the variants
with truncation in memory (BFGMREST(m, pf)) and with truncation in operations DMBR(m, pf)) with
pf set to p/2 in both cases. The number of cores is ranging from 32 for p = 4 to 1024 for p = 128. Since
doubling the number of right-hand sides nearly doubles the memory requirement of the block methods,
we also multiply the number of cores by a factor of two with respect to the number of right-hand sides.
This aims at imposing the same memory constraint on each core for all numerical experiments as in [23].
The maximal memory requested is about 488 Gb for p = 128.

Table 3.9 collects in addition to outer iterations (It) and preconditioner applications on a single vector
(Pr) the computational times in seconds (T). Among the different strategies DMBR(5) most often delivers
the minimal number of preconditioner applications and computational times (see respectively italic and
bold values in Table 3.9). This clearly highlights the interest of performing deflation at each iteration
both in terms of preconditioner applications and computational operations on this given application. The
latter result is especially important since deflating at each iteration induces an additional cost as shown
in Table 3.1. DMBR(5) is thus found to be competitive with respect to methods incorporating deflation
at restart only (a gain of up to 15% in terms of computational time is obtained for instance for p = 8)
as well as DMBR(5,p/2) (gain of 27% for p = 32 when compared to BFGMREST(5,p/2)). This is a
satisfactory improvement since methods including deflation at restart only are already quite efficient in
this application as shown in [23]. We also note that the improvement over classical block flexible GMRES
method is quite large as expected (a gain of up to 61% is obtained for p = 64).

Figure 3.1 shows the evolution of kj - the number of Krylov directions effectively considered at iteration
j - along convergence for the various block subspace methods in the case of p = 32. Regarding BFGM-
RESD(5) and BFGMREST(5,p/2) deflation is performed only at the beginning of each cycle, thus kj is
found to be constant in a given cycle. Variations at each iteration can only happen in BFGMRES-R(5) or
DMBR(5). As expected DMBR(5) enjoys a nonincreasing behaviour for kj along convergence, while peaks
occur for BFGMRES-R(5) at the beginning of each cycle. On this example the use of truncation within
DMBR(5) tends to delay the start of the decreasing behaviour of kj . After a certain phase deflation is
nevertheless active and proves to be useful.

We also remark that the use of truncation techniques in DMBR(m) leads to an efficient method. In
certain cases DMBR(5, p/2) is as efficient as DMBR(5) in terms of computational times (see, e.g., the
case p = 32 in Table 3.9). This feature is really important in this given application due to the large
size of the linear systems. Furthermore DMBR(5, p/2) requires usually less preconditioner applications
than BFGMREST(5, p/2). This satisfactory behaviour has indeed a reason: due to Corollary 3.3.2,
we guarantee that the truncated variant of DMBR(m) minimizes the entire residual at each iteration
(regardless of the value of pj), whereas BFGMREST(m) chooses just a subset of the residual to be
minimized at each cycle. We consider that this is indeed a critical feature of the truncated variant of
DMBR(m).

Finally we investigate the convergence properties of a combination of DMBR(m) and BFGMRESD(m).
At the beginning of the convergence history this method (named Combined(m, ps) in Table 3.9) is fully
equivalent to DMBR(m). Then as soon as the number of Krylov directions effectively considered at
iteration j (kj) reaches a given prescribed value (ps) the method switches to BFGMRESD(m) at the next
restart. This mainly aims at reducing the computational cost in the next cycles by performing deflation
only at the restart instead of at each iteration. As shown in Table 3.9 this combination leads to further
reductions in computational times and is especially appropriate when the number of right-hand sides
becomes large on this given application.

3.10. CONCLUSIONS 57

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

Iteration index

k
j

Acoustic full waveform inversion − p=32

BFGMRES(5)

BFGMRESD(5)

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

Iteration index

k
j

Acoustic full waveform inversion − p=32

BFGMRES−RS(5)

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

Iteration index

k
j

Acoustic full waveform inversion − p=32

DMBR(5)

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

Iteration index

k
j

Acoustic full waveform inversion − p=32

BFGMREST(5,p/2)

DMBR(5,p/2)

Figure 3.1: Acoustic full waveform inversion (SEG/EAGE Overthrust model). Case of p = 32. Evolution of kj
versus iterations for p = 32 in BFGMRES(5), BFGMRESD(5) (top, left part), BFGMRES-R(5) (top, right part),
DMBR(5) (bottom, left part) and truncated variants (BFGMREST(5,p/2), DMBR(5,p/2)) (bottom, right part).

3.10 Conclusions

We have extended the block restarted flexible GMRES method to a variant that allows the use of defla-
tion (i.e. block size reduction) at each iteration when solving multiple right-hand side problems given at
once. The method aims at reducing the cost of each iteration of the block Krylov subspace method by
judiciously choosing which information to use and which information to be postponed. We have shown
that the Frobenius norm of the block residual is always nonincreasing even along cycles. Furthermore
we have justified the choice of the deflation strategy that is based on a nonincreasing behaviour of the
singular values of the scaled block residual (which are also nonincreasing along the iterations and cycles).
We have also proposed a variant of the deflated block residual method to be used in a constrained memory
environment. Numerical experiments have shown the efficiency of the new method on two different prob-
lems issued from wave propagation situations requiring the solution of multiple right-hand side problems.
The block flexible method including deflation at each iteration has proven to be efficient in terms of both
preconditioner applications and computational operations. It has been found superior to recent block
flexible methods including deflation at restart only. This satisfactory behaviour has been observed on an
industrial simulation arising in geophysics, where large indefinite linear systems with multiple right-hand
sides have been successfully solved in a parallel distributed memory environment. Furthermore reductions
in terms of computational times have been obtained by combining methods including deflation at each
iteration and deflation at restart only in a second phase. To the best of our knowledge these results consist
in one of the first illustrations of the usefulness of block Krylov subspace methods including deflation at

58 CHAPTER 3. DEFLATION

each iteration on a realistic three-dimensional application in a parallel distributed memory environment.
To conclude it is worthwhile to note that the theoretical properties of the deflated minimal block

residual method hold for any unitary matrix Fj+1. Thus we plan to investigate other possible subspace
decompositions in a near future that may lead to further improvements. Finally we note that the analysis
proposed in this paper can be extended as well to other block Krylov subspace methods such as block
FOM [102], block GCRO [140], and block simpler GMRES [80].

Chapter 4

Acoustic Full Waveform Inversion

4.1 Introduction
In geology and geophysics, the so called “Earth imaging” is a technique used for scanning a delimited sub-
surface of Earth. The application of Earth imaging techniques is very wide; examples are civil engineering
(usually requiring the knowledge of few meters of depth only), landslide analysis of a terrain, or detection
and characterization of oil reservoir (often requiring several kilometers of depth) [20, p.15]. Among the
strategies for performing such imaging, we highlight here in particular the use of seismic waves. It con-
sists of positioning an acoustic wave propagator (normally called “source”) which is able to emit waves
at a chosen frequency f through the subsurface. When encountering a layer of reflecting material in the
subsurface (as for instance, a salt layer) these waves are refracted and reflected back to the surface. These
reflections (sometimes called “echoes”) are detected by a special kind of microphone called “geophone”
(sometimes called simply “receiver”). See Figure 4.1 for an two-dimensional illustration.

Figure 4.1: A source for acoustic waves s propagates waves (represented in green) through the subsurface. When
meeting a reflective layer (in grey) these waves are reflected back (represented in blue) to the surface, and are
detected by the geophones g.

A “survey line” is chosen on the surface of the Earth and the experiment is repeated with the source
positioned in some of the points along the survey line (about every 25 meters, according to [28, p.1]).
With the data gathered by the geophones on the several experiments, and knowing the position of the
source and the frequency of the acoustic waves emitted, using mathematical methods, we wish then to find
details about the subsurface, as density, velocity of the wave propagation, position and shape of reflective
layers among others. We highlight here the search for the so called “velocity model”, which consists of a
two-dimensional or three-dimensional model of the subsurface estimating the velocity at which the wave
propagates in each point of the physical domain. See Figure 4.2 for an example of a three-dimensional
velocity model.

In this chapter of this thesis, we briefly address a specific mathematical procedure for determining an
approximation of the velocity model (it can also be used to approximate other information as density,

59

60 CHAPTER 4. ACOUSTIC FULL WAVEFORM INVERSION

Figure 4.2: Graphical representation of the three-dimensional academic velocity model SEG/EAGE Overthrust
generated using Paraview [69]. The image on the left represents the whole velocity model, and the image on the
right represents a cut of the original velocity model showing its interior.

attenuation or anisotropy of the subsurface), the “Full Waveform Inversion” or FWI for short, which
consists basically of an inverse problem. The solution of the linear system arising from this problem
is the main motivation for the development of a block iterative solver as discussed in Chapter 2 and
Chapter 3. In Section 4.2 we address an overview on the inverse problem without attaining to many
details. The importance of Section 4.2 is thus to introduce the forward and the backward problems.
Thereafter, we explore details concerning the forward problem, as how to discretize this problem while
maintaining certain physical properties (in Section 4.3). In Section 4.4 we address methods for solving the
linear problem arising from the discretization of the forward problem, and we address some known issues,
as for instance, the difficulties in preconditioning the problem. In Section 4.5 we briefly discuss a software
implementation we propose targeting the solution of the full waveform inversion in a massively parallel
environment using a object oriented language, and in Section 4.6 we use DMBR, the method proposed in
Chapter 3 and implemented into our software, to perform large (up to O(109)) numerical experiments on
realistic velocity models at 5Hz and 12Hz, illustrating once more the interest of deflation techniques in a
real life application. In Section 4.7 we present the final remarks of this chapter.

4.2 The Inverse Problem

In this section we quickly describe the full waveform inversion [20, 120, 121] which is the main motivation
of our work with block iterative solvers presented in Chapter 2 and Chapter 3. Although the full waveform
inversion consists of an optimization problem it gives raise to the block linear systems which we aim at
solving using the methods we discussed in previous chapters.

Let the real velocity model be denoted by m(∗) and consider an initial guess m(1) given. The inverse
problem consists of an iterative procedure which aims at improving a “synthetic velocity model” m(i) every
iteration i, hoping to obtain a model m(`) as a reliable approximation of m(∗) in a finite number of steps
`.

It consists of two main steps. In the first one, the so called1 “forward problem” takes place. The forward
problem consists of building a “propagator”, a procedure which simulates the propagation of the waves
through m(i) when an acoustic wave is ignited at a known position with a known frequency, obtaining the
so called wavefield. We recall that during the geophysical experiment, the acoustic waves are ignited on
several points of the physical domain along the “survey line”, possibly for several different frequencies, and
that the geophones gather the data for each test separately, meaning that potentially the forward problem
has to solve multiple times per iteration of the inverse problem. Therefore, we represent the set of “source
positions” {sj}pj=1 and a set of frequencies {fj}

nf

j=1, meaning a total of nf × p solutions have to computed
for every iteration i of the inverse problem. We analyse in further sections the multiple sources issue and

1sometimes called “direct problem”.

4.2. THE INVERSE PROBLEM 61

how to exploit the relations between each case to increase the performance of the forward problem, but
we do not address the multiple frequencies in practice, as we explain better in Section 4.3.

Once each wavefield u
(i)
j for j = 1, ..., nf × p of the forward problem of the i-th iteration is known,

it has to be projected onto the position of the geophones by the projector Pdata: this is done to know
the data that the geophones would have gathered if m(i) were the real velocity model. The projected
synthetic solution, or “computed data” is then denoted by d

(i)
j = Pdata

(
u

(i)
j

)
.

The inverse problem compares the computed data with the “observed data”, gathered by the geophones
on the real experiment, which we denote here by dobsj , for j = 1, ..., nf × p. Figure 4.3 shows an illustra-
tion of the difference between the data gathered by the geophones in the real experiment (left) and the
simulation performed by the propagator on the synthetic velocity model (right).

Figure 4.3: On the left: acoustic waves propagated by a source s are reflected by a reflective layer (in grey) and are
detected by the geophones g. On the right: the propagator simulates the behaviour of the waves through the synthetic
velocity model. Since the information reaching the geophones is considerably different from the observed data, the
inverse problem should decide to update the synthetic velocity model in order to obtain a better approximation.

We consider that the convergence criterion of the inverse problem relies on the cost function

C(m(i)) =
1

2

(nf×p)∑
j=1

(
∆d

(i)
j

)†
S†S∆d

(i)
j (4.2.1)

(cf. [20, p.93]) where S is a diagonal weighting matrix2 and ∆d
(i)
j =

∣∣∣d(i)
j − dobsj

∣∣∣ is the misfit vector, or
residual vector.

The goal of the inverse problem is thus to minimize (4.2.1), characterizing the inverse problem as a
weighted least squares problem. However, not only the size of the problem is considerable (the dimension
of each m(i) is between O(104) and O(106) in a realistic application, cf. [20, p.93]) but it is also very
ill-conditioned, consequently making prohibitive the use of global methods. Due to this restriction, local
methods are often preferred, considering that an initial guess is known. Algorithm 4.2.1 shows a simple
pseudo-code for the FWI using a generic steepest descent algorithm for solving this problem.

Remark 4.2.1. Steps 8 to 10 of Algorithm 4.2.1 refer to the choice of the model for the next iteration,
and are topic of active research [133]. We briefly mention that some strategies for performing FWI consist
of choosing λ models rather than only one, that is, steps 8 to 10 generate m(i+1)

k for 1 ≤ k ≤ λ, and during
iteration i + 1 the algorithm is ran once for each model, being thus able to effectively search in multiple

2We do not address the choice of S in this thesis, and we simply consider it given. Moreover, in many cases a regularization
term is also added to the misfit function, but we do not address this situation here.

62 CHAPTER 4. ACOUSTIC FULL WAVEFORM INVERSION

Algorithm 4.2.1: Generic acoustic FWI algorithm using steepest descent method

1 Set iteration counter i = 1;
2 Define n = p× nf ;
3 while not converged do
4 Solve forward problem: Compute incident wavefields u(i)

j for j = 1, ..., n;
5 Compute misfit vectors ∆d

(i)
j for j = 1, ..., n;

6 Compute value of the cost function C(m(i)) (cf. (4.2.1));
7 Build gradient vector G(i);
8 Choose a perturbation vector δm(i) ;
9 Choose a step length α(i);

10 Update model m(i+1) = m(i) + α(i)δm(i);
11 end while

directions every iteration. This however, comes at a great extra cost, since λ× p× nf forward problems
have to be solved for such a case3. �

It is yet to be mentioned how to perform line 7 of Algorithm 4.2.1. As we discuss in Section 4.3, the
forward problem is solved by dully discretizing the wave-equation and then solving the linear system

A(i)u
(i)
j = s

(i)
j (4.2.2)

where s(i)
j represents the position of the source. Considering A(i) given, we obtain the gradient of C(m(i))

as

∂C(m(i))

∂m(i)
= G(m(i)) =

nf×p∑
j=1

R

u
(i)
j

T

[
∂A(i)

∂m(i)

]T (
A(i)

)−T
P̃dataS†S∆d

(i)
j

 ,

where P̃data is the operator that projects ∆d
(i)
j onto the forward problem space and R(∗) is the real part

of the referred vector (cf. [20, (2.11)]). We highlight here the term(
A(i)

)−T
P̃dataS†S∆d

(i)
j

which is referred to as the back-propagation of the misfit vector. Computing such a vector is equivalent
to find the solution of the linear system(

A(i)
)T

g(i) = P̃dataS†S∆d
(i)
j (4.2.3)

the so called backward problem. Notice the relation between (4.2.2) and (4.2.3), and that the solution for
the later depends on the solution of the former (the solution of the forward problem is needed to compute
the right-hand side of the backward problem). When the operator A(i) is symmetric, the only difference
between the backward and forward problem lies in the right-hand side.

If (A(i))−1 would be known, the solution of the backward problem would take a matrix-vector mul-
tiplication operation, otherwise we would have to effectively solve the backward problem once for each
frequency and each source position. When using iterative solvers, (A(i))−1 is not known and therefore it
is extremely important to address the solution of the backward problem. This is subject of future studies.

3as we mention shortly, the forward problem, along with the backward problem (whenever it is present) are the most
expensive part of Algorithm 4.2.1.

4.3. DISCRETIZING THE FORWARD PROBLEM 63

4.3 Discretizing the Forward Problem
In this section we focus on the solution of the forward problem introduced in Section 4.2, and we discuss a
proper formulation of this problem as well as some techniques for discretizing and some few computational
issues arising when we are formulating the problem to find a numerical solution. Although this is not
explicitly mentioned in depth in this section, we always have in mind the formulation for massively parallel
environment, as we discuss in more detail in Section 4.4 and Section 4.5.

4.3.1 The Helmholtz Equation
We are interested in determining how the acoustic waves would propagate through the velocity model
m(i) inside the bounded parallelepiped domain Ω ⊂ R3. Two main approaches are traditionally chosen for
finding the solution for such a problem: to consider the problem in the time-domain or in the frequency-
domain. Both approaches have their advantages and drawbacks which we do not discuss here in details.
We refer to [31, 30, 84, 57, 126, 125] for details on the time-domain approach and to [116, 98, 99] for
details on the frequency-domain approach. Since it is recognized in the literature that the frequency-
domain approach is more advantageous when solving the inverse problem, in this thesis we address this
approach only.

We use the discussion in [49, §1.2] to deduce the equation suitable for representing the wave propagation
through the subsurface in the frequency-domain. We temporarily drop the j index from uj(x) since the
discussion here is valid for every j. Consider the time-dependent wave-equation for fluids and solids in
the absence of viscosity

∆p =
1

v2

∂2p

∂t2
(4.3.1)

where p(x, t) is the pressure on the point x ∈ R3 at the instant t ∈ R and v(x) is the propagation speed
of compressional waves in the point x. However, we consider that the waves are time-harmonic and that
they can be represented as

p(x, t) = u(x)exp(−̂ωwt), (4.3.2)

(cf. [49, (1.22)]) where ωw = 2πf is the angular frequency, f ∈ R is the frequency in Hertz, and ̂ =
√
−1 .

Substituting (4.3.2) into (4.3.1) we then obtain

−∆u(x)− k2(x)u(x) = 0 (4.3.3)

where k(x) = 2πf/v(x) is called the wavenumber function and ∆ denotes the Laplacian operator. Intro-
ducing the source term g(x) and also assuming that such source term is time-harmonic, we obtain the
heterogeneous Helmholtz equation as follows

−∆u(x)− k2(x)u(x) = s(x) (4.3.4)

which is in turn time-independent.
Recently it was proposed in [66] a reformulation of the Helmholtz equation using the Rytov decom-

position. This reformulation requires the solution of the complex advection-diffusion-reaction equation,
which in turn can be solved using efficient multigrid preconditioners. The authors report their approach
to be efficient in the two dimensional case. Although these results encourage further research on three
dimensional cases, we do not address this situation in this thesis.

4.3.2 Perfectly Matched Layers
Because the domain Ω is supposed to be bounded whereas the geophysical domain comprises the whole
Earth, in order to simulate properly the wave propagation phenomena one must add an absorbing boundary

64 CHAPTER 4. ACOUSTIC FULL WAVEFORM INVERSION

condition to the equation, as for instance the perfectly matched layers (PML) [13, 14]. It consists of adding
an artificial layer around Ω and modifying the wave-equation only inside these additional layers. For doing
that, we consider solving the problem in a larger parallelepiped domain Ωe such that Ω ⊂ Ωe. Denoting
the boundary of Ωe by Γ, and Ωpml = Ωe\Ω we then redefine the wave-equation in Ωpml using damping
functions such that the value of the pressure of the waves on Γ are always equal to zero (cf. Figure 4.4
for a two-dimensional graphical representation).

Figure 4.4: A graphical representation of the PML in two-dimensions. Left: a slice of the SEG/EAGE Salt dome
velocity model, defining Ω. Right: the wave propagation on the extended domain Ωe containing the PML, with Ω
being represented as the red box.

Letting the vector x = (x1, x2, x3), we use the same damping functions as [93]:

ξl(x
l) =

1− ̂ cos

(
πxl

2lpml

)
if 0 ≤ xl ≤ lpml,

1 if lpml < xl < ll − lpml,

1− ̂ cos

(
π(ll − xl)

2lpml

)
if ll − lpml ≤ xl ≤ ll.

(4.3.5)

for l ∈〚1, 3〛, where ll ∈ R is the length of Ω in the xl direction and lpml denotes the length of the PML
layer (which we consider to be uniform in every direction; cf. Figure 4.4).

Using Einstein’s notation, we then split (4.3.4) as

[
− ∂2

∂(xl)2
− k(x)2

]
u(x) = s(x) in Ω,[

− 1

ξl(x
l)

∂

∂xl
1

ξl(x
l)

∂

∂xl
− k(x)2

]
u(x) = s(x) in Ωpml\Γ,

u(x) = 0 on Γ

(4.3.6)

(cf. [96, p.103]). The forward problem consists in finding a solution for the problem (4.3.6) in Ωe. Although
the homogeneous form of the Helmholtz equation (4.3.3) possesses analytical solutions, this is not the case
for the heterogeneous equation (4.3.4), and thus a numerical approximation must be computed.

4.3.3 Discrete Formulation
In the current literature there are several approaches for discretizing (4.3.6) and computing a numerical
approximation. Techniques as finite elements and discontinuous Galerkin have been widely applied in the

4.3. DISCRETIZING THE FORWARD PROBLEM 65

literature. However, in this thesis we opt for a simplified approach, limiting our study to the uniform
finite difference techniques, using either 7 or 27 points in the Cartesian grid (cf. Figure 4.5) which are
cheap to generate and easily parallelizable.

Figure 4.5: Graphical representation of three-dimensional uniform finite difference Cartesian stencils.

7-point Cartesian stencil 27-point Cartesian stencil

Consider a uniform Cartesian grid Ωh as the discretization of Ωe for a given distance h ∈ R+ between
each point such that ll/h = nl ∈ N is the number of points in the direction xl. Then we define the discrete
function

u(i,j,k) = uh(ih, jh, kh), where uh = u

∣∣∣∣
Ωh

with i ∈ 〚1, n1〛, j ∈ 〚1, n2〛 and k ∈ 〚1, n3〛

and analogously for s(i,j,k), v(i,j,k) and ξ(l,i). Traditionally, h is chosen as to satisfy the minimal number of
points per wavelength nλ ∈ R+, a value which is scheme-dependent. Knowing that a wavelength is defined
as the ratio between the velocity of the propagation of the wave and the frequency f , we find that the
distance between each points must satisfy

h ≤
v(i,j,k)

nλf
, ∀(i, j, k) ∈ Ωh (4.3.7)

where it is normally chosen

h =

min
(i,j,k)∈Ωh

v(i,j,k)

nλf
. (4.3.8)

Inequality (4.3.7) is often referred in the literature as stability condition [29] for a second order discretiza-
tion scheme.

Using this notation, and the second order Taylor expansion, the discrete formulation of (4.3.6) for the

66 CHAPTER 4. ACOUSTIC FULL WAVEFORM INVERSION

7 point Cartesian stencil can be written as

s(i,j,k) =

 −ω2

v2
(i,j,k)

+
1

h2

 1

ξ+
(1,i)

+
1

ξ−(1,i)

+
1

ξ+
(2,j)

+
1

ξ−(2,j)
+

1

ξ+
(3,k)

+
1

ξ−(3,k)

u(i,j,k)

− 1

h2

1

ξ+
(1,i)

u(i+1,j,k) −
1

h2

1

ξ−(1,i)
u(i−1,j,k)

− 1

h2

1

ξ+
(2,j)

u(i,j+1,k) −
1

h2

1

ξ−(2,j)
u(i,j−1,k)

− 1

h2

1

ξ+
(3,k)

u(i,j,k+1) −
1

h2

1

ξ−(3,k)

u(i,j,k−1).

(4.3.9)

(cf. [96, p.106] for the three-dimensional formulation or [73] for a two-dimensional formulation) where

ξ+
(l,i) =

1

2
ξ(l,i)

(
ξ(l,i) + ξ(l,i+1)

)
ξ−(l,i) =

1

2
ξ(l,i)

(
ξ(l,i) + ξ(l,i−1)

)
for l ∈〚1, 3〛. Defining n = n1 × n2 × n3 and letting u ∈ Cn (respectively s ∈ Cn) denote the vectorization
of u(i,j,k) (respectively s(i,j,k)) in lexicographical ordering, we can write (4.3.9) as a linear system

Au = s

where A ∈ Cn×n is a matrix containing the coefficients of the unknowns u whose structure is depicted
in Figure 4.7. The resulting matrix A is sparse (has seven diagonals of nonzeros only), in general it is
non-Hermitian, and because of the PML formulation (4.3.6) it is also non-symmetric and ill-conditioned
depending on k(x). Recalling from Section 4.2 that we have p source positions and for a fixed frequency
f , we then obtain that the problem to be solved is

AU = S

where U, S ∈ Cn×p. The reason why we cannot consider multiple frequencies is that h depends on the
frequency f (cf. (4.3.7)), and thus the dimension of the problem n changes for every frequency. It is
beyond the scope of this manuscript to address the multiple frequencies issue, but we refer to [135, 136]
for recent developments done in order to solve the Helmholtz equation for multiple frequencies, and we
limit ourselves to the multi sources scenario.

We mention now some computational advantages of the discrete formulation (4.3.9). Because it is
a 7-point stencil, we have to store at most seven nonzeros per row, that is, the storage cost for the
discretized operator A is bounded by 7n. Moreover, the only term dependent on v(i,j,k) is the central
term u(i,j,k), meaning that in practice only these central points need to be stored in and all the other
values can be computed whenever they are needed, making this scheme even cheaper. Nevertheless in
our implementation we opt for storing part of the off diagonal for the sake of avoiding floating point
operations. Noticing that each ξ+

(li)
(or ξ+

(li)
) is in fact unidimensional, we store the values of each these

functions along a line, totalizing n+ 2(n1 + n2 + n3) storage for this implementation.
One of the main disadvantages of this scheme lies in the fact that it may not be stable unless we

choose a particularly large value for nλ to avoid dispersion errors in the solution, due to the fact that it
is a second order scheme. In the literature we usually select 10 ≤ nλ ≤ 12, thus resulting in a small h and
consequently a large problem size n.

4.3. DISCRETIZING THE FORWARD PROBLEM 67

Figure 4.7: Pattern of the coefficient matrix arising from the discrete formulation of the Helmholtz equation with
PML in a Cartesian uniform grid with a 7-point stencil (4.3.9)

4.3.4 Advanced Discretization Schemes
We briefly mention now alternative schemes for discretizing (4.3.6) which are available in the literature.

In [68] several finite difference discretization schemes are proposed for the discretization of (4.3.4)
(instead of (4.3.6)), usually aiming at high accuracy, small dispersion error and anisotropy. The authors
present fourth-order accurate schemes on uniform grids. A sixth-order accurate finite difference scheme is
proposed in [115]. We refer to [62] for recent numerical experiments with these high-order schemes using
the CARP-CG [61] iterative solver.

Figure 4.8: Image taken from [93]: combination of several 7-point stencil resulting in a 27-point parsimonious
staggered-grid scheme.

In [93] a scheme consisting of a weighted combination of several rotations of 7-point stencils resulting
in a 27-point scheme (cf. Figure 4.8) has been proposed. The weights are chosen such that the dispersion
error is minimized for small values of nλ. The numerical experiments in [93] show that the scheme is
considered stable for nλ = 4 in the sense that the dispersion error is still in the acceptable threshold.

68 CHAPTER 4. ACOUSTIC FULL WAVEFORM INVERSION

This means that the discretized operator A when using this scheme is compact : twenty seven diagonals
are stored, but the dimension n can be considerably smaller. Although in the presentation the weights
are chosen to minimize the dispersion error, a priori one could choose any weighting resulting in different
properties of the resulting scheme. Notice that because this scheme is formulated as a combination of
second order schemes, its truncation error is also of second order. We refer to [93, 120, 121] for more
numerical experiments using this scheme in two and three dimensions.

4.4 Preconditioning the Helmholtz Equation
In the current literature the difficulty in solving the Helmholtz problem is often associated with the
wavenumber, which we previously defined as

k(x) =
2πf

v(x)

or with its maximal value kmax = maxx∈Ω k(x). In view of (4.3.8), we find out that kmax is inversely
proportional h, that is, that larger the kmax, the larger must be number of points in the discretized
domain n, which for high frequencies can reach the value of O(109) (see Figure 4.9 for an example with
the SEG/EAGE Salt dome velocity model). Not surprisingly, the memory cost for solving the discretized
problem arising from the discretization of the Helmholtz equation (4.3.4) or (4.3.6) is often the main
bottleneck in this application. In [93] a sparse multifrontal direct method [4] is employed for both two-
dimensional and three-dimensional formulations, the largest problem solved being a cut of the SEG/EAGE
Overthrust velocity model (cf. Figure 4.2) containing 409× 109× 102 points, for 10Hz using the 27-point
parsimonious staggered-grid scheme mentioned in Subsection 4.3.4 (cf. Figure 4.8) with nλ = 4 and
requiring 450 GB of memory. In [18] the same full SEG/EAGE Overthrust velocity model is used, this
time with multilevel LDLT factorization preconditioner. The problem size is 409×409×102 with f = 5Hz
only, requiring 32 GB of memory. Recent work done in [47] proposes a preconditioner based on LDLT

factorization preconditioner, which aims to eliminate the unknowns layer by layer (in 2D) or face by
face (in 3D) starting from the boundaries of the domain. This preconditioner is therein called “sweeping
preconditioner”. This work is later extended in [97] to allow parallelism, being thus able to solve for the
SEG/EAGE Overthrust velocity model at 8Hz, with 801 × 801 × 187 grid, using 24 Gb of memory. It
was investigated in [67] the behaviour of the algebraic additive Schwarz preconditioner when solving the
Helmholtz equation for the SEG/EAGE Overthrust velocity model containing 277× 277× 73 points, for
f = 7Hz, requiring 150 GB of memory. In general, using a standard sparse direct solver method for
solving the Helmholtz problem requires an amount of memory of the order of O(n2 log n) (cf. [121, (1)]),
which can be prohibitively large for high kmax. Recent publications [137, 138] attempt to reduce the
memory of direct solvers for Helmholtz by using low-rank approximation of sub-block of the coefficients
matrix, a method therein called parallel Hierarchically Semi-Separable (HSS) matrix compression. The
memory requirement is reported to be almost linear, between O(n) and O(n log n), and the method is
used to successfully solve realistic problems, as the SEAM velocity model with grid size 401× 401× 201
for up to 20Hz, using 2TB memory. More numerical experiments can be found in [3] and an extension
for use with elastic waves in [139].

Since the memory seems to be the main bottleneck when solving the Helmholtz equation for standard
sparse direct solvers, the use of iterative solvers becomes a feasible alternative. Krylov iterative solvers
are recognized for their good scalability in massively parallel environment which is also one of the main
interests when solving the Helmholtz problem due to its large dimension. Moreover, the fact that the
discretized Helmholtz operator can be very sparse (e.g. when using 7-point schemes) also encourages
the use of Krylov iterative solvers. However, kmax is also associated with difficulties in finding Krylov
directions to improve the approximate solution when using GMRES method without any preconditioner,
culminating in a slow convergence (cf. [52, §2.1]). When using incomplete LU factorizations [109, Chapter
10] as preconditioner, iterative solvers as GMRES [108], BiCGStab [131] and QMR [55] also show a
decrease in the convergence behaviour as kmax grows [56]. Domain decomposition ([118] and specially

4.4. PRECONDITIONING THE HELMHOLTZ EQUATION 69

Figure 4.9: The academic SEG/EAGE Salt dome velocity model and the value of h related to f , considering that
nλ = 12. Notice that if f = 10Hz, n = O(109). The grid size described here does not take the PML layer into
account.

[127, §11.5.2]) techniques used as a preconditioner for GMRES are also reported to be dependent on kmax
(cf. [52, §2.3]). The study of a preconditioner which is efficient for the Helmholtz equation (and hopefully
independent of kmax) is subject of active research.

We highlight here the effort on using geometric multigrid techniques [83, 128] (cf. Figure 4.10) for
solving the Helmholtz equation. Multigrid techniques are known to be specially efficient when the problem
being solved is symmetric and positive-definite, in which case the eigenvalues are located in the positive real
quadrant of the complex plane. However, the eigenvalues of the (unpreconditioned) Helmholtz operator
with the PML formulation are spread along the complex plane and depending on kmax we may have
eigenvalues clustered around the origin, characterizing a very ill-conditioned problem.

Figure 4.10: Graphical representation of a basic V -cycle geometrical multigrid. Other advanced multigrid schemes
can be deduced from the basic V -cycle.

Another concern of the geometric multigrid approach is that on the coarsest level, the effective nλ
might be below the suggested threshold. For instance, using the 7-point stencil the advised nλ is 12,
whereas in the scheme presented in Figure 4.10, the coarsest grid will effectively be discretized with 6
points per wavelength. This means that the coarse grid correction might have no physical significance, as
is explained in [52, §3.3] (cf. also Figure 9 and Figure 10 in the same publication). The dispersion and
phase errors in the coarse level may be enough to invalidate the coarse grid correction, which can in some
cases deteriorate the solution instead of improving.

In [46] it was proposed the use of Krylov subspace methods as FGMRES either as a solver precondi-
tioned by geometric multigrid or as a smoother on intermediate grids. Similar numerical experiments for
two-dimensional problems can be found in [39], where sparse multifrontal direct methods are used to solve
the coarsest level problem. The authors of [46] report that Krylov iterative solvers are suitable as smoother
on the intermediate levels, and that the convergence seems to be independent on the mesh size h, but
still dependent on kmax. Most notably, in [46] the authors report that for some values of kmax the coarse
grid correction may be significant even when the discretization is too coarse to have physical significance.

70 CHAPTER 4. ACOUSTIC FULL WAVEFORM INVERSION

Other publications on the subject of geometric multigrid for Helmholtz problem are [49, 51, 77] and on
algebraic multigrid [18].

In [96] it was then proposed the use of a Krylov subspace not only as a smoother but also at the coarse
level of two-level multigrid algorithm. The main idea behind this proposal is that the coarse grid correction
does not require high accuracy and an approximate solution suffices. This argument is then supported
by rigorous Fourier analysis on two-level multigrid preconditioner therein called perturbed geometric two-
level preconditioner. The author shows that the spectrum of the Helmholtz operator preconditioned by a
two-level multigrid with an exact coarse correction is not improved when compared with the perturbed
preconditioner with a very loose approximation on the coarse level (cf. [96, §3.4]). We thus conclude that
the solver does not benefit from highly accurate coarse corrections. This assumption is also supported
by numerical experiments where FGMRES method is used with the two-level perturbed preconditioner,
where using a coarse correction relative tolerance of mere 0.6 results in faster convergence than using
10−12 (cf. [96, p.77], Table 3.7). We address this preconditioner in more details in Subsection 4.4.1.

Another development on preconditioning the Helmholtz operator is the use of the so called complex
shifted Laplacian operator [49, 51]. It consists in using

−∆u(x)− (1− iβ)k2(x)u(x) = g(x) where β ∈ R

instead of (4.3.4) for the multigrid hierarchy levels. The goal of this approach is to obtain an operator
which presents a better convergence behaviour when using multigrid method. The complex shifted Lapla-
cian operator has been ever since largely used as a preconditioner for Krylov iterative solvers as GMRES
or BiCGStab when solving the Helmholtz equation (cf. [52, p.32] Figure 16 for an analysis of the spec-
trum of the Helmholtz operator preconditioned by the complex shifted Laplacian operator). Numerical
experiments in [51] show the robustness of the method when applied to realistic geophysical applications
at high wavenumbers. However, in [50, 52] it is shown that the efficiency of the complex shifted Lapla-
cian preconditioner is still linearly dependent on kmax. We refer to [18, 24, 49, 50, 51, 100, 101, 130] for
numerical experiments with the complex shifted Laplacian using low and medium frequency ranges only
and more information on how to choose the shift parameter β.

Although the use of complex shifted Laplacian preconditioners is normally advised specially when using
multigrid techniques for low or mid frequency cases (about 10Hz), the efficiency of this preconditioner may
decrease for high frequencies. In the recent publication [24] it was shown that using optimal parameters
deduced from Fourier analysis, the perturbed two-level preconditioner proposed in [96] shows an increased
robustness on heterogeneous problems when compared to the standard approach based on complex shifted
Laplacian operator. The performance is further improved when the two-level preconditioner uses a complex
shifted Laplacian operator as a preconditioner on the coarse level (cf. [24, Table IV]). The numerical
experiments in [24] confirm the efficiency of their approach when solving for high frequencies.

In this thesis we limit ourselves to the use of the two-level perturbed multigrid proposed in [96], which
we reproduce with more details in Subsection 4.4.1. We focus on the behaviour of the overall method
when solving the Helmholtz equation (4.3.6) in the multi sources scenario, using deflation every iteration.
We discuss in depth the issues arising from this particular scenario in the next section, and we refer to [24]
for a recent detailed description of the perturbed preconditioner when using the complex shifted Laplacian
operator as preconditioner.

4.4.1 The Perturbed Geometric Two-Level Preconditioner

In this subsection we discuss the perturbed geometric two-level preconditioner [22, 23, 96], briefly men-
tioned in Section 4.4. Since this is the main preconditioner we will use in our further numerical experiments
(as it is the preconditioner used in the experiments in Section 3.9) we provide a more detailed explanation
in this section.

Recalling the discussion in Section 4.3, A is the matrix issued from the discretization of the operator
(4.3.6) on Ωh. We then define the coarse grid ΩH as the standard geometric coarsening of Ωh in all

4.5. SOFTWARE IMPLEMENTATION 71

directions. Without loss of generality, we suppose here that h was chosen such4 that n/8 =: N ∈ N. The
discretization of (4.3.6) in ΩH is thus obtained using the same discretization scheme of choice for Ωh,
resulting in the operator AH ∈ CN×N .

We also define the restriction and the interpolation operators

R : Cn → CN

I : CN → Cn.

In all our numerical experiments we use I(.) as the trilinear interpolation, and its adjoint as the restriction
operator R(.).

The generic perturbed two-level preconditioner [96] for single right-hand side is depicted in Algo-
rithm 4.4.1. Unless otherwise specified, whenever we apply Algorithm 4.4.1 we use the following parame-
ters

µ = 1, mh = 2, µH = 10, and mH = 10. (4.4.1)

Algorithm 4.4.1: Perturbed geometric two-level cycle to obtain the approximation Zj ∈ Cn×kj to the
system AZ = Vj for a given fixed right-hand side Vj ∈ Cn×kj with the zero initial guess

1 Polynomial presmoothing: apply µ cycle(s) of FGMRES(mh) to AZ = Vj with initial
approximation 0n×kj and symmetric Gauss-Seidel as a right preconditioner to obtain the
approximation Zµh ;

2 Restrict the fine level residual: RH = R(Vj −AZµh);
3 Solve approximately the coarse problem AHZH = RH : Apply µH cycles of FGMRES(mH) to
AHZH = RH with initial approximation 0N×kj and symmetric Gauss-Seidel as a right
preconditioner to obtain the approximation Z̃H ;

4 Correct the fine grid approximation: Z̃h = Zµh + I(Z̃H);
5 Polynomial postmoothing: Apply µ cycle(s) of FGMRES(mh) to AZ = Vj with initial
approximation Z̃h and symmetric Gauss-Seidel as a right preconditioner to obtain the
approximation Zh;

6 Define Zj := Zh

We highlight that the application of Algorithm 4.4.1 as a preconditioner characterizes a variable pre-
conditioner. Writing Zj =M(Vj) where the nonlinear functionM(.) represents the action Algorithm 4.4.1
on Vj , we see that the use of the perturbed two-level preconditioner implies the use of a flexible outer
method.

4.5 Software Implementation

In view of the whole discussion in this chapter, it is clear that many aspects of the full waveform inversion
method require future research. Indeed so many different techniques are being applied on different levels of
the problem that choosing the best strategy and staying up to date with the most recent advancements is a
challenge. Also, due to the vast diversities of knowledge that this problem requires, it would be challenging
to write a monolitical software to be used by geophysicists as well as computer scientists working with
low level linear algebra optimization. For this reason it is needed a malleable and modular software. We
thus discuss now some basic aspects of the software implementation we proposed for solving large sparse
linear systems (and thus, being able to solve the forward problem) in a massively parallel environment,
using FORTRAN03 object orientation techniques.

4or n/4 =: N ∈ N for the two-dimensional case.

72 CHAPTER 4. ACOUSTIC FULL WAVEFORM INVERSION

In scientific computing community, FORTRAN77 and FORTRAN90 stand as two of the most efficient
and popular programming languages. However, both of these languages lack of object orientation tools, as
polymorphism and inheritance, which are essential building blocks for modular codes. Since our original
proposal was to build a modular software able to be easily changed and adapted to exploit the new
techniques being developed in the literature, we opted for using a language which would instead present
at least polymorphism and inheritance features.

Among the candidate languages, we highlight here the FORTRAN03, a standard for the FORTRAN
compiler published in 2004, but not yet completely implemented as a functional compiler. Instead, specific
compilers implementing a limited set of FORTRAN03 standards have been developed, as ifort (Intel
FORTRAN Compiler), gfortran (GNU FORTRAN compiler), pgi (The Portland Group, Inc.), among
others. Nevertheless, the basic object orientation features are supported by most of these compilers.

The choice of FORTRAN03 over other object oriented languages makes sense when considering a soft-
ware using only the most basic object orientation concepts, specially since we are targeting a community
that is already used to FORTRAN77 and FORTRAN90 softwares, making the transition between proce-
dural programming to object oriented programming more smooth and comfortable, in contrast with other
languages which could require a deep knowledge on object orientation and software engineering.

We describe basically the advantage of using polymorphism and inheritance in Figure 4.11. Just as
an example, consider we have a type C_Solver and that the objects C_BFGMRES, C_BFGMRESD,
and C_DMBR which inherit from C_Solver. But more than that, the object C_FBGMRES requires
another object of the type C_Solver to be used as preconditioner. This means that any of the objects
C_BFGMRESD, and C_DMBR could be used as preconditioner, including C_BFGMRES itself. Also,
if in any moment it is implemented an object of the type C_BiCGStab who inherits from C_Solver, then
C_BiCGStab could be used as a preconditioner for C_BFGMRES without any modification in the code.

Figure 4.11: Basic representation of polymorphism in inheritance. Inheritance guarantees that every object of
the type C_Child1, C_Child2 and C_Child3 contains every component (e.g. variables, pointers, etc) that is
contained in C_Parent. Polymorphism guarantees that every object of the type C_Child1, C_Child2 and
C_Child3 can be treated as a C_Parent type also. For instance, a subroutine or function which requires an
object of the type C_Parent as an argument, could receive also a C_Child1 or C_Child3 object instead without
requiring any kind of modification in the code.

We do not attain to details of the code in this subsection, but we refer to Appendix A for a detailed
user guide of the libraries we implemented using FORTRAN03 and object orientation. We highlight that
we compared the code written in FORTRAN03 with the prototypes implemented in FORTRAN90 used
in the numerical experiments in Subsection 3.9.3 and Subsection 3.9.4. The FORTRAN03 version showed
a marginal speedup of 1% to 3.5% with respect to the prototype code, thus guaranteeing that the addition
of the object orientation did not bring any slow down to our code.

4.6 Numerical Experiments

This section is dedicated to numerical experiments related to acoustic full waveform inversion method
problem, using the software we developed using FORTRAN03. The goal of this section is two fold: to

4.6. NUMERICAL EXPERIMENTS 73

show that the software we developed is suitable for solving large scale problems (approximately O(109)) in
a massively parallel environment, and to reinforce the interest in using the deflation techniques proposed
in Chapter 3 in the acoustic full waveform inversion context.

4.6.1 Forward Problem: Smoothed SEG/EAGE Salt Dome

The numerical experiments performed in Section 3.9 concern the acoustic wave propagation phenomena in
frequency domain through the academic velocity field SEG/EAGE Overthrust, which is a realistic model,
reflecting the real properties of the subsurface of Earth. However, for the purpose of the inverse problem,
the approximated velocity model could present considerably different properties (especially during early
iterations, or during the computation of an initial guess). For this reason, it turns out to be interesting to
investigate the behaviour of deflation in a scenario where the velocity model is rather an approximation
of a realistic model.

In this subsection we present numerical experiments related to the velocity model known as SEG/EAGE
Salt Dome (already shown in Figure 4.9). This is a particularly challenging problem to be solved using
iterative solvers due to a discontinuity in the velocity model (representing a dome of salt in the subsurface
of Earth), which abruptly increases the velocity of propagation of the compressional waves (cf. Figure 4.12
for a graphical representation of the interior of this velocity model). We also perform perturbations on this
velocity model, applying different degrees of compression techniques and obtaining smoothed approximated
versions of this model (cf. Figure 4.13 to Figure 4.16 for graphical representations of the smoothed velocity
field).

Figure 4.12: Graphical representation of the interior of the three-dimensional academic velocity generated using
Paraview [69]. The image on the left represents a plane cut at y = 308. The image on the right shows only the
points of the domain which have velocity equal or higher than 4, 000 m/s, delineating the structure of the dome of
salt.

The experiments performed in this section aim at investigating how much the behaviour of the deflation
of techniques proposed in Chapter 3 change as the velocity field turns smoother. All experiments were
performed on a Bullx B510 computer located at CERFACS (two Intel Sandy Bridge with 2.6 Ghz and 32
Gb of memory per node). In all experiments we used DMBR(5) preconditioned by perturbed two-level
method (cf. Subsection 4.4.1). The frequency was set to 5Hz, and using one length of PML and 12
points per wavelength, the resulting discretized domain contained 624 × 616 × 240 points5 being thus a
problem of dimension 9.2 × 107. We used 16 source positions equally spaced along a line (from point
(285, 309, 38) to point (340, 309, 38)) on the surface of the domain, and the memory cost per source point
in this experiment is 11.8 Gb per right-hand side, plus the storage required to store the coefficients matrix
A. The total cost including A and all right-hand sides is 189.6 Gb. The experiment was performed with
128 cores. Table 4.1 shows the results in number of iterations, number of preconditioner applications and
total computational time for the test. Figure 4.13 to Figure 4.16 (left side) show a graphical representation

5Since we set the processor’s geometry to 8× 4× 4 we are obligated to allow hx 6= hy due to round off, generating thus
a different number of points in direction x and y.

74 CHAPTER 4. ACOUSTIC FULL WAVEFORM INVERSION

of SEG/EAGE Salt Dome and its different smoothed versions, along with the wavefield obtained after
solving the Helmholtz equation for its respective velocity model.

Figure 4.13: Original SEG/EAGE Salt dome velocity field, and its respective wavefield obtained from the solution
of the Helmholtz equation for 5Hz. This shows the solution for the 8-th right-hand side.

Figure 4.14: Smoothed×1 version of SEG/EAGE Salt dome velocity field, and its respective wavefield obtained
from the solution of the Helmholtz for 5Hz equation. This shows the solution for the 8-th right-hand side.

We can verify that, as the velocity field becomes smoother, fewer iterations and fewer preconditioner
applications are needed for finding an approximate solution satisfying the relative residual stopping cri-
terion (for ε = 10−5). Figure 4.17 shows the history of kj along the convergence of DMBR(5) for each
velocity model.

4.6. NUMERICAL EXPERIMENTS 75

Figure 4.15: Smoothed×2 version of SEG/EAGE Salt dome velocity field, and its respective wavefield obtained
from the solution of the Helmholtz for 5Hz equation. This shows the solution for the 8-th right-hand side.

Figure 4.16: Smoothed×3 version of SEG/EAGE Salt dome velocity field, and its respective wavefield obtained
from the solution of the Helmholtz for 5Hz equation. This shows the solution for the 8-th right-hand side.

As we can see in , the history of kj for each velocity model is indeed very similar. For instance,
Smoothed×3 velocity model shows a faster convergence in number of iterations for DMBR(5) when com-
pared to the original SEG/EAGE salt dome velocity model (therein called Smoothed×0), but it starts
deflating in an earlier iteration. The curves of evolution of kj are relatively similar for all the velocity
models. We consider this result very satisfactory and it encourages further research on the behaviour of
deflation in the inverse problem application.

76 CHAPTER 4. ACOUSTIC FULL WAVEFORM INVERSION

Figure 4.17: Evolution of kj along the iterations of DMBR(5) preconditioned by a two-level perturbed multigrid
V-cycle (cf. Table 4.1) for each SEG/EAGE Salt dome velocity field and its respective smoothed versions.

4.6.2 Forward Problem: Mid Frequency Case

In this subsection we quickly expose the solution we obtained when using our libraries to solve the
Helmholtz equation for mid frequencies. The goal of this experiment is to illustrate that the software
was designed for solving at higher frequencies as long as enough memory resources are available.

As in the previous section, we limit ourselves to the use of two-level techniques as described in Subsec-
tion 4.4.1, but here we use FGMRES(5) as outer solver rather than DMBR(5). The reason for this choice is
that we perform this experiment using only one right-hand side. As the previous experiments, the follow-
ing experiments was performed on a Bullx B510 computer located at CERFACS (two Intel Sandy Bridge
with 2.6 Ghz and 32 Gb of memory per node): using the SEG/EAGE salt dome velocity field, we solve the
Helmholtz equation for 12Hz, and using one length of PML and 12 points per wavelength, the resulting
discretized domain contained 1376× 1376× 480 points being thus a problem of dimension 9.1× 108. The
only source was positioned at the very center of the domain. We used 128 cores, and the memory cost for
this experiment was 141.7 Gb and with a computational time of 2, 012 seconds (approximately 33min) to
find an approximate solution satisfying the relative residual smaller than 10−5.

Figure 4.18 show a graphical representation of SEG/EAGE Salt Dome along with the wavefield ob-
tained after solving the Helmholtz equation in this setting.

4.7 Conclusions

In this chapter we provided a wide overview of several aspects of the full waveform inversion problem. We
focused on the challenges arising in the solution of the forward problem, and we highlight that there is no
generic optimal solution, as the best method for solving the forward problem depends on characteristics of
the problem, as for instance, the wavenumber (thus also the frequency), the size of the geophysical domain,
among others. With this in mind, we motivate the use of a flexible object oriented code using MPI and
FORTRAN03 which can be easily adapted to use new strategies or to choose which strategy is the best
depending on the problem parameters. We propose a first version of this code, which implements some

4.7. CONCLUSIONS 77

Figure 4.18: SEG/EAGE Salt dome velocity field, and its respective wavefield obtained from the solution of the
Helmholtz equation for 12Hz. This experiment required 141.7 Gb of memory

finite difference discretization schemes as well as some iterative solvers, as BFGMRESD [78], BGMRES-R
[103] and DMBR presented in Chapter 3 as well as some preconditioners based on multigrid techniques,
as the perturbed two level preconditioner [96] detailed in Subsection 4.4.1. Tests performed with this
software has shown a satisfactory level of flexibility and further solvers, preconditioners and discretization
schemes will be implemented in our future work. Appendix A contains a basic user guide with more
detailed description of the code with examples and description of key functions, types and classes. We
have shown a practical use of the code with numerical experiments performed at 5Hz and 12Hz using the
academical velocity field SEG/EAGE salt dome, a challenging and realistic model. With this experiment
we illustrated further the behaviour of the deflation techniques proposed in Chapter 3 when applied to
the forward problem arising from the acoustic full waveform inversion problem, showing the interest in
using DMBR method in real life applications.

78 CHAPTER 4. ACOUSTIC FULL WAVEFORM INVERSION

Velocity Field It Pr T
Salt Dome 35 365 1330
Smoothed×1 Salt Dome 33 337 1238
Smoothed×2 Salt Dome 28 285 1056
Smoothed×3 Salt Dome 23 246 921

Table 4.1: Experiment at f = 5 Hz with p = 16 source points. The method used was DMBR(5) preconditioned
by perturbed two-level preconditioner (cf. Subsection 4.4.1). It denotes the number of iterations, Pr the number
of preconditioner applications on a single vector and T denotes the total computational time in seconds. 128 cores
were used in this experiment, and the memory cost is 11.8 Gb per right-hand side, with a total of 189.6 Gb

Chapter 5

Flexible GCRO-DR

5.1 Foreword
In this chapter we present the flexible generalized conjugate residual method with inner orthogonalization
and deflated restarting (FGCRO-DR) method. It consists of an iterative solver able to recycle subspace
information of one cycle to accelerate the convergence of the following cycle, a technique initially proposed
for the solution of sequence of linear systems, that is, when we have the sequence of systems

Ax(i) = b(i), with each x(i), b(i) ∈ Cn

for 1 ≤ i ≤ p, where b(i) may depend on some x(j) for 1 ≤ j < i. In such a scenario, the use of block
methods as proposed in Chapter 2 and 3 is not possible.

The development of this method has been greatly inspired by the application described in Chapter 4,
since subspace recycling techniques could be used to accelerate the convergence when the problem presents
multiple left-hand sides, that is

A(i)X = B, with X,B ∈ Cn×p, A(i) ∈ Cn×n

1 ≤ i ≤ λ, a situation which could arise as well from the Earth imaging scenario (cf. Remark 4.2.1). We
refer to [1, 95] for more details on the use of recycling techniques for the multiple left-hand side case.

In this chapter we introduce the FGCRO-DR method for single right hand sides scenario and discuss
its main properties, focusing on the comparison between FGCRO-DR and FGMRES-DR [58], a closely
related method which is unable to recycle subspace information. We demonstrate that, in spite of the
similarities between both methods, when a variable preconditioner is used they are only equivalent if a
collinearity condition holds (cf. Theorem 5.2.11)

We let as future work the investigation of the efficiency of FGCRO-DR recycling techniques when
solving the forward and backward problem or when solving for multiple models simultaneously. Another
important issue we do not address in this manuscript is the generalization of FGCRO-DR for the block
scenario and the potential combination of recycling technique with block techniques, which is also subject
of our future research.

79

80 CHAPTER 5. FLEXIBLE GCRO-DR

5.2 A Flexible Generalized Conjugate Residual Method with In-
ner Orthogonalization and Deflated Restarting

The title as well as the contents of this section corresponds to [27], joint work with Luiz Mariano Carvalho,
Serge Gratton and Xavier Vasseur.

Abstract

This work is concerned with the development and study of a minimum residual norm subspace
method based on the Generalized Conjugate Residual method with inner Orthogonalization (GCRO)
method that allows flexible preconditioning and deflated restarting for the solution of non-symmetric
or non-Hermitian linear systems. First we recall the main features of Flexible Generalized Mini-
mum Residual with deflated restarting (FGMRES-DR), a recently proposed algorithm of the same
family but based on the GMRES method. Next we introduce the new inner-outer subspace method
named FGCRO-DR. A theoretical comparison of both algorithms is then made in the case of flexible
preconditioning. It is proved that FGCRO-DR and FGMRES-DR are algebraically equivalent if a
collinearity condition is satisfied. While being nearly as expensive as FGMRES-DR in terms of com-
putational operations per cycle, FGCRO-DR offers the additional advantage to be suitable for the
solution of sequences of slowly changing linear systems (where both the matrix and right-hand side
can change) through subspace recycling. Numerical experiments on the solution of multidimensional
elliptic partial differential equations show the efficiency of FGCRO-DR when solving sequences of
linear systems.

5.2.1 Introduction

In recent years, several authors studied inner-outer Krylov subspace methods that allow variable precon-
ditioning for the iterative solution of large sparse linear systems of equations. One of the first papers de-
scribing a subspace method with variable preconditioning is due to Axelsson and Vassilevski who proposed
the Generalized Conjugate Gradient method [7]. See also [6, Section 12.3] for additional references. Since
then, numerous methods have been proposed to address the symmetric, non-symmetric or non-Hermitian
cases; these include Flexible Conjugate Gradient [90], Flexible GMRES (FGMRES) [105], Flexible QMR
[124] and GMRESR [132] among others. This class of methods is required when preconditioning with
a different (possibly nonlinear) operator at each iteration of a subspace method is considered. This no-
tably occurs when adaptive preconditioners using information obtained from previous iterations [8, 48]
are used or when inexact solutions of the preconditioning system using e.g. adaptive cycling strategy
in multigrid [91] or approximate interior solvers in domain decomposition methods [127, Section 4.3] are
considered. The latter situation is frequent when solving very large systems of linear equations resulting
from the discretization of partial differential equations in three dimensions. Thus flexible Krylov subspace
methods have gained a considerable interest in the past years and are subject to both theoretical and nu-
merical studies [112]. We refer the reader to [114, Section 10] for additional comments on flexible methods.

When non variable preconditioning is considered, the full GMRES method [108] is often chosen for
the solution of non-symmetric or non-Hermitian linear systems because of its robustness and its minimum
residual norm property [107]. Nevertheless to control both the memory requirements and the computa-
tional cost of the orthogonalization scheme, restarted GMRES is preferred; it corresponds to a scheme
where the maximal dimension of the approximation subspace is fixed. It means in practice that the or-
thonormal basis built is thrown away at the end of the cycle. Since some information is discarded at
the restart, the convergence may stagnate and is expected to be slower compared to full GMRES. Never-
theless to retain the convergence rate a number of techniques have been proposed; they fall in the class
of augmented and deflated methods; see e.g. [11, 35, 41, 86, 106]. Deflated methods compute spectral
information at a restart and use this information to improve the convergence of the subspace method.
One of the most recent procedure based on a deflation approach is GMRES with deflated restarting

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 81

(GMRES-DR) [88]. This method reduces to restarted GMRES when no deflation is applied, but may pro-
vide a much faster convergence than restarted GMRES for well chosen deflation spaces as described in [88].

Quite recently a new minimum residual norm subspace method based on GMRES allowing deflated
restarting and variable preconditioning has been proposed in [58]. It mainly attempted to combine the
numerical features of GMRES with deflated restarting and the flexibility property of FGMRES. Numerical
experiments in [58] have shown the efficiency of Flexible GMRES with deflated restarting (FGMRES-DR)
on both academic and industrial examples. In this section we study a new minimum residual norm sub-
space method based on the Generalized Conjugate Method with inner Orthogonalization (GCRO) [34]
allowing deflated restarting and variable preconditioning. It is named Flexible Generalized Conjugate
Residual Method with Inner Orthogonalization and Deflated Restarting (FGCRO-DR) and can be viewed
as an extension of GCRO-DR [95] to the case of variable preconditioning. A major advantage of FGCRO-
DR over FGMRES-DR is its ability to solve sequence of linear systems (where both the left and right-hand
sides could change) through recycling [95]. In [95] Parks et al. mentioned that GCRO-DR and GMRES-
DR were algebraically equivalent i.e. both methods produce the same iterates in exact arithmetic when
solving the same given linear system starting from the same initial guess. When variable preconditioning
is considered, it seems therefore natural to ask whether FGCRO-DR and FGMRES-DR could be also
algebraically equivalent. We address this question in this section and the main theoretical developments
that are proposed will help us to answer this question. The main contributions of the section are then
twofold. First we prove that FGCRO-DR and FGMRES-DR can be considered as algebraically equivalent
if a collinearity condition between two certain vectors is satisfied at each cycle. When considering non
variable preconditioning, these theoretical developments will also allow us to show the algebraic equiva-
lence between GCRO-DR and GMRES-DR that was stated without proof in [95]. Secondly we carefully
analyze the computational cost of FGCRO-DR and show that the proposed method is nearly as expensive
as FGMRES-DR in terms of operations per cycle. Furthermore it is explained how to include subspace
recycling into FGCRO-DR and numerical experiments are reported showing the efficiency of FGCRO-DR.

This section is organized as follows. In Subsection 5.2.2 we introduce the general background of this
study. We briefly recall the main properties of FGMRES-DR and then introduce the FGCRO-DR method
both from a mathematical and algorithmic points of view. Subsection 5.2.7 is mainly devoted to the
analysis of both flexible methods. Therein we show that both methods can be algebraically equivalent
in the flexible case if a certain collinearity condition is satisfied at each cycle. In Subsection 5.2.11 we
compare FGCRO-DR and FGMRES-DR in terms of computational operations per cycle and storage and
discuss the solution of sequences of linear systems through subspace recycling. Finally we draw some
conclusions and perspectives in Subsection 5.2.15.

5.2.2 Flexible Krylov methods with restarting

5.2.3 General setting

Notation Throughout this section we denote by ‖.‖ the Euclidean norm, Ik ∈ Ck×k the identity matrix
of dimension k and 0i×j ∈ Ci×j the zero rectangular matrix with i rows and j columns. Given N ∈ Cn×m

ΠN⊥ = In−N N† will represent the orthogonal projector onto range (N)
⊥, where the superscript † refers

to the Moore-Penrose inverse. Finally given Zm = [z1, · · · , zm] ∈ Cn×m, we will usually decompose Zm
into two submatrices defined as Zk = [z1, · · · , zk] ∈ Cn×k and Zm−k = [zk+1, · · · , zm] ∈ Cn×(m−k).

Setting We focus on minimum residual norm based subspace methods that allow flexible preconditioning
for the iterative solution of

Ax = b, A ∈ Cn×n, x, b ∈ Cn (5.2.1)

given an initial vector x0 ∈ Cn. In this section A is supposed to be nonsingular. Flexible methods refer
to a class of methods where the preconditioner is allowed to vary at each iteration. We refer the reader

82 CHAPTER 5. FLEXIBLE GCRO-DR

to e.g. [114] for a general introduction on Krylov subspace methods and to [114, Section 10] and [107,
Section 9.4] for a review on flexible methods. The minimum residual norm GMRES method [108] has been
extended by Saad [105] to allow variable preconditioning. The resulting algorithm known as FGMRES(m)
relies on the Arnoldi relation

AZm = Vm+1H̄m, (5.2.2)

where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) has orthonormal columns and H̄m ∈ C(m+1)×m is upper Hessenberg.
We denote by Mj the preconditioning operator at iteration j and remark that Mj may be a nonlinear
preconditioning function. We will then denote byMj(v) the action ofMj on a vector v. In (5.2.2), the
columns of Vm+1 form an orthonormal basis of the subspace spanned by the following vectors

{r0, Az1, · · · , Azm} with r0 = b−Ax0

whereas Zm = [z1, · · · , zm] and Vm = [v1, · · · , vm] are related by

Zm = [M1(v1), · · · ,Mm(vm)] with v1 =
r0

‖r0‖
.

At the end of the cycle an approximate solution xm ∈ Cn is then found by minimizing the residual norm
‖r0 −AZmy‖ over the space x0 + range (Zm). Thus we obtain that

xm = x0 + Zmy
∗,

where y∗ is the solution of the following least-squares problem of size (m+ 1)×m

y∗ = argminy∈Cm‖r0 −AZmy‖ = argminy∈Cm

∥∥‖r0‖ e1 − H̄my
∥∥ ,

where e1 is the first canonical vector of Cm+1. Flexible subspace methods with restarting are based on
a procedure where the construction of the subspace is stopped after a certain number of steps (denoted
by m in this section with m < n). The method is then restarted mainly to control both the memory
requirements and the cost of the orthogonalization scheme. In FGMRES(m) the restarting consists in
taking as an initial guess the last iterate of the cycle (xm).

The main focus of this section is to present minimum residual norm subspace methods with deflated
restarting that allow flexible preconditioning. Deflated restarting aims at determining an approximation
subspace of dimension m as a direct sum of two subspaces of smaller dimension, where one of these
subspaces will contain relevant spectral information that will be kept for the next cycle. We refer the
reader to e.g. [106] and [114, Section 9] for a review on augmented and deflated methods. Flexible
methods with deflated restarting will notably satisfy the following flexible Arnoldi relation

AZm = Vm+1H̄m with V Hm+1 Vm+1 = Im+1, (5.2.3)

where H̄m ∈ C(m+1)×m is not necessarily of upper Hessenberg form. In this section we call this relation
a flexible Arnoldi-like relation due to its similarity to relation (5.2.2).

Stagnation and breakdown We refer the reader to [112, Section 6] for general comments and a detailed
discussion on the possibility of both breakdown and stagnation in flexible inner-outer Krylov subspace
methods. Although important, these issues are not addressed in this section and we assume that no
breakdown occurs in the inner-outer subspace methods that will be proposed.

5.2.4 Flexible GMRES with deflated restarting
A number of techniques have been proposed to compute spectral information at a restart and use this
information to improve the convergence rate of the Krylov subspace methods; see, e.g., [86, 87, 88, 106].

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 83

These techniques have been exclusively developed in the case of a fixed preconditioner. Among others
GMRES-DR is one of those methods. It focuses on removing (or deflating) the eigenvalues of smallest
magnitude. A full subspace of dimension k, k < m (and not only the approximate solution with minimum
residual norm) is now retained at the restart and the success of this approach has been demonstrated
on many academic examples [86]. Approximations of eigenvalues of smallest magnitude are obtained by
computing harmonic Ritz pairs of A with respect to a certain subspace [88]. We present here a definition
of a harmonic Ritz pair equivalent to the one introduced in [94, 117]; it will be of key importance when
defining appropriate deflation strategies.

Definition 5.2.1. Harmonic Ritz pair. Consider a subspace U of Cn. Given B ∈ Cn×n, θ ∈ C and
y ∈ U , (θ, y) is a harmonic Ritz pair of B with respect to U if and only if

By − θ y ⊥ B U

or equivalently, for the canonical scalar product,

∀w ∈ range (B U) wH (By − θ y) = 0.

We call y a harmonic Ritz vector associated with the harmonic Ritz value θ.

As in the case of fixed preconditioning, deflated restarting may also improve the convergence rate of
flexible subspace methods. In [58] a deflated restarting procedure has been proposed for the FGMRES
algorithm. The i-th cycle of the resulting algorithm called FGMRES-DR is now briefly described and we
denote by r(i−1)

0 = b − Ax(i−1)
0 , Vm+1, H̄m and Zm the residual and matrices obtained at the end of the

(i− 1)-th cycle.

Based on the Arnoldi-like relation (5.2.3), the deflation procedure proposed in [58, Proposition 1] relies
on the use of k harmonic Ritz vectors Yk = VmPk of AZmV Hm with respect to range (Vm), where Yk ∈ Cn×k
and Pk ∈ Cm×k. In Lemma 5.2.2 shown in [58, Lemma 3.1], we recall a useful relation satisfied by the
harmonic Ritz vectors.

Lemma 5.2.2. In flexible GMRES with deflated restarting, the harmonic Ritz vectors are given by
Yk = VmPk with corresponding harmonic Ritz values λk. Pk ∈ Cm×k satisfies the following relation:

AZmPk = Vm+1

[[
Pk

01×k

]
, c− H̄my

∗

] [
diag(λ1, . . . , λk)

α1×k

]
, (5.2.4)

AZmPk = [VmPk, r
(i−1)
0]

[
diag(λ1, . . . , λk)

α1×k

]
, (5.2.5)

where r(i−1)
0 = Vm+1(c− H̄my

∗) and α1×k = [α1, . . . , αk] ∈ C1×k.

Next, the QR factorization of the (m+ 1)× (k+ 1) matrix appearing on the right-hand side of relation
(5.2.4) is performed as [[

Pk
01×k

]
, c− H̄my

∗

]
= QR (5.2.6)

where Q ∈ C(m+1)×(k+1) has orthonormal columns and R ∈ C(k+1)×(k+1) is upper triangular. We write
the matrix Q obtained in relation (5.2.6) as

Q =

[[
Qm×k
01×k

]
,
ρ̄

‖ρ̄‖

]
, (5.2.7)

84 CHAPTER 5. FLEXIBLE GCRO-DR

where Qm×k ∈ Cm×k and ρ̄ ∈ Cm+1 is defined as

ρ̄ = (Im+1 −
[
Qm×k
01×k

] [
Qm×k
01×k

]H
)(c− H̄my

∗). (5.2.8)

Proposition 5.2.3. In flexible GMRES with deflated restarting, the flexible Arnoldi relation

A Zk = Vk+1H̄k, (5.2.9)
V Hk+1Vk+1 = Ik+1, (5.2.10)

range
(

[Yk, r
(i−1)
0]

)
= range (Vk+1) (5.2.11)

holds at the i-th cycle with matrices Zk, Vk ∈ Cn×k and H̄k ∈ C(k+1)×k defined as

Zk = ZmQm×k, (5.2.12)
Vk+1 = Vm+1Q, (5.2.13)
H̄k = QHH̄mQm×k, (5.2.14)

where Vm+1, Zm and H̄m refer to matrices obtained at the end of the (i− 1)-th cycle.

Proof. Relations (5.2.9), (5.2.10), (5.2.12), (5.2.13) and (5.2.14) have been shown in [58, Proposition 2].
Respectively, from relations (5.2.13) and (5.2.6), we deduce

Vk+1R = Vm+1

[[
Pk

01×k

]
, c− H̄my

∗

]
Vk+1R = [VmPk, r

(i−1)
0] (5.2.15)

which finally shows that range
(

[Yk, r
(i−1)
0]

)
= range (Vk+1) since R is supposed to be nonsingular.

FGMRES-DR then carries out m − k Arnoldi steps with flexible preconditioning and starting vector
vk+1 while maintaining orthogonality to Vk leading to

A [zk+1, · · · , zm] = [vk+1, · · · , vm+1] H̄m−k and V Hm+1 Vm+1 = Im+1.

We note that H̄m−k ∈ C(m−k+1)×(m−k) is upper Hessenberg. At the end of the i-th cycle this gives the
flexible Arnoldi-like relation

A [Zk, Zm−k] = [Vm+1]

[[
H̄k

0m−k×k

] [
Bk×m−k
H̄m−k

]]

where Vm+1 ∈ Cn×(m+1), H̄m ∈ C(m+1)×m and Bk×m−k ∈ Ck×(m−k) results from the orthogonalization
of [vk+2, · · · , vm+1] against Vk+1. We note that H̄m is no more upper Hessenberg due to the leading
dense (k + 1)× k submatrix H̄k. At the end of the i-th cycle, an approximate solution x(i)

0 ∈ Cn is then
found by minimizing the residual norm

∥∥∥b−A(x
(i−1)
0 + Zmy)

∥∥∥ over the space x(i−1)
0 + range(Zm), the

corresponding residual being r(i)
0 = b−Ax(i)

0 , with r(i)
0 ∈ range(Vm+1). We refer the reader to [58] for the

complete derivation of the method and numerical experiments showing the efficiency of FGMRES-DR on
both academic and industrial examples.

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 85

5.2.5 Flexible GCRO with deflated restarting
GCRO-DR [95] - a combination of GMRES-DR and GCRO - is a Krylov subspace method that allows
deflated restarting and subspace recycling simultaneously. This latter feature is particularly interesting
when solving sequences of linear systems with possibly different left or right-hand sides. As pointed out
in [95], GCRO-DR is attractive because any subspace may be recycled. In this section we restrict the
presentation to the case of a single linear system as proposed in (5.2.1).

GCRO and GCRO-DR belong to the family of inner-outer methods [6, Ch. 12] where the outer
iteration is based on GCR, a minimum residual norm method proposed by Eisenstat, Elman and Schultz
[43]. To this end GCR maintains a correction subspace spanned by range (Zm) and an approximation
subspace spanned by range (Vm), where Zm, Vm ∈ Cn×m satisfy

A Zm = Vm,

V Hm Vm = Im.

The optimal solution of the minimization problem min‖b−Ax‖ over the subspace x0 +range (Zm) is then
found as xm = x0 + Zm V Hm r0. Consequently rm = b−A xm satisfies

rm = r0 − Vm V Hm r0 = ΠV ⊥m
r0, rm ⊥ range (Vm) .

In [34] de Sturler proposed an improvement to GMRESR [132], an inner-outer method based on GCR
in the outer part and GMRES in the inner part. He suggested that the inner iteration takes place in a
subspace orthogonal to the outer Krylov subspace. In this inner iteration the projected residual equation

(In − Vm V Hm)Az = rm

is solved only approximately. If a minimum residual norm subspace method is used in the inner iteration
to solve this projected residual linear system, the residual over both the inner and outer subspaces are
minimized. This leads to the GCRO (Generalized Conjugate Residual method with inner Orthogonaliza-
tion) Krylov subspace method [34]. Numerical experiments [34] indicate that the resulting method may
perform better than other inner-outer methods (without orthogonalization) in some cases.

The GCRO method with deflated restarting (named GCRO-DR) based on harmonic Ritz value infor-
mation has been proposed in [95]. An approximate invariant subspace is used for deflation following closely
the GMRES-DR method. We refer the reader to [95] for a description of this method, algorithms and
implementation details. We present now a new variant of GCRO-DR that allows flexible preconditioning
by explaining the different steps occurring during the i-th cycle. Again we denote by r(i−1)

0 = b−Ax(i−1)
0 ,

Vm+1, H̄m and Zm the residual and matrices obtained at the end of the (i− 1)-th cycle.

We suppose that a flexible Arnoldi-like relation of type (5.2.3) holds. As in Subsection 5.2.4 an impor-
tant point is to specify which harmonic Ritz information is selected. Given a certain matrix Wm ∈ Cn×m
to be specified later on, such as range (Wm) = range (Vm), the deflation procedure relies on the use of
k harmonic Ritz vectors Yk = WmPk of AZmW †m with respect to range (Wm), where Yk ∈ Cn×k and
Pk ∈ Cm×k. Wm will notably satisfy a property detailed in Lemma 5.2.8 and we point out that the
calculation of W †m is not needed in the practical implementation of the algorithm (see Section 5.2.12). In
Lemma 5.2.4 we detail a useful relation satisfied by the harmonic Ritz vectors.

Lemma 5.2.4. In flexible GCRO with deflated restarting, the harmonic Ritz vectors are given by
Yk = WmPk with corresponding harmonic Ritz values θk. The matrix Pk = [p1, · · · , pk] ∈ Cm×k satisfies
the following relation:

AZmPk = [WmPk, r
(i−1)
0]

[
diag(θ1, . . . , θk)

β1×k

]
, (5.2.16)

where r(i−1)
0 = Vm+1(c− H̄my

∗) and β1×k = [β1, . . . , βk] ∈ C1×k.

86 CHAPTER 5. FLEXIBLE GCRO-DR

Proof. According to Definition 5.2.1, the harmonic residual vectors AZmW †mWmpj − θjWmpj and the
residual vector r(i−1)

0 = Vm+1(c − H̄my
∗) all belong to a subspace of dimension m + 1 (spanned by the

columns of Vm+1) and are orthogonal to the same subspace of dimension m (spanned by the columns of
AZm subspace of range (Vm+1)), so they must be collinear. Consequently there exist k coefficients noted
βj ∈ C with 1 ≤ j ≤ k such that

∀j ∈ {1, . . . , k} AZmpj − θjWmpj = βjr
(i−1)
0 . (5.2.17)

Setting β1×k = [β1, . . . , βk] ∈ C1×k, the collinearity expression (5.2.17) can be written in matrix form as

AZmPk = [WmPk, r
(i−1)
0]

[
diag(θ1, . . . , θk)

β1×k

]
.

Due to the flexible Arnoldi-like relation (5.2.3), relation (5.2.16) can be also expressed as

Vm+1H̄mPk = [WmPk, r
(i−1)
0]

[
diag(θ1, . . . , θk)

β1×k

]
. (5.2.18)

If required, β1×k can be deduced from (5.2.18) by

(c− H̄my
∗)H(H̄mPk − V Hm+1WmPkdiag(θ1, . . . , θk)) = (c− H̄my

∗)H(c− H̄my
∗)β1×k. (5.2.19)

Next, the QR factorization of the (m+1)×k matrix H̄mPk appearing in relation (5.2.18) is performed
as H̄mPk = QR with Q ∈ C(m+1)×k and R ∈ Ck×k.

Proposition 5.2.5. In flexible GCRO with deflated restarting, the relation AZk = Vk with V Hk Vk = Ik
holds at the i-th cycle with matrices Zk, Vk ∈ Cn×k defined as

Zk = ZmPkR
−1,

Vk = Vm+1Q,

where Vm+1 and Zm refer to matrices obtained at the end of the (i−1)-th cycle. In addition V Hk r
(i−1)
0 = 0

holds during the i-th cycle.

Proof. By using information related to the QR factorization of H̄mPk and the flexible Arnoldi relation
(5.2.3) exclusively, we obtain

A Zk = AZmPkR
−1,

= Vm+1H̄mPkR
−1,

= Vm+1Q,

= Vk.

Since both Vm+1 and Q have orthonormal columns, Vk satisfies V Hk Vk = Ik. Finally since r(i−1)
0 is the

optimum residual at the i− 1-th cycle, i.e. (AZm)Hr
(i−1)
0 = 0 we obtain

PHk (AZm)Hr
(i−1)
0 = 0,

(Vm+1H̄mPk)Hr
(i−1)
0 = 0,

RHV Hk r
(i−1)
0 = 0.

This finally shows that V Hk r
(i−1)
0 = 0 since R is supposed to be nonsingular.

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 87

To complement the subspaces, the inner iteration is based on the approximate solution of

(In − Vk V Hk)Az = (In − Vk V Hk)r
(i−1)
0 = r

(i−1)
0 ,

where the last equality is due to Proposition 5.2.5. For that purpose FGCRO-DR then carries out m− k
steps of the Arnoldi method with flexible preconditioning leading to

(In − VkV Hk) A [zk+1, · · · , zm] = [vk+1, · · · , vm+1] H̄m−k

(In − VkV Hk) A Zm−k = Vm−k+1 H̄m−k

with vk+1 = r
(i−1)
0 /||r(i−1)

0 ‖. At the end of the cycle this gives the flexible Arnoldi-like relation

A [Zk, Zm−k] = [Vk, Vm−k+1]

[
Ik V Hk A Zm−k

0m−k+1×k H̄m−k

]
A Zm = Vm+1 H̄m,

where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) and H̄m ∈ C(m+1)×m. At the end of the i-th cycle, an approximate
solution x(i)

0 ∈ Cn is then found by minimizing the residual norm
∥∥∥b−A(x

(i−1)
0 + Zmy)

∥∥∥ over the space

x
(i−1)
0 + range(Zm), the corresponding residual being r(i)

0 = b−Ax(i)
0 , with r(i)

0 ∈ range(Vm+1).

5.2.6 Algorithms

Details of the FGCRO-DR method are given in Algorithm 5.2.1, where Matlab-like notations are adopted
(for instance in step 7b, Q(1 : m, 1 : k) denotes the submatrix made of the first m rows and first k
columns of matrix Q noted Qm×k in equation (5.2.7)). For the sake of completeness the FGMRES-DR
algorithm has been also described with notations chosen as close as possible to FGCRO-DR to make a
code comparison as easy as possible. Concerning Algorithm 5.2.1 we make the following comments:

• As discussed later the computation of W †m in step 5a is not required thanks to the definition of the
harmonic Ritz pair (see Definition 5.2.1).

• As pointed out by Morgan [88] and Parks et al. [95] we might have to adjust k during the algorithm
to include both the real and imaginary parts of complex eigenvectors.

• In steps 10a and 10b M(i)
j denotes the possibly nonlinear preconditioning operator at iteration j

during the i-th cycle.

5.2.7 Analysis of FGMRES-DR and FGCRO-DR

We compare now the flexible variants of GMRES-DR and GCRO-DR introduced respectively in Sub-
section 5.2.4 and 5.2.5 . In the following we use the superscript ˜ to denote quantities related to the
FGMRES-DR algorithm e.g. Ỹk denotes the set of harmonic Ritz vectors computed in the FGMRES-DR
algorithm. When analyzing both algorithms we will suppose that identical preconditioning operators are
used in steps 10a and 10b i.e.

∀i,∀j ∈ {k + 1, · · · ,m}, M(i)
j (.) = M̃(i)

j (.) . (5.2.20)

88 CHAPTER 5. FLEXIBLE GCRO-DR

Algorithm 5.2.1: Flexible GCRO-DR(m, k) and Flexible GMRES-DR(m, k)

1: choose m, k, tol and x0
2: r0 = b−Ax0, β =‖r0‖, v1 = r0/β, c = βe1, i← 0

3: Apply FGMRES(m) to obtain H̄m, Zm, Vm+1 such that AZm = Vm+1H̄m, y∗ = arg min
y∈Cm

∥∥c− H̄my∥∥,
x
(0)
0 = x0 + Zmy∗, r

(0)
0 = b−Ax(0)0 = Vm+1(c− H̄my∗), Wm = Vm

4: while
∥∥∥r(i)0

∥∥∥ >‖b‖ × tol do i← i+ 1

FGCRO-DR

5a: Compute k harmonic Ritz vectors of
AZmW

†
m with respect to range (Wm) and

store them in Yk. Define Pk such that
Yk = WmPk.

6a: Q R = H̄mPk

7a: Wk = WmPkR
−1

8a: Vk = Vm+1Q

9a: Zk = ZmPkR
−1

10a: Apply m − k flexible preconditioned
Arnoldi steps with (In − VkV

H
k)A

and vk+1 = r
(i−1)
0 /

∥∥∥r(i−1)
0

∥∥∥ such

that (In − VkV
H
k)A

[
zk+1, . . . , zm

]
=[

vk+1, . . . , vm+1
]
H̄m−k with zj =

M(i)
j (vj)

11a: Set H̄m =

[
Ik V Hk AZm−k

0m−k+1×k H̄m−k

]
yielding A

[
z1, . . . , zm

]
=[

v1, . . . , vm+1
]
H̄m and define

Wm =
[
Wk Vm(1 : n, k + 1 : m)

]

FGMRES-DR

5b: Compute k harmonic Ritz vectors of
AZmV Hm with respect to range (Vm) and
store them in Yk. Define Pk such that
Yk = VmPk.

6b: QR =

[[
Pk

01×k

]
c− H̄my∗

]
7b: H̄k = QHH̄mQ(1 : m , 1 : k)

8b: Vk+1 = Vm+1Q

9b: Zk = ZmQ(1 : m , 1 : k)

10b: Apply m − k flexible preconditioned
Arnoldi steps with A and vk+1

while maintaining orthogonality to
Vk such that A

[
zk+1, . . . , zm

]
=[

vk+1, . . . , vm+1
]
H̄m−k with zj =

M(i)
j (vj) and V Hm+1 Vm+1 = Im+1

11b: Set H̄m =

[[
H̄k

0m−k×k

] [
Bk×m−k
H̄m−k

]]
yielding A

[
z1, . . . , zm

]
=[

v1, . . . , vm+1
]
H̄m

12: y∗ = arg min
y∈Cm

∥∥c− H̄my∥∥ with c = V Hm+1r
(i−1)
0

13: x
(i)
0 = x

(i−1)
0 + Zmy∗

14: r
(i)
0 = b−Ax(i)0

15: end while

5.2.8 Equivalent preconditioning matrix

Definition 5.2.6. Equivalent preconditioning matrix. Suppose that Vp = [v1, · · · , vp] ∈ Cn×p and
Zp = [M1(v1), · · · ,Mp(vp)] ∈ Cn×p obtained during a cycle of a flexible method with (standard or
deflated) restarting (with 1 ≤ p ≤ m < n) are both of full rank i.e. rank

(
Vp
)

= rank
(
Zp
)

= p. We will
then denote by MVp

∈ Cn×n a nonsingular equivalent preconditioning matrix defined as

Zp
def
= MVp

Vp. (5.2.21)

Such a matrix represents the action of the nonlinear operators Mj on the set of vectors vj (with j =
1, · · · , p). It can be chosen e.g. as MVp

= [Zp Zp][Vp Vp]
−1 where Zp (respectively Vp) denotes an

orthogonal complement of Zp (respectively Vp) in Cn.

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 89

5.2.9 Relations between Zm and Wm and Z̃m and Ṽm

We denote by M (0)
Wm

and M̃ (0)

Ṽm
the equivalent preconditioning matrices used in the initialization phase of

both algorithms (step 3 in Algorithm 5.2.1). With this notation we remark that the following relations
hold

Zm = M
(0)
Wm

Wm = Z̃m = M̃
(0)

Ṽm
Ṽm. (5.2.22)

We first analyze the relation between Z̃m and Ṽm.

Lemma 5.2.7. At the end of the i-th cycle of the FGMRES-DR method Z̃m and Ṽm satisfy

Z̃m = M̃
(i)

Ṽm
Ṽm = [M̃

(i−1)

Ṽm
Ṽk, M̃

(i)

Ṽm−k
Ṽm−k]. (5.2.23)

Proof. The initialization phase leads to the relation Z̃m = M̃
(0)

Ṽm
Ṽm. We suppose that at the end of the

i− 1th cycle the following relation holds: Z̃m = M̃
(i−1)

Ṽm
Ṽm. At step 9b of the i-th cycle Z̃k is defined as

Z̃k = Z̃mQ̃m×k = M̃
(i−1)

Ṽm
ṼmQ̃m×k = M̃

(i−1)

Ṽm
Ṽk.

The proof is then completed since Z̃m−k = [M̃(i)
k+1(ṽk+1), · · · ,M̃(i)

m (ṽm)] = M̃
(i)

Ṽm−k
Ṽm−k at the end of

step 10b.

The next lemma details a relation between Zm and Wm that is satisfied in the FGCRO-DR method.

Lemma 5.2.8. At the end of the i-th cycle of the FGCRO-DR method Zm and Wm satisfy

Zm = M
(i)
Wm

Wm = [M
(i−1)
Wm

Wk, M
(i)
Wm−k

Wm−k]. (5.2.24)

Proof. The initialization phase leads to the relation Zm = M
(0)
Wm

Wm. We suppose that at the end of the
i− 1th cycle the following relation holds: Zm = M

(i−1)
Wm

Wm. At step 9a of the i-th cycle Zk is defined as

Zk = ZmPkR
−1

= M
(i−1)
Wm

WmPkR
−1

= M
(i−1)
Wm

Wk.

The proof is then completed since Zm−k = [M(i)
k+1(wk+1), · · · ,M(i)

m (wm)] = M
(i)
Wm−k

Wm−k at the end of
step 11a.

Lemma 5.2.7 and 5.2.8 show that Z̃m, Ṽm, Zm and Wm satisfy relations that will play a central role
in Subsection 5.2.10. We investigate next the relation between Zm and Vm.

Lemma 5.2.9. At the end of the i-th cycle of the FGCRO-DR method Zm and Vm satisfy

[AZk, Zm−k] = [Vk, M
(i)
Vm−k

Vm−k]. (5.2.25)

Proof. We use the relation AZk = Vk satisfied in the FGCRO-DR method shown in Proposition 5.2.5.
The proof is then completed since Zm−k = [M(i)

k+1(vk+1), · · · ,M(i)
m (vm)] = M

(i)
Vm−k

Vm−k at the end of
step 11a.

We conclude this section by presenting a technical lemma related to the FGMRES-DR method.

90 CHAPTER 5. FLEXIBLE GCRO-DR

Lemma 5.2.10. During the i-th cycle of the FGMRES-DR method, ṽk+1 satisfies the following relation

ṽk+1 = ˜̄vk+1/||˜̄vk+1|| with ˜̄vk+1 = Π[Ỹk]⊥ r̃
(i−1)
0 (5.2.26)

where r̃(i−1)
0 = b−Ax̃(i−1)

0 denotes the residual obtained at the end of the (i− 1)-th cycle.

Proof. Using Proposition 5.2.3 and relation (5.2.8) we obtain

˜̄vk+1 = Ṽm+1ρ̄ = r̃
(i−1)
0 − Ṽm+1

[
Q̃m×k
01×k

][
Q̃m×k
01×k

]H
Ṽ Hm+1r̃

(i−1)
0 ,

˜̄vk+1 = Ṽm+1ρ̄ = r̃
(i−1)
0 − ṼmQ̃m×k(ṼmQ̃m×k)H r̃

(i−1)
0 .

Since ṼmQ̃m×k has orthonormal columns this last expression now becomes

v̄k+1 = Π[ṼmQ̃m×k]⊥ r̃
(i−1)
0 .

Since Q̃m×k is the orthogonal factor of the QR decomposition of P̃k, we obtain

range
(
ṼmP̃k

)
= range

(
ṼmQ̃m×k

)
.

Since from Lemma 5.2.4 Ỹk = ṼmP̃k, the proof is then completed.

5.2.10 Analysis of the FGMRES-DR and FGCRO-DR methods
Lemma 5.2.8 has already described an important property satisfied by Wm in the FGCRO-DR method
proposed in Algorithm 5.2.1. We will analyze further the relation between the FGMRES-DR and FGCRO-
DR methods. The next theorem states that the two flexible methods generate the same iterates in exact
arithmetic under some conditions involving notably two vectors.

Theorem 5.2.11. We denote by r(i)
0 = b−Ax(i)

0 the residual obtained at the end of the i-th cycle of the
FGCRO-DR method (see step 14 of Algorithm 5.2.1). We suppose that Definition 5.2.6 holds and that the
same equivalent preconditioning matrix is obtained at the end of the i-th cycle of both FGCRO-DR and
FGMRES-DR algorithms i.e. M (i)

Wm
= M̃

(i)

Ṽm
. Under this assumption the harmonic Ritz vectors Ỹk and Yk

can be chosen equal during the i + 1-th cycle. If in addition there exists a real-valued positive coefficient
ηi+1 such that

Π
[Yk,r

(i)
0 /

∥∥∥∥r(i)0

∥∥∥∥]⊥AM
(i+1)
k+1 (ΠY⊥

k
r
(i)
0 /
∥∥∥ΠY⊥

k
r
(i)
0

∥∥∥) = ηi+1 Π
[Yk,r

(i)
0 /

∥∥∥∥r(i)0

∥∥∥∥]⊥AM
(i+1)
k+1 (r

(i)
0 /
∥∥∥r(i)0

∥∥∥) (5.2.27)

in the FGCRO-DR algorithm, then both algorithms generate the same iterates in exact arithmetic and

range
(
Vm+1

)
= range

(
Ṽm+1

)
, (5.2.28)

range (Zm) = range
(
Z̃m

)
, (5.2.29)

with

Vm+1 = [Ṽk+1Q̂, vk+2, · · · , vm+1], Ṽm+1 = [Ṽk+1, vk+2, · · · , vm+1], (5.2.30)

Zm = [Z̃k+1X̂, zk+2, · · · , zm], Z̃m = [Z̃k+1, zk+2, · · · , zm], (5.2.31)

where Q̂ ∈ C(k+1)×(k+1) is a unitary matrix and X̂ ∈ C(k+1)×(k+1) is a nonsingular triangular matrix.

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 91

Proof. The whole proof is performed in three parts assuming that we analyze the i + 1-th cycle of each
algorithm. Suppose that at the beginning of the i + 1-th cycle (step 4) there exist a unitary matrix
Q̂ ∈ C(k+1)×(k+1) and a nonsingular matrix X̂ ∈ C(k+1)×(k+1) such that the following relations hold

Vk+1 = Ṽk+1Q̂, (5.2.32)

Zk+1 = Z̃k+1X̂, (5.2.33)
[vk+2, · · · , vm+1] = [ṽk+2, · · · , ṽm+1] , (5.2.34)

[zk+2, · · · , zm] = [z̃k+2, · · · , z̃m] . (5.2.35)

We will then prove the existence of a unitary matrix Q̂′ ∈ C(k+1)×(k+1) and of a nonsingular matrix
X̂ ′ ∈ C(k+1)×(k+1) such that at the end of the i+ 1-th cycle

Vk+1 = Ṽk+1Q̂
′, (5.2.36)

Zk+1 = Z̃k+1X̂
′, (5.2.37)

[vk+2, · · · , vm+1] = [ṽk+2, · · · , ṽm+1] , (5.2.38)
[zk+2, · · · , zm] = [z̃k+2, · · · , z̃m] . (5.2.39)

Regarding FGCRO-DR we assume that at the beginning of the i+ 1-th cycle (step 4)

range (Wm) = range (Vm) . (5.2.40)

We will also prove that relation (5.2.40) holds at the end of the i+1-th cycle. Note that relations (5.2.28),
(5.2.29) and (5.2.40) are obviously satisfied before the first cycle, because steps 1 to 3 are identical in both
algorithms yielding Vm+1 = Ṽm+1, Zm = Z̃m and Wm = Vm. Finally a consequence of (5.2.32), (5.2.34),
(5.2.33) and (5.2.35) is that the residual of the linear system Ax = b in both algorithms are equal at the
beginning of the i+ 1-th cycle i.e. r(i)

0 = r̃
(i)
0 . We will denote r0 this residual for ease of notation.

Part I - Steps 5a and 5b In this part, we prove that we can choose Ỹk = Yk with Yk = WmPk = ṼmP̃k.

FGCRO-DR Let yj = Wmpj be the j-th column of Yk. Since yj is a harmonic Ritz vector of AZmW †m
with respect to range (Wm), the following relation holds (see Definition (5.2.1))

ZHmA
H (AZmpj − θjWmpj) = 0. (5.2.41)

Due to (5.2.33) and (5.2.35) there exists a nonsingular matrix X ∈ Cm×m that relates Zm and Z̃m

Zm = Z̃mX. (5.2.42)

Using the last equality (5.2.42), the harmonic Ritz relation (5.2.41) now becomes

XH Z̃HmA
H (AZ̃mXpj − θjWmpj) = 0.

From Lemma 5.2.8 and relation (5.2.42) we deduce

XH Z̃HmA
H (AZ̃mXpj − θjM (i)−1

Wm
Zmpj) = 0,

XH Z̃HmA
H (AZ̃mXpj − θjM̃ (i)−1

Ṽm
Z̃mXpj) = 0,

where we have used explicitly the assumption on the equivalent preconditioning matrix obtained at the
end of the i-th cycle i.e. M (i)

Wm
= M̃

(i)

Ṽm
. Next, the application of Lemma 5.2.7 leads to

XH Z̃HmA
H (AZ̃mṼ

H
m ṼmXpj − θj ṼmXpj) = 0. (5.2.43)

92 CHAPTER 5. FLEXIBLE GCRO-DR

Since X is nonsingular the last equality proves that ṼmXpj is a harmonic Ritz vector of AZ̃mṼ Hm with
respect to range

(
Ṽm

)
associated to the Ritz value θj . From relations (5.2.41) and (5.2.43) we deduce that

the harmonic Ritz vectors can be chosen to be equal and correspond to the same harmonic Ritz values.
In this case they notably satisfy the following equality

∀j ∈ {1, · · · , k}, ṼmXpj = Wmpj i.e. p̃j = Xpj . (5.2.44)

We will then denote by Y = Ỹk = Yk the k harmonic Ritz vectors computed in either FGCRO-DR or
FGMRES-DR. We assume that the harmonic Ritz values θj (1 ≤ j ≤ k) are non zero.

Part IIa - Steps 6a to 10a, 6b to 10b We show that at the end of steps 10a and 10b the following

relations hold: range (Vk+1) = range
(
Ṽk+1

)
= range

(
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥]

)
. This result will help us to prove

the existence of the matrix Q̂′ introduced in relation (5.2.36).

FGCRO-DR Since AZmPk = VkR (Proposition 5.2.5), we deduce from Lemma 5.2.4[
Vk, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥] =

[
Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥][diag(θ1, . . . θk)R−1 0k×1∥∥∥r(i)
0

∥∥∥β1×kR
−1 1

]
. (5.2.45)

This relation leads to the following result

range (Vk+1) = range

(
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥]

)
. (5.2.46)

Similarly Wk+1 = [Wk,
r
(i)
0∥∥∥r(i)0

∥∥∥] can be written as, using Y = WmPk

[Wk, r
(i)
0 /
∥∥∥r(i)

0

∥∥∥] = [WmPkR
−1,

r
(i)
0∥∥∥r(i)
0

∥∥∥]

= [Y R−1, r
(i)
0 /
∥∥∥r(i)

0

∥∥∥]

= [Y, r
(i)
0 /
∥∥∥r(i)

0

∥∥∥]

[
R−1 0k×1

01×k 1

]
. (5.2.47)

From relations (5.2.47) and (5.2.46) we deduce that

range (Wk+1) = range (Vk+1) . (5.2.48)

This last result also proves that range (Wm) = range (Vm) at the end of the cycle.

FGMRES-DR In Proposition 5.2.3 we have shown that

range
(
Ṽk+1

)
= range

(
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥]

)
. (5.2.49)

Since both Vk+1 and Ṽk+1 have orthonormal columns, we deduce from (5.2.46) and (5.2.49) that there
exists a unitary matrix Q̂′ such that

Vk+1 = Ṽk+1Q̂
′ (5.2.50)

which proves the relation proposed in equation (5.2.36).

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 93

Part IIb - Steps 6a to 10a, 6b to 10b We show that at the end of steps 10a and 10b the following
relation holds: range (Zk+1) = range

(
Z̃k+1

)
. This result will help us to prove the existence of the matrix

X̂ ′ introduced in relation (5.2.37).

FGCRO-DR Concerning Zk+1 = [Zk, zk+1], there exists a nonsingular matrix M (i+1)

[Wk,r
(i)
0 /
∥∥∥r(i)0

∥∥∥]
∈ Cn×n

(see Definition 5.2.6) such that

Zk+1 = M
(i+1)

[Wk,r
(i)
0 /
∥∥∥r(i)0

∥∥∥]
[Wk, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥].

If T ∈ C(k+1)×(k+1) denotes the following triangular matrix

T =

[
R 0k×1

01×k 1

]
due to relation (5.2.47), Zk+1T can be written as

Zk+1T = M
(i+1)

[Wk,r
(i)
0 /
∥∥∥r(i)0

∥∥∥]
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥]. (5.2.51)

FGMRES-DR Similarly from Lemma 5.2.7, Z̃k+1 can be expressed as

Z̃k+1 = M̃
(i+1)

Ṽk+1
Ṽk+1

where M̃ (i+1)

Ṽk+1
∈ Cn×n is nonsingular (see Definition 5.2.6). If T̃ ∈ C(k+1)×(k+1) denotes the following

triangular matrix

T̃ = R̃

[
Ik 0k×1

01×k 1/
∥∥∥r(i)

0

∥∥∥
]

Z̃k+1T̃ can be expressed as

Z̃k+1T̃ = M̃
(i+1)

Ṽk+1
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥] (5.2.52)

thanks to the relation (5.2.15). Relations (5.2.51) and (5.2.52) characterize Zk+1T and Z̃k+1T̃ with respect
to [Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥]. We can further improve this result by showing the following equality

M
(i+1)

[Wk,r
(i)
0 /
∥∥∥r(i)0

∥∥∥]
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥] = M̃
(i+1)

Ṽk+1
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥]. (5.2.53)

Lemma 5.2.8 and Lemma 5.2.7 respectively give us two useful relations for M (i+1)

[Wk,r
(i)
0 /
∥∥∥r(i)0

∥∥∥]
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥]

and M̃ (i+1)

Ṽk+1
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥] i.e.

M
(i+1)

[Wk,r
(i)
0 /
∥∥∥r(i)0

∥∥∥]
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥] = [M
(i)
Wm

Y, M(i+1)
k+1 (r

(i)
0 /
∥∥∥r(i)

0

∥∥∥)], (5.2.54)

M̃
(i+1)

Ṽk+1
[Y, r

(i)
0 /
∥∥∥r(i)

0

∥∥∥] = [M̃
(i)

Ṽm
Y, M̃(i+1)

k+1 (r
(i)
0 /
∥∥∥r(i)

0

∥∥∥)]. (5.2.55)

Using the assumption on the equivalent preconditioning matrix obtained at the end of the i-th cycle i.e.
M

(i)
Wm

= M̃
(i)

Ṽm
we have

M
(i)
Wm

Y = M̃
(i)

Ṽm
Y. (5.2.56)

94 CHAPTER 5. FLEXIBLE GCRO-DR

The fact that identical (possibly nonlinear) preconditioning operators are used in steps 10a and 10b of
Algorithm 5.2.1 (see relation (5.2.20)) allows us to write

M(i+1)
k+1 (r

(i)
0 /
∥∥∥r(i)

0

∥∥∥) = M̃(i+1)
k+1 (r

(i)
0 /
∥∥∥r(i)

0

∥∥∥). (5.2.57)

Relations (5.2.56) and (5.2.57) finally show the relation (5.2.53). Consequently from relations (5.2.51),
(5.2.52) and (5.2.53) we deduce that there exists a nonsingular matrix X̂ ′ ∈ C(k+1)×(k+1) such that

Zk+1 = Z̃k+1X̂
′. (5.2.58)

This proves the relation proposed in equation (5.2.37). Since T and T̃ are both triangular, we note that
X̂ ′ = T̃ T−1 is also triangular.

Part IIIa - Steps 10a and 10b We first show that ṽk+2 = vk+2 by expressing these two quantities in
function of r(i)

0 and Y .

FGCRO-DR The Arnoldi relation (step 10a) yields vk+2 = v̄k+2/||v̄k+2||, where v̄k+2 = (In−vk+1v
H
k+1)(In−

VkV
H
k)AM(i+1)

k+1 (r
(i)
0 /
∥∥∥r(i)

0

∥∥∥). Since from Proposition 5.2.5 V Hk r
(i)
0 = 0 in the i+1-th cycle, (In−vk+1v

H
k+1)

and (In − VkV Hk) commute and from Part IIa of the proof, the following expression can be derived

v̄k+2 = ΠV ⊥k+1
AM(i+1)

k+1 (r
(i)
0 /
∥∥∥r(i)

0

∥∥∥) = Π
[Y,r

(i)
0 /
∥∥∥r(i)0

∥∥∥]⊥
AM(i+1)

k+1 (r
(i)
0 /
∥∥∥r(i)

0

∥∥∥). (5.2.59)

FGMRES-DR The following expression for ṽk+2 = ˜̄vk+2/||˜̄vk+2|| is obtained using Lemma 5.2.10

˜̄vk+2 = (In − Ṽk+1Ṽ
H
k+1)AM(i+1)

k+1 (ṽk+1) = Π
[Y,r

(i)
0 /
∥∥∥r(i)0

∥∥∥]⊥
AM(i+1)

k+1 (ΠY ⊥r
(i)
0 /
∥∥∥ΠY ⊥r

(i)
0

∥∥∥). (5.2.60)

Due to the assumption (5.2.27) of Theorem 5.2.11 we deduce from (5.2.59) and (5.2.60) that v̄k+2 =
ηi+1 ˜̄vk+2 with ηi+1 positive and therefore vk+2 = ṽk+2.

Part IIIb - Steps 10a and 10b In this part we continue the analysis of the Arnoldi procedure with
flexible preconditioning and show that vk+2+j = ṽk+2+j for j = 1, . . . ,m− k − 1.

For the case j = 1, we introduce v̄k+3 and ˜̄vk+3 such that vk+3 = v̄k+3/||v̄k+3|| and ṽk+3 = ˜̄vk+3/||˜̄vk+3||.
The application of the Arnoldi procedure in both algorithms leads to

v̄k+3 = (In − vk+2v
H
k+2)(In − Vk+1V

H
k+1) AM(i+1)

k+2 (v̄k+2)˜̄vk+3 = (In − ṽk+2ṽ
H
k+2)(In − Ṽk+1Ṽ

H
k+1) AM(i+1)

k+2 (˜̄vk+2).

Thus from Parts II and IIIa of the proof we obtain that vk+3 and ṽk+3 are equal. The proof can then be
completed by induction.

Results from Parts II and III justify the relation (5.2.38) i.e. [vk+2, · · · , vm+1] = [ṽk+2, · · · , ṽm+1].
Consequently from Lemma 5.2.7, Lemma 5.2.9 and relation (5.2.20) we deduce the relation (5.2.39). This
finally shows the main relations (5.2.28) and (5.2.29) of Theorem 5.2.11 that are satisfied at the end of
the i+ 1-th cycle.

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 95

First consequence of Theorem 5.2.11

Corollary 5.2.12. If the same flexible preconditioning operators are used in both Arnoldi procedures
(steps 10a and 10b of Algorithm 5.2.1) and if at each cycle i there exists a real-valued positive coefficient
ηi such that

Π
[Y,r

(i−1)
0 /

∥∥∥r(i−1)
0

∥∥∥]⊥
AM(i)

k+1(ΠY ⊥r
(i−1)
0 /

∥∥∥ΠY ⊥r
(i−1)
0

∥∥∥) = ηi Π
[Y,r

(i−1)
0 /

∥∥∥r(i−1)
0

∥∥∥]⊥
AM(i)

k+1(r
(i−1)
0 /

∥∥∥r(i−1)
0

∥∥∥),

or equivalently (from relations (5.2.59) and (5.2.60)) such that ˜̄vk+2 = ηi v̄k+2, FGCRO-DR and FGMRES-
DR are algebraically equivalent.

Proof. We have already emphasized that M (0)
Wm

= M̃
(0)

Ṽm
in relation (5.2.22). In Theorem 5.2.11 we have

analyzed the i+1-th cycle of both algorithms assuming thatM (i)
Wm

= M̃
(i)

Ṽm
. First we have proved in Part IIb

the relation (5.2.53) and secondly, respectively in Parts IIIa and IIIb, that [vk+2, · · · , vm] = [ṽk+2, · · · , ṽm]
and [zk+2, · · · , zm] = [z̃k+2, · · · , z̃m] . Consequently the same equivalent preconditioner matrix is obtained
at the end of the i+ 1-th cycle i.e. M (i+1)

Wm
and M̃ (i+1)

Ṽm
can be chosen equal. We deduce that FGCRO-DR

and FGMRES-DR are algebraically equivalent.

About GCRO-DR and GMRES-DR

We propose a second consequence of Theorem 5.2.11 analyzed now with a fixed preconditioning matrix
M .

Corollary 5.2.13. When a fixed right preconditioner is used, the GCRO-DR and GMRES-DR methods
sketched in Algorithm 5.2.1 are algebraically equivalent.

Proof. We denote by M the fixed right preconditioning operator. A straightforward reformulation of
Lemma 5.2.8 in this context leads to the relation Zm = MWm in GCRO-DR. Exploiting now Lemma 5.2.4
allows us to derive the following relation that holds during the i+ 1-th cycle:

AMWmPk = AMY = [Y, r
(i)
0]

[
diag(θ1, . . . , θk)

β1×k

]
.

Thus
Π

[Y,r
(i)
0]⊥

AMY = 0. (5.2.61)

Due to (5.2.61) and Part IIIa of Theorem 5.2.11 we deduce the following development

v̄k+2 = Π
[Y,r

(i)
0]⊥

AM(r
(i)
0 − Y Y †r

(i)
0),

v̄k+2 = Π
[Y,r

(i)
0]⊥

AMΠY ⊥r
(i)
0 ,

v̄k+2 = ˜̄vk+2.

By induction it is possible to deduce the rest of the proof regarding v̄k+j , j > 2. Using range
(
Ṽk+1

)
=

range (Vk+1) obtained in Part IIa we deduce that

range
(
Ṽm

)
= range (Vm) = range (Wm) . (5.2.62)

A straightforward reformulation of Lemma 5.2.7 leads to the relation Z̃m = MṼm in GMRES-DR. From
relation (5.2.62) we finally deduce that

range
(
Z̃m

)
= range (Zm) .

Consequently the minimization problem min
∥∥∥r(i)

0 −AZmy
∥∥∥ leads to the same solution for both algorithms

at each cycle: GCRO-DR and GMRES-DR sketched in Algorithm 5.2.1 are thus algebraically equivalent.

96 CHAPTER 5. FLEXIBLE GCRO-DR

A numerical illustration

In this section we intend to illustrate the results shown in Section 5.2.10 and 5.2.10 on a simple numer-
ical example. We consider a real symmetric positive definite matrix A = Q D QT of size 200 with Q
orthonormal and D diagonal with entries ranging from 10−4 to 1. The spectrum of A contains eigenvalues
of small magnitude1 and consequently the use of deflation techniques should improve the convergence
rate of Krylov subspace methods if the harmonic Ritz values of smallest modulus are taken into account.
In this experiment we consider a polynomial preconditioner represented by two iterations of unprecon-
ditioned GMRES for the solution of Ax = b with b given by b = Ae

‖Ae‖2 (e ∈ R200 denoting the vector
with all components equal to one) starting from a zero initial guess. Figure 5.1 shows the histories of
convergence of various flexible methods minimizing over a subspace of same dimension i.e. respectively
FGMRES(10), FGMRES-DR(10,6), FGCRO-DR(10,6) and full flexible GMRES with such a variable pre-
conditioner. Flexible methods with deflated restarting are found to be efficient since they are close to the
full flexible GMRES method in terms of performances. We also remark that the convergence histories of
FGCRO-DR(10,6) and FGMRES-DR(10,6) are different. According to Corollary 5.2.12 we compute the
scalar product of vk+2 and ṽk+2 (which are both vectors of unit norm) to determine the cosinus of the
angle between these two vectors. The values are reported in Table 5.1 for the first five cycles. With such
a variable preconditioner it is found that the methods are not equivalent in the first cycle already since
the collinearity condition between vk+2 and ṽk+2 is not fulfilled. The situation is similar during the next
cycles and it explains why different convergence histories for FGMRES-DR(10,6) and FGCRO-DR(10,6)
observed in Figure 5.1 are obtained in such a case. As expected from Section 5.2.10, if a fixed right
preconditioner is used, the convergence histories of GMRES-DR(10,6) and GCRO-DR(10,6) are found to
be exactly similar (results not shown here). In such a case vk+2 and ṽk+2 fulfill the collinearity condition;
this is confirmed in Table 5.1 when a diagonal preconditioning is used.

0 10 20 30 40 50 60 70
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of iterations

L
o

g
1
0
(N

o
rm

a
liz

e
d
 r

e
s
id

u
a
l)

Convergence behaviour for different flexible methods

FGMRES(10)

FGMRES−DR(10,6)

FGCRO−DR(10,6)

Full FGMRES

Figure 5.1: Convergence histories of different flexible methods applied to Ax = b where A ∈ R200×200 is symmetric
positive definite with some eigenvalues of small magnitude.

1The eigenvalues of A are logarithmically spaced (10−4, 10−3, 10−2) and linearly distributed between 0.02 and 1 with
step 1/200.

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 97

Table 5.1: Scalar product vTk+2ṽk+2 during the first five cycles of FGCRO-DR(10,6) when solving the linear system
considered in Section 5.2.10. Case of a variable preconditioner (two iterations of GMRES) and of a fixed right
preconditioner (diagonal preconditioning).

Cycle index 1 2 3 4 5

Variable preconditioner 0.92 0.89 0.45 0.90 0.90

Fixed right preconditioner 1.00 1.00 1.00 1.00 1.00

5.2.11 Further features of FGCRO-DR(m, k)
In this section we first compare FGCRO-DR(m, k) with FGMRES-DR(m, k) presented in Algorithm 5.2.1
from both a computational and storage point of view. Then we detail how subspace recycling can be used
in FGCRO-DR(m, k) when solving a sequence of linear systems.

5.2.12 Computational cost
We first analyze the computational cost related to the generalized eigenvalue problem to deduce harmonic
Ritz information and then detail the total cost of the proposed method.

Harmonic Ritz information

The generalized eigenvalue problem (5.2.41) can be also written as

H̄H
m H̄my = θH̄H

mV
H
m+1Wmy. (5.2.63)

Since Wm = [Wk+1, vk+2, · · · , vm] V Hm+1Wm can be decomposed at the end of the cycle as

V Hm+1Wm =

 V Hk+1 Wk+1 0(k+1)×(m−k−1)

0(m−k−1)×(k+1) Im−k−1

01×(k+1) 01×(m−k−1)

 , (5.2.64)

where the structure of the (k + 1)× (k + 1) block V Hk+1 Wk+1 is as follows

V Hk+1 Wk+1 =

[
V Hk Wk V Hk wk+1

vHk+1 Wk vHk+1 wk+1

]
=

[
V Hk Wk 0k×1

vHk+1 Wk 1

]
.

V Hk Wk is a k × k matrix that satisfies the following relation at the end of the i-th cycle

(V Hk Wk)(i) = QH (V Hm+1Wm)(i−1) PkR
−1

where the superscript is related to the cycle index. Thus storing the (m+ 1)×m matrix (V Hm+1Wm)(i−1)

can be used to obtain (V Hk Wk)(i) at a cost that is independent of n. Next we analyze how to compute
efficiently vHk+1 Wk during the i-th cycle. From relation (5.2.18) shown respectively in Lemma 5.2.4 and
Proposition 5.2.5, we deduce the relation

vHk+1VkR = vHk+1WkR diag(θ1, . . . , θk) + vHk+1r
(i−1)
0 β1×k. (5.2.65)

Due to Proposition 5.2.5 and the definition of vk+1, we have vHk+1Vk = 0. Thus we finally obtain that

vHk+1Wk = −‖(c− H̄my
∗)(i−1)‖2 β1×k (R diag(θ1, . . . , θk))−1, (5.2.66)

where β1×k is obtained from relation (5.2.19) which does only involve projected quantities. This allows us
to deduce vHk+1Wk at a cost independent of n. From this development we draw two important consequences
from a computational point of view. First, (V Hm+1Wm)(i) can be obtained recursively at a cost that is
independent of the problem size n. Secondly storing Wm (that would represent m additional vectors of
size n) is not mandatory, only V Hm+1Wm - matrix of size (m+ 1)×m - is required.

98 CHAPTER 5. FLEXIBLE GCRO-DR

Cost of a cycle

We summarize in Table 5.2 the main computational costs associated with each generic cycle of FGMRES-
DR(m, k) and FGCRO-DR(m, k). In FGCRO-DR(m, k), an Arnoldi method based on the modified Gram-
Schmidt procedure has been assumed2. We have only included the costs proportional to the size of the
original problem n which is supposed to be much greater thanm and k. We denote respectively by opA and
opM the floating point operation counts for the matrix-vector product and the preconditioner application.

Table 5.2: Computational cost of a generic cycle of FGMRES-DR(m, k) and FGCRO-DR(m, k). C represents
the total cost of FGCRO-DR(m, k) and corresponds to C = (m− k)(opM + opA) + n(2(m+ 1)k+ 1 + 2mk+ (m−
k)(2m+ 2k + 6)).

Computation of FGMRES-DR(m, k) FGCRO-DR(m, k)

Vm(:, 1 : k + 1) 2n(m+ 1)(k + 1) 2n(m+ 1)k + n

Zm(:, 1 : k) 2nmk 2nmk

Vm(:, k + 2 : m+ 1)
(m− k)opA+

n(m− k)(2m+ 2k + 5)
(m− k)opA+

n(m− k)(2m+ 2k + 6)

Zm(:, k + 1 : m) (m− k)opM (m− k)opM

Total cost C + n (m+ k + 1) C

The generalized eigenvalue problem in FGCRO-DR(m, k) has been ignored in Table 5.2 since it can
be performed at a cost independent of n as outlined in Section 5.2.12. Furthermore the computation of c
(required at step 12 of Algorithm 5.2.1) has not been included in Table 5.2 since in both methods it can
be obtained at a cost independent of n (see Proposition 3 in [58] for FGMRES-DR). From Table 5.2 we
deduce that FGCRO-DR(m, k) requires slightly less operations per cycle than FGMRES-DR(m, k).

5.2.13 Storage requirements

We only consider the storage proportional to the size of the original problem n. Similarly as in FGMRES-
DR(m, k) (see [58, Section 3.2.2]), if the matrix multiplications Vm+1Q and ZmPkR−1 at steps 8a and 9a
of Algorithm 5.2.1 are performed in place (i.e. respectivel overwriting Vk and Zk y), FGCRO-DR(m, k)
only requires the storage of Zm and Vm+1 which corresponds to (2m+ 1) vectors of length n. The same
storage cost is needed in FGMRES-DR(m, k) as detailed in [58].

5.2.14 Solution of sequence of linear systems

As advocated in [95], GCRO-DR(m, k) is suited for the solution of a sequence of slowly changing lin-
ear systems defined as Alxl = bl where both the matrix Al ∈ Cn×n and the right-hand side bl ∈ Cn

2In FGCRO-DR(m, k) (step 10a of Algorithm 5.2.1) the action of (In − VkV
H
k) requires

m∑
j=k+1

(4nk + n) operations,

the Arnoldi method based on modified Gram-Schmidt requires
m∑

j=k+1

j∑
i=k+1

(4n) operations whereas norm computation and

normalization cost
m∑

j=k+1

(3n) operations. In FGMRES-DR(m, k) (step 10b of Algorithm 5.2.1) the Arnoldi method based on

modified Gram-Schmidt requires
m∑

j=k+1

j∑
i=1

(4n) operations due to maintaining orthogonality to Vk whereas norm computation

and normalization cost
m∑

j=k+1

(3n) operations.

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 99

change from one system to the next, and the linear systems may typically not be available simultane-
ously. Next, we analyze how subspace recycling can be used in FGCRO-DR(m, k). We suppose that
FGCRO-DR(m, k) has been applied for the solution of a given linear system (indexed by s − 1) in this
sequence and that appropriate subspaces to be recycled Zs−1

k andW s−1
k have been selected during a given

cycle. As explained in Proposition 5.2.5, the relations As−1Zs−1
k = V s−1

k with V s−1
k

H
V s−1
k = Ik and

range(W s−1
k) = range(V s−1

k) are then supposed to hold. Proposition 5.2.14 details how to consider sub-
space recycling in the initial phase of FGCRO-DR(m, k), when solving the new linear system Asxs = bs

with x0 as an initial guess.

Proposition 5.2.14. Suppose that Zs−1
k and W s−1

k are defined from solving a previous linear system
As−1xs−1 = bs−1 with FGCRO-DR(m, k) and that Asxs = bs is the new linear system to be solved. In
the initial phase of flexible GCRO with deflated restarting and subspace recycling, the relation AsZsk = V sk
with V sk

HV sk = Ik holds with matrices V sk , Z
s
k ∈ Cn×k defined as

V sk = Q,

Zsk = Zs−1
k R−1

with QR = AsZs−1
k where Q ∈ Cn×k has orthonormal columns and R ∈ Ck×k is upper triangular. In

addition we define W s
k ∈ Cn×k as W s

k = W s−1
k R−1.

Proof. By using information related to the reduced QR factorization of AsZs−1
k and respectively the

relation As−1Zs−1
k = V s−1

k , we easily obtain

AsZsk = AsZs−1
k R−1 = Q,

= V sk .

Since Q has orthonormal columns, V sk satisfies V sk
HV sk = Ik. Finally W s

k = W s−1
k R−1 is imposed to make

sure that the relation shown in Lemma 5.2.8 will hold at the end of the initial phase of FGCRO-DR(m, k)
with subspace recycling.

Algorithm 5.2.2: Initial generation of V sm+1, Zsm and W s
m when subspace recycling is used to solve Asxs =

bs

1 Suppose that V s−1
k , Zs−1

k and W s−1
k are defined from solving a previous linear system

As−1xs−1 = bs−1 and satisfy As−1Zs−1
k = V s−1

k with V s−1
k

H
V s−1
k = Ik and

range(W s−1
k) = range(V s−1

k);
2 r0 = bs −Asx0;
3 Q R = AsZs−1

k ;
4 V sk = Q;
5 Zsk = Zs−1

k R−1;
6 W s

k = W s−1
k R−1;

7 x
(0)
0 = x0 + ZskV

s
k
Hr0;

8 r
(0)
0 = r0 − V sk V sk

Hr0;

9 Apply m− k flexible preconditioned Arnoldi steps with (In − V sk V sk
H)As and vsk+1 = r

(0)
0 /

∥∥∥r(0)
0

∥∥∥
such that (In − V sk V sk

H)As
[
zsk+1, . . . , z

s
m

]
=
[
vsk+1, . . . , v

s
m+1

]
H̄m−k with zsj =M(i)

j (vsj);

10 d∗ = arg min
d∈Zs

m

∥∥∥r(0)
0 −Asd

∥∥∥, x(1)
0 = x

(0)
0 + d∗, r(1)

0 = bs −Asx(1)
0 ;

11 W s
m =

[
W s
k V sm(1 : n, k + 1 : m)

]
;

In the case of a sequence where only the right-hand sides are changing, we note that the reduced
QR factorization (step 2 in Algorithm 5.2.2) is not required. The complete construction of the initial

100 CHAPTER 5. FLEXIBLE GCRO-DR

generation of subspaces V sm+1, Z
s
m,W

s
m is sketched in Algorithm 5.2.2. Once V sm+1, Z

s
m and W s

m have
been obtained, the main cycle of FGCRO-DR(m, k) (lines 4 to 15 of Algorithm 5.2.1) can be applied
straightforwardly. Subspace recycling can thus be easily used in FGCRO-DR(m, k) to solve sequences of
linear systems.

A numerical illustration

As a numerical illustration we consider sequences of linear systems arising from the finite difference dis-
cretization of multidimensional elliptic partial differential equations (isotropic Laplace operator) posed
on the [0, 1]d hypercube with homogeneous Dirichlet boundary conditions. These sequences correspond
to situations where only the right-hand sides are changing for a given dimension d. An efficient solution
method is of primary interest in certain applications related to e.g. financial engineering, molecular bi-
ology or quantum dynamics [15, 16]. In the numerical experiments reported here (performed in Matlab)
we have used second order finite difference discretization schemes leading to sparse matrices with at most
2d + 1 nonzero elements per row. We analyze the performances of various flexible methods used with
four iterations of unpreconditioned GMRES as a preconditioner. This polynomial preconditioner is a vari-
able nonlinear function which thus requires a flexible Krylov subspace method as an outer method [113].
Table 5.3 collects the number of matrix-vector products of some flexible methods minimizing over a sub-
space of same dimension respectively i.e. FGMRES(20), FGMRES-DR(20,10), FGCRO-DR(20,10) and
FGCRO-DR(20,10) with subspace recycling. Using deflation helps to improve the convergence rate of flex-
ible GMRES in this application since a reduction of approximately 20% to 25% in terms of matrix-vector
products is obtained for FGMRES-DR(20,10) independently of the dimension d. FGCRO-DR(20,10) leads
to numbers of matrix-vector products which are similar to FGMRES-DR(20,10) although the convergence
histories are found to be different. Finally using both deflation and recycling in FGCRO-DR leads to a
significant decrease in terms of matrix-vector products. A reduction in the range of 40% to 45% is indeed
obtained versus another flexible Krylov subspace method with deflated restarting (FGMRES-DR(m, k)).
This can be considered as a primary advantage over FGMRES-DR(m, k) since FGMRES-DR(m, k) does
not allow subspace recycling. It nicely extends to the flexible setting the advantage of GCRO-DR versus
GMRES-DR previously illustrated in [95]. We note that the resulting method is factorization free and
mostly relies on matrix-vector products, a nice feature if distributed memory platforms are targeted to
address numerical problems of larger size in higher dimension.

Table 5.3: Solution of a d-dimensional elliptic partial differential equation problem on a 16d grid with homogeneous
Dirichlet boundary conditions (d = 2, · · · , 5). Total number of matrix-vector products (#Mvp) required to solve
a sequence of twelve linear systems with different flexible methods. The variable preconditioner is based on four
iterations of unpreconditioned GMRES. The stopping criterion corresponds to a reduction of six orders of magnitude
of the normalized residual in the Euclidean norm. Harmonic Ritz values of smallest modulus have been considered
when deflating.

Grid 162 163 164 165

Problem size (n) (225) (3375) (50625) (759375)
Method #Mvp #Mvp #Mvp #Mvp

FGMRES(20) 972 1176 1272 1128
FGMRES-DR(20,10) 732 948 1020 876
FGCRO-DR(20,10) (no recycling) 732 948 1020 876
FGCRO-DR(20,10) (with recycling) 457 541 547 529

5.2.15 Conclusion and perspectives
In this section we have studied a new minimum residual norm subspace method with deflated restarting
that allows flexible preconditioning based on the GCRO subspace method. The resulting method named

5.2. FLEXIBLE GCRO WITH DEFLATED RESTARTING 101

FGCRO-DR has been presented together with FGMRES-DR, a recently proposed algorithm of the same
family but based on the GMRES subspace method. A theoretical comparison analysis of both algorithms
has been performed in Subsection 5.2.7, where Theorem 5.2.11 - the main result of this section - proves
the algebraic equivalence of FGMRES-DR and FGCRO-DR if a certain collinearity condition holds at
each cycle. Corollary 5.2.13 has also proved that GMRES-DR and GCRO-DR are algebraically equivalent
when a fixed right preconditioner is used. Furthermore we have carefully analyzed the computational cost
of a given cycle of FGCRO-DR and have shown that FGCRO-DR is nearly as expensive as FGMRES-
DR in terms of operations. FGCRO-DR offers the additional advantage to be suitable for the solution
of sequences of slowly changing linear systems (where both the matrix and right-hand side can change)
through subspace recycling.

In [26] variants of FGCRO-DR have been proposed which only differ in the formulation of the projected
generalized eigenvalue problem. As future work we plan to investigate the numerical properties of these
variants on realistic problems of large size for both single and multiple left or right-hand side situations.
Of interest are applications related to e.g. steady or unsteady simulations of nonlinear equations [25]
or stochastic finite element methods [42, 129] in three dimensions where variable preconditioning using
approximate solvers has to be usually considered. We also note that when all right-hand sides are available
simultaneously and when the matrix is fixed, block subspace methods may be also suitable. Thus a
perspective could be to propose a block variant of FGCRO-DR.

Acknowledgments
We would like to thank the referees and the associate editor for their careful readings and valuable
suggestions that helped us to improve our manuscript significantly. We also thank Iain S. Duff and Xavier
Pinel for fruitful discussions and comments. The participation of the first author in the initial preparation
of this article was guaranteed thanks to grant CNPq-473420/2007-4, coordinated by Professor Nelson
Maculan. The first author would like to acknowledge the warm welcome he received at CERFACS, in the
Parallel Algorithms Team, during his sabbatical leave where the initial work was completed.

102 CHAPTER 5. FLEXIBLE GCRO-DR

Chapter 6

Conclusions

The earth imaging problem related to geophysics consists of one of the most difficult problems in today’s
high performance computing community. The challenges are spread on several domains as geophysics,
optimization, numerical analysis, among others. In this thesis we focused on aspects concerning the for-
ward problem arising from the full waveform inversion technique, most notably the multi source scenario.
We focused on the solution of very challenging large sparse non-Hermitian linear systems arising from the
discretization of the three-dimensional Helmholtz equation. Due to the large size of the problem we chose
then the use of Krylov iterative solvers which are known for optimal memory control and good scalability
in massively parallel environment, but require flexible preconditioners based on multigrid techniques to be
efficient in terms of computational cost. The goals of this thesis were originally the following: develop a
flexible block Krylov iterative solver able to efficiently handle the multiple right-hand sides situation, inves-
tigate subspace recycling possibilities for accelerating the convergence when multiple models are used, and
the implementation of a modular software using object orientation paradigms (specially polymorphism)
for solving the proposed problem using the method we developed in a massively parallel environment .

Regarding the development of a flexible block Krylov iterative solver, we focused on a GMRES based
method due its minimal residual property and monotonically decreasing behaviour of the norm of the
residual. In a first moment we extended the needed theory on flexible Krylov solvers for the multiple
right-hand sides in order to obtain a detailed and unified vision on this scenario. The conclusions we drew
from this extension greatly influenced and facilitated the understanding of the multiple right-hand sides
case, to later on exploit deflation techniques. Deflation techniques are recognized to be necessary when
using Krylov solvers for multiple right-hand sides. We were then able to extend the deflation techniques
already available in the literature and finally propose a variant of a BGMRES based block Krylov subspace
method able to perform deflation at the beginning of every iteration based on information associated with
the singular values of the scaled residual, a method we named in this thesis deflated minimal block residual,
or DMBR. To justify the new variant, we performed numerical experiments on both small academical
cases and on large real life application. Most notably, we compared DMBR with other methods known
to be efficient for solving the forward problem arising from the full waveform inversion application. In
this comparison using the SEG/EAGE Overthrust velocity field, we observed a speedup in terms of
computational time of up to 30%, for low frequency cases using hundreds of right-hand sides.

We implemented an object oriented code using FORTRAN03 targeting performance in a massively
parallel environment using standard MPI partitioning, as well as being as close as possible to FORTRAN90
programming. This was achieved by using only the most basic FORTRAN03 object orientation features,
which are ultimately encapsulated and thus not imposing any software engineering knowledge upon the
final user. The code is flexible enough to accommodate changes without requiring rewriting of current
routines. The numerical experiments in this chapter show not only the interest of using such a software in
large scale real life application, but we also reinforced the conclusion that deflation techniques are essential
when using block Krylov solvers for the multisources scenario.

Later on we investigated a family of flexible methods performing deflated restart for the single right-

103

104 CHAPTER 6. CONCLUSIONS

hand side case, a technique to accelerate the convergence of inner-outer iterative methods using harmonic
Ritz values. We have discussed the similarities between the recently proposed FGMRES-DR with the
method we then proposed, FGCRO-DR. We show that although in the fixed preconditioner setting both
methods are algebraically equivalent, in the flexible setting this is not true unless a collinearity condi-
tion holds for every iteration, a phenomena unlike to happen in practice. We verified with numerical
experiments the different convergence history of the two methods. Later on we showed that when using
FGCRO-DR, it is possible to recycle information when solving sequence of linear systems, a feature not
present in FGMRES-DR. We performed numerical experiments on simple academic problems showing
that in this case the gain obtained through subspace recycling can be large.

Therefore, we consider the enhancements we proposed for the iterative solver are significant for the
solution of the forward problem arising from the full waveform inversion optimization problem. However,
some further investigation could bring an even more significant improvement. Whereas the strategy for
handling multiple right-hand sides has shown great performance for hundreds of right-hand sides, in the
earth imaging scenario often it is required the solution of tens of thousands of right-hand sides. For solving
problems with such a large number of right-hand sides, we consider in our future research to investigate the
combination of recycling strategies with deflation strategies, that is, partitioning the tens of thousands of
right-hand sides into “clusters” of hundreds of right-hand sides, solving each cluster using block strategies
and then using recycling strategies to recycle information from the solution of one cluster to improve the
convergence of the solution of the next cluster of right-hand sides.

Another possibility for our future research is the use of block and subspace recycling strategies in-
side the preconditioner. For the moment, only our solver uses block and deflation strategies, whereas
the preconditioner performs independent iterations of GMRES for each right-hand side. It was not yet
investigated in the literature the use of block and deflation techniques in the coarse level or smoother of
the geometric multigrid. Likewise, we are unaware of any result related to the use of block and deflation
techniques in the geometric multigrid cycle preconditioner when using complex shifted Laplacian operator,
a result that could be indeed very interesting for the inverse problem. Similarly, subspace recycling could
greatly speed up the solution on coarse levels, which remains the most expensive part of the preconditioner.

Additionally, in our future research we would like to consider advanced high-order accurate schemes
and discontinuous Galerkin discretization techniques as well as other PDE formulations of the forward
problem (e.g. visco-elastic equation). Notably the recent reformulation of the Helmholtz equation using
the Rytov decomposition seems attractive to us, as our academical numerical experiments involving the
solution of the advection-diffusion equation showed the interest of using deflation techniques for this
scenario. Since the convergence of iterative solvers is highly dependent on the numerical properties of the
coefficient matrix being used, it is of our interest to investigate the behaviour of both recycling strategies
and block deflation strategies in this scenario. In the same sense, although in this thesis we investigate
the behaviour of block Krylov iterative solvers when using a two-level multigrid preconditioner, we would
like to investigate in the near future the deflation and recycling behaviour for Helmholtz equation when
using non-multigrid based preconditioners, such as the sweeping preconditioner, CARP-CG, or low-rank
approximation techniques as the characteristics of the properties of the preconditioned Krylov subspace
depends intrinsically on the matrix and (variable) preconditioner particularities.

Appendix A

User Guide

Introduction

We describe now with some more details the library we implemented using FORTRAN03 and MPI for
solving the forward problem arising from the acoustic full waveform inversion method. These libraries
were written targeting compatibility with Depth Imaging and Velocity Analysis (or DIVA), a proprietary
software maintained by TOTAL. However, a priori they could be used for any high performance computing
purpose, not necessarily related to acoustic full waveform inversion. As it was discussed in Section 4.6, one
of the main concerns was to produce routines to be used by programmers who are used to FORTRAN90
instructions, but would produce extra modularity and code reuse due to object orientation, reason why
we choose the FORTRAN03 language. The current source code is compatible with Intel Fortran Compiler
version 12.1.5 20120612.

In this chapter we thus discuss basic aspects of the technical knowledge necessary to make the transition
between procedural to object oriented programming, to then show with few details how to use the libraries
we implemented. We suppose that the reader is familiar with both FORTRAN90 and MPI use. In the
current version most of the routines associated with MPI are hidden from the final user, but we mention
that only the standard data partition is used.

This appendix is organized as follows. First we introduce in the Section FORTRAN03 Basic Guidelines
the features from FORTRAN03 that are not contained in FORTRAN90 standard. In Section Polymor-
phism and Inheritance we explain these two key concepts. Once they are established, we describe the
libraries we proposed to be used by DIVA software: the libEina, libOperator and libSolver. We proposed
a fourth library called libDiscretizer but unlike the other libraries we propose, libDiscretizer is not inde-
pendent of DIVA software, and for this reason we do not address it here. Finally, in Section Conclusions
we propose the final remarks of this appendix.

We highlight that this is not a complete reference guide, it instead contains an introductory material
for using the libraries we proposed.

FORTRAN03 Basic Guidelines

In this section we briefly discuss aspects of FORTRAN03 programming which are not contained in FOR-
TRAN90 standard. Since the purpose is to have as few changes as possible (the FORTRAN90 syntax is
compatible with FORTRAN03), we just use a limited set of extra features from FORTRAN03, namely the
keywords EXTENDS, ABSTRACT, PASS and NOPASS, DEFERRED and CLASS, which we describe
next.

105

106 APPENDIX A. USER GUIDE

EXTENDS Keyword
Defines a new type as an extension of another type. This is the basic building block for inheritance and
polymorphism. In Figure A.1, both C_ChildType1 and C_ChildType2 have all the variables declared in-
side the C_ParentType, but they also have their own exclusive variables. Notice that both C_ChildType1
and C_ChildType2 could be extended to a third generation type. In addition, the variables child1 (re-
spectively, child2) has multiple types, that is, it is a C_ParentType and a C_ChildType1 (respectively,
C_ChildType2) at the same time.

TYPE :: C_ParentType
CHARACTER(LEN=128) :: Name1
INTEGER :: IProperty1
INTEGER :: IProperty2

END TYPE C_ParentType

TYPE, EXTENDS(C_ParentType) :: C_ChildType1
CHARACTER(LEN=128) :: Name2
REAL :: RProperty1
INTEGER :: IProperty3

END TYPE C_ChildType1

TYPE, EXTENDS(C_ParentType) :: C_ChildType2
CHARACTER(LEN=128) :: Name3
COMPLEX :: ZProperty1

END TYPE C_ChildType2

TYPE(C_ChildType1) :: child1
TYPE(C_ChildType2) :: child2

child1%Name1 = ’This is valid’
child2%Name1 = ’This is also valid’

child1%IProperty1 = 4 ! Again, valid
child2%IProperty1 = 4 ! and this also

child1%RProperty1 = 5.0 ! and this also...
child2%RProperty1 = 5.0 ! But this is invalid!

Figure A.1: Example of EXTENDS usage

ABSTRACT Keyword
Used when defining a type. If a type is defined as being ABSTRACT, then it cannot be used for any
purpose except being extended to another type using the EXTENDS keyword. In Figure A.2 we have an
illustration of the use of ABSTRACT keyword.

TYPE, ABSTRACT :: C_AbsParentType
CHARACTER(LEN=128) :: Name4
COMPLEX :: ZProperty2

END TYPE C_AbsParentType

TYPE, EXTENDS(C_AbsParentType) :: C_ChildType3
CHARACTER(LEN=128) :: Name5
COMPLEX :: ZProperty3

END TYPE C_ChildType3

! ------------ Example 1 ------------
TYPE(C_ParentType) :: parenttype
parenttype%Name1 = ’This is valid’
parenttype%IProperty1 = 4
! ------------ Example 2 ------------
TYPE(C_ChildType3) :: child3
child3%Name4 = ’This is valid’
child3%Name5 = ’This is also valid’
child3%ZProperty2 = CMPLX(1.0,1.0)
child3%ZProperty3 = CMPLX(1.0,1.0)
! ------------ Example 3 ------------
! This example does not even compile
TYPE(C_AbsParentType) :: absparenttype
absparenttype%Name3 = ’Invalid’
absparenttype%ZProperty2 = CMPLX(1.0,1.0)

Figure A.2: Example of ABSTRACT usage, using the types defined in Figure A.1

A priori the usefulness of ABSTRACT may not be clear, but it is essential to the use of DEFERRED
PROCEDURES. Just as an example, consider that an abstract type is just an interface for a type and
not a type itself.

PASS and NOPASS Keyword
As in FORTRAN90, FORTRAN03 allows the use of pointer to functions to be set inside types using the
keyword PROCEDURE. A PROCEDURE acts exactly like a variable belonging to the type it is defined,
but it also requires the CALL keyword (in case it is a subroutine) and the referred arguments. However,
in FORTRAN03 it was introduced the possibility of using the PASS and NOPASS keywords. If PASS is

FORTRAN03 BASIC GUIDELINES 107

active, it will send the type itself as one of the arguments of the function, reducing thus the number of
arguments that need to be passed when calling the procedure. Figure A.3 illustrates both cases.

TYPE:: C_Class1
CHARACTER(LEN=128) :: Name1
REAL :: RProperty1
CONTAINS

PROCEDURE, PASS(arg1) :: procedure1
END TYPE C_Class1

SUBROUTINE procedure1(arg1)
CLASS(C_Class1), INTENT(INOUT) :: arg1
(...)

END SUBROUTINE procedure1

(...)

TYPE(C_Class1) :: class1
CALL class1%procedure1()

TYPE:: C_Class2
CHARACTER(LEN=128) :: Name2
COMPLEX :: ZProperty2
CONTAINS

PROCEDURE, NOPASS :: procedure2
END TYPE C_Class2

SUBROUTINE procedure2(arg2)
CLASS(C_Class2), INTENT(INOUT) :: arg2
(...)

END SUBROUTINE procedure2

(...)

TYPE(C_Class2) :: class2
CALL class2%procedure2(class2)

Figure A.3: Example of PROCEDURE usage with PASS and NOPASS. On the left side with PASS keyword and
on the right side with the NOPASS keyword

DEFERRED Keyword

Pretty much like the ABSTRACT keyword, the DEFERRED keyword defines a procedure as an interface.
The deferred procedure contains nothing but a name and the type and structure of the types it refers
to. It must be declared inside an ABSTRACT INTERFACE statement. It is important to notice that
a DEFERRED procedure can be defined only inside an abstract type, otherwise a compilation error is
thrown. In Figure A.4 we show an example of declaration of a deferred procedure.

TYPE, ABSTRACT :: C_Class3
CHARACTER(LEN=128) :: Name3
REAL :: RProperty3
CONTAINS

PROCEDURE, PASS(arg) :: procedure3
PROCEDURE(interface_procedure4), DEFERRED, PASS(arg) :: procedure4

END TYPE C_Class3

ABSTRACT INTERFACE SUBROUTINE interface_procedure4(arg)
CLASS(C_Class3), INTENT(INOUT) :: arg

END SUBROUTINE interface_procedure4
END INTERFACE

SUBROUTINE procedure3(arg)
CLASS(C_Class3), INTENT(INOUT) :: arg

PRINT *,’=>’, arg%Name3
PRINT *,’=>’, arg%RProperty4

END SUBROUTINE procedure3

Figure A.4: Example of deferred procedure usage

To be able to use a deferred procedure, it has to be implemented before. In Figure A.5 we show two
types that extend C_Class3, and each implement procedure4 in a different manner. Both methods are
valid and both methods could coexist.

CLASS Keyword

Finally we refer to the CLASS declaration. We define the arguments that a specific function or subroutine
receives, an argument declared as a CLASS(C_Class) can be of type C_Class or any other type that
extends C_Class using the EXTENDS keyword. Although not mentioned, we used the CLASS declaration

108 APPENDIX A. USER GUIDE

TYPE, EXTENDS(C_Class3) :: C_SubClass1
COMPLEX :: ZProperty4
CONTAINS

PROCEDURE(procedure4_1), PASS(arg) :: procedure4
END TYPE C_SubClass1

SUBROUTINE procedure4_1(arg)
CLASS(C_SubClass1), INTENT(INOUT) :: arg

PRINT *,’=>’, arg%Name3
PRINT *,’=>’, arg%ZProperty4

END SUBROUTINE procedure4_1

(...)
! ---------- Example of Use ----------
TYPE(C_SubClass1) :: subclass1
CALL subclass1%procedure3()
CALL subclass1%procedure4()

TYPE, EXTENDS(C_Class3) :: C_SubClass2
INTEGER :: IProperty5
CONTAINS

PROCEDURE(procedure4_2), PASS(arg) :: procedure4
END TYPE C_SubClass2

SUBROUTINE procedure4_2(arg)
CLASS(C_SubClass2), INTENT(INOUT) :: arg

PRINT *,’=>’, arg%Name3
PRINT *,’=>’, arg%IProperty5

END SUBROUTINE procedure4_2

(...)
! ---------- Example of Use ----------
TYPE(C_SubClass2) :: subclass2
CALL subclass2%procedure3()
CALL subclass2%procedure4()

Figure A.5: Implementing a deferred procedure. In this example two types are extended from C_Class3 (from
Figure A.4) and each implements procedure4 in a different manner

in Figure A.3, Figure A.4 and in Figure A.5. Notice that in Figure A.4, procedure3 receives a CLASS
(and not a TYPE) as argument. This means that any of the following types can be passed as argument:
C_Class3, C_SubClass1 and C_SubClass2 (from Figure A.5).

Polymorphism and Inheritance

We quickly address these two terms which we are going to use from now on. In the previous section
we already showed examples of these two features of FORTRAN03, although we did not address them
specifically.

Inheritance stands for the ability to draw a hierarchy of types, in which each type possesses all the pro-
cedures and variables of the types above them in the hierarchy. For instance, in Figure A.1, we say that the
type C_ChildType1 inherits the variables Name1, IProperty1 and IProperty2 from C_ParentType. In
Figure A.5, C_ChildType3 inherits no only Name3, RProperty3 from C_Class3, but also the procedures
procedure3 and procedure4 (although the later is not implemented).

Polymorphism stands for the ability of admitting multiple different types to be used for a specific
purpose. In Figure A.4, procedure3 prints Name3 and RProperty4 on the screen. Since due to inheritance
C_Class3 and every type extending C_Class3 possesses these two properties, this function can receive a
type C_Class3 as argument or any type extending C_Class3.

Empiric discussion Consider that we have a function called GMRES implemented. GMRES needs,
among other things, a matrix in order to apply the Arnoldi procedure. In practice there are many ways to
store a matrix, specially when a massively parallel software is being used. Some of these formats exploit
special structures of the matrix, some others aim at avoiding communication between nodes and etc.

However, regardless on how the matrix is stored, some attributes of a matrix always exist. For instance,
every matrix has a number of rows, number of nonzeros, etc. Every matrix also should have a procedure for
performing matrix-vector product. This procedure might be very different from the traditional matrix-
vector routine, depending on how the matrix is stored. Nevertheless, it is not important for GMRES
function to know how the matrix-vector product works, but instead, to receive the result of a matrix-
vector product routine.

In this scenario, we could create an abstract type C_Matrix. This abstract type would contain some
basic information, as the number of rows, the number of the MPI rank, communication handler, etc. This
abstract type would contain a DEFERRED PROCEDURE called matrix_vector which would receive
nothing but the vector that needs to be multiplied and the vector in which we want to store the product
(as in Figure A.4).

POLYMORPHISM AND INHERITANCE 109

We then extend C_Matrix to a type C_CSR, a very common matrix format. In this extension we
finally add the necessary information for storing the matrix: an array of nonzero elements, array of index
of first nonzero element of each row, etc. We then implement the matrix_vector procedure for performing
a matrix-vector product using these structures.

Aside, we could extend C_Matrix to another type, for instance, C_HarwellBoeing. Similarly we add
the structures for storing the matrix in this new type, and we implement the matrix-vector routine for
this data type format.

Now that we have both these types implemented, it would make a lot of sense to pass to GMRES a
type C_Matrix instead of C_CSR or C_HarwellBoeing. The point is that GMRES does not need to
know how the matrix-vector product is performed, it just needs to know it can be performed and which
arguments it needs to pass to the matrix_vector routine.

This was the main idea behind the libraries and modules we proposed. The iterative solver receives
a class which acts like a matrix, and then uses it to perform matrix vector products. Additionally, the
solver itself is a class, and it uses another solver class as preconditioner. For instance, BGMRES can be
preconditioned by BGMRES itself.

The following sections are dedicated to the specification and description of the libraries and their basic
usage.

110 APPENDIX A. USER GUIDE

libEina Basic Documentation

We now describe the main classes and types defined in the libEina library.

Modules M_Eina, M_OptimizationFlag and M_Topology

We quickly describe the following modules without attaining to details, as their knowledge is not crucial
for using the main routines of this and the next libraries we describe.

M_Eina: This module contains a series of simple routines. Normally they are really simple and are
meant to improve the readability of the code. No crucial functions or types to be mentioned, as this
module is mainly used internally.

M_OptimizationFlag: Contains the specification of a special kind of flag, the OFLAG. It is used in some
functions to tweak some very specific optimization options. We do not cover this in this user guide, since
it is an advanced topic.

M_Topology: Contains the specification of some constants used in stencil definition.

Module M_Error

Contains the error handler type (T_Error) definition and some few functions to control it. This type is
meant to be used mainly with the subroutines Print_Error, Print_Warning and Print_Bug which we
discuss later in the description of the module M_Class.

MODULE M_Error most important functions:
New_Error(id, msg) a function that returns a type T_Error with the passed ID and message.
No_Error() a function that returns a type T_Error containing no error at all
Unexpected_Error() a function that returns a type T_Error containing an error without any specific

description

We describe now the T_Error type contained in M_Error module.

TYPE T_Error

Description:
The error handling type. Used to print errors, warning and to throw back the error to the caller.
Important Components:

INTEGER ID A UNIQUE error ID
CHARACTER*512 orig A string (normally optional) containing the name of the function that

generated this error.
CHARACTER*1024 msg A string (normally mandatory) containing the error message concern-

ing this error
T_Error POINTER stack This error might have been caused by another error - literally. So it

would be a good idea do attach it such that the called will have the
full information regarding the causer of the problem.

LOGICAL IsFatal Logical flag telling if we should immediately abort the run due to this
error

LIBEINA BASIC DOCUMENTATION 111

Notice that since every T_Error has a pointer to another T_Error, it is possible to create a complex
stack of errors showing where the error originally occurred. As we are going to mention later, the function
Print_Error will print every error in the stack recursively. The error id, message, and everything else
is purely optional. However, the following advices should be kept in mind, as following always the same
standards is normally a good idea:

6 digits rule : Create error IDs with exactly 6 digits. Probably no one has a code with more than
999.999 errors possibilities; Better to keep this limit!

Unique ID : Do not use the same ID for different circumstances, even if the error message is the same.
If your error message will be print on the screen and the error ID is unique, we can search the ID
in the source code; if it is not unique, we will have to figure out which part of the code threw that
error.

Precompiler : In the libraries we write, the error handling is done in a separate file. For instance
m_diag7pts.err contain the error handling of m_diag7pts.f90. This is because when reading
m_diag7pts.f90 we are usually not interested in reading every single possibility of error in a given
function. To clean the code, we decided to use:

IF (this.NE.that) ERROR_012345

where ERROR_012345 is a macro defined in m_diag7pts.err. Note that since the IF is still declared
inside m_diag7pts.f90, whoever reads this file will know that if "this" is not equal to "that", an
error will be thrown; and if the reader is interested in knowing more about this error, he can easily
access m_diag7pts.err and read the full handling of this situation.

Severe Error: By default, the errors are printed only if they happen in the master process - a good idea
if you don’t want to read "Failed to initialize" once for every processor. However, some errors are
quite severe and/or can happen in individual processes. For these errors, just put a negative ID
number. These are treated as "severe errors" and can be printed by any process, not necessarily the
master.

Fatal: Not every error aborts the run. Some of them might be even expected. For the error abort the
run, the variable IsFatal Errors that should normally be fatal: - Dimension Mismatch: something
should be bigger or smaller than it is; if this error was detected, then it is avoiding a segmentation
fault. The normal strategy is to print the dimensions found, the ones expected and abort the run
immediately. - Not enough memory: another one that prevents a disaster. This error should always
be fatal as after trying to allocate something the code usually expects to use it.

Module M_Class
The most primitive classes that is implemented in this and the subsequent libraries. Every single class
we implemented extends this one (or extends a class which extends this one) and must follow the shape
established here.

112 APPENDIX A. USER GUIDE

TYPE, ABSTRACT C_Class

Description:
The abstract class, to be inherited by every other class.

Important Components:
INTEGER MyID Rank of the MPI process
INTEGER CommHandler Integer containing the Communicator Handler for MPI routines
INTEGER MemUsed Contains the size in bytes that this object is allocating from the mem-

ory at the moment.
INTEGER MemNeeded Contains the size in bytes that this object will take from the memory

if initialized (allocated).
LOGICAL IsVerbose Tells if this object should print informations.

Important Procedures:
Print_Info() It is a "hello world" subroutine. It prints some basic info regarding this

C_Class on the screen. A generic one is provided here, but it should nor-
mally be overridden inside the extended class for additional information.

Print_Error() Useful for printing errors on the screen. If the error is too severe (number
below zero) the message is printed for every process regardless if MyID=0
or not.

Destroy DEFERRED Deallocates current object. Do NOT destroy pointers (since
they may be used somewhere else)

DestroyAll() Like Destroy, but also destroys every pointer recursively. This might break
your code if not used wisely.

Initialize(MemAvailable) DEFERRED This subroutine considers that all parameters necessary for
performing the allocation of the object and all its structures are already
set, and that the allocation can proceed. It receives MemAvailable as
parameter, which is the maximum memory that the user has available for
allocating. It is updated after the allocation of everything.

LIBOPERATOR BASIC DOCUMENTATION 113

libOperator Basic Documentation

This library contains the modules for manipulating different operators (or matrices) and also the interpo-
lation and restriction routines used by the geometric multigrid algorithm.

Module M_Operator

This module contains the definition of the abstract C_Operator class. This is the class which is going to
be used to create the matrices later. Most modules and routines which require a coefficients matrix will
include this module (and not the ones extending the C_Operator).

TYPE, ABSTRACT EXTENDS(C_Class) C_Operator

Description:
C_Operator is an abstract class able to accommodate any kind of function the function y = f(x), given
x and y of proper dimensions. We dispose of a certain number of procedures inside this class, but the
core procedure is apply(), which does exactly what was specified before: apply the function f on x. In
fact, in the apply routine, the variable y is supposed to be INTENT(INOUT), so this function can be
performing in fact a y = f(x, y). Nevertheless, we keep this class simplified.
Always have in mind that the purpose is to have this as a parallel operator, that is, to be used in MPI
application, therefore several parameters regarding MPI are present here.

Important Components:
INTEGER LocalLen Basic length of vectors which do not have a communication layer.
INTEGER CommLen Basic length of vectors which do have a communication layer.

INTEGER(:) Neighbor Array containing the MPI rank of each process that the operator have
to communicate with.

Important Procedures:

Apply(y,yLen,x,xLen,p) DEFERRED The core of the C_Operator class. This procedure has to be
compulsorily implemented. It simply performs y = f(x), and it depends
completely on the purpose of the operator.

GetResidual(y,yLen,b,
bLen,x, xLen, p)

DEFERRED Dedicated function for performing y = b−f(x). It is impor-
tant to optimize it because it is quite a common operation and usually an
expensive one.

UpdateBound(x, xLen, p) DEFERRED Used to update the communication layer of vectors after
applying this operator.

Module M_StencilCollection

Extends the C_Operator to the C_StencilCollection class, which is also abstract. In this class, however,
we already have some assumptions, as for instance, that the referred operator is coming from a finite
difference discretization scheme (for the moment, it always assumes it is a three-dimensional discretization).

TYPE, ABSTRACT, EXTENDS(C_Operator) C_StencilCollection

Description:
This is an extension of C_Operator which adds some basic structures associated with finite differences
discretization three-dimensional discretization schemes.

114 APPENDIX A. USER GUIDE

Important Components:
INTEGER nLocX, nLocY, nLocZ Number of points in the local domain respectively in the

direction x, y and z. This excludes the communication layer.
INTEGER nComX, nComY, nComZ Number of points in the local domain respectively in the

direction x, y and z, with communication layer included.
Important Procedures:

UpdateBound(x, xLen, p) IMPLEMENTED This procedure is defined in M_Operator, and imple-
mented here, as for the moment, all the finite difference discretization
schemes use exactly the same routine for performing the communication.
This might be not true if more sophisticated schemes are implemented in
the future.

Module M_Diag7pts

This module contains the definition of an almost matrix-free implementation of a 7 point stencil operator.
It is specifically tuned for the Helmholtz operator, discretized with PML boundary condition. We use a
special characteristic of such discretized operators and store only the main diagonal, using an economic
technique for storing off-diagonal elements in small vectors.

TYPE, EXTENDS(C_StencilCollection) C_Diag7pts

Description:
This is the class for storing the the almost matrix-free 7 point stencil operator, tuned for using with the
Helmholtz operator with PML boundary conditions.

Important Components:
COMPLEX(:) A Contains the points related to the central position in the

stencil. If no PML is used, this is the only term to be stored.
COMPLEX(:,2) A_X Contains the coefficients for the neighbours in the X axis
COMPLEX(:,2) A_Y Contains the coefficients for the neighbours in the Y axis
COMPLEX(:,2) A_Z Contains the coefficients for the neighbours in the Z axis

Important Procedures:
Apply(y,yLen,x,xLen,p) IMPLEMENTED Implements the deferred procedure inherited from

C_Operator
GetResidual(y,yLen,b,
bLen,x, xLen, p)

IMPLEMENTED Implements the deferred procedure inherited from
C_Operator

Initialize(MemAvailable) IMPLEMENTED Implements the deferred procedure inherited from
C_Class

Destroy() IMPLEMENTED Implements the deferred procedure inherited from
C_Class

In addition to C_Diag7pts, in this module we find the following very important function. In Figure A.6
we show how to use this class and this function.

MODULE M_Diag7pts most important functions:
New_Diag7pts(MyID, Name, o_nlocx, o_nlocy,
o_nlocz, CommHandler)

Returns an object of the type C_Diag7pts.

LIBOPERATOR BASIC DOCUMENTATION 115

! --
! Suppose that the following is known:
! MyID: the rank of current MPI process
! CommHandler: the communication handler
! MemAvailable: current memory available
! fill_matrix(): a subroutine which receives any C_Operator
! and fills it coefficients with some values
! --
(...)
CLASS(C_Operator), POINTER :: matrix
TYPE(T_Error) :: err
COMPLEX, ALLOCATABLE :: vecx(:,:),vecy(:,:)
INTEGER :: xlen,ylen,nlocx,nlocy,nlocz,p
nlocx = 10
nlocy = 11
nlocz = 12
p = 1
xlen = nlocx*nlocy*nlocz
ylen = (nlocx+2)*(nlocy+2)*(nlocz+2)
ALLOCATE(vecx(xlen,p))
ALLOCATE(vecy(ylen,p))
vecx = CMPLX(1.0,1.0)
vecy = CMPLX(0.0,0.0)

! This creates the C_Operator as a C_Diag7pts. It uses polymorphism.
matrix => New_Diag7pts(MyID, &

’New Test Matrix’, &
nlocx, &
nlocy, &
nlocz, &
CommHandler)

! Now we initialize the C_Operator we just created.
! Remember that this C_Operator is ALSO a C_Diag7pts!!
CALL matrix%Initialize(MemAvailable)

! Now it is initialized and allocated. We can fill it with values
CALL fill_matrix(matrix)

! Now we can use it; with apply() function for instance
CALL matrix%Apply(vecy,ylen,vecx,xlen,p,0,err)

! We are done using this C_Operator. We just destroy it and finish
CALL matrix%Destroy()
DEALLOCATE(vecx,vecy)

Figure A.6: Example of usage of C_Diag7pts, using polymorphism

Module M_Standard27pts
This module contains the definition of a standard implementation of a 27 point stencil operator. So far it
has been tested with Operto et. al discretization scheme [93].

TYPE, EXTENDS(C_StencilCollection) C_Standard27pts

Description:
This is the class for storing the the almost matrix-free 7 point stencil operator, tuned for using with the
Helmholtz operator with PML boundary conditions.

Important Components:
COMPLEX(27,:,:,:) A For each point (i, j, k), A(:, i, j, k) contains the coefficient of

the central point plus the coefficients of its 26 neighbours.
Important Procedures:
Apply(y,yLen,x,xLen,p) IMPLEMENTED Implements the deferred procedure inherited from

C_Operator

116 APPENDIX A. USER GUIDE

GetResidual(y,yLen,b,
bLen,x, xLen, p)

IMPLEMENTED Implements the deferred procedure inherited from
C_Operator

Initialize(MemAvailable) IMPLEMENTED Implements the deferred procedure inherited from
C_Class

Destroy() IMPLEMENTED Implements the deferred procedure inherited from
C_Class

As the modules M_Diag7pts, this module also contains a New_Standard27pts function. In Figure A.7
we show how to use this class and this function. Notice, however, that the only difference lies in the name
of the function being called to create the matrix.

MODULE M_Standar27pts most important functions:
New_Standard27pts(MyID, Name, o_nlocx,
o_nlocy, o_nlocz, CommHandler)

Returns an object of the type C_Standard27pts.

Module M_Transformation, M_FullInterpolation and M_FullRestriction
We quickly describe the following modules without attaining to details, as their knowledge is not crucial
for using the main routines of this and the next libraries we describe.

M_Transformation: Contains the abstract type used for interpolations and restrictions. This is basically
meant to accommodate any rectangular matrix. It is used by the C_GeoMultigrid class which we describe
later.

M_FullInterpolation: Contains the full weighted interpolation object. Used by C_GeoMultigrid.

M_FullRestriction: Contains the full weighted restriction object. Used by C_GeoMultigrid.

LIBOPERATOR BASIC DOCUMENTATION 117

! --
! Suppose that the following is known:
! MyID: the rank of current MPI process
! CommHandler: the communication handler
! MemAvailable: current memory available
! fill_matrix(): a subroutine which receives any C_Operator
! and fills it coefficients with some values
! --
(...)
CLASS(C_Operator), POINTER :: matrix
TYPE(T_Error) :: err
COMPLEX, ALLOCATABLE :: vecx(:,:),vecy(:,:)
INTEGER :: xlen,ylen,nlocx,nlocy,nlocz,p
nlocx = 10
nlocy = 11
nlocz = 12
p = 1
xlen = nlocx*nlocy*nlocz
ylen = (nlocx+2)*(nlocy+2)*(nlocz+2)
ALLOCATE(vecx(xlen,p))
ALLOCATE(vecy(ylen,p))
vecx = CMPLX(1.0,1.0)
vecy = CMPLX(0.0,0.0)

! This creates the C_Operator as a C_Standard27pts. It uses polymorphism.
matrix => New_Standard27pts(MyID, &

’New Test Matrix’, &
nlocx, &
nlocy, &
nlocz, &
CommHandler)

! Now we initialize the C_Operator we just created.
! Remember that this C_Operator is ALSO a C_Standard27pts!!
CALL matrix%Initialize(MemAvailable)

! Now it is initialized and allocated. We can fill it with values
CALL fill_matrix(matrix)

! Now we can use it; with apply() function for instance
CALL matrix%Apply(vecy,ylen,vecx,xlen,p,0,err)

! We are done using this C_Operator. We just destroy it and finish
CALL matrix%Destroy()
DEALLOCATE(vecx,vecy)

Figure A.7: Example of usage of C_Standard27pts, using polymorphism. This example is identical to Figure A.6,
except that here we call New_Standard27pts instead of New_Diag7pts

118 APPENDIX A. USER GUIDE

libSolver Basic Documentation

In this library we implement several iterative solvers as well as preconditioners. Thanks to polymorphism,
every solver implemented here can also be used as a preconditioner.

Module M_Solver

This module contains the definition of the abstract C_Solver class. This is the class which is going to be
used to create iterative solver classes and routines later.

TYPE, ABSTRACT, EXTENDS(C_Class) C_Solver

Description:
The solver class has to be as flexible as possible to accommodate every possible future implementation, of
an iterative solver, therefore only the strictly generic entities are declared here. For the sake of generality
also, the preconditioner is as well considered as a solver in the sense that they also come from a C_Solver
class.
In a bigger picture, solvers can be seen as a function; they receive a right-hand side b, an initial guess x,
and a coefficient matrix A to then compute x = f(x, b), which is supposedly an approximation of A−1b.
So far, nothing prevents the use of this class for implementing direct solvers, but this has never been the
original intention.

Important Components:
C_Operator POINTER MyOperator This object defines several internal values for the solver.

For instance, the allocation of the vectors Vj in BFGMRES
are dependant of MyOperator%LocalLen and MyOpera-
tor%CommLen

INTEGER Maxp Maximum number of right-hand sides that this solver is
going to deal with at once. Used to compute the maximum
size of some structures before allocating it.

LOGICAL IsVariable Every object which inherits from C_Solver should be con-
sidered as a flexible solver by default. Set this flag to
.FALSE. in a specific solver if this is not true, since some-
times it is possible to optimize memory cost and operations
when using fixed preconditioner.

Important Procedures:

Apply(x,xLen,b,bLen,p) DEFERRED As in the C_Operator type, this is the core of the C_Solver
class. It simply starts the solver execution.

Recalling the inheritance that we discussed earlier, since C_Solver extends C_Class, it also possesses
the component IsVerbose. This flag is particularly useful for the solver, although it is also present in any
C_Operator, for instance. If it is active, the solver will print the history of the relative residual on the
screen, for instance. Also, because C_Solver extends C_Class, it also possesses the Initialize() function
(which was deferred in C_Class and is also deferred in C_Solver).

Module M_BFGMRES

This module contains the first implementation of a C_Solver, the C_BFGMRES.

Notice that C_BFGMRES, as the C_Diag7pts and C_Standard27pts implement both Initialize() and
Destroy() functions from C_Class. Likewise, in this module some extra functions for handling the new

LIBSOLVER BASIC DOCUMENTATION 119

TYPE, ABSTRACT, EXTENDS(C_Solver) C_BFGMRES

Description:
The first solver we implement. It consists of BFGMRES method proposed by Vital [134]. It requires
some extra parameters to be allocated, like the tolerance and the restart size. The stopping criterion of
this solver is fixed: it always stops when the ‖.‖ψ of the relative residual is smaller than the tolerance,
or when the maximum number of cycles has been performed.

Important Components:
C_Solver POINTER MyPC This object defines the preconditioner to be used by this

C_BFGMRES. Notice that it could be C_BFGMRES it-
self, since C_BFGMRES is also a C_Solver. If no precon-
ditioner is going to be used, one can use the C_NoSolver
which we describe later in the module M_NoSolver.

INTEGER MaxCycles Maximum number of cycles to be performed. The solver
stops and returns its final approximation of the solution
even if it did not converge

INTEGER MaxzDim BFGMRES will restart whenever the number of iterations
reach MaxRestartSize or whenever the dimension of the
subspace Zj reaches MaxzDim, whichever comes first.

INTEGER MaxRestartSize BFGMRES will restart whenever the number of iterations
reach MaxRestartSize or whenever the dimension of the
subspace Zj reaches MaxzDim, whichever comes first.

REAL Tol Convergence threshold for BFGMRES. It will return when-
ever the ‖.‖ψ of the relative residual is smaller than Tol or
MaxCycles have been performed.

Important Procedures:

Apply(x,xLen,b,bLen,p) IMPLEMENTED Implements the deferred procedure inherited from
C_Solver

Initialize(MemAvailable) IMPLEMENTED Implements the deferred procedure inherited from
C_Class

Destroy() IMPLEMENTED Implements the deferred procedure inherited from
C_Class

class are provided.

MODULE M_BFGMRES most important functions:
New_BMGRES() An interface accepting multiple types of parameter set. See Fig-

ure A.8 for usage. Most notably, we highlight here the existence
of the parameter O_PCToCreate. It can receive, for the moment,
one of the following values: NoSolver, GaussSeidel or BFGMRES.
The first one is used when no preconditioner is desired, the second
one uses one iteration of local symmetric Guass-Seidel iteration (to
be covered later with more details in the M_GaussSeidel) and the
later uses 10 cycles of unpreconditioned BGMRES(5) as precon-
ditioner. Alternatively, instead of providing the O_PCToCreate,
one can provide a pointer to a C_Solver, which is then going to
be used as preconditioner. In Figure A.9 we illustrate how to use
this situation.

120 APPENDIX A. USER GUIDE

! --
! Suppose that the following is known:
! MemAvailable: current memory available
! Matrix: a C_Operator with the coefficient matrix already ready for use
! vecx: a (xlen,p) vector containing the initial guess
! vecb: a (blen,p) vector containing the right-hand side
! --
(...)
CLASS(C_Solver), POINTER :: solver
TYPE(T_Error) :: err
! Since we supposed everything else is known, it is
! left to be create the C_BGMRES. Here we use
! 50 cycles of BGMRES(10) with p right-hand sides
! and no preconditioner (due to O_PCToCreate=’NoSolver’)

solver => New_BFGMRES(Name = ’My testing BFGMRES’, &
MyOperator = matrix, &
MaxCycles = 50, &
MaxzDim = 10*p, &
MaxRestartSize = 10, &
Maxp = p, &
Tol = 1e-6, &
O_PCToCreate = ’NoSolver’)

! Now we initialize it. The initialization allocates everything
CALL solver%Initialize(MemAvailable)

! Now we can use it; with apply() function. We set it to verbose
! just to make sure to see some convergence information
solver%IsVerbose = .TRUE.
CALL solver%Apply(vecb,blen,vecx,xlen,p,0,err)

! We are done using this C_Solver. We just destroy it.
CALL solver%Destroy()

Figure A.8: Example of usage of C_BFGMRES, using no preconditioner. There is a strong similarity between
this and Figure A.6 and Figure A.7 examples

LIBSOLVER BASIC DOCUMENTATION 121

! --
! Suppose that the following is known:
! MemAvailable: current memory available
! Matrix: a C_Operator with the coefficient matrix already ready for use
! vecx: a (xlen,p) vector containing the initial guess
! vecb: a (blen,p) vector containing the right-hand side
! --
(...)
CLASS(C_Solver), POINTER :: solver, preconditioner
TYPE(T_Error) :: err
! We create a C_BFGMRES to be used as a preconditioner
! Only 5 cycles of BGMRES(3) are going to be used
preconditioner => New_BFGMRES(Name = ’This is a Preconditioner’, &

MyOperator = matrix, &
MaxCycles = 5, &
MaxzDim = 3*p, &
MaxRestartSize = 3, &
Maxp = p, &
Tol = 0.0, &
O_PCToCreate = ’NoSolver’)

! And now we create the solver...
solver => New_BFGMRES(Name = ’My testing BFGMRES’, &

MyOperator = matrix, &
MaxCycles = 50, &
MaxzDim = 10*p, &
MaxRestartSize = 10, &
Maxp = p, &
Tol = 1e-6, &
MyPC = preconditioner)

! We can initialize the preconditioner and then the solver
! or initialize only the solver, as it will recursively initialize
! the preconditioner if needed
CALL preconditioner%Initialize(MemAvailable)
CALL solver%Initialize(MemAvailable)

! Now we can use it; with apply() function. We set it to verbose
! just to make sure to see some convergence information
solver%IsVerbose = .TRUE.
! We can also make the preconditioner verbose; in that case we
! see both convergence information being printed
preconditioner%IsVerbose = .TRUE.
CALL solver%Apply(vecb,blen,vecx,xlen,p,0,err)

! We are done. We just destroy everything. Alternatively we could
! use the DestroyAll procedure which destroys recursively every pointer.
CALL preconditioner%Destroy()
CALL solver%Destroy()

Figure A.9: Example of usage of C_BFGMRES, using a customized C_BFGMRES as preconditioner.

122 APPENDIX A. USER GUIDE

Modules M_NoSolver, M_GaussSeidel, M_FGMRES and M_LinAlg
We do not advise the user to deal directly with any of these modules, and for this reason we quickly
address them here before proceeding to the discussion of other modules.

M_NoSolver Internally, every C_Solver like C_BFGMRES need a pointer to another C_Solver
to use as preconditioner, even in the unpreconditioned case, because it calls the procedure precondi-
tioner%Apply(). This module fills this gap, providing a “solver” that simply copies the input vector b
to vector x whenever the Apply() procedure is called. Although one can actually use C_NoSolver, the
current implementation of libSolver automatically creates one whenever it is needed such that the user do
not have to mind this issue.

M_GaussSeidel Provides a C_Solver, meant to be used as preconditioner for another solver. It is
intrinsically dependent on the structure of the C_Operator being used. Because of that, the actual
routines for performing it are currently implemented inside the respective operator. Both C_Diag7pts
and C_Standard27pts have an implementation of the local symmetric Guass-Seidel algorithm. The
C_GaussSeidel class calls this routine directly from the C_Operator, acting as some sort of interface.
This means that this module in fact need to be updated whenever a new C_Operator is added to lib-
Operator library, which is undesirable. As C_NoSolver, there is no need for the user to create its own
C_GaussSeidel as the routines provided in libSolver create it automatically if needed. An important
information about this C_Solver is that it contains a component MaxIt, meaning that several iterations
of the local symmetric Gauss-Seidel algorithm could be used as preconditioner. However, libSolver uses
by default only one iteration.

M_FGMRES This module is analogous to M_BFGMRES. Noticeable differences are the absence of
the MaxzDim component and the replacement of O_PCToCreate=’BFGMRES’ by
O_PCToCreate=’FGMRES’. This module executes the single right-hand side FGMRES algorithm for
each one of the p right-hand side and thus it is non-optimal. It is often advised to use M_BFGMRES
instead.

M_LinAlg Provides important linear algebra routines implemented in parallel tailored to be used with
M_Solver. We mention here the Get_Norm routine for computing the Euclidean norm of each column of a
block vector, the CGS2 which implements the classical Gram-Schmidt algorithm with reorthogonalization,
and QR_CGS2 which computes the QR decomposition of a matrix using the CGS2 function. Since these
are low level routines, we do not address them deeply here.

Module M_DMBR
This module contains the main iterative solver we propose, the C_DMBR.

In an overall, the module M_DMBR is analogous to the module M_BFGMRES.

LIBSOLVER BASIC DOCUMENTATION 123

TYPE, ABSTRACT, EXTENDS(C_Solver) C_DMBR

Description:
The DMBR solver, performing deflation at the beginning of every iteration. It contains all the compo-
nents of C_BFGMRES plus some extra parameters for handling deflation.

Important Components:
C_Solver POINTER MyPC This object defines the preconditioner to be used by this

C_DMBR. Notice that it could be C_DMBR itself or
C_BFMGRES, for instance.

INTEGER MaxCycles Maximum number of cycles to be performed. The solver
stops and returns its final approximation of the solution
even if it did not converge

INTEGER MaxzDim DMBR will restart whenever the number of iterations reach
MaxRestartSize or whenever the dimension of the subspace
Zj reaches MaxzDim, whichever comes first.

INTEGER MaxRestartSize DMBR will restart whenever the number of iterations reach
MaxRestartSize or whenever the dimension of the subspace
Zj reaches MaxzDim, whichever comes first.

REAL Tol Convergence threshold for DMBR. It will return whenever
the‖.‖ψ of the relative residual is smaller than Tol or Max-
Cycles have been performed.

REAL DeflationTol Deflation threshold for DMBR. Used to determine the value
of kj in the beginning of every iteration.

INTEGER Maxkj Used to enforce a maximum value for kj even if no small
singular values were detected.

INTEGER Deflation Flag used to set the kind of deflation.
F_DMBR_DEFLATION_NONE does not deflate (equiv-
alent to C_BFGMRES), F_DMBR_DEFLATION_IT
deflates only at the end of each iteration (equivalent to [103]
R-criterion algorithm), F_DMBR_DEFLATION_CY de-
flates at the beginning of each cycle.

Important Procedures:

Apply(x,xLen,b,bLen,p) IMPLEMENTED Implements the deferred procedure inherited from
C_Solver

Initialize(MemAvailable) IMPLEMENTED Implements the deferred procedure inherited from
C_Class

Destroy() IMPLEMENTED Implements the deferred procedure inherited from
C_Class

MODULE M_DMBR most important functions:
New_DMBR() An interface accepting multiple types of parameter set. The pa-

rameter O_PCToCreate is the same used in M_BFGMRES. See
Figure A.10 for usage.

124 APPENDIX A. USER GUIDE

! --
! Because this example is perfectly analogous to C_BFGMRES examples
! We just show here an example of use of the interface New_DMBR
! --
! This is is valid. Since Maxkj was not passed it is set to Maxp,
! DeflationTol is set to Tol and Deflation=F_DMBR_DEFLATION_STD
solver => New_DMBR(Name = ’My testing DMBR’, &

MyOperator = matrix, &
MaxCycles = 50, &
MaxzDim = 10*p, &
MaxRestartSize = 10, &
Maxp = p, &
Tol = 1e-6, &
O_PCToCreate = ’NoSolver’)

! We could alternatively pass all the parameters
solver => New_DMBR(Name = ’My testing DMBR’, &

MyOperator = matrix, &
MaxCycles = 50, &
MaxzDim = 10*p, &
MaxRestartSize = 10, &
Maxp = p, &
Tol = 1e-6, &
DeflationTol = 1e-8, &
Maxkj = p/2, &
Deflation = F_DMBR_DEFLATION_STD, &
MyPC = preconditioner)

Figure A.10: Example of usage of C_DMBR. It is analogous to examples in Figure A.8 and Figure A.9

LIBSOLVER BASIC DOCUMENTATION 125

Module M_GeoMultigrid
The last module belonging to libSolver, which implements a V cycle of geometric multigrid algorithm.
Due to the polymorphism, however, this could be used to implement several levels of multigrid

TYPE, ABSTRACT, EXTENDS(C_Solver) C_GeoMultigrid

Description:
The C_GeoMultigrid, meant to be used as a preconditioner. A priori it is nothing but a two-level V
cycle of geometric multigrid, but it could be any arbitrary geometric multigrid due to polymorphism, as
we explain later.

Important Components:
C_Solver POINTER PreSmoother A C_Solver to use as pre-smoother. It could be, for in-

stance, C_BGMRES or C_GeoMultigrid itself (yielding a
W cycle in this case).

C_Solver POINTER PostSmoother A C_Solver to use as post-smoother. It could be, for in-
stance, C_BGMRES or C_GeoMultigrid itself (yielding a
W cycle in this case).

C_Solver POINTER Coarse A C_Solver to use as coarse grid corrector. It could be, for
instance, C_DMBR or C_GeoMultigrid itself (yielding a
three-level cycle in this case).

INTEGER MaxIt The C_GeoMultigrid performs MaxIt and then exists. It
has no stopping criterion implemented at the moment.

Important Procedures:

Apply(x,xLen,b,bLen,p) IMPLEMENTED Implements the deferred procedure inherited from
C_Solver

Initialize(MemAvailable) IMPLEMENTED Implements the deferred procedure inherited from
C_Class

Destroy() IMPLEMENTED Implements the deferred procedure inherited from
C_Class

As M_DMBR and M_BFGMRES, this module also provides some interfaces for dealing with internal
values. However, they require the knowledge of the interpolation and restriction routines. Since we
are trying to attain a basic aspects, we stick only with the simplest form, which also assumes that
PreSmoother=PostSmoother.

MODULE M_GeoMultigrid most important functions:
New_GeoMultigrid(Name,MaxIt,
Maxp,Smoother,Coarse)

Returns a C_GeoMultigrid ready to be initialized and used as
a preconditioner. The Smoother passed is used as both PreS-
moother and PostSmoother.

126 APPENDIX A. USER GUIDE

FUNCTION BlockPerturbed_TwoGrid(FineOP, CoarseOP, p) RESULT(self)

CLASS(C_Operator), POINTER, INTENT(INOUT) :: FineOP, CoarseOP
INTEGER , INTENT(IN) :: p

TYPE(C_Class), POINTER :: self, Smoother, Coarse
! Create the Smoother and the Coarse solver. We choose BFGMRES for both.
Smoother => New_BFGMRES(Name = ’SmootherBGMRES’, &

MyOperator = FineOP, &
MaxCycles = 2, &
MaxzDim = 2*p, &
MaxRestartSize = 2, &
Maxp = p, &
Tol = 0.0, &
O_PCToCreate = ’GaussSeidel’)

Coarse => New_BFGMRES(Name = ’CoarseBGMRES’, &
MyOperator = CoarseOP, &
MaxCycles = 10, &
MaxzDim = 5*p, &
MaxRestartSize = 5, &
Maxp = p, &
Tol = 0.0, &
O_PCToCreate = ’GaussSeidel’)

! Finally, creates the C_GeoMultigrid itself
self => New_GeoMultigrid(Name = ’BlockPerturbed_TwoGrid’, &

MaxIt = 1, &
Smoother = Smoother, &
Coarse = Coarse)

END FUNCTION BlockPerturbed_TwoGrid

Figure A.11: Example of usage of C_GeoMultigrid for creating a variant of the two-level perturbed geometric
multigrid preconditioner proposed in [96] (cf. Algorithm 4.4.1). In this variant we use BFGMRES instead of
FGMRES for the smoothing and coarse correction steps.

FUNCTION Example_ThreeLevel_Multigrid(FineOP, MiddleOP, CoarseOP, p) RESULT(self)

CLASS(C_Operator), POINTER, INTENT(INOUT) :: FineOP, MiddleOP, CoarseOP
INTEGER , INTENT(IN) :: p

TYPE(C_Solver), POINTER :: self, First, SecondAndThird
! Use the routine from previous example to create a C_GeoMultigrid
SecondAndThird => BlockPerturbed_TwoGrid(FineOP = MiddleOP, &

CoarseOP = CoarseOP, &
p = p)

! Creates the smoother to be used on the finest level
First => New_BFGMRES(Name = ’FirstBGMRES’, &

MyOperator = FineOP, &
MaxCycles = 15, &
MaxzDim = 7*p, &
MaxRestartSize = 7, &
Maxp = p, &
Tol = 0.0, &
O_PCToCreate = ’NoSolver’)

! Finally, creates the C_GeoMultigrid itself
self => New_GeoMultigrid(Name = ’ThreeLevel_Multigrid’, &

MaxIt = 1, &
Smoother = First, &
Coarse = SecondAndThird)

END FUNCTION Example_ThreeLevel_Multigrid

Figure A.12: Example of usage of C_GeoMultigrid for creating a three-level multigrid. Here we we the example
in Figure A.11 to build the two bottom levels, and use 15 cycles of unpreconditioned BGMRES(7) as smoother on
the finest level.

CONCLUSIONS 127

Conclusions
In this User Guide we provided the basic tools for making the transition between FORTRAN90 procedural
programming to FORTRAN03 object oriented programming. We explained the most essential concepts
and then we introduced the libraries we implemented using only the most basic concepts. These libraries
could be used, a priori, for kind of application using MPI routines. Although the results we obtained with
this library were satisfactory, we aim at improving the number of options available, as adding new solvers,
preconditioners and matrix storage formats.

128 APPENDIX A. USER GUIDE

Bibliography

[1] K. Ahuja, E. de Sturler, S. Gugercin, and E. R. Chang. Recycling BiCG with an application to
model reduction. SIAM J. Scientific Computing, 34(4), 2012.

[2] J. I. Aliaga, D. L. Boley, R. W. Freund, and V. Hernández. A Lanczos-type method for multiple
starting vectors. Mathematics of Computation, 69:1577–1601, 2000.

[3] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C. Weisbecker. Improving
multifrontal methods by means of block low-rank representations. Rapport de recherche RR-8199,
INRIA, Jan. 2013. Submitted for publication to SIAM.

[4] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications,
23(1):15–41, 2001.

[5] W. E. Arnoldi. "the principle of minimized iterations in the solution of the matrix eigenvalue
problem". "Quarterly of Applied Mathematics", 9(3):17–29, 1951.

[6] O. Axelsson. Iterative solution methods. Cambridge University Press, 1994.

[7] O. Axelsson and P. S. Vassilevski. A black box generalized conjugate gradient solver with inner
iterations and variable-step preconditioning. SIAM J. Matrix Analysis and Applications, 12(4):625–
644, 1991.

[8] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel. Adaptively preconditioned GMRES algo-
rithms. SIAM J. Scientific Computing, 20:243–269, 1998.

[9] Z. Bai, D. Day, and Q. Ye. ABLE: an adaptive block Lanczos for non hermitian eigenvalue problems.
SIAM J. Matrix Analysis and Applications, 20(4):1060–1082, 1999.

[10] A. H. Baker, J. M. Dennis, and E. R. Jessup. An efficient block variant of GMRES. SIAM J.
Scientific Computing, 27(5):1608–1626, 2006.

[11] A. H. Baker, E. R. Jessup, and T. Manteuffel. A technique for accelerating the convergence of
restarted GMRES. SIAM J. Matrix Anal. Appl., 26(4):962–984, 2005.

[12] G. Barbella, F. Perotti, and V. Simoncini. Block Krylov subspace methods for the computation of
structural response to turbulent wind. Comput. Meth. Applied Mech. Eng., 200(23-24):2067–2082,
2011.

[13] J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal of
Computational Physiscs, 114(2):185–200, 1994.

[14] J.-P. Berenger. Three-dimensional perfectly matched layer for absorption of electromagnetic waves.
Journal of Computational Physiscs, 127:363–379, 1996.

129

130 BIBLIOGRAPHY

[15] G. Beylkin and M. J. Mohlenkamp. Algorithms for numerical analysis in high dimensions. SIAM J.
Scientific Computing, 26(6):2133–2159, 2005.

[16] H. bin Zubair, C. W. Oosterlee, and R. Wienands. Multigrid for high dimensional elliptic partial
differential equations on nonequidistant grids. SIAM J. Scientific Computing, 29(4):1613–1636, 2007.

[17] Å. Björck. Numerical methods for least squares problems. SIAM, 1996.

[18] M. Bollhöfer, M. J. Grote, and O. Schenk. Algebraic multilevel preconditioner for the solution of the
Helmholtz equation in heterogeneous media. SIAM J. Scientific Computing, 31:3781–3805, 2009.

[19] W. Boyse and A. Seidl. A block QMR method for computing multiple simultaneous solutions to
complex symmetric systems. SIAM J. Scientific Computing, 17(1):263–274, 1996.

[20] R. Brossier. Imagerie Sismique à Deux Dimensions des Milieux Visco-Élastiques par Inversion des
Formes d’ondes: développements méthodologiques et application. PhD thesis, Université de Nice-
Sophia Antipolis, November 2009.

[21] P. A. Businger and G. Golub. Linear least squares solutions by Householder transformations. Nu-
merische Mathematik, 7:269–276, 1965.

[22] H. Calandra, S. Gratton, R. Lago, X. Pinel, and X. Vasseur. Two-level preconditioned Krylov sub-
space methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics.
Numerical Analysis and Applications, 5:175–181, 2012.

[23] H. Calandra, S. Gratton, J. Langou, X. Pinel, and X. Vasseur. Flexible variants of block restarted
GMRES methods with application to geophysics. SIAM J. Scientific Computing, 34(2):A714–A736,
2012.

[24] H. Calandra, S. Gratton, X. Pinel, and X. Vasseur. An improved two-grid preconditioner for the
solution of three-dimensional Helmholtz problems in heterogeneous media. Numerical Linear Algebra
with Applications, 2013. to appear.

[25] M. H. Carpenter, C. Vuik, P. Lucas, M. B. van Gijzen, and H. Bijl. A general algorithm for reusing
Krylov subspace information. I. Unsteady Navier-Stokes. NASA/TM 2010216190, NASA, Langley
Research Center, 2010.

[26] L. M. Carvalho, S. Gratton, R. Lago, and X. Vasseur. A flexible generalized conjugate residual
method with inner orthogonalization and deflated restarting. Technical Report TR/PA/10/10,
CERFACS, Toulouse, France, 2010.

[27] L. M. Carvalho, S. Gratton, R. Lago, and X. Vasseur. A flexible generalized conjugate residual
method with inner orthogonalization and deflated restarting. SIAM J. Matrix Analysis and Appli-
cations, 32(4):1212–1235, 2011.

[28] J. F. Clærbout. Imaging the earth’s interior. Blackwell Scientific Publications, Inc., Cambridge,
MA, USA, 1985.

[29] G. Cohen. Higher-order Numerical Methods for Transient Wave Equations. Springer, 2002.

[30] E. Crase, A. Pica, M. Noble, J. McDonald, and A. Tarantola. Robust elastic non-linear waveform
inversion: application to real data. Geophysics, 55:527–538, 1990.

[31] E. Crase, C. Wideman, M. Noble, and A. Tarantola. Nonlinear elastic inversion of land seismic
reflection data. Journal of Geophysical Research, 97:4685–4705, 1992.

[32] J. Cullum and T. Zhang. Two-sided Arnoldi and non-symmetric Lanczos algorithms. SIAM J.
Matrix Analysis and Applications, 24:303–319, 2002.

BIBLIOGRAPHY 131

[33] R. D. Cunha and D. Becker. Dynamic block GMRES: an iterative method for block linear systems.
Advances in Computational Mathematics, 27(4):423–448, 2006.

[34] E. de Sturler. Nested Krylov methods based on GCR. J. Comput. Appl. Math., 67(1):15–41, 1996.

[35] E. de Sturler. Truncation strategies for optimal Krylov subspace methods. SIAM J. Numerical
Analysis, 36(3):864–889, 1999.

[36] E. de Sturler and M. Kilmer. Recycling subspace information for diffuse optical tomography. SIAM
J. Scientific Computing, 27:2140–2166, 2004.

[37] E. de Sturler, C. Le, S. Wang, and G. Paulino. Large scale topology optimization using precon-
ditioned Krylov subspace recycling and continuous approximation of material distribution. Int J.
Numerical Methods in Engineering, 69:2441–2468, 2007.

[38] L. Du, T. Sogabe, B. Yu, Y. Yamamoto, and S.-L. Zhang. A block IDR(s) method for nonsymmetric
linear systems with multiple right-hand sides. J. Comput. Appl. Math., 235:4095–4106, 2011.

[39] I. S. Duff, S. Gratton, X. Pinel, and X. Vasseur. Multigrid based preconditioners for the numer-
ical solution of two-dimensional heterogeneous problems in geophysics. International Journal of
Computer Mathematics, 84-88:1167–1181, 2007.

[40] M. Eiermann and O. G. Ernst. Geometric aspects in the theory of Krylov subspace methods. Acta
Numerica, 10(10):251–312, 2001.

[41] M. Eiermann, O. G. Ernst, and O. Schneider. Analysis of acceleration strategies for restarted
minimal residual methods. Journal of Computational and Applied Mathematics, 123(1-2):261–292,
2000.

[42] M. Eiermann, O. G. Ernst, and E. Ullmann. Computational aspects of the stochastic finite element
method. Comput. Visual. Sci., 10(1):3–15, 2007.

[43] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for nonsymmetric
system of linear equations. SIAM J. Numerical Analysis, 20(2), April 1983.

[44] L. Elbouyahyaoui, A. Messaoudi, and H. Sadok. Algebraic properties of the block GMRES and
block Arnoldi methods. Electron. Trans. Numer. Anal., 33:207–220, 2008/09.

[45] H. Elman, O. Ernst, D. O’Leary, and M. Stewart. Efficient iterative algorithms for the stochastic
finite element method with application to acoustic scattering. Comput. Methods Appl. Mech. Engrg.,
194(1):1037–1055, 2005.

[46] H. C. Elman, O. G. Ernst, and D. P. O’Leary. A multigrid method enhanced by Krylov subspace
iteration for discrete Helmholtz equations. SIAM J. Scientific Computing, 23:1291–1315, 2001.

[47] B. Engquist and L. Ying. Sweeping preconditioner for the helmholtz equation: Moving perfectly
matched layers. Multiscale Modeling & Simulation, 9(2):686–710, 2011.

[48] J. Erhel, K. Burrage, and B. Pohl. Restarted GMRES preconditioned by deflation. Journal of
Computational and Applied Mathematics, 69:303–318, 1995.

[49] Y. A. Erlangga. A robust and efficient iterative method for the numerical solution of the Helmholtz
equation. PhD thesis, Technische Universiteit Delft, December 2005.

[50] Y. A. Erlangga. Advances in iterative methods and preconditioners for the Helmholtz equation.
Archives of Computational Methods in Engineering, 15:37–66, 2008.

132 BIBLIOGRAPHY

[51] Y. A. Erlangga, C. Oosterlee, and C. Vuik. A novel multigrid based preconditioner for heterogeneous
Helmholtz problems. SIAM J. Scientific Computing, 27:1471–1492, 2006.

[52] O. Ernst and M. J. Gander. Why it is difficult to solve Helmholtz problems with classical iterative
methods. In O. L. I. Graham, T. Hou and R. Scheichl, editors, Numerical Analysis of Multiscale
Problems. Springer, 2011.

[53] R. W. Freund. Krylov-subspace methods for reduced-order modeling in circuit simulation. Journal
of Computational and Applied Mathematics, 123(1-2):395–421, 2000.

[54] R. W. Freund and M. Malhotra. A block QMR algorithm for non-Hermitian linear systems with
multiple right-hand sides. Linear Algebra and its Applications, 254:119–157, 1997.

[55] R. W. Freund and N. M. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian
linear systems. Numerische Mathematik, 60(1):315–339, December 1991.

[56] M. J. Gander and F. Nataf. An incomplete LU preconditioner for problems in acoustics. Journal of
Computational Acoustics, 13(3):1–22, 2005.

[57] O. Gauthier, J. Virieux, and A. Tarantola. Two-dimensional nonlinear inversion of seismic wave-
forms: numerical results. Geophysics, 51:1387–1403, 1986.

[58] L. Giraud, S. Gratton, X. Pinel, and X. Vasseur. Flexible GMRES with deflated restarting. SIAM
J. Scientific Computing, 32(4):1858–1878, 2010.

[59] L. Giraud and J. Langou. A robust criterion for the modified Gram-Schmidt algorithm with selective
reorthogonalization. SIAM J. Scientific Computing, 25(2):417–441, Feb. 2003.

[60] G. H. Golub and C. F. Van Loan. Matrix Computations (Johns Hopkins Studies in Mathematical
Sciences). The Johns Hopkins University Press, October 1996.

[61] D. Gordon and R. Gordon. CARP-CG: A robust and efficient parallel solver for linear systems,
applied to strongly convection dominated pdes. Parallel Computing, 36(9):495–515, 2010.

[62] D. Gordon and R. Gordon. Parallel solution of high frequency Helmholtz equations using high order
finite difference schemes. Applied Mathematics and Computation, 218(21):10737–10754, 2012.

[63] A. E. Guennouni, K. Jbilou, and H. Sadok. A block version of BICGSTAB for linear systems with
multiple right-hand sides. Electronic Transactions on Numerical Analysis, 16:129–142, 2003.

[64] M. H. Gutknecht. Block Krylov space methods for linear systems with multiple right-hand sides:
An introduction. Modern Mathematical Models, Methods and Algorithms for Real World Systems,
page 420–447, 2006.

[65] M. H. Gutknecht and T. Schmelzer. The block grade of a block Krylov space. Linear Algebra and
its Applications, 430(1):174 – 185, 2009.

[66] E. Haber and S. MacLachlan. A fast method for the Helmholtz equation. Journal of Computational
Physiscs, 230:4403–4418, 2011.

[67] A. Haidar. On the parallel scalability of hybrid linear solvers for large 3D problems. PhD thesis,
CERFACS, 2009.

[68] I. Harari and E. Turkel. Accurate finite difference methods for time-harmonic wave propagation.
Journal of Computational Physiscs, 119:252–270, 1995.

[69] A. Henderson. Paraview guide, a parallel visualization application, 2007.

BIBLIOGRAPHY 133

[70] N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2008.

[71] R. Horn and C. Johnson. Topics in Matrix Analysis. Topics in Matrix Analysis. Cambridge Univer-
sity Press, 91.

[72] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, February 1990.

[73] B. Hustedt, S. Operto, and J. Virieux. Mixed-grid and staggered-grid finite difference methods for
frequency-domain acoustic wave modelling. Geophys. J. Int., 157:1269–1296, 2004.

[74] I. C. F. Ipsen and C. D. Meyer. The idea behind Krylov methods. American Mathematical Monthly,
105:889–899, 1998.

[75] W. Joubert. A robust GMRES-based adaptive polynomial preconditioning algorithm for non-
symmetric linear systems. SIAM J. Scientific Computing, 15:427–439, 1994.

[76] A. Khabou. Solveur itératif haute performance pour les systèmes linéaires avec seconds membres
multiples. Master’s thesis, University of Bordeaux I, 2009.

[77] S. Kim and S. Kim. Multigrid simulations for high-frequency solutions of the Helmholtz problem in
heterogeneous media. SIAM J. Scientific Computing, 24:359–392, 2002.

[78] J. Langou. Iterative methods for solving linear systems with multiple right hand sides. Ph.D. disser-
tation, INSA Toulouse, June 2003. TH/PA/03/24.

[79] R. B. Lehoucq and K. J. Maschhoff. Implementation of an implicitly restarted block Arnoldi method.
Technical report, 1997.

[80] H. Liu and B. Zhong. A simpler block GMRES for nonsymmetric systems with multiple right-hand
sides. Electronic Transactions on Numerical Analysis, 30:1–9, 2008.

[81] D. Loher. Reliable Nonsymmetric Block Lanczos Algorithms. PhD thesis, Swiss Federal Institute of
Technology Zurich (ETHZ), Switzerland, 2006. Number 16337.

[82] MATLAB. version 7.10.0 (r2010a), 2010.

[83] S. F. McCormick. Multigrid methods. SIAM, 1987.

[84] P. Mora. Inversion = migration + tomography. Geophysics, 54:1575–1586, 1989.

[85] R. B. Morgan. Computing interior eigenvalues of large matrices. Linear Algebra and its Applications,
154–156:289–309, 1991.

[86] R. B. Morgan. A restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal.
Appl., 16(4):1154–1171, 1995.

[87] R. B. Morgan. Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of
equations. SIAM J. Matrix Anal. Appl., 21(4):1112–1135, 2000.

[88] R. B. Morgan. GMRES with deflated restarting. SIAM J. Scientific Computing, 24(1):20–37, 2002.

[89] A. A. Nikishin and A. Y. Yeremin. Variable block CG algorithms for solving large sparse symmetric
positive definite linear systems on parallel computers, i: General iterative scheme. SIAM J. Matrix
Analysis and Applications, 16(4):1135–1153, 1995.

[90] Y. Notay. Flexible conjugate gradients. SIAM J. Scientific Computing, 22(4):1444–1460, 2000.

134 BIBLIOGRAPHY

[91] Y. Notay and P. S. Vassilevski. Recursive Krylov-based multigrid cycles. Numerical Linear Algebra
with Applications, 15:473–487, 2008.

[92] D. P. O’Leary. The block conjugate gradient algorithm and related methods. Linear Algebra and
its Applications, 29:293–322, 1980.

[93] S. Operto, J. Virieux, P. Amestoy, J.-Y. L’Excellent, L. Giraud, and H. B. H. Ali. 3d finite-
difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel
direct solver: A feasibility study. Geophysics, 72(5):SM195–SM211, 2007.

[94] C. C. Paige, B. N. Parlett, and H. A. van der Vorst. Approximate solutions and eigenvalue bounds
from Krylov subspaces. Numerical Linear Algebra with Applications, 2:115–134, 1995.

[95] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti. Recycling Krylov subspaces
for sequences of linear systems. SIAM J. Scientific Computing, 28(5):1651–1674, Sept. 2006.

[96] X. Pinel. A Perturbed Two-level Preconditioner for the Solution of Three-Dimensional Heteroge-
neous Helmholtz problems with Applications to Geophysics. Ph.D. dissertation, Institut National
Polytechnique de Toulouse, CERFACS, May 2010.

[97] J. Poulson, B. Engquist, S. Fomel, S. Li, and L. Ying. A parallel sweeping preconditioner for high
frequency heterogeneous 3d helmholtz equations. CoRR, abs/1204.0111, 2012.

[98] R. G. Pratt. Inverse theory applied to multi-source cross-hole tomography. Part II: elastic wave-
equation method. Geophysical Prospecting, 38:311–330, 1990.

[99] R. G. Pratt and M. H. Worthington. Inverse theory applied to multi-source cross-hole tomography.
Part I: acoustic wave-equation method. Geophysical Prospecting, 38:287–310, 1990.

[100] C. D. Riyanti, Y. A. Erlangga, R.-E. Plessix, W. A. Mulder, C. Vuik, and C. Oosterlee. A new
iterative solver for the time-harmonic wave equation. Geophysics, 71:57–63, 2006.

[101] C. D. Riyanti, A. Kononov, Y. A. Erlangga, R.-E. Plessix, W. A. Mulder, C. Vuik, and C. Ooster-
lee. A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz
equation. Journal of Computational Physiscs, 224:431–448, 2007.

[102] M. Robbé and M. Sadkane. Exact and inexact breakdowns in block versions of
FOM and GMRES methods. Technical Report, Université de Bretagne Occiden-
tale. Département de Mathématiques, 2004. Available at http://www.math.univ-
brest.fr/archives/recherche/prepub/Archives/2005/breakdowns.pdf.

[103] M. Robbé and M. Sadkane. Exact and inexact breakdowns in the block GMRES method. Linear
Algebra and its Applications, 419(1):265–285, 2006.

[104] A. Ruhe. Implementation aspects of band Lanczos algorithms for computation of eigenvalues of
large sparse symmetric matrices. Mathematics of Computation, 33:680–687, 1979.

[105] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm, 1993.

[106] Y. Saad. Analysis of augmented Krylov subspace methods. SIAM J. Matrix Analysis and Applica-
tions, 18:435–449, 1997.

[107] Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. Society for Industrial and
Applied Mathematics, 2nd edition, April 2003.

[108] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems. SIAM J. Scientific and Statistical Computing, 7(3):856–869, 1986.

BIBLIOGRAPHY 135

[109] Y. Saad and H. A. van der Vorst. Iterative solution of linear systems in the 20th century. Journal
of Computational and Applied Mathematics, 123:1–33, 2000.

[110] T. Sakurai, H. Tadano, and Y. Kuramashi. Application of block Krylov subspace algorithms to the
Wilson-Dirac equation with multiple right-hand sides in lattice QCD. Computer Physics Commu-
nications, 181(1):113–117, 2010.

[111] V. Simoncini and E. Gallopoulos. Convergence properties of block GMRES and matrix polynomials.
Linear Algebra and its Applications, 247:97–119, 1996.

[112] V. Simoncini and D. B. Szyld. Flexible inner-outer Krylov subspace methods. SIAM J. Numerical
Analysis, 40(6):2219–2239, 2003.

[113] V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications to
scientific computing. SIAM J. Sci. Comput., 25:454–477, February 2003.

[114] V. Simoncini and D. B. Szyld. Recent computational developments in Krylov subspace methods for
linear systems. Numerical Linear Algebra with Applications, 14:1–59, 2007.

[115] I. Singer and E. Turkel. Sixth order accurate finite difference schemes for the Helmholtz equation.
Journal of Computational Acoustics, 14:339–351, 2006.

[116] L. Sirgue and R. G. Pratt. Efficient waveform inversion and imaging: a strategy for selecting
temporal frequencies. Geophysics, 69:231–248, 2004.

[117] G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi–Davidson iteration method for linear eigenvalue
problems. SIAM J. Matrix Analysis and Applications, 17(2):401–425, 1996.

[118] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press, 1996.

[119] P. Soudais. Iterative solution methods of a 3-D scattering problem from arbitrary shaped multidi-
electric and multiconducting bodies. IEEE Trans. on Antennas and Propagation, 42 (7):954–959,
1994.

[120] F. Sourbier, S. Operto, J. Virieux, P. Amestoy, and J. Y. L. Excellent. FWT2D : a massively
parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data -
part 1: algorithm. Computer & Geosciences, 35:487–495, 2009.

[121] F. Sourbier, S. Operto, J. Virieux, P. Amestoy, and J. Y. L. Excellent. FWT2D : a massively
parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data -
part 2: numerical examples and scalability analysis. Computer & Geosciences, 35:496–514, 2009.

[122] G. W. Stewart. Matrix Algorithms: Volume 2, Eigensystems. Society for Industrial Mathematics,
2001.

[123] X. Sun and C. Bischof. A basis-kernel representation of orthogonal matrices. SIAM J. Matrix
Analysis and Applications, 16(4):1184–1196, 1995.

[124] D. B. Szyld and J. A. Vogel. FQMR: A flexible quasi-minimal residual method with inexact pre-
conditioning. SIAM J. Scientific Computing, 23(2):363–380, 2001.

[125] A. Tarantola. Inversion of seismic reflection datain the acoustic approximation. Geophysics, 49:1259–
1266, 1984.

[126] A. Tarantola. Inversion Problem Theory: Methods for data fitting and model parameter estimation.
Springer, New York, 1987.

136 BIBLIOGRAPHY

[127] A. Toselli and O. Widlund. Domain Decomposition methods - Algorithms and Theory, volume 34.
Springer Series on Computational Mathematics, Springer, New-York, 2004.

[128] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press Inc., 2001.

[129] E. Ullmann. Solution Strategies for Stochastic Finite Element Discretizations. PhD thesis, Technis-
che Universität Bergakademie Freiberg, Germany, 2008.

[130] N. Umetani, S. P. MacLachlan, and C. W. Oosterlee. A multigrid-based shifted Laplacian pre-
conditioner for fourth-order Helmholtz discretization. Numerical Linear Algebra with Applications,
16:603–626, 2009.

[131] H. A. van der Vorst. BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution
of nonsmmetric linear systems. SIAM J. Scientific and Statistical Computing, 13(2):631–644, March
1992.

[132] H. A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numerical Linear
Algebra with Applications, 1:369–386, 1994.

[133] J. Virieux and S. Operto. An overview of full waveform inversion in exploration geophysics. Geo-
physics, 74(6):WCC127–WCC152, 2009.

[134] B. Vital. Étude de Quelques Méthodes de Résolution de Problèmes Linéaires de Grande Taille Sur
Multiprocesseur. PhD thesis, Université de Rennes, November 1990.

[135] M. M. Wagner, P. Pinsky, and M. Malhotra. Application of Padé via Lanczos approximations
for efficient multifrequency solution of Helmholtz problems. Journal of the Acoustical Society of
America, 113(1):313–9, 2003.

[136] M. M. Wagner, P. M. Pinsky, A. A. Oberai, and M. Malhotra. A Krylov subspace projection method
for simultaneous solution of Helmholtz problems at multiple frequencies. Comput. Methods Appl.
Mech. Eng., 192(41-42):4609–4640, 2003.

[137] S. Wang, M. V. de Hoop, and J. Xia. Acoustic inverse scattering via Helmholtz operator factorization
and optimization. Journal of Computational Physics, 229(22):8445 – 8462, 2010.

[138] S. Wang, M. V. de Hoop, and J. Xia. On 3d modeling of seismic wave propagation via a structured
parallel multifrontal direct Helmholtz solver. Geophysical Prospecting, 59(5):857–873, 2011.

[139] S. Wang, M. V. de Hoop, J. Xia, and X. S. Li. Massively parallel structured multifrontal solver for
time-harmonic elastic waves in 3-d anisotropic media. Geophysical Journal International, 191(1):346–
366, 2012.

[140] R. Yu, E. de Sturler, and D. D. Johnson. A block iterative solver for complex non-hermitian systems
applied to large-scale electronic-structure calculations. Technical Report UIUCDCS-R-2002-2299,
University of Illinois at Urbana-Champaign, Department of Computer Science, 2002.

	Introduction
	Notation

	Introduction to Block Iterative Solvers
	Introduction
	Subspaces and Minimum Block Residual
	The Block Krylov Subspace
	Preconditioning the Correction Subspace
	The Block Arnoldi Algorithm
	Breakdown in Block Arnoldi
	Block GMRES
	Convergence Criteria in MBR Methods
	Stagnation in BGMRES
	Conclusions

	Deflation
	Introduction
	Deflated Block Arnoldi
	Deflated Minimal Block Residual
	Choosing the Unitary Deflation Operator
	Connections With Existing Methods
	Connections with BGMRES-R
	Connections with BFGMRESD

	Breakdown in DMBR
	Alternative Fj for large p
	Computational Cost and Memory Requirements
	Numerical Experiments
	Poisson Problem
	Convection-Diffusion Problem
	Complex-valued advection diffusion reaction problem
	Acoustic Full Waveform Inversion

	Conclusions

	Acoustic Full Waveform Inversion
	Introduction
	The Inverse Problem
	Discretizing the Forward Problem
	The Helmholtz Equation
	Perfectly Matched Layers
	Discrete Formulation
	Advanced Discretization Schemes

	Preconditioning the Helmholtz Equation
	The Perturbed Geometric Two-Level Preconditioner

	Software Implementation
	Numerical Experiments
	Forward Problem: Smoothed SEG/EAGE Salt Dome
	Forward Problem: Mid Frequency Case

	Conclusions

	Flexible GCRO-DR
	Foreword
	Flexible GCRO with Deflated Restarting
	Introduction
	Flexible Krylov methods with restarting
	General setting
	Flexible GMRES with deflated restarting
	Flexible GCRO with deflated restarting
	Algorithms
	Analysis of FGMRES-DR and FGCRO-DR
	Equivalent preconditioning matrix
	Relations between Zm and Wm and Z"0365Zm and V"0365Vm
	Analysis of the FGMRES-DR and FGCRO-DR methods
	Further features of FGCRO-DR(m, k)
	Computational cost
	Storage requirements
	Solution of sequence of linear systems
	Conclusion and perspectives

	Conclusions
	Appendices
	User Guide
	Introduction
	FORTRAN03 Basic Guidelines
	EXTENDS Keyword
	ABSTRACT Keyword
	PASS and NOPASS Keyword
	DEFERRED Keyword
	CLASS Keyword

	Polymorphism and Inheritance
	libEina Basic Documentation
	Modules M_Eina, M_OptimizationFlag and M_Topology
	Module M_Error
	Module M_Class

	libOperator Basic Documentation
	Module M_Operator
	Module M_StencilCollection
	Module M_Diag7pts
	Module M_Standard27pts
	Module M_Transformation, M_FullInterpolation and M_FullRestriction

	libSolver Basic Documentation
	Module M_Solver
	Module M_BFGMRES
	Modules M_NoSolver, M_GaussSeidel, M_FGMRES and M_LinAlg
	Module M_DMBR
	Module M_GeoMultigrid

	Conclusions

