
No Ordre : 1880

THÈSE

présentée

pour obtenir

LE TITRE DE DOCTEUR DE L’INSTITUT NATIONAL
POLYTECHNIQUE DE TOULOUSE

Spécialité : INFORMATIQUE

par

Jean-Christophe RIOUAL

Solving linear systems for semiconductor
device simulations on parallel distributed

computers

Soutenue le 23 Avril 2002 devant le Jury composé de :

M. Americo MARROCCO Président
M. Ivan G. GRAHAM Rapporteur
Mme Marina VIDRASCU Rapporteur
M. Patrick AMESTOY Directeur
M. Iain S. DUFF
M. Luc GIRAUD
M. Gérard MEURANT

Thèse préparée au CERFACS, CERFACS Report Ref : TH/PA/02/49

Aknowledgments

Je remercie Madame Vidrascu, directeur de recherche à l’INRIA, d’avoir accepté
de rapporter sur ce travail.

I would like to express my thanks to Professor Ivan Graham who accepted to
act as a referee for my dissertation.

I would like to express my sincere gratitude to Professor Iain Duff, group leader
in the Parallel Algorithm team at CERFACS. Thank you for taking part in this jury.

Je remercie Monsieur Patrick Amestoy, maitre de conférence à l’ENSEEIHT,
d’avoir accepté d’être directeur de cette thèse. Je le remercie ainsi que tous les
membres de l’équipe de développement du logiciel MUMPS pour leurs conseils et
leur aide.

Mes remerciements vont tout particulièrement à Monsieur Luc Giraud, chercheur
senior au CERFACS, qui a encadré cette thèse. Je le remercie pour sa rigueur scien-
tifique et son attention permanente à mes travaux. Ces trois années d’apprentissage
furent pour moi celles d’un enrichissement intellectuel constant.

Merci a Monsieur Marrocco, d’avoir accepté d’être un membre de ce Jury. Ses
travaux, en tant que directeur de recherche dans l’équipe M3N de l’INRIA, sont une
des bases de cette étude. Je tiens à le remercier d’avoir été toujours disponible pour
répondre à mes questions.

Je remercie Monsieur Meurant, directeur de recherche au CEA, d’avoir accepté
de prendre part à ce jury.

Je tiens également à remercier l’association EGIDE et en particulier le projet Au-
rora pour avoir financé une collaboration avec le laboratoire Parallab de l’Université
de Bergen en Norvège. Merci à Jacko Koster, chercheur au Parallab.

Merci à tous les membres de l’équipe Algorithmes Parallèles du CERFACS et à
ceux du service informatique.

A mes parents, pour m’avoir toujours soutenu. A ma soeur, Nathalie, et mes
neveux et nièce, Mathilde, Nicolas, Clément.

A tous mes amis.

Solving linear systems for semiconductor device
simulations on parallel distributed computers

Abstract

In this thesis, we study the parallel distributed implementations of the linear solvers
for the systems involved in 2D semiconductor device modelling. The semiconduc-
tor devices are modeled using the drift diffusion equations with the electrostatic
potential and the quasi-Fermi levels as unknowns. The objective of this work is
to develop, based on an existing sequential code, a complete parallel code for a
distributed memory environment with MPI as message-passing library. The main
difficulty consists in the efficient implementation of suitable linear solvers. In this
respect we investigate both parallel direct methods and non-overlapping domain de-
composition techniques. As a central software tool we consider MUMPS that is a
parallel distributed implementation of the multifrontal technique for sparse matrices.
This software is used either as a black box or as a building box for implementing
direct or iterative substructuring approaches. In the iterative case, we consider
preconditioned Krylov methods for solving the Schur complement systems. Vari-
ous preconditioners including multi-level techniques are considered as the Balanced
Neumann-Neumann preconditioner for the SPD systems. We also investigate sev-
eral scaling strategies for the Schur complement system. We report on comparative
parallel performance of direct and iterative solvers on real test problems. Finally, we
present a preliminary study of a two-level preconditioner that exploits some spectral
information of the preconditioned systems.

keywords : semiconductor simulation, linear solvers, distributed computers, do-
main decomposition, multifrontal method, preconditioners, scaling.

Contents

Introduction 1

1 Numerical simulation of a transistor 5

1.1 Physical application and mathematical modelling 5
1.1.1 The transistor effect . 5
1.1.2 Mathematical modelling . 8

1.2 Discretization and numerical solution of the equilibrium problem . . . 12
1.2.1 Introduction . 12
1.2.2 Mixed finite-element discretization 13
1.2.3 Newton-Raphson method . 15
1.2.4 Artificial evolution problem 17

1.3 Numerical solution of the static problem 17
1.3.1 Time discretization by an implicit nonlinear scheme 20
1.3.2 Discretization and numerical solution of the continuity equa-

tion for the electrons . 20
1.3.3 Choice of an initial solution 22

1.4 Conclusion . 23

2 Parallelization of the finite element code 27

2.1 The parallel computing framework 27
2.1.1 Brief overview of the parallel computing platforms 27
2.1.2 The parallel programming paradigms 29

2.2 Parallelization of a PDE solver in a distributed environment 30
2.2.1 Mesh partitioning . 30
2.2.2 Parallelization of the Euler and the Newton-Raphson procedures 31
2.2.3 Parallelization of the linear system solution 31

2.3 Parallel direct methods for sparse matrices 32
2.3.1 Introduction . 32
2.3.2 The multifrontal method . 33
2.3.3 The MUMPS software . 34

2.4 Domain decomposition methods . 36
2.4.1 Introduction . 36
2.4.2 Schur complement method . 36
2.4.3 Iterative substructuring . 38

ii CONTENTS

2.4.4 Direct substructuring . 41

3 Preconditioned iterative methods for the Schur complement 43

3.1 Introduction . 43

3.2 Local preconditioners for the Schur complement 45

3.2.1 Neumann-Neumann Preconditioner 45

3.2.2 Block preconditioners . 45

3.3 Two-level preconditioners for the Schur complement 48

3.3.1 Motivations for two-level algorithms 48

3.3.2 Balanced Neumann-Neumann preconditioner 48

3.3.3 Coarse space components for local block preconditioners . . . 49

3.4 Scaling techniques for the Schur complement 50

3.4.1 Diagonal scaling for the Schur complement 50

3.4.2 Row and column scaling . 51

3.4.3 Iterative row-column scaling 51

3.4.4 Relationship between the scalings on A and scalings on S . . . 51

3.5 Stopping criterion for the linear iterative solvers 52

3.5.1 Backward error analysis . 52

3.5.2 Krylov solvers . 53

3.5.3 Direct solvers . 54

3.5.4 Embedded iterations . 55

4 Numerical results and performance measurements 57

4.1 Numerical behaviour of iterative substructuring algorithms 57

4.1.1 Description of the test cases 58

4.1.2 A remark on the construction of the right-hand side of the
Schur system . 59

4.1.3 Choice of the scaling and the preconditioner 60

4.1.4 Influence of the accuracy of the linear solver 65

4.1.5 Numerical scalability of the preconditioners 67

4.1.6 Conclusion . 70

4.2 Performance of iterative substructuring and direct solvers 71

4.2.1 Implicit versus explicit iterative substructuring 71

4.2.2 Description of the test examples 74

4.2.3 Results observed with the iterative substructuring algorithms . 76

4.2.4 Results observed with parallel direct methods 80

4.2.5 Comparison between iterative and direct substructuring algo-
rithms . 84

4.3 A posteriori justification of some choices 87

4.3.1 Selection of GMRES as unsymmetric Krylov solver 87

4.3.2 Right versus left preconditioning for GMRES 89

4.3.3 Choice of the orthogonalization scheme in GMRES 89

4.3.4 Restart for GMRES . 91

CONTENTS iii

5 Prospectives 93

5.1 Sparsified block preconditioners . 93
5.2 Spectral two-level preconditioners . 95

5.2.1 Motivation and general presentation 95
5.2.2 Application to iterative substructuring algorithms 98

5.3 Implementation exploiting two levels of parallelism 104

Conclusion 105

Introduction

Nowadays, we can solve really challenging linear algebra problems by combining
direct and iterative methods, see [46]. Domain decomposition techniques provide a
rather natural way to combine those two approaches when solving partial differential
equations numerically. From an algebraic point of view, the domain decomposition
methods can be divided into two main groups, the Schwarz methods also referred to
as overlapping domain decomposition algorithms and the Schur complement meth-
ods also referred to as non-overlapping domain decomposition algorithms.

At the end of the 19th century, Schwarz [97] proposed, when possible, to di-
vide the domain into two subdomains that have a simpler geometry and where the
solutions of the equations are known. These subdomains overlap so that part of
the solution of one problem in a simple subdomain can be used as boundary con-
dition for the solution in the other subdomain. In the eighties, this idea was the
basis for many iterative methods proposed for solving numerically PDE’s, see for
instance [44, 80, 81]. Today the domain decomposition methods that induce some
overlap between the subdomains are called Schwarz methods.

The Schur complement method is an alternative that consists in dividing the
domain into approximately equal subdomains that are disjoint, that is, they do
not overlap. By dividing the unknowns into interior and interface unknowns, one
computes the Schur complement of the matrix formed by the entries of the interior
points in the complete problem, see [37]. Then, the reduced system for the un-
knowns defined on the interfaces is solved and, subsequently, the complete solution
is computed. A general theory has been developed since the eighties to explain the
underlying properties of those methods in order to obtain better solutions, see for
instance [1, 42, 43, 82].

For solving the reduced problem on the interfaces that appears in a Schur com-
plement method, one must decide whether to use a direct or an iterative method.
The Schur complement methods are also referred to as substructuring algorithms.
The method is referred to as direct substructuring if the Schur complement system is
solved by a direct method and iterative substructuring if it is solved by an iterative
method.

In the framework of a joint research effort between CERFACS (Centre Européen
de Recherche et de Formation Avancées en Calcul Scientifique) and INRIA (Insti-
tut National de Recherche en Informatique et Automatique) we study the parallel
distributed implementation of 2D semiconductor device modelling and in particular

2 Introduction

substructuring methods for solving the linear systems involved.

A sequential code has been developed at INRIA, with an in-house skyline Cho-
lesky or LU direct solver for solving the linear systems arising during the simulations.
This sequential code is able to deal with problems based on a mesh with up to 30000
triangles. This solver was efficient for simulating homojunction transistors. If we
turn to heterojunction transistors, the meshes must be strongly refined at the level
of the heterojunctions and discretizations with more than 500 000 elements have to
be considered. Parallelizing the code becomes mandatory to solve problems of this
size as a complete simulation becomes very much CPU demanding.

We have considered a parallelization for distributed memory environment with
MPI [70] as message passing library. The overall numerical simulation consists in
a semi-implicit Euler time scheme coupled with a Newton solver at each time step.
At each Newton step a linear system that can be either symmetric positive definite
(SPD) or unsymmetric has to be solved. The formulation is mainly vectorial and
most of the resulting code is naturally parallelizable. The main difficulty consists in
the efficient implementation of some suitable linear solvers. This latter numerical
kernel is the most time consuming part of the code. In this respect we investigate
both direct and iterative substructuring algorithms.

As a central software tool we consider MUMPS that is a parallel distributed
implementation of multifrontal technique for sparse matrices [4, 5, 47]. We use
MUMPS in order to compute the factorization of the local internal subproblems but
also to obtain an explicit computation and storage scheme for the Schur complement
matrix. We also present an implementation of the direct substructuring algorithm
in which the interface problem is solved using MUMPS.

In the case of iterative substructuring, the Schur complement matrix is gen-
erally badly conditioned and the Schur system has to be preconditioned in order
to guarantee a small number of iterations of the solver. Preconditioners for Schur
complement methods in the context of elliptic problems has been a prolific area of
research in the last twenty years. State-of-the art preconditioners consist of local
and global components. The basic role of the global part is to provide an overall
mechanism for the communication of the residual at each iteration. Without such a
mechanism, the condition numbers of the preconditioned matrices become exponen-
tially dependent on the number of subdomains, see [110]. The local part captures
the strong couplings that appear between neighbouring points on the mesh. In the
area of local preconditioners, we can find quite a few propositions and we refer to:
Dirichlet-Neumann [16, 17], Neumann-Neumann [38, 39, 103], Probing [31, 33, 77],
and J-operator [42]. For a complete overview of these local preconditioners and
other aspects related to domain decomposition, we refer to [32, 92, 101, 102]. The
components that are responsible for the global coupling between the subdomains
are referred to as coarse-space corrections. A well known and often cited two-level
preconditioner is BPS [23] that was the first two-level preconditioner to be proposed.
We can also cite the Balancing Neumann-Neumann [84, 104, 105], the FETI [54, 85],
and the Vertex Space [43, 100]. A class of two-level additive Schwarz preconditioners

Introduction 3

for the Schur complement has been proposed in [26, 27, 28].

The numerical behaviour of these preconditioners have been precisely studied
in the case of linear elliptic partial differential equations that lead to the solution
of SPD linear systems. In the context of our semiconductor simulations, we test
similar ideas for nonlinear PDE’s that can lead to SPD as well as to unsymmetric
linear systems. A collaboration between CERFACS and Parallab laboratory of the
university of Bergen has been developed in the framework of an Aurora project
supporting the scientific collaboration between Norway and France. During this
collaboration, we have tested Balancing Neumann-Neumann for the SPD systems
arising during semiconductor simulations. In the case of the unsymmetric Schur
complement systems we test two-level additive preconditioners as the ones presented
in [27].

The Schur complement systems involved in semiconductor simulations are chal-
lenging to solve. The entries in the Schur matrices exhibit very large variations
in magnitude with some jumps larger than twenty orders of magnitude. In order
to improve the robustness of the numerical methods, we investigate some scaling
techniques.

The linear systems solved are embedded in a nonlinear scheme and changing
the linear solver might change the nonlinear path and the total number of Newton
steps required to obtain the steady state of the simulation. The convergence of the
nonlinear scheme is a criterion to test the robustness of the different algorithms.
Therefore a fair comparison between iterative and direct methods is possible. For
other works concerning the application of substructuring methods to semiconductor
device modelling we refer to [36, 62].

This manuscript is organized as follows. In Chapter 1, we present the physical
problem and the mathematical and numerical tools used to solve it. In Chapter 2, we
describe the parallel implementation of the linear solvers. In Chapter 3, we propose
preconditioners and scaling techniques for solving iteratively the Schur complement
system. In Chapter 4, we discuss the performance of parallel direct and iterative
solvers for the simulation of semiconductor devices. Finally, in Chapter 5, we present
some ideas that might deserve future research investigations.

4 Introduction

Chapter 1

Numerical simulation of a

transistor

In this chapter, we present the main principles of the numerical simulation of a
transistor. In Section 1.1, we present briefly the physics of semiconductor materials
and the mechanisms of a transistor of the NPN type. We also present the mathe-
matical model selected to simulate this device. In Section 1.2, we present on a model
problem the numerical tools used. Finally, in Section 1.3, we describe how these tools
are used to compute the steady state of an NPN transistor in amplification mode.

1.1 Physical application and mathematical mod-

elling

1.1.1 The transistor effect

Quantum physics describes the energy levels of an electron in an atom (measured
in electron-volts (eV)) as discrete and not continuous. Pauli’s exclusion principle
says that two electrons in the same atom cannot share the same energy level. When
two atoms are close to a distance of their own atomic radius, each energy level is
split into two energy levels of close intensities. In the case of a crystal, that is a large
number of atoms linked together in a complex structure, the number of energy levels
can become so important that we can speak of quasi-continuous energy levels. Then
the electronic structure of an atom of the crystal can be decomposed in permitted
and forbidden energy bands (see Figure 1.1). Two bands are especially important,
the valence band contains the electrons at the periphery of the crystal atoms and
the conduction band is the energy band immediately after the valence band. The
electrons in the conduction band are no longer influenced by their original atoms.

Insulators, conductors or semiconductors are materials defined by the
energy gap between the valence band and the conduction band in their atoms (see
Figure 1.2). In the case of an insulator, the valence band is separated from the
conduction band by a gap of several eV and the electrons cannot go from one to

6 Numerical simulation of a transistor

a) b) c)

Energy

forbidden band

Figure 1.1: Energy levels for an isolated atom(a), two close atoms (b), a crystal (c).

another. Such a material cannot conduct electricity. On the contrary, in the case of
the conductors, the valence band and the conduction band overlap so the electrons
can go freely from one to another. Such a material has a very low resistivity and
easily conduct electricity. Semiconductor materials are a trade-off between insulators
and conductors. When the temperature of a semiconductor is low enough, the
difference of energy between the valence band and the conduction band is only of
the order of one eV. In this case, some electrons of the valence band can get enough
energy to jump into the conduction band. One has to notice that these electrons
are involved into conduction phenomena but they also leave holes in the electronic
structure of the valence bands of the atoms. These holes in the valence bands of
the atoms act as positive charges and are also involved in the conduction of the
electricity current.

Doped N semiconductors are semiconductors with an excess of free elec-
trons. As an example, it is possible to obtain a doped N semiconductor by intro-
ducing Phosphor atoms in a Silicon crystal. Phosphor atom has five electrons in its
valence band and Silicon has four. When Phosphor atom establishes its covalent
bonding with neighbouring Silicon atoms, one electron remains single in its valence
band. This electron can acquire enough energy to jump in the conduction state (see
Figure 1.3). Doped P semiconductors are crystals with an excess of holes.

A transistor is a widely used electronic device, in particular in the design of
computer processors. Its structure is composed of three layers. The first layer is
called the emitter, the second one, thinner, is called the base and the third one,
which size is equivalent to the emitter one, is called the collector (see Figure 1.4).
Transistors can be of two types, NPN or PNP. Here we will only present the NPN
type transistor. In this case, the emitter and the base are composed of a N doped
semiconductor material, while the base is composed of a P doped semiconductor.

1.1 Physical application and mathematical modelling 7

e−

e +

k eV 1 eV

conduction band

valence band

Insulator Semiconductor Conductor

 conduction band

valence band

conduction band

valence band

Figure 1.2: Energy bands for insulators, semiconductors and conductors.

P

Si Si Si

Si Si

Si Si Si

Figure 1.3: Doped N semiconductor: introduction of a Phosphor atom in a Silicon
crystal.

8 Numerical simulation of a transistor

We denote by Ve, Vb and Vc the potentials applied to the emitter, the base and the
collector respectively. When no tension is applied on the bounds of the transistor,
this one is said to be in the equilibrium state. In this state, there is no displacement
of electric charges in the transistor. The normal direct regime of an NPN transistor
is defined by the following constraints : Vb − Ve > 0 and Vb − Vc < 0. In this state
an electric current crosses the base-emitter dipole. This current is called the base
current and denoted by IB. The free electrons of the emitter diffuse massively to
the base. Only a few recombinate in the base. Most of them, driven by their high
kinetic energy, cross the base which is thin, and arrive in the collector. Then they
are driven outside of the collector by its strong electric field and they amplify the
collector current, denoted by IC . This amplification is called transistor effect. The
gain in current of a transistor is defined by

β =
IC

IB

.

The aim of this study is to compute the gain in current of an NPN transistor in
normal direct amplification mode. Figure 1.5 and Table 1.1 show the other modes
of a NPN transistor.

I E

I C

I B

N

P

N

e
−

e −

Ie=Ic+Ib

β =
Ic

Ib
β >> 1

Collector

Base

Emitter

Figure 1.4: NPN transistor.

1.1.2 Mathematical modelling

There are three different levels of modelling for semiconductors. Quantum mechanics
is the microscopic level of modelling. It describes the structure of the atoms of the

1.1 Physical application and mathematical modelling 9

Regime Polarizations
Normal direct Vb − Ve > 0 Vb − Vc < 0
Normal inverse Vb − Ve < 0 Vb − Vc > 0
Saturated direct Vb − Ve > 0 Vb − Vc > 0 Ve < Vc

Saturated inverse Vb − Ve > 0 Vb − Vc > 0 Ve > Vc

Blocked Vb − Ve < 0 Vb − Vc < 0

Table 1.1: Regimes of a NPN transistor.

 Vb

Ve

Vc=0

Normal direct Equilibrium

Normal inversed

 Satured inversedSatured direct

Blocked

Figure 1.5: Regimes of a NPN transistor.

10 Numerical simulation of a transistor

crystal and the different levels of energy inside them. The second is the statistical
model that is based on Boltzmann equation and describes the behaviour of the
holes and of the electrons from a statistical point of view. Finally the third is the
hydrodynamic model that is the macroscopic level of modelling. It is a determinist
model derived from the statistical model. We study here a hydrodynamic model
based on drift-diffusion equations for the simulation of an NPN transistor. There
are different possibilities for the formulation of the drift-diffusion model depending
upon the choice of the unknowns. A first choice for the unknowns is the electrostatic
potential φ, the concentration in electrons N and the concentration in holes P . But
the strong dynamics of N and P make this choice numerically difficult. N and P
can be replaced either by the Slotboom variables ηn and ηp or the Fermi levels φn

or φp. The choice of the Fermi levels fits more for the modelling of heterojunctions
structures like the ones we are studying. For more information on this topic we refer
to [98].

The proposed model in 2D is the following :

x ∈ Ω ⊂ R
2,

−div(ε(x)∇φ) + q[N(x, φ, φn)− P (x, φ, φp)−Dop(x)] = 0,

q∂tN(x, φ, φn)− div(qµnN(x, φ, φn)∇φn) + qGR(x, φ, φn, φp) = 0,

jn = qµnN(x, φ, φn)∇φn,

q∂tP (x, φ, φp)− div(qµpP (x, φ, φp)∇φp)− qGR(x, φ, φn, φp) = 0,

jp = qµpP (x, φ, φp)∇φp .

(1.1)

The model describes at time t several quantities inside a domain Ω which cor-
responds to the transistor. The electron charge is q. The mobilities of the electrons
and the holes are denoted by µn and µp and are material dependent.

The electrostatic potential (with value in R) is φ. The densities of current for the
electrons and the holes (with values in R

2) are jn and jp. On the same way that the
electrostatic potential is related to the electric field (E = −∇φ), it is also possible
to relate two quantities φn and φp to jn and jp. These two quantities are also called
the Fermi levels associated to the electrons and the holes. They are measured in
Volts and so they are homogeneous to the electrostatic potential.

The concentration in electrons and holes are N and P . An example of model
for N and P is :

N(φ, φn) = Ncf

(

φ + φn − χ

VT

)

,

P (φ, φp) = Nvf

(

χ− φ− φp − φg

VT

)

.

Nc, Nv, χ, φg are material-dependent physical parameters and VT is the thermal
voltage. The function f is the exponential function for the Boltzman statistics and

1.1 Physical application and mathematical modelling 11

is given by

f(x) =
2√
π

∫ ∞

0

√
t

1 + et−x
dt

for the Fermi statistics. GR in (1.1) is a function which represents the mechanism of
generation-recombination of electrons and holes. This function may have different
expressions, depending on the physics taken into account. Dop is a given function
only depending on the space variable.

System (1.1) corresponds to the dynamic regime of the transistor. After a certain
amount of time, the transistor reaches a steady state, called static regime. On a
practical point of view, we only need to know the static regime of a transistor in
order to compute its gain in current. That is the reason why we can neglect the
derivatives relative to time in (1.1). Then we obtain the system

Find (φ, φn, φp) ∈ {Ω× R}3 so that

−div(ε∇φ) + q[N(φ, φn)− P (φ, φp)−Dop] = 0,

−div(qµnN(φ, φn)∇φn) + qGR(φ, φn, φp) = 0,

−div(qµpP (φ, φp)∇φp)− qGR(φ, φn, φp) = 0,

+ Dirichlet-Neumann boundary conditions
φ = g, φn = gn, φp = gp on ΓD,
∂φ

∂n
= ∂φn

∂n
= ∂φp

∂n
= 0 on ΓN = ∂Ω − ΓD .

(1.2)

In order to simplify the notations, the position variable x is implicit. The first
equation is a nonlinear Poisson equation and is dealing with the electrostatic poten-
tial. The second one is called continuity equation for the electrons and the third one
continuity equation for the holes. One can remark that jn and jp have been removed
from the model. They can be computed from the solution (φ, φn, φp) of (1.2). In
Section 1.2 and 1.3 we will explain our motivations for reintroducing them in the
model. To define the System (1.2) we have added Dirichlet-Neumann boundary
conditions to the initial model (1.1).

The main difficulties in solving (1.2) come from the high nonlinearity and large
amplitude variation of the functions N and P included in the divergence terms. In
Figure 1.6, we display on a logarithmic scale the values of the function N for a test
example. We see that the values are varying from 10e−11.5 up to 10e17.11. Those
large variations will appear later in the matrices associated with the linear systems
to be solved during the numerical simulation.

12 Numerical simulation of a transistor

Figure 1.6: Concentration of the electrons in a NPN transistor in amplification mode
(courtesy of A. Marrocco from INRIA).

1.2 Discretization and numerical solution of the

equilibrium problem

1.2.1 Introduction

In this part, we present on a model problem the main numerical methods that are
used to solve the static problem (1.2). This problem has a physical meaning, it is the
equilibrium problem (see Figure 1.5) which is the particular case when no tension
is applied on the contacts of the device. In this case there is no displacement of
electric charges and we have φn ≡ 0 and φp ≡ 0. The system (1.2) reduces to :

−div(ε∇φ) + F (φ) = 0 on Ω,
∂φ

∂n
= gn on Γn ∈ ∂Ω,

φ = gd on Γd ∈ ∂Ω .
(1.3)

We may remark that Γd = ∂Ω− Γn and that

F (φ) = q(N(φ, φn)− P (φ, φp)−Dop)

with φn ≡ φp ≡ 0.

In this presentation we only focus on the numerical solution of the problem. For
more theoretical aspects, like existence and unicity of the solution in the appropriate
space, we refer to [19].

1.2 Discretization and numerical solution of the equilibrium problem 13

1.2.2 Mixed finite-element discretization

The mixed formulation of (1.3) is

−div(D) + F (φ) = 0 on Ω,
D = ε∇φ on Ω,
∂φ

∂n
= gn on Γn ∈ ∂Ω,

φ = gd on Γd ∈ ∂Ω,

(1.4)

where now the unknowns are D and φ. The advantages of the mixed formulation
are multiple [71]. On a mathematical point of view, it transforms one second or-
der equation into two first order equations. From the numerical point of view, it
computes directly the electric field. With a classical formulation, the electric field is
obtained by the derivative of the electrostatic potential. This numerical derivative
may be unstable.

Variational formulation

To obtain a variational formulation of (1.4) we introduce the following Sobolev
spaces

H(div) = {~w, ~w ∈ (L2(Ω))2, div(~w) ∈ L2(Ω)}, (1.5)

V0 = {~w, ~w ∈ H(div), ~w.n = 0 on Γn}. (1.6)

For sufficiently regular data, we obtain the formulation

Find D ∈ H(div) and φ ∈ L2(Ω) so that

−
∫

Ω

v.div(D)dx +

∫

Ω

vF (φ)dx = 0,

∫

Ω

[ε]−1D.~wdx = −
∫

Ω

φ.div(~w)dx +

∫

Γd

gd ~w.ndΓ,

∀v ∈ L2(Ω), ∀~w ∈ V0.

(1.7)

Discretization

System (1.7) is discretized using mixed triangular finite elements of the Raviart-
Thomas type of the lowest order [24]. Let τh be a triangulation of the domain Ω. In
Figure 1.7 we display a mesh with 5194 triangles and 7923 edges. We see that the
mesh is refined at the level of the heterojunctions (which are the interface between
the emitter and the base and the interface between the base and the collector) to
capture the strong variations along them.

Lh and Vh are two subspaces of L2(Ω) and H(div), defined as

Lh =
{

vh ∈ L2(Ω)|∀K ∈ τh, vh|K = const
}

14 Numerical simulation of a transistor

Figure 1.7: Triangular mesh with 5194 elements.

and

Vh =

{

~w ∈ H(div)|∀K ∈ τh, w(x, y)|K =

(

αK

βK

)

+ γK

(

x
y

)}

.

If we suppose that the boundary Γn associated with the Neumann conditions can be
obtained as an union of edges belonging to the triangulation τh, then we can define
the subspace V0h as

V0h = V0 ∩ Vh,

V0h = { ~wh| ~wh ∈ Vh, ~wh.n = 0 on Γn} .
Then we can give a discrete formulation of the problem (1.7) :

Find Dh ∈ Vh and φh ∈ Lh so that

−
∫

Ω

vh.div(Dh)dx +

∫

Ω

vhF (φh)dx = 0,

∫

Ω

[ε]−1Dh. ~whdx = −
∫

Ω

φh.div(~wh)dx +

∫

Γd

gd ~wh.ndΓ,

∀vh ∈ Lh(Ω), ∀ ~wh ∈ V0h.

(1.8)

Algebraic Formulation

Let nt be the number of triangles and ne the number of edges of the triangulation
τh. It is possible to build a basis v = (vi)

i=nt

i=1 of Lh and a basis w = (wi)
i=ne

i=1 of V0h.
For a detailed description of these basis we refer to [19].

The solution Dh of (1.8) can be represented in the basis w and we denote its
component vector Dh. Similarly φh can be expressed in the basis v and we note φh

its component vector. Problem (1.8) is equivalent to compute Dh and φh. It can be
written in matrix form as

1.2 Discretization and numerical solution of the equilibrium problem 15

(

M A
AT 0

)(

Dh

φh

)

+

(

0

F (φh)

)

=

(

bΓn

0

)

(1.9)

where
M = (Mij)i,j∈[1,ne],

with

Mij =

∫

Ω

ε−1 ~wi ~wj, with ~wi, ~wj ∈ w

and
A = (Aij)i∈[1,ne],j∈[1,nt]

with

Aij =

∫

Ω

vidiv(~wj), with vi ∈ v and wj ∈ w.

The Neumann boundary conditions are represented by the vector bΓn
.

The problem to solve is a nonlinear system of equations, that will be tackled by a
Newton-Raphson technique.

1.2.3 Newton-Raphson method

In order to simplify the notations we identify the functions Dh and φh with their
component vectors Dh and φh in the basis w and v. Equation (1.9) can be solved
by finding a zero value of the function

F : R
nt+ne 7−→ R

nt+ne

(

Dh

φh

)

7−→
(

MDh + Aφh − bΓn

AT Dh + F (φh)

)

.
(1.10)

The algorithm used to compute where F vanishes is a Newton-Raphson method
that is described by Algorithm 1.

At step 1 of Algorithm 1, a linear system associated to the Jacobian matrix JF

has to be solved. In our case the block structure of JF is

JF =

(

M A
AT ∂F

∂φ
(φh)

)

=

(

M A
AT C(φh)

)

. (1.11)

So the linear system to solve at each step is

(

M A
AT C(φl

h)

)(

δDl+1
h

δφl+1
h

)

=

(

Dl
h

φl
h

)

. (1.12)

This system has two remarkable properties. The first one is that it is symmetric
positive definite and the second one is that the matrix C(φl

h) is diagonal [19]. The

16 Numerical simulation of a transistor

Find an initial vector x0

while non convergence do

Step 1. Solve the linear system

JF δxl+1 = −F(xl),

JF is the jacobian matrix associated to the operator F .
Step 2. : xl+1 = xl + δxl+1.
Step 3. : Test convergence with

‖xl+1 − xl‖
‖xl+1‖ < ε1.

end while

Algorithm 1: Newton-Raphson algorithm to solve Fx = 0.

1 : Solve the linear systems on the fluxes

(M − AC(φl
h)

−1AT)δDl+1
h = Dl

h − AC(φl
h)

−1φl
h.

2 : Compute the potentials δφl+1 from the fluxes δDl+1
h with the formula

δφl+1
h = C(φl

h)
−1(φl

h − AT δDl+1
h).

Algorithm 2: Reduced linear system.

1.3 Numerical solution of the static problem 17

second property allows us to easily reduce the system (1.12) to a system only defined
for the fluxes unknowns (see Algorithm 2).

The convergence of Algorithm 1 strongly depends upon the choice of the initial
guess. If this vector is not close enough from the solution then the convergence
can be very slow or worse, impossible to obtain. To improve the convergence of the
Newton-Raphson method, we associate with the problem (1.4) an artificial evolution
problem.

1.2.4 Artificial evolution problem

Problem (1.4) is a saddle-point problem. Augmented Lagrangian formulations can
be associated to it [64]. One of them can be described as the computation of the
steady state of the artificial time dependent problem

S1(x)∂φ

∂t
− div(D) + F (φ) = 0 in Ω,

D = ε∇φ in Ω,
∂φ

∂n
= gn on Γn ∈ ∂Ω,

φ = gd on Γd ∈ ∂Ω,
φ(x, 0) = φ0(x) in Ω.

(1.13)

S1 is a linear, diagonal, positive definite and bounded operator introduced to obtain
a better conditioning for the induced linear systems [24].

Problem (1.13) is then discretized in time by an Euler implicit scheme, described
by Algorithm 3.

Each system (1.14) is discretized on the same mesh and solved by a Newton-
Raphson iterative method. The Newton-Raphson method converges if the initial
solution (φn, Dn) is close enough to the solution (φn+1, Dn+1). The main difficulty
is the choice of good local time steps. On one hand, if ∆t is too small a great number
of Euler iterations will be required. On the other hand, if ∆t is chosen too large,
the number of iterations of Newton-Raphson will grow up at each Euler iteration.
The selected strategy for the choice of ∆t is discussed in [19].

1.3 Numerical solution of the static problem

We present in this section the algorithm used to obtain the solution of the static
problem

18 Numerical simulation of a transistor

Initialization : Choose an initial value for the potentials and the fluxes, φ0 and
D0.
Time iteration loop : φn and Dn known, compute (φn+1, Dn+1) solutions of
the problem

S1(x)φn+1−φn

∆t
− div(Dn+1) + F (φn+1) = 0 in Ω,

Dn+1 = ε∇φn+1,

∂φ

∂n
= gn on Γn ∈ ∂Ω,

φ = gd on Γd ∈ ∂Ω,

φ(x, 0) = φ0(x) in Ω.

(1.14)

(Remark : we use here local time steps, ∆t depends on x.)
Stopping criterion : we consider here the criterion

max

(‖ φn+1 − φn ‖1
‖ φn+1 ‖1

,
‖ Dn+1 −Dn ‖1
‖ Dn+1 ‖1

)

< ε.

Algorithm 3: Time discretization for the equilibrium problem.

1.3 Numerical solution of the static problem 19

Find (φ, φn, φp) ∈ {Ω× R}3 so that

−div(ε∇φ) + q[N(φ, φn)− P (φ, φp)−Dop] = 0,

−div(qµnN(φ, φn)∇φn) + qGR(φ, φn, φp) = 0,

−div(qµpP (φ, φp)∇φp)− qGR(φ, φn, φp) = 0,

+ Dirichlet-Neumann boundary conditions
φ = g, φn = gn, φp = gp on ΓD,
∂φ

∂n
= ∂φn

∂n
= ∂φp

∂n
= 0 on ΓN = ∂Ω − ΓD.

(1.15)

The mixed formulation of the static problem introduces the densities of current jn

and jp as dual unknowns and can be written

Find (φ, D, φn, jn, φp, jp) so that

−div(D) + q[N(φ, φn)− P (φ, φp)−Dop] = 0,

D = ε∇φ,

−div(jn) + qGR(φ, φn, φp) = 0,

jn = qµnN(φ, φn)∇φn,

−div(jp)− qGR(φ, φn, φp) = 0,

jp = qµpP (φ, φp)∇φp,

+Boundary conditions.

(1.16)

Like for the equilibrium problem, we use here a stabilization technique that
consists in considering the solution as the steady state solution of a time dependent
problem. The time dependent problem is defined as :

20 Numerical simulation of a transistor

Find (φ, D, φn, jn, φp, jp) so that

S1(x)∂φ

∂t
− div(D) + q[N(φ, φn)− P (φ, φp)−Dop] = 0,

D = ε∇φ,

S2(x)∂φn

∂t
− div(jn) + qGR(φ, φn, φp) = 0,

jn = qµnN(φ, φn)∇φn,

S3(x)∂φp

∂t
− div(jp)− qGR(φ, φn, φp) = 0,

jp = qµpP (φ, φp)∇φp,

+Boundary conditions,

+Initial conditions.

(1.17)

1.3.1 Time discretization by an implicit nonlinear scheme

The algorithm to solve (1.17) is based on one hand on a decoupling of the Poisson
equation and of the two continuity equations and, on the other hand on a time
discretization by an Euler implicit scheme. The numerical technique is described by
Algorithm 4.

1.3.2 Discretization and numerical solution of the continu-

ity equation for the electrons

The Problem (1.17) is solved using Algorithm 4. The latter algorithm is an iterative
evolution process which requires the solution of the problems (1.18), (1.19) and
(1.20) at each time step. Equation (1.18) is a nonlinear Poisson equation. Therefore
it can be solved using the algorithms presented in Section 1.2. Equations (1.19) and
(1.20) are similar and we only detail the solution of Equation (1.19). Equation (1.19)
can be written

−div(j`+1
n) + Gn(φ`+1

n) = 0,
j`+1
n = qµnN(φ`+1, φ`+1

n)∇φ`+1
n ,

+ Boundary conditions,
(1.21)

where Gn(φ`+1
n) = S2

φ`+1
n −φ`

n

∆t
+ qGR(φ`+1, φ`+1

n , φ`
p). This equation is discretized by

Raviart-Thomas finite elements on the same mesh than the one used to solve the

1.3 Numerical solution of the static problem 21

Step 1. ` = 0. This step consists in choosing an initial guess (φ0, D0, φ0
n, j

0
n, φ0

p, j
0
p)

to start the iterative scheme.
Step 2. This step consists in solving the nonlinear Poisson equation

S1(x)φ`+1−φ`

∆t
− div(D`+1) + f(φ`+1, φ`

n, φ
`
p) = 0,

D`+1 = ε∇φ`+1,

φ`+1 = g1 on ∂ΩD,

D`+1.n = 0 on ∂ΩN ,

(1.18)

with φ`+1 and D`+1 as unknowns and φ`, D`, φ`
n, j`

n, φ`
p, j`

p as data.
Step 3. This step consists in solving the continuity equation for the electrons

S2(x)φ`+1
n −φ`

n

∆t
− div(j`+1

n) + qGR(φ`+1, φ`+1
n , φ`

p) = 0,

j`+1
n = qµnN(φ`+1, φ`+1

n)∇φ`+1
n ,

φ`+1
n = g2 on ∂ΩD,

j`+1
n .n = 0 on ∂ΩN ,

(1.19)

with φ`+1
n and D`+1

n as unknowns and φ`+1, D`+1, φ`
n, j`

n, φ`
p, j`

p as data.
Step 4. This step consists in solving the continuity equation for the holes

S3(x)
φ`+1

p −φ`
p

∆t
− div(j`+1

p)− qGR(φ`+1, φ`+1
n , φ`+1

p) = 0,

j`+1
p = qµpP (φ`+1, φ`+1

p)∇φ`+1
p ,

φ`+1
p = g3 on ∂ΩD,

j`+1
p .n = 0 on ∂ΩN .

(1.20)

with φ`+1
p and D`+1

p as unknowns and φ`+1, D`+1, φ`+1
n , j`+1

n , φ`
p, j`

p as data.
Step 5. Stopping criterion.

if max

‖φ`+1−φ`‖1

‖φ`+1‖1
, ‖D`+1−D`‖1

‖D`+1‖1
,

‖φ`+1
n −φ`

n‖1

‖φ`+1
n ‖1

, ‖j`+1
n −j`

n‖1

‖j`+1
n ‖1

,

‖φ`+1
p −φ`

p‖1

‖φ`+1
p ‖1

,
‖j`+1

p −j`
p‖1

‖j`+1
p ‖1

)

< ε then

exit,
else

`← ` + 1,
go to Step 2.

end if

Algorithm 4: Decoupling by relaxation and time discretization by Euler semi-
implicit schemes.

22 Numerical simulation of a transistor

nonlinear Poisson equation (1.18). We obtain the following nonlinear system of
equations

(

M(φ`+1
n) A

AT 0

)(

j`+1
n

φ`+1
n

)

+

(

0
Gn(φ`+1

n)

)

=

(

bΓn

0

)

. (1.22)

The main difference between this system and System (1.9) obtained after the dis-
cretization of Equation (1.14) is the nonlinearity of the mass operator M with respect
to the unknown φ`+1

n . In order to simplify the notations we remove from (1.22) the
time suffix `. Then we have to solve

(

M(φn) A
AT 0

)(

jn

φn

)

+

(

0
Gn(φn)

)

=

(

bΓn

0

)

. (1.23)

Equation (1.23) can be solved by finding a zero value of the function

Fn : R
nt+ne 7−→ R

nt+ne

(

jn

φn

)

7−→

M(φn)jn + Aφn − bΓn

AT jn + Gn(φn)

 .
(1.24)

A Newton-Raphson method (see Algorithm 1) is used to compute the zero value of
Fn. The Jacobian matrix associated with the function Fn is

JFn
=

(

M(φn) A + ∂(M(φn)jn)
∂φn

AT ∂Gn
∂φn

(φn)

)

=

(

M(φn) A + H(φn, jn)
AT Cn(φn)

)

. (1.25)

While the Jacobian matrix (1.11) obtained from the discretization of the Poisson
equation was SPD, the Jacobian matrix (1.25) is no longer symmetric due to the
introduction of the term H. H is arising from the nonlinearity of M with respect to
the unknown φn. Therefore the problem to solve at step k of the Newton-Raphson
method is

(

M(φk
n) A + H(φk

n, j
k
n)

AT Cn(φk
n)

)(

δjk+1
n

δφk+1
n

)

=

(

jk
n

φk
n

)

. (1.26)

Due to the high nonlinearity of the concentration of electrons N , these linear
systems are ill conditioned. Like the submatrix C of the matrix (1.11), the submatrix
Cn of (1.25) is diagonal. Then we can eliminate the potentials and solve a system
reduced to the fluxes. The values of the potentials are then simply recovered by
substitution (see Algorithm 2).

1.3.3 Choice of an initial solution

To compute the initial solution (φ0, D0, φ0
n, j0

n, φ0
p, j0

p) of Algorithm 4, several
possibilities exist. The simplest one would be to consider all these functions as null
functions. A more appropriate one would be to solve first the equilibrium problem

1.4 Conclusion 23

to obtain initial values for φ0 and D0. More generally, an idea is to use the solution
of previous experiments in order to build initial values by interpolation.

A method has been implemented to improve an initial solution for the two
continuity equations. Once an initial guess (φ0

n, j0
n, φ0

p, j0
p) has been chosen, an

improved initial guess (φ0+
n , j0+

n , φ0+
p , j0+

p) can be computed by solving the two
linear systems

(

M(φ0
n) A

AT 0

)(

j0+
n

φ0+
n

)

+

(

0
Gn(φ0

n)

)

=

(

bΓn

0

)

, (1.27)

and

(

M(φ0
p) A

AT 0

)(

j0+
p

φ0+
p

)

+

(

0
Gn(φ0

p)

)

=

(

bΓn

0

)

. (1.28)

These two linear systems are SPD and generally ill-conditioned. It is shown in
[19] that this procedure reduces significantly the number of needed time steps.

Continuation technique

If the gap between the tensions applied to the bounds of the transistor is too large
then the convergence of the Euler scheme may become difficult to obtain. An in-
cremental tension strategy is used to overcome this difficulty. The simulation is
separated in less difficult intermediate simulations. For example, instead of comput-
ing the static regime with a tension of 0.4 Volts on the basis in one simulation, a
first simulation is performed to obtain the static regime with a tension of 0.2 Volts
on the basis and the solution of this simulation is then used as a starting point for
the 0.4 Volts simulation.

1.4 Conclusion

The general method used to compute the steady state of a transistor in amplification
mode can be summarized in the following way. First the equilibrium problem is
solved. This is the case where no tension is applied on the contacts of the device.
In order to solve this problem, an artificial evolution process is introduced to make
the solution of the original nonlinear problem easier. It is discretized in time by an
Euler implicit scheme. At each time step, a nonlinear system of equations has to be
solved. This system is solved by a Newton-Raphson iterative method. Each step of
the Newton-Raphson method requires the solution of a SPD linear system. Once the
equilibrium problem has been solved, a tension increment V1 applied on the contacts
of the device is chosen. The initial solution for the static problem is defined by the
solution of the equilibrium problem, involving φ and D. Concerning the continuity
equations, the initial solution is given by the solutions of the two linearized problems.
This solution is used to initialize an artificial evolution process discretized in time

24 Numerical simulation of a transistor

by an Euler scheme where the Poisson equation and the two continuity equations
are decoupled. At each time step, three systems of nonlinear equations have to be
solved. Each system is solved by a Newton-Raphson iterative method. Each step of
the Newton-Raphson method requires the solution of a linear system. This system is
SPD for the Poisson equation and unsymmetric for the continuity equations. Once
the solution of the static problem has been obtained, a new tension increment V2 and
a new static problem with V1 + V2 as boundary conditions are defined. The initial
solution of the Euler scheme is the previous solution computed with V1 as boundary
conditions. This initial solution is improved by solving the associated linearized
problems. And so on, for tension increments V3, V4, . . . , Vn until one has obtained
the solutions for all the desired tensions. Figure 1.8 represents this procedure. A
sequential Fortran implementation of this algorithm has been developed at INRIA.
In Chapter 2 we address the main issues concerning how we proceed to parallelize
this sequential code.

1.4 Conclusion 25

 Newton−Raphson

 Newton−Raphson (Poisson)

Equilibrium problem

time loop

at time n :

SDP linear system

Static problem

Estimation of an initial solution : linearized problem

 SDP systems

at time n :

SDP systems

Newton−Raphson (Electrons)

Unsymmetric systems

Newton−Raphson (Holes)

Unsymmetric systems

New

Boundary conditions

V=V+Increment

For time=t1 ,, tn

For time=t ,, tn0

PSfrag replacements

φ, D

φ, φn, φp, D, jn, jp

Figure 1.8: Summary of the algorithm used for the solution of the static problem.

26 Numerical simulation of a transistor

Chapter 2

Parallelization of the finite

element code

In this chapter we present the main algorithmic and software tools that we have
used to parallelize the sequential code developed at INRIA. In Sections 2.1 and 2.2
we introduce the general context and describe why the main difficulty is in the parallel
solution of the linear systems. In Section 2.3, we present the multifrontal method
which is an algorithm for the factorization of sparse matrices. We also present
the software MUMPS which is an implementation of the multifrontal algorithm for
distributed memory platforms. In Section 2.4, we discuss domain decomposition
methods which are methods designed to solve in parallel linear systems arising from
the discretization of PDEs. We focus on substructuring algorithms and present both
iterative and direct substructuring approaches.

2.1 The parallel computing framework

2.1.1 Brief overview of the parallel computing platforms

In spite of the constant growth of processor power, some physical limitations, like
the speed of light, will prevent any uniprocessor computer satisfying the huge com-
putational needs required by many of the current and future complex numerical
simulations. During the last decades, many ideas and tricks have been implemented
to design scientific computers with the goal of increasing the number of floating
point operations per clock cycle. Such techniques have first been implemented at
the processor level by pipelining the arithmetic operations, that is a very fine grain
parallelism. Later a coarser grain parallelism has been exploited by putting several
processors within a single computer: this was the birth of what is called today a
parallel computer. In the first generation of parallel scientific computers, all the
processors physically shared the central memory and accessed it through a sophis-
ticated memory path (see Figure 2.1 for a macroscopic view of a shared memory
computer). Originally called shared memory parallel computers, their main archi-
tectural weakness was the limited number of processors that can be plugged on the

28 Parallelization of the finite element code

memory path. To remove this physical bottleneck, the main memory has been cut
into pieces, each piece attached to one processor to build a node, and all the nodes
have been connected through sophisticated networks. Those latter computers were
first named distributed memory platforms.

Shared memory

P1 P2 P3 Pn

P=Processor

Interconnection network

Figure 2.1: Shared memory architecture.

LM LM LM

P1 P2 Pn

LM=Local
 Memory

P=Processor

Interconnection network

Figure 2.2: Distributed memory architectures.

This primal classification of parallel computer architectures into two main fam-
ilies depending on the key defined by the physical management of the memory is
incomplete. Another major criterion, and more relevant for the design of parallel
algorithms, is the way the memory is logically viewed and possibly shared by all
the processors of the parallel machine. That is, either all the concurrent processors
shared a global address space or each of them has its own private and disjoint address
space. This logical point of view is not necessary correlated to the way the memory
is physically implemented. In the 90’s, computers like the BBN Butterfly or the
Kendall Square were the first computers to have physically distributed but globally
addressable memory. They were first called distributed virtual shared machines,
and today such platforms are commonly called Non Uniform Memory Architecture

2.1 The parallel computing framework 29

LIN

LM LM

P P

LIN

LM LM

P P

P=Processor
LM=Local Memory

Interconnection network

LIN=Local Interconnection Network

Figure 2.3: Cluster of SMP.

(NUMA). Indeed, the time to access a datum in memory depends on its location,
either in the memory physically associated with the processor or a remote memory
associated with another processor. By contrast, the old shared memory platforms
are frequently called today Symmetric Multiprocessors, since all the processors have
the same “privilege” to access any memory location. Finally because shared and dis-
tributed memory architectures exhibit some advantages, they have been combined
to give birth to clusters of symmetric multiprocessors (see Figure 2.3 for a macro-
scopic view of a cluster of SMP). Today the most powerful installed computers are
based on this hybrid architecture.

2.1.2 The parallel programming paradigms

The logical view of the memory is of prime importance as it deeply influences the
programming paradigm to be selected for implementing a parallel algorithm. Today,
a quasi-standard exists for global address space computers that is OpenMP [34, 88].
OpenMP is a set of compilation directives and a run time library that allows the
user to parallelize an existing code incrementally and smoothly. In that case the
concurrent threads communicate through the memory, by writing and reading in
the shared address space. For disjoint address space computers, message passing is
the tool of choice. For such platforms two main libraries are still applicable, these
are the standard MPI (Message Passing Interface) [70], for intensive homogeneous
computing, and PVM (Parallel Virtual Machine) [57] for heterogeneous computing.
In this latter case homogeneous should be understood both for the target platform
that might be a network of heterogeneous computers but more significantly for the
nature of the parallel application. For instance for multi-physics simulations when
people are loosely coupling existing codes. While MPI-1 was pure SPMD (Single
Program Multiple Data) and then not appropriate for such heterogeneous parallel
computation, MPI-2 [69] addresses MPMD (Multiple Program Multiple Data) ap-
plications but its complete and stable implementation is not yet available on all

30 Parallelization of the finite element code

computers. This might lead us to think that for a few more years both MPI and
PVM will coexist, each devoted to its specific application area. It should be men-
tioned that message passing can be used on global address space platforms. Finally
and similarly to what has been done on clusters of SMPs at the architecture level by
mixing global address space within a group of processors, and disjoint address space
between the groups, MPI and OpenMP can be mixed to express and easily manage
two levels of parallelism. This combination of programming paradigms is likely to
become a promising and natural alternative for developing large applications on the
huge computers in the future [41, 60].

2.2 Parallelization of a PDE solver in a distributed

environment

2.2.1 Mesh partitioning

The first question to address when implementing an algorithm using message pass-
ing, is the splitting of the data associated with the problem to be solved and their
mapping to the different processors. In that situation the two governing constraints
are:

1. load balancing, that is, decompose the data in such a way that the required
computing effort on each subset will be equal. Good load balancing will min-
imize the idle time the processors spend in synchronizations.

2. minimizing the number, while maximizing the size, of messages to be ex-
changed for implementing the parallel algorithm.

For the parallel solution of PDEs the two above conditions often translate into a
decomposition of the underlying mesh into sub-meshes, hopefully connected, and
a static mapping of each of those subdomains onto each processor of the target
computer. This pre-processing phase is performed using a graph/mesh partitioner
tool like the public domain METIS [75], CHACO [72] or Scotch [90] or an in-house
partitioner, which in our case is the one integrated in MODULEF. MODULEF is
a Fortran library for finite elements developed at INRIA [79]. Finding the optimal
partition to achieve optimal load-balancing and minimal interface constraints is an
NP-hard problem. In that respect all these tools implement heuristics that exploit
either geometric information or only topological information through the adjacency
graph [59]. Finally, we mention that for finite-difference or finite-volume discretiza-
tion the set of vertices of the mesh is partitioned, while the set of elements is usually
partitioned for finite-element discretization (i.e. the dual graph). In Figure 2.4, we
display a partitioning into 8 subdomains of a mesh of 5194 triangles, computed with
the MODULEF mesh partitioner tool.

We should mention yhat in all our implementations, the divided problem is
mapped directly on the parallel machine. That means that we associate one and

2.2 Parallelization of a PDE solver in a distributed environment 31

Figure 2.4: Partitioning into 8 subdomains of a mesh of 5194 triangles.

only one subdomain to one physical processor. This does not have to be the case
and some domain decomposition codes allow multiple subdivisions on individual
processors.

2.2.2 Parallelization of the Euler and the Newton-Raphson

procedures

Once the distribution of the mesh is known, the operators are discretized locally on
each subdomain in parallel. Then the numerical solution consists of an Euler scheme
calling a Newton method which calls itself a linear system solver at each step. The
update of the Euler and the Newton schemes are vector operations. Dot products
are also required to compute residual norms. In that framework, no communication
is needed to sum two vectors. For a dot product one global reduction is needed. So
once the linear solver has been parallelized, the parallelization of the Euler and the
Newton methods is straightforward.

2.2.3 Parallelization of the linear system solution

The most important part of the computations is spent solving linear systems. Typi-
cally, more than 90% of the computational time is spent solving linear systems when
the sequential code is used. How to parallelize these linear systems in a distributed
environment is the main topic of this thesis. We investigate both distributed di-
rect methods and distributed iterative methods for the semiconductor application.
Before presenting in detail these methods we recall some properties of the linear
systems to solve.

Some properties of the linear systems

Let Ax = b be one of the linear systems to solve

32 Parallelization of the finite element code

1. Size : A is a square matrix of dimension n, where n is the number of edges in
the mesh; the entries of A are reals.

2. Symmetry : the matrix A is either symmetric positive definite (SPD matrix)
if it is arising from the discretization of the Poisson equation or unsymmetric
if is arising from the discretization of one of the two continuity equations. In
the numerical unsymmetric case, the pattern remains symmetric. That means
that aij 6= 0 if and only if aji 6= 0.

3. Sparsity : the unknowns for the fluxes are associated with the edges in the
triangulation and we have the property that aij 6= 0 if and only if i and j are
two edges belonging to a common triangle. One edge can be connected directly
to a maximum of 4 other edges as it is shown in Figure 2.5. So the matrix A
has at most 5 nonzero entries per row. Moreover, this sparsity pattern remains
constant during the nonlinear iterations as it is based upon the mesh topology
which remains constant.

i

Figure 2.5: The edge i is connected directly to only the 4 neighbouring edges.

2.3 Parallel direct methods for sparse matrices

2.3.1 Introduction

When performing a LU (or LLT) factorization in order to solve the linear system
Ax = b, one has to take into account the sparsity of A. Usually the factors do not
remain as sparse as the original matrix due to fill-in. Fill-in occurs if, during the
basic operation

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik × a

(k)
kj

a
(k)
kk

, (2.1)

corresponding to the update of the reduced matrix after selection of pivot a
(k)
kk at

step k of the LU factorization, entry a
(k+1)
ij becomes nonzero when a

(k)
ij was zero.

2.3 Parallel direct methods for sparse matrices 33

Parallel sparse direct algorithms are designed to reduce the fill-in while keeping
a maximum level of parallelism. Many algorithms have been developed. We will
only detail the multifrontal approach, but we can cite supernodal approaches (see for
example SuperLU [40]) and Fan-both algorithms [11]. The SuperLU and the mul-
tifrontal methods can be described by a computational tree, precomputed during a
symbolic analysis phase only based on the matrix structure, whose nodes represent
computations and whose edges represent transfer of data. In the case of the multi-
frontal method, at each node, some steps of Gaussian elimination are performed on
a dense frontal matrix and the Schur complement that remains is passed for assem-
bly at the parent node. In the case of the supernodal code the distributed memory
version uses a right-looking formulation which, having computed the factorization
of a block of columns corresponding to a node of the tree, then immediatly sends
the data to update the block columns corresponding to ancestors in the tree [7].

2.3.2 The multifrontal method

The multifrontal method is used to compute the LU or LDLT factorizations of a
general sparse matrix. The multifrontal technique was developed by Duff and Reid
[48] for computing the solution of indefinite sparse symmetric linear equations using
Gaussian elimination and was then extended to solve more general unsymmetric
matrices by Duff and Reid [49]. We refer to [47, 83] for a detailed description of the
multifrontal technique.

The multifrontal algorithm consists of three steps : the symbolic analysis, the
numerical factorization and the solution.

Symbolic analysis

This step consists of generating an ordering and data structures for the subsequent
numerical factorization. The reordering is chosen so that pivoting down the diagonal
in order on the resulting permuted matrix PAP T produces much less fill-in and work
than computing the factors of A by pivoting down the diagonal in the original order.
This reordering is computed using only information on the matrix structure without
taking into account the numerical values and so may not be stable for general matri-
ces. However, if the matrix A is symmetric positive-definite a Cholesky factorization
can be safely used. This technique of preceding the numerical factorization with a
symbolic analysis can also be extended to unsymmetric systems although the nu-
merical factorization phase must allow numerical pivoting [47]. Unfortunately, this
problem is NP-complete [113], so heuristics are used. A standard ordering is the
minimum degree algorithm or one of its variants [3]. Other methods are based on
nested dissection algorithms [58]. But most of the state-of-the art ordering packages
hybridize these methods by performing incomplete nested dissection and ordering
the subgraphs associated with subtrees corresponding to the leaves of the separation
tree by minimum degree. Experiments coupling the nested dissection algorithm with
an approximate minimum degree algorithm show performance improvements both
in term of fill-in reduction and concurrency during numerical factorization [7, 91].

34 Parallelization of the finite element code

The symbolic analysis does not take into account numerical values. If two matrices
A1 and A2 have the same structure, only one analysis is needed. Particularly, in
our semi-conductor simulation, we only need two analysis phases, one for the SPD
systems and one for the unsymmetric systems.

Numerical factorization

All elimination operations take place within a dense submatrix, called a frontal
matrix. The frontal matrix can be partitioned as

(

F11 F12

F21 F22

)

and pivots at this stage in the elimination can be chosen from within the block
F11 only. The Schur complement F22 − F21F

−1
11 F12 is computed and used to update

later rows and columns of the matrix. We call this matrix, the contribution block.
The overall factorization of the sparse matrix using a multifrontal scheme, can be
described by an assembly tree, where the nodes correspond to computations of the
Schur complement as just described, and the edges represent the transfer of the
contribution block which is assembled (or summed) with other contribution blocks
and original matrix entries at the parent node in the tree. An important aspect of
the assembly tree is that operations at nodes which are not ancestors or descendents
of each other are independent thus giving the possibility for obtaining parallelism
from the tree. The use of dense submatrices has several advantages. It is possible
to use level 3 BLAS optimized subroutines and indirect addressing is avoided. For
the unsymmetric case, dynamic pivoting must be allowed during the factorization
phase to ensure numerical backward stability.

Solve

In this phase, the factors computed during the factorization phase are used to com-
pute the solution via backward and forward substitution. The assembly tree can also
be used to identify parallelism during this step. When the problem is numerically
difficult, a few steps of iterative refinement [47] are often performed to improve the
accuracy of the solution.

2.3.3 The MUMPS software

The software MUMPS (MUltifrontal Massively Parallel Solver) is an implementa-
tion of the multifrontal technique for distributed memory environments. It was
initially developed in the framework of the PARASOL Project [8]. PARASOL was
an ESPRIT IV Long Term Research Project for “An Integrated Environment for
Parallel Sparse Matrix Solvers”. The main goal of this project was to build and
test a portable library for solving large sparse systems of equations on distributed
memory systems.

2.3 Parallel direct methods for sparse matrices 35

The software MUMPS [4, 6, 89] is written in FORTRAN 90 and uses the new
functionalities of this language (modularity, dynamic memory management) to be
an efficient modern code easy to use. The message passing library used is MPI. We
present here the main features of this code.

Factorization of sparse symmetric positive definite matrices (LDLT factorization),
general symmetric matrices and general unsymmetric matrices (LU factorization).

Entry format for the matrices. The matrix of the linear system to be solved
can be given to MUMPS in different formats. The three formats that can be used
are :

• the centralized format where the matrix is stored in coordinate format [51] on
one processor that is called the host,

• the distributed format where each processor involved in the solution has access
to a subset of the matrix described in a coordinate format, defined in a global
ordering,

• the elemental format where the matrix is described as a sum of dense elemen-
tary matrices. This latter format is natural in some finite element codes where
the small dense matrices are the elementary matrices.

Parallel factorization and solve phase (uniprocessor execution also possible). The
symbolic analysis phase remains sequential and is centralized on a processor desig-
nated as the host in the MPI communicator. The default algorithm for the ordering
is an approximate minimum degree (AMD) [3] but the user can provide any other
ordering. Classical threshold numerical pivoting is allowed during the numerical
phase. Moreover, MUMPS can adapt to computer load variations during the nu-
merical phase. Dynamic distributed scheduling is used to obtain this feature.

Backward error analysis. MUMPS can calculate a sparse backward error using
the theory and metrics developed in [9] and it can perform iterative refinement to
reduce the backward error down to machine precision if required.

Null space functionalities. MUMPS provides options for rank detection and
computation of the null space basis. The dynamic pivoting strategy available in
both the symmetric and unsymmetric version of MUMPS postpones all the singu-
larities to the root. Therefore, the problem of rank detection for the original matrix
is reduced to the problem of rank detection for the root matrix. At this root, rank
revealing algorithms are applied [30, 35]. The null space basis is then computed
using backward transformations. This latter feature is of primal interest in domain
decomposition methods like BNN [84] and FETI [54].

36 Parallelization of the finite element code

Computation of a Schur complement. Let A be the partitioned matrix

A =

(

A11 A12

A21 A22

)

where A11 and A22 are two square matrices coupled by the two rectangular matrices
A12 and A21. The matrix S = A22 − A21A

−1
11 A12 is called the Schur complement

matrix.
MUMPS can return a Schur complement to the user. The user must specify

the list of indices of the Schur matrix. MUMPS then provides both factorization of
the A11 matrix and the explicit Schur matrix S. The Schur matrix is returned as
a dense matrix. The partial factorization that builds the Schur matrix can also be
used to solve linear systems associated with the matrix A11.

This functionality of MUMPS is critical in our implementation of domain de-
composition methods as we will see in Section 2.4.

2.4 Domain decomposition methods

2.4.1 Introduction

In our case we consider domain decomposition as an algebraic technique used to solve
in parallel the linear systems arising from the discretization of PDEs and based on
a splitting of the domain into subdomains. These methods can be divided into two
classes : overlapping and non-overlapping algorithms. The overlapping algorithms
are referred to as Schwarz algorithms [97] and the non-overlapping as Schur algo-
rithms. Schwarz methods consist in building block preconditioners for an iterative
solver on the complete system. To be efficient these methods need the domains to
overlap. It is complex to build this overlap in the case of unstructured meshes. Fur-
thermore, a preliminary study [106] has shown that the additive Schwarz technique
was not effective on the class of problems we are interested in. We therefore con-
centrate our studies on the Schur complement method. For details of the Schwarz
method we refer to [32, 45, 101].

2.4.2 Schur complement method

This method is also called substructuring, referring to structural mechanics problems
which were historically the first area of application for this method. It consists in first
solving the interface problem and then the internal problems on each subdomain.
A detailed and exhaustive overview of the Schur complement methods can be found
in [32, 101].

Let Au = f be the linear problem to solve. We assume that the domain
Ω is partitioned into N non-overlapping subdomains Ω1, ..., ΩN with boundaries
∂Ω1,, ∂ΩN . Let B be the set of all indices of the discretized points which belong
to the interfaces between the subdomains. Grouping the points corresponding to B

2.4 Domain decomposition methods 37

in the vector uB and those corresponding to the interior I of the subdomains in uI,
we get the reordered problem :

(

AII AIB

ABI ABB

)(

uI

uB

)

=

(

fI

fB

)

. (2.2)

Eliminating uI from the second block row of (2.2) leads to the following reduced
equation for uB :

SuB = fB − ABIA
−1
II fI , where S = ABB − ABIA

−1
II AIB (2.3)

is the Schur complement of the matrix AII in A, and is usually referred to as the
Schur complement matrix. The matrix S inherits from A the symmetric positive
definiteness property. Algorithm 5 describes the Schur complement method.

Step 1. Reorder the unknowns so that the unknowns on the interface (B) are
the last ones.

(

AII AIB

ABI ABB

)(

uI

uB

)

=

(

fI

fB

)

Step 2. Solve the problem on the interface

SuB = fB − ABIA
−1
II fI , with S = ABB − ABIA

−1
II AIB

Step 3. Solve the problem for the interior unknowns

AIIuI = fI − AIBuB

Algorithm 5: Algorithm of the Schur complement method.

We define Γi the internal frontier of the subdomain Ωi as Γi = ∂Ωi \ ∂Ω and
the whole interface Γ as Γ = ∪Γi. Let RΓi

: Γ → Γi be the canonical pointwise
restriction which maps full vectors defined on Γ into vectors defined on Γi, and
let RT

Γi
: Γi → Γ be its transpose. For a matrix A arising from a finite-element

discretization, the Schur complement matrix (2.3) can also be written as

S =

N
∑

i=1

RT
Γi

S(i)RΓi
, (2.4)

where

S(i) = A
(i)
Γi
− AΓiiA

−1
ii AiΓi

(2.5)

is referred to as the local Schur complement associated with the subdomain Ωi. S(i)

involves submatrices from the local matrix A(i), defined by

A(i) =

(

Aii AiΓi

AΓii A
(i)
Γi

)

, (2.6)

38 Parallelization of the finite element code

where A(i) is the local discretization of the problem on the subdomain Ωi. We can
also denote by ui the unknowns corresponding to the internal edges of the subdomain
Ωi and fi its associated right-hand side.

When implemented on a distributed environment, the matrix S is usually not
fully assembled. We solve the Schur complement system in parallel by an iterative
or a direct distributed method.

2.4.3 Iterative substructuring

Krylov subspace methods

Krylov methods are iterative methods based on the projection onto a subspace
κ(A, v, j) = Span{v, Av, A2v, . . . , Aj−1v} called a Krylov subspace associated with
v and A where A is the matrix of the linear system to solve and v is usually the
starting residual. For a general presentation of Krylov methods we refer to [68, 95].

In the symmetric positive definite case, the method of choice is the conjugate
gradient algorithm [73]. The conjugate gradient has two remarkable properties. The
first advantage is that it minimizes the A-norm of the forward error on κ(A, v, j).
The second advantage is that it is based on a simple triple recursion and so it only
requires the storage of three vectors.

In the general unsymmetric case it is not possible to combine these two advan-
tages [52]. For example the GMRES algorithm [96] minimizes the 2-norm of the
residual on κ(A, v, j) but is not based on a short recurrence and requires storage
for k vectors at step k of the iterative process. On the contrary, the BiCGStab
algorithm [107] is based on short recurrences but the iterate x(i) does not satisfy any
optimal criterion on κ(A, v, j).

These algorithms when implemented in numerical libraries for parallel computa-
tions only require from the user the implementation of three computational kernels :

• the dot product calculation,

• the matrix-vector product,

• applying the preconditioner to a vector.

Preconditioning techniques will be developed in detail in Chapter 3. We propose
now two ways of computing the matrix-vector product with the Schur complement.
These two possibilities define two algorithms : implicit iterative substructuring and
explicit iterative substructuring.

Implicit iterative substructuring

For this approach the matrices Aii are factorized by a sparse direct solver indepen-
dently on each subdomain, consequently in parallel on a distributed computer. If A
is symmetric positive definite we use a Cholesky factorization to obtain

Aii = LiL
T
i ,

2.4 Domain decomposition methods 39

where Li is the lower triangular factor. If Aii is unsymmetric we use a LU algorithm
to obtain

Aii = LiUi,

where Li is the lower triangular factor and Ui the upper triangular factor. These
factorizations are computed by using uniprocessor version of MUMPS concurrently
on each subdomain.

In an implicit iterative substructuring method, described by Algorithm 6, the
factors of Aii are used to compute the local matrix-vector products for the local Schur
complement (2.5). This is done via a sequence of sparse linear algebra computa-
tions, namely a sparse matrix-vector product by AiΓi

, then sparse forward/backward
substitution using the computed factors of Aii, and finally a sparse matrix-vector
product by AΓii.

Step 1. Each processor computes the local discretization matrix A(i) associated
with its subdomain.
All the processors compute a factorization of the internal problem Aii = LiUi (or
LiL

T
i in the symmetric positive definite case).

Step 2. The interface problem SuB = g is solved by an iterative Krylov solver.
The computation of the matrix-vector product

y ← Sx

is done in two steps :
Step a) is completely parallel and does not need any communication between the
processors.

∀i ∈ {1, . . . , n}
yi ← AiΓi

RΓi
xi

yi ← A−1
ii yi, computed by the solution of two triangular systems

with the factors computed at Step 1.

yi ← A
(i)
Γi

xi − AΓiiyi

Step b) needs some exchange of informations between neighbouring subdomain

y ← Σn
i=1R

T
Γi

yi

Step 3. The internal problem is solved in parallel without any communications
on each subdomain. On each subdomain the linear system

Aiiui = fi − AiΓi
RΓi

uB

is solved via forward/backward substitution using the factors computed at Step 1.

Algorithm 6: Implicit iterative substructuring.

40 Parallelization of the finite element code

Explicit iterative substructuring

In the case of explicit iterative substructuring the local Schur complement matrices
S(i) are computed explicitly using the Schur complement computation feature of
MUMPS (see Section 2.3.3) concurrently on each processor. On the contrary, in
the implicit case, we only know how to compute the matrix-vector products with
these local Schur complements using forward/backward substitutions using the fac-
tors associated with the local Dirichlet problem. Explicit iterative substructuring is
described by Algorithm 7.

Step 1. Each processor computes the local discretization matrix A(i) associated
with its subdomain.
All the processors compute a factorization of the internal problem Aii = LiUi (or
LiL

T
i) and generate the local Schur complement matrix S(i).

Step 2. The interface problem SuB = g is solved by an iterative Krylov solver.
The computation of the matrix-vector product

y ← Sx

is done in two steps :
Step a) is completely parallel and does not need any communication between the
processors.

∀i ∈ {1, . . . , n}
yi ← RΓi

xi

yi ← S(i)yi

Step b) needs some exchange of informations between neighbouring subdomains.

y ← Σn
i=1R

T
Γi

yi

Step 3. The internal problem is solved in parallel without any communications
on each subdomain. On each subdomain the linear system

Aiiui = fi − AiΓi
RΓi

uB

is solved via forward/backward substitution using the factors computed at Step 1.

Algorithm 7: Explicit iterative substructuring.

There are several advantages to the explicit algorithm. In the implicit case, the
core of the matrix-vector product needs two sparse triangular solves on the internal
unknowns of each subdomain. In the explicit case, it consists of a call to DGEMV,
the dense level 2 BLAS matrix-vector subroutine on each subdomain on a block of
size the number of unknowns on the interface of the subdomain.

The other advantage is that the explicit algorithm will allow us to build more
efficient preconditioners for the Schur complement system as presented in Chapter 3

2.4 Domain decomposition methods 41

because we have access to the entries of the local Schur complement matrices S (i).

There are also some drawbacks to this method. First, the factorization step
(Step 1 of Algorithm 6 and Algorithm 7) is longer as we have more operations to
perform to make the updates on the whole matrix to compute the Schur complement.
This method also implies additional storage to hold the local Schur complement as
a dense matrix. When the size of the interface is small relative to the number
of internal unknowns, the explicit method will be more efficient than the implicit
one. This is usually the case for 2D problems like the one we are treating. For
3D problems, the storage/computation of the local Schur complement might not be
affordable. Furthermore, even if the factorization step is longer, only a small number
of Krylov iterations is needed to make the explicit method better than the implicit
one. A performance comparison of these two approaches is presented in Chapter 4.

2.4.4 Direct substructuring

Step 2 of Algorithm 7 consists in solving the interface problem by a Krylov iterative
method. Direct substructuring consists in replacing the Krylov solver by a parallel
direct method.

The Schur complement matrix is unassembled and distributed over all the differ-
ent processors as the local Schur complement matrices. The interface system can be
solved by a distributed sparse direct linear solver like MUMPS (see Section 2.3.3).
The method is described by Algorithm 8.

Step 1 Each processor has access to the local discretization matrix A(i).
All the processors compute in parallel and without communication a factorization
of the internal problem Aii = LiUi (or LiL

T
i) and the local Schur complement

matrix S(i).
Step 2 The Schur complement system SuB = g is solved by MUMPS used as a
parallel solver with distributed matrix entries (the matrix S is viewed as a set of
local Schur complement matrices).
Step 3 : The internal problem is solved in parallel without any communications
on each subdomain. On each subdomain the linear system

Aiiui = fi − AiΓi
RΓi

uB

is solved via forward/backward substitution using the factors computed at Step 1.

Algorithm 8: Direct substructuring.

It would be possible to obtain an algorithm equivalent to Algorithm 8 by only
using a single instance of MUMPS on the complete matrix. This would consist in
providing MUMPS with an ordering composed by two steps. The first step would
partition the graph of the complete matrix into subgraphs, each of the subgraphs
would be associated with one subdomain generated by the mesh partitioner. Then
on each subgraph an AMD ordering would be applied. The overall ordering would

42 Parallelization of the finite element code

result from a combination of nested dissection [58] (to define the subgraphs) and
AMD (within each subgraph). If one uses this ordering instead of AMD on the
complete graph of the matrix (as it is done by default in MUMPS), one will obtain
a sequence of numerical operations for the factorization similar to those defined by
Algorithm 8 (except for some slight variations that may occur due to a different
dynamic pivoting during the factorization phase of unsymmetric matrices).

From a software point of view there are several differences between direct sub-
structuring and an application of MUMPS to the matrix A distributed among the
processors. In direct substructuring, the analysis phase is distributed for the inter-
nal problems but during the factorization phase load balancing is no longer possible
and numerical pivoting is limited to the local subdomains.

Chapter 3

Preconditioned iterative methods

for the Schur complement

In this Chapter we present numerical techniques for solving the Schur complement
system using iterative substructuring methods. In Section 3.2 we introduce the one-
level preconditioners, while the two-level approaches are described in the next sec-
tion. In Section 3.4 we present some scaling techniques that we consider in a pre-
processing phase for the Schur complement system. Finally in Section 3.5 we de-
scribe the stopping criterion implemented in the packages of iterative linear solvers.

3.1 Introduction

In iterative substructuring (see Section 2.4.3) the interface problem is solved using
a Krylov solver. The possible weakness of iterative methods is their potential lack
of robustness compared with direct solvers. However both the efficiency and the
robustness can be improved by using preconditioning techniques. Preconditioning
consists in transforming the original linear system into one which has the same
solution; but it is expected that the transformed linear system is easier to solve.

Let us first consider the SPD situation. Let S be a SPD Schur matrix. An upper
bound of the rate of convergence of the conjugate gradient method, when solving
the linear system Su = g, depends on the condition number κ(S) of the matrix
that is defined by the ratio λmax/λmin where λmax, λmin, denotes the largest, the
smallest respectively, eigenvalue of S. The idea of preconditioning is then to replace
the linear system

Su = g (3.1)

by the equivalent linear system

MSu = Mg, (3.2)

where M is a non singular matrix such that κ(MS) < κ(S). The ideal but somehow
conflicting features of M would be that M is an approximation of S−1, M is not

44 Preconditioned iterative methods for the Schur complement

expensive to compute and to store and the matrix-vector product Mv is easy to
compute. Another constraint for SPD linear systems is that the preconditioner M
should be SPD. The preconditioning defined by (3.2) is called left preconditioning
due to its location with respect to the original matrix. The operator MS is no longer
self-adjoint for the Euclidean inner product but is still self-adjoint for the M -inner
product and therefore it is possible to define a preconditioned conjugate gradient
algorithm (see for instance [95]). Another way to preserve the symmetry is to use
the classical conjugate gradient method but on the system

LSLT v = Lg, u = LT v,

where M = LLT is defined in a factorized form, that is L is the Cholesky factor of M .
This preconditioning is called split preconditioning and is mathematically equivalent
to left preconditioning. Finally, it is also possible to define a right preconditioning
technique which consists in solving

SMv = g, u = Mv.

The right preconditioned conjugate gradient method with the M−1-inner product is
also mathematically equivalent to the left preconditioned conjugate gradient with the
M -inner product [95]. As these three preconditioning techniques are mathematically
equivalent we have only considered the classical case of left preconditioning in our
numerical experiments.

For unsymmetric matrices, we can also define a left, a right and split precondi-
tioning, based for instance on the LU decomposition of the preconditioner. Unlike
the conjugate gradient case, the iterates are different for these three preconditioning
techniques when used with GMRES. In the unsymmetric case we do not have any
convergence bound based on the condition number of the matrix, but some argu-
ments exist [50] for diagonalizable matrices that indicate the bad convergence effect
of the smallest eigenvalues.

Preconditioning theory for SPD problems often refers to spectral properties of
the matrix to be preconditioned. The linear systems arising in the semi-conductor
simulation code are too complex to enable to get any a priori idea of the spectral
properties of the Schur complement matrices we encounter during the calculation.
First, the discretized problem corresponding to the PDE is nonlinear and the linear
systems that we are solving result from a linearization within a Newton process.
Moreover, the flux equations are treated after having algebraically eliminated the
potential terms; consequently these equations do not correspond anymore to the
original PDE. So all the convergence bounds known in the elliptic case for the
preconditioners described in Sections 3.2 and 3.3 are not guaranteed for our semi-
conductor problems.

In Section 3.2 and 3.3 we describe some preconditioners for the Schur comple-
ment that apply both to SPD and non-symmetric matrices. In Section 3.4 we present
some scaling techniques to reduce the magnitude gap between the coefficients of the
Schur complement matrix. Finally, in Section 3.5 we introduce the stopping criterion
used for the Krylov solvers.

3.2 Local preconditioners for the Schur complement 45

3.2 Local preconditioners for the Schur comple-

ment

3.2.1 Neumann-Neumann Preconditioner

This local preconditioner is based on the local Schur complement matrices S (i) and
was originally proposed in an analytic form in [22] and further studied in [39, 103].
It can be formulated algebraically as

MNN =
N
∑

i=1

RT
Γi

DT
i (S(i))+DiRΓi

, (3.3)

where (S(i))+ denotes the pseudo-inverse of the local Schur complement S(i) that
might be singular. This is for instance the case for the internal subdomains for
diffusion equations. The matrices Di are diagonal matrices and define a partition of
unity, i.e.,

∑N

i=1 RΓi
Di = I.

In the framework of that study, we use the implementation of this preconditioner
developed at Parallab (University of Bergen) [15]. This package only address SPD
linear systems and the unsymmetric version proposed by [2] is an ongoing work at
Parallab.

3.2.2 Block preconditioners

Generalities

The preconditioners presented in this section have been initially proposed in [26, 27,
28]. In order to describe these preconditioners, we need to first define a partition
of B, the set of edges of the discretization belonging to the interface between the
subdomains. Let U be the algebraic space of vectors where the Schur complement
is defined and (Ui)i=1,p a set of subspaces of U such that

U = U1 + U2 + · · ·+ Up.

Let Ri be the canonical pointwise restriction from U to Ui. Its transpose extends
grid functions in Ui by zero to the rest of U . Using the above notation, we can define
a wide class of block preconditioners by:

Mloc =

p
∑

i=1

RT
i M−1

i Ri, (3.4)

where

Mi = RiSRT
i . (3.5)

Remark 1 : If the operator RT
i is of full rank and if S is symmetric and positive

definite, then the matrices Mi, defined in Equation (3.5) are SPD. Consequently

46 Preconditioned iterative methods for the Schur complement

Mloc defined in Equation (3.4) is also SPD.

Remark 2 : If U = U1⊕⊕Un, then Mloc is a block Jacobi preconditioner. Other-
wise, Mloc is a block diagonal preconditioner with an overlap between the blocks as
Ui ∩ Uj 6= ∅. In this case, the preconditioner can be viewed as an algebraic additive
Schwarz preconditioner for the Schur complement.

The preconditioners are requested to be efficient on parallel distributed memory
platforms. Therefore, we do mainly consider subspaces Ui that involve information
mainly stored in the local memory of the processors; that is information associated
with only one subdomain and its closest neighbours. We present two decompositions
of U :

1. each common interface Ek = ∂Ωi ∩ ∂Ωj between two subdomains of the de-
composition giving rise to the edge preconditioner;

2. each interface Γi of the subdomains giving the subdomain preconditioner.

Block Jacobi preconditioner

We define the common interface Ei between subdomain Ωj and subdomain Ωl as
the set of edges belonging to (∂Ωj ∩ ∂Ωl). The set B can be partitioned into m
common interfaces Ei, i ∈ {1, . . . , m}, B = (

⋃m

i=1 Ei).

For each common interface Ei we define Ri ≡ REi
as the standard restriction

from B to Ei. Its transpose extends vectors in Ei by zero to the rest of the interface.
Thus, Mi = REi

SRT
Ei

= Sii. Using the above notation we define the following local
preconditioner by

MbJ =
∑

Ei

RT
Ei

S−1
ii REi

. (3.6)

This preconditioner aims at capturing the interaction between neighbouring
edges within the same common interface between two subdomains. This precon-
ditioner is the straightforward block Jacobi that is well-known to be efficiently par-
allelizable.

Subdomain based preconditioner

In this alternative [27], we try to exploit all the information available on each subdo-
main and we associate each subspace Ui with the entire boundary Γi of subdomain
Ωi. Here, we have Ri ≡ RΓi

. The local matrix Mi = S̄(i) is called the assembled
local Schur complement and corresponds to the restriction of the complete Schur
matrix to the interface of the subdomain Ωi. This splitting (Ui)i is not a direct sum
of the space U and we have introduced some overlap between the blocks defining

3.2 Local preconditioners for the Schur complement 47

the subdomain preconditioner MAS. This preconditioner can be written as:

MAS =

N
∑

i=1

RT
Γi

(S̄(i))−1RΓi
. (3.7)

We refer to this preconditioner as the MAS preconditioner because it can be
viewed as an Additive Schwarz preconditioner for the Schur complement system.
One advantage of using the assembled local Schur complements instead of the local
Schur complements (like in the Neumann-Neumann case) is that in the SPD case
the assembled Schur complements cannot be singular (as S is not singular).

Implementation remarks

In the case of implicit iterative substructuring algorithms (see Section 2.4.3), the
MbJ preconditioner can be built using the probing [31] technique which requires
multiple matrix-vector products by S. Unfortunately the probing approach cannot
be applied to the MAS preconditioner. The only way to recover the assembled local
Schur complement would be to apply the Schur complement matrix to each vector of
the canonical basis; this would be too computationally expensive and consequently
unpractical for real computation.

In the case of explicit iterative substructuring (see Section 2.4.3) the local Schur
complement matrices are explicitly known. A natural alternative to the probing
technique is then simply to sum the explicitly computed S(i) to build the local
assembled Schur matrices S̄(i). This operation can be done using only one message
exchange between each neighbouring subdomains Ωi and Ωj sharing the interface
Eij. The data communicated is the local Schur complement matrices restricted to
the edge Eij that is a (nij × nij) matrix where nij is the number of unknowns along
the edge Eij.

Once the assembled local Schur complements S̄(i) have been computed it is easy
to build either the MbJ preconditioner or the MAS preconditioner. The construction
of the MbJ preconditioner is cheaper as we only need to factorize the diagonal blocks
of S̄(i) corresponding to the interfaces between two subdomains. MAS requires the
factorization of the complete assembled local Schur complement. The application of
the MbJ preconditioner is also cheaper. For the sake of simplicity in our implemen-
tation we choose to redundantly factorize the diagonal block associated with each
edge Eij on the processor dealing with Ωi and the one in charge of Ωj. The first
advantage is the simplicity for the implementation as we do not have to logically
assign an interface to a subdomain; secondly this avoid to implement a communi-
cation after the forward/backward substitution when the preconditioner is applied.
This latter communication step is implemented for MAS.

48 Preconditioned iterative methods for the Schur complement

3.3 Two-level preconditioners for the Schur com-

plement

3.3.1 Motivations for two-level algorithms

The Green’s functions associated with elliptic partial differential equations are global.
Consequently the solution at any point depends on the solution everywhere in
the domain. Therefore, for solving the systems arising from the discretization of
these equations, we have to provide a mechanism to represent this global cou-
pling/behaviour.

Various preconditioners, that have appeared in the eighties and nineties, have
suggested different ways for constructing the global coupling mechanism, referred to
as the coarse-space components, and for combining them with local preconditioners.
Although the local block preconditioners proposed in Section 3.2 introduce some
exchanges of information, these exchanges remain local to the neighbouring edges
or subdomains and introduce no global coupling mechanism. This mechanism is
necessary to prevent an increase in the number of iterations when the number of
subdomains is increased.

In this Section we present the well known Balanced Neumann-Neumann [84]
preconditioner as well as variants of the BPS [23] preconditioners described in [28].

3.3.2 Balanced Neumann-Neumann preconditioner

The balanced Neumann-Neumann preconditioner is a two-level extension of the
Neumann-Neumann preconditioner presented in Section 3.2.1. This two-level pre-
conditioner was first introduced in [84]. It can be formulated as

M−1S = P + (I − P)MNNS(I − P), and MNN =
N
∑

i=1

RT
i DT

i (S(i))−1DiRi.

Here, MNN is the one-level Neumann-Neumann preconditioner (see Section 3.2.1). P
denotes the S-orthogonal projection onto the coarse space defined by
Span{∑N

i=1 RT
i DT

i Zi} where Zi contains at least the null-space of S(i) if any.

For our numerical experiments, we used a software package developed by Par-
allab (University of Bergen). One of the features of that software is its ability to
construct the coarse space from local subspaces Zi that are spanned by the eigen-
vectors associated with the smallest (in magnitude) eigenvalues of the local Schur
complement matrices S(i); that consequently contains the null space of S(i) if any.
We refer to [15] for the complete description of the preconditioner and its imple-
mentation.

We denote this preconditioner as MBNN(k) where k is the number of eigenvectors
of each local Schur complements that are computed to build the coarse component
of the preconditioner (therefore it can be considered as the number of degrees of

3.3 Two-level preconditioners for the Schur complement 49

freedom per subdomain in the preconditioner). The implementation of the balanc-
ing Neumann-Neumann preconditioner that we use is only available for the SPD
matrices. An unsymmetric version is under development at Parallab.

3.3.3 Coarse space components for local block precondition-

ers

General context

The preconditioners presented now are closely related to the BPS preconditioner [23],
although we consider different coarse spaces to construct their coarse components.
The class of two-level preconditioners that we define now can be described as follows:

M = Mloc + RT
0 (R0SRT

0)−1R0

where R0 is a restriction operator from the subspace U (where the Schur complement
is defined) to a subspace U0 of U called the coarse space and where Mloc is one of
the local block preconditioners presented in Section 3.2.2.

The coarse space operator is defined by the Galerkin formula:

A0 = R0SRT
0 ,

represents in some way the Schur complement on the coarse space U0. The global
coupling mechanism is introduced by the coarse component of the preconditioner
which can thus be defined as Mglobal = RT

0 A−1
0 R0.

The coarse space preconditioners will only differ in the choice of the coarse
space U0 and the interpolation operator RT

0 . Similarly to the Neumann-Neumann
and Balancing Neumann-Neumann preconditioner, RT

0 must be a partition of unity
in U in the sense that

RT
0 1 = 1, (3.8)

where the symbol 1 denotes the vectors of all 1’s that have different size in the right
and left hand side of (3.8).

Further references and numerical tests on this class of two level preconditioners
can be found in [27, 28, 63, 108]. In our study we consider two different coarse
space: the subdomain-based coarse preconditioner and the edge-based coarse pre-
conditioner.

Subdomain based coarse space

With this coarse space we associate one degree of freedom with each subdomain. Let
B be the set of edges belonging to the interface Γ between the subdomains. Let Ωk

be a subdomain and ∂Ωk its boundary. Let Zk be a vector defined on B and Zk(i)
its i-th component. Then, the subdomain-based coarse space U0 can be defined as

U0 = span[Zk : k = 1, . . . , N], where Zk(i) =

{

1, if i ∈ ∂Ωk ∩B and

0, otherwise.

50 Preconditioned iterative methods for the Schur complement

The considered restriction operator R0 returns for each subdomain (Ωi)i=1,N−1 the
half-sum of the values at all the edges on the boundary of this subdomain.

If we associate to this coarse space the MAS local preconditioner as defined in
Section 3.2.2 we obtain a preconditioner we refer to as MAS−sub.

Edge based coarse space

We refine the coarse space based on the subdomains and we introduce one degree of
freedom per interface between two neighbouring subdomains, that is, when ∂Ωi ∩
∂Ωj 6= ∅. Let Ek = ∂Ωi∩∂Ωj be the interface between subdomain Ωi and Ωj. Let Zk

be a vector defined on B and Zk(i) its i-th component. Let me denotes the number
of common interfaces Ei ⊂ B, then, the edge based coarse space U0 can be defined
as:

U0 = span[Zk : k = 1, . . . , me], where Zk(i) =

{

1 i ∈ Ek,

0 otherwise.

The set of vectors B = {Z1, Z2, . . . , Zme
} forms a basis for the subspace U0, as these

vectors span U0 by construction and they are linearly independent. The considered
restriction operator R0 returns for each edge the sum of the values at all the edges
on the interface between two neighbouring subdomains.

If we associate to this coarse space, the MAS local preconditioner as defined in
Section 3.2.2, we obtain a preconditioner we refer to as MAS−edge.

3.4 Scaling techniques for the Schur complement

The dynamic of the computed quantities during the simulation is very high and
leads to huge variations in the coefficients of the linear systems. Consequently
this large variations also appear in the associated Schur complement systems and
causes trouble to the convergence of the iterative scheme. In order to tackle this
problem, we describe a set of scaling techniques that have been implemented and
experienced. All those techniques are relatively easy to implement for scaling the
Schur complement system when the local Schur complement are built explicitly.

We consider the solution of

Su = g, (3.9)

and denote by (sij) the entries of S.

3.4.1 Diagonal scaling for the Schur complement

The symmetric diagonal scaling of (3.9) consists in solving

DSDv = Dg, u = Dv

where D = diag((
√

|sii|)−1)). When the original matrix S is symmetric, by construc-
tion, the diagonal scaling preserves this property as well as the positive definiteness,
if S is.

3.4 Scaling techniques for the Schur complement 51

3.4.2 Row and column scaling

When using a row scaling, each entries of a row in the original matrix is divided by
the norm of that row. Different norms, such as the infinity-norm or the 1-norm, may
be considered, depending on the strategy one wishes to develop. Here we consider
the case of the infinity-norm. The system (3.9) is replaced by

DrSu = Drg

where Dr = diag((‖ S(i, :) ‖∞)−1). Similarly we define the column scaling by
replacing the original system (3.9) by

SDcv = g, u = Dcv

with Dc = diag((‖ S(:, i) ‖∞)−1). One drawback of these two latter methods is that
they do not preserve the symmetry and cannot be applied for SPD systems.

3.4.3 Iterative row-column scaling

This algorithm has been proposed in [94]. It is an iterative procedure that scales
asymptotically the infinity norm of both the rows and the columns to 1. Let Dr,
Dc, denotes the row scaling matrix, column scaling matrix respectively, as described
in the previous section. We define the scaling rcs(1) as

DrSDcv = Drg, u = Dcv.

This procedure can be applied recursively to define the rcs(2) scaling as described
by Algorithm 9. This procedure can be further iterated to define a rcs(k) scaling. If
the matrix S is SPD, then the linear systems scaled using rcs(1) or rcs(2) remains
SPD.

3.4.4 Relationship between the scalings on A and scalings

on S

Let S denote the Schur complement matrix associated with the original matrix A.
Instead of scaling the Schur complement system, it is also possible to scale the
original matrix A before computing the local Schur complement matrices. We first
consider the symmetric diagonal scaling for A meaning that the system Ax = b is
replaced by the DADy = Db, x = Dy where D is the scaling matrix computed from
the diagonal entries of A. If we order first the internal edges and then the ones on
the interface we obtain

(

AII AIΓ

AΓI AΓΓ

)

, (3.10)

as described in Section 2.4.2. Reordering in a consistent manner the diagonal scaling
matrix leads to

(

DI 0
0 DΓ

)(

AII AIΓ

AΓI AΓΓ

)(

DI 0
0 DΓ

)

=

(

DIAIIDI DIAIΓDΓ

DΓAΓIDI DΓAΓΓDΓ

)

. (3.11)

52 Preconditioned iterative methods for the Schur complement

S(1) = S.

Let D
(1)
r and D

(1)
c the classical row and column scaling matrices for S(1).

S(2) = D(1)
r S(1)D(1)

c .

Let D
(2)
r and D

(2)
c the classical row and column scaling matrices for S(2).

Solve the linear system

D(2)
r S(2)D(2)

c v = D(2)
r ∗D(1)

r g.

Compute the solution of the initial system

u = D(2)
c ∗D(1)

c v.

Algorithm 9: Iterative row column scaling of level 2 (rcs(2)) for the Schur com-
plement system.

Eliminating the internal scaled equations we obtain

Sscaled = DΓAΓΓDΓ −DΓAΓiDI(DIAIIDI)
−1DIAIΓDΓ = DΓSDΓ

where S is the Schur system associated with the unscaled matrix A. This observation
is also true for the row, the column and the rcs(k) scalings. This indicates that
scaling the original matrix leads to scale the Schur complement S using entries of
A. For instance for the symmetric diagonal scaling the Schur complement is scaled
using the diagonal entries of AΓΓ that might differ significantly from the diagonal
entries of S. In that respect, only using a scaling on A might be inappropriate.

3.5 Stopping criterion for the linear iterative solvers

3.5.1 Backward error analysis

In this section, we recall the main ideas that govern the definition of suitable stopping
criterion for iterative schemes [10]. These ideas are based on the backward error
analysis introduced in [111]. For a detailed and up to date overview of this topic we
refer to [29] in which we find the following explanations.

The essence of backward error analysis is to associate the exact and the finite-
precision computations in a common framework by means of the following principle:

Consider the computed solution x̃ as the exact solution of a nearby problem.

This idea turns out to be much more powerful than it first appears:

3.5 Stopping criterion for the linear iterative solvers 53

i) It permits us to ignore the details of the computer arithmetic: the errors made
during the course of the computation are interpreted in terms of equivalent
perturbations to the given problem, and the computed quantities are exact for
the perturbed problem.

ii) One advantage is that rounding errors are put on the same footing as errors in
the original data, which, in case of PDEs, can be introduced by the discretiza-
tion methods. The effect of uncertainty in data has usually to be considered
in any case.

Such an error analysis is referred to as backward error analysis because the errors
are reflected back into the original problem.

Let x̃ = G̃(y) be the computed solution for the problem (P) F (x) = y. The
backward error measures the minimal distance of (P) to the set of perturbed prob-
lems that have exact solution x̃. Such a notion requires the specification of the
admissible perturbations of (P). For example, in the case of linear solvers for the
system Ax = b, the class of admissible perturbations of the data Q = {A, b} and
some norm ‖ . ‖ has to be defined.

With these assumptions, we can get an estimation of the error on the computed
solution through the first order bound:

Forward Error ≤ Condition Number × Backward Error. (3.12)

Backward error analysis thus permits us to separate the error bound (3.12) into
the product of

i) condition number, which depends on the equation F (x) = y only,

ii) backward error, which depends on the algorithm and the arithmetic of the
computer.

The condition number is imposed by the problem, and it is the aim of software
developers to propose algorithms which provide a backward error of the order of
machine precision. Unfortunately this is not always possible.

In the following Sections we examine the particular case of Krylov solvers for
linear systems and the case of direct solvers for linear systems.

3.5.2 Krylov solvers

In iterative schemes the residual, and sometimes its norm, is available directly in the
algorithm. For instance in CG, the residual is updated thanks to a simple recurrence
and for GMRES, the 2-norm of the preconditioned residual is given for “free” by the
update of the QR factorization of the Hessenberg matrix [96]. For those reasons, it

54 Preconditioned iterative methods for the Schur complement

is convenient to use a stopping criterion based on a normwise backward error. For
the solution of (3.9) it is defined by

η = inf {ω; ‖ ∆g ‖2 ≤ ω‖ g ‖2 and Sũ = g + ∆g}

=
‖ Sũ− g ‖2
‖ g ‖2

=
‖ r ‖2
‖ g ‖2

.

(3.13)

The iterative scheme is stopped when

‖ rn ‖2
‖ g ‖2

< ε, (3.14)

where ε is a threshold defined by the user and rn the residual associated with the
current iterate. It should be noticed that a common used stopping criterion based
on the reduction of the residual norm

‖ r ‖2
‖ r0 ‖2

< ε,

where r0 is the initial residual, reduces to (3.14) if the initial guess is set to the
null vector. The package we use for CG [55] and for GMRES [56] implement a
normwise backward error stopping criterion. When GMRES is preconditioned with
a left preconditioner, i.e. MSu = Mg, the 2-norm of the preconditioned residual
given by the algorithm is used to define the stopping criterion, that is

‖Mrn ‖2
‖Mg ‖2

< ε. (3.15)

This stopping criterion is a backward error for the preconditioned system and not
for the original system. With right preconditioner, the 2-norm of the precondi-
tioned residual coincides with the residual of the original matrix. Consequently the
backward error of the preconditioned system matches the one of the original system.

For preconditioned CG, the unpreconditioned residual is given by a short re-
currence and the backward error associated with the original problem is easy to
compute. One should also mention that for CG, there exists a technique [67] that
enables one to get a cheap estimation of the A-norm of the forward error. This
estimator will only be available in the next release of the package used in this work.

3.5.3 Direct solvers

In the case of direct solvers, the quality of the solution has to be estimated only
after the forward/backward substitutions (and possibly after each of the few iterative

3.5 Stopping criterion for the linear iterative solvers 55

refinement steps). For those techniques the appropriate criterion [9] is the sparse
componentwise backward error η defined by

η = inf {ω, ∀i, ∀j, |δAij| < ω|Aij|; |δbi| < ω|bi|; (A + δA)x̃ = (b + δb)} . (3.16)

The value of η can be computed by

η = maxi

|b− Ax̃|i
(|b|+ |A||x̃|)i

, (3.17)

where the modulus sign on a vector or a matrix indicates the vector or the matrix
obtained by replacing all entries by their moduli. The MUMPS software is able to
calculate an estimate of the sparse backward error [89] using the theory and metrics
developed in [9].

3.5.4 Embedded iterations

In the case of the semiconductor application, the linear solvers are embedded in
nonlinear loops, consisting in Newton methods, embedded themselves in a semi-
implicit time scheme (see Chapter 1).

Although theoretical results exist to analyse the influence of the linear solution
on the Newton methods [76] they might be difficult to implement in a simulation
code. To illustrate the difficulty to analyse the behaviour of embedded iterations, we
can mention the a priori simple case of embedded linear solvers presented in [20, 21,
66] that nevertheless remains for the main part an open question in linear algebra.

Precisely analysing the behaviour of the embedded iterations for the semiconduc-
tor simulation code is very complex and out of the scope of this work. Nevertheless
some numerical experiments will be given in Section 4.1.

56 Preconditioned iterative methods for the Schur complement

Chapter 4

Numerical results and

performance measurements

In this chapter, we present the numerical behaviour and performance measurements
of the parallel semiconductor device simulation code. More precisely, we report on
the behaviour of the parallel direct and iterative linear solvers presented in Chapters 2
and 3. For the sake of simplicity of exposure, we choose to keep separate the descrip-
tion of the numerical behaviour of the algorithms and their parallel performance on
the selected parallel platform. In Section 4.1, we focus on the numerical behaviour
of iterative substructuring algorithms. In Section 4.2 we compare, in terms of par-
allel computational time, iterative and direct solvers. In Section 4.3 we give some
complementary information on some aspects that were not addressed in Sections 4.1
and 4.2.

4.1 Numerical behaviour of iterative substructur-

ing algorithms

In this section, we focus only on the numerical behaviour of iterative substructuring
algorithms. Because the overall performance is not only governed by the convergence
behaviour, the performance and time measurements are analysed in Section 4.2.

In Section 4.1.1, we present the test cases selected to perform our experiments.
In Section 4.1.3, we demonstrate the decisive influence of both scaling and precondi-
tioning on the overall numerical behaviour of the methods. Then, in Section 4.1.4,
we present some experiments that illustrate how the accuracy required for the Krylov
solvers may modify the convergence of the nonlinear solvers. Finally, in Section 4.1.5,
we investigate the numerical scalability of the preconditioners for the Schur comple-
ment systems.

58 Numerical results and performance measurements

4.1.1 Description of the test cases

We present the test cases selected to illustrate the numerical behaviour of our par-
allel linear solvers. The experiments described in this section have been performed
on three meshes denoted by Mesh S (S stands for small), Mesh M (M stands for
medium) and Mesh L (L stands for large). These three meshes are defined on
the same geometry as that of the heterojunction transistor depicted in Figure 1.7.
Mesh S has 102944 triangles, and the associated linear systems have 154892 un-
knowns. Mesh M has 237499 triangles, and the associated linear systems have
356701 unknowns. Finally, Mesh L, the biggest test case, has 806098 triangles, and
the associated linear systems have 1214758 unknowns.

The main characteristics of Mesh S, Mesh M and Mesh L decomposed into 8,
16 or 32 subdomains are summarized in Tables 4.1, 4.2 and 4.3.

Size of the mesh 102944 triangles
Size of the linear systems 154892
Number of subdomains 8 16 32
Size of Schur matrix 958 1607 2446
Smallest size of a local Schur 110 119 98
Largest size of a local Schur 336 274 198

Table 4.1: Characteristics of Mesh S decomposed into 8, 16 or 32 subdomains.

Size of the mesh 237499 triangles
Size of the linear systems 356701
Number of subdomains 8 16 32
Size of Schur matrix 1607 2273 3606
Smallest size of a local Schur 242 139 94
Largest size of a local Schur 602 470 345

Table 4.2: Characteristics of Mesh M decomposed into 8, 16 or 32 subdomains.

Size of the mesh 806 098 triangles
Size of the linear systems 1 214 758
Number of subdomains 32
Size of Schur matrix 5180
Smallest size of a local Schur 115
Largest size of a local Schur 646

Table 4.3: Characteristics of Mesh L decomposed into 32 subdomains.

In all the simulations presented in this chapter, the boundary conditions of the
problem are the same and correspond to the computation of one tension increment
of 0.2 Volts. The stopping criteria for the Newton and the Euler schemes are also
constant for all the simulations, and their values are both set to 10−7.

4.1 Numerical behaviour of iterative substructuring algorithms 59

The free parameter for those simulations is the choice of the method for solving
the linear systems. One can choose either a direct or an iterative method. Two
choices are possible for the direct method, the direct substructuring algorithm or
the use of MUMPS on the complete matrix given in distributed input format. The
main parameters we play with for the iterative schemes are the choice of the Krylov
solvers, the required accuracy for the Krylov solvers, the preconditioner and the
scaling. The number of possible combinations is too large to make an exhaustive
parametric study. We only vary the ones that we found the most sensitive.

It is important to underline the fact that the linear solvers studied are embedded
in a nonlinear process. Therefore, changing the linear solver might change the non-
linear path and consequently the entries of the linear systems solved might differ
slightly and depend on the selected linear solver.

4.1.2 A remark on the construction of the right-hand side

of the Schur system

Let
Su = g

be the Schur system to be solved. With the same notation as in Section 2.4, we have

g = fB − ABIA
−1
II fI . (4.1)

In (4.1), fB is the restriction of the right hand-side of the original system to the
interface Γ between the subdomains. Practically, fB is distributed among the n
subdomains as

fB =

n
∑

i=1

RT
i f

(i)
B .

Because of the finite-element discretization, the magnitude of one entry in f
(i)
B may

be very different from the corresponding one in fB. For example the value 0 may
be decomposed into −1 and +1 between two neighbouring subdomains. In finite-
precision arithmetic the vector

g1 =
n
∑

i=1

RT
i (f

(i)
B − AΓiiA

−1
ii fi) (4.2)

and the vector

g2 =
n
∑

i=1

RT
i f

(i)
B −

n
∑

i=1

RT
i AΓiiA

−1
ii fi (4.3)

can be different. In practice, we have observed that in (4.2) some values of f
(i)
B

cancel values of AΓiiA
−1
ii fi.

The formula (4.2) seems to be the most natural to compute the right-hand side
of the Schur system as it only requires one communication between two neighbour-
ing subdomains while (4.3) requires communication of two vectors. Unfortunately, it

60 Numerical results and performance measurements

took us some time to realize that numerically (4.2) leads to the wrong results as the
steady state of the simulation is never obtained when it is used due to the cancella-
tion described above. This remark illustrates the fact that the numerical behaviour
of an algorithm cannot be completely decoupled from its software implementation.
Therefore, even if we do not enter into the details of the implementation, cautious
software development remains an important part of the work.

4.1.3 Choice of the scaling and the preconditioner

In the first part below, we first present the experiments performed and only report
on the observed results. Those results are discussed further in the next paragraph
entitled “Comments on the results”.

Experiments and results

The two simulations, denoted by Simulation 1 and Simulation 2, are considered to
illustrate the influence of the scaling and the preconditioning. Simulation 1 is per-
formed on Mesh S decomposed into 16 subdomains (see Table 4.1) and Simulation 2
is performed on Mesh M decomposed into 16 subdomains (see Table 4.2). The stop-
ping criterion for the Krylov solver is set to 10−13. The SPD Schur systems are
solved using CG iterations. The unsymmetric Schur systems are solved by GMRES
iterations without restart and with a right preconditioner.

The free parameters are the choice of the preconditioner and the choice of the
scaling. The three possibilities selected for preconditioning are : no preconditioner
(denoted by none), the local block diagonal preconditioner (denoted by MbJ) and the
preconditioner based upon the subdomains (denoted by MAS). The preconditioners
MbJ and MAS are presented in Section 3.2.

The different scalings are presented in Section 3.4. If not explicitly stated we
apply the same scaling to the SPD and the unsymmetric linear systems for the
simulations. We distinguish the following cases : no scaling (denoted by no), sym-
metric diagonal scaling on the original matrix (denoted by diag on A) or one of the
five scalings on the Schur complement matrix S described in Section 3.4. They are
denoted by diag, max row, max col, rcs(1) and rcs(2). The scalings diag, rcs(1)
and rcs(2) preserve the symmetry and the positive definitness of a matrix. So they
can be applied to SPD as well as unsymmetric systems. The scalings max col and
max row possibly destroy the symmetry of a matrix. They can only be applied on
unsymmetric systems. During a simulation, they are used simultaneously with diag
scaling for the SPD systems involved in the simulation.

The main parameters of Simulation 1 and Simulation 2 are summarized in
Table 4.4. In Table 4.5 we report on experiments that illustrate the influence of
the choice of the scaling and the preconditioner on the behaviour of the nonlinear
Newton iterations. This table displays the total number of Newton steps required to
obtain the steady state. The “×” symbol indicates that the nonlinear scheme does
not converge after 300 Newton steps. For the sake of completness, the number of

4.1 Numerical behaviour of iterative substructuring algorithms 61

Simulation 1 Simulation 2

Frozen parameters

Mesh Mesh S Mesh M

Number of subdomains 16 16

Max number of 200 200
Krylov iterations
SPD solver CG CG

Unsymmetric solver GMRES GMRES

GMRES preconditioning right right
technique
εKrylov 10−13 10−13

Free parameters

Scaling No, diag on A, diag, max row, max col, rcs(1) or rcs(2)

Preconditioning None, MbJ or MAS

Table 4.4: Parameters of Simulation 1 and Simulation 2.

62 Numerical results and performance measurements

Newton steps needed to obtain the steady state with a direct substructuring method
is also reported.

Simulation 1

no diag on A diag max row max col rcs(1) rcs(2)

none × × × × × × ×
MbJ × × 164 164 × 164 164

MAS × × 164 164 × 164 164

Direct method 159

Simulation 2

no diag on A diag max row max col rcs(1) rcs(2)

none × × × × × × ×
MbJ × × 179 179 × 179 182

MAS × × 176 180 × 174 174

Direct method 173

Table 4.5: Number of Newton steps during Simulation 1 and Simulation 2 varying
the preconditioner and the scaling strategy. × means that the nonlinear scheme
does not converge.

When the steady state is obtained, it is possible to compare the behaviour of
the linear solvers. Table 4.6 displays the average number of CG iterations (GMRES
iterations) needed to solve each SPD linear system (each unsymmetric linear system
respectively) during the simulation. These results are discussed in the following
subsection.

Simulation 1
diag max row rcs(1) rcs(2)

CG GMRES CG GMRES CG GMRES CG GMRES
MbJ 63 44 63 60 59 44 59 44
MAS 27 21 27 50 27 21 27 21

Simulation 2
diag max row rcs(1) rcs(2)

CG GMRES CG GMRES CG GMRES CG GMRES
MbJ 43 40 43 41 43 40 46 40
MAS 29 28 29 56 29 28 29 28

Table 4.6: Average number of Krylov iterations to solve each Schur system during
Simulation 1 and Simulation 2 varying the preconditioner and the scaling strategy.
CG is used for SPD systems and full GMRES is used for unsymmetric systems.

4.1 Numerical behaviour of iterative substructuring algorithms 63

dim(S1) = 1607
σmin = 0.0055
σmax = 2.9552 · 10+25

cond(S1) = +∞
rank(S1) = 411

max(max per row) = 2.9282 · 10+25

min(max per row) = 0.0180

dim(S1) = 1607
σmin = 5.9940 · 10−04

σmax = 34.5309
cond(S1) = 5.76 · 10+04

rank(S1) = 1607
max(max per row) = 1.0
min(max per row) = 1.0

Table 4.7: Some characteristics of a Schur complement matrix S1 taken from Sim-
ulation 1. S1 is S1 with diagonal scaling.

Comments on the results

Table 4.5 shows that a combination of a preconditioner for S and a scaling on
S is needed to ensure the convergence of the nonlinear scheme. The numerical
difficulty of the problems considered explains the necessity of the combination of
scaling and preconditioning. We have extracted from Simulation 1 one matrix A1

which corresponds to the discretization of the transport equation for the holes. Let
S1 be its associated Schur complement matrix, σmin the minimum singular value of
S1 and σmax its maximum singular value. To measure the bad row scaling of S1,
we have computed the maximum element per row, and then the maximum of the
maximum per row and the minimum of the maximum per row. Then we denote by
S1 the matrix corresponding to S1 after having applied the diagonal scaling. We
show, in Table 4.7, different parameters computed on both matrices using Matlab.

Actually, the very bad conditioning of S1 (in our case detected by Matlab as
rank defficient) can also be illustrated on the following simple 2× 2 matrix

(

1 0
0 1020

)

that is very badly scaled. The bad conditioning disappears when a simple diagonal
scaling is applied. Furthermore, on the example of Table 4.7, the gap between the
maximum and the minimum of the maximum per row has vanished.

As expected, the diagonal scaling on A does not give good results (see Sec-
tion 3.4). We illustrate this on the matrices A1 and S1 of Table 4.7. We denote by
|B| the matrix whose entries are the absolute values of those of the matrix B. Let

64 Numerical results and performance measurements

dS be the vector of diagonal entries of |S1|. Let dΓ be the vector of diagonal entries
of the interface block |AΓΓ| of the matrix |A1|. We define the relative difference
between the ith component of dS and dΓ as the ratio

er(i) =
|dS(i)− dΓ(i)|

max(dS(i), dΓ(i))
.

The maximum relative difference found on this example is 0.9997 corresponding to a
value of 1.7823 · 103 in the Schur complement matrix and 1.4908 · 106 in the original
matrix. The minimum one is 0.6863 corresponding to a value of 1.9788 · 1014 in the
Schur complement matrix and 6.3069 · 1014 in the original matrix. So the difference
between the two vectors is large in this case. It explains the poor results observed
when we scale A compared to those obtained when scaling S. We do not expect
better results with a row or a column scaling on A. Moreover, these scalings are more
complex to implement in a parallel distributed environment as they need additional
communication.

Now we compare, in Tables 4.5 and 4.6, the three scalings that preserve the
symmetry of S. Compared with the results of diag, the gains obtained with rcs(1) or
rcs(2) are not significant. Because they require additional computation and commu-
nication, these two scalings have not been considered in the following experiments.

Concerning the max row and max col scalings, that do not preserve symmetry,
we notice experimentally that column scaling is not efficient. The nonlinear conver-
gence is lost and it is impossible to obtain the steady state. On the contrary, row
scaling enables the convergence of the nonlinear scheme on all the experiments we
have performed. We do not have any explanation for this phenomenon.

To conclude these comparisons, we compare diagonal scaling and row scaling.
Experimentally, we observe that for GMRES row scaling is less efficient than diag-
onal scaling. In Table 4.6, we can see the number of GMRES iterations is larger
when row scaling is used than when diagonal scaling is used. This is particularly
due to the fact that a few linear systems do not converge to the required accuracy;
however this non convergence does not destroy the nonlinear convergence.

Motivated by the results of this section, for all the other experiments reported in
this Chapter, a diagonal scaling is applied to the Schur complement for the SPD and
the unsymmetric linear systems.

For the sake of completness, we would like to point out the fact that the largest
entries of the Schur complement matrices are often on the diagonal. From Simula-
tion 1 where 95 unsymmetric Schur complement systems have been solved : only 25
have more than 1 % of their largest entries per row not being the diagonal element;
among these 25 , 20 have more than 10 % and among these 20, 11 have between
30 % and 40 % of their largest entries in each row outside the diagonal.

However, after the scaling, the Schur complement matrices remain difficult to
solve by unpreconditioned Krylov iterations. That is why a good preconditioner has

4.1 Numerical behaviour of iterative substructuring algorithms 65

to be combined with the scaling to ensure the nonlinear convergence. Concerning
the comparison between the two local preconditioners, we see that the average num-
ber of Krylov iterations is larger with the MbJ preconditioner than with the MAS

preconditioner. If MAS is used on unscaled matrices, the linear systems still converge
to the required accuracy, but the nonlinear convergence is lost. Therefore, scaling
is the key parameter to ensure the robustness of the complete numerical method.

Finally, we also notice that, in any case, the direct substructuring algorithm
requires less Newton steps than the iterative substructuring algorithms to obtain
the steady state solution. This tends to indicate that the better accuracy provided
by the direct method better helps the nonlinear convergence.

In order to emphasize how crucial the scaling is for the nonlinear convergence,
we mention that without any scaling and with the MAS preconditioner, the nonlinear
scheme does not converge while each linear system converges in normwise backward
error to the 10−13 accuracy.

4.1.4 Influence of the accuracy of the linear solver

Because the linear solvers are embedded in a nonlinear scheme, the accuracy required
for the linear solvers may influence the convergence of the Newton method. In the
simulations denoted by Simulation 3 and by Simulation 4, the free parameters are
the stopping criterion for the Krylov solvers and the number of subdomains. The
main parameters of these two simulations are summarized in Table 4.8.

Simulation 3 Simulation 4
Frozen parameters

Mesh Mesh S Mesh M
Max Krylov its. 200 200
SPD systems CG CG
Unsymmetric systems GMRES GMRES
GMRES precond. right right
Scaling diagonal diagonal
Preconditioner MAS MAS

Free parameters
Linear solver stopping criterion 10−5, . . . , 10−15

Number of subdomains 8, 16 or 32

Table 4.8: Parameters of Simulation 3 and Simulation 4.

In Table 4.9, we depict the number of Newton steps needed to obtain the steady
state for simulations Simulation 3 and Simulation 4. Looking at the rows of Ta-
ble 4.9, we see that the number of Newton steps increases when the threshold used
for the stopping criterion of the Krylov solver is relaxed. With εKrylov = 10−5

and 16 or 32 subdomains the nonlinear scheme does not converge any more. This

66 Numerical results and performance measurements

Simulation 3
εKrylov

Nb of Subdomains 10−5 10−7 10−9 10−11 10−13 10−15

8 193 179 165 164 164 164
16 × 165 164 164 164 159
32 × 189 170 166 159 162

Simulation 4
εKrylov

Nb of subdomains 10−5 10−7 10−9 10−11 10−13 10−15

8 180 179 179 179 174 173
16 × 214 182 176 176 176
32 × 190 186 182 177 177

Table 4.9: Number of Newton steps needed to obtain the steady state for Simulation
3 and Simulation 4. × means that the nonlinear scheme does not converge.

degradation can be explained by the inequality :

‖ Forward error ‖< Condition number× Backward error. (4.4)

In Inequality (4.4) the forward error is the distance between the computed solution
and the exact solution of the problem in a certain norm ‖ . ‖, the condition number is
the quantity that indicates the sensitivity of the problem to perturbations on its data
measured in the same norm ‖ . ‖ and the backward error is the distance between the
problem to solve and the problem solved by the algorithm [29, 112]. As explained
in Section 3.5, the stopping criterion for the Krylov solvers is based on backward
error analysis. When the stopping criterion for the Krylov solver is relaxed, the
backward error for the Schur complement system increases and the forward error on
the solution at the interface might increase as well. The degradation of the solution
accuracy at the interface propagates to the whole domain, and finally perturbs the
convergence of the Newton and the Euler schemes.

In the columns of Table 4.9, for the same problem and with a constant required
accuracy, the number of Newton steps generally increases with the number of sub-
domains. When the number of subdomains of the decomposition is increased, the
size of the interface becomes larger and generally the condition number of the Schur
complement increases as well. Inequality (4.4) indicates that again the forward error
might increase. For example, for εKrylov = 10−5 in Simulation 3 and in Simulation
4, the steady state is obtained for a decomposition in 8 subdomains but is not ob-
tained for a decomposition in 16 or 32 subdomains. However Inequality (4.4) only
gives an upper bound on the norm of the forward error that might not be sharp. For
example, for Simulation 4 with an accuracy of 10−7, we can observe the opposite
phenomenon. The number of Newton steps is smaller in the case of a decomposition
into 32 subdomains than in the case of a decomposition into 16 subdomains.

If the accuracy required for the Krylov solver is relaxed, then the number of

4.1 Numerical behaviour of iterative substructuring algorithms 67

Newton steps increases. At the same time, the number of iterations of the Krylov
solvers decreases. So, each Newton step becomes less expensive and the overall
simulation might become less computationally expensive. We further investigate
this aspect in Section 4.2. Finally, we refer to [76] for more information on inexact
Newton solvers.

4.1.5 Numerical scalability of the preconditioners

We now illustrate the numerical behaviour of the Krylov solvers when the number of
subdomains increases. The preconditioners tested are the two local block precondi-
tioners MbJ and MAS and the two two-level preconditioners MAS−sub and MAS−edge.
These preconditioners were presented in Sections 3.2 and 3.3. The numerical ex-
periments are performed on the meshes Mesh S and Mesh M decomposed into 8
or 16 subdomains using Simulation 5. The characteristics of this simulation are
summarized in Table 4.10.

Frozen parameters
Scaling diagonal on S
εKrylov 10−11

Max Krylov its. 200
SPD Systems CG

Unsymmetric Systems GMRES
Free parameters

Mesh Mesh S or Mesh M
Number of subdomains 8 or 16

Preconditioner MbJ , MAS, MAS−sub or MAS−edge

Table 4.10: Parameters of Simulation 5.

Table 4.11 presents the number of Newton steps needed to obtain the steady
state for Simulation 5. The results obtained with a direct method are also given as
a reference. We see that, except in one case, the choice of the preconditioner does
not really influence the nonlinear convergence. The only significant degradation of
the nonlinear convergence is obtained with the preconditioner MAS−sub on Mesh M
decomposed in 16 subdomains. We also see that, in any case, direct methods always
enable the fastest nonlinear convergence.

Table 4.12 presents the average number of GMRES iterations needed to solve
each unsymmetric system in Simulation 5. With the two local preconditioners MAS

and MbJ , the number of GMRES iterations increases when we double the number of
subdomains. This increase could be explained by the absence of a global coupling
mechanism as described in Section 3.3. However, the two coarse grid correction
mechanisms introduced in MAS−sub and MAS−edge are not efficient for this applica-
tion. Even worse, they deteriorate the convergence of GMRES and sometimes the
convergence of the nonlinear schemes (see Table 4.11).

68 Numerical results and performance measurements

Mesh S Mesh S Mesh M Mesh M
8 subdomains 16 subdomains 8 subdomains 16 subdomains

MbJ 164 164 179 182
MAS 164 164 179 176

MAS−sub 166 166 182 193
MAS−edge 166 166 182 182

Direct method 159 159 173 173

Table 4.11: Number of Newton steps needed to obtain the steady state in the case
of Simulation 5.

Mesh S Mesh S Mesh M Mesh M
8 subdomains 16 subdomains 8 subdomains 16 subdomains

MbJ 16 36 19 34
MAS 10 18 14 24

MAS−sub 20 34 23 44
MAS−edge 18 29 22 38

Table 4.12: Average number of GMRES iterations needed to solve an unsymmetric
linear system in the case of Simulation 5.

The SPD linear systems arising from the discretization of the semiconductor
problem can be split into two different sets. The first set corresponds to the SPD
systems arising from the discretization of the Poisson equation for the electrostatic
potential. The second set corresponds to the SPD systems used to compute an initial
state for the Euler schemes which are linearizations of the two transport equations
(see Section 1.3.3). Table 4.13 presents the average number of CG iterations needed
to compute the solution of each SPD linear system of the first set (also referred to as
Poisson systems) and of the second set (also referred to as Init systems). The pre-
conditioners are MbJ , MAS, MAS−sub, MAS−edge and Balanced Neumann-Neumann
(described in Section 3.3.2). The local Neumann-Neumann preconditioner is de-
noted by MNN and MBNN(k) denotes the Balanced Neumann-Neumann precondi-
tioner with a coarse space built using k degrees of freedom per subdomain.

In Table 4.13, for the MbJ preconditioner the number of iterations of CG is al-
most twice as large when the number of subdomains is doubled; for the Init systems,
a growth factor between 3 and 4 can even be observed. With the MAS precondi-
tioner, the number of iterations is smaller than with the MbJ preconditioner. When
the number of subdomains is doubled, an increase in the number of iterations can
still be observed for Poisson or Init systems. In this latter situation, the factor is
between 1.5 and 2.

Similarly to the unsymmetric case, the two two-level preconditioners MAS−sub

and MAS−edge are not efficient and even deteriorate the convergence of CG.

The local Neumann-Neumann preconditioner gives results comparable to the
results obtained with the MAS preconditioner for Poisson systems but is less efficient

4.1 Numerical behaviour of iterative substructuring algorithms 69

Poisson systems
Mesh S Mesh S Mesh M Mesh M

8 subdomains 16 subdomains 8 subdomains 16 subdomains
MbJ 22 38 17 35
MAS 16 24 12 23

MAS−sub 23 32 17 31
MAS−edge 22 31 17 30

MNN 17 22 15 22
MBNN(1) 16 19 14 21
MBNN(3) 15 18 14 19

Init systems
Mesh S Mesh S Mesh M Mesh M

8 subdomains 16 subdomains 8 subdomains 16 subdomains
MbJ 18 79 14 46
MAS 10 19 12 28

MAS−sub 23 60 38 121
MAS−edge 22 52 36 105

MNN 25 50 34 72
MBNN(1) 27 51 33 68
MBNN(3) 27 36 27 48

Table 4.13: Average number of CG iterations needed to solve one SPD linear system
of the Poisson or the Init type in the case of Simulation 5.

70 Numerical results and performance measurements

for Init systems. We can still observe a significant increase in the iteration number
when the number of subdomains is doubled. Two-level preconditioners based on
MNN are MBNN(1) and MBNN(3). The preconditioner MBNN(1) has a coarse space
with one degree of freedom per subdomain and MBNN(3) has a coarse space with
three degrees of freedom per subdomain. We can observe an improvement of the
behaviour of MNN when MBNN(1) and MBNN(3) are used (except for Init systems
with a decomposition into 8 or 16 subdomains of Mesh S). This improvement is
almost negligeable for Poisson systems but is noticeable for Init systems especially
when using MBNN(3).

Whatever the two-level preconditioner is, a significant increase in the number
of iterations of CG when the number of subdomains is doubled can be observed in
Table 4.13. For the Init systems, the local preconditioner MAS is more efficient than
the two-level preconditioner MBNN(3). Regarding the Poisson systems, MBNN(3) is
numerically more efficient than MAS. For MBNN(3), three eigenvectors associated
with the smallest eigenvalues in modulus have to be computed for all the local
Schur complement matrices. These calculations may become prohibitive concerning
computational time. Mesh S decomposed into 16 subdomains is the simulation
where the gap between MAS and MBNN is the largest. However, in this case the
average time needed to solve a Poisson Schur system is roughly 10% longer when
MBNN(1) or MBNN(3) is used than when MAS is used even if the number of iterations
is less important (24 with MAS, 19 with MBNN(1) and 18 with MBNN(3)). More
details concerning the comparison between MAS and MBNN for Poisson systems
can be found in [61].

To conclude, we would like to underline the fact that neither the two-level block
preconditioners presented in Section 3.3.3, nor the Balanced Neumann-Neumann
algorithm presented in Section 3.3.2 have been able to ensure the numerical scala-
bility of the Krylov solvers in the case of our semiconductor application. In [28], a
set of experiments shows that in the case of an anisotropic problem, the effect of
the coarse grid component may only be visible for a large number of subdomains.
We may remark that our experiments are similar. Our meshes present anisotropy
combined with the high variation of the functions N and P involved in system (1.2)
and displayed in Figure 1.6. Furthermore, the number of subdomains considered
remains relatively small (≤ 16) and this fact may hide the effect of the coarse grid
similarly to what is reported in [28].

4.1.6 Conclusion

These experiments highlight that the semiconductor device modelling problems are
numerically difficult to solve. When iterative substructuring methods are used, the
combination of scaling and preconditioning is needed to solve efficiently the Schur
complement systems in such a way that enables the nonlinear solver to converge. The
numerical complexity of embedded iterations is also illustrated by these experiments.
The results show that the convergence of the Newton methods and of the Euler
scheme can be very sensitive to the choice of the parameters governing the linear

4.2 Performance of iterative substructuring and direct solvers 71

solver. In particular, the experiments revealed that preconditioning is essential to
make the inner linear systems converge and that scaling is essential to ensure the
convergence of the outer nonlinear schemes.

Moreover, one can see that the transition from model problems to complex
applications is not an easy task. The application of multi-level preconditioners
was not conclusive. Coarse grid mechanisms that were demonstrated efficient for
recognized difficult elliptic problems [28] even deteriorate the convergence of the
Krylov solvers in our application. The well known Balanced Neumann-Neumann
preconditioner did not show its usual robustness and efficiency for this application
compared to its performance on difficult problems arising in structural analysis [104,
105].

Finally, in the case of iterative substructuring, the combination of the MAS local
block preconditioner and of the diagonal scaling on the Schur complement has been
identified as the more robust from a numerical point of view.

4.2 Performance of iterative substructuring and

direct solvers

This section is devoted to the presentation and analysis of the parallel performance
of the implemented linear solvers. In Section 4.2.1, we compare on a model prob-
lem the computational cost of the explicit and the implicit iterative substructuring
algorithms. From Section 4.2.2 to 4.2.5, we compare for selected semiconductor
applications the performance of the parallel iterative and direct solvers presented
in Chapters 2 and 3. In Section 4.2.2, we present the selected test cases and the
influence of the hardware and software environments on time measurements. Then
we present the results observed for iterative substructuring in Section 4.2.3 and for
parallel direct methods in Section 4.2.4. Finally, we make the comparison between
iterative and direct solvers in Section 4.2.5.

4.2.1 Implicit versus explicit iterative substructuring

The difference between these two methods lies in the fact that, in one case, the local
Schur complements are not computed (implicit case) while, in the other case, they
are explicitly formed (explicit case). These two methods are described in Section 2.4.

We illustrate the differences between these two methods in terms of computing
effort on a model problem. This model problem consists of the discretized Poisson
equation on a regular rectangular grid. The equation is the following

{

−∂2u
∂x2 − ∂2u

∂y2 = f in Ω ⊂ R
2,

u = g on ∂Ω,
(4.5)

where the domain Ω is a rectangle discretized by a uniform grid and decomposed in
regular boxes (see Figure 4.1). Using a Schur complement technique, the problem

72 Numerical results and performance measurements

is then reduced to the solution of a symmetric positive definite linear system by CG
iterations on the interface variables. Each CG iteration requires a matrix-vector
product that can be done explicitly if the local Schur complement matrices are
explicitly computed or is performed implicitly otherwise. This 2D problem is similar
to semiconductor problems concerning the ratio between the number of unknowns
belonging to the interface and the number of unknowns belonging to the interior of
the subdomains as both problems are two-dimensional.

Ω

Figure 4.1: Regular discretization and decomposition into regular subdomains of a
rectangular domain Ω (4× 4 decomposition).

In Table 4.14, we present the elapsed time required by MUMPS for the fac-
torization of the internal subproblems, for the factorization and construction of the
local Schur matrices, in the implicit and the explicit case respectively. In the explicit
case, the local Schur complements are computed in addition to the factorizations of
the internal subproblems. As expected, we see that this time is longer in the explicit

Size of the subdomains
Number of 100 200 400 800
subdomains Impl Expl Impl Expl Impl Expl Impl Expl

2× 2 decomp. 0.35 0.38 1.69 1.97 9.23 11.74 61.49 113.3
2× 4 decomp. 0.34 0.43 1.74 2.66 9.41 14.62 67.73 113.8
4× 4 decomp. 0.38 0.43 1.94 3.39 10.19 18.38 70.36 119.23

Table 4.14: Elapsed time (in seconds) for the factorization of the local Dirichlet
problems in the case of implicit or explicit iterative substructuring algorithms.

situation. It is due to the additional cost for building the local Schur complement
during the factorization. This additional cost remains small for the smaller test case
(4 subdomains of size 100×100) but grows up to 40% for the biggest one (16 subdo-
mains of size 800×800). In the case of a decomposition into 16 subdomains, the local
Schur complements corresponding to internal subdomains (that means without any
element belonging to ∂Ω) are bigger than the local Schur complements associated
with subdomains which intercept the boundary ∂Ω. So the cost of the factorization
is larger for a decomposition into 16 subdomains (i.e. 4×4) than for a decomposition

4.2 Performance of iterative substructuring and direct solvers 73

into 4 subdomains (i.e. 2× 2) with the same domain size. This effect is less visible
for subdomains of size 800× 800 because in this case the ratio between the number
of interface points and the number of internal points is smaller than for smaller
subdomains. The time required by MUMPS in the implicit situation is less sensitive
to the number of subdomains and actually should remain constant as the size of the
subdomains remains constant (i.e. reading Table 4.14 column by column).

In Table 4.15, we present the elapsed time needed to perform one matrix-vector
product by the Schur complement in the implicit and the explicit case. Using the

Size of the subdomains
Number of 100 200 400 800
subdomains Impl Expl Impl Expl Impl Expl Impl Expl

2× 2 61 0.58 280 1.5 1270 12 6320 81
2× 4 55 0.71 280 6.0 1430 36 7570 190
4× 4 70 1.8 370 13 1590 71 7610 460

Table 4.15: Elapsed time (in milliseconds) to compute a matrix-vector product by
the Schur complement in the implicit and explicit case.

explicit method reduces the time spent in the matrix-vector product by a factor of
between 15 and 25 compared to the implicit scheme. In the implicit case, two matrix-
vector products by the sparse coupling blocks and a forward/backward substitution
using the sparse factors of the internal problem are needed locally on each subdomain
to compute the matrix-vector product by the local Schur complement. The matrix-
vector product by the complete Schur matrix is then obtained by a communication
phase between neighbouring subdomains. In the explicit case this communication
phase is still the same, but the computation of the local matrix-vector product by
the local Schur complement is obtained by a simple call to a level 2 BLAS subroutine
that implements a dense matrix-vector product. In this latter case, the number of
floating point operations is smaller and the access to the memory is more regular
(i.e. dense versus sparse calculation), this explains the large reduction of computing
time observed when using the explicit matrix-vector product.

Except during the factorization and the matrix-vector product, the operations
performed by CG iterations using either the implicit or the explicit algorithms are
identical. It is then enough to consider the computational time of these two kernels
to evaluate their possible advantages when used in Krylov iterations. In order to
make this comparison, we define the amortization ratio k which is defined to be
the number of matrix-vector products needed to compensate the additional cost of
the computation of the local Schur matrices when the explicit method is used. The
values of the amortization ratio for a decomposition into 4, 8 or 16 subdomains of
dimensions 100, 200, 400 and 800 are depicted in Table 4.16. In this table, we see that
less than 10 matrix-vector products are generally enough for the explicit algorithm
to be more efficient than the implicit one. That means that when CG requires more
than 10 iterations to converge the implementation based on the explicit computation

74 Numerical results and performance measurements

Size of the subdomains
Number 100 200 400 800

of subdomains
4 8 2 2 9
8 2 4 4 7
16 6 5 6 7

Table 4.16: Amortization ratio to compensate the explicit Schur complement com-
putations by the gain in matrix-vector products.

of the Schur complement outperforms the one based on the implicit calculation. This
observation is still valid for unsymmetric systems, solved for instance using GMRES
iterations as GMRES only requires one matrix-vector product per iteration.

Furthermore, we have not considered the problem of preconditioning. As de-
scribed in Section 3.2.2, the preconditioners that we have studied are easier to build
when the explicit method is used. The main drawback of the explicit case is the
additional memory cost due to the storage of the dense local Schur complement
matrices. However for 2D computations this extra cost remains affordable.

In all the experiments on semiconductor devices, we only consider iterative sub-
structuring methods that implement the explicit computation of the local Schur
complement matrices.

4.2.2 Description of the test examples

Computer environment

In this section, we present timing and performance measurements for the methods
presented in the previous chapters and sections. All these experiments have been
performed on a SGI O2000 NUMA platform installed at CINES (Centre Informa-
tique National de l’Enseignement Supérieur) or Parallab. Time measurements on
this class of architecture may fluctuate between two identical runs as the mapping
of the data in memory can vary from one run to another. A relative variation of
about 10 % in the timing should be taken into account.

Frozen parameters and notations

In order to investigate the parallel efficiency of the linear solver implementation we
consider three simulations denoted by Medium 8, Medium 16 and Large 32. These
simulations are based on the meshes Mesh M and Mesh L defined in Section 4.1. In
simulation Medium 8, Mesh M is decomposed into 8 subdomains and in Medium 16,
it is decomposed into 16 subdomains (see Tables 4.1 and 4.2). In Large 32, Mesh L
is decomposed into 32 subdomains (see Table 4.3). The main parameters of these
simulations are summarized in Tables 4.17, 4.18 and 4.19. The methods used to
solve the linear systems are iterative substructuring, direct substructuring or the
multifrontal method with the input matrix distributed.

4.2 Performance of iterative substructuring and direct solvers 75

General parameters
Mesh Mesh M
Nb of subdomains 8
Parameters for iterative substructuring
εKrylov 10−11

Max Krylov its. 200
SPD systems CG
Unsymmetric systems GMRES
Scaling Diagonal on S
Preconditioner MbJ or MAS

Table 4.17: Parameters of the simulation Medium 8.

General parameters
Mesh Mesh M
Nb of subdomains 16
Parameters for iterative substructuring
εKrylov 10−11

Max Krylov its. 200
SPD systems CG
Unsymmetric systems GMRES
Scaling Diagonal on S
Preconditioner MbJ or MAS

Table 4.18: Parameters of the simulation Medium 16.

General parameters
Mesh Mesh L
Nb of subdomains 32
Parameters for iterative substructuring
εKrylov 10−11

Max Krylov its. 200
SPD systems CG
Unsymmetric systems GMRES
Scaling Diagonal on S
Preconditioner MbJ or MAS

Table 4.19: Parameters of the simulation Large 32.

76 Numerical results and performance measurements

For the iterative method, symmetric diagonal scaling is applied to the complete
Schur complement system. The preconditioners used are the two local block pre-
conditioners MAS and MbJ . The choice of the preconditioner defines two iterative
substructuring algorithms. These two algorithms are referred to as MbJ and MAS

by reference to the preconditioner they use. Concerning direct substructuring, this
is an implementation of the algorithm described in Section 2.4.4 and we refer to
it as Dss. The distributed multifrontal algorithm is mainly a call to the software
MUMPS (see Section 2.3.3) with the distributed entries option. We refer to this
method as Sparse Direct.

A remark on the MUMPS symbolic analysis

If the method selected is Sparse Direct, the computation of the solution is performed
in three steps : the symbolic analysis, the numerical factorization and the solve (see
Section 2.3). The sparsity pattern is the same for all the matrices because the
mesh does not change during the simulation. Therefore, only two symbolic analysis
phases are needed, one for all the SPD systems and one for all the unsymmetric
systems (see Section 2.3). Practically, due to an unresolved memory leak problem
either in MUMPS or in the coupling between MUMPS and the semiconductor de-
vice simulation code, the data structure of MUMPS must be cleaned between two
Newton iterations. Therefore, the symbolic analysis phase has to be done for each
linear system. This requirement is also valid for each MUMPS instance used in the
substructuring algorithms. The elapsed time that would have been obtained if only
two symbolic analysis were performed can easily be extrapolated from the results.
We have chosen to give the extrapolated results to allow a fair comparison between
iterative and direct methods.

4.2.3 Results observed with the iterative substructuring al-

gorithms

In this part, we present a comparison between the two iterative substructuring
methods MAS and MbJ on simulations Medium 8, Medium 16 and Large 32.

The measured quantities are either numerical quantities without dimension or
elapsed time measurements in seconds. The numerical quantities are the total num-
ber of Newton steps, that can be decomposed into the number of steps that involve
SPD linear systems and the number of steps that involve unsymmetric systems, the
average number of CG iterations needed to solve the SPD Schur systems and the
average number of full GMRES iterations needed to solve the unsymmetric Schur
systems. Concerning time measurements, we first measure the total elapsed time
needed to perform the simulation (denoted by Total simul) and the total elapsed
time spent in the linear solvers during a simulation (denoted by Total Ax = b). The
results are presented in the Tables 4.20, 4.21 and 4.22.

From Tables 4.20 and 4.21 it is difficult to tell whether MbJ or MAS is the best.
The number of Newton steps is almost the same. The average number of Krylov

4.2 Performance of iterative substructuring and direct solvers 77

MbJ MAS

Newton steps 179 179
SPD systems 73 73

Unsymmetric systems 106 106
Iter CG 15 12

Iter GMRES 19 14
Global Times

Total Ax = b 976 921
Total simul 1361 1295

Table 4.20: Results for Medium 8 with MbJ and MAS.

MbJ MAS

Newton steps 182 176
SPD systems 76 70

Unsym systems 106 106
Iter CG 38 24

Iter GMRES 34 24
Global times

Total Ax = b 582 582
Total simul 788 809

Table 4.21: Results for Medium 16 with MbJ and MAS.

MbJ MAS

Newton steps 228 175
SPD systems 76 76

Unsymmetric systems 152 99
iter CG 68 32

iter GMRES 94 34
Global times

Total Ax = b 2433 1286
Total simul 2892 1654

Table 4.22: Results for Large 32 with MbJ and MAS.

78 Numerical results and performance measurements

iterations per linear system is larger with MbJ than with MAS. So the time spent
in matrix-vector products and in dot products is larger in the case of MbJ . On the
other hand, the cost of construction and application of the preconditioner is larger
for MAS. For Medium 16 the average time needed to build the MAS preconditioner
is 0.26 seconds while the average time needed to build MbJ is 0.05 seconds. The
average time needed to apply the preconditioner MbJ is 2.0 milliseconds while the
average time needed for MAS is 8.3 milliseconds. Finally, if we take into account
the variability in the time measurements, we can say that for simulations Medium 8
and Medium 16, MAS and MbJ are equivalent. MAS is more expensive but enables
a faster convergence of the linear solvers than MbJ that is cheaper in computation
but less numerically efficient.

However, if we turn to Large 32, some differences appear. With MbJ the number
of Newton steps is larger than with MAS, about 30 % more iterations. Moreover, the
linear convergence is also deteriorated. Concerning the average number of Krylov
iterations needed to solve a linear system, the gap between MbJ and MAS is much
larger than in the case of Medium 8 and Medium 16. The larger number of matrix-
vector products is no longer mitigated by the cheaper construction and application of
the MbJ preconditioner. So the preconditioner MAS is more robust than the precon-
ditioner MbJ and leads to better results. Therefore, in all the following experiments,
if it is not stated explicitly, the preconditoner used is MAS.

We display, in Table 4.23, the average elapsed time spent in sparse computations
and in solving iteratively the Schur system with the MAS preconditioner. By sparse
computations we mean the symbolic analysis, the numerical factorization and the
solve using MUMPS sequentially but concurrently on each subdomain. The symbolic
analysis can be reused from one Newton step to another. In Table 4.23 we display the
time spent in the analysis for only one Newton step. We point out that the total time
spent in the symbolic analysis during a simulation becomes almost negligible if the
number of Newton steps is large as is usually the case in a complete semiconductor
simulation. For the iterative solution of the Schur complement system, we also take
into account the construction of the MAS preconditioner.

Medium 8 Medium 16 Large 32
Symbolic analysis 0.82 0.38 0.83

Factorization 2.67 1.43 2.87
Solve 0.40 0.29 0.58

Iterative solution of 0.89 0.77 2.13
the Schur complement system

Table 4.23: Average time per linear system for the sparse computations on the
subdomains and in the iterative solution of the Schur system preconditioned by
MAS and using explicit matrix-vector products.

We can see, in Table 4.23, that the time spent in sparse computations is at
least twice as large as the time spent in solving iteratively the Schur complement

4.2 Performance of iterative substructuring and direct solvers 79

system. We recall that the symbolic analysis phase can be reused from one Newton
step to another and that its influence on the total simulation time decreases if the
number of Newton steps increases. Nevertheless, the factorization phase is longer
than the solution of the Schur system. The factorization of the internal problems
has to be computed for each Newton step. The high cost of the factorization can
be explained by the choice of the explicit iterative substructuring method. In this
case, the matrix-vector products are very efficient and the relatively large number of
Krylov iterations justifies the choice of the explicit computation of the local Schur
complements. In simulation Medium 8, the linear systems have 356701 unknowns for
a decomposition into 8 subdomains and an interface with 1607 unknowns. We can
make a comparison with the model problem used in Section 4.2.1 to justify the choice
of the explicit iterative substructuring. With 8 subdomains of size 200×200 we have
a model problem with 320000 unknowns and an interface of 2000 unknowns. There-
fore these two problems are of comparable dimensions. We can see in Table 4.16
that, in the latter case, only 4 iterations of the Krylov solver were enough to make
the explicit algorithm outperform the implicit one. Now, if we look at the results
of Table 4.20 we see that the average number of CG iterations needed to solve each
SPD Schur system is 12 and the average number of GMRES iterations needed to
solve each unsymmetric Schur system is 14. Therefore we can justify the use of the
explicit algorithm for Medium 8. A similar approach can also justify the choice of
the explicit algorithm for Medium 16 and Large 32.

We recall that the number of iterations of the Krylov solvers increases when
the number of subdomains is increased. For example, between Medium 8 and
Medium 16, the number of subdomains grows from 8 to 16 and the average number
of Krylov iterations increases from 12 to 24 for CG and from 14 to 24 for GMRES
(see Tables 4.20 and 4.21). Furthermore, the size of the Schur complement matrix
also increases from 1607 to 2273 (see Tables 4.1 and 4.2). Paradoxically, we can see,
in Table 4.23, that the average time to solve a Schur complement system decreases
slightly. This can be explained by the fact that the subdomains become smaller.
Consequently, the good scalability of the construction and application of the pre-
conditioner as well as the parallel efficiency of the matrix-vector product lead to
faster solutions. In Table 4.24, we display the average elapsed measured times for
the construction and the application of the preconditioner and of the matrix-vector
product for Medium 8 and Medium 16. We see that the times needed for these three
computational kernels decrease when the number of subdomains grows from 8 to 16.

Medium 8 Medium 16
Build Precond 490 260

Matvec product 114 75
Apply Precond 159 83

Table 4.24: Average elapsed time (in milliseconds) for the construction of the MAS

preconditioner, for its application and for the matrix-vector product.

80 Numerical results and performance measurements

In Table 4.25, we present the average weights (in percentages) of these three main
computational kernels of the Krylov solver for the solution of one Schur complement
system with the MAS preconditioner. We also take into account the percentage of
time spent in the dot product procedure. We only neglect SAXPY-like operations
that are extremely cheap. In Medium 8 the number of Krylov iterations is relatively
small (see Table 4.20). In this case the cost of the construction of the preconditioner
dominates the solution time. When the number of iterations increase (Medium 16
or Large 32) the cost of the iterative solution becomes the most time consuming
part of the computation. The time spent in the dot product is relatively large due to
the choice of the orthogonalization scheme selected in GMRES (we will investigate
this in more detail later in Section 4.3).

Medium 8 Medium 16 Large 32
Build Precond 55 34 27

Matvec products 17 23 24
Dot products 4 17 22

Apply Precond 24 26 27

Table 4.25: Percentage of time spent in the construction of the MAS preconditioner,
in its application, in the matrix-vector product and in the dot product during the
iterative solution of one Schur system.

In Section 4.1.4, we have seen that if the accuracy required for the Krylov
solvers is relaxed then the number of Newton steps increases. At the same time
the number of Krylov iterations needed to solve each Schur complement system
decreases. In this section, we present results that indicate that the time spent in the
sparse factorization of the internal subdomains is longer than the iterative solution
of the Schur complement. Therefore if the accuracy is relaxed and if the number of
Newton steps increases, the overall simulation time will generally increase. On the
other hand, if the accuracy required is too small, useless Krylov iterations will be
performed. So the difficulty is to find a good trade-off between a fast convergence
of the linear solvers and a fast convergence of the nonlinear schemes.

The comparison of the preconditioners MbJ and MAS in Tables 4.20, 4.21 and
4.22 illustrates again the importance of the robustness of the iterative linear solver.
Even if MAS and MbJ are equivalent in many cases concerning computational time,
the choice of MAS ensures better condition number for the preconditioned matrix
and therefore a better stability of the nonlinear schemes. In that respect MAS is
much more robust than MbJ .

4.2.4 Results observed with parallel direct methods

In this section, we analyse and compare the results obtained with the two parallel
direct methods Dss and Sparse Direct for the simulations Medium 8, Medium 16
and Large 32.

4.2 Performance of iterative substructuring and direct solvers 81

The number of Newton steps is decomposed into the steps that involve SPD
linear systems and the steps that involve unsymmetric linear systems. The elapsed
times (in seconds) measured are the time needed to perform the simulation (de-
noted by Total simul) and the total time spent in the linear solvers (denoted by
Total Ax = b). Then, the direct solution of one linear system can be split into
three steps : the symbolic analysis, the numerical factorization and the solve. We
measure the average time per linear system spent in these three steps (denoted by
Mumps symbolic analysis, Mumps factorization and Mumps solve). These results
are presented in Tables 4.26, 4.27 and 4.28. For Dss, we accumulate the symbolic
analysis time spent for the internal subproblems and for the Schur complement given
as a distributed matrix to MUMPS. A similar approach has been followed for the
factorization and the solve times. For the sake of completness, in Table 4.29, we
divide these accumulated times between what is spent for the internal subproblems
(denoted by Internal) and for the Schur (denoted by Schur).

Dss Sparse Direct
Newton steps 173 173
SPD systems 67 67

Unsymmetric systems 106 106
Global times

Total Ax = b 1272 1291
Total simul 1651 1701
Average times per linear system

Mumps symbolic analysis 1.76 11.60
Mumps factorization 5.76 4.65

Mumps Solve 0.51 2.35

Table 4.26: Results of parallel direct methods for Medium 8.

Dss Sparse Direct
Newton steps 173 173
SPD systems 67 67

Unsymmetric systems 106 106
Global times

Total Ax = b 941 1022
Total simul 1140 1228
Average times per linear system

Mumps symbolic analysis 1.20 12.36
Mumps factorization 4.58 3.48

Mumps solve 0.31 2.12

Table 4.27: Results of parallel direct methods for Medium 16.

82 Numerical results and performance measurements

Dss Sparse Direct
Newton steps 166 166
SPD systems 68 68

Unsymmetric systems 98 98
Global times

Total Ax = b 2110 3620
Total simul 2527 3995
Average times per linear system

Mumps symbolic analysis 3.75 46.25
Mumps factorization 10.50 11.71

Mumps solve 0.6 9.22

Table 4.28: Results of parallel direct methods for Large 32.

Medium 8 Medium 16 Large 32
Internal Schur Internal Schur Internal Schur

Symbolic analysis 0.90 0.86 0.38 0.82 0.8 2.95
Factorization 2.92 2.84 1.35 3.23 3.30 7.20

Solve 0.47 0.04 0.24 0.07 0.48 0.12

Table 4.29: For Dss, elapsed times (in seconds) for the internal subproblems and
the interface problem (Schur complement system).

MUMPS symbolic analysis. For the three test cases, the symbolic analysis time
is higher with Sparse Direct than with Dss. In the case of Sparse Direct, the sym-
bolic analysis is completely sequential in the current implementation of MUMPS
[6]. In the case of Dss, the part of the symbolic analysis associated with the inter-
nal subproblems is performed concurrently on each subdomain. Only the symbolic
analysis for the Schur complement remains centralized on one processor (again due
to the current implementation of MUMPS). The symbolic analysis can be reused
from one Newton step to another. Therefore the final gain will depend on the total
number of Newton steps required by the simulation.

MUMPS Factorization. We can see in Tables 4.26 and 4.27 that the factoriza-
tion time is longer for Dss than for Sparse Direct on Medium 8 and Medium 16.
On Large 32, it is the opposite (see Table 4.28). Nevertheless, in the three cases,
the times are of the same magnitude. In Table 4.30, we display the total number
of million of floating-point operations (flops) performed during the factorization for
an SPD or an unsymmetric system. We can see that, in any case, the number of
flops is larger with Dss than with Sparse Direct. For Sparse Direct, the ordering
on which the factorization is based is an approximate minimum degree algorithm
(AMD). For Dss, it is a combination of nested dissection-like (corresponding to the

4.2 Performance of iterative substructuring and direct solvers 83

Medium 8 Medium 16 Large 32
Dss Sp. Direct Dss Sp. Direct Dss Sp. Direct

SPD system 1062 814 1014 821 2939 2455
Unsymmetric system 2074 1581 1980 1595 5872 4901

Table 4.30: Total number of million floating-point operations performed during the
factorization phase.

mesh partitioning) and minimum degree within the subdomains and at the root on
the complete Schur complement (see Section 2.4.4). Usually, the nested dissection
based orderings lead to a factorization with less floating point operations [5]. But the
opposite phenomenon has been noticed for linear systems arising from an uniform
discretization on a mesh with an unbalanced aspect ratio (that is a mesh which is
much longer along one direction) [13]. Actually, the meshes used for semiconductor
device simulations present some geometric anisotropy that induces an unbalanced
aspect ratio in the graph of the associated matrix. This observation on our appli-
cation might explain this particular behaviour of the Sparse direct algorithm.

The number of operations performed during the factorization is not necessarily
the key parameter. It may not give a good indication of the factorization time. We
see that, for Large 32, the factorization time is slightly longer with Sparse Direct
even if the number of flops is smaller than with Dss. Another key aspect is the
memory size required by the factors. In the case of Dss, it corresponds to the
sum of the factors associated with the subdomains, the factors associated with the
complete Schur matrix and the storage of the dense local Schur complement matrices
(computed by MUMPS in the first step of the Dss method). These quantities are
given in Megabytes and are shown in Table 4.31. We see that Sparse Direct requires

Medium 8 Medium 16 Large 32
Dss Sp. Direct Dss Sp. Direct Dss Sp. Direct

SPD system 117 91 117 91 356 288
Unsymmetric system 174 146 173 146 531 459

Table 4.31: Number of Megabytes occupied by the factors.

less memory than Dss. In our experiments, we have never exceeded the memory
capacity of the SGI 02000 platform even for the biggest test case. So the difference
of a few Megabytes per processor that can be observed in Table 4.31 is affordable
as Dss is slightly faster than Sparse Direct (for the global simulation time).

These results show a slight advantage for Sparse Direct concerning the factor-
ization phase.

MUMPS Solve. For the three simulations, the time spent in the solve is larger
with Sparse Direct than with Dss. In Table 4.28, for the biggest test case, there
is a factor of more than 15. The ordering induced by Dss gives better results for
the solve phase than the AMD ordering. The choice of the ordering influences the

84 Numerical results and performance measurements

performance of the direct solvers. A nested dissection ordering option is currently
under development for the next release of the MUMPS software. We have tested a
preliminary version on some examples. We should mention that we have not been
able to use this version for semiconductor problems because the distributed entries
option was not compatible yet with the nested dissection ordering option. In Ta-
ble 4.32 we display the elapsed times for the symbolic analysis, factorization and
solve phase depending on the ordering for a model problem. This model problem
is a 2D Poisson operator with a 5-point discretization. The size of the matrix is
300000 and the number of nonzeros is 1493800. We use 8 processors. These results
illustrate the influence of the ordering on each step of MUMPS. The factorization
and the solve phase are faster when a nested dissection ordering is used. It can

AMD ordering ND ordering
Symbolic analysis 5.48 4.07

Factorization 4.07 1.77
Solve 2.47 0.75

Table 4.32: Influence of the ordering for MUMPS on a model problem. Elapsed
times in seconds for the symbolic analysis, the factorization, the solve.

be expected that the next release of MUMPS with the nested dissection ordering
option will reduce the gap between the two direct approaches Dss and Sparse Direct
for semiconductor applications.

Conclusion. Concerning the global simulation time, Dss is more efficient than
Sparse Direct in the three simulations. For Medium 8 and Medium 16 the difference
is small. There is a gain of approximately 3 % for Large 32 and 8 % for Medium 16.
If we take into account the uncertainty on time measurements, we can say that these
two methods are equivalent. For Large 32 the significant gain on the solve phase
leads to a significant gain (about 37 %) on the global simulation time. As already
mentioned, this gap might decrease in the future when the new release of MUMPS
will support other orderings than AMD.

4.2.5 Comparison between iterative and direct substructur-

ing algorithms

We now compare iterative and direct solvers on the three simulations : Medium 8,
Medium 16 and Large 32. In the case of iterative substructuring, the method that
gives the most satisfactory results is MAS. In the case of parallel direct solvers,
the results of Section 4.2.4 indicate that Dss is more attractive than Sparse Direct
for this application. Moreover, the choice of Dss makes the comparison easier with
iterative substructuring. The only difference between MAS and Dss is the way the
complete Schur system is solved. In the first case, the Schur systems are solved by
a distributed iterative Krylov solver and in the second case by a distributed direct
multifrontal solver. In order to compare MAS and Dss we synthesize some results of

4.2 Performance of iterative substructuring and direct solvers 85

Sections 4.2.3 and 4.2.4 in Table 4.33. These results are the total number of Newton
steps to perform a simulation, the total elapsed time spent in solving linear systems,
the elapsed time required to perform the simulation and the average elapsed time
needed to solve one Schur complement system during the simulation.

Medium 8 Medium 16 Large 32
MAS Dss MAS Dss MAS Dss

Newton steps 179 173 176 173 175 166
Total Ax = b 921 1272 582 941 1286 2110
Total simul 1295 1651 809 1140 1654 2527

Average Time for Su = g 0.89 2.89 0.77 3.31 2.13 7.34

Table 4.33: Comparison of iterative substructuring and direct substructuring. Total
number of Newton steps, total elapsed time (in seconds) spent in the linear solvers
and average elapsed time (in seconds) for solving one Schur complement system.

We can see that Dss requires less Newton steps than MAS to obtain the steady
state. On the other hand, the total time spent in the linear solver is larger with
Dss than with MAS. For our applications, this is due to the fact that solving the
distributed Schur complement with an iterative solver is much more efficient than
solving it with a distributed direct solver.

In Table 4.34 we compare the scalability of direct and iterative substructuring
when the number of subdomains of the decomposition is doubled. We can see that
for the two methods the speed up remains lower than two. Concerning iterative
methods this can be explained by the increase in the number of Krylov iterations
(see Section 4.2.3). In the case of direct substructuring, the speed-up is good for the
internal problem but not for the interface problem (see Table 4.29). The interface
problem is not sparse and large enough to ensure a good speed-up.

Medium 8 Medium 16 Speed up
MAS 1295 809 1.6
Dss 1701 1140 1.5

Table 4.34: Scalability of direct and iterative substructuring methods.

Concerning memory requirements, we do not have to store the factors of the
Schur matrix but we have to store the preconditioner MAS which requires the same
memory as the local Schur complements. For MAS, we consider the memory space
occupied by the factors of the internal subproblems, the local Schur complements
and the preconditioner. For Dss, we consider the memory space occupied by the
factors of the internal subproblems, the Schur complement matrix S and the factors
of S. These quantities are presented in Table 4.35.

One can see that the difference between the two methods are not significant.
Actually, the main part of the memory used by the two methods is required by the

86 Numerical results and performance measurements

SPD system
Medium 8 Medium 16 Large 32
MAS Dss MAS Dss MAS Dss

Internal Factors 99 96 304
Local Schur complements 11 11 30
MAS Preconditioner 11 × 11 × 30 ×
Factors of S × 7 × 10 × 22
Total 121 117 118 117 364 356

Unsymmetric system
Medium 8 Medium 16 Large 32
AS Dss AS Dss AS Dss

Internal Factors 152 148 468
Local Schur complements 11 11 30
MAS Preconditioner 11 × 11 × 30 ×
Factors of S × 10 × 14 × 33
Total 175 174 171 173 528 531

Table 4.35: Comparison of the memory space (in megabytes) used by iterative or
direct substructuring.

factors of the internal subproblems and by the local Schur complements. We see
that the size occupied by MAS is larger than the size occupied by the factors of S in
the SPD case. This is due to the fact that for software reasons we do not exploit the
symmetry of MAS. In the unsymmetric case the size occupied by the factors of S is
larger than MAS for Large 32 and Medium 16 but not for Medium 8. We can make
two remarks. First, the size of the factors of S remains relatively small compared
to the size of the local Schur complement matrices. So in our test cases there is
not a lot of fill-in when factorizing the complete Schur matrix. Secondly, the MAS

preconditioner is expensive in terms of memory cost. In Section 5.1, we present a
sparsification procedure that enables us to reduce the memory required by the MAS

preconditioner.

We would like to conclude by emphasizing that, in our context, iterative solvers
are more efficient than direct ones but the tuning of the parameters that govern their
behaviour might be difficult. In Section 4.1, we have presented several numerical
difficulties encountered during the development of iterative solvers. Some others
are presented in Section 4.3. On the other hand, the use of MUMPS as a black
box direct solver is the least efficient method concerning computational time but it
was the easiest to interface with the semiconductor code. The direct substructuring
algorithm requires more effort but future versions of MUMPS will integrate new
features that should reduce the gap between the two direct approaches in terms of
performance (i.e. parallel elapsed time).

4.3 A posteriori justification of some choices 87

4.3 A posteriori justification of some choices

For the sake of simplicity of the presentation, some choices made in Sections 4.1 and
4.2 have not been argued. These choices are : the choice of GMRES as a Krylov
solver for the unsymmetric systems (Section 4.3.1), the location of the precondi-
tioner (right and left) for GMRES (Section 4.3.2), the choice of the orthogonaliza-
tion scheme within GMRES (Section 4.3.3) and the use of GMRES without restart
(Section 4.3.4).

4.3.1 Selection of GMRES as unsymmetric Krylov solver

Let
Su = g

be the Schur complement system to be solved. We have selected GMRES as the
Krylov solver to solve the unsymmetric Schur complement systems. Other possibil-
ities as BiCGStab also exist (see Section 2.4.3). We have compared on Simulation 6
the behaviour of the two algorithms. The main parameters of this simulation are
summarized in Table 4.36. The implementation of BiCGStab is a variant of the rou-

Mesh Mesh L
Number of subdomains 32
εKrylov Variable
Max It Krylov 200
SPD systems Conjugate Gradient
Unsymmetric systems GMRES or BiCGStab
Preconditioner MAS

Scaling Diagonal on S

Table 4.36: Parameters of Simulation 6.

tine MI06 from the “Harwell Subroutine Library” [74]. We consider two stopping
criteria for BiCGStab. The first one is

‖ rn ‖
‖ g ‖ (4.6)

where rn is the residual computed by the internal recurrences of BiCGStab at step
n. The second one is

‖ Sun − g ‖
‖ g ‖ (4.7)

where Sun− g is the true residual at step n. In exact arithmetic (4.6) and (4.7) are
identical but in finite precision arithmetic they might differ. The stopping criterion
for GMRES is (4.7). For BiCGStab we performed experiments with either (4.6) or
(4.7). For software reasons, if (4.7) is chosen the algorithm will be very slow because
the true residual is computed at each step.

88 Numerical results and performance measurements

Krylov solver GMRES BiCGStab BiCGStab
εKrylov 10−11 10−11 10−15

Stopping criterion True residual True residual Internal residual

Newton steps 175 × 190
Iter GMRES/BiCGStab 34 × 70

Maximum be 10−11 10−11 10−12

Total simul 1798 × 2764

Table 4.37: Number of Newton steps, average number of Krylov iterations to solve
each unsymmetric Schur system, maximum normwise backward error for each com-
puted solution and total elapsed time (in seconds) for the simulation in three tests
associated to Simulation 6. × = the nonlinear scheme is not converging.

In Table 4.37 we compare on Simulation 6 BiCGStab and GMRES. In a first
test we use GMRES with εKrylov set to 10−11 and a stopping criterion based on
(4.7) (denoted by True residual). We have also computed in output of GMRES the
normwise backward error

be =
‖ Sũ− g ‖
‖ g ‖

where ũ is the approximate solution computed by the Krylov solver. We display in
Table 4.37 the largest observed value of be (denoted by Maximum be) during the
simulation. Then in the second test (reported in the second column of Table 4.37)
we use BiCGStab with εKrylov set to 10−11 and a stopping criterion based on (4.7).
We can see that in this case the steady state is not obtained even though the largest
observed value of be is also 10−11. In a third test we use BiCGStab with εKrylov set
to 10−15 and the stopping criterion based on (4.6) (denoted by Internal residual).
In this case the steady state is reached but the number of Newton steps is larger
than for GMRES with εKrylov set to 10−11. The number Krylov iterations is also
larger and some linear systems do not converge to the required accuracy. The
largest observed value of be is only of 10−12 while the required accuracy was 10−15.
Therefore we can observe a difference between the internal residual (4.6) and the
true residual (4.7). Moreover BiCGStab requires two matrix-vector products per
iteration while GMRES only requires one. Therefore the total simulation time is
larger with BiCGStab than with GMRES. These results justify our choice of GMRES
for solving the unsymmetric systems in our application.

We point out that these results also raise the problem of the relevance of the
stopping criterion based on normwise backward error. For a requested accuracy
of 10−11 in term of normwise backward error, the nonlinear scheme is converging

with GMRES but not with BiCGStab. Somehow, the quantity
‖ r ‖
‖ g ‖ does not

measure precisely the quality of the solution provided to the nonlinear scheme, using
a component-wise backward error might be an alternative but its computation at
each iteration is prohibitive as its cost is higher than a matrix-vector product.

4.3 A posteriori justification of some choices 89

4.3.2 Right versus left preconditioning for GMRES

As explained in Chapter 3, there are three possible locations for the preconditioner
for GMRES which define three preconditioning techniques. These techniques are
left preconditioning, right preconditioning and split preconditioning. In our case,
split preconditioning is not possible because our preconditioner is not expressed in
a factorized form. Then we have to choose between left and right preconditioning.
This choice may have an influence on convergence and has also an effect on the
stopping criterion in the package used [56]. Let

Su = g (4.8)

be the Schur complement system to be solved. In the case of right preconditioned
GMRES, the stopping criterion is

‖ rn ‖
‖ g ‖ (4.9)

where rn = Sun− g is the true residual at step n of the Krylov method. In the case
of left preconditioned GMRES, the stopping criterion becomes

‖Mrn ‖
‖Mg ‖ (4.10)

where M is the preconditioner associated with the Schur complement.
Table 4.38 presents, for right and left preconditioning, the number of Newton

steps and the average number of GMRES iterations for four different simulations.
These simulations are carried out on Mesh S and Mesh M decomposed in 8 or 16
subdomains. The preconditioner is MAS and εKrylov is set to 10−11. It can be seen
that the nonlinear convergence is affected by the preconditioning technique only for
Mesh S decomposed in 16 subdomains. In this case left preconditioning deteriorates
the nonlinear convergence of Newton methods for the transport equations.

In the case of Mesh M, the nonlinear convergence and the linear convergence are
not affected by the location of the preconditioner. But in the case of Mesh S, left
preconditioning deteriorates the linear convergence in the sense that for some linear
systems the backward error normwise of the preconditioned system is not able to
attain the required precision.

These results justify the fact that all the iterative substructuring experiments
in Sections 4.1 and 4.2 have been performed with a right preconditioned GMRES
method. Intuitively, we can argue that the quantity that really influences the New-
ton solvers is the unpreconditioned backward error defined by (4.9) and not the
preconditioned one defined by (4.10).

4.3.3 Choice of the orthogonalization scheme in GMRES

The GMRES algorithm is based on the construction of an orthogonal basis for the
Krylov subspace Kn = span{v, Av, A2v, . . . , An−1v}. At step n of the algorithm,

90 Numerical results and performance measurements

Mesh S, 8 subdomains Mesh M, 8 subdomains

Left Right

Newton steps 178 178

iter GMRES 34 10

Left Right

Newton steps 179 179

iter GMRES 14 14

Mesh S, 16 subdomains Mesh M, 16 subdomains

Left Right

Newton steps 191 183

iter GMRES 55 18

Left Right

Newton steps 176 176

iter GMRES 24 24

Table 4.38: Influence of right and left preconditioning on the number of Newton steps
and on the number of GMRES iterations for simulations on Mesh S and Mesh M
decomposed in 8 or 16 subdomains.

the vector An−1v is orthogonalized against the basis of the Krylov subspace Kn−1

previously computed.

Usually, the method used is the “Modified Gram-Schmidt” (MGS) orthogonal-
ization scheme [93]. Unfortunately, a loss of orthogonality may happened in finite
precision arithmetic. This loss of orthogonality can be compensated by an itera-
tion of the orthogonalization scheme [14]. The resulting algorithm is called “Itera-
tive Modified Gram-Schmidt”(IMGS). The main drawback of IMGS is an increased
number of dot products. The “Classical Gram-Schmidt” algorithm (CGS) is easy
to implement and can be more efficiently implemented on parallel distributed com-
puters. It is numerically less accurate than IMGS. But CGS can also be iterated
(ICGS). It is then as numerically efficient as IMGS. The ICGS orthogonalization is
especially interesting in a distributed environment because the number of global re-
ductions needed to make the orthogonalization is smaller [99]. We have tested these
four orthogonalizations on a simulation based on a decomposition of Mesh M in 8
subdomains. These experiments have been performed on a Compaq Alpha server
because it is a more stable platform for accurate time measurements. Table 4.39
presents, for these four orthogonalization schemes, the number of Newton steps, the
average number of GMRES iterations, the average time spent to solve a linear sys-
tem and the average time spent in the orthogonalization scheme for the solution of
each unsymmetric linear system. These results confirm the instability of CGS. It is

Orthogonalization
IMGS ICGS CGS MGS

Newton steps 179 179 216 179
Iter GMRES 14 14 84 14

Time Ax = b 2.50 2.46 3.23 2.44
Time dot products 0.028 0.018 0.294 0.020

Table 4.39: Comparison of different orthogonalization schemes for GMRES in the
case of a simulation based on Mesh M decomposed in 8 subdomains.

4.3 A posteriori justification of some choices 91

the only method that deteriorates the nonlinear convergence. This is also another
indication of the ill-conditioning of the linear systems that we solve.

On this test MGS is stable enough and IMGS is not needed. Concerning the
computational time spent in the dot product procedure, ICGS is the less expensive
and IMGS is the most expensive. However the gain is not significative compared
with the time needed to solve a linear system. In all the tests of Sections 4.1 and 4.2
where GMRES is used, the orthogonalization has been performed using the IMGS
scheme because it is expected to be the most stable. We notice that this choice was
also made by [109] for similar reason. This choice is not optimal but conservative
and more secure. In addition the extra cost is negligible compared with the other
calculations involved in the rest of the simulation.

4.3.4 Restart for GMRES

One drawback of GMRES compared to BiCGStab is that at iteration k, the k
vectors of the Arnoldi basis have to be stored. The “restarting” technique enables
to reduce the amount of memory required as full GMRES becomes prohibitive for
large problems [96].

In the case of iterative substructuring, only the interface problem is solved by
GMRES. The storage requirement for vectors defined on the interface is negligible
compared to the memory needed to store the factors of the internal problems and
the dense local Schur complement matrices. Furthermore, the use of the restart may
slow-down the convergence of GMRES and therefore the nonlinear convergence. For
example, if we run Large 32 (see Tables 4.19 and 4.22) with a restart of 10 or 20
for GMRES, then a lot of linear systems do not converge any more and the steady
state can no longer be obtained. For these reasons we have discarded the use of the
restart in our experiments.

92 Numerical results and performance measurements

Chapter 5

Prospectives

In this chapter, we present some new ideas that might deserve future research inves-
tigations. In Section 5.1, we present a sparsification procedure to relax the memory
requirement to store the local block preconditioners used in iterative substructuring
algorithms. In Section 5.2, we present a preliminary study of a two-level spectral pre-
conditioner that exhibits promising behaviour on difficult problems. In Section 5.3,
we introduce the possibility to use parallel solvers on the subdomains that leads to
parallel implementations with two level of parallelism.

5.1 Sparsified block preconditioners

The memory requirement to store the MAS preconditioner is quite large (see Sec-
tion 4.2.5). With the notation of Section 3.2.2, we recall that the preconditioner
MAS is

MAS =

N
∑

i=1

RT
Γi

(S̄(i))−1RΓi
with S̄(i) = RΓi

SRT
Γi

. (5.1)

A possible alternative to get a cheaper preconditioner is to consider a sparse ap-
proximation for S̄(i) in (5.1) which may result in a saving of memory to store the
preconditioner and saving of computation to factorize and apply the preconditioner.
This approximation Ŝ(i) can be constructed by dropping the elements of S̄(i) that
are smaller than a given threshold. More precisely the following dropping strategy
can be applied on each matrix S̄(i):

ŝkl =

{

0 if s̄kl ≤ η(|s̄kk|+ |s̄ll|)
s̄kl else

(5.2)

Then the resulting sparsified blocks are factorized using a sparse direct solver
(MUMPS in our case) instead of a dense direct solver (LAPACK in our implemen-
tation of the subdomain based preconditioner). We notice that the strategy defined
by (5.2) preserves the symmetry but has also some advantages for an implemen-
tation in a distributed memory environment as it does not require any additional

94 Prospectives

communication compared to the construction of MAS. This is not the case if one
decide to consider the maximum per row for the denominator (instead of the diago-
nal element). Experimentally, in semiconductor simulations, the largest entries are
most often on the diagonal but it happens sometimes not be there.

The threshold η is set to 0.01. We compare the MAS preconditioner and its
sparsified version (denoted by Msp(AS,η)) on simulation Large 32 (see Table 4.19).
The threshold η is set to 0.01. The sparsified preconditioner is only used for the
unsymmetric systems. In the SPD case, the sparsification procedure can lead to in-
definite symmetric systems as the matrices are not M−matrices [27], consequently
the sparsification procedure might not preserve the positive definiteness property.
The results are given in Table 5.1. The sparsity ratio is the percentage of elements of

MAS Msp(AS,0.01)

Newton steps 175 176
Iter CG 32 32

Iter GMRES 34 35
Sparsity ratio ratio (max) × 47 %

Sparsity ratio (min) × 1 %
Cumulative times

Total Ax = b 1430 1806
Total simul 1798 2210

Average time per system
Build Precond 0.58 1.27
Apply Precond 0.57 0.87
Total Su = g 2.13 3.38

Table 5.1: Results of MAS and of the sparsified preconditioner Msp(AS,0.01) for
Large 32.

the Schur matrix that are kept after the smallest entries have been dropped. In this
table we display the maximum and minimum values of this sparsity ratio during the
numerical simulation. We can observe that the sparsity ratio is quite low while the
linear and the nonlinear convergences are only slightly perturbed. Paradoxically, the
times of the construction and the application of the preconditioner are higher with
the sparsified version. This is due to the small sizes of the local Schur complements
that vary between 115 and 646 (see Table 4.3). In this case, the LAPACK dense
solver performs better than a sparse solver like MUMPS. We notice that this tech-
nique may be of interest for bigger problems (possibly 3D problems). Furthermore,
these tests reveal that a lot of the information contained in the preconditioner is not
meaningful to accelerate the Krylov solver.

5.2 Spectral two-level preconditioners 95

5.2 Spectral two-level preconditioners

5.2.1 Motivation and general presentation

When solving the linear system Ax = b with a Krylov method, the smallest eigen-
values of the matrix A often slow down the convergence. In the SPD case, this
is clearly highlighted by the bound on the rate of convergence of the Conjugate
Gradient method (CG) given by

||e(k)||A ≤ (

√

κ(A)− 1
√

κ(A) + 1
)k||e(0)||A, (5.3)

where e(k) = x∗ − x(k) denotes the forward error associated with the iterate at step

k and κ(A) =
λmax

λmin

denotes the condition number. From this bound it can be

said that enlarging the smallest eigenvalues would improve the convergence rate of
CG. Consequently if the smallest eigenvalues of A could be somehow “removed” the
convergence of CG will be improved. Similarly for unsymmetric systems arguments
exist to explain the bad effect of the smallest eigenvalues on the rate of convergence
of the unsymmetric Krylov solver [12, 50, 87]. To cure this, several techniques have
been proposed in the last few years, mainly to improve the convergence of GMRES.
In [87], it is proposed to add a basis of the invariant space associated with the
smallest eigenvalues to the Krylov basis generated by GMRES. Another approach
based on a low rank update of the preconditioner for GMRES was proposed by [12,
50]. They consider the orthogonal complement of the invariant subspace associated
with the smallest eigenvalues to build a low rank update of the preconditioned
system. Finally, in [78] a preconditioner for GMRES based on a sequence of rank-
one updates is proposed that involves the left and right smallest eigenvectors. In
our work, we consider an explicit eigencomputation which makes the preconditioner
independent of the Krylov solver used in the actual solution of the linear system.

We first present our technique for unsymmetric linear systems and then derive
a variant for symmetric and SPD matrices. We consider the solution of the linear
system

Ax = b, (5.4)

where A is a n× n unsymmetric non singular matrix, x and b are vectors of size n.
The linear system is solved using a preconditioned Krylov solver and we denote by
M1 the left preconditioner, meaning that we solve

M1Ax = M1b. (5.5)

We assume that the preconditioned matrix M1A is diagonalizable, that is:

M1A = V ΛV −1, (5.6)

with Λ = diag(λi), where |λ1| ≤ . . . ≤ |λn| are the eigenvalues and V = (vi) the
associated right eigenvectors. We denote by U = (ui) the associated left eigenvectors;

96 Prospectives

we then have UHV = diag(uH
i vi), with uH

i vi 6= 0, ∀i [112]. Let Vε be the set of right
eigenvectors associated with the set of eigenvalues λi such that |λi| ≤ ε. Similarly
we define by Uε the corresponding subset of left eigenvectors.

Theorem 1 Let
Ac = UH

ε M1AVε,

Mc = VεA
−1
c UH

ε M1

and
M = M1 + Mc.

Then MA is diagonalizable and we have MA = V diag(ηi)V
−1 with

{

ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

Proof

We first remark that Ac = diag(λiu
H
i vi) with |λi| ≤ ε and then Ac is non singular.

Let V = (VεVε̄), where Vε̄ is the set of (n − k) right eigenvectors associated with
eigenvalues |λi| > ε.
Let Dε = diag(λi) with |λi| ≤ ε and Dε̄ = diag(λj) with |λj| > ε.
MAVε = M1AVε + VεA

−1
c UH

ε M1AVε

= VεDε + VεIk

= Vε(Dε + Ik)
where Ik denotes the (k × k) identity matrix.
MAVε̄ = M1AVε̄ + VεA

−1
c UH

ε M1AVε̄

= Vε̄Dε̄ + VεA
−1
c UH

ε Vε̄Dε̄

= Vε̄Dε̄ as UH
ε Vε̄ = 0.

We then have

MAV = V

(

Dε + Ik 0
0 Dε̄

)

.

�

Theorem 2 Let W be such that

Ãc = W HAVε has full rank,

M̃c = VεÃ
−1
c W H

and
M̃ = M1 + M̃c.

Then M̃A is similar to a matrix whose eigenvalues are

{

ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

5.2 Spectral two-level preconditioners 97

Proof

With the same notation as for Theorem 1 we have:
M̃AVε = M1AVε + VεA

−1
c W HAVε

= VεDε + VεIk

= Vε(Dε + Ik)

M̃AVε̄ = M1AVε̄ + VεA
−1
c W HAVε̄

= Vε̄Dε̄ + VεC with C = A−1
c W HAVε̄

=
(

VεVε̄

)

(

C
Dε̄

)

We then have

M̃AV = V

(

Dε + Ik C
0 Dε̄

)

.

�

For right preconditioning, that is AM1y = b, similar results hold.

Lemma 1 Let
Ac = UH

ε AM1Vε,

Mc = M1VεA
−1
c UH

ε

and
M = M1 + Mc.

Then AM is diagonalizable and we have AM = V diag(ηi)V
−1 with

{

ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

Lemma 2 Let W be such that

Ãc = W HAMVε has full rank,

M̃c = M1VεÃ
−1
c W H

and
M̃ = M1 + M̃c.

Then AM̃ is similar to a matrix whose eigenvalues are

{

ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

In the SPD case we can propose the following theorem

Theorem 3 If A and M1 are SPD, then

M1A is diagonalizable,

98 Prospectives

and
Ãc = V H

ε AVε is SPD.

The preconditioner defined by

M̃ = M1 + M̃c, with M̃c = VεÃ
−1
c V H

ε

is SPD and M̃A is similar to a matrix whose eigenvalues are
{

ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

Proof

The matrix M1A is similar to the matrix M
1

2

1 AM
1

2

1 which is similar to a diagonal
matrix as it is a real symmetric matrix. Therefore the matrix M1A is diagonalizable.

By construction Ãc is symmetric, let us show that it is positive definite. Vε is a n×k
matrix. Let z ∈ R

k, z 6= 0.
< Ãcz, z > = < V H

ε AVεz, z >
= < AVεz, Vεz >

Vεz 6= 0 because Vε has full rank. Therefore
< Ãcz, z > > 0 as A is a SPD matrix.

Therefore Ãc is a SPD matrix and consequently has full rank.

Let x ∈ R
n, x 6= 0.

< M̃cx, x > = < VεÃ
−1
c V H

ε x, x >

= < Ã−1
c V H

ε x, V H
ε x >

≥ 0 as Ãc is a SPD matrix.

Therefore M̃c is a positive semi-definite matrix and M̃ = M1 + M̃c is a SPD matrix
as M1 is SPD.

Concerning the distribution of the eigenvalues of M̃A the proof of Theorem 2 re-
mains valid here.

�

This technique of two-level spectral preconditioning has also been applied in
combination with sparse inverse preconditioners to solve dense linear systems in
electromagnetism applications [25]. In the following section we present its applica-
tion to iterative substructuring algorithms.

5.2.2 Application to iterative substructuring algorithms

We consider the case of the Schur complement system

Su = g

5.2 Spectral two-level preconditioners 99

preconditioned by the local block preconditioner MAS defined in Section 3.2.2. We
can remark that the two-level preconditioners presented in Section 3.3.3 has a similar
form as the one of the two-level spectral preconditioners presented in Section 5.2.1.
The difference resides in the choice of the vectors that span the coarse space. These
vectors are given a priori in 3.2.2 while they span the subspace associated with the
smallest eigenvalues of the MAS matrix here.

We select few linear systems from a semiconductor simulation in order to inves-
tigate the numerical behaviour of the spectral two-level preconditioners for Schur
complement systems. We assemble the complete Schur matrices as well as the as-
sociated MAS. Then we perform experiments with Matlab on these matrices. We
select 8 Schur matrices denoted by Si, i=1,...,8. and the associated MAS precondition-
ers denoted by MASi. The main characteristics of these matrices are displayed in
Table 5.2. These characteristics are the symmetry of the Schur complement matrix,
its size and the number of subdomains of the decomposition on which it is defined.
The linear systems are arising from the discretization of the continuity equation for

Equation Symmetry Number of subdomains Size
S1 Init SPD 8 958
S2 Init SPD 8 958
S3 Init SPD 16 1607
S4 Init SPD 16 1607
S5 Electrons Unsymmetric 8 958
S6 Holes Unsymmetric 8 958
S7 Holes Unsymmetric 16 1607
S8 Electrons Unsymmetric 16 1607

Table 5.2: Characteristics of the Schur complement matrices selected.

the electrons or for the holes and of their linearizations (Init systems). Symmetric
diagonal scaling has been applied in all the cases.

Numerical experiments with SPD Schur complement matrices

Following the theory developed in Section 5.2.1, we consider for the four SPD test
cases the two-level spectral preconditioner defined by

M = MAS + MC (5.7)

and

MC = Vk(V
H
k SVk)

−1V H
k , (5.8)

where Vk is a set of k right eigenvectors associated with the k smallest eigenvalues
in modulus of MASS. The value of the parameter k defines the size of the coarse
space. In Table 5.3, we display the number of CG iterations needed to solve the
Schur complement system

Su = g

100 Prospectives

Schur matrix
Size of the coarse space k S1 S2 S3 S4

0 15 17 40 50
1 14 16 37 42
2 13 15 32 37
3 12 14 30 34
4 11 13 28 30
5 11 13 27 27
6 11 12 25 26
7 11 12 24 24
8 11 12 23 23
9 11 12 23 23
10 11 12 23 23

Table 5.3: Number of CG iterations needed to solve an SPD Schur complement
system in the case of two-level spectral preconditioning.

preconditioned by (5.7). The value of εKrylov is set to 10−11.

We can see that for a decomposition into 8 subdomains the number of CG
iterations decreases quite slowly when the size of the coarse space increases. For the
test cases related to a decomposition into 16 subdomains the gain is more significant.
With a coarse space of dimension 3 we reduce the number of CG iterations of more
than 30 % in the case of S4.

Numerical experiments with unsymmetric Schur complement matrices

We consider left preconditioning for the unsymmetric Schur complement systems.
We refer to the two-level spectral preconditioners defined in Theorems 1 and 2
of Section 5.2.1. Let Vk be a set of k right eigenvectors corresponding to the k
smallest eigenvalues in modulus of SMAS. Let Uk be a set of k left eigenvectors
corresponding to the smallest eigenvalues in modulus of SMAS. In Lemma 2, we
replace A by S, M1 by MAS and Vε by Vk. Then we set W = MASUk or W = Vk.
The two resulting coarse space components for the local preconditioner MAS are
denoted by MC1 (associated with MASUk) and MC2 (associated with Vk). We may
remark that we can have pairs of conjugate complex eigenvalues. For a practical
implementation, it is possible to consider the real and the imaginary part of one
of the eigenvector instead of two complex eigenvectors. In this case, the diagonal
matrix diag(ηi) considered in Theorem 1 is replaced by a block diagonal matrix with
real blocks of size 2× 2 or 1× 1.

In Table 5.4, we display the number of full GMRES iterations needed to solve
each unsymmetric Schur complement systems. For each test case, we consider the
two coarse space components. The value of εKrylov is set to 10−11. In Table 5.5, we
consider the same experiments with the BiCGStab solver.

As expected, we see that there is almost no difference between MC1 and MC2

5.2 Spectral two-level preconditioners 101

S5 S6 S7 S8

k MC1 MC2 MC1 MC2 MC1 MC2 MC1 MC2

0 9 9 18 18 10 10 36 36
1 9 9 16 16 11 11 33 33
2 9 9 15 15 11 11 30 30
3 9 9 14 14 11 11 28 28
4 9 9 14 14 10 10 27 26
5 9 9 13 13 11 11 25 25
6 9 9 12 12 10 10 24 23
7 9 9 12 12 11 11 23 23
8 10 10 12 12 11 11 22 22
9 10 10 12 12 10 10 22 21
10 10 10 12 12 10 10 22 21

Table 5.4: Number of GMRES iterations needed to solve each unsymmetric Schur
complement in the case of two-level spectral preconditioning (k is the dimension of
the coarse space).

S5 S6 S7 S8

k MC1 MC2 MC1 MC2 MC1 MC2 MC1 MC2

0 6 6 11 11 7 7 24 24
1 6 6 10 10 7 7 20 20
2 6 6 9 9 7 7 17 17
3 6 6 9 9 6 6 16 16
4 6 6 8 8 6 6 16 16
5 6 6 8 8 6 6 14 14
6 6 6 7 7 6 6 13 13
7 6 6 7 7 7 7 13 13
8 6 6 7 7 6 6 13 12
9 6 6 7 7 6 6 12 12
10 6 6 7 7 6 6 12 13

Table 5.5: Number of BiCGStab iterations needed to solve each unsymmetric Schur
complement in the case of two-level spectral preconditioning (k is the dimension of
the coarse space).

102 Prospectives

(except a variation of one iteration for some cases for S8). BiCGStab requires less
iterations than GMRES but we recall that, in the context of our semiconductor
applications, BiCGStab is less robust than GMRES (see Section 4.3.1) and that
BiCGStab requires two-matrix vector products per iteration while GMRES only
requires one.

Without any coarse space, S5 and S7 are easier to solve than S6 and S8. The
spectral two-level preconditioning has no effect on S5 and S7. For S6, the iteration
number decreases slowly when the size of the coarse space increases. For S8, which
is the most difficult problem, the spectral two-level preconditioner is numerically
efficient. To illustrate the difference between S7 and S8 we have plotted the spectra
of S7MAS7 and of S7(MAS7 +MC1) (for a coarse space of dimension 3) on Figure 5.2;
and we have plot the spectra of S8MAS8 and of S8(MAS8 + MC1) (for a coarse space
of dimension 3) on Figure 5.1. We can see that both for S7 and S8, most of the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−8

−6

−4

−2

0

2

4

6

8
x 10

−3 MVl

Figure 5.1: ’o’ represent the eigenvalues of S8MAS8; ’+’ represent the eigenvalues of
S8(MAS8 + MC1) with a coarse space of dimension 3.

eigenvalues are clustered around 2. This can be explained by the distributed nature
of the preconditioner MAS which is locally an approximation of 2 ·S−1. We see that
for S7 and S8, the three smallest eigenvalues are effectively shifted by one. For S8,
the three smallest eigenvalues are close to zero while for S7 they are closer to two
than to zero. This indicates why two-level spectral preconditioning is efficient in the

5.2 Spectral two-level preconditioners 103

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
MVl

Figure 5.2: ’o’ represent the eigenvalues of S7MAS7; ’+’ represent the eigenvalues of
S7(MAS7 + MC1) with a coarse space of dimension 3.

104 Prospectives

case of S8 but not in the case of S7.

Comparison with other two-level preconditioners

We can make a qualitative comparison with the other two-level preconditioners
described in Chapter 3 and tested in Chapter 4. Actually, the eight test matrices
S1, . . . , S8 have been extracted from a simulation on a decomposition into 8 or 16
subdomains of the mesh Mesh S presented in Section 4.1.1. Tables 4.12 and 4.13
present the numerical behaviour of the two-level preconditioners MAS−sub, MAS−edge

and MBNN(3) for the same simulation.

In the unsymmetric case, the two-level preconditioners MAS−edge and MAS−sub

are not efficient and even worse deteriorate the convergence of GMRES precondi-
tioned by MAS. The results of Table 5.4 show that two-level spectral preconditioning
improves the numerical behaviour of MAS when the problem is relatively difficult
(S6 and S8) and hopefully does not deteriorate it when the problem is easier (S5

and S7).

Concerning the SPD case, the four test matrices S1, . . . , S4 are Init systems
as defined in Section 4.1.5. We see in Table 4.13 that for this class of systems
MAS without any coarse space is more efficient than MAS−edge, MAS−sub, MBNN(1)

or MBNN(3). On the contrary, we see in Table 5.3 that spectral two-level precondi-
tioning always improves the numerical behaviour of MAS. Therefore MAS−spectral is
numerically the most efficient preconditioner tested for the matrices Si.

These preliminary results are promising, but the implementation of the method
in the semiconductor code may rise new difficulties. The eigenvectors will be com-
puted using an iterative method that will increase the numerical complexity of the
complete solver. The accuracy required for the computation of the eigenvectors and
their number are new parameters that will have to be tuned carefully to ensure the
efficiency and the robustness of the numerical method.

5.3 Implementation exploiting two levels of par-

allelism

We have seen in Section 4.1.5 that the number of iterations of the Krylov solvers
required to solve each Schur complement system increases with a factor of approxi-
matively two when the number of subdomains of the decomposition is twice bigger.
In Section 4.2.3 we have illustrated that the explicit iterative substructuring method
allows a relatively large number of Krylov iterations. We have seen that the cost
of the increase of the iteration number is not penalizing for the overall simulation
time. Due to the limitation of our computer resources, we have not made extensive
tests with more than 32 processors. In the future, we may run larger simulations
on a larger number of processors. If the number of Krylov iterations becomes too
large, the iterative solution of the Schur system may not be affordable any more.
Especially, we could mention that the dot product calculation is a well-known bot-

Conclusion 105

tleneck of the Krylov solvers on a large number of processors as they require global
reductions.

The main motivation for two-level preconditioners is to mitigate the increase in
the number of iterations of the Krylov solver when the number of subdomains in-
creases. Unfortunately, the two-level preconditioners presented in Chapter 3 are not
able to alleviate the number of iterations and even worse often deteriorate the con-
vergence of the Krylov solver in the context of our semiconductor applications (see
the results of Section 4.1.5). In the previous section, we have presented a two-level
spectral preconditioner that may correct this drawback. However a software alter-
native might also be proposed that uses parallel solvers on the subdomains. This
leads to algorithms that exploit two levels of parallelism. The latter approach has
some advantages as, so far, no efficient two-level preconditioner has been identified.
Two level of parallelism would enable us to use more processors without increasing
linearly the number of subdomains and consequently without deteriorating the nu-
merical behaviour of the associated iterative linear solvers. Practically, an instance
of MUMPS with a few processors could be used concurrently on each subdomain to
perform the numerical factorization of the internal subproblems. The Schur com-
plement feature of MUMPS is available for distributed matrices but the dense Schur
complement computed is currently centralized on the “host”. A future release of
MUMPS may integrate a distributed Schur complement as output. In this case the
dense matrix-vector product with the local Schur complements could be performed
using the ScaLAPACK library [18]. This second level of parallelism has not been
implemented yet. The fact that one subdomain corresponds to one processor allows
a simple implementation of the communications between two subdomains. There-
fore, the use of parallel solvers on the subdomains would imply to modify the data
structures that describe the communication pattern of the existing code. We should
also mention that one difficulty will be to decide when to switch from one level of
parallelism to two levels of parallelism as this criterion should include numerical and
software ingredients.

106 Conclusion

Conclusion

The main objective of this study was to test modern parallel numerical linear algebra
algorithms in the context of a complex physical application. From a performance
point of view the parallelization of the code based on state of the art parallel linear
solvers is successful. A simulation that requires 24 hours of computational time with
the initial code only requires a few minutes to be completed using the parallel code.
This tremendous reduction of elapsed time is only partially due to the use of parallel
computers but mainly induced by the use of efficient modern techniques for solving
large sparse linear systems. Moreover the new parallel code allows computations
that are out of reach for the sequential code but are essential to validate the mathe-
matical model of the semiconductors. A. Marrocco from INRIA has performed a set
of experiments that shows that it is possible to obtain a solution almost independent
from the mesh if this one is sufficiently refined. These experiments have been carried
out using the iterative substructuring method that is MAS with diagonal scaling on
S, on meshes with more than 800 000 elements decomposed into 16 subdomains [86].

It is important to notice that in that work we have implemented the iterative
solvers directly in the simulation code. This approach rises new difficulties and find-
ing preconditioners to make converging the Krylov solver appears not to be sufficient
to ensure the numerical robustness of the complete numerical scheme. For instance,
we can cite the crucial influence of a combination of scaling and preconditioning
and the importance of the choice of the stopping criterion threshold for the Krylov
solvers. We would not have found such difficulties if we had only run experiments
on few isolated linear systems extracted from the simulation, as it is sometimes con-
venient to do for comparing different preconditioners.

We want to emphasize that in this work we tried to make a fair comparison
between iterative and direct solvers from the numerical, the performance and the
software development point of view. The parallel direct software MUMPS is easy
to interface with the semiconductor device simulation code. The implementation
of direct substructuring methods requires additional effort but remains relatively
straightforward. This simplicity of use is one of the strength of direct solvers. Nu-
merically, the main advantage of direct methods is their robustness. In all our test
cases, direct methods give better results than iterative ones concerning the conver-
gence of the Euler and the Newton nonlinear schemes. Nevertheless, when iterative
solvers are well tuned this difference almost vanishes. Moreover, they outperform

108 Conclusion

direct solvers concerning the overall simulation time. However, this tuning can be
quite complex and requires some expertise in numerical analysis and linear algebra.

Both direct and iterative methods can expect improvements from future soft-
ware development in MUMPS. Nested dissection orderings for direct methods may
improve their performance. Future releases of MUMPS will include the possibility
to use different mesh partitioners in order to compute a more efficient ordering for
the factorization of the linear systems. Concerning iterative solvers, the study of
two-level spectral preconditioners, that has to be completed, is promising and it
might give more robust preconditioners but also give some clue to understand the
deficiency of the other two-level preconditioners tested.

Bibliography

[1] V. I. Agoshkov. Poincaré-Steklov operators and domain decomposition meth-
ods in finite dimensional spaces. In Roland Glowinski, Gene H. Golub,
Gérard A. Meurant, and Jacques Périaux, editors, First International Sym-
posium on Domain Decomposition Methods for Partial Differential Equations,
Philadelphia, PA, 1988. SIAM.

[2] P. Alart, M. Barboteu, P. Le Tallec, and M. Vidrascu. Additive Schwarz
method for nonsymmetric problems : application to frictional multicontact
problems. In Thirteenth International Conference on Domain Decomposition
Methods, 2002. To appear.

[3] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum de-
gree ordering algorithm. SIAM Journal on Matrix Analysis and Applications,
17:886–905, 1996.

[4] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. MUMPS: a general
purpose distributed memory sparse solver. In A. H. Gebremedhin, F. Manne,
R. Moe, and T. Sørevik, editors, Proceedings of PARA2000, the Fifth Interna-
tional Workshop on Applied Parallel Computing, Bergen, June 18-21, pages
122–131. Springer-Verlag, 2000. Lecture Notes in Computer Science 1947.

[5] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling. SIAM
Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[6] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech.
Eng., pages 501–520, 2000.

[7] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis, tuning and
comparison of two general sparse solvers for distributed memory computers.
ACM Transactions on Mathematical Software, 27:388–421, 2001.

[8] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and P. Plecháč. PARASOL:
An integrated programming environment for parallel sparse matrix solvers. In
PINEAPL Workshop, A Workshop on the Use of Parallel Numerical Libraries
in Industrial End-user Applications, CERFACS, February, 1998.

110 BIBLIOGRAPHY

[9] M. Arioli, J. Demmel, and I. S. Duff. Solving sparse linear systems with
sparse backward error. SIAM Journal on Matrix Analysis and Applications,
10:165–190, 1989.

[10] M. Arioli, I. S. Duff, and D. Ruiz. Stopping criteria for iterative solvers. SIAM
Journal on Matrix Analysis and Applications, 13:138–144, 1992.

[11] C. Ashcraft. The fan-both family of column-based distributed Cholesky fac-
torisation algorithm. In A. George, J.R. Gilbert, and J.W.H Liu, editors,
Graph Theory and Sparse Matrix Computations, pages 159–190. Springer-
Verlag NY, 1993.

[12] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel. Adaptively precon-
ditioned GMRES algorithms. SIAM J. Scientific Computing, 20(1):243–269,
1999.

[13] M. V. Bhat, W. G. Habashi, J. W. H. Liu, V. N. Nguyen, and M. F. Peeters.
A note on nested dissection for rectangular grids. SIAM Journal on Matrix
Analysis and Applications, 14(1):253–258, January 1993.

[14] Å. Björck. Numerics of Gram-Schmidt orthogonalization. Linear Algebra and
its Applications, 197,198:297–316, 1994.

[15] P. E. Bjørstad, J. Koster, and P. Krzyżanowski. Domain decomposition solvers
for large scale industrial finite element problems. In PARA2000 Workshop
on Applied Parallel Computing. Lecture Notes in Computer Science 1947,
Springer-Verlag, 2000.

[16] P. E. Bjørstad and O. B. Widlund. Solving elliptic problems on regions parti-
tioned into substructures. In Garrett Birkhoff and Arthur Schoenstadt, editors,
Elliptic Problem Solvers II, pages 245–256, New York, 1984. Academic Press.

[17] P. E. Bjørstad and O. B. Widlund. Iterative methods for the solution of elliptic
problems on regions partitioned into substructures. SIAM J. Numer. Anal.,
23(6):1093–1120, 1986.

[18] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM Press, 1997.

[19] A. El Boukili. Analyse mathématique et simulation numérique bidimension-
nelle des équations des semi-conducteurs par l’approche éléments finis mixtes.
PhD thesis, Université Paris VI, Paris, France, 1995.

[20] A. Bouras and V. Frayssé. A relaxing strategy for inexact matrix-vector
products for Krylov methods. Technical Report TR/PA/00/15, CERFACS,
Toulouse, France, 2000.

BIBLIOGRAPHY 111

[21] A. Bouras, V. Frayssé, and L. Giraud. A relaxation strategy for inner-
outer linear solvers in domain decomposition methods. Technical Report
TR/PA/00/17, CERFACS, Toulouse, France, 2000.

[22] J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu. Variational formu-
lation and algorithm for trace operator in domain decomposition calculations.
In Tony Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund, editors,
Domain Decomposition Methods, pages 3–16, Philadelphia, PA, 1989. SIAM.

[23] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of precondi-
tioners for elliptic problems by substructuring, I. Math. Comp., 47(175):103–
134, 1986.

[24] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Num-
ber 15 in Springer Series in Computational Mathematics. Springer-Verlag,
1991.

[25] B. Carpentieri. Sparse preconditioners for dense linear systems from electro-
magnetic applications. PhD thesis, CERFACS, Toulouse, France, 2002.

[26] L. M. Carvalho. Preconditioned Schur complement methods in distributed
memory environments. PhD thesis, INPT/CERFACS, France, october 1997.
TH/PA/97/41, CERFACS.

[27] L. M. Carvalho, L. Giraud, and G. Meurant. Local preconditioners for two-
level non-overlapping domain decomposition methods. Numerical Linear Al-
gebra with Applications, 8(4):207–227, 2001.

[28] L. M. Carvalho, L. Giraud, and P. Le Tallec. Algebraic two-level precon-
ditioners for the schur complement method. SIAM J. Scientific Computing,
22(6):1987–2005, 2001.

[29] F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computa-
tions. SIAM, Philadelphia, 1996.

[30] T. F. Chan. Rank revealing QR-factorizations. Linear Algebra and its Appli-
cations, 88/89:67–82, 1987.

[31] T. F. Chan and T. P. Mathew. The interface probing technique in domain
decomposition. SIAM J. on Matrix Analysis and Applications, 13(1):212–238,
1992.

[32] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. In Acta
Numerica 1994, pages 61–143. Cambridge University Press, 1994.

[33] T. F. Chan and D. C. Resasco. A survey of preconditioners for domain de-
composition. Technical Report /DCS/RR-414, Yale University, 1985.

112 BIBLIOGRAPHY

[34] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald.
Parallel Programming in OpenMP. Morgan Kaufmann Publishers, 2000.

[35] S. Chandrasekaran and I. Ipsen. On rank-revealing factorizations. SIAM
Journal on Matrix Analysis and Applications, 15:592–622, 1994.

[36] R. K. Coomer and I. G. Graham. Massively parallel methods for semiconductor
device modelling. Computing, 56(1):1–27, 1996.

[37] R. W. Cottle. Manifestations of the Schur complement. Linear Algebra and
its Applications, 8:189–211, 1974.

[38] Y.-H. De Roeck. Résolution sur Ordinateurs Multi-Processeurs de Problème
d’Elasticité par Décomposition de Domaines. PhD thesis, Université Paris IX
Daupine, 1991.

[39] Y.-H. De Roeck and P. Le Tallec. Analysis and test of a local domain decompo-
sition preconditioner. In Roland Glowinski, Yuri Kuznetsov, Gérard Meurant,
Jacques Périaux, and Olof Widlund, editors, Fourth International Symposium
on Domain Decomposition Methods for Partial Differential Equations, pages
112–128. SIAM, Philadelphia, PA, 1991.

[40] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel su-
pernodal algorithm for sparse Gaussian elimination. SIAM Journal on Matrix
Analysis and Applications, 20(4):915–952, October 1999.

[41] J. Dongarra, S. Moore, and A. Trefethen. Numerical libraries and tools for
scalable parallel cluster computing. The International Journal of High Per-
formance Computing Applications, 15(2):175–180, Summer 2001.

[42] M. Dryja. A capacitance matrix method for Dirichlet problem on polygon
region. Numer. Math., 39:51–64, 1982.

[43] M. Dryja, B. F. Smith, and O. B. Widlund. Schwarz analysis of iterative
substructuring algorithms for elliptic problems in three dimensions. SIAM J.
Numer. Anal., 31(6):1662–1694, 1993.

[44] M. Dryja and O. B. Widlund. An additive variant of the Schwarz alternating
method for the case of many subregions. Technical Report 339, also Ultracom-
puter Note 131, Department of Computer Science, Courant Institute, 1987.

[45] M. Dryja and O. B. Widlund. Towards a unified theory of domain decomposi-
tion algorithms for elliptic problems. In T. Chan, R. Glowinski, J. Périaux, and
O. Widlund, editors, Third International Symposium on Domain Decomposi-
tion Methods for Partial Differential Equations, pages 3–21. SIAM, Philadel-
phia, PA, 1990.

BIBLIOGRAPHY 113

[46] I. S. Duff. Sparse numerical linear algebra: direct methods and precondition-
ing. In I. S. Duff and G. A. Watson, editors, The State of the Art in Numerical
Analysis, pages 27–62, Oxford, 1997. Oxford University Press.

[47] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, London, 1986.

[48] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmet-
ric linear systems. ACM Transactions on Mathematical Software, 9:302–325,
1983.

[49] I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of
linear systems. SIAM Journal on Scientific and Statistical Computing, 5:633–
641, 1984.

[50] J. Erhel, K. Burrage, and B. Pohl. Restarted GMRES preconditioned by
deflation. J. Comput. Appl. Math., 69:303–318, 1996.

[51] R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, 1995.

[52] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the exis-
tence of a conjugate gradient method. SIAM Journal on Numerical Analysis,
21(2):352–362, April 1984.

[53] Qing Fan, P. A. Forsyth, J. R. F. McMacken, and Wei-Pai Tang. Performance
issues for iterative solvers in device simulation. SIAM Journal on Scientific
Computing, 17(1):100–117, January 1996.

[54] C. Farhat and F.-X. Roux. A Method of Finite Element Tearing and Inter-
connecting and its Parallel Solution Algorithm. Int. J. Numer. Meth. Engng.,
32:1205–1227, 1991.

[55] V. Frayssé and L. Giraud. A set of conjugate gradient routines for real and
complex arithmetics. Technical Report TR/PA/00/47, CERFACS, Toulouse,
France, 2000.

[56] V. Frayssé, L. Giraud, and S. Gratton. A set of GMRES routines for real and
complex arithmetics. Technical Report TR/PA/97/49, CERFACS, Toulouse,
France, 1997.

[57] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM : Parallel Virtual Machine – A User’s Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

[58] J. A. George. Solution of linear systems of equations: direct methods for
finite-element problems. In J.R. Bunch and D. J. Rose, editors, Sparse Matrix
Techniques.Lecture notes in mathematics, 572., pages 52–101. Springer-Verlag,
1977.

114 BIBLIOGRAPHY

[59] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning:
Implementation and experiments. SIAM Journal on Scientific Computing,
19(6):2091–2110, 1998.

[60] L. Giraud. Combining shared and distributed memory programming models
on clusters of symmetric multiprocessors: Some basic promising experiments.
Working Note WN/PA/01/19, CERFACS, Toulouse, France, 2001.

[61] L. Giraud, J. Koster, A. Marrocco, and J.-C. Rioual. Domain decomposition
methods in semiconductor device modeling. Technical Report TR/PA/01/51,
CERFACS, Toulouse, France, 2001. To appear in the proceedings of the 13th

conference on Domain Decomposition Methods in Scientific Computing, 2002.

[62] L. Giraud and R. S. Tuminaro. Domain decomposition algorithms for the
drift-diffusion equations. In R. Sincovec, D. Keyes, M. Leuze, L. Petzold,
and D. Reed, editors, Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, pages 719–726. SIAM, 1993.

[63] L. Giraud and R. S. Tuminaro. Schur complement preconditioners for
anisotropic problems. IMA Journal of Numerical Analysis, 19(1):1–17, 1999.
Also published as Sandia Nat. Lab Technical Report 98-8488J.

[64] R. Glowinski and P. Le Tallec. Augmented lagrangian and operator splitting
methods in nonlinear mechanics. SIAM, Studies in Applied Mathematics, 1989.

[65] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Univ.
Press, 1989. Second Edition.

[66] G. H. Golub and Q. Ye. Inexact preconditioned conjugate gradient method
with inner-outer iteration. Sccm-97-04, Stanford University, 1997.

[67] Gene Golub and G. Meurant. Matrices, moments and quadrature II. How to
compute the error in iterative methods. BIT, 37:687–705, 1997.

[68] A. Greenbaum. Iterative methods for solving linear systems. Society for In-
dustrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[69] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
and M. Snir. MPI: The Complete Reference. Volume 2, The MPI-2 Extensions.
Scientific and Engineering Computation. MIT Press, Cambridge, MA, USA,
second edition, 1998.

[70] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Program-
ming with the Message-Passing Interface. MIT press, 1994.

[71] F. Hecht and A. Marrocco. Mixed finite element simulation of heterojunc-
tion structures including a boundary layer model for the quasi-fermi levels.
COMPEL, 13(4):757–770, 1994.

BIBLIOGRAPHY 115

[72] B. Hendrickson and R. Leland. The CHACO User’s Guide. Version 1.0. Tech-
nical Report SAND93-2339 • UC-405, Sandia National Laboratories, Albu-
querque, 1993.

[73] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear system. J. Res. Nat. Bur. Stds., B49:409–436, 1952.

[74] HSL. A collection of Fortran codes for large scale scientific computation, 2000.
http://www.cse.clrc.ac.uk/Activity/HSL.

[75] G. Karypis and V. Kumar. METIS, unstructured graph partitioning and
sparse matrix ordering system. version 2.0. Technical report, University of
Minnesota, Department of Computer Science, Minneapolis, MN 55455, August
1995.

[76] C. T. Kelley. Iterative methods for optimization. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[77] D. E. Keyes and W. D. Gropp. A comparison of domain decomposition tech-
niques for elliptic partial differential equations and their parallel implemen-
tation. SIAM Journal on Scientific and Statistical Computing, 8(2):166–202,
1987.

[78] S. A. Kharchenko and A. Yu. Yeremin. Eigenvalue translation based precon-
ditioners for the GMRES(k) method. Numerical Linear Algebra with Applica-
tions, 2(1):51–77, 1995.

[79] P. Laug. How to implement MODULEF. Technical Report RT-0069, Inria,
Institut National de Recherche en Informatique et en Automatique, 1986.

[80] P.-L. Lions. On the Schwarz alternating method I. In Roland Glowinski,
Gene H. Golub, Gérard A. Meurant, and Jacques Périaux, editors, First In-
ternational Symposium on Domain Decomposition Methods for Partial Differ-
ential Equations, pages 1–42, Philadelphia, PA, 1988. SIAM.

[81] P. L. Lions. On the Schwarz alternating method II. In Tony Chan, Roland
Glowinski, Jacques Périaux, and Olof Widlund, editors, Domain Decomposi-
tion Methods, pages 47–70, Philadelphia, PA, 1989. SIAM.

[82] P. L. Lions. On the Schwarz alternating method III: a variant for nonoverlap-
ping subdomains. In Tony F. Chan, Roland Glowinski, Jacques Périaux, and
Olof Widlund, editors, Third International Symposium on Domain Decompo-
sition Methods for Partial Differential Equations , held in Houston, Texas,
March 20-22, 1989, Philadelphia, PA, 1990. SIAM.

[83] J. W. H. Liu. The multifrontal method for sparse matrix solution: Theory
and Practice. SIAM Review, 34:82–109, 1992.

116 BIBLIOGRAPHY

[84] J. Mandel. Balancing domain decomposition. Comm. Numer. Meth. Engrg.,
9:233–241, 1993.

[85] J. Mandel and R. Tezaur. Convergence of substructuring method with La-
grange multipliers. Numer. Math., 73:473–487, 1996.

[86] A. Marrocco. Simulations numériques de dispositifs électroniques via éléments
finis mixtes, adaptation de maillage et décomposition de domaine. Rapport
de recherche, INRIA, To appear.

[87] R. B. Morgan. A restarted GMRES method augmented with eigenvectors.
SIAM Journal on Matrix Analysis and Applications, 16:1154–1171, 1995.

[88] OpenMP Architecture Review Board. OpenMP Fortran Application Program
Interface. Technical Report Version 2.0, 2000.

[89] PARASOL. Deliverable 2.1d (final report): MUMPS Version 4.0. A MUlti-
frontal Massively Parallel Solver. Technical report, June 30, 1999.

[90] F. Pellegrini and J. Roman. Sparse matrix ordering with scotch. In Pro-
ceedings of HPCN’97, Vienna, LNCS 1225, pages 370–378, April 1997.

[91] F. Pellegrini, J. Roman, and P. R. Amestoy. Hybridizing nested dissection
and halo approximate minimum degree for efficient sparse matrix ordering.
Concurrency: Practice and Experience, 12:69–84, 2000.

[92] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential
Equations. Springer–Verlag, Berlin, 1994.

[93] J. R. Rice. Experiments on Gram-Schmidt orthogonalization. Mathematics of
Computation, 20:325–328, 1966.

[94] D. Ruiz. A scaling algorithm to equilibrate both rows and columns norms in
matrices. Technical Report RT/APO/01/4, Département Informatique EN-
SEEIHT - IRIT, Toulouse, 2001.

[95] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Com-
pany, 1996.

[96] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856–869,
1986.

[97] H. A. Schwarz. Ueber einen Grenzübergang durch alternierendes Verfahren.
Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:272–286,
May 1870.

[98] S. Selberherr. Analysis and simulation of semiconductor devices. Springer
Verlag, Wien, New York, 1984.

BIBLIOGRAPHY 117

[99] J. N. Shadid and R. S. Tuminaro. Sparse iterative algorithm software for
large-scale MIMD machines: An initial discussion and implementation. Con-
currency: Practice and Experience, 4(6):481–497, 1992.

[100] B. F. Smith. Domain Decomposition Algorithms for the Partial Differential
Equations of Linear Elasticity. PhD thesis, Courant Institute of Mathematical
Sciences, September 1990. Tech. Rep. 517, Department of Computer Science,
Courant Institute.

[101] B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Decomposition: Paral-
lel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge
University Press, 1996.

[102] P. Le Tallec. Domain decomposition methods in computational mechanics. In
J. Tinsley Oden, editor, Computational Mechanics Advances, volume 1 (2),
pages 121–220. North-Holland, 1994.

[103] P. Le Tallec, Y.-H. De Roeck, and M. Vidrascu. Domain-decomposition meth-
ods for large linearly elliptic three dimensional problems. J. of Computational
and Applied Mathematics, 34, 1991.

[104] P. Le Tallec, J. Mandel, and M. Vidrascu. Balancing domain decomposition
for plates. In Domain Decomposition Methods in Scientific and Engineering
Computing: Proceedings of the Seventh International Conference on Domain
Decomposition, volume 180 of Contemporary Mathematics, pages 515–524,
Providence, Rhode Island, 1994. American Mathematical Society.

[105] P. Le Tallec, J. Mandel, and M. Vidrascu. A Neumann-Neumann domain
decomposition algorithm for solving plate and shell problems. SIAM Journal
on Numerical Analysis, 35(2):836–867, April 1998.

[106] G. Torres. Etude et implantation de méthodes de décomposition de domaine
sur machine multiprocesseur à mémoire distribuée. Internal report, CERFACS,
1998.

[107] H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on
Scientific and Statistical Computing, 13:631–644, 1992.

[108] F. Guevara Vasquez. Internship report on domain decomposition methods for
the solution of partial differential equations. Technical Report TR/PA/00/98,
CERFACS, Toulouse, France, 2000.

[109] J. Warsa, M. Benzi, T. Wareing, and J. Morel. Preconditioning a mixed
discontinuous finite element method for radiation diffusion. Numerical Linear
Algebra with Applications, 2002. submitted.

118 BIBLIOGRAPHY

[110] O. B. Widlund. Iterative substructuring methods: Algorithms and theory for
elliptic problems in the plane. In Roland Glowinski, Gene H. Golub, Gérard A.
Meurant, and Jacques Périaux, editors, First International Symposium on Do-
main Decomposition Methods for Partial Differential Equations, Philadelphia,
PA, 1988. SIAM.

[111] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1963.

[112] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford Science Publica-
tions, 1965.

[113] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal
on Algebraic and Discrete Methods, 2:77–79, 1981.

