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Résumé

Nous nous intéressons à la résolution de systèmes linéaires creux de grande taille par
des solveurs creux directs opérant en trois phases qui sont l’analyse, la factorisation et la
résolution.

L’analyse est le lieu de prétraitements et doit dans la mesure du possible assurer
à la fois des facteurs aussi creux que possible et une factorisation numériquement
stable. La factorisation doit exploiter l’indépendance des calculs pour être efficace
dans un environnement parallèle distribué. Cette étude contribue à l’amélioration de
ces comportements sur des classes de problèmes connues comme étant difficiles ou mal
appréhendées par des stratégies classiques.

Dans une première partie, nous développons des techniques de prétraitements numériques
et structurels pour les matrices symétriques indéfinies. Nous étudions aussi de manière
plus prospective des approches de factorisation LDLT avec pivotage statique et
l’élaboration d’ordonnancements pour les systèmes augmentés.

Dans une deuxième partie, nous présentons des techniques d’ordonnancements pour les
matrices très non symétriques visant à la fois à réduire le remplissage et à stabiliser
la factorisation. Ces ordonnancements reposent sur des métriques hybrides prenant en
compte des informations structurelles et numériques.

Dans une troisième partie, nous discutons des stratégies de séquencement des tâches dans
un solveur multifrontal parallèle, MUMPS. Dans un premier temps, nous essayons de
prendre en compte l’hétérogénéité des architectures des machines cibles. Dans un second
temps, nous prenons en compte à la fois des critères de charge de travail et de mémoire
pour une prise de décision dynamique optimale.

Mots-clés: calcul distribué, calcul parallèle, élimination de Gauss, matrices creuses,
maximum matching, méthode multifrontale, ordonnancement, séquencement de tâches.



Abstract

We consider the three different phases (analysis, factorization, solution) for the direct
solution of large sparse systems of linear equations.

During the analysis phase, preprocessing is applied in order to, on the one hand, permute
the matrix to decrease the number of nonzeros in the factors and, on the other hand,
to determine pivots that ensure as much as possible a stable factorization. During the
factorization phase, the independence of the computations must be exploited to achieve a
good performance on a distributed memory parallel computer. Our study contributes to
the improvement of these aspects for some classes of matrices which are known for being
difficult or for which default strategies clearly do not perform well.

In the first part of our thesis, we develop numerical and structural preprocessing strategies
for symmetric indefinite matrices. We also study, in a more prospective way, static
pivoting approaches for LDLT factorizations and orderings for augmented systems.

In the second part, we present orderings for highly unsymmetric matrices that aim at
decreasing the fill-in and at stabilizing the factorization. These orderings are based on
hybrid metrics which take into account both structural and numerical information.

In the last part, we discuss task scheduling strategies in a parallel multifrontal solver,
MUMPS. We study two kinds of strategies. Firstly, we investigate strategies that take into
account heterogeneous architectures. Secondly, we study strategies that mix information
about workload and memory to make optimal dynamic decisions.

Keywords: distributed computing, Gaussian elimination, maximum matching,
multifrontal method, ordering, parallel computing, sparse matrices, tasks scheduling.
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Introduction

We are interested in the direct solution of large sparse linear systems of equations,
Ax = b , where A is large and sparse, b is the right-hand side and x is the vector
of unknowns. A matrix is sparse if advantage can be taken by avoiding storage of or
explicit computation on some of its zero entries. Clearly it does not only depend on the
number of nonzeros but also on the pattern of the matrix and on the target machine.

Let us make the following conventions: L denotes a lower triangular matrix, U an
upper triangular matrix and D a block diagonal matrix with blocks of size 1 or 2. Direct
methods compute a Cholesky factorization if A is symmetric positive definite, an LDLT

factorization if A is symmetric indefinite, and an LU factorization in the unsymmetric
case. Direct solvers try to preserve the zero pattern and to benefit from the independence
of some computations in parallel environments. So called three-phase approaches have
become very popular:

• The analysis phase applies numerical and/or structural pre-treatments and prepares
for the operations of the factorization.

• The factorization phase tries to follow the decision of the analysis. Nevertheless,
it must be able to dynamically adapt to unpredicted numerical difficulties and load
variations of the experimental environment.

• The solution phase performs a forward and a backward substitution and optionally
calls an iterative method to refine the solution.

In this introduction we discuss the analysis and the factorization phases in order to state
the outline of our thesis. We try to emphasize some points at the end of each section that
will guide us in the presentation of the different chapters. At the end of this introduction
we describe briefly some graphs representations that are used in the context of sparse
matrix computation and do a short introduction to multifrontal methods that will be useful
for the late chapters.

Analysis phase

Numerical pre-treatments

The goal of the analysis phase is to prepare for the factorization. Some pre-treatments
consider the values of the matrix. They aim at applying simple linear transformations
to the original system so that the new one is more likely to be numerically friendly. A
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first example of numerical preprocessing consists of applying scaling factors: diagonal
matrices Dr and Dc are computed such that DrADc has good numerical properties.
Examples of scaling are proposed in [19, 24, 87, 93].

A second example of numerical preprocessing consists in permuting large entries to the
diagonal [40, 41].

This last preprocessing has the drawback of restricting the choice of the pivots to the
diagonal of the permuted matrix. Moreover it generally perturbs the symmetry and so is
not well designed for symmetric matrices.

Structural pre-treatments

Other pre-treatments only consider the structure of the matrix. In most cases they consist
of an ordering of the diagonal entries ( ie they compute a symmetric permutation).
Criteria for ordering the pivots depend on the objective for the factorization. Commonly
the target is either to decrease the fill-in and/or the number of operations or to partition
the pattern of the matrix into sets corresponding to balanced independent tasks (this
last characteristic is necessary in parallel environments for the design of scalable
factorizations).

Greedy algorithms work on local heuristics such as [4, 5, 12, 56, 85, 92] and have
been developed successfully to improve the sparsity of the factors. More global
decisions compute partitions using nested dissection algorithm [53]. Hybrid multilevel
approaches [18, 90] have shown their efficiency. Examples of software for graph
partitioning are CHACO [69], ME T IS [73], SCOTCH [88] and PORD [95]. They first apply
multiple nested dissection and then use greedy algorithms on the smallest subgraphs.

Most of the orderings are done on a symmetric pattern. Recently, some orderings have
been developed to take asymmetry into account [12]. Nevertheless, note that the pivots
are still selected from the diagonal.

Factorization Phase

Numerical and static pivoting

The factorization follows as much as possible the estimations of the analysis. If some
variables are not eliminated because of numerical issues, their elimination is delayed. It
increases the fill-in in the factors but conserves the backward stability of the factorization
in most cases. An alternative is to eliminate the pivots chosen by the analysis after
adding small perturbations to the diagonal. In this last case, the factorization does static
pivoting [77].

The static pivoting approach has been developed for unsymmetric matrices and must be
coupled with unsymmetric preprocessings such as the maximum transversal. It has not
been designed for symmetric indefinite matrices.
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Parallel issues

Different approaches have been developed to schedule a sparse factorization in a parallel
environment. Some direct solvers have chosen an “all static” approach. The tasks are
mapped and the factorization cannot adapt itself to any variation of the load and has to
perform static pivoting when numerical problems occur. It is the choice of Pa S tiX [70]
and PSPACES [66]. On a dedicated machine, after being tuned, these approaches are
efficient and highly scalable. Another approach performs a partial static mapping and
still offers flexibility to adapt the workloads of each process and to perform numerical
pivoting. It is the choice in MUMPS [7, 8]. These methods have the advantage of being
more machine independent and it has been shown that they are competitive [9, 67]. In this
last case many difficulties arise.

To address non-uniform memory access multiprocessors, algorithms in [11] for both the
static and the dynamic scheduling need to be revisited to take account of the non-uniform
cost of communication.

As the execution of the factorization is not fully determined, it is more difficult to
evaluate the memory requirements and to correct the mistakes or the unbalances due
to the variations of the load of the machine.

Problems addressed

We make links between different phases of sparse solvers. We emphasize the weaknesses
of existing approaches on symmetric indefinite matrices and on structurally unsymmetric
matrices and stress that parallel implementations need to be improved.

For the analysis phase, we can afford neither to have too dense factors nor to have bad
numerical pivots. Usually this coexistence is maintained thanks to basic manipulations:
a maximum weighted matching is computed so that the corresponding permutation will
place large entries on the diagonal. If, however, this permutation is applied to a symmetric
matrix the resulting permutation will not normally preserve symmetry. That is why
in the first and in the second chapter of our thesis we consider ways of implementing
preordering and scaling for symmetric systems and show the effect of using this technique
with multifrontal codes for sparse symmetric indefinite systems.

Moreover in the case of very unsymmetric matrices it seems to us unreasonable to limit
the ordering choices to the diagonal ( ie to compute a symmetric permutation). That is
why in the fourth chapter of our thesis we develop an approach that still preserves good
numerical pivots and that has the freedom to select off-diagonal entries. By mixing the
two objectives we show that we can reduce the amount of fill-in in the factors and reduce
the amount of numerical problems during factorization.

For the factorization, we have mentioned that it must adapt dynamically to the numerical
problems. Static pivoting has been developed for unsymmetric matrices but has not been
studied for symmetric indefinite problems. The third chapter of our thesis starts this study.
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In order to get better scalability, the fifth chapter revisits algorithms of parallel
multifrontal factorization for both the static and the dynamic scheduling to address
clusters of SMP (Symmetric Multi-Processor) architectures.

The purpose of the sixth chapter is to design a dynamic scheduling strategy that takes
into account both workload and memory information. The originality of our approach is
that we base our estimations (work and memory) on a static optimistic scenario during
the analysis phase. We then use it during the factorization phase to constrain the dynamic
decisions.
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Sparse matrices, graphs and matchings

Graphs are often useful in the context sparse matrix computation. In this section we
present graphs that can be associated with a sparse matrix A = (aij) of order n .
Depending on the problem addressed, one representation may be more useful than
another. We also define different kinds of matchings that are used in the first four chapters
of the thesis.

Sparse matrices and graphs

The directed graph associated with A , G = (V, E) , is defined as follows. V
represents the nodes (or vertices) and we often set V = {1, . . . , n} . E ⊂ V × V is
the set of edges. There is an edge (i, j) from node i to node j if and only if aij 6= 0 .

If A is symmetric then G becomes the undirected graph associated with A : the edges
are undirected since (i, j) ∈ E implies (j, i) ∈ E .

The bipartite graph associated with A is defined as the undirected graph G =
(Vr, Vc, E) where Vr (resp. Vc ) is the set of row (resp. column) vertices and E ⊂ Vr×Vc

is the set of edges. There is an edge between the ith row vertex of Vr and the jth column
vertex of Vc if and only if aij 6= 0 .

For each type of graph the edges may be weighted. In such cases, we speak about
weighted graphs.

Matchings

General graphs

Let G = (V, E) be an undirected graph. Let S ⊂ E be a set of edges. We have
S = {(i1, j1), . . . , (i|S|, j|S|)} where |S| denotes the size of S , i.e. , the number of
edges in S .

S is said to be a matching if and only if no two of its edges have the same vertex as an
endpoint.

S is said to be a maximal matching if and only if for all edges e ∈ E \ S , S ∪ {e} is
not a matching.

S is said to be a maximum cardinality matching if it is a matching of maximum size.

When the edges of G are weighted, a weight can be associated with S . Sometimes, we
may be interested in the edge of minimum magnitude min(i,j)∈S |aij| or in the sum of
the magnitudes of the edges of S (that is

∑

(i,j)∈S |aij| ). However, in the context of this
thesis, we are interested in the product of the magnitudes and so we define the weight of
S as

ω(S) =
∏

(i,j)∈S

|aij|.

S is said to be a maximum weighted matching of maximum cardinality if it
maximizes the weight function ω among the set of maximum cardinality matchings.
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In this thesis we will abbreviate the two above terminologies and we will use the
terms maximum matching to refer to a maximum cardinality matching and maximum
weighted matching to refer to a maximum weighted matching of maximum cardinality.

Bipartite graphs

When G is a bipartite graph, we will say that S is a symmetric matching if S is a
matching and if for any edge (i, j) ∈ S between the ith row vertex and the jth column
vertex, the corresponding symmetric edge (j, i) between the j th row vertex and the ith

column vertex is also in S .

The notion of symmetric maximum matching and symmetric maximum weighted
matching are restrictions of the previous definition to symmetric matchings.

If G is a bipartite graph, we use the notation S = I ⊗ J where I is the sequence
(i1, . . . , i|S|) and J is the sequence (j1, . . . , j|S|) . I is said to be the set of matched
rows and J the set of matched columns.

In this case, the size of S defines the structural rank of A . If the size of the maximum
cardinality matching is lower than n then the matrix is said to be structurally singular.
Note that structural singularity implies singularity since whatever are the values of the
nonzeros entries of A at least one column is a linear combination of the others.

Use of matching techniques in the thesis

In the chapters about symmetric indefinite matrices, we will consider maximum weighted
matchings and discuss algorithms to obtain a symmetric matching which is not too far (in
terms of weight) from a symmetric maximum weighted matching.

In the fourth chapter, we consider unsymmetric matrices and their associated bipartite
graph. We will be interested either in finding a maximum matching or in finding a
maximum weighted matching.
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Basic introduction to multifrontal methods

Symbolic factorization

We first consider the structurally symmetric case and suppose that the sequence of pivots
is fixed. Usually, the analysis performs the symbolic factorization by manipulating
undirected graphs. For example, the graph G(A) associated with A has an edge between
nodes i and j if aij 6= 0 (see Figures 1.a and 1.b). The symbolic factorization has
to predict the fill-in and the dependence of the computations. It is often convenient in
practice to work with G(A) . Excellent descriptions and data structures are given in [54].

Each time a pivot is selected its adjacent nodes which correspond to variables that are not
yet eliminated are connected each other. They form what is called a clique. Note that
an edge between two nodes implies that they cannot be eliminated independently. For
example in Figure 1.b, after eliminating pivot 2, edges between nodes 5 and 6 and between
nodes 3 and 5 are added. Then nodes 3, 5 and 6 form a clique and their elimination must
be done sequentially.

0

B

B

B

B

B

B

@

X X X

X X X X

X X F X

X X F

X X F F X F

X X F X

1

C

C

C

C

C

C

A

(1.a) Pattern of a structurally symmetric matrix and fill-in in its
factors. An X corresponds to an original entry and a F to a fill-in
in the factors.

1 2

3

4

5

6

(1.b) Undirected graph of matrix of Figure 1.a and fill-
in. Dashed edges correspond to fill-in in the factors.

Figure 1: Example of symbolic factorization on a structurally symmetric matrix.

The dependences can be represented by a tree which is called the elimination tree [81]
(see Figure 2.a). The elimination tree represents the order in which the matrix can be
factorized, ie the order in which the unknowns from the underlying linear system of
equations can be eliminated. For a dense matrix the elimination tree is a chain and
defines a complete ordering of the eliminations. However, for a general sparse matrix,
the definition yields only a partial ordering which allows some freedom for the order in
which pivots can be eliminated. Indeed two variables none of which is the descendant of
another can be eliminated at the same time.

The structurally unsymmetric case is clearly more complicated. The analysis has to
predict the structure of L+U (assuming that no numerical pivoting will occur during the
factorization). A first solution is to work on the pattern of A+AT and so to get an upper
bound on the structure of the factors. A second solution computes the exact structure of
the factors. A directed graph or a bipartite graph is preferred and the elimination tree
is generalized to an elimination directed acyclic graph (denoted as edag) [57, 58] which
describes the dependence of the computations.

One central concept of the sparse computation is to group (or amalgamate) variables
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1 2

34

5

6

(2.a) Elimination tree of A .

1,4 2,3

5,6

(2.b) An assembly tree compatible with the elimination tree
of A .

Figure 2: Examples of trees.

with the same or nearly the same sparsity structure to create bigger supervariables
or supernodes [44, 83] in order to make use of efficient dense matrix kernels. The
amalgamated elimination tree is called the assembly tree (see Figure 2.b) and the
amalgamated edag is called the assembly directed acyclic graph.

Finally, the symbolic factorization evaluates the storage requirements and prepares the
integer and real data structures for the factorization.

Factorization Phase

The factorization follows as much as possible the estimation of the analysis. We briefly
describe the organization of supernodal approaches and then we discuss multifrontal
approaches.

MultifrontalRight−lookingLeft−looking

1 2

34

5

6

1 2

34

5

6

1 2

34

5

6

Figure 3: Updates in left-looking, right-looking and multifrontal factorization. The bold nodes represent
the current pivot and the arrows symbolize the update. In the left-looking approach, column 6 is updated
by the contribution of nodes 2, 3 and 5 before the elimination using pivot 6. In the right-looking approach,
the pivot 2 is eliminated and then updates of columns 3, 5 and 6 are done. In the multifrontal approach,
the frontal matrix of node 5 is built including the contributions of children 3 and 4, then elimination is
performed and the Schur complement is computed.

The scheme in Figure 3 shows the main differences between the left- or right-looking
supernodal approaches and the multifrontal approaches. In a left-looking approach, the
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columns of the pivots are first updated by the contributions from the previous eliminations.
Then the pivots are selected and their columns of factors are computed.

In a right-looking approach the pivots are first selected, their columns are then computed
and finally the entries that are affected by these eliminations are updated.

fully summed rows -

partially summed rows -

fully summed columns

?

partially summed columns

?
[

F11 F12

F21 F22

]

Figure 4: A frontal matrix.

The multifrontal method was initially developed for indefinite sparse symmetric linear
systems [44] and the extension to unsymmetric matrices [45] followed.

The work associated with an individual node of the assembly tree corresponds to the
factorization of a so called frontal matrix. Frontal matrices are always considered as dense
matrices and we can make use of efficient BLAS kernels and avoid indirect addressing,
see for example [32].

Here, pivots can be chosen only from within the block of fully summed variables
F11 . Once all eliminations have been performed, the Schur complement matrix F22 −
F21F

−1
11 F12 is computed and used to update later rows and columns of the overall matrix

which are associated with the parent nodes. We call this Schur complement matrix the
contribution block of the node. If some variables are not eliminated because of numerical
issues, they are included in the contribution block and their elimination is postponed to the
parent node or latter. These delayed pivots increase the fill-in in the factors, the number of
operations and the factorization time (see Figure 5) but allow the factorization to compute
accurate factors.

5 21 4 3

5 6

5

6
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(5.a) No delayed pivots
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X

X

3X X4 F
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CC

F

F5

6

5 6

F

F

F

F

X

D4

4

(5.b) Pivot 4 delayed because of numerical issue. Bold F represent
the fill-in due to delayed pivot (marked with a D).

Figure 5: Assembly tree and frontal matrices that appear during the factorization of A . Each X shows the
place where the initial entries are assembled. An F corresponds to fill-in and a C corresponds to entries in
the contribution blocks.

The notion of child nodes which send their contribution blocks to their parents leads to
the following interpretation of the factorization process. When a node of the assembly
tree is being processed, it assembles the contribution blocks from all its child nodes into
its frontal matrix. Afterwards, the pivotal variables from the fully summed block are
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eliminated and the contribution block computed. The contribution block is then sent to
the parent node to be assembled once all children of the parent (which are the siblings of
the current node) have been processed.

More recently the multifrontal factorization has been adapted in different ways to
unsymmetric patterns. The work of [46] proposes a generalization of the elimination tree
for symmetric indefinite matrices. This approach can be adapted in a straightforward
way to unsymmetric matrices by introducing the augmented system associated with
A . Nevertheless, it has not yet proved its efficiency on a large range of matrices.
The factorization of [13] allows the fronts to be rectangular and provides algorithms
for generating them. It saves significant storage and improves performance over the
symmetric version.
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Chapter 1

Strategies for scaling and pivoting for
sparse symmetric indefinite problems
We consider ways of implementing preordering and scaling for symmetric systems and show the effect of

using this technique with a multifrontal code for sparse symmetric indefinite systems. After presenting a

new method for scaling, we propose a way of using an approximation to a symmetric weighted matching to

predefine 1×1 and 2×2 pivots prior to the ordering and analysis phase. We also present new classes of

orderings called “(relaxed) constrained orderings" that mix structural and numerical criteria.

1.1 Introduction

We study techniques for scaling and choosing pivots when computing the LDLT

factorization of symmetric indefinite matrices where L is a lower triangular matrix and
D is a block diagonal matrix with 1×1 and 2×2 blocks.

Our main contribution is to define a new method for scaling and a way of using an
approximation to a symmetric weighted matching to predefine 1×1 and 2×2 pivots
prior to the ordering and analysis phase.

We also present new classes of orderings called “(relaxed) constrained orderings" that
select pivots during the symbolic Gaussian elimination using two graphs: the first one
contains information about the structure of the reduced matrix and the second one gives
information about the numerical values.

Prior to the LU factorization of an unsymmetric matrix A , MC64 [40, 41] can be used
to get a maximum weighted matching so that the corresponding permutation will place
large entries on the diagonal. The matrix can then be scaled so that diagonal entries have
modulus one and off-diagonals have modulus less than or equal to one. This has been
found to greatly improve the numerical stability of the subsequent LU factorization.
If, however, MC64 is applied to a symmetric matrix the resulting permutation will not
normally preserve symmetry. In this chapter, we examine ways in which symmetric
preprocessing can be applied and in particular how MC64 can be used while still
preserving symmetry. Our preprocessing will be followed by a symmetric permutation
in order to decrease the fill-in in the factors.

We will use our symmetric preprocessing with a symmetric multifrontal code MA57 [37]
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to validate our heuristics on real test problems that we have divided into two sets: the first
consists of augmented matrices and the second contains general indefinite matrices.

In Section 1.2, we present some general characteristics of multifrontal symmetric
indefinite solvers that will be useful in understanding our preprocessing strategies
and experimental results. In Section 1.3, we describe our experimental environment.
Section 1.4 shows how MC64 scaling can be used for the symmetric indefinite case
and studies the effects on the factorization of different kinds of scaling. Section 1.5
discusses orderings to decrease the fill-in and to give good preselected pivots. Our
experimental results are given in Section 1.6 and the best strategies are discussed. Finally,
in Section 1.7, we summarize our results and consider future improvements.

We make extensive use of routines from HSL [72] (see Table 1.3.4). Any code with
a name beginning with MA or MC is from HSL or is a derivative of an HSL code, for
example MC64 or MA57.

1.2 Symmetric indefinite multifrontal solvers and numerical pivoting

1.2.1 Multifrontal approach

Multifrontal methods [44, 45] use an elimination tree [81] to represent the dependencies
of the computation. Each node of this tree is associated with a frontal matrix that is
assembled (summed) by contributions from its children and the original matrix. It is of
the form:

fully summed rows -

partially summed rows -

fully summed columns

?

partially summed columns

?[
F11 F12

F21 F22

]

.
.

Then elimination operations are performed using pivots from within the fully summed
block, F11 , and the Schur complement or contribution block F22 ← F22 − F21F

−1
11 F12

is computed. In the symmetric case, F12 = F T
21 , the matrices F11 and F22 are symmetric,

pivots are chosen from the diagonal as discussed in the following section, and operations
and storage are about half that of the general case.

1.2.2 Numerical pivoting

In the unsymmetric case, at step k of the Gaussian elimination, the pivot (p, q) is selected
from the fully summed rows and columns and the entries aij of the remaining submatrix
are updated:

a
(k+1)
ij ← a

(k)
ij −

a
(k)
ip a

(k)
qj

a
(k)
pq

.

To limit the growth of the entries in the factors and thus to have a more accurate
factorization, a test on the magnitude of the pivot is commonly used. apq can be selected
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if and only if
|apq| ≥ u max

j
|apj| (1.2.1)

where u is a threshold between 0 and 1. Thanks to this criterion of selection the growth
factor is limited to 1/u .

In the symmetric indefinite case, we have to perform 1× 1 and 2× 2 pivoting if we
want to keep the symmetry while maintaining stability. Pivot selection can be done
using the Bunch-Parlett [21] or Bunch-Kaufman [20] algorithm or a variation proposed
by [17]. In the context of sparse matrices, the criterion of the Duff-Reid algorithm ([44],
as modified in [46]) can be used to ensure a growth factor lower than 1/u at each step
of Gaussian elimination. A 1×1 diagonal pivot can be selected if and only if it satisfies

the inequality (1.2.1). A 2×2 pivot P =

(
app apq

aqp aqq

)

can be selected if and only if it

satisfies:

|P−1|
(

maxk 6=p,q |apk|
maxk 6=p,q |aqk|

)

≤
(

1/u
1/u

)

(1.2.2)

where |P−1| denotes the matrix whose values are the absolute values of P −1 and u is
a threshold between 0 and 1

2
(the limit 1

2
is needed to be sure that a pivot is available).

During the elimination, it may not be possible to eliminate some fully summed variables.
Elimination of these variables must then be delayed to the parent. This has the effect of
causing extra fill-in and thus increases the memory and the number of operations. Too
many delayed pivots can severely slow down the factorization.

1.3 Experimental environment

In this section, we present our experimental environment: test machine, sets of matrices
and criteria of comparison. It will also be used in Chapters 2 and 3.

1.3.1 Test machine

Our experiments are conducted on one node of a COMPAQ Alpha Server SC45 at
CERFACS. There are 4 GBytes of memory shared among 4 EV68 processors per node
and we disable three of the processors so that we can use all the memory of the node with
the remaining single processor. We use the Fortran 90 compiler, f90 version 5.5 with -O
option. Our use of integer pointers restricts our array size to 2 GBytes. If the factorization
needs to allocate an array larger than 2 GBytes or requires more than 30 minutes, we
consider that the factorization is not successful.

1.3.2 Matrices

We conduct our experiments on a number of test problems that we divide into two
sets. We decided to test our preprocessings on matrices of order between 10000
and 100000, and to restrict the number of matrices of the same type to 2 or 3
in each set in order to avoid class effects. Some matrices have an identification



16 Preprocessings for sparse symmetric indefinite problems

number that will be used to represent them on the x-axis of some figures. Except
for bloweybl, bloweybq and qpband that come from CUTEr, they are available from
ftp.numerical.rl.ac.uk/pub/matrices/symmetric/indef/ and correspond to a subset of
the matrices collected by [61] for testing symmetric sparse solvers. The matrices come
from the University of Florida collection (UF) [25], the Maros and Meszanos quadratic
programming collection (M2) [84], the CUTEr optimization test set (CUTEr) [60] and
from Kumfert and Pothen (KP) [75]. Some problems were generated by Andy Wathen
(AW), Mario Arioli (MA), and Miroslav Tuma (MT). The c-* matrices were obtained
from Olaf Schenk (OS) and are also available in [25]. These problems are described in
Tables 1.3.1, 1.3.2 and 1.3.3.

Matrix n nnz sprank Origin
AUG2DC 30200 40000 20000 Expanded system–2D PDE (CUTEr)
AUG2D 29008 38416 19208 Expanded system–2D PDE (CUTEr)
AUG3D 24300 34992 11664 Expanded system–3D PDE (CUTEr)
DTOC 24993 34986 19994 Discrete-time optimal control (CUTEr)

Table 1.3.1: Augmented systems, H = 0 type (set 1).

Matrix Id n nnz Origin
A0NSDSIL 1 80016 200021 Linear Complementarity problem (CUTEr)
A2NNSNSL 2 80016 196115 Linear Complementarity problem (CUTEr)
A5ESINDL 3 60008 145004 Linear Complementarity problem (CUTEr)
AUG3DCQP 4 35543 77829 Expanded system–3D PDE (CUTEr)
BLOCKQP1 5 60012 340022 QP with block structure (CUTEr)
BLOWEYA 6 30004 90006 Cahn-Hilliard problem (CUTEr)
BRAINPC2 7 27607 96601 Biological model (CUTEr)
BRATU3D 8 27792 88627 3D Bratu problem (CUTEr)
CONT-201 9 80595 239596 KKT matrix–Convex QP (M2)
K1_SAN 10 67759 (1) 303364 Straz pod Ralskem mine model (MT)
NCVXQP1 11 12111 40537 KKT matrix–nonconvex QP (CUTEr)
NCVXQP5 12 62500 237483 KKT matrix–nonconvex QP (CUTEr)
NCVXQP7 13 87500 312481 KKT matrix–nonconvex QP (CUTEr)
SIT100 14 10262 34094 Straz pod Ralskem mine model (MT)
bloweybl 15 30003 (1) 60000 Cahn-Hilliard problem (CUTEr)
cvxqp3 16 17500 62481 Convex QP (CUTEr)
mario001 17 38434 114643 Stokes equation (MA)
olesnik0 18 88263 402623 Straz pod Ralskem mine model (MT)
qpband 19 20000 30000 QP (CUTEr)
stokes128 20 49666 295938 Stokes equation (MA)
stokes64 21 12546 74242 Stokes equation (AW)
tuma1 22 22967 50560 Mine model (MT)
tuma2 23 12992 28440 Mine model (MT)

Table 1.3.2: Augmented matrices of H 6= 0 type (set 2). ( x ): x is the structural deficiency of the matrix.
Id: identification number.

Many of the test matrices correspond to augmented matrices of the form

KH,A =

(
H A
AT 0

)

.
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Matrix Id n nnz Origin
BOYD1∗ 24 93279 652246 KKT matrix–Convex QP (CUTEr)
DIXMAANL 25 60000 179999 Dixon-Maany optimization example (CUTEr)
HELM3D01 26 32226 230335 Helmholtz problem (MA)
LINVERSE 27 11999 53988 Matrix inverse approximation (CUTEr)
SPMSRTLS 28 29995 129971 Sparse matrix square root (CUTEr)
bcsstk35 29 30237 740200 Stiffness matrix–automobile seat frame (UF)
bcsstk39 30 46772 1068033 Shuttle solid rocket booster (UF)
bloweybq 31 10001 30000 Cahn-Hilliard problem (CUTEr)
c-68 32 64810 315403 Optimization model (OS)
c-71 33 76638 468079 Optimization model (OS)
copter2 34 55476 407714 Helicopter rota blade (KP)
crystk02 35 13965 491274 Stiffness matrix–crystal free vibration (UF)
crystk03 36 24696 887937 Stiffness matrix–crystal free vibration (UF)
dawson5 37 51537 531157 Aeroplane actuator system (UF)
qa8fk 38 66127 863353 FE matrix from 3D acoustics (UF)
vibrobox 39 12328 177578 Vibroacoustic problem (UF)

Table 1.3.3: General symmetric indefinite matrices (set 3). ∗ : BOYD1 is in set 3 because the number of
constraints is negligible. Id: identification number.

The set of matrices described in Table 1.3.1 are augmented systems with H = 0 . We note
that the matrices of this form are structurally singular unless A is square nonsingular. The
set of matrices described in Table 1.3.2 are also of the above form but with H 6= 0 . The
third set, in Table 1.3.3, corresponds to general (nonzero diagonal) indefinite symmetric
matrices. Note that we also include the BOYD1 matrix which is an augmented system in
this set because its number of constraints (order of the zero block) is negligible.

1.3.3 Measures and methodology

Table 1.3.4 summarizes the characteristics of routines from HSL [72] that we use in the
first three chapters of the thesis.

Code Description
MA47 solves a sparse symmetric indefinite system, taking advantage of the extra sparsity

available with 2×2 pivots with one or both diagonal entries of value zero (multifrontal
method).

MA57 solves a sparse symmetric indefinite system (multifrontal method).
MA67 solves a sparse symmetric indefinite system, taking advantage of the extra sparsity

available with 2× 2 pivots with one or both diagonal entries of value zero (blocked
conventional).

MC21 permutes a sparse matrix to put entries on the diagonal.
MC30 calculate scaling factors of a sparse symmetric matrix so that the scaled matrix has its

entries near to unity in absolute value.
MC64 permutes a sparse matrix to put large entries on the diagonal, with an option to compute

scaling factors.
MC77 calculates scaling factors of a sparse matrix so that the p-norms of all the rows and

columns is approximately equal to 1.

Table 1.3.4: Description of some HSL routines.
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In our earlier experiments [33], we clearly identified that MA57 was not tailored to
augmented matrices with a zero (1, 1) block. These were much better handled by
MA47 [48] which respects the two zero blocks that exist when 2× 2 pivots with two
zero entries on the diagonal (referred to as oxo pivots) are eliminated. A brief review
of these results is done in Section 2.5.1. This is why we have decided not to try to
improve MA57 on this set of matrices and why we will not use matrices of this type in the
experiments of this chapter. Authors of [61] also reported some failures of MA57 on this
class of problems. They found that MA47 and MA67 usually performed better on these
problems. We ran the MA57 factorization with a pivoting threshold equal to 10−2 and
oblige its analysis to merge a father and its child if both require less than 16 eliminations
(ICNTL(12) = 16).

We compare our codes using the performance profiling system of [29]. These profiles
aim at evaluating and comparing the performance of a set of solvers S on a test set of
problems P . For each solver i ∈ S and each problem j ∈ P , we measure a statistic
sij with the conventions that if the solver did not succeed in solving the problem then
sij = ∞ and that the smaller is this statistic, the better is the code. For example, we
can measure the factorization time, the number of nonzeros in the factors . . . Let j be a
problem and let ŝj = mini∈S{sij} be the best statistic obtained for this problem. For
each α ≥ 1 and each solver i ∈ S , we define

pi(α) =
size {j ∈ P such that sij ≤ αŝj}

size P ,

as the fraction of the problem set that is solved by the solver i within a factor α
of the best. pi(1) gives the fraction of examples for which solver i is the best and
limα→∞ pi(α) gives the fraction of the problems for which the solver succeeded. In our
experiments, for each solver i we will plot its performance profile pi against α .

To compare our different approaches we will look at the factorization time, the memory
needed to complete the factorization, and the reliability of the analysis in terms of memory
forecasting. We would like to have an estimation of the required memory after the analysis
that is not too far from that actually needed by the factorization. The quality of the analysis
prediction will be assessed using the ratio between the memory actually used during the
factorization and that predicted by the analysis.

It is standard practice to increase the storage estimated by the analysis and allocate rather
more storage in the hope that the factorization will be successful even if some additional
numerical pivoting occurs. The percentage by which we increase the estimate from the
analysis will be called the memory relaxation. Clearly, this memory relaxation parameter
is important for algorithms that are implemented in Fortran. However, although C or
C++ implementations allow dynamic memory allocation their cost may be not negligible.
Finally, note that the quality of the memory estimation is all the more critical in a
distributed memory environment. For example, the buffers used for communications need
to be well estimated. In our experiments, we use a memory relaxation of 20% and 50% .
When we evaluate the analysis prediction, we only consider runs where the factorization
can be performed within the relaxed analysis estimation. When we want to evaluate the
factorization time without taking into account the reliability of the memory estimations,
we allocate 4 GBytes of memory.
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We will look at the precision of the solution and the number of iterative steps only when
we will do static pivoting in Chapter 3.

Firstly, in Section 1.4, we study the influence of scaling on the MA57 factorization phase.
Secondly, the effect of additional numerical and structural preprocessing are analysed
when they are combined with different orderings (AMD [4] in 1.6.2.1, ME T IS [73]
in 1.6.2.2 and AMF [85, 92] in 1.6.2.3). The best approaches will be discussed in
Sections 1.6.1 and 1.6.2.4.

1.4 Scaling

In this section, we examine the effect of the scaling and identify the most robust approach.
Discussions about scaling can be found in [38]. Firstly, we describe existing scaling
approaches; secondly, we propose an alternative based on the symmetrization of an
unsymmetric scaling; and finally we analyse our experimental results.

1.4.1 Existing symmetric scaling

Let A be a square symmetric sparse matrix. MC30 [24] scales A . By computing a
diagonal matrix D so that the scaled matrix B = DAD has its nonzero entries near to 1
in absolute value. In practice, it computes the solution of a linear least-squares problem
that minimizes

∑

bij 6=0(log |bij|)2 .

If A is structurally nonsingular, MC77 [93] used with the p-norm, || ||p , computes a
sequence of matrices D

(k)
r AD

(k)
c that converge to a matrix that has its column and row

norms equal to 1 (which corresponds to a doubly stochastic matrix if p = 1 : for each row
(resp. column) the sum of the absolute values of the entries in this row (resp. column)
is equal to 1). At each step of its iterative process, MC77 algorithm divides the entry in
position (i, j) by

√

||ri||p ||cj||p where ri (resp. cj ) represents the vector of the ith

row (resp. jth column). If p 6= ∞ , this limit is unique. If A is symmetric then this
scaling is symmetric ( D

(k)
r = D

(k)
c ). We will study the effect of MC77 with p = 1 and

p = ∞ . These scalings will be identified by MC77one and MC77inf, respectively.
Note that, when the matrix is structurally singular, the convergence of the algorithm is
not guaranteed. Moreover, the convergence to a doubly stochastic matrix with p = 1 is
slower than with p =∞ . In our experiments, we limit the number of MC77 steps to 20.

1.4.2 Adaptation of MC64 scaling

1.4.2.1 Maximum weighted matching

It is common to represent a symmetric matrix A of order n by a weighted undirected
graph given by G = (V, E) , where V = {1, 2, ...n} and each undirected edge (i, j)
of E corresponds to the off-diagonal nonzeros aij and aji of A and has a weight of
2|aij| if i 6= j . If i = j , depending on the context we may or may not want to add a
self-loop to G of weight |aii| . The matrix can also be represented by a bipartite graph
G = (R, C, E) where (i, j) ∈ R × C belongs to E if and only if aij 6= 0 and has a
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weight of |aij| . In the following we will associate a weight ω with a set of edges S ,
defined by:

ω(S) =
∏

(i,j)∈S

|eij|, where |eij| is the weight of the edge (i, j). (1.4.1)

We define a matching on the bipartite graph as a set of edges, no two of which have
the same vertex as an endpoint. A maximum matching is a matching with maximum
cardinality that will be n if the matrix is structurally nonsingular. A maximum weighted
matching is a maximum matching that realizes the maximum weight. We will later (in
Section 1.5.1) relate matchings on the bipartite graph to matchings on another undirected
graph that is a modified version of the undirected graph described above.

1.4.2.2 Symmetrization

When MC64 is used with a product metric to define the weight of a set of edges, it returns
a maximum weighted matching and thus provides a permutation that puts large entries
on the diagonal of the matrix. It also returns a row and column scaling. This scaling is
directly computed from the dual variables that are used during the maximum weighted
matching algorithm. We now show how a symmetric scaling can be built from the MC64
scaling. It will be called MC64SYM.

DEFINITION 4.1. A matrix B = (bij) is said to satisfy the MC64 constraints if and only
if

∃ a permutation σ, such that ∀i, |biσ(i)| = 1 and ∀(i, j), |bij| ≤ 1.

The above definition says that the magnitude of all the entries in the matrix B are less
than or equal to 1 and that we can permute the columns of B so that it has entries of
magnitude 1 on the diagonal.

PROPERTY 4.1. Let M be the maximum matching of the symmetric matrix A returned
by MC64 and Dr = (dri

) , Dc = (dci
) be the row and column scaling respectively. Let

D = (di) =
√

DrDc . Then DAD is a symmetrically scaled matrix that satisfies the
MC64 constraints.

PROOF. The entry of |DAD| in position (i, j) is

|didjaij| =
√

|dri
dcj

aij|
√

|drj
dci

aji| ≤ 1

because it is the square root of the product of two entries of |DrADc| . Let σ be the
column permutation associated with M . Thus, for all i , |dri

dcσ(i)
aiσ(i)| = 1 . Let

λi = |dci
drσ(i)

aiσ(i)| = |dci
drσ(i)

aσ(i)i| . ∀i , λi ≤ 1 because it corresponds to an entry of
|DrADc| . Then

∏

1≤i≤n

λi =

[
∏

1≤i≤n

|dri
|
][

∏

1≤i≤n

|dci
|
][

∏

1≤i≤n

|aiσ(i)|
]

=
∏

1≤i≤n

|dri
dcσ(i)

aiσ(i)| = 1,
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where we exchange the terms in the products to get the product of the scaled terms in the
MC64 maximum matching. That is, the product of the numbers, λi , each of which is less
than or equal to one, is one, so that λi = 1, ∀i and so

∀i, |didσ(i)aiσ(i)|2 = |dri
dcσ(i)

aiσ(i)||drσ(i)
dci

aiσ(i)| = 1× λi = 1.

1.4.2.3 Structurally singular matrices?

Structurally singular matrices are quite common in optimization. The notion of a
maximum weighted matching with the product metric is not well defined for MC64. All
the maximum matchings of MC64 will have zero weight. Moreover, it is impossible to
find scaling factors that satisfy the MC64 constraints for structurally singular matrices (it
is impossible to find a permutation σ that satisfies the relation of Definition 4.1).

Suppose that the weight of a matching on a structurally singular matrix is given by the
product of the absolute values of the matched entries (which are nonzeros). Then we can
define a maximum weighted matching on a structurally singular matrix as a matching of
maximum weight among the matchings of maximum size. We did not modify the MC64
code to get this kind of matching, but we used a less complicated algorithm to get an
approximation to a maximum weighted matching. We first apply MC64 to A and we get
a maximum matching M = I ⊗J where I is the set of matched rows and J is the set
of matched columns. Then we extract a structurally nonsingular symmetric submatrix Ã
from A using Property 4.2 below. We then apply MC64 this time to Ã .

1 1

22

3 3

4 4

1 1

22

3 3

4 4

(1.4.1.a) Example of even maximal open path.

1 1
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3 3

4 4

5 5

I I

1 1

22

3 3

4 4

5 5

J

I

(1.4.1.b) Example of odd maximal open path.

Figure 1.4.1: Maximal open paths. Bold edges are edges of the matching. Dashed lines represent the
diagonal of the matrix that may not be entries.

PROPERTY 4.2. Let A be a symmetric matrix and let M = I ⊗ J be a maximum
matching of A . The restriction of A to I × I is structurally nonsingular.

PROOF. We define the bipartite graph G = (R, C, E) where aij 6= 0 if and only if
(iR, jC) ∈ E . The notations R (resp. C ) will be added to a set of indices when we want
to explicitly mention that it refers to a set of rows (resp. columns) included in R (resp.
in C ). A path in this graph from i1 to ik is defined by a sequence (i1, . . . , ik) where
(iRt , iCt+1)t=1,...,k−1 ∈ E . This path is a cycle if ik ≡ i1 . By definition, the length of
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this path is k . We can similarly define a path using the maximum matching M ⊂ E
where (iRt , iCt+1)t=1,...,k−1 ∈ M . A maximal open path of the matching is defined as a
path (i1, . . . , ik) where there are no v such that (vR, iC1) ∈ M or (iRk , vC) ∈ M . All
matching edges are either in cycles or in maximal open paths.

The length of a maximal open path must be odd since, if it were even the
symmetry of the matrix would allow us to extend the matching by using the
edges (iR1 , iC2), (i

R
2 , iC1), (i

R
3 , iC4), (i

R
4 , iC3) . . . , (iRk−1, i

C
k), (i

R
k , iCk−1) thus contradicting that

we have a maximum matching. Figure 1.4.1.a shows this extension for k = 4 .

We now construct a maximum matching on IR × IC of the same cardinality
as that on IR × J C . Clearly any cycle gives corresponding matching edges in
IR × IC . Consider a maximal open path (i1, . . . , ik) , i1, . . . , ik−1 ∈ I , ik ∈
J \ I . Then we can replace the matching edges corresponding to this path by
(iR1 , iC2), (i

R
2 , iC1), . . . , (i

R
k−2, i

C
k−1), (i

R
k−1, i

C
k−2) all of whose end points are in I . It is

illustrated by the example in Figure 1.4.1.b for k = 5 .

This then gives us a maximum matching on I × I of cardinality |I| .
Let Dr and Dc be the scaling factors returned by MC64 on the restriction of A to I×I ,
Ã . We build D so that the entries of |DAD| are less than 1 and entries in the matching
are 1. If i corresponds to an index of Ã , we define di =

√
dri

dci
. If i does not

correspond to the index in I , we want all the entries of the ith row (resp. column) of
|DAD| to be less than or equal to 1. We decide to take

di =
1

maxk∈index(Ã) |aikdk|
with the convention

1

0
= 1.

Thus for all i /∈ I and for all j ∈ I we have |diaijdj| = |aijdj |

maxk∈I |aikdk |
≤ 1 . Note also

that the maximum entry in absolute value in each non-empty row/column is 1 .

1.4.3 Influence of scaling

In this section we analyse the influence of the scaling on the factorization phase. As
mentionned in Section 1.3.3 we compare our codes using the performance profiling
system of [29].

It is important to note that scaling does not change the pivot order returned by the analysis
but changes the selection of the numerically stable 1×1 and 2×2 pivots during the
factorization. Scaling can have a profound effect on the subsequent factorization. A good
scaling can avoid many numerical difficulties whereas a bad scaling can actually cause
numerical problems, can produce a lot of delayed pivots when not necessary, can increase
the memory requirements, and can consequently severely slow down the factorization.

On sets 2 and 3, the approach without any scaling (No Scaling) fails on 6 matrices,
the approaches using MC30, MC77inf, MC77one and MC64SYM fail on 3, 3, 1 and
1 matrices respectively. The use of scaling thus improves the robustness of the MA57
factorization in terms of the number of successful computations. Table 1.4.1 shows that
most of the time failures are due to numerical pivoting which increases the CPU time
and memory requirement (C and M failures). It seems difficult to get a good solution for
the BRATU3D problem, except with the MC77one scaling. Figure 1.4.2 compares the
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influence of the different scalings on the CPU factorization time of MA57 on sets 1 and
2 .
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(1.4.2.a) set 2.
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(1.4.2.b) set 3.

Figure 1.4.2: Profile showing influence of scaling on CPU factorization time (AMD ordering).
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(1.4.3.a) Memory profile.
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(1.4.3.b) Total number of operations profile.

Figure 1.4.3: Profile showing influence of the scaling on memory and number of operations for the
factorization (Sets 2 and 3 together).

On set 3 (Figure 1.4.2.b), the MC30 scaling degrades the MA57 performance, whereas
the other scalings have a positive effect on these general indefinite matrices. The negative
effect of MC30 on indefinite problems has also been observed by [62]. Contrary to the
other scalings (MC64, MC77), MC30 does not take into account the nonzero structure
when doing the scaling and uniformly tries to scale all entries to be as close to one
as possible. We suspect that the structural decision of the analysis is less compatible
with the MC30 scaling. For example, MC77 used with the 1-norm tends to decrease the
magnitude of the entries with a high connectivity and tends to make the magnitude of the
entries with a small connectivity large. This last entries are also the ones that an ordering
tends to select first. This difference can provide a partial answer about the degradation of
performance when using the MC30 scaling. We recommend that the MC30 scaling is not
used on symmetric indefinite problems. Furthermore, the MC64SYM scaling seems to be
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the most robust scaling on this set (the MC77inf approach is also good but only for 95%
of the time, whereas the MC64SYM scaling is within a factor of 1.17 of the best on 100%
of the problems). MC64SYM and MC77one have a similar behaviour on the augmented
systems and are slightly better than MC77inf (see Figure 1.4.2.a).
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(1.4.4.a) Number of delayed pivots profile. log10 scale is use for
the x-axis (number of delayed pivots).
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(1.4.4.b) Ratio between memory used and memory predicted by the
analysis on the y-axis. Ratio of 0.5 is used as a dummy value to
indicate failure; problems sorted by Id on the x-axis, set 2 on the left,
set 3 on the right.

Figure 1.4.4: Profile showing influence of scaling on number of delayed pivots and memory (AMD ordering).

The CPU factorization times in Figure 1.4.2, the number of operations (Figure 1.4.3.b),
the memory used (Figure 1.4.3.a) and the number of delayed pivots have similar
characteristics. Figure 1.4.4.a shows that the number of delayed pivots is sometimes very
large when using the MC30 scaling. The average behaviour of MA57 using the MC30
scaling is similar to applying no scaling. We show in Figure 1.4.4.b the ratio between
the memory used by the factorization and the memory predicted by the analysis. This
indicates that the memory predictions of the analysis are sometimes not respected. It also
indicates that most of the numerical problems appear on set 2 (to the left of the vertical
line). Indeed there are no problems in set 3 over the 20% limit. If we allocate only 50%
more memory than recommended by the analysis instead of 4 GBytes, we would have 7
additional failures with the MC64SYM and MC77one scalings (points above the highest
horizontal dotted line in Figure 1.4.4.a).

Table 1.4.1 summarizes the MC64SYM, MC77inf or MC77one scaling impact on the
factorization of symmetric indefinite problems. Using the MC64SYM scaling, we get a
speedup greater than 5 on 7 matrices and a speedup of between 2 and 5 on two matrices.
We are able to solve 5 problems using the symmetric scaling while MA57 without scaling
fails. This approach is faster than no scaling on 30 matrices and on 9 others it never
exceeds the factorization time for no scaling by a factor of more than 1.25. We see also
that on set 3, the MC77one scaling has problems whereas MC64SYM does not (see c-68
and c-71 matrices). As mentioned before, on set 3, the same order of speedup is obtained
with the MC77inf scaling even if it is less robust in terms of the number of failures.

It may be interesting to use the MC77inf scaling on set 3 and the MC77one scaling
on set 2 because they have a comparable influence on the factorization and are less
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Matrix NoScaling MC77inf MC77one MC64SYM
F F S F S F S

Augmented systems (set 2)
BLOWEYA C 0.08 0.04 0.09 0.04 0.08 0.03
BRATU3D P P – 77.6 0.06 P –
NCVXQP1 108. 13.6 0.03 19.3 0.01 12.8 0.43
NCVXQP5 M 138. 0.19 140. 0.18 139. 2.94
NCVXQP7 M M – C – 1307 21.9
bloweybl C 0.06 0.03 0.08 0.04 0.06 0.03
cvxqp3 263. 30.6 0.03 37.0 0.04 37.0 0.94
stokes128 2.03 0.81 0.21 0.79 0.16 0.81 0.29
stokes64 0.18 0.14 0.04 0.14 0.01 0.13 0.06
tuma2 0.08 0.08 0.01 0.06 0.01 0.04 0.01
TOTAL solved 18/23 21/23 22/23 22/23

General symmetric indefinite (set 3)
BOYD1 C C – 39.9 0.44 33.9 14.8
c-68 24.5 23.1 0.29 28.5 0.21 22.2 0.13
c-71 76.4 76.2 0.48 108. 0.29 76.4 0.28
vibrobox 1.66 1.26 0.04 1.29 0.06 1.28 0.03
TOTAL solved 15/16 15/16 16/16 16/16

Table 1.4.1: Factorization time (columns F) and scaling time (columns S). Times in seconds. AMD ordering
used. Number of steps for MC77 set to 20. C: maximum CPU time exceeded. M: MA57 ran out of memory.
P: problem with the precision of the solution.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC77inf
MC77one
MC64

(1.4.5.a) Scaling CPU profile (set 2).
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(1.4.5.b) Scaling CPU profile (set 3).

Figure 1.4.5: Scaling time comparison. Number of MC77 iterations set to 20.

costly to compute (see Figure 1.4.5 and Table 1.4.1). Nevertheless, MC64SYM remains
competitive. Note that the maximum number of iterations of MC77 has been set to 20
in our experiments and the norms of the rows and columns may still be far from 1 (for
example with MC77one on set 3). A safe approach with MC77 could be to check the
convergence every 20 steps and continue iterating until we are close to the limit. It
would involve an additional cost that is not included in Table 1.4.1 and in the profile of
Figure 1.4.5. On the contrary, when MC64SYM has finished, it guarantees that our scaled
matrix satisfies Property 4.1. Secondly, because the scaling time has to be considered
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relative to the factorization time, Table 1.4.1 shows that the MC64SYM cost is usually
compensated for by the gain in factorization time.

In the rest of this chapter, we try to improve the CPU factorization time and to obtain
a better behaviour with respect to other criteria (for example, the quality of the memory
prediction). A first way of improving the MA57 factorization comes from using other
orderings (ME T IS and AMF) to decrease the fill-in, the memory and the number of
operations. A second way is to influence a priori the ordering with numerical and
structural information about the 2×2 pivots. The main goal of this approach is to preselect
the pivots that will be effectively used during the factorization and thus decrease the
number of delayed pivots. As MC64 is used in the approach that tries to answer the second
point ( ie the use of the MC64SYM scaling does not involve additional computation) and as
the MC64SYM scaling seems to be a robust approach on both sets, we will systematically
use this scaling in the remainder of this paper. From now on, A will refer to the matrix
symmetrically scaled by MC64SYM (its entries are in [−1, 1] ).

1.5 Ordering and weighted matching

In this section, we present ordering approaches that aim at decreasing fill-in in the factors
and at preselecting good pivots during the analysis. Thus we are interested in an algorithm
that gives us a good approximation about what will happen during the factorization and
that does not generate too much fill-in in the factors. We will first discuss our choices
in Section 1.5.1. Then we present our different approaches. In Section 1.5.2 we present
a way to preselect a set of 2×2 and 1×1 pivots. In Section 1.5.3, we discuss about
three different orderings which are called ordering on the compressed graph, constrained
ordering and relaxed constrained ordering.

The matrix

A33(x) =










0 1 1 x 0 0
1 0 1 0 0 0
1 1 0 0 0 0
x 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0










that has two 3×3 cycles with edges of weight 1 will be used in this section to illustrate
our discussions.

1.5.1 Symmetric maximum weighted matching

In the unsymmetric case, a maximum weighted matching of the bipartite graph
associated with the matrix is computed to put large entries onto the diagonal of the
permuted matrix. A natural way of adapting this to the symmetric case is to search for
a symmetric maximum weighted matching, Mopt

s (a maximum weighted matching
such that if (i, j) is in Mopt

s then (j, i) is in Mopt
s ). Property 5.1 presents a

method to get a symmetric maximum weighted matching. We will then explain why
we decided not to use this method and to build only an approximation of it using the
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MC64 maximum weighted matching. The fact that using MC64 may not return the
optimum can be seen in the example A33(10−1) . MC64 could return the matching
M = {(1, 2), (2, 3), (3, 1), (4, 5), (5, 6), (6, 4)} where we use the convention that, on a
bipartite graph, the first index of an edge corresponds to a row vertex and the second
index to a column vertex. However, the symmetric maximum weighted matching is
Mopt

s = {(1, 4), (4, 1), (2, 3), (2, 3), (6, 5), (5, 6)} (if x 6= 0 , it is the unique symmetric
matching of size 6 and so it is the symmetric maximum weighted matching). It is
impossible to build Mopt

s using only information in M because (1, 4) does not appear
in it.

PROPERTY 5.1. The problem of finding a symmetric maximum weighted matching in a
bipartite graph is equivalent to the problem of finding a maximum weighted matching on
an undirected graph.

PROOF. Let GA = (VA, EA) be a weighted graph associated with the symmetric matrix
A . Note that it might not be a bipartite graph. We first define an undirected graph G with
twice the number of vertices as GA . We associate to each node i a node i′ that will be
referred to as its companion node.

1 2 3X
XX

X
X

0
0

0 0
A =

1 2 3

1’ 2’ 3’

1 2 3

1’ 2’ 3’

GA G bipartite graph of A

Figure 1.5.1: Computation of a symmetric maximum weighted matching using a maximum weighted
matching on an undirected graph. Bold edges correspond to matching entries.

Let

V ′
A = {i′ such that i ∈ VA}, be the set of companion nodes,

E ′
A = {(i′, j ′) with weight |aij| such that (i, j) ∈ EA}

and Ediag = {(i, i′) with weight |aii| such that i ∈ VA and aii 6= 0}.

Then G = (VA ∪ V ′
A, EA ∪ E ′

A ∪ Ediag) is the required weighted undirected graph.
Figure 1.5.1 illustrates this construction on a small 3×3 example.

The bipartite graph of A is noted Gb = (VA, V ′
A, Eb) . VA refers to the set of row

vertices and V ′
A refers to the set of column vertices. Edges of Eb only go from VA to

V ′
A ( Eb ⊂ VA × V ′

A ). An edge (i, j ′) ∈ E exists if and only if aij 6= 0 . Note that
there is a simple correspondence between G and the bipartite graph of A . Let M0 be a
maximum weighted matching on G . M0 can be split into three parts:

S1 = M0 ∩ EA,

S2 = M0 ∩ E ′
A

and Sd = M0 ∩ Ediag.
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We have ω(S1) = ω(S2) ( ω as defined in Section 1.4.2.1), otherwise M0 would not
be a maximum weighted matching (because for example if ω(S1) > ω(S2) then the
matching M1 below has larger weight than M0 ). M1 = S1 ∪ S ′

1 ∪ Sd is a maximum
weighted matching on G where

S ′
1 = {(i′, j ′) such that (i, j) ∈ S1}.

Let
Ms = {(i, j ′) such that (i, j) ∈ S1 or (j, i) ∈ S1} ∪ Sd,

be a symmetric matching on the bipartite graph of A . Suppose for the purpose of deriving
a contradiction that Ms is not a symmetric maximum weighted matching, and let Mopt

be a symmetric maximum matching on the bipartite graph such that ω(Mopt) > ω(Ms) .
We can build the matching

M2 = {(i, j) such that (i, j ′) ∈ Mopt and i 6= j} ∪
{(i′, j ′) such that (i, j ′) ∈ Mopt and i 6= j} ∪
{(i, i′) such that (i, i′) ∈ Mopt}

so that ω(M2) > ω(M0) giving us a contradiction. Thus, Ms is a symmetric maximum
weighted matching on the bipartite graph of A and solving the problem of the maximum
weighted matching on a non-bipartite graph, enables us to solve the problem of the
symmetric maximum weighted matching.

Conversely, if we solve the problem of finding a symmetric maximum weighted matching
on the bipartite graph of A , using the same kind of transformations as before, we have the
solution of the problem of the maximum weighted matching on the non-bipartite graph of
A .

The equivalence of Property 5.1 has been established by [76] in the context of maximum
cardinality matching. Property 5.1 gives us a way of computing a symmetric maximum
weighted matching and says that the complexity of this problem is of the same order as
the complexity of the computation of the maximum weighted matching on a graph with
the same number of vertices and with the same number of edges as in the bipartite graph
of A . Efficient algorithms for finding maximum matchings use the Hungarian method
of Kuhn [74]. They are based on iterative process in which at each iteration a so called
shortest augmenting path is computed. Solving the problem of the maximum weighted
matching on a non-bipartite graph is much more complicated than on a bipartite one. A
solution to this problem has been found by [49, 50] and its complexity was originally
bounded by O(n4) . This complexity bound was later decreased to O(nnz(A)n +
n2 log n) by [52].

Nevertheless, we will not use Property 5.1 to find good 1×1 and 2×2 pivots. We prefer
to find an approximation to symmetric maximum matching using information returned by
MC64 for the following reasons:

- We want a preprocessing with reasonable complexity with respect to the rest of the
analysis and the factorization.

- We do not know an efficient code available for using 5.1.
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- In the unsymmetric case, MC64 has a complexity in the worst case of O(τn log n)
where τ is the number of nonzeros in A and in practice has a better average
behaviour.

- Using MC64 enables us to compute both the MC64SYM scaling and an approximation
of a symmetric maximum weighted matching in linear time. We get two
complementary preprocessings for the cost of one.

That is why we decided to have a weaker formulation of the problem – we want to
find a symmetric weighted matching that is not too far from the optimum – and to
use the maximum matching technique on weighted bipartite graphs. We will see in
Section 1.5.2.3 that on 37 matrices out of 43 in our test set a solution to the weak
formulation leads to a solution of the symmetric maximum weighted matching. In
Section 1.5.2.2, we also give theoretical bounds as to how far this formulation can be
from the symmetric maximum matching.

1.5.2 Selection of 2 by 2 pivots and symmetric weighted matchings

1.5.2.1 MC64SYM algorithm
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Figure 1.5.2: Example of selection of 2×2 pivots in an even cycle. Matched entries are (r1, c2) , (r2, c3) ,
(r3, c4) and (r4, c1) . We show the two possibilities for selecting two 2×2 pivots.

MC64 is first used to compute a maximum weighted matching M . This will normally
have many entries that are not on the diagonal of A . Any diagonal entries that are in
the matching are immediately considered as potential 1×1 pivots and are held in a set
M1×1 . We then build a set M2×2 of potential 2×2 pivots. We use the 2×2 pivot
selection strategy suggested by [34], but with a structural metric instead of a numerical
criterion. The basis for this strategy is to express the computed permutation, σ , in terms
of its component cycles. Because of the scaling, all the entries in the cycles of σ are 1
in absolute value so we choose a structural criterion to select the potential 2×2 pivots.
Cycles of length 1 correspond to a matching on the diagonal. We can extract k 2×2
pivots from even cycles of length 2k or from odd cycles of length 2k + 1 . For even
cycles there are only two possibilities for extraction. For example, in Figure 1.5.2 there
are two alternatives to select two 2×2 pivots p1 and p2 . In the first alternative (left
figure), p1 is composed of an entry in position (r1, c2) and its symmetric counterpart,



30 Preprocessings for sparse symmetric indefinite problems

and p2 is composed of an entry in position (r3, c4) and its symmetric counterpart. In
the second alternative (right figure), p1 is composed of an entry in position (r2, c3) and
its symmetric counterpart, and p2 is composed of an entry in position (r4, c1) and its
symmetric counterpart.

For odd cycles of length 2k + 1 there are 2k + 1 possible combinations of 2× 2
pivots. For example, in Figure 1.5.3 there are five possibilities for selecting two 2×2
pivots. In the first choice, p1 is composed of an entry in position (r1, c2) and its
symmetric counterpart, p2 is composed of an entry in position (r3, c4) and its symmetric
counterpart. In the second choice, p1 is composed of an entry in position (r2, c3) and its
symmetric counterpart, p2 is composed of an entry in position (r4, c5) and its symmetric
counterpart. In the third choice, p1 is composed of an entry in position (r3, c4) and its
symmetric counterpart, p2 is composed of an entry in position (r5, c1) and its symmetric
counterpart. In the fourth choice, p1 is composed of an entry in position (r4, c5) and its
symmetric counterpart, p2 is composed of an entry in position (r1, c2) and its symmetric
counterpart. In the fifth choice, p1 is composed of an entry in position (r5, c1) and its
symmetric counterpart, p2 is composed of an entry in position (r2, c3) and its symmetric
counterpart.
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Figure 1.5.3: Example of selection of 2×2 pivots in an odd cycle. Matched entries are (r1, c2) , (r2, c3) ,
(r3, c4) , (r4, c5) and (r5, c1) . We show the five possibilities for selecting two 2×2 pivots.

To make a choice from the alternative sets of pivots in Figures 1.5.2 and 1.5.3, we define a
metric that is denoted by metric(i, j) for a potential 2×2 pivot in rows i and j . In our
approach, we use metric(i, j) = |Ri∩Rj|/|Ri∪Rj| where Ri and Rj are the structure
of row i and j respectively. The motivation for this metric is to associate rows in 2×2
pivots that have as similar a structure as possible. We will see in Section 1.5.3 that before
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the ordering phase, for each 2×2 pivot (i, j) , we assume that its nonzero structure is the
merge of the structure of row i and j . So maximizing this metric will tend to decrease
the fill-in due to the use of 2×2 pivots. For each cycle in σ , we then select 2×2 pivots
such that the sequence of 2×2 pivots (ik, jk) maximizes

∏
metric(ik, jk) .

p=2t

p=2t+1

2t+1

2t2t−1

2t−12t−2 2t+2

2t+2 2t+3i i i i i i i i i i i i1 2 3 4 i2k 2k+12k−12k−2

i i i i i i i i i i i i1 2 3 4 i2k 2k+12k−12k−2

weight(p−2)

weight(2k)
weight(p−1)

weight(p−1)
weight(2k+1)

weight(p−2)

Figure 1.5.4: Computation of the weight of a set of 2×2 pivots when row/column p is not selected.

We will now see that this extraction can be done in two passes over the matching and thus
in O(n × c) , where the cost of the computation of the structural score of a 2×2 pivot
is O(c) . Let (ip, ip+1)1≤p≤l be the edges of a cycle of length l ( i1 = il+1 ). In a first
pass over the cycle, for each edge (ip, ip+1) , metric(ip, ip+1) is computed in O(c) and
a cumulative weight is computed:

weight(p) = weight(p− 2)×metric(ip, ip+1)

with the convention weight(0) = weight(−1) = 1 . If l = 2k , we only need to compare
the values of weight(2k) and weight(2k − 1) to extract the best 2×2 pivots. We now
consider the case where l = 2k + 1 . If the diagonal entry ip remains unselected, then
there is only one way of selecting the 2×2 chain (see Figure 1.5.4):

if p is odd,

part 1
︷ ︸︸ ︷

(i1, i2), . . . , (ip−2, ip−1),

part 2
︷ ︸︸ ︷

(ip+1, ip+2), . . . , (i2k, i2k+1) are selected,

if p is even,

part 1
︷ ︸︸ ︷

(i2, i3), . . . , (ip−2, ip−1),

part 2
︷ ︸︸ ︷

(ip+1, ip+2), . . . , (i2k+1, i1) are selected.

Hence, when the entry in the pth position is the unselected entry on the diagonal, the total
metric of the selected 2×2 pivots is given directly by:

weight(p− 2)× weight(l −mod(p, 2))

weight(p− 1)

where the term weight(p− 2) corresponds to the metric of part 1 of the 2×2 chain and
the term weight(l−mod(p, 2))/weight(p−1) corresponds to the metric of part 2 of the
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2×2 chain. Thus, using the above relation, the best 2×2 pivots can be chosen during a
second loop of length l .

For the above metric, |Rowik ∩ Rowjk
| and |Rowik ∪ Rowjk

| can be computed in
a time bounded by O(maxi |Rowi|) and thus the total complexity of the extraction
is O(n maxi |Rowi|) . Note that this total cost can be reduced to O(nnz(A)) , if we
use the flags set during the computation of |Rowip ∩ Rowip+1| for the computation of
|Rowip+1 ∩Rowip+2| , when ip, ip+1, ip+2 are three consecutive indices in a cycle.
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Figure 1.5.5: Length of MC64 paths.

At the end of this M2×2 computation, we add to M1×1 the nonzero diagonal entries
that were not selected during the pass over odd cycles. We define Ms as M1×1 ∪
M2×2 corresponding to a symmetric matching obtained from M . We note that M1×1∩
M2×2 = ∅ .

Let Mc
s be the set {(i, i) such that i does not belong to any pivots inMs} , that is the

complementary set to Ms . It may be non empty because of odd cycles with zero
diagonals. In practice, we note that this set is small (Mc

s = ∅ on all the matrices of sets
2 and 3 except the structurally singular ones). Thus we will not investigate approaches to
increase the size of Ms further.

In practice, most of the cycles from the MC64 permutation are of length 1 or 2. On our
test matrices, 55% of the cycles are of length 1 , 41% are of length 2 and less than 4%
have a length greater than 2 . We illustrate this in Figure 1.5.5 where we show the total
number of paths of varying lengths for runs over all of our test matrices. That is why we
will not try different structural criteria to select the 2×2 pivots.

1.5.2.2 Theoretical bounds

We will now give properties which are quite obvious but which have the merit of fixing the
ideas about some theoretical bounds. After estimating these bounds, we will conclude that
using MC64 is a safe approach. We use the notations Mopt for the maximum weighted
matching returned by MC64, popt for its associated permutation, Mopt

s for the symmetric
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maximum weighted matching, Nodd for the number of odd cycles in popt and N1 for the
number of cycles of length 1 in popt (cycles of length 1 are also counted as odd cycles).
Ms is still the symmetric matching extracted by our MC64 based approach.

PROPERTY 5.2. If all the cycles of the matching are even or of length 1 then Ms is a
symmetric maximum weighted matching.

PROPERTY 5.3.
|Mopt| ≥ |Mopt

s | ≥ |Ms|
and

|Ms| ≥ |Mopt| −Nodd + N1.

Let us consider the example A33(10−1) to illustrate the bounds of the above property.
MC64 returns the column permutation p = [2, 3, 1, 5, 6, 4] , Nodd = 2 , N1 = 0 , Ms =
{(1, 2), (2, 1), (4, 5), (5, 4)} and Mopt

s = {(1, 4), (4, 1), (2, 3), (2, 3), (6, 5), (5, 6)} .
Thus the difference between |Mopt

s | and |Ms| is exactly the number of odd cycles of
length greater than 1.

PROPERTY 5.4. If |Ms| = |Mopt
s | and the pivot extraction is done with metric(i, j) =

|aij| then

K1 ≤
ω(Ms)

ω(Mopt
s )
≤ 1

with

K1 =
∏

(j,j)∈M1×1\Mopt

|ajj|
min{|ajpopt(j)|, |ap−1

opt(j)j
|} .

PROOF. Let C be an odd cycle of popt of length greater than 1. Let j be the row/column
index that appears in C and has not been selected during the 2×2 pivot extraction. (j, j)
is not in Mopt because (j, popt(j)) ∈ Mopt and popt(j) 6= j . |ajj| 6= 0 because of
the |Ms| = |Mopt

s | assumption. So (j, j) has necessarily been added in Ms and more
precisely to M1×1 after the selection of the 2×2 pivots (see Section 1.5.2.1). That is why
(j, j) belongs to M1×1 \Mopt . The (C \Ms)\{(j, popt(j))} entries define a set of 2×2
pivots which has not been selected during the extraction. For example, let us suppose that
the selected 2×2 pivots of Figure 1.5.3 correspond to the first choice. Then (j, popt(j))
is the diamond in the left bottom corner and (C \Ms) \ (j, popt(j)) corresponds to the
second choice of pivots. Thus, we have

ω((C \Ms) \ {(j, popt(j))}) =
ω(C \Ms)

|ajpopt(j)|
≤ ω(C ∩Ms).

because the 2×2 pivots of Ms has been chosen for each cycle using a maximum weight
criterion. We have

ω(C) = ω(C \Ms)× ω(C ∩Ms)

≤ ω(C ∩Ms)
2 × |ajpopt(j)|
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On even cycles and cycles of length 1, the weight of Mopt and Ms are the same. Let Ce

be the set of even cycles and cycles of length 1 and Co be the set of odd cycles of length
greater than 1. After extending the above inequalities to all the cycles, we have

ω(Ms) =
∏

C∈Ce

ω(C)
∏

C∈Co

ω(C ∩Ms)
2

∏

(j,j)∈M1×1\Mopt

|ajj|

≥
∏

C∈Ce

ω(C)
∏

C∈Co

ω(C)
∏

(j,j)∈M1×1\Mopt

|ajj|
|ajpopt(j)|

≥ ω(Mopt
s )

∏

(j,j)∈M1×1\Mopt

|ajj|
|ajpopt(j)|

.

The same kind of inequality can be obtained with p−1
opt , which proves the first part of the

inequality. The second part is true by definition.

Property 5.4 gives us an a posteriori (after the 2× 2 detection) cheap bound for
estimating how far we are from the optimum. If the matrix satisfies the MC64 constraints
and under the assumption that |Ms| = |Mopt

s | , the bound of Property 5.4 becomes
obvious because ω(Mopt) = 1 and ω(Ms) = ω(M1×1) = K1 . It seems difficult to
do better than this bound. In an extreme case, on the matrix A33(1) + diag(ε) , with ε
small, we have ω(Ms) = ε2 and ω(Mopt

s ) = 1 .

1.5.2.3 Recursive improvement of Ms

We have just seen that in the case of a matrix which satisfies the MC64 constraints K1 =
ω(M1×1) . In this section, we propose a recursive algorithm to improve the weight of Ms

( i.e. , to increase K1 ) without changing the already selected 2×2 pivots. Unfortunately
we will show by the conclusion of this section that recursive improvement has a limited
effect on our test set and so it will not be used. However, the good news is that our weak
non-recursive approach leads us to the optimum in most of our test cases.

Algorithm 1.5.1 Recursive detection of 2×2 pivots.
Compute M2×2 , M1×1 , Ms and Mc

s using an MC64 matching on the bipartite graph of A (see
Section 1.5.2.1).
repeat

Build G′ , the bipartite graph of A restricted to M1×1 ∪Mc
s .

Compute M′
2×2 , M′

1×1 , M′
s and Mc

s
′ using an MC64 matching on G ′ (see Section 1.5.2.1).

Ms ← (Ms \M1×1) ∪M′
2×2 ∪M′

1×1

Mc
s ←Mc

s
′ .

until ( ω(M′
s) ≤ ω(M1×1) )

At each step of the recursion, we apply the same kind of detection to the submatrix defined
by M1×1 ; we add the detected 2× 2 pivots to M2×2 and remove the corresponding
indices from M1×1 . Algorithm 1.5.1 gives the details of this recursive approach. The
termination criteria ω(M′

s) ≤ ω(M1×1) says that if we again call the detection on the
subgraph G ′ the weight of the symmetric matching will be unchanged. If the recursive
algorithm is applied to a matrix which satisfies the MC64 constraints then the bound K1
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is still K1 = ω(Ms) . On the matrix A33(10−1)+diag(ε) the application of the recursive
algorithm does not improve Ms if it is initialized to

{(1, 2), (2, 1), (4, 5), (5, 4), (3, 3), (6, 6)},
but, if Ms is initialized to,

{(3, 2), (2, 3), (6, 5), (5, 6), (1, 1), (4, 4)},
the recursive algorithm finds the symmetric maximum matching

Mopt
s = {(3, 2), (2, 3), (6, 5), (5, 6), (1, 4), (4, 1)}

at step 2 and ω(Mopt
s ) = K1 = 10−2 .

Matrix Nodd −N1 Step 0 Step 1 Step 2
BLOCKQP1 20000 -13979 – –
copter2 416 -194 -124 –
dawson5 465 -205 -141 -140
HELM3D01 1 -0.06 -0.007 –
NCVXQP5 555 -47 – –
SPMSRTLS 638 -432 -310 –
other 37 – 0 – –

Table 1.5.1: Symmetric matching weight ( log10 K1 ) when recursive algorithm is applied. The second
column lists the number of odd cycle in the matching with more than 1 vertex.

Table 1.5.1 gives the different values of log10 K1 when a symmetric matching is
computed recursively. We see that on most of the matrices (on 37 out of 43 to be precise),
we have computed the symmetric maximum matching (line other 37) without any use of
recursion. On the six matrices where the computed symmetric matching is not necessarily
a symmetric maximum weighted matching. we see that the recursive algorithm does not
improve K1 significantly and stops after at most 2 steps. That is why we have decided
to avoid the recursive approach. Note that, even if these K1 values seem to be large,
they must be viewed relative to the number of odd cycles greater than 1. Furthermore,
K1 is viewed relative to Mopt and not to Mopt

s the weight of which can be very small
compared to Mopt (see for example A33(ε) ).

1.5.3 Coupling detected pivots and orderings

1.5.3.1 Ordering on the compressed graph

Let M be a maximum matching on A from which we have obtained a set of 1×1 and
2×2 candidate pivots, Ms . The undirected graph G associated with the matrix A has a
set of vertices VA , corresponding to the rows (and columns) of A and a set of unordered
edges EA , where the unordered pair (i, j) ∈ EA if and only if aij 6= 0 .

We define R , the reduced matrix of A relative to Ms as the square matrix of order
the number of pivots in Ms whose associated undirected graph will be referred to as
the compressed graph (it is a generalization of the compressed graph of [15] which only
compresses indistinguishable vertices). Each of its vertices Ii is weighted and either
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associated with a row/column of A corresponding to a candidate 1×1 pivot (weight of
1) or a pair of rows/columns (ik, il) corresponding to a candidate 2×2 pivot (weight of
2). The edge set ER consists of the unordered pairs (Ii, Ij) where there exists an edge
in EA between one of the constituent vertices of Ii and one of the constituent vertices
of Ij . In other words, the candidate 2×2 pivots of Ms are compressed into one vertex
and the union of their adjacency defines the adjacency of the new vertex. The weight
of the vertices will be used to initialize the size of the supervariables and to compute
the appropriate metric. For example, the external degree of a supervariable i will be
initialized to ext_deg(i) =

∑

j∈Adj(i) |j| , where Adj(i) is the set of vertices adjacent
to i in the compressed graph and |j| is the weight of the vertex j . Obviously, when
two supervariables i and j are merged – either in the phase of supervariable detection
for a greedy ordering or in the coarsening phase for a partitioning, they form a new
supervariable of size |i|+ |j| . Note that the rows/columns of A that are not represented
in Ms will not be represented in the reduced matrix.

Algorithm 1.5.2 Main steps of the ordering on the compressed graph.
1 Apply a symmetric MC64 scaling and get Ms .
2 Compute R , a reduced matrix of A relative to Ms .
3 Set Pred , the symmetric permutation returned by an ordering on R .
4 Compute Paug , an extension of Pred relative to Ms .
5 Put the components of Mc

s in the last positions.

Let Pred be a symmetric permutation on R . Then it is easy to extend Pred to
a permutation Paug on A by expanding each component corresponding to a 2× 2
composite node to the two rows/columns of A associated with that composite node
and by putting the rows/columns of A that were not represented in R (Mc

s entries)
at the end of this permutation. This ensures that zero pivots in Mc

s will be filled by the
previous eliminations if we assume that no numerical cancellation occurs and the matrix is
structurally nonsingular. Clearly this expansion can be done in a single pass through Pred .
Note that Paug is not unique: firstly, when a node corresponding to a 2×2 pivot (i, j)
is expanded, we have the choice of taking i or j first in Paug ; secondly, when we visit
the entries in Mc

s , there is no a priori order for placing them in Paug . This approach
on the compressed graph generates an ordering that is expected to have preselected good
numerical pivots. Algorithm 1.5.2 summarizes the main steps of this preprocessing.

To illustrate the compression and the expansion, let us take the following matrices:

A =









2 −1 1 0 0
−1 2 0 0 0

1 0 0 2 1
0 0 2 0 1
0 0 1 1 0









and R =





1 X X
X 1 0
X 0 2



 .

In A , we detect a 2×2 pivot in rows/columns 3,4 and two 1x1 pivots on the diagonal. We
have Ms = {(1, 1), (2, 2), (3, 4)/(4, 3)} and Mc

s = {(5, 5)} . R is a reduced matrix of
A relative to Ms where row/column 3 corresponds to the 2×2 pivot. If Pred = [3, 2, 1]
then Paug = [3, 4, 2, 1, 5] or [4, 3, 2, 1, 5] is an expansion of Pred .
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1.5.3.2 Constrained ordering

The main principle of the orderings presented in this section and Section 1.5.3.3 is to
relax the above preselection of the 2×2 pivots by splitting some of them into two 1×
1 pivots before the compression. Moreover, when there is a danger of making a bad
numerical decision, we will add some dependency about the precedence between some of
the 1×1 pivots coming from split 2×2 pivots. We will propose an algorithm that can be
implemented in the context of orderings based on local heuristics like AMD or AMF.

For each 2×2 pivot, Pij =

(
aii aij

aij ajj

)

, with (i, j) ordered such that |aii| ≥ |ajj|
and with |aij| = 1 , i is said to be the leading variable and j , the trailing variable. Let
θ ∈ [0, 1] be a real constant. Pij is said to be:

a locked pivot according to θ if and only if |aii| ≤ θ and |ajj| ≤ θ (if the diagonal
entries are too small, it is dangerous to allow elimination of 1×1 pivots),

a constrained pivot if and only if |aii| > θ and |ajj| ≤ θ (if the value of the leading
variable is large enough, it can be eliminated as a 1×1 pivot, but as the value of
the trailing variable is too small, it is more safe to add the constraint that the leading
variable has to be eliminated before),

a splittable pivot if and only if |aii| > θ and |ajj| > θ (if the diagonal entries
are large, the leading and trailing variables can be eliminated as 1× 1 pivots
independently).

In our experiments we set θ = 10−2 .

The set of MC64SYM detected 2×2 pivots is separated into three sets, LPθ , CPθ and
SPθ , the set of locked pivots, constrained pivots and splittable pivots respectively. Note
that when θ = 0 , locked pivots correspond to oxo pivots (two zeros on the diagonal),
constrained pivots to tile pivots (one zero on the diagonal) and splittable pivots to full
2×2 pivots. When θ = 1 , none of the 2×2 pivots is split and the ordering will behave
as the ordering on the compressed graph. The more θ decreases, the more pivots are split
and the more the risks of making a bad decision increase. In the rest of our discussion,
we will omit the θ from our notation.

During the ordering, we manipulate two kinds of (super)variables : free (super)variables
and constrained (super)variables. At the beginning of the ordering, a supervariable i is
said to be a free supervariable if and only if one of the following conditions hold:

(1) i belongs to a splittable pivot,

(2) i is the leading variable of a constrained pivot,

(3) i belongs to M1×1 ,

(4) i is a locked pivot.

Otherwise, a supervariable i is said to be a constrained if it appears as the trailing variable
of a constrained pivot.

During the pivot selection, there are two main rules:
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(R1) a free supervariable can be eliminated whenever we want (it does not depend on the
elimination of another one),

(R2) a constrained supervariable can be eliminated if and only if a free pivot with which
it is associated has already been eliminated.

The second rule is equivalent to marking constrained supervariables as free as soon as
(R2) is satisfied. Thus, during the ordering, constrained supervariables can become free.
If i is the leading variable of a constrained 2×2 pivot, we will say that i releases j
where j is the variable associated with i in this pivot (it is a sufficient condition to make
the supervariable j free). The free supervariables that correspond to entries in M1×1 or
to locked pivots can be eliminated but do not release any constrained supervariables.

At each step of the ordering, FV and CV will be used to denote respectively the set
of supervariables that can be eliminated and the set of pivots that cannot be eliminated.
For each free supervariable i belonging to a constrained pivot, we define assoc(i) , its
associated constrained supervariable. For other supervariables assoc(i) = ∅ .

Algorithm 1.5.3 Constrained ordering scheme.
Determine free and constrained supervariables according to Ms .
CV ← { constrained supervariables } and FV ← { free supervariables } .
while there are uneliminated supervariables do

i← arg minp∈FV metric(p)
Do symbolic elimination of i .
FV ← (FV ∪ {assoc(i)}) \ {i}
CV ← CV \ {assoc(i)}

end while

Algorithm 1.5.3 describes our constrained ordering. At each step of the symbolic
elimination, we select the best pivot in the set FV . Moreover, when the leading
supervariable of a constrained pivot is selected, its associated constrained supervariable
is released (it is inserted in the FV set and removed from the CV set). Intuitively, if the
leading part of a constrained pivot is eliminated then it is possible that the modified value
of the trailing supervariable becomes large because our scaling ensures that apq = 1
and app ≤ 1 , and thus that the corresponding entry becomes numerically acceptable.
This constrained ordering has been implemented with the AMD and AMF orderings. As
in the ordering on the compressed graph, we put the variables in Mc

s at the end of the
permutation.

1.5.3.3 Relaxation of constrained ordering

This approach uses the same terminology as the previous one. Here we relax the selection
of the pivots, that is, we enlarge the set of free pivots and the possibilities for releasing the
constrained variables. We fix a dropping threshold θdrop ∈ [0, 1] and build a matrix C =
(cij) that is called the constraint matrix. This matrix contains a subset of the entries in A
and so its size is bounded by the size of A . This matrix together with Ms will be used
to define the constrained and free supervariables and the relations between them (who
releases whom). Firstly the rows and columns of C that correspond to indices that appear
in locked pivots are set to 0 (it corresponds to rows/columns 6 and 7 of Figure 1.5.6). Then
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A =













1 1 0 ε 0 1 0
1 ε 0 1 1 ε 0
0 0 1 1 0 ε 1
ε 1 1 ε 0 0 0
0 1 0 0 1 1 1
1 ε ε 0 1 0 1
0 0 1 0 1 1 0













, C =













1 1 0 0 0 0 0
1 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
0 1 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0













Figure 1.5.6: A matrix A and its constraint matrix C ( ε < θdrop ). The symmetric matching of A is
composed of two constrained pivots in positions (1, 2) and (3, 4) , of a 1×1 pivot in position (5, 5) and
of a locked pivot in position (6, 7) .

the rest of the entries cij of the constrained matrix are set to 1 if and only if aij ≥ θdrop ,
otherwise they are set to 0 (the ε entries are removed in Figure 1.5.6). In our experiment
we take θdrop = 0.9 (see Section 1.6). C describes the dependency among the free
and constrained supervariables: i can release j if and only if cij 6= 0 . The above
construction prevents a locked pivot from releasing a constrained supervariable.

Each nonzero off-diagonal entry of C defines a potential 2×2 pivot. A supervariable i
is free if and only if one of the following conditions hold:

(1) i appears in the indices of a potential splittable pivot in C ,

(2) i is the leading variable of a potential constrained pivot in C ,

(3) i corresponds to an entry in M1×1 ,

(4) i is a locked pivot.

Here again the supervariables of M1×1 and the locked pivots are systematically included
in the set of free variables. For example, in Figure 1.5.6, the variables 1, 3, 5 and
the locked pivots (6, 7) are free and the variables 2 and 4 are constrained. During
the ordering, a constrained pivot j can be selected if and only if it is reachable from
eliminated supervariables in C . In other words it is possible that it has been updated by
large enough entries. For example, in Figure 1.5.6, let us suppose that the ordering has
selected the variable 5 as pivot. Since c5,2 6= 0 , the variable 2 becomes free and can be
selected at the next step of the ordering.

Algorithm 1.5.4 describes this approach. At each step, the entries in CV that satisfy
the above condition are added to FV . We have implemented both the constrained and
the relaxed constrained approaches with an AMD/AMF ordering, where small changes are
made to allow supervariable detection and locked pivot supervariables are initialized with
a weight of 2. The total overhead of the manipulation of these sets is O(nnz(C)) which
is negligible with respect to the total complexity of the ordering, shown in [68] to be
O(n× nnz(A)) .

We have presented two alternatives to the ordering based on the compressed graph: a
constrained ordering and a relaxed constrained ordering. We expect to have less fill-
in using the (relaxed) constrained ordering than using the ordering on the compressed
graph. However, we expect that the prediction of the ordering on the compressed graph
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Algorithm 1.5.4 Relaxed constrained ordering scheme.
Define the free supervariables and the constrained supervariables according to the constraint matrix C
and Ms .
CV ← { constrained supervariables } and FV ← { free supervariables } .
while there are uneliminated supervariables do

i← arg minp∈FV Metric(p)
Do symbolic elimination of i
FV ← (FV ∪ Ci.) \ {i}
CV ← CV \ Ci.

end while

will be more exact than the prediction of the (relaxed) constrained ordering where there
is a greater risk of making a bad numerical decision. We will see in Section 1.6 that these
intuitions are verified and that the constrained and the relaxed constrained ordering have
a similar behaviour.

1.6 Experimental results

We now consider the effect of our pivoting strategies on MA57. We have four approaches
from the above strategies.

• MA57_1 refers to the approach using the MC64SYM scaling coupled with an ordering
which can be AMD, AMF or ME T IS.

• MA57_2 refers to the approach using the MC64SYM scaling, the preselection of the
2×2 pivots and the ordering (AMD, AMF or ME T IS) based on the compressed graph
(Section 1.5.3.1).

• MA57_3 refers to the approach using the MC64SYM scaling, the preselection of the
2×2 pivots and the constrained ordering scheme (Section 1.5.3.2). This strategy is
compatible with AMD or AMF.

• MA57_4 refers to the approach using the MC64SYM scaling, the preselection of the
2×2 pivots and the relaxed constrained ordering scheme (Section 1.5.3.3). This
strategy is compatible with AMD or AMF.

ME T IS is called using the routine METIS_NodeWND in the MA57_2 approach in order
to take into account the size of the supervariables in the metrics while trying to find a
balanced partition. We use the routine METIS_NodeND in the MA57_1 approach since
in this case all the supervariable have a size of 1. In MA57_3 and MA57_4, a threshold
of θ = 10−2 is used to determine if the diagonal entries correspond to free variables
(see Section 1.5.3.2). We tested different values and remark that increasing it from
10−2 degrades the fill-in returned by the ordering (there are too many constraints and
not enough free variables), that decreasing it too much from 10−2 degrades the memory
prediction (on some matrices it did not guarantee good numerical pivots) and did not
significantly decrease the fill-in and the number of operations. In MA57_4, a threshold of
θdrop = 0.9 is used to determine the constraint matrix (see Section 1.5.3.3). Here also,
we tested different values with the same conclusions as above.
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1.6.1 General symmetric indefinite matrices (set 3)
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(1.6.1.a) CPU factorization time profile.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AMD
AMF
METIS

(1.6.1.b) Memory profile.

Figure 1.6.1: AMD, AMF, ME T IS comparison (set 3). The MC64SYM scaling is used.

We first determine the best approach on set 3. We will only give details about results for
the ME T IS based ordering for three reasons.

Firstly, ME T IS is clearly better than AMD and AMF in terms of CPU factorization time
(see Figure 1.6.1.a) and memory (see Figure 1.6.1.b). On 75% of the problems, the
approach based on ME T IS is the best in term of memory and its factorization time is
within a factor 1.3 of the best.

Secondly, the relative behaviour between AMD+MA57_1 and AMD+MA57_2 and between
AMF+MA57_1 and AMF+MA57_2 are similar to the relative behaviour between
ME T IS+MA57_1 and ME T IS+MA57_2 (see Figure 1.6.2).
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(1.6.2.a) AMD ordering.
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(1.6.2.b) AMF ordering.

Figure 1.6.2: CPU factorization time profile, AMD and AMF ordering (set 3). The MC64SYM scaling is used.

Finally, on this set, Figure 1.6.2 shows that the constrained ordering of Section 1.5.3.2
and the relaxed constrained ordering of Section 1.5.3.3 do not significantly improve the
CPU factorization time and do not decrease the size of the factors compared with the
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approach on the compressed graph (Section 1.5.3.1). On the contrary, we will see in the
next section that they clearly improve the factorization on set 2.

AMD AMF METIS
178 sec 130 sec 78 sec

Table 1.6.1: Cumulative factorization time on set 3 except c-71.

Figure 1.6.3.a shows that MA57_1 is faster than MA57_2 on set 2. This execution time
difference is due to the fill-in and the number of operations. Indeed, the approach on
the compressed graph merges some rows of the initial matrix and the ME T IS ordering
is called on a coarsened graph. Thus, the MA57_2 pretreatment implies non-negligible
constraints on the ordering because of the a priori selection of the 2×2 pivots. These
constraints severely degrade the quality of the ordering. In particular, they increase the
memory requirement (see Figure 1.6.3.b).
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(1.6.3.a) CPU factorization time profile.
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Figure 1.6.3: CPU factorization time and memory (ME T IS, set 3).
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(1.6.4.a) Number of delayed pivots profile ( log10 scale for x-axis).
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Figure 1.6.4: Quality of analysis prediction (ME T IS, set 3).
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The MA57_2 analysis succeeds in selecting good pivots for the factorization and delays
less pivots than MA57_1 (see Figure 1.6.4.a). Furthermore, the memory estimation is
accurate for both approaches: the ratio between the predicted and the used memory
remains close to 1 (see Figure 1.6.4.b).

1.6.2 Augmented systems (set 2)

We will now study the behaviour of the MA57 factorization when it is coupled with the
three orderings AMD, AMF and ME T IS on set 2 of our test matrices. We will see that
the influence of our preprocessing depends on the ordering with which it is associated.
We first do relative comparisons between the the four AMD based codes, between the two
ME T IS based codes and between the four AMF based codes. Then we select the best
approaches and discuss them further.

1.6.2.1 AMD based approaches
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(1.6.5.a) CPU factorization time profile.
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(1.6.5.b) Memory profile.

Figure 1.6.5: CPU factorization time and memory (AMD, set 2).

MA57_1, MA57_2 and MA57_4 fail on one matrix (they exceeded the CPU time limit
on NCVXQP7) but MA57_3 does not fail. Figure 1.6.5.a shows that, in terms of CPU
factorization time, MA57_1 is within a factor of 1.25 of the best 75% of the time, MA57_3
and MA57_4 are comparable.

MA57_2 can be far from the best ordering because of the constraints that we impose in
the analysis phase. That is why it performs more computation and needs more memory
than the other codes (see Figures 1.6.6.a and 1.6.5.b) and thus is also slower. MA57_3
and MA57_4 do less operations than MA57_1. Thus the total number of operations
cannot explain why MA57_1 is faster on 75% of the problems. Further examination
shows that MA57_3 and MA57_4 perform more assembly operations than MA57_1 (see
Figure 1.6.6.b). Assembly operations involve indirect addressing whereas elimination
operations call level 3 BLAS dense kernels, so that assembly operations are slower than
eliminations, which explains why MA57_3 and MA57_4 are slower than MA57_1.
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(1.6.6.a) Operations profile.
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(1.6.6.b) Assembly operations profile.

Figure 1.6.6: Number of floating-points operations (AMD, set 2).
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(1.6.7.a) Number of delayed pivots profile ( log10 scale for x-axis).
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(1.6.7.b) Ratio between used memory and memory prediction of
analysis. Problems sorted by Id on the x-axis; ratio of 0.5 is used
as a dummy value to indicate failure.

Figure 1.6.7: Quality of analysis predictions (AMD, set 2).

The three new approaches clearly improve the reliability of the analysis predictions.
MA57_2 decreases the number of delayed pivots as shown in Figure 1.6.7.a. Moreover
MA57_2, MA57_3 and MA57_4 improve the memory estimations. If a relaxation
parameter of 50% is used between the analysis and the factorization the number of
failures decreases from 8 to 1, 0 and 1 respectively. (see Figure 1.6.7.b).

With respect to the above aspects (CPU factorization time, memory, number of delayed
pivots and quality of the analysis prediction), MA57_3 seems to be the best if compromises
have to be done between CPU time and memory for an AMD based ordering (see
Figure 1.6.8). MA57_1 remains the fastest on most of the problems if a large fixed
amount of memory can be allocated for the factorization. That is why, concerning the
AMD based ordering, we keep the approach with only the MC64SYM scaling (MA57_1)
and the approach with a constrained ordering (MA57_3) for our final comparison.
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(1.6.8.a) CPU factorization time profile with 20% memory
relaxation.

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MA57_1
MA57_2
MA57_3
MA57_4

(1.6.8.b) CPU factorization time profile with 50% memory
relaxation.

Figure 1.6.8: CPU factorization time profile with relaxed memory (AMD, set 2).

1.6.2.2 MeTiS based approaches
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(1.6.9.a) CPU factorization time profile.
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(1.6.9.b) Memory profile.

Figure 1.6.9: Influence on CPU factorization time and memory (ME T IS, set 2).

When our approaches are coupled with ME T IS, we did not get any failures. Moreover,
MA57_1 is faster 85% of the time, but MA57_2 is not too far behind in terms of
factorization time and memory usage (see Figure 1.6.9.a and 1.6.9.b).

Figure 1.6.10 shows that MA57_1 does not give an accurate prediction for the subsequent
factorization. There are 10 and 6 matrices over the 20% and 50% limits respectively.
This can be explained by the huge number of delayed pivots (MA57_1 delays 10000
times more pivots than MA57_2 in the worst cases, see Figure 1.6.10.a). On the contrary,
MA57_2 exceeds the 20% limit only once and otherwise the ratio between the memory
predicted and the memory needed is always near to one. This better memory estimation is
clearly shown by the profile of Figure 1.6.11 where MA57_2 is faster than MA57_1 with
20% memory relaxation. With respect to the above comments, we keep the two ME T IS
approaches for our final comparison.
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(1.6.10.a) Number of delayed pivots profile ( log10 scale for x-axis).
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Figure 1.6.10: Quality of analysis predictions (ME T IS, set 2).
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(1.6.11.a) CPU factorization time profile with 20% memory
relaxation.
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(1.6.11.b) CPU factorization time profile with 50% memory
relaxation.

Figure 1.6.11: CPU factorization time profile with relaxed memory (ME T IS, set 2).

1.6.2.3 AMF based approaches

We observe a similar relative behaviour between MA57_1 and MA57_2 with an AMF
based ordering instead of an AMD based one. We did the experimental observation that
the main advantage of an AMF based ordering is that MA57_3 and MA57_4 are not
penalized by a large number of assembly operations. Thus MA57_3 and MA57_4 are
the fastest approaches (Figure 1.6.12.a) and need less memory than the other approaches
(Figures 1.6.12.b). Moreover they decrease the number of delayed pivots (Figure 1.6.13.a)
and improve the memory estimation (Figure 1.6.13.b). They decrease the number of
failures from seven with MA57_1 to none if 50% relaxation is used between analysis and
factorization. That is why they are also the best approaches in terms of CPU factorization
time with a fixed memory relaxation as shown in Figure 1.6.14. For AMF, we only keep
MA57_4 for our final comparison.
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(1.6.12.a) CPU factorization time profile.
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(1.6.12.b) Memory profile.

Figure 1.6.12: Influence on CPU factorization time and memory (AMF, set 2).
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(1.6.13.a) Number of delayed pivots profile ( log10 scale for x-axis).

2 4 6 8 10 12 14 16 18 20 22
0.5

1

1.5

2

2.5
MA57_1
MA57_2
MA57_3
MA57_4

(1.6.13.b) Ratio between used memory and memory prediction of
analysis. Ratio of 0.5 is used as a dummy value to indicate failure;
problems sorted by Id on the x-axis.

Figure 1.6.13: Quality of analysis predictions (AMF, set 2).

1.6.2.4 Best approaches discussion

In this section, we discuss the best approach for set 2. We have kept five codes for
the comparison because of the earlier discussion: MA57_1/3 with AMD, MA57_1/2 with
ME T IS and MA57_4 with AMF.

Figure 1.6.15 shows that the AMD based approaches are the slowest and the most
memory consuming. The pure ME T IS based approach is the best on most of the
problems and the two other approaches (MA57_2(ME T IS) and MA57_4(AMF)) are
comparable. Figure 1.6.16 presents the factorization time if a relaxation parameter is
used between analysis and factorization. With 20% relaxation MA57_2(ME T IS) and
MA57_4(AMF) are clearly the best approaches (see Figure 1.6.16.a). With 50% relaxation
MA57_1(ME T IS) is the fastest on many problems and MA57_4(AMF) is the most robust
(see Figure 1.6.16.b).
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(1.6.14.a) CPU factorization time profile with 20% memory
relaxation.
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(1.6.14.b) CPU factorization time profile with 50% memory
relaxation.

Figure 1.6.14: CPU profile with relaxed memory (AMF, set 2).
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(1.6.15.a) CPU factorization time profile.
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(1.6.15.b) Memory profile.

Figure 1.6.15: AMD/ME T IS/AMF comparison on set 2.

Thus, if a large amount of memory is available, the approach with only MC64SYM scaling
and ME T IS is sufficient. But, if the memory of the factorization needs to be estimated,
we recommend the use of the MA57_4+AMF approach.

1.7 Conclusions

We have shown how MC64 can be used when the matrix is symmetric to effect a
symmetric scaling and identify potential 2× 2 pivots. We have observed that the
use of an appropriate scaling (the MC64 symmetrized scaling, MC64SYM) solves many
computational difficulties. We also noticed that MC77 can sometimes be a good
alternative and can benefit from its cheap cost. Perhaps this scaling has to be better
understood before becoming a default approach. In particular, a fixed convergence rate is
difficult to obtain since it is strongly dependent from the structure of the problem.
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(1.6.16.a) CPU factorization time profile with 20% memory
relaxation.
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(1.6.16.b) CPU factorization time profile with 50% memory
relaxation.

Figure 1.6.16: AMD/ME T IS/AMF comparison (set 2): CPU factorization time profile with relaxed memory.

The performance of MA57 depends very much on the nature of the matrix, but we have
shown that it can benefit from this preprocessing, sometimes with no change, or only
minor changes to the analysis. Another benefit of our work is that the analysis phase
gives a better indication of the work and storage required by the subsequent factorization.

In Chapter 2, we will give partial answers to the following question. How can we adapt
our approaches to a solver like MA47? Indeed, MA47 is designed for augmented systems
and will a priori do less computation, because it can manage the oxo and tile pivots
better.

Chapter 3 tries to design a code with static 2×2 and 1×1 pivoting. Static pivoting can
address a large variety of problems in the unsymmetric case when it is coupled with MC64
preprocessing and has the advantage of giving exact memory estimation. It is also more
friendly for a parallel distributed implementation. Can we adapt the unsymmetric static
pivoting to the symmetric indefinite case and does it address a large range of symmetric
indefinite matrices?

Constrained ordering and partition?

In our future work, we will try to decrease the fill-in in the MA57_2(ME T IS) analysis
while keeping a stable factorization. We have succeeded in decreasing the number of
operations in AMD and AMF with a (relaxed) constrained ordering. Fill-in may be lower if
we extend this idea to have a tighter coupling with ME T IS.

The main principles of constrained and relaxed constrained ordering are that a constrained
variable must be released before being eliminated and two variables of a locked pivot are
chosen at the same time. Algorithms to generate valid permutations have been proposed
for approaches based on local heuristics (AMD/AMF).

In the context of an ordering produced by a partitioning scheme, it is more difficult to
generate permutations which are compatible with the (relaxed) constraints. The design
of this kind of algorithm is not obvious and is not in the scope of this present study.
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Nevertheless, we give a more graph oriented formulation of the problem in order to
understand the difficulties better.

At each step of the top-down approach, we have to find a valid partition Φ, Ω1, . . . , ΩK

of the vertices where each of the Ωi are disconnected domains and Φ is the interface.
We want to respect the conditions that a constraint variable can be eliminated only after
it has been freed and that the variables of locked pivots are eliminated at the same time.
More formally the partition is valid if the following two conditions are satisfied:

for all constrained variables, j ∈ Ωp,
there exists a free variable i ∈ Ωp which releases j,

(1.7.1)

for each locked pivot (i, j), i ∈ Ωp ⇔ j ∈ Ωp. (1.7.2)

To satisfy condition 1.7.2, a straightforward solution is to compress the edges and the
vertices associated with the locked pivots before doing the ordering. A constrained
variable can be either in Φ or in Ωp if it satisfies condition 1.7.1. This condition is
more complicated to implement.

In the context of a constrained ordering, the M2×2 set is used to define the initial type
of variables and the rules to release the constrained variables. One approach could be
to maintain these constraints during the coarsening and the refinement phases. Another
approach could be to compute a partition and to move some constrained variables from
the domains to the interface. Refinement could be also optionally applied with respect to
Conditions (1.7.1) and (1.7.2).

In the context of a relaxed constrained ordering in which the way of releasing a variable
is not unique and where a constrained variable can become free and later release another
constrained variable and so on, Condition (1.7.1) can be more difficult to verify (contrary
to the bottom-up approach, in the top-down approach we do not have the information
about who will free whom). In fact, if we want to benefit totally from the freedom
offered by the relaxed constraints, we have to look for the paths which start with a free
variable. Let F0 be the initial set of free variables. For any sets of vertices S and L ,
and a symmetric matrix B , we denote by ReachB(S)(L) the set of vertices which can be
reached from vertices of L through paths included in the undirected graph of B restricted
to vertices of S . Perhaps it is easier to think of maintaining Condition (1.7.1) using the
following equivalent condition in the context of a relaxed constrained ordering:

∀j ∈ Ωp, constrained variable, j ∈ ReachC(Ωp)(F0 ∩ Ωp). (1.7.3)



Chapter 2

Preprocessings of augmented systems
for sparse direct solvers.
What should work, does not and could ?

2.1 Introduction

We study preprocessing techniques for the LDLT factorization of symmetric augmented
systems where L is a lower triangular matrix and D is a block diagonal matrix with
1× 1 and 2× 2 blocks. In Chapter 1 we presented techniques based on maximum
weighted matching to preprocess symmetric indefinite matrices in the context of a general
symmetric indefinite solver, MA57. We examine ways to adapt these techniques in a solver
that detects zeros blocks which appear during the factorization of augmented systems.

As in the previous chapter, we make extensive use of routines from HSL [72] (see
Table 1.3.4).

In Section 2.2, we first describe the main features of MA47 and the main differences
with MA57. Section 2.3 introduces algorithms to preselect good numerical pivots and to
preserve the sparsity as much as possible in MA47. In Section 2.4, we first identify the
best MA47 approaches and then compare them with MA57.

2.2 Multifrontal codes and augmented systems

In this study A is a sparse symmetric matrix which has the structure of an augmented
system and which has been symmetrically scaled by the MC64SYM scaling. Thus its
entries are in [−1, 1] , and it has the form

PAP T = KH,A =

(
H B
BT 0

)

.

During the factorization of an augmented system three kinds of 2×2 pivots can appear.
oxo pivots have a pattern of the form

i j

Oij =

(
0 X
X 0

)
i
j

(2.2.1)
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tile pivots have a pattern of the form

i j

Tij =

(
X X
X 0

)
i
j

(2.2.2)

and full pivots, Fij have a full pattern. The use of these kinds of pivots is detailed in [47,
48]. In the following, when the indices i and j are used to represent the variables of a
2×2 pivot, i is the first index and j the second one if the pattern of the pivot matches
the forms (2.2.1) or (2.2.2). At each step of Gaussian elimination, Ri and Rj will refer
to the structure of row i and row j of the reduced submatrix.

OXO
X

X 0
0

0
0

X
X 0

0
X

TILE

Figure 2.2.1: Zero blocks of oxo and tile pivots.

During Gaussian elimination, oxo and tile pivots generate contribution blocks with 2
and 1 blocks of zeros respectively (see Figure 2.2.1). Thanks to a generalization of the
elimination tree and of the quotient graph, MA47 can manage this kind of pivot. Each
contribution block is divided into smaller full subblocks and dense level 3 BLAS kernels
are used on these subblocks. To respect these structures, assemblies of contributions from
the children are only done partially. That is why an element may be partially absorbed
and remain active during more than one generation.

MA57 is not designed to manage these kinds of blocks. Let us consider a node of the
elimination tree. The zero blocks of oxo or tile pivots of its children are explicitly
assembled. If we are lucky, there is numerical cancellation and some entries of L can be
dropped. Indeed the fully summed rows of a node can contain zero columns which can
be removed from the factors after having computed the contribution block.

For example, in Figure 2.2.2, the zero entries in column 4 and rows 3 and 10 can be
removed. This dropping can be done to have a faster solve phase and a cheaper storage
of the factors. But it is not trivial to remove them before the elimination operations. In
an extreme case (DTOC matrix), these zeros correspond to 67% of the factors when
the ME T IS ordering is used. It is important to note that this dropping does not change
the number of flops for the factorization. Because, in a multifrontal approach, information
can only be passed from child to parent, we have to compute the contribution block before
dropping any entries. We could remove them before the Schur computation but it would
involve a lot of indirect addressing and, compared to MA47, MA57 is clearly not designed
for this. These zeros columns are automatically removed in our MA57 experiments.
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Figure 2.2.2: An example of removable zeros in the MA57 factors when we are lucky. X corresponds to a
nonzero and shaded areas to nonzeros in the contribution blocks.

2.3 Ordering and 2 by 2 pivot selection

In this section, we present ordering approaches which have the same flavour as our MA57
preprocessing. We will first briefly introduce the notation that will be used. Then we will
describe three kinds of (relaxed) constrained orderings in the framework of a solver which
can manage the zeros blocks coming from oxo and tile pivots.

X
X 0
0

X
XX

0

XX
XX Full 2x2

Tile

Unselected

detected 1x1

detected 2x2

OXO

X

X
0

0

Figure 2.3.1: Detection of 1×1 and 2×2 pivots.

We use the algorithm of Section 1.5.2.1 to compute a symmetric weighted matching Ms .
The associated symmetric permutation can be rearranged so that our matrix A has the
form of Figure 2.3.1 (we group full, oxo, tile and 1×1 pivots for having a convenient
representation and this matrix will be later reordered in order to decrease the fill-in in the
factors). We recall that we defined the set M2×2 of detected 2×2 pivots, the set M1×1

of detected 1×1 pivots, and that we have Ms =M1×1 ∪M2×2 and that the set Mc
s is

the set of unselected 1×1 pivots (it is the complementary set to Ms ).
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2.3.1 Acceptable and unselectable pivots

In our orderings, we use the set Ps , the candidate pivot set. At each step k of the
symbolic factorization the set Ps of candidate pivots is updated and divided into two
parts Ak

s and Uk
s . Ak

s is the set of selectable (or acceptable) pivots and U k
s is the

set of unselectable (or unacceptable) pivots. At each step of Gaussian elimination, the
ordering tries to select the pivot of minimal metric among the set of acceptable pivots.





0 m ×
× 0 m
m × 0





Figure 2.3.2: Matching and potential pivots on 3×3 example.

We illustrate these sets by the small 3×3 example in Figure 2.3.2, where the matching
is shown as m and the candidate 2×2 pivot is defined by the off-diagonal entry (1,2).
Thus, the set M2×2 is {(r1, c2), (r2, c1)} , the set M1×1 is empty, and the set Mc

s is
{(r3, c3)} . For example, Ps = {(r1, c2), (r2, c1), (r3, c3)} and we can set A1

s =Ms and
U1

s =Mc
s . At the first step of the ordering, 2×2 pivot corresponding to {(r1, c2), (r2, c1)}

is selected and removed from Ps . We then build A2
s = {(r3, c3)} and U2

s = ∅ . Note
that the entry in position (3, 3) has been filled by the previous elimination.

2.3.2 Ordering with fixed 2 by 2 pivots

Algorithm 2.3.1 Main steps of an ordering with fixed 2×2 pivots

A1
s ←Ms , U1

s ←Mc
s and k ← 1 .

while Ak
s 6= ∅ do

p← arg mini∈Ak
s
metric(i)

Do symbolic elimination of p .
Set F , the indices of filled diagonal entries in Uks .
Ak+1

s ← (Ak
s \ {p}) ∪ F and Uk+1

s ← Uk
s \ F

k ← k + 1
end while
if Uk

s 6= ∅ then /* the matrix is structurally singular */
Put Uk

s variables at the end of the permutation.
end if

In this approach we want the ordering to follow the pivots chosen by our symmetric MC64
preprocessing. Algorithm 2.3.1 shows the main steps of this modified MA47 analysis. We
take Ps =Mc

s ∪Ms , the candidate pivot set. At each step of the ordering, a pivot can
be selected during the analysis if and only if it is a 2×2 detected pivot or a 1×1 pivot in
Ps that corresponds to a nonzero diagonal entry of the reduced submatrix. For example,
entry (3,3) of Figure 2.3.2 cannot be selected at the first step, but becomes selectable
because of the fill-in coming from the pivot corresponding to {(r1, c2)/(r2, c1)} . At each
step k of the ordering, the selected pivot is removed from the set of acceptable pivots
and the new nonzero diagonal entries may be added. After the elimination of all the 2×2
pivots which belong to an odd cycle of Section 1.5.2.1, we are sure (assuming that there
is no numerical cancellation) that the unselected 1×1 entry has been filled. After having
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eliminated all acceptable pivots, if the set of unselectable pivots is non empty then the
matrix is structurally singular. In the structurally singular case, the remaining variables
are put at the end of the permutation. We will now omit the k in our notation when there
will be no ambiguity.

This approach is the analogue to an ordering on the compressed graph in the MA57 context
even if the compression is not done explicitly (As corresponds to free variables and Us

to constrained variables). Avoiding the compression of the graph enables MA47 to know
the type of the 2×2 pivots (oxo, tile or full). The metric used is a variant of the Markowitz
cost [47]. For a 1×1 pivot i ,

metric(i) = (|Ri| − 1)2,

for an oxo pivot
metric(Oij) = (|Ri| − 1)(|Rj| − 1),

and for a tile pivot

metric(Tij) = (|Rj| − 1)(|Ri|+ |Rj| − 3).

Concerning the full 2×2 pivots, the real cost should be related to the quantity (|Ri ∪
Rj| − 2)2 . Unfortunately this quantity is expensive to compute for all the candidate full
2×2 pivots in the framework of MA47. We tested different metrics and choose

metric(Fij) = (|Ri|+ |Rj| − 2)2/2

to have a cheap estimate of the cost of the elimination of a full 2×2 pivot.

2.3.3 Ordering with pattern of selectable pivots

Algorithm 2.3.2 Main steps of an ordering with pattern of selectable pivots

Let S = {(i, j) such that |ãij | > threshold } .
As ← S ∪M1×1 .
while As 6= ∅ do

p← arg mini∈As
metric(i)

Do symbolic elimination of p .
Update As and Ms with algorithm 2.3.3 to keep a maximum matching property.

end while
Put Mc

s variables at the end of the permutation.

The previous selection can be relaxed by enlarging the set of acceptable pivots but
working on A restricted to Ms . We will denote this matrix by Ã . Let S =
{(i, j) such that |ãij| > threshold } . The set of acceptable pivots is initialized to
S ∪ Ms = S ∪ M1×1 (we are sure that M2×2 entries are in S whereas some entries
in M1×1 may not be in S ). Algorithm 2.3.2 shows the main steps of this ordering.
To keep as much information as possible about potentially good pivots and to guarantee
the good completion of the ordering, we decided to add entries in As . For example, if
a 2×2 pivot (i, j) /∈ Ms , (not detected by the MC64SYM preprocessing) is selected,
then the pattern defined by As \ {2×2 pivots which intersect (i, j)} may be structurally
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singular and we will not be able to order some pivots. We force the ordering to keep a
symmetric maximum matching on the remaining submatrix (see Algorithm 2.3.3). We
have the following cases during the update of the set of numerically acceptable pivots
(× corresponds to the current pivots, m corresponds to the old matching entries, f
corresponds to new matching entries):

(case 1)

p i

p
i

(
× m
m f

)
, (case 2)

i j j1

i
j
j1





m ×
× m

m f




,

(case 3)

j i i1

j
i
i1





m ×
× m

m f




, (case 4)

i j i1 j1

i
j
i1
j1







× m
× m
m f

m f







.

Algorithm 2.3.3 Update of the set of numerically acceptable pivots.
Remove from As the entries which intersect the current pivot.
if the selected pivot is in Ms then

Remove the current pivot from Ms .
else

if the selected pivot is a 1×1 pivot p then
Let i be such that (i, p) ∈Ms .
Add (i, i) to Ms and As , remove (i, p) from Ms (case 1).

else
Let (i, j) , i 6= j be the 2×2 pivot, i1 be such that (i, i1) ∈ Ms and j1 be such that (j, j1) ∈
Ms .
if i1 = i and j1 6= j then

Add (j1, j1) to Ms and As (case 2).
else if j1 = j and i1 6= i then

Add (i1, i1) to Ms and As (case 3).
else if i 6= i1 and j 6= j1 then

Add (i1, j1) to Ms and As (case 4).
end if
Remove (i, i1) and (j, j1) from Ms .

end if
end if

2.3.4 Use of MA57 orderings

An a priori drawback of the above approaches is that they are based on a Markowitz
cost metric whereas our MA57 study has shown that ME T IS or AMF improves the quality
of the analysis significantly. This motivates us to try to exploit an MA57 permutation in
MA47. To do that we need to say to the MA47 analysis where the 2×2 pivots are in order
to exploit as much as possible the tile and oxo pivots. That is why we try to feed MA47
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with the permutation coming from a compressed graph approach (see Section 1.5.3.1) and
using AMD, AMF or ME T IS.

2.4 MA47 experimental results

From the above presentation of implemented strategies in MA47 we have the following
approaches:

• MA47_1 refers to the default MA47. This strategy can be coupled with different
scalings (MC30, MC77inf, MC77one MC64SYM . . . ). When it is not explicitly
mentioned, the MC64SYM scaling is used.

• MA47_2 refers to the approach with fixed pivots ordering of Section 2.3.2.

• MA47_3 refers to the approach with a pattern of acceptable pivots of Section 2.3.3.
A threshold of 0.99 is used to define S .

• MA47_4 refers to the approach using the ordering on the compressed graph coming
from MA57 of Section 1.5.3.1. This strategy can be combined with different
orderings (AMD, AMF or ME T IS).

A relative threshold of 10−2 is used in both MA47 and MA57 to perform numerical
pivoting. We conduct our experiments on the sets of matrices presented in Section 1.3.2.

2.4.1 Scaling influence
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(2.4.1.a) CPU factorization time profile (set 2).
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Figure 2.4.1: Influence of the scaling.

As with MA57, we observed that the MC30 scaling degrades the MA47 factorization. For
MA47 the MC64SYM scaling is slightly better than the MC77 scaling (see Figure 2.4.1).
That is why it is retained as the default scaling in all of our approaches.
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2.4.2 Ordering influence

2.4.2.1 Number of failures

No error is reported for the set 1 (see Section 1.3.2) in Table 2.4.1, which means that
MA47 never fails on the set 1. MA47_1 without scaling is the least robust approach, it
fails for 7 matrices. MA47_4 with ME T IS is clearly the most robust approach on set 2. It
seems that the approaches using a variant of the Markowitz cost (MA47_2 and MA47_3)
suffer from the approximations in the computation of the Markowitz cost of the full 2×2
pivots and perhaps of the oxo and tile pivots metric also.

Matrix MA47_1 MA47_2 MA47_3 MA47_4 MA47_4 MA47_4
No Scaling MC64SYM AMD AMF METIS

A0NSDSIL 0 0 C 0 0 0 0
A2NNSNSL 0 0 C 0 0 0 0
BLOWEYA C 0 0 0 0 0 0
BRATU3D C C 0 0 0 0 0
CONT-201 C C 0 0 0 0 0
NCVXQP1 C 0 0 0 0 0 0
NCVXQP5 A A F C C C 0
NCVXQP7 C C C C C C 0
cvxqp3 C 0 0 0 A 0 0
olesnik0 0 0 C 0 0 0 0
stokes128 0 0 C C 0 0 0

Table 2.4.1: MA47 error output. 0: success. C: CPU time exceeded. A: not enough memory after analysis.
F: not enough memory during factorization. Only matrices on which at least one version of MA47 did not
succeed are shown.

2.4.2.2 Factorization time and memory requirement
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(2.4.2.a) CPU factorization time profile (set 2).
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Figure 2.4.2: MA47: factorization time and memory on set 2.

On set 2, MA47_4 with the ME T IS ordering on the compressed graph seems to be
the best of the MA47 strategies in terms of memory used and CPU factorization time
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(see Figures 2.4.2.a and 2.4.2.b). It seems that the approaches based on the minimum
degree/fill metric generates orderings which are poorer at preserving the oxo and tile
structures. Again we remark that the MA47_2/3 orderings are too coarse and thus do
more operations and have more entries in the factors.

2.4.2.3 Analysis estimations and memory used
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Figure 2.4.3: MA47: reliability of analysis memory prediction (set 2). Ratio between used memory and
predicted memory. A ratio of 0.5 indicates a failure.

Figure 2.4.3 shows the ratio between the memory used and the memory estimated by the
analysis. We see that using only the MC64SYM scaling can be very dangerous. Clearly
the best memory estimation is given by MA47_4+ME T IS: the increase in memory over
the analysis forecast during factorization is always less than 20% and it never fails.

That is why we retain only the MA47_4+ME T IS approach with a 20% memory
relaxation for the factorization. We think that the approaches MA47_2/_3 can be
potentially improved but with significantly more work. This point will be discussed in
our conclusion.

2.5 MA47/MA57 comparison

2.5.1 Augmented systems with 2 zero blocks (set 1)

On set 1, the analysis phase of MA47will identify a structurally nonsingular block and will
permute a block of zeros to the end. We call this the structural kernel. On these systems,
MA47 approaches (except the approach with ME T IS) have the least factorization time.
Moreover we observed that preprocessings does not have a much influence on MA47
factorization time. Table 2.5.1 shows that MA47 is far better than MA57 on the set 1.
Moreover, because of the structural singularity there is much numerical cancellation that
MA57 cannot predict and it uses more memory. We decided to keep MA47_2 because it
seems to us that it could be the more robust approach on even more tricky problems even
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if there are not much differences between MA47_2 and MA47_1 in Tables 2.5.1. In the
rest of this section we will focus on the set 2.

Matrix MA57_1 MA57_4 MA47_2 MA47_1
AUG2D 316. 58.7 0.02 0.02
AUG2DC 322. 1540 0.03 0.02
AUG3D – – 0.01 0.02
DTOC 11.3 7.36 0.02 0.02

Table 2.5.1: MA47/MA57 CPU factorization time on set 1. Time in seconds. ME T IS used for MA57.

2.5.2 Memory, size of the factors, number of operations and factorization time
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(2.5.1.a) CPU factorization time profile (set 2).
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Figure 2.5.1: MA47/MA57 comparison on set 2.

On set 2, MA57 approaches are faster than MA47 approaches (see Figure 2.5.1.a), but
MA47 tends to use less or the same memory as MA57 (see Figure 2.5.1.b). This tendency
is also true when looking at the number of operations (see Figures 2.5.2.b). Figure 2.5.2.a
shows that MA47 tends to have sparser factors than MA57 approaches. Hence it will do
less operations during the solve phase. Sometimes MA47 takes advantage of the zero
blocks and avoids much of the computation and storage done by MA57. When numerical
pivoting does not change the analysis predictions, MA47 can manage the zero blocks
of tile and oxo pivots better than MA57. The drawback of the MA47 approach is that
the structures are more complicated with smaller granularity when calling level 3 BLAS
dense kernels. Hence, for an equal number of floating-point operations, MA57 will be
faster than MA47.

2.6 Conclusions

We have observed the same scaling effect with MA47 as with MA57. MA47 can benefit
from preprocessings designed for MA57. We have shown that MA47 is far better than
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Figure 2.5.2: MA47/MA57 comparison on set 2.

MA57 on set 1. MA47, however, is not competitive with MA57 on set 2, but we have
stressed some of its good points (number of operations, memory used and size of the
factors). We hope to improve its factorization time on set 2 by finding answers or partial
answers to the following open questions.

In the next chapter, we will try to find a robust way to perturb 2×2 pivots. In particular,
we may want to have perturbations which respect the structure of the matrix and thus
preserve what the MA47 analysis has predicted.

An answer to the following question might provide a significant improvement for MA47.
How do we improve the accuracy of MA47 metric or have an AMF like metric which takes
into account the zero blocks? A drawback of the original MA47 analysis was that it was
not able to restrict a priori the search set of good structural pivots (it has to look at some
combinations of rows/columns to form 1×1 or 2×2 pivots). Mechanisms with candidate
pivots significantly decrease the cost of searching for pivots. It would also enable us to
compute a more complicated and better approximate metric and thus have a kind of AMF
metric without increasing the complexity too much.
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Chapter 3

Static pivoting for sparse symmetric
indefinite problems

3.1 Introduction

We are interested in solving Ax = b where A is symmetric indefinite in the framework
of a static multifrontal solver. By a static code we mean a code in which the factorization
respects the ordering of the analysis. The factorization does not necessarily follow the
analysis and some slight variations are allowed. For example in a multifrontal context, it is
sufficient that the factorization decisions are compatible with the assembly tree (numerical
pivoting can be performed within a front). Hence the analysis predicts exactly the memory
needed and the number of operations of the factorization because it selects pivots from
the fully summed variables for each node of the elimination tree and it does not postpone
pivots. This approach was first proposed by [77] in the context of LU factorization.
During Gaussian elimination “small perturbations” are added to limit the growth of the
factors in order to enhance the backward stability of the algorithm (see for example [71]
Theorem 11.4). By “small perturbations” we mean that the factorization of the perturbed
matrix has to be as close as possible to the factorization of the original matrix so that it is
possible to have a cheap and sufficiently accurate solution using the computed factors. In
the framework of our study, we want a static approach with the following features:

(F1) The decision of adding a perturbation or not is easy to take. In particular, in a parallel
symmetric indefinite solver, this decision must not involve any extra communication
cost.

(F2) The perturbations are restricted to the block of fully summed rows/columns in each
front.

(F3) The factorization of the perturbed matrix must lead to a stable solution in most cases.

Given a symmetric matrix A , not necessarily positive definite, approaches to compute
a modified Cholesky factorization of A + E with E as small as possible have been
developed in [22, 51, 59], but it seems difficult to adapt them to our case; firstly because
we want to have E small even if A has a very negative eigenvalue (in a modified
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Cholesky ||E||2 ≥ −min λi(A) ); secondly because the perturbations have to be localized
which is not the case in [22].

In Section 3.2, we formalize our approach and give theoretical solutions. In Section 3.3,
we examine experimental results on real test problems using two multifrontal solvers
MA47 [48] and MA57 [37].

3.2 Static pivoting and perturbations

3.2.1 Notation

In the following, s will be the function to denote the sign of a real number:

s : x→
{

1 if x ≥ 0
−1 if x < 0

.

|| ||1 , || ||∞ will denote sub-multiplicative matrix norms and ||A||M will denote the
norm maxij |aij| . For each matrix or submatrix A = (aij) , |A| = (|aij|) . u and µ ∈
]0, 1] will denote real numbers which will be used as thresholds in our pivoting strategies.
Let A be the matrix that we want to factorize, we define τ = u||A||1 .

3.2.2 Numerical pivoting

Here we briefly recall which criteria are commonly used in the context of numerical
pivoting to ensure stability. In the context of sparse LU factorization with numerical
pivoting, a 1×1 pivot is stable if and only if

|aii| ≥ u max
k
|aik| (3.2.1)

where u is a threshold between 0 and 1. In the context of sparse symmetric matrices, the
criterion of [44] uses a threshold u ∈ [0, 1

2
) and can be used for the 2×2 pivots to ensure

a growth factor lower than 1/u :

P =

(
aii aij

aij ajj

)

is stable ⇔ |P−1|
(

maxk 6=i,j |aik|
maxk 6=i,j |ajk|

)

≤
(

1/u
1/u

)

. (3.2.2)

3.2.3 Static pivoting: problem formulation

In the context of LU factorization with static pivoting, SuperLU_DIST [79] adds
small perturbations δ to the diagonal entries when the pivot aii is too small and the
inequality (3.2.1) is transformed into the constraint

(C1×1) : |aii + δ| ≥ u ||A||1
At each step of Gaussian elimination, we have to solve the problem

(P1×1)

{
min |δ|
w.r.t. (C1×1)
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PROPERTY 2.1. A solution of (P1×1) is given by:

δ = s(aii) max(τ − |aii|, 0)

where s is the sign function and τ = u||A||1 .

In the context of 2×2 pivoting, we want to compute the factorization of A+B = LDLT

where B is the block diagonal matrix which contains the 1×1 and 2×2 perturbations.
If after computing the solution x = (A+B)−1b , the backward error is too large, iterative
refinement is applied. Intuitively, we hope that the smaller ||B|| is, the fewer iterative
refinement steps will be needed. This intuition is confirmed by theoretical bounds given
in [71] (pages 231–243). By analogy to the 1×1 case, the inequality (3.2.2) is transformed
into the constraint

(C1) : ||(P + ∆)−1||∞ ≤
1

u ||A||1
.

Moreover we want to keep the numerical symmetry and the structure of the problem. This
involves the following two constraints:

(C2) : ∆ symmetric,

(C3) : Pattern(∆) ⊂ Pattern(P ).

We will minimize the norm of a 2×2 or 1×1 perturbation matrix at each step of Gaussian
elimination. Thus the choice of the norm which has to be minimized is not very important
(the norm equivalence constants are small). To be homogeneous with constraint (C1)
we decide to use an infinity norm. Finally, we have to solve the following optimization
problem:

(P|| ||∞)

{
min ||∆||∞
w.r.t. (C1), (C2), (C3).

3.2.4 full 2× 2 pivot

In this section we present a way of adding small perturbations to a full 2×2 pivot to
satisfy constraints (C1) , (C2) and (C3) . We propose a different point of view to the
previous 1×1 perturbations, which makes the adaptation of the perturbation to the case
of a 2×2 pivot easier.

A 1×1 pivot can be seen as a 1×1 matrix whose eigenvalue is λ1 = aii . If |λ1| is too
small then the previous 1×1 perturbation shifts it to s(λ1)τ .

By analogy, we will shift the eigenvalues of a full 2 × 2 pivot which are too small. Let
λ1 and λ2 be the eigenvalues of the pivot P such that |λ1| ≤ |λ2| , u1 and u2 be two
associated normalized eigenvectors. P = λ1u1u

T
1 + λ2u2u

T
2 and it is easy to move each

of the eigenvalues independently using the rank one linear operators u1u
T
1 and u2u

T
2 .

PROPERTY 2.2.

∆ = s(λ1) max(τ − |λ1|, 0) u1u
T
1 + s(λ2) max(τ − |λ2|, 0) u2u

T
2

is within a factor of
√

2 of the solution of (P|| ||∞) .
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PROOF. We will first see that ∆ is the solution to the following problem:

(P|| ||2)

{
min ||∆||2
w.r.t. (C1), (C2)

Indeed, for all ∆′ which satisfy (C1) we have:

min
x
|xT (P + ∆′)x| = 1/||(P + ∆′)−1||2

≥ 1/||(P + ∆′)−1||∞
≥ τ.

For all x , we have:

|xT ∆′x| ≥ |xT (P + ∆′)x| − |xT Px|
≥ τ − |xT Px|

That is why ||∆′||2 ≥ |xT ∆′x| ≥ τ−|xT Px| . It implies that ||∆′||2 ≥ τ−|λ1| ≥ ||∆||2 .
Thus ∆ is a solution of (P|| ||2) .

Let ∆opt be a solution of (P|| ||∞) . We have

||∆||∞ ≤
√

2||∆||2 ≤
√

2||∆opt||2 ≤
√

2||∆opt||∞

3.2.5 oxo pivot

Let ∆ =

(
0 δ
δ 0

)

be the perturbation. We have to solve:

(Poxo)

{
min |δ|
w.r.t. |p12 + δ| ≥ τ.

PROPERTY 2.3. A solution is given by:

∆ = s(p12) max(τ − |p12|, 0)

(
0 1
1 0

)

.

The solution for an oxo pivot can be interpreted as a generalization of the 1×1 pivot
solution. Indeed, applying an oxo pivot is numerically equivalent to applying two off-
diagonal 1 × 1 pivots. Note that it corresponds also to a solution if the oxo pivot is
considered as full (it is the case in most of the solvers because they cannot detect the
zeros on the diagonal). Indeed we have λ1 = −λ2 = p12 , uT

1 = (1, 1)/
√

2 and uT
2 =

(−1, 1)/
√

2 .
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3.2.6 tile pivot

For a tile pivot, the computation of an optimal perturbation is more complicated. We
decided to simplify it and to add only off-diagonal perturbations for the following reason.
The kinds of ordering that we want to apply in the context of static pivoting try to preselect
potentially good 2×2 pivots during the analysis and thus have large off-diagonal entries
(see Section 1.5.2.1). As we are going to measure the component-wise backward error it
may preferable to perturb large original entries and thus off-diagonal entries.

Let P =

(
a b
b 0

)

be a tile pivot and let ∆ =

(
0 δ
δ 0

)

be the perturbation.

After arranging problem (P|| ||∞) , we have to solve:

(Ptile)

{
min |δ|
w.r.t. |b + δ|+ |a| ≤ (1/τ)(b + δ)2

PROPERTY 2.4. A solution is given by:

∆ = τs(b) max(
1 +

√

1 + 4|a|/τ
2

− |b|
τ

, 0)

(
0 1
1 0

)

.

PROOF. If |b| + |a| ≤ b2/τ , obviously δ = 0 is a solution of (Ptile) . Moreover it
implies that |b| ≥ τ(1 +

√

1 + 4|a|/τ)/2 . If |b| + |a| > b2/τ , solving (Ptile) leads to
the equation (b + δ)2 − τ |b + δ| − τ |a| = 0 which has a positive solution

|b + δ| = τ
1 +

√

1 + 4|a|/τ
2

.

Finding a perturbation that respects the pattern may not be well adapted to static pivoting.
For example, it is possible to have δ = O(

√

τ |a|) . In other words, when a is large
enough and b small enough we cannot succeed in finding a small enough perturbation
which satisfies the tile constraints and which has the same order of magnitude as in the
full case. We will see in the experiments that this drawback can be observed with MA47.

3.2.7 Mixing numerical pivoting and static pivoting

In this section, we present an approach which combines numerical checking for stability
and 1×1 static pivoting. We decided to use only 1×1 perturbations because they are
easier to implement and we want to clearly identify the impact of this mixed approach. In
other words, in order to have a clear experimental analysis we will not try to have a mixed
approach with 2×2 perturbations. We will return to this point in our conclusions.

Let us consider a frontal matrix from the elimination tree. It contains two kinds of
variables, the fully summed variables ( FSV ) which correspond to the pivot block that
we want to eliminate and the partially summed variables ( PSV ) on which the Schur
complement will be computed.

Our mixed approach is based on two phases. In the first phase, we perform numerical
pivoting in the block of fully summed variables until no remaining variables satisfy
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the numerical criterion. In a second phase, we eliminate the remaining fully summed
variables adding 1×1 perturbations if necessary.

Moreover, we can relax the conditions of stability of phase 1 in order to have less
perturbation to the diagonal in phase 2. We will see also that this relaxation allows us
to design a parallel approach. Instead of using the inequalities (3.2.1) and (3.2.2) for
our stability criteria, we only consider entries in a subset K , K ⊂ FSV ∪ PSV and
FSV ⊂ K . More precisely, during the first phase, a 1×1 pivot aii is considered to be
stable if and only if

|aii| ≥ u max
k∈K\{i}

|aik| (3.2.3)

and a 2×2 pivot P is considered to be stable if and only if

|P−1|
(

maxk∈K\{i,j} |aik|
maxk∈K\{i,j} |ajk|

)

≤
(

1/u
1/u

)

. (3.2.4)

Algorithm 3.2.1 Relaxed pivot selection in a frontal matrix
Phase 1: Eliminate as many 1×1 and 2×2 pivots as possible which satisfy inequalities (3.2.3) and (3.2.4)
respectively using Duff-Reid algorithm with threshold u .
while there are uneliminated variables p in the fully summed block do /* Phase 2 */

if |app| < µ max{||A||M , maxk∈K |apk|} then
app ← s(app)µ max{||A||M , maxk∈K |apk|}

end if
Perform eliminations using p as a 1×1 pivot.

end while

During the second phase we use a threshold µ . The static phase perturbs the diagonal of
the matrix if the pivot is too small with respect to the initial values in A (smaller than
µ||A||M ) and the values of the current front which were allowed to be examined (smaller
than µ maxk∈K |apk| ). Algorithm 3.2.1 summarizes the two phases.

We decided to have two different versions of this algorithm: an approach with K =
FSV ∪ PSV and an approach with K = FSV .

The first approach ( K = FSV ∪ PSV ) will be referred to as the mixedSEQ algorithm
because checking the stability within partially summed rows is not well designed for
existing parallel implementations (it involves communications). Hence this approach does
not fully agree with the feature (F1) presented in the introduction of this chapter.

The second approach ( K = FSV ) will be referred to as mixedPAR because it is more
friendly for a parallel distributed implementation, as for example in MUMPS [7], where
the fully summed part of a frontal matrix is stored on a single processor.

3.3 Experimental results

In this section, we consider the different combinations between the static approaches and
the ordering. Firstly, we examine the influence of the thresholds for each approach.
Secondly, we examine the different approaches in terms of precision of the solution,
number of steps of iterative refinement and factorization time.
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We saw in Section 1.6.2.4 for MA57 and in Section 2.4.2 for MA47 that ME T IS combined
with the MC64SYM scaling was the best ordering on symmetric indefinite matrices in
terms of CPU factorization time but that it sometimes caused many pivots to be delayed.
On the contrary, the ME T IS approach based on the compressed graph combined with
the MC64SYM scaling does more operations but predicts well what will happen during the
factorization (see also Section 1.6.2.4). That is why we retain these two orderings for the
present experiments.

Six static approaches emerge from our previous discussion. The first two correspond
to mixed sequential approaches: the mixedSEQ approach can be combined with
ME T IS (this approach will be referred to as MA57 mixedSEQ+ME T IS) and with
the ME T IS approach based on the compressed graph (it will be referred to as MA57
mixedSEQ+COMPRESS).

The mixedPAR strategy can replace the mixedSEQ one in the above to give us MA57
mixedPAR+ME T IS and MA57 mixedPAR+COMPRESS.

The last two approaches correspond to static pivoting as in a SuperLU_DIST sense
which strictly follow the pivot order predicted by the analysis. These approaches are only
applied when the ME T IS ordering has been computed on the compressed graph (a pure
static approach with only ME T IS would clearly not be safe). The approach referred
to as MA57 static+COMPRESS corresponds to a static code based on MA57 which
strictly follows the pivots decided by the analysis and which does 1×1 and full 2×2
perturbations. The use of tile and oxo perturbations can be exploited in a code which can
recognize the real structure of the pivots. With MA57 some numerical cancellations may
not be seen. That is why we decided to apply the tile and oxo perturbations only to the
MA47 factorization. These kinds of perturbations have also the advantage of keeping the
predicted MA47 structure during the factorization. This approach will be referred to as
MA47 static+COMPRESS.

We compute the sparse component-wise backward error using the theory and measure
developed by [14]. The scaled residual of the ith equation is

|ri|
(|A||x|+ |b|)i

where r = b− Ax and x is the computed solution

except if the denominator is too small. In this case, we measure

|ri|
((|A||x|)i + ||Ai||∞||x||∞)i

where Ai represents the ith row of A.

We apply iterative refinement in all our approaches. At each step k of the iterative
refinement, we compute the current backward error berr(k) . We stop if berr(k) < 10−15

or if berr(k) > 0.9 × berr(k−1) (the convergence rate is too slow) or k = 20 (the
maximum number of iterations has been reached).

3.3.1 Threshold influence on the precision

Concerning the mixedPAR approach, we decided to keep the threshold of numerical
pivoting u at 10−2 . It is not numerically safe to make it smaller because the stability is
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(3.3.1.a) MA57 mixedPAR+ME T IS.
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(3.3.1.b) MA57 mixedPAR+COMPRESS.

Figure 3.3.1: Component-wise backward error profile with MA57 and mixedPAR pivoting while varying
µ . log10 scale used for the precision.

only checked in the fully summed block. Figure 3.3.1 shows the influence of the static
threshold µ when the ME T IS ordering is used (left plot) and when the ME T IS ordering
is applied on the compressed graph (right plot). For both orderings, values of µ between
10−9 and 10−11 seem to have comparable effects and to be the more adapted for the
precision of the solution. We decide to keep µ = 10−10 for both approaches.
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(3.3.2.a) MA57 mixedSEQ+ME T IS.
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Figure 3.3.2: Component-wise backward error profile with MA57 and mixedSEQ pivoting while varying
µ . log10 scale used for the precision.

There is no reason to keep u = 10−2 for the mixedSEQ approaches. Indeed there is
no reason to refuse a 2×2 pivot because u is large and then in the second phase to
accept 1×1 pivots which are less stable. Moreover we experimented to keep u = 10−2

with different values of µ . We remarked that the quality of the solution was far from the
results that we are going to present here. We decided to set u and µ to the same value
for the mixedSEQ approaches. Figure 3.3.2 shows that the static threshold does not
influence the precision of the solution too much. We keep µ = 10−8 for the mixedSEQ
approaches on both orderings.
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(3.3.3.a) MA57 static+COMPRESS.
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Figure 3.3.3: Component-wise backward error with 1×1 and 2×2 perturbations. log10 scale used for
the precision while varying τ .

We set u = 10−2 for the static approaches. Figure 3.3.3.a shows that the static
threshold does not have much influence on MA57 static+COMPRESS, and we decided
to set µ to 10−10 . Concerning the approach MA47 static+COMPRESS we do not
retain a threshold of 10−7 (which seems good in Figure 3.3.3.b) because it causes too
many iterative refinement steps. As with MA57, we also keep µ = 10−10 for the MA47
static+COMPRESS approach.

3.3.2 Comparison of the different approaches

MA57 and MA47 can only be compared on set 2 (on set 3 MA57 is clearly better and
on set 1 classic MA57 approaches are slower or fail more than MA47). Moreover we
remarked that most of the numerical difficulties are in the set 2 (there are few delayed
pivots in set 3). That is why the profiles of Sections 3.3.2.1 and 3.3.2.2 are only done for
set 2.

3.3.2.1 Precision of the solution and number of iterative refinement steps

Naturally the best approach in terms of precision of the solution is the approach using
numerical pivoting. The precisions of the mixedPAR and the mixedSEQ approaches
are comparable and do not seem to be very sensitive to the ordering (see Figure 3.3.4.a).
Nevertheless, Figure 3.3.4.b shows that applying a ME T IS ordering to the compressed
graph tends to reduce the number of iteration steps. MA57 static validates our full 2×2
perturbations presented in Section 3.2.4 and confirms what happens in the LU case: in
general when good pivots are preselected during the analysis, it is not necessary to check
stability and adding perturbations is sufficient. We notice also that the precision of MA47
static+COMPRESS is degraded by the tile perturbations and is far less robust than the
MA57 static approaches (see Figure 3.3.4.a).

Table 3.3.1 indicates how many times the component-wise backward error is in the
ranges [0, 10−15[ , [10−15, 10−8[ , [10−8, 10−4[ and [10−4, +∞[ . It gives us an idea of
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Figure 3.3.4: Solution phase comparison on set 2.

Code berr ∈
[0, 10−12] ]10−12, 10−8] ]10−8, 10−4] ]10−4, 1]

MA57
METIS _/23/16 _/0/0 _/0/0 _/0/0

mixedSEQ+METIS 4/22/16 0/0/0 0/0/0 0/1/0
mixedSEQ+COMPRESS _/21/16 _/2/0 _/0/0 _/0/0
mixedPAR+METIS 4/21/16 0/2/0 0/0/0 0/0/0
mixedPAR+COMPRESS _/20/16 _/3/0 _/0/0 _/0/0
static+COMPRESS _/21/15 _/2/1 _/0/0 _/0/0
MA47
static+COMPRESS 4/18/_ 0/0/_ 0/1/_ 0/4/_

Table 3.3.1: Range of component-wise backward error after iterative refinement on all our test sets. Results
given in the form set 1 / set 2 / set 3.

the absolute values of the backward error and confirms the behaviour of the codes. We
can see that the static MA57 approaches are quite robust in terms of precision. We also ran
the static approach that uses the ME T IS ordering on the set 1 (we did not do that with the
ordering on the compressed graph because the factorization time increases dramatically
with MA57 in this case as we remarked in Section 2.5.1) and noticed that MA57 was in
this case competitive with MA47. Table 3.3.1 shows that the solution is accurate in this
case.

In Table 3.3.2, we count the number of times where an approach calls the solution phase
(#itstep + 1) to obtain a component-wise backward error in a fixed range. It gives us an
idea of the cost of the solution phase when the objective is to get a backward error smaller
than 10−15 and is a complement to what we observed in Figure 3.3.4.b. We make the
following remarks :

• The global results are quite encouraging, in most of the approaches and on most
cases, the number of iterative refinement steps is not too large.
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• The approach with numerical pivoting does less than one iterative refinement step in
most of the cases.

• The use of an ordering based on the compressed graph decreases the number
of refinement steps. Then, the supplementary cost of the factorization can be
compensated by a low solution cost. This effect will be stressed when there are
many right-hand sides.

• The two mixedSEQ approaches do less iterative refinement steps than their
corresponding mixedPAR approaches.

#itstep berr ∈
+ 1 [0, 10−12] ]10−12, 10−8] ]10−8, 10−4] ]10−4, 1]
COMPRESS / /x/ /x/x/x / /x/ /x/x/x / /x/ /x/x/x / /x/ /x/x/x
mixedSEQ / x/x/ / / / /x/x/ / / / /x/x/ / / / /x/x/ / / /
mixedPAR / / /x/x/ / / / /x/x/ / / / /x/x/ / / / /x/x/ /
static / / / / /x/x / / / / /x/x / / / / /x/x / / / / /x/x
1 1/ 2/1/2/1/1/2 / / / / / / / / / / / / / / / / / /
2 16/ 4/7/5/8/6/5 / / /1/1/ / / / / / / /1 /1/ / / / /4
3 4/11/9/3/7/9/6 / /1/ /1/1/ / / / / / / / / / / / /
4 2/ 3/4/3/1/3/4 / /1/ / / / / / / / / / / / / / / /
5 / 1/ /4/2/1/1 / / / / /1/ / / / / / / / / / / / /
6 / 1/ /2/ /1/ / / / / / / / / / / / / / / / / / /
7 / / / /1/ / / / /1/ / / / / / / / / / / / / / /
8 / / / / / / / / / /1/ / / / / / / / / / / / / /
9 / / / / / / / / / / / / / / / / / / / / / / / /
10 / / / / / / / / / / / / / / / / / / / / / / / /
11 / / / / / / / / / / / / / / / / / / / / / / / /
12 / / / / / / / / / / / / / / / / / / / / / / / /
13 / / /1/ / / / / / / / / / / / / / / / / / / / /
14 / / / / / / / / / / / / / / / / / / / / / / / /
15 / / /1/ / / / / / / / / / / / / / / / / / / / /

Table 3.3.2: Relation between range of component-wise backward error and number of iterative refinement
steps on set 2. Results given in the form MA57: ME T IS / MA57: mixedSEQ+ME T IS / MA57:
mixedSEQ+COMPRESS / MA57: mixedPAR+ME T IS / MA57: mixedPAR+COMPRESS / MA57:
static+COMPRESS / MA47: static+COMPRESS. #itstep is the number of iterative refinement steps.
The header lines are here to facilitate the reading of the table. Each header line corresponds to a criterion
COMPRESS ordering, mixedSEQ, mixedPAR and static approaches. For each criterion, an x indicates
the column that refers to a code that uses the corresponding criterion.

3.3.2.2 CPU factorization time

Figure 3.3.5.a shows the CPU factorization profile when a component-wise backward
error greater than 10−4 is considered as a failure. The mixed approaches combined with
ME T IS are clearly faster than the approach with numerical pivoting. Figure 3.3.5.b
illustrates the fact that MA47 is competitive in terms of number of operations and we
think that it suffers again from too small sizes of blocks on which BLAS calls are made.
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(3.3.5.a) CPU factorization time profile.
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(3.3.5.b) Number of operation profile.

Figure 3.3.5: Factorization time and number of operations. berr failure = 10−4

3.4 Conclusions

We have presented different choices for static pivoting for MA57 and have identified
their main characteristics. They seem to address a large class of problems and to be
significantly faster than approaches with numerical pivoting.

Even if the precision of the solution is good, further improvements can be obtained.
Firstly, there are still problems on which we get a backward error larger than 10−12 .
Secondly, the number of iterative refinement steps could be decreased. This problem
becomes all the more critical when we have many right-hand sides. In our future work,
we would like to decrease the number of iterative refinement steps, trying to include 2×2
perturbations of the static approaches in the mixedSEQ and mixedPAR approaches
. Hence, it might be useful to discover dynamically patterns of 2×2 pivots during the
factorization and to have a criterion to decide between 1×1 or 2×2 perturbations.

We do not recommend our MA47 based static version since it is not robust due to tile
perturbations. Perhaps tile perturbations have to be revisited.
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Chapter 4

Unsymmetric Ordering Using A
Constrained Markowitz Scheme 1

We consider the LU factorization of unsymmetric sparse matrices based on a three-phase approach

(analysis, factorization and solution). In such an approach to reduce the amount of numerical problems

during factorization, analysis may take into account the numerical values in order to provide a tentative

pivot order that will also be numerically correct. To our knowledge, in most of the cases, such preprocessing

phases are based on two separate steps. In the first step, the numerical data is used to scale the matrix and

compute a permutation to put large entries on the diagonal. In the second step, to reduce the fill-in in the

factors, a symmetric permutation preserving the diagonal entries is then computed. In this chapter, we

present a preprocessing phase that simultaneously satisfies the objectives of selecting numerically good

pivots while preserving the sparsity. By mixing the two objectives we show that we can reduce the amount

of fill-in in the factors and reduce the amount of numerical problems during factorization. Note that the

improvement in the numerical factorization resulting from this preprocessing is even more critical on

distributed memory versions of the sparse solvers since numerical issues involve extra computation and

communications.

4.1 Introduction

We consider the LU factorization of a sparse unsymmetric matrix A based on a three-
phase approach (analysis, factorization, solve). The analysis phase transforms A into
Ā with better properties for sparse factorization. It exploits structural information to
reduce the fill-ins in the LU factors and exploits numerical information to reduce the
amount of numerical pivoting needed during factorization. Two consecutive treatments
are commonly used for these two objectives. Firstly, scaling and maximum transversal
algorithms are used to transform A into A1 with large entries in magnitude on the
diagonal. Secondly, a symmetric fill-reducing ordering, which preserves the large
diagonal, is used to permute A1 into A2 so that the factors of A2 are sparser than
those of A1 . Note that during factorization, numerical instabilities can still occur and
will be handled either by partial pivoting resulting potentially in extra fill-in in the factor
matrices or by static pivoting resulting in a potentially less accurate factorization.

During analysis, since numerical and structural considerations are separated, the
numerical treatment requires the fill-reducing ordering to be symmetric, and the structural

1Part of this research was supported by a grant NSF-INRIA number NSF-INT-0003274.
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phase does not have numerical information to correct any wrong numerical decisions.
To avoid these two drawbacks, we present an approach which mixes the numerical and
structural phases. Based on a numerical pretreatment of the matrix we build at each
step k of the elimination a set of numerically acceptable pivots, referred to as matrix
Ck that may contain off-diagonal entries. We then compute an unsymmetric ordering
taking into account both the structure of A and the numerical information in Ck .
The C matrix serves as a constraint matrix in pivot selection. The new algorithm is
referred to as constrained Markowitz with local symmetrization (or CMLS), in which local
symmetrization is an idea developed in [12]. We present and illustrate this concept in
Section 4.5.1.2.

The rest of the chapter is organized as follows. Section 4.2 presents the context of our
study (related work and field of application). Section 4.3 introduces the main components
of our algorithm. In Section 4.4, we describe a Matlab implementation including the main
features of the algorithm, and demonstrate both structural and numerical benefits from
this new approach. Section 4.5 defines the graph-theoretic notations and the structural
and numerical metrics that will be used in the algorithm. In particular, our notations
are summarized in Table 4.5.1. Section 4.6 gives the algorithmic details of the proposed
CMLSmethod. Section 4.7 analyses the results of the newly implemented CMLS algorithm
when applied to real-life unsymmetric test cases. Appendix A gives the data structures
and implementation details. Appendix B presents exhaustive results.

4.2 Context of our study

We consider the LU factorization of unsymmetric sparse matrices based on a three-
phase approach. It includes an analysis phase, a numerical factorization phase, and
a triangular solution phase. The triangular solution may include iterative refinement
to improve the accuracy of the solution. In this class of methods, without loss of
generality, we will consider the multifrontal and the supernodal algorithms (see for
example [6, 16, 28, 44, 45]). The analysis phase involves preprocessing of the matrix that
may consider numerical values and a symbolic step that builds the computational graph
for the numerical factorization phase. Both algorithms (supernodal and multifrontal) can
be described by a directed acyclic graph [57] whose nodes represent computations and
whose edges represent transfer of data. This graph reduces to a tree in the case of the
multifrontal method. In a multifrontal algorithm, some steps of Gaussian elimination
are performed on a dense frontal matrix at each node and the Schur complement (or
contribution block) that remains is passed for assembly at the parent node. To continue
our description of the three-phase approach we will focus on two state-of-the-art direct
solvers representative of this class: the multifrontal code MA41_UNS [6, 13] and the
supernodal code SuperLU_DIST [78, 79]. Both solvers can benefit from a numerical
preordering (row or column permutations) to maximize entries on the diagonal and
from a numerical scaling of the matrix, and can then generate an ordering (symmetric
permutation of A ) based on an analysis of the pattern of A+AT , where the summation
is performed symbolically. The computation graph of the factorization phase is then
computed assuming that diagonal pivots are numerically stable. As mentioned before,
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this assumption is not reasonable. Therefore, during numerical factorization, both solvers
will have, to some extent, to accommodate numerical stability issues.

For the MA41_UNS multifrontal code, standard partial pivoting with a threshold value is
applied to select numerically stable pivots. It is thus possible that some variables cannot
be eliminated from a frontal matrix. The rows and columns containing the non-eliminated
variables of a frontal matrix are then added to the contribution block and passed to the
father node. Those delayed eliminations will result in an increase in the size of the
LU factors estimated during analysis and in an increase in the number of operations.
In the case of the supernodal code, SuperLU_DIST, the distributed memory version
uses a right-looking formulation which, having computed the factorization of a block of
columns, then immediately sends the data to update the block columns in the trailing
submatrix. A static pivoting strategy is used and we keep the pivotal sequence chosen
in the analysis. The magnitude of the potential pivot is tested against a threshold of
ε1/2||A||1 , where ε is the machine precision and ||A||1 is the one-norm of A . If it is less
than this value it is immediately set to this value (with the same sign) and the modified
entry is used as pivot. This corresponds to a half-precision perturbation to the original
matrix entry. The result is that the factorization is not exact and iterative refinement may
be needed.

The importance of the numerical preprocessing of the matrix (scaling and permuting large
entries onto the diagonal) is different for each solver. For MA41_UNS, it should limit the
number of delayed pivots. The estimations performed during analysis will better reflect
the reality of the numerical phase. For SuperLU_DIST, this numerical preprocessing
is more crucial since it will reduce the number of small pivots that are modified and set
to ε

1
2 ||A||1 . In practice, it has been observed in [9] that using the MC64 code [41] from

HSL [72] one can very significantly reduce the amount of numerical problems during
factorization. Nevertheless this static approach still fails on some problems. One should
add that taking into account numerical pivoting during factorization adds a significant
level of complexity (dynamic irregular distributed data structures) to sparse distributed
memory codes. In this case, limiting the amount of pivoting and/or having a better
estimation during the analysis of the structures that will be involved during factorization
is even more critical.

In this context, the problem of finding a good ordering for preserving the diagonal entries
(symmetric ordering) but taking into account the asymmetry of the matrix was studied
in [12]. To reduce the fill-in in the factors and improve the numerical quality of the
preselected pivots we describe in this chapter, a family of orderings that selects off-
diagonal pivots based on a combination of structural and numerical criteria. The work
done in [12], which will be referred to as DMLS in the remainder of this document,
has been generalized and extended in many directions. Firstly, we do not limit our
choice of pivots to a transversal of the original matrix. Secondly, the pivots are chosen
within a matrix of eligible pivots that needs to be updated. Thirdly, we also consider
numerical values and numerical updates during this reordering phase so that we perform
an incomplete factorization on the matrix of eligible pivots. Finally, because of all these
modifications, we have to introduce new algorithms and new data structures to implement
them as well as revisiting most of the algorithms described in [12].
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4.3 Components of our unsymmetric ordering

Given a matrix A , our unsymmetric ordering consists of two main steps:

• Step 1: Numerical preprocessing of A and construction of the constraint matrix, C

such that:

1. Pattern(C) ⊂ Pattern(A)

2. if cij 6= 0 then cij = aij

• Step 2 : Constrained unsymmetric ordering

Step 1 is a numerical preprocessing phase that controls the freedom given to the ordering
phase. A matrix C is built in this first step and will be used to control the set of eligible
pivots (possibly with respect to both numerical and structural criteria) at each step of
Gaussian elimination in Step 2.

Compared with existing approaches, the expected improvement comes from the fact that
firstly we do not limit our choice of pivots to a transversal of A , and secondly numerical
values can also be considered during pivot selection resulting in an ordering that gives a
more stable numerical factorization. We now describe these two steps in detail.

4.3.1 Step 1: Numerical preprocessing

The objective of this preprocessing step is to extract the most significant (structurally and
numerically) entries of matrix A and to use them to build the matrix C .

As described in Algorithm 4.3.1, we first scale the matrix A resulting in A← DrADc .
Secondly, a constraint matrix C can be constructed from A such that Pattern(C) ⊂
Pattern(A) and C satisfies certain numerical and/or structural properties. Since the
entries in C correspond to the potential pivots for the subsequent step (Step 2), we
keep the largest entries of the scaled matrix (greater in absolute value than a numerical
threshold, NumThresh which is chosen in practice between 0.01 and 1). Furthermore,
we want C to be structurally nonsingular and thus we add entries from A to guarantee
that C includes a maximum transversal M . Note that M is also a maximum transversal
of A . To limit the size of C and the complexity (cost and memory) of the ordering
phase, entries in C are further dropped until a reasonable size for C is reached (a
threshold StructThresh is used for this purpose and a value between 2n and 3n is
often used in our experiments of Section 4.7). We remove from C in priority entries of
small magnitude or entries that belong to the densest rows or columns of C . Random
dropping is applied if all the entries in C have the same magnitude and if all the row
and columns of C have approximately the same number of nonzeros. Note that while
dropping, we still maintain the property M⊂ C .

Introducing this constraint matrix and exploiting it in the context of a quotient bipartite
graph are the main contributions of this work. Full details on the construction and
implementation of a matrix C are given in Section 4.6 and in Appendix A.
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Algorithm 4.3.1 Generic preprocessing ( NumThresh , StructThresh ).
Compute row and column scalings of A , A← DrADc .
Build matrix C :

Pattern(C) = {(i, j) s.t. |aij | > NumThresh} ,
Initialize the numerical values of entries in C if they will be needed,
Add entries from A to C so that C includes a maximum matching M ,
Remove entries from C (not in M ) so that |C| ≤ StructThresh .

4.3.2 Step 2: Constrained unsymmetric ordering

Based on the numerical pretreatment of the matrix, we build at each step k of the
elimination a set of numerically acceptable pivots in matrix Ck that may contain off-
diagonal entries. We select a pivot taking into account both the sparsity structure of Ak

and the numerical and/or structural information in Ck . Let A1 be the original matrix
of order n and Ak be the reduced matrix after eliminating the first k − 1 pivots (not
necessarily on the diagonal). Let C1 be such that Pattern(C1) ⊂ Pattern(A1) . At
each step k we select the best pivot p for a given metric such that p ∈ Pattern(Ck) .
Matrix Ak is updated (remove row and column of the pivot and add fill-ins in the
Schur complement). Matrix Ck is updated so that Ck+1 is structurally nonsingular and
Pattern(Ck+1) is included in the reduced matrix of Ck after p is eliminated. This
implies that Pattern(Ck+1) ⊂ Pattern(Ak+1) .

During the unsymmetric ordering, the kth pivot p ∈ Ck can be selected using various
structural local heuristics (e.g., approximate Markowitz count, approximate minimum
fill, etc.). To avoid having a structurally singular Ck , a maximum matching in Ck is
maintained at each step.

4.3.3 Generic updating strategies for C

Two considerations influence the update that will be performed on C :

• which metric do we use to select a pivot?

• which entries and/or values are added/updated in C after eliminating a pivot?

If we consider only the structural properties of the C entries to select a pivot, only the
pattern of C needs to be updated. Otherwise numerical values of the C entries need to
be computed and/or updated.

The ordering algorithm also depends on how C is updated at each step. The description
of Step 2 (Section 4.3.2) implies the following two constraints:

C must remain structurally nonsingular, (4.3.1)

Pattern(Ck+1) ⊂ Pattern(C̄k) (4.3.2)

where C̄k represents the reduced matrix of Ck after current pivot p is eliminated.

There are two extreme strategies which satisfies these two conditions:

• MATCHUPDATE will refer to the strategy which only preserves the maximum
matching property (4.3.1),
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• TOTALUPDATE will refer to the strategy which performs all the updates in C

( Ck+1 = C̄k ).

These two strategies are discussed in details in Section 4.6.4.

It is worth noting that when StructThresh = n in Algorithm 4.3.1 we only keep
the maximum matching in C . Conditions 4.3.1 and 4.3.2 will thus limit the pivot
choice to the matching and CMLS will behave similarly to diagonal Markowitz with local
symmetrization DMLS [12] since, in this case, pivot selection is restricted to a transversal
of the original matrix.

4.3.4 A specific implementation of Step 1: MC64 based preprocessing

In Algorithm 4.3.2, we describe a specific implementation of the generic Algorithm 4.3.1.
In our preprocessing algorithm, we use a weighted bipartite matching and scaling
algorithm implemented in MC64 [40] to find the scaling matrices Dr and Dc , such
that the magnitudes of the entries of A ← DrADc are bounded by 1, and the entries
corresponding to the matched edges in M are ±1 . We then construct C from A by
dropping the entries that are smaller than a certain threshold ( NumThresh ). Since the
scaled A satisfies |aij| = 1 for (i, j) ∈ M (MC64 option 5), if NumThresh ≤ 1 then
all the entries in the matching will be selected in C .

Algorithm 4.3.2 MC64 preprocessing phase ( NumThresh , StructThresh )

Check 0.0 ≤ NumThresh ≤ 1.0 and StructThresh ≥ n .
Apply the weighted bipartite matching algorithm (MC64) to A to obtain both

- row/column scalings Dr and Dc , and
- a maximum weighted matching M .

A← DrADc .
Let C = (cij) such that:
for all entries of A do

Numerical selection :
if |aij | > NumThresh then

cij = aij

else
cij = 0

end if
end for
Structural limitation :
while size of C > StructThresh do

Remove entries (not in M ) in C .
end while

4.4 Experiment in MATLAB

Before going any deeper in the description of the proposed algorithms, we report in this
section a “simple” and partial Matlab based implementation of our two step approach. We
are thus not concerned here with the memory and cost complexity of our implementation.
We only want to do a preliminary study about in order to validate the effect of our
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heuristics. In this section, we limit our study to a small set of relatively small matrices on
which we illustrate the main features of our orderings. A complete and detailed analysis
on larger problems (see Section 4.7) follows a complete description of the algorithms (see
Section 4.6).

4.4.1 Strategies and parameters

4.4.1.1 Step 1

Algorithm 4.3.2 is used with NumThresh = 0.9 and no entries are removed in C :
StructThresh value is not considered or is set to +∞ .

4.4.1.2 Step 2

In this step, the C matrix constructed in Step 1 serves as a set of candidate pivots. The
ordering algorithm depends on the structural metric that is computed from the structure
of A and that is used to select the pivots in C . Two structural metrics are considered:

• Markowitz cost (MC): we select the pivot which modifies the minimum number of
entries in the reduced matrix.

m(i, j) = (row_degree_in_A(i)− 1)(col_degree_in_A(j)− 1).

• Minimum Fill (MF): we select the pivot that introduces the minimum number of new
entries in the reduced matrix of A .

The ordering algorithm also depends on how C is updated and how the numerical values
in C are considered for the selection of a pivot. We use three updating strategies to
illustrate the main feature of the approaches:

• Updating strategy 1 (strat1) : We do not consider numerical values in C and
perform MATCHUPDATE.
Advantage: it is in-place, and limits the cost of the C updates.
Drawback: no numerical information is used during pivot selection.

• Updating strategy 2 (strat2) : We do not consider numerical values in C and
perform TOTALUPDATE.
Advantage: it gives a lot of flexibility to choose the pivots.
Drawback: it is not in-place, and the C updates can be costly. No numerical
information is used during pivot selection.

• Updating strategy 3 (strat3) : We consider numerical values in C and perform
TOTALUPDATE. A pivot can be selected if and only if |cij|/||c∗j||∞ > 0.1 .
Advantage: numerical information is used during pivot selection. It gives a lot of
flexibility in choosing the pivots. We could also do dropping/no update for some
rows/columns when they are too small and then have a less expensive update than
strategy 2 (this is not considered in our MATLAB implementation).
Drawback: it is not in-place, and numerical updates can be costly.
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4.4.2 Results

Table 4.4.1 presents the test problems we used for this Matlab evaluation and also shows
the maximum size of the matrices Ck which are introduced in Section 4.3.2. We notice
that this maximum size is always equal to the initial size of C on our test set (in particular,
maxk nnz(Ck) does not depend on the strategy used), which shows that our algorithm
might not be too costly in terms of memory even when a TOTALUPDATE, which is not
theoretically in-place, is used.

matrix n nnz(A) maxk nnz(Ck)
MAHINDAS 1258 7682 2160

LHR01 1477 18427 2769
B_DYN 1089 4144 2213
B2_SS 1089 3895 2623

RADFR1 1048 13299 2356
GRE_1107 1107 5664 2719

EX23 1409 42760 2760

Table 4.4.1: Test problems and maximum size of Ck matrices.

In Tables 4.4.2, 4.4.3 and 4.4.4 we compare a Matlab implementation of our unsymmetric
ordering with an approach combining MC64 and DMLS [12].

matrix Markowitz-cost metric Minimum-fill metric
strat1 strat2 strat3 strat2 strat3

ILU(C) ratio LU(C) ratio LU(C) ratio LU(C) ratio LU(C) ratio
MAHINDAS 2288 17 2398 18 2398 18 2400 19 2400 19

LHR01 2997 3 4014 6 3877 6 3686 7 3657 7
B_DYN 2301 27 2811 28 2889 34 2745 34 2718 33
B2_SS 2774 35 3773 49 3058 39 3687 49 3046 40

RADFR1 2602 7 3834 10 3699 8 3694 12 3457 10
GRE_1107 3073 5 6347 13 6003 12 6267 14 5960 13

EX23 2944 2 6053 5 5593 4 6402 7 6075 7

Table 4.4.2: Size of C “factors” versus size of A factors. The column rat = |LU(C)|/|LU(A)| is given
as a percentage.

Table 4.4.2 presents the sum of the row and column degrees of the pivots in Ck matrices
(it corresponds to the size of LU factors of C for strategies 2 and 3 and to the size of an
incomplete factorization for strategy 1) and the ratio between these quantities and the size
of the factors of A . We can see that the size of C does not increase too much for these
problems and remains reasonable relative to the factors of A . It gives us a first feeling
about the complexity of our approach: the cost of C updates on this set of problems is
dominated by the cost of the factorization step.

In Table 4.4.3, we compare the symbolic quality (number of nonzeros computed by the
symbolic factorization) of the different strategies with that of the DMLS ordering. We
use the Matlab LU factorization with no pivoting ( u = 0 ) to evaluate the number of
nonzeros in the factors predicted by the symbolic phase. The DMLS fill-in is always larger
than the fill-in of our different strategies when using a minimum-fill metric (except with
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matrix Markowitz-cost metric Minimum-fill metric
strat1 strat2 strat3 DMLS strat2 strat3 DMLS

MAHINDAS 13358 12883 12883 16946 12574 12574 15699
LHR01 87247 69656 65032 65317 51829 52216 59070
B_DYN 8337 8162 8168 8802 8055 8071 8795
B2_SS 7887 7627 7657 9032 7392 7484 8393

RADFR1 37413 35922 46649 69165 31273 34986 31373
GRE_1107 59104 46137 46633 84457 42864 42887 70113

EX23 141853 122437 134312 96513 94837 93744 131583

Table 4.4.3: Number of nonzeros predicted by analysis for the factors of A . Comparison of MC64+DMLS
with a Matlab implementation of MC64+CMLS.

RADFR1 for which factors are 11.5% more dense). Our Markowitz-cost metric seems to
have difficulties on EX23.

Matrix strat2 strat3 DMLS
lu u=0 lu u=0.01 lu u=0 lu u=0.01 lu u=0 lu u=0.01

MAHINDAS 12574 12574 12574 12574 15699 15699
LHR01 51829 52613 52216 52216 59070 59023
B_DYN 8055 8074 8071 8071 8795 8795
B2_SS 7392 7478 7484 7484 8393 8455

RADFR1 31273 61681 34986 34030 31373 32935
GRE_1107 42864 46495 42887 44662 70113 70721

EX23 94837 109531 93744 93744 131583 134791

Table 4.4.4: Number of nonzeros in the factors and reliability of the forecast factors size: comparison of
MC64+DMLS with a Matlab implementation of MC64+CMLS. Minimum fill metric is used in both cases.

Matrix strat2 strat3 MC64+DMLS
lu u=0 lu u=0.01 lu u=0 lu u=0.01 lu u=0 lu u=0.01

MAHINDAS 7e-16 7e-16 7e-16 7e-16 4e-16 4e-16
LHR01 1e-10 1e-14 5e-15 5e-15 2e-14 6e-15
B_DYN 7e-15 1e-15 7e-16 7e-16 4e-16 4e-16
B2_SS NaN 7e-14 4e-15 4e-15 NaN 3e-15

RADFR1 NaN 7e-10 3e-11 1e-11 NaN 5e-11
GRE_1107 1e-10 3e-11 5e-11 7e-12 4e-11 2e-11

EX23 1e14 6e-14 8e-14 8e-14 2e01 3e-14

Table 4.4.5: Numerical accuracy comparison of MC64+DMLS with a MATLAB implementation of our
unsymmetric ordering (Approximate minimum fill metric is used in both cases).

Table 4.4.4 compares the number of nonzeros in the factors and Table 4.4.5 compares the
forward error ( err = ||xtrue − x||1/||x||1 ). We use the Matlab LU factorization both
with no pivoting ( u = 0 ) and with a more common pivoting threshold u = 0.01 (this
will introduce extra fill-ins due to numerical pivoting). We see that, except for RADFR1
with Strategy 2 for which the size of the factors increases from 31273 to 61681, the
extra freedom in selecting off-diagonal pivots in Ck with Strategies 2 and 3 results in a
reduction of the fill-in with respect to MC64+DMLS approach. The size of the factors does
not increase much from columns “ u = 0 ” to columns “ u = 0.01 ” in Table 4.4.4, and
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this is so even with strategy 2 where we only consider the pattern of C . Finally, we see
in Table 4.4.5 that strategy 3 is very stable even when no numerical pivoting is performed
during the factorization. Using Strategy 3, we should be able to relax the numerical
threshold during the factorization when using a solver that performs numerical pivoting.
Moreover, the static pivoting scheme used in SuperLU_DIST may get benefits from
Strategy 3 with the improved accuracy and/or the reduction of the number of iterative
refinement steps. This last point will be stressed in Section 4.7.3.

4.5 Notations and definitions

4.5.1 Bipartite Graphs

The structure of an unsymmetric matrix can be represented as a bipartite graph, and
Gaussian elimination can be efficiently modelled by a bipartite quotient graph [86]. In
this section, we describe the main properties of bipartite graphs and bipartite quotient
graphs and their relationship with Gaussian elimination. We introduce the notations that
will be used to describe our algorithms. Note that we will use calligraphic letter only for
notations concerning quotient graph.

4.5.1.1 Bipartite graph

Let us first recall the notations about bipartite graphs that we presented in the introduction
of the thesis. Let B = (bij) be a matrix and GB = (Vr, Vc, E) be its associated bipartite
graph. Vr is the set of row vertices and Vc is the set of column vertices. Edges of E
only go from Vr to Vc ( E ⊂ Vr× Vc ). An edge (i, j) ∈ E exists if and only if bij 6= 0 .

Let Ri denotes the structure of row i , i.e. , Ri = {j ∈ Vc s.t. (i, j) ∈ E} . Let Cj

denote the structure of column j , i.e. , Cj = {i ∈ Vr s.t. (i, j) ∈ E} .

After a pivot (i, j) is eliminated in B , a new matrix which we denote by B̄ is obtained.
B̄ is constructed from B by removing row i and column j and by adding the Schur
complement entries. In terms of graph manipulations, this elimination adds edges in the
bipartite graph of B to connect each row adjacent to j to all the columns adjacent to i .
This set of connected rows and columns is referred to as a bi-clique.

The symbolic factorization of B is done by building Bp for p = 1 to n , with B1 = B .
After eliminating the pth pivot (rowp, colp) in Bp , we compute Bp+1 = B̄p .

More formally, the bipartite graph changes from GBp to GBp+1 with

Rp+1
i = (Rp

i ∪Rp
colp) \ {rowp} for i ∈ Cp

colp

and
Cp+1

j = (Cp
j ∪ Cp

rowp) \ {colp} for j ∈ Rp
rowp

and rowp and colp are removed from the vertex sets of GBp+1 . At each step p of the
symbolic factorization, we define

kp = max(max
i∈Vr

|Rp
i |, max

j∈Vc

|Cp
j |).
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This corresponds to the largest row or column length and will be used for complexity
analysis. When there is no ambiguity, we will omit the superscript p from the graph and
matrix notations. Moreover, we will use the notation Lp for Rp

rowp and Up for Cp
colp .

4.5.1.2 Bipartite quotient graph

In the previous section we have shown that, to update the bipartite graph at each
elimination step, we must add the entries to the Schur complement matrix. The associated
subgraphs has been referred to as bi-cliques in the bipartite graph and may be costly to
update and to store. The main idea of quotient graphs is to use compact representations to
implicitly store edges between vertices which would exist if a simple bipartite graph were
used. In symbolic LU factorization, a bipartite quotient graph can be used to represent
the edges in a bi-clique. It can be shown that a bipartite quotient graph can be used to
model the elimination in space bounded by the size of the original matrix A [86]. In this
section, we first explain why the quotient graph model leads to more complex algorithms
on the bipartite graphs (unsymmetric matrices) than on the undirected graphs (symmetric
matrices). We then briefly define element absorption and local symmetrization and
explain why they help reduce the quotient graph complexity. Finally we introduce the
notations that will be used to describe our algorithms.

Let Gk be the bipartite quotient graph used to represent the structure of the reduced
submatrix after k steps of elimination. Both row and column vertices of the graph are
partitioned into two sets referred to as variables (uneliminated vertices) and elements
(eliminated vertices). Initially the bipartite quotient graph G1 is identical to the bipartite
graph G1 and all the vertices are variables. At step k of Gaussian elimination, an
eliminated pivot e = (re, ce) has two vertices re and ce in Gk , referred to as the coupled
row and column elements. All row and column vertices not belonging to any coupled
elements are the row and column variables of Gk . If there exists a path between two
variables i and j then j is reachable from i and vice-versa. The adjacency of a row
(resp. column) variable in the bipartite graph Gk is the set of reachable columns (resp.
rows) through the coupled row/column elements associated with the previous pivots in
Gk . Note that in a unsymmetric context, this process may involve paths of arbitrary
length in Gk [86] and in particular through more than one coupled element. For example
on Figure 4.5.1, we need to consider the path rowp → ce1 → re1 → ce2 → re2 to know
that the row structure of rowp contains the row structure of e1 .

In the context of sparse Cholesky factorization, an undirected quotient graph (the row and
column vertices are merged) is preferred and commonly used to compute the orderings
for symmetric matrices, e.g., Multiple Minimum Degree [80] and Approximate Minimum
Degree [4]. Moreover, the structure of the factors can be computed following paths of
length at most two in this quotient graph. The sparse Cholesky factorization can be also
viewed in the context of a bipartite quotient graph. The structure of the factors can then
be computed following the paths of length at most three in the bipartite quotient graph
(the path in Gk , ri → ce → re → cj indicates that column index cj ∈ Vc is adjacent to
index ri ∈ Vr through the element e = (re, ce) ). Moreover, there are no edges between
the elements which belong to different pivots.

In the unsymmetric case, let Gk = (Vr∪Vr,Vc∪Vc, E∪E) be the bipartite quotient graph.
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Vertices in Vr (respectively Vc ) correspond to row (respectively column) variables
(uneliminated vertices). Vertices in V r (respectively V c ) correspond to row (respectively
column) elements (already selected pivots). Vr , Vc , Vr , Vc is a partition of the vertices
of the graph, E ⊂ (Vr×Vc) and E ⊂ (Vr×Vc)∪ (Vr×Vc)∪ (Vr×Vc) . An entry (r, c)
corresponds to a nonzero in the factors if and only if there exists a path joining r and c
which only visits the elements and for which an edge in the even position corresponds to
a selected pivot. In other words, the structure of a row i at step k is the set of reachable
columns j through all the paths of the form i → ce1 → re1 . . . → cel

→ rel
→ j where

ei = (rei
, cei

), 1 ≤ i ≤ l are coupled elements associated with the pivots. Similarly, the
structure of a column j at step k is the set of reachable rows i through all the paths of the
form j → re1 → ce1 . . . → rel

→ cel
→ i . When a pivot p = (rowp, colp) is selected,

if there exists a cycle of the form rowp → ce1 → re1 . . . → cel
→ rel

→ colp → rowp
(referred to as the strongly connected components in [86]) then, except for rowp and
colp , the row and column elements in the cycle are not needed any more to retrieve
the structures of the remaining variables. Firstly, all the row (resp. column) variables
adjacent to these column (resp. row) elements will be included in the adjacency of colp
(resp. rowp ), and secondly, the row (resp. column) variables which were adjacent to one
of the removed elements will be adjacent to colp (resp. rowp ). This process will be
called element absorption and is illustrated in Figure 4.5.1.

e1

p

i

x

x

x

r

e2r

cc

rowp

colpe1 e2

e1

e2

Figure 4.5.1: Illustration of a cycle ( rowp → ce1 → re1 → ce2 → re2 → colp→ rowp ).

To avoid long search paths, we decide to relax the element absorption rule. A row (resp.
column) element is absorbed by the current row (resp. column) pivot if either it is adjacent
to the column (resp. row) pivot or its associated column (resp. row) element is adjacent
to the row (resp. column) pivot. This is referred to as local symmetrization [12]. It
implies that the resulting quotient graph Gk at step k models only an approximation of
the structure of the reduced submatrix. It has been shown in [12] that the exploitation of
element absorption combined with local symmetrization results in an in-place algorithm:
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at each step of the Gaussian elimination, the size of the quotient graph is bounded by the
size of G1 . The main argument of the proof is that the space required to build the row
and column structures of a pivot is smaller that the sum of the size of the structures of
the absorbed elements. Note that because of local symmetrization, an approximation of
the symbolic factors can be computed following paths of length at most three of the form
i→ ce → re → j with (re, ce) denoting a coupled row and column element.

To simplify the description of how the bipartite quotient graph is modified at each
elimination step, we define V ⊂ (Vr × Vc) to be the set of row-column couples (rl, cl)
corresponding to the pivots eliminated at steps l , 1 ≤ l ≤ k . The entries of the set V
will be referred to as coupled elements or elements when it is clear from the context.
Let Up (resp. Lp ) be the row (resp. column) variables adjacent in Gk to the row (resp.
column) element of a pivot p = (rowp, colp) . In the context of local symmetrization, the
concept of absorption can be extended to the coupled element: an element e = (re, ce)
such that (rowp, ce) ∈ E or (re, colp) ∈ E is said to be absorbed by p when p is
selected as a pivot.

For each row variable i ∈ Vr and column variable j ∈ Vc , we define the element lists as
follows:

Ri = {e = (re, ce) ∈ V s.t. (i, ce) ∈ E}
and

Cj = {e = (re, ce) ∈ V s.t. (re, j) ∈ E}.
Let e = (re, ce) be an element, if e ∈ Ri then we will say that element e is adjacent to
row variable i . Similarly, if e ∈ Cj we will say that element e is adjacent to column
j .

Using this notation, the adjacency of a row variable i (resp. column j ) in G consists
of a list of column variables denoted as Ai∗ ( resp. a list of row variables A∗j ) and a
list of elements Ri (resp. Cj ). At the beginning Ri = Cj = ∅ and Ai∗ = A(0)

i∗ and
A∗j = A(0)

∗j contain the original entries of A . Each step of Gaussian elimination involves
changes in the set Ri and Cj as well as the computation of the structure of a current pivot
p (computation of Lp and Up ). The variable lists Ai∗ and A∗j can also be pruned.
Indeed, the edges in G between the variables and the elements implicitly represent the
bi-clique of the element and can thus be used to remove the redundant entries in Ai∗

and A∗j . This important point will be further discussed in detail in Section 4.6.5. It can
be seen that manipulating the sets Ri , Cj , Ai∗ and A∗j is equivalent to manipulating
the vertices and the edges of the bipartite quotient graph. Therefore, we will limit our
algorithmic description to the manipulation of these sets.

When (i, j) ∈ Vr × Vc is selected as the next pivot we build the element p = (i, j) ∈ G
such that:

Up = Ai∗ ∪
⋃

e∈Ri

Ue ∪
⋃

e∈Cj

Ue (4.5.1)

and
Lp = A∗j ∪

⋃

e∈Cj

Le ∪
⋃

e∈Ri

Le. (4.5.2)

The third term in each of the two equations above results from local symmetrization and
will enable the current pivot to absorb all the elements which it was adjacent to. For
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example, let us suppose that the entry p1 is selected as pivot in Figure 4.5.2. Since colp1

is adjacent to e1 , the local symmetrization add the virtual Sp1 and so the row structure
of p1 contains Le1 . Note that this symmetrization only concerns dependencies between
elements. Let F = Cj ∪ Ri be the set of elements adjacent to the current pivot. The
elements in F are absorbed by p and can be removed from the quotient graph. For each
column variable j1 in Up (resp. i1 in Lp ) element p is added to its adjacency and the
elements in F are removed: Rj1 ← (Rj1 \ F) ∪ {p} (resp. Ci1 ← (Ci1 \ F) ∪ {p} ).
The structure of row i1 of the factors in the reduced matrix is then given by

Ai1∗ ∪
⋃

e∈Ri1

Ue ,

and the structure of column j1 of the factors is

A∗j1 ∪
⋃

e∈Cj1

Le .

Note that this information on the structure of the reduced submatrix, although correct, is
not useful for predicting what happens after the next pivot is selected and so will not be
used in our algorithms to compute the structural metrics. Indeed, if (i1, j1) is selected as
the next pivot, then the correctly computed structure of the reduced matrix should include
the local symmetrization terms (similar to equations (4.5.1) and (4.5.2)). Thus, the local
symmetrization terms will be taken into account for computing the structural metrics of
all the entries in the reduced matrix.

p1

e3

e1

p2X

X

Sp1 Sp2

e2 X

row

col colp1 p2

p

Figure 4.5.2: Influence of local symmetrization on the pivot structure

In Figure 4.5.2, we illustrate the effect of local symmetrization on the structure of the
selected pivot. Let us consider two candidate pivots belonging to the same row rowp ,
p1 = (rowp, colp1) and p2 = (rowp, colp2) . We assume that all the elements in G
adjacent to p1 and p2 are indicated in the figure. The structure of rowp is then given by
Arowp∗∪Ue3 . This however does not give enough information on the structure of rowp if
either p1 or p2 were selected as the next pivot. Local symmetrization would apply (see
equation (4.5.1)) so that if p1 were the next pivot then the structure of rowp would be
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Bipartite graph G Bipartite quotient graph G
Ri structure of row i Ri elements adjacent to row i

Ai∗ variables adjacent to row i

Ai∗ initial structure of row i A(0)
i∗ initial structure of row i

Cj structure of column j Cj elements adjacent to column j
A∗j variables adjacent to column j

A∗j initial structure of column j A(0)
∗j initial structure of column j

Up row structure of the pth pivot Up row structure of the pth pivot
Lp column structure of the pth pivot Lp column structure of the pth pivot

F elements that are adjacent either to row i or
column j (Ri ∪ Cj)

kp at step p, the size of the largest adjacency

Table 4.5.1: Notations used for bipartite graph and bipartite quotient graph.

given by :
Up1 = Ai∗ ∪ Ue3 ∪ Ue1

because of the local symmetrization entry Sp1 . If p2 were the next pivot then the
structure of rowp would be given by :

Up2 = Ai∗ ∪ Ue3 ∪ Ue2

because of the local symmetrization entry Sp2 . This shows that, even if we cannot
anticipate the effect of local symmetrization on the quotient graph G before the pivot
selection, we should anticipate its effect on the metrics used to select the best pivot
between p1 and p2 .

4.5.2 Metrics and ordered relations

As observed in Section 4.4, hybrid metrics (that is combining structural and numerical
criteria) might be considered for selecting a pivot. In this section, we define the notations
and relationships that will be needed to describe the pivot selection strategies in the CMLS
algorithms (see Section 4.6.3)

DEFINITION 5.1. For each entry (i, j) , m0(i, j) will represent a structural metric, such
as an approximate Markowitz cost or an approximate minimum fill-in.

If we consider two entries (i1, j1) and (i2, j2) such that m0(i1, j1) < m0(i2, j2) then we
will say that (i1, j1) is structurally better than (i2, j2) .

When considering numerical values, we need to determine if a pivot is good/bad (in an
absolute sense) and/or if it is better than the other pivots (for example, relative to the
largest value in magnitude in its row/column). The rest of this section is organized as
follows:

- we first define the ordered relation ≤th as a function of a numerical threshold th ;

- this relation is then used to define the relations ≤th and ≤absθ
relθ that combine

numerical and structural criteria.
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In the following, th , relθ and absθ are positive real values. In the CMLS algorithm, relθ
and absθ will be criteria associated with a relative numerical threshold and an absolute
numerical threshold respectively.

DEFINITION 5.2. Let ≤th be an ordered relation such that for two values v1 and v2 we
have:

v1 =th v2 ⇔
{
|v1| ≥ th and |v2| ≥ th , or
|v1| < th and |v2| < th

v1 <th v2 ⇔ |v1| ≥ th and |v2| < th.

The above inequality is not presented the wrong way round. When we use v1 ≤th v2

we really mean that v1 is better than v2 by analogy to the sense of the inequality in the
context of a structural metric. Thus, if v1 <th v2 , we will say that v1 is numerically
better than v2 according to th . The ≤th relation simply indicates that the numerical
quality of two entries with absolute values greater than th is the same and that the
numerical quality of two entries with absolute values smaller than th is also the same. A
strict inequality means that exactly one value is greater than th .

DEFINITION 5.3. Let ≤th be an ordered relation such that for two entries (i1, j1) and
(i2, j2) with associated numerical values v1 and v2 , we have:

(i1, j1, v1) ≤th (i2, j2, v2)⇔
{

v1 <th v2, or
v1 =th v2 and m0(i1, j1) ≤ m0(i2, j2))

.

This relation is nothing but a lexicographical order where priority is given to numerical
information. The structural metric is used in this comparison only when the numerical
metrics are identical with respect to the ≤th relation. This means that the structural
metric will be considered only when both values are numerically good (greater than th
in magnitude) or numerically bad (smaller than th in magnitude).

For example, for two entries of a constraint matrix C in positions (i1, j1) and (i2, j2) ,
we may define the numerical values

v1 =
ci1j1

maxk |ckj1|
and v2 =

ci2j2

maxk |ckj2|

where we have scaled the values by the infinite norm of the column. Then we prefer
to select (i1, j1) as pivot if v1 is numerically better than v2 according to th or if
both entries are of comparable numerical quality (both magnitudes of v1 and v2 are
either lower or greater than th ) and the entry (i1, j1) is structurally better than the entry
(i2, j2) . In that case, (i1, j1, v1) <th (i2, j2, v2) and we say that (i1, j1, v1) is better than
(i2, j2, v2) according to the hybrid metric with the single threshold th .

Relation ≤th can be extended to two numerical criteria. Before presenting this metric
with two thresholds, let us give some motivation for this approach (this approach is also

discussed in Section 4.6.3). If we consider the matrix A =





1 10−8 . . .
...

... . . .
1 1 . . .



 and
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its constraint matrix C =





1 10−8 . . .
...

... . . .
1 0 . . .



 where the 1 entry in the last row and

second column of A has been dropped. We want then to decide which entry of C is the
“best”. For example, we want to decide between entries in positions (1, 1) and (1, 2) .
If we use an ordered relation with the single threshold and if we scale each value by the
infinite norm of its column, our decision will be guided by the structural metric (we have
v1 =th v2 ). Selecting the entry in position (1, 2) will be less safe than selecting the
entry in position (1, 1) since a stable Gaussian elimination has to be performed on A .
Thus, as c12 is significantly smaller than c11 we prefer to select the entry in position
(1, 1) without taking into account the structural metric. That is why we decide to add a
second numerical criterion. Definition 5.4 presents the ordered relation that we will use
to perform this pivot selection. It takes into account two values, that we call the scaled
value and the unscaled value.

DEFINITION 5.4. Let ≤absθ
relθ be an ordered relation such that for two entries (i1, j1) and

(i2, j2) , each with two associated numerical values, s1 and u1 for (i1, j1) , and s2 and
u2 for (i2, j2) , we have:

(i1, j1, s1, u1) ≤absθ
relθ (i2, j2, s2, u2)⇔

{
s1 <relθ s2

or (s1 =relθ s2 and (i1, j1, u1) ≤absθ (i2, j2, u2))
.

This relation corresponds to a lexicographical order in which priority is given firstly to a
numerical metric based on the relation ≤relθ , secondly to a numerical metric based on
the relation ≤absθ , and finally to a structural metric m0 . For example, for two entries
(i1, j1) and (i2, j2) of a constraint matrix C , we set

s1 =
ci1j1

maxk |ckj1|
, s2 =

ci2j2

maxk |ckj2|
, u1 = ci1j1 and u2 = ci2j2.

Then we prefer to select (i1, j1) as pivot if s1 is numerically better than s2 according to
relθ or if both entries are of comparable numerical quality and (i1, j1, u1) is numerically
better than (i2, j2, u2) according to the hybrid metric with the single threshold absθ . In
that case (i1, j1, s1, u1) <absθ

relθ (i2, j2, s2, u2) and we say that (i1, j1, s1, u1) is better than
(i2, j2, s2, u2) according to the hybrid metric with two thresholds relθ and absθ .

Note that the ordered relation induced by m0 corresponds to the case ≤th with th = 0
and that ≤th corresponds to the order ≤absθ

relθ with absθ = 0 and relθ = th .

4.6 CMLS algorithm

In this section, we describe the different steps of the CMLS algorithm and their properties.
Algorithm 4.6.3 presents the main steps of our approach. Section 4.6.1 discuss
algorithmic choices about the structures of A and C . Section 4.6.2 gives details about
the initialization of the constraint matrix. In Section 4.6.3, we expose algorithms that
are used to select pivots. Sections 4.6.4 and 4.6.5 show how the structures of C and A

respectively are updated. Section 4.6.6 describes how for each entry in C our structural
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metrics that take into account the information stored in A are updated. Section 4.6.7
shows how supervariables are used in CMLS and Section 4.6.8 discusses about aggressive
absorption.

Algorithm 4.6.3 CMLS main steps.
(1) Initialization of C (see Section 4.6.2 and Algorithm 4.3.1).
(2) Main loop
while k ≤ n do

(2.1) Select pivot p = (rowp, colp) in C with priority based on structural and/or numerical metric
(see Section 4.6.3).
(2.2) Build Lp , Up and let Fp = Ccolp ∪ Rrowp .
(2.3) Update C (strategies described in Section 4.6.4) considering numerical information if a hybrid
metric is to be used (see Section 4.6.6).
(2.4) Update quotient graph G of A (see Section 4.6.5).
(2.5) For each (i, j) ∈ C such that i ∈ Lp or j ∈ Up , update the structural metric (see
Sections 4.6.6).
(2.6) Convert variable p to an element and remove the absorbed elements
k = k + 1

end while

4.6.1 Representations of C and A : two graphs

In the CMLS algorithm, we need to know the exact structure and the metric of each
nonzero entry in C . It is natural to use a bipartite graph (with possibly weighted edges)
for C . Each edge that corresponds to a nonzero entry may have one or more weights that
will be used to compute the numerical metric. For example, if the ≤absθ

relθ ordered relation
is used, two numerical values are needed per edge.

On the other hand, in order to have a fast computation of the structural metrics based on
the pattern A and to have an in-place algorithm, A is represented by its quotient graph.

4.6.2 Initialization of C

We mentioned in Section 4.3.1 that C must contain numerically significant information
and have a reasonable size. In practice, the number of entries in C set smaller than α×n
and β×nnz(A) where α ≥ 1 , β ≤ 1 are positive numbers. β prevents us from having
too many entries in C . In practice, α ∈ [2, 3] and β ≤ 0.25 (see Section 4.7.1.3 for
more details).

To satisfy the above constraints, a threshold-based dropping is done on a scaled matrix
A . If after dropping entries in Algorithm 4.3.1, C does not satisfy memory constraints,
further dropping is done (see Section 4.3.1).

The dropping strategy can be static (referred to as STCDROP) or dynamic (referred to as
DYNDROP). For STCDROP, the NumThresh value does not depend on the values of
the entries in the matrix. In practice it is set between 0.9 and 0.99. For DYNDROP, the
NumThresh value is set with respect to the distribution of the values of A . A minimum
dropping value ( mindrop ) is set to guarantee the relevance of the numerical information
and NumThresh (≥ mindrop ) is determined to satisfy the memory constraints. The
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[0, 1] interval is partitioned into subintervals and the count of a subinterval is incremented
whenever an entry is in this subinterval. Then the threshold is computed according to the
counts of the subintervals so that the number of retained entries satisfies the memory
constraints. Thus the complexity of this approach is O(nnz(A)) . It may happen even
with the DYNDROP strategy that further dropping is required in some pathological cases
where many entries are equal to the maximum entry. In practice, mindrop is set between
0.1 and 0.99 .

4.6.3 Pivot selection

At each step, the pivot with minimal numerical and/or structural metrics is selected. As is
often the case in sparse matrix factorization we want to preserve the sparsity of the factors
while controlling the growth in the factors. Numerical thresholds are introduced to give
freedom for the pivot selection to balance numerical precision with sparsity preservation.
To reduce the complexity of the algorithm, it is also common to limit the pivot search to a
set of candidate pivots. For example [27] visits the entries of a fixed number of columns
using Zlatev-style search [96]. We use a slightly different algorithm to limit our searches.
At each step of the ordering, we look for the best entry, p = (rowp, colp) , with respect
to an ordered relation within a subset, say S , of the entries in the bipartite graph GCk

(see Section 4.5). Let m0(i, j) be a structural metric. The subset S is controlled by two
threshold parameters MS > 0 and NCOL ≥ 0 used as follows. The smallest MS
entries with respect to the structural metric m0 are first added to S together with the
nonzeros of the first NCOL columns encountered while adding the MS entries to S .
The set S is thus composed of a first set of MS entries, the MS -set, and a second set,
NCOL -set = S \MS -set.

The choice of an ordered relation implies the underlying algorithmic strategy and data
structures that will be described in full detail in Section A.2. We say that we use
structural strategies in our algorithms when entries are selected with respect to only
structural metrics whereas hybrid strategies correspond to a combination of structural
and numerical metrics. The ordered relations ≤th of definition 5.3 and ≤absθ

relθ of
definition 5.4, will be used to introduce one or two thresholds in the hybrid metrics
respectively.

For each entry (i, j) ∈ Ck we define v1(i, j) = cij/||c.j||∞ . A pivot in position (i, j) is
said to be numerically acceptable (or acceptable) according to ≤th if and only if |cij| ≥
th × ||c.j||∞ where th ∈ [0, 1] . A pivot in position (i, j) is said to be numerically
acceptable according to ≤absθ

th if and only if |cij| ≥ th×||c.j||∞ and |cij| ≥ absθ where
th ∈ [0, 1] and absθ ≥ 0 . If there is no ambiguity we will avoid the ordered relation
when we speak about acceptable pivots.

Let th ∈ [0, 1] , equation (4.6.1) characterizes the hybrid strategy with one threshold.

p = arg min≤th
(i, j, v1(i, j))

(i, j) ∈ S
(4.6.1)

This comes from the definitions given in the following three remarks that will be used to
implement the algorithm in Section A.2.
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REMARK 6.1. If the MS -set is processed in order with respect to metric m0 then the
first numerically acceptable entry is the minimum with respect to the ordered relation ≤th

on the complete set S .

REMARK 6.2. If none of the values in the MS -set entries is numerically acceptable and
NCOL > 0 then we are sure that at least one entry per column present in S will be
numerically acceptable since th ≤ 1 . In this case, however, all the entries of S need to
be considered to obtain the minimum on S with respect to ≤th .

REMARK 6.3. If none of the values in the MS -set entries is numerically acceptable and
NCOL = 0 then the first entry of the MS -set is the solution of equation (4.6.1).

SMALL

MEDIUM

LARGE

nnz

th

nnz(A)

th2

th1

f(th) = nnz(0<|A|<th)

Figure 4.6.1: Example of profile zones of a matrix.

The hybrid selection with one threshold might not be suitable for situations where, for
example, C is composed of a set of relatively large entries and a structural matching
which contains relatively small entries ( C must be structurally nonsingular). It will be
the case when we do not use MC64. Entries in C can then be spread over the three zones
( SMALL , MEDIUM and LARGE ) as shown in Figure 4.6.1. The problem with
equation (4.6.1) comes from the fact that if a column of C holds only SMALL entries
then at least one is numerically acceptable according to ≤th . This SMALL entry might
come from the initial matrix or from a cascade effect. During the ordering, updates of
the type LARGE × SMALL/LARGE = SMALL might occur whereas updates of
the type LARGE ×MEDIUM/LARGE = MEDIUM are not performed because
MEDIUM entries have been dropped. Therefore the selection of a pivot according
to a relative criterion on C can select a SMALL entry because updates involving
MEDIUM dropped entries have not been done. With an absolute threshold absθ ,
we want to prevent our pivot selection algorithm from considering as numerically good
a SMALL entry. That is why a second absolute threshold absθ , proportional to the
largest entry in Ck is introduced. The equation (4.6.2) defines the hybrid strategy with
two thresholds.

p = arg min≤absθ
th

(i, j, v1, ci,j)

(i, j) ∈ S
(4.6.2)
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Remark 6.1 still holds with the ordered relation ≤absθ
th and the next two remarks will be

used to implement the selection algorithm (see Section A.2).

REMARK 6.4. If none of the entries in the MS -set is numerically acceptable according
to ≤absθ

th and if there exists one acceptable entry then all the entries in the columns of S
need to be considered to obtain the minimum with respect to ≤absθ

th .

REMARK 6.5. If none of the values in S is numerically acceptable then a solution of
equation (4.6.1) is also a solution of equation (4.6.2).

We will show in Appendix A that the global minimum can be obtained for structural
strategies in O(1) time. Concerning hybrid strategies, to bound the complexity of the
algorithm, the search is limited to the subset S of the C entries.

4.6.4 Update of C

As described before, a bipartite graph (and not a bipartite quotient graph) is used to
represent C . Therefore, if at each step k , new entries in Ck+1 corresponding to fill-
ins are added to GCk+1 then extra memory might be needed. Indeed, the symbolic
factorization using a bipartite graph does not lead to an in-place algorithm. In our case
however, GCk+1 holds the set of candidate pivots for step k + 1 and during the update
of GCk+1 we only need to guarantee that the nonsingular Property 4.3.1 and the inclusion
Property 4.3.2 hold.

Algorithm 4.6.4 Updating C (UpdateStrategy, NumericalStrategy)

Let (rowp, colp) be the pivot selected at step k , Up = RC
rowp and Lp = CC

colp

if ((UpdateStrategy == MATCHUPDATE) or (not enough memory)) then
perform MATCHUPDATE and set S = {(i, j) ∈ Ck+1 ∩ (Up×Lp)} .

else
perform TOTALUPDATE and set S = Up×Lp .

end if
if (NumericalStrategy==hybrid strategy) then

for all (i, j) ∈ S do

c
(k+1)
ij = c

(k)
ij −

c
(k)
i colp

c
(k)
rowp j

c
(k)
rowp colp

end for
end if

These properties can be kept with an in-place implementation. Indeed to maintain
Property 4.3.1, we can perform the MATCHUPDATE strategy proposed in Section 4.3.3.
At most one entry needs to be added and at least one entry (the pivot) is removed. Let
p = (rowp, colp) be the current pivot. Let (rowp, match_col) and (match_row, colp)
be the matched entries of C in row rowp and column colp , respectively. That is,
(rowp, match_col) ∈ M and (match_row, colp) ∈ M . If these entries are the
same ( i.e. , (rowp, colp) is a matched entry), nothing needs to be done to maintain
Property 4.3.1. Otherwise entry (match_row, match_col) can be added to maintain
Property 4.3.1. Moreover, this entry corresponds to an entry in Pattern(C̄k) , so that
Property 4.3.2 is also maintained. The implementation of this MATCHUPDATE strategy
will be fully described by Algorithm 1.4.3 from Section A.4.
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As mentioned in Section 4.3.3, another possibility is to try to perform a complete update
of the C matrix. Since this TOTALUPDATE strategy is not in place, its activation as
shown in Algorithm 4.6.4 will depend on the memory available. Finally, when a hybrid
strategy is used we also want to update/compute the numerical values of the entries in the
reduced matrix Ck+1 . Algorithm 4.6.4 summarizes all the possibilities offered for the
update of C .

4.6.5 Update of the quotient graph

Algorithm 4.6.5 Update of the quotient graph Gk

Let p = (rowp, colp) be the current pivot at step k and Fp = Rrowp ∪ Ccolp .
if Up 6= ∅ and Lp 6= ∅ then

for each row i ∈ Lp do
Ai∗ = (Ai∗ \ Up) \ colp /* variable elimination in row direction */
Ri = (Ri \ Fp) ∪ p

end for
for each column j ∈ Up do
A∗j = (A∗j \ Lp) \ rowp /* variable elimination in column direction */
Cj = (Cj \ Fp) ∪ p

end for
compute |Ue \ Up| , |Le \ Lp| for each element e and optionally do aggressive absorption.

else
/* delete all that is related to p, at most one of the 2 loops below is empty */
for each row i ∈ Lp do
Ri = (Ri \ Fp)
Ai∗ = Ai∗ \ colp

end for
for each column j ∈ Up do
Cj = (Cj \ Fp)
A∗j = A∗j \ rowp

end for
set |Ue \ Up| = |Ue| , |Le \ Lp| = |Le| for each element e

end if

Algorithm 4.6.5 describes how the quotient graph structure of the original matrix is
updated. It illustrates an important difference with the DMLS algorithm relative to the
structural metric computation and pruning of the bipartite quotient graph. This difference
leads to a modified behaviour with respect to irreducibility detection. We explain and
illustrate these aspects in the following paragraph and will further discuss the full details
and the consequences for the computation of the structural metrics (degree and fill-in
estimations) in Section 4.6.6.

When the pivot choice is limited to the diagonal of the permuted matrix (as in the DMLS
algorithm) it is possible to anticipate where local symmetrization will occur. For each row
i in Lp , all the variables belonging to Lp can then be removed from A∗i even when
i /∈ Up . This is illustrated in Figure 4.6.2 where shaded areas correspond to variables
which can be removed from the variable adjacency lists because they are implicitly stored
through the element p . All of this cleaning cannot be performed during the CMLS
algorithm. For example, if in Figure 4.6.2 the next pivot selected is (j, i) ( i ∈ Lp ,
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j /∈ Lp and i /∈ Up ), then the element p is not needed (there is no local symmetrization)
to build the row and column adjacency of (j, i) . Therefore, the column structure of the
element p should not be used to store entries in the column structure of variables in
column i . Similarly, as shown in Figure 4.6.2, with the DMLS algorithm we can also
remove from Aj∗ all variables belonging to Up for each column j in Up . In other
words, when the pivot choice is limited to the diagonal (as in the DMLS algorithm) we
know where the local symmetrization will be applied so that we can prune both the row
and the column adjacency of a variable belonging to Up or Lp . In the following, we
will say that the DMLS algorithm performs elimination in both row and column directions
that will be referred to as both way variable elimination.

p

Xi X

j

Xj 0 X

i

0 X

Figure 4.6.2: Illustration of both way variable elimination.

On the other hand, CMLS does only variable elimination in one direction because it
does not know where the local symmetrization will be done. Thus in Algorithm 4.6.5
the variable elimination in the row direction and the variable elimination in the column
direction are done in two different loops. If variables are removed from row i and column
i , this means that i ∈ Lp and i ∈ Up .

PROPERTY 6.1. If the variable elimination is done in both row and column directions
then the current pivot, say p , can safely be removed from the quotient graph only when
Up = ∅ and Lp = ∅ .

This property results from two observations. Firstly, p can be removed from the quotient
graph when Up = ∅ and Lp = ∅ . Secondly, let us suppose without loss of generality
that Up = ∅ and Lp 6= ∅ . In this case, p cannot be removed from the quotient graph
because there may exist a variable i ∈ Lp for which entries in A(0)

∗i have been pruned
because of local symmetrization with respect to p . This is illustrated in Figure 4.6.3
where the dark area (1) in column i is first stored through element e then stored through
element p (after absorption of element e by pivot p ). The dashed area (2) moves from
A∗i to Lp . Property 6.1 thus illustrates a drawback of both way variable elimination.
Local symmetrization has been anticipated and we cannot eliminate elements because
they may hold information required to describe the adjacency structure of uneliminated
variables. For example, if the DMLS algorithm is applied on a triangular matrix, it will
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Figure 4.6.3: Effect of variable elimination in both directions on reducibility detection (S indicates the
positions of local symmetrization).

create artificial dependency and fill-in in the factors because of the anticipation of the
local symmetrization. Thus the triangular form will be perturbed.

One could suggest postponing the pruning of A∗i (with entries in Lp ) until knowing
whether Up = ∅ or not. Even in this case, when Up is detected as empty, it is in general
impossible to know whether Lp does not already include the absorption of the column
entries coming from another coupled element adjacent to p and therefore it is impossible
to remove p from the quotient graph. This is illustrated in Figure 4.6.3 where it is shown
that the dark area of Lp also carries part of the contribution of e that contains the column
structure of i . This is so even if the column structure of i does not depend on the column
structure of any element adjacent to p since Up = ∅ . This suggests the following property
which is a direct consequence of Property 6.1.

PROPERTY 6.2. If the variable elimination is done in both row and column directions
then the current pivot, say p , can be removed from the quotient graph (from Vr , Vc , and
E ) before being eliminated only when (Up = ∅ and Lp = ∅ ) or when (Up = ∅ and
Rp = ∅ and Cp = ∅ ) or when (Lp = ∅ and Rp = ∅ and Cp = ∅ ).

Property 6.2 can be used to design a preprocessing of the DMLS algorithm that will
detect the triangular form of a matrix having nonzeros on the diagonal. This very simple
preprocessing was added to the DMLS code and is used in all our experiments.

From Property 6.1 we see that using variable elimination in only one direction should
improve the behaviour of the algorithm on reducible matrices.

PROPERTY 6.3. If the variable elimination is done in one direction only then the current
pivot, say p , can be removed from the quotient graph when Up = ∅ or Lp = ∅ .

Property 6.3 comes from the fact that the local symmetrization is not, and cannot be,
forecast. That is why when Up = ∅ or Lp = ∅ , the element p no longer contains
useful information. From Property 6.3 we see that CMLS will naturally detect a triangular
matrix. In the rest of this section, we discuss the extension of the property to the detection
and/or the exploitation of the BTF (Block Triangular Form). We show that, under some
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assumptions, the CMLS algorithm can exploit and detect the BTF which is in general not
the case with the DMLS algorithm.

DEFINITION 6.1. We say that an ordering is CMLS compatible with the BTF when it
firstly selects only pivots within the diagonal blocks of the BTF; secondly it eliminates
all pivots in a block before processing another block; thirdly the order in which the BTF
block are considered must be such that each block is not adjacent to any remaining block
in either the row or the column direction.

The third condition of the previous definition allows a block to be considered in the order
of the BTF but also allows some slight variation of this form as will be shown in the
example of Figure 4.6.5.

PROPERTY 6.4. If CMLS selects pivots with a CMLS compatible ordering with a BTF then
the sparsity resulting from the block triangular form will be fully preserved and CMLS will
generate a forest, where each tree corresponds to an irreducible component of the BTF.

S

S

S

S

S

S

A = 

(1)

(2)

(3)

DMLS

(1)

(2)

(3)

Figure 4.6.4: The initial matrix is in BTF (CMLS does not introduce any fill-in outside the diagonal blocks
if this ordering is used).

In the following three examples (corresponding to three matrices that are reducible), we
assume that the ordering provided on the left hand-side on the figures is used by both
the CMLS and DMLS algorithms. We then comment on the difference between CMLS and
DMLS and illustrate that when Property 6.4 is respected the BTF is fully exploited by
CMLS.

In Figure 4.6.4, the matrix is in BTF and we show on the left-hand side the original matrix
in BTF where the gray areas represent the initial full blocks. The structure resulting from
the application of DMLS is provided on the right-hand side. The fill-in is represented by
dense black blocks and S indicates entries resulting from local symmetrization. We see
that, with DMLS, local symmetrization interconnects all blocks of the BTF (we lose the
BTF forest) and that by creating a link between block (2) and block (3) through the first
line of block (3) it completely fills-up the first line of block (3) which in turn will create
fill-in in all lines of block (3) and in all lines of other blocks. With CMLS the last pivot of
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block (1) will be removed. We do not introduce local symmetrization because its column
structure is empty so that Property 6.3 can be applied. The same property holds for each
of the following blocks so that CMLS does not introduce any fill-in and produces a forest
of trees associated with each diagonal block.

A = 

BTF(A) = 

Sk+1

k

DMLS

(1)

(1)

(1)

(2)

(2)

(2)

Figure 4.6.5: The initial matrix is not in BTF, but the initial ordering is CMLS compatible (CMLS does not
introduce any fill-in outside the diagonal blocks if this ordering is used).

We now consider a matrix in Figure 4.6.5 that is not in BTF. The pivot order is however
CMLS compatible with the BTF since even if blocks are not taken in the order of the BTF
the third condition of Definition 6.1 holds. In this example, we see that Property 6.3 can
be applied since, at the end of the processing of each block, either Up or Lp will be empty
(this results from using the third condition of Definition 6.1). CMLS will fully exploit and
preserve the BTF of the matrix. The last pivot selected in each block will become the root
of the tree associated with the block of the BTF to which it belongs. We see however that,
with DMLS, the s entry in position (k + 1, k) will completely fill row k + 1 and that
after elimination of the (k + 1)st diagonal entry the remaining submatrix is full.

As is illustrated in Figure 4.6.6 when the order of the blocks does not respect the third
condition of Definition 6.1, CMLS partially loses the BTF of the matrix. In our example,
local symmetrization between blocks (1) and (2) will create a dependency between them
and fills one rectangular block because of the propagation of this dependency. Block (3)
will however remain an independent subtree because the last pivot, say p , in block (2)
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(3)

Figure 4.6.6: The initial matrix is not in BTF and the ordering is not CMLS compatible

will have Up = ∅ and p will become the root of the subtree containing blocks (1) and
(2) .

4.6.6 Update of the structural metric

In this section, we describe two classes of local heuristics to estimate the structural quality
of a pivot. Each class of heuristics is characterized by a metric that is locally minimized
at each step of the elimination. In the preamble section, we first describe the common
framework (independent of the metric used) and introduce a generic algorithm describing
how to compute the approximate external row and column degrees that are needed to
compute all metrics. In Section 4.6.6.2, the Markowitz cost, a metric related to the number
of operations involved during elimination, is briefly introduced. We then describe two
metrics based on an upper bound of the fill-in involved at each step of the elimination. In
Section 4.6.6.3 a basic approximation of the fill-in is introduced. The resulting heuristic
will be referred to as AMF. In Section 4.6.6.4, a more accurate approximation of the fill-in
is proposed. This approximation of the fill-in has been observed by the authors of AMD [4]
in the context of symmetric matrices. We provide, in Section 4.6.6.4, a generalization
of this approximation to unsymmetric matrices and prove that this approximation is a
tighter upper bound of the fill-in metric than the approximations proposed for symmetric
matrices in [92]. Note that concerning the deficiency approximation in [85], there is no
guaranty that it will be an upper bound of the fill-in. We also describe how to compute
this approximation efficiently in the context of our CMLS algorithm. The approximate
minimum fill-in heuristic based on the new approximation will be referred to as AMFI.
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In Section 4.6.6.5, we finally discuss the complexity of the algorithms used to update the
structural metrics.

4.6.6.1 Preamble

Let us suppose that the pth pivot (rowp, colp) has been selected. All the entries in
(Lp × Vc ∪ Vr × Up) ∩ Pattern(Cp+1) (at the intersection between the shaded areas of
Figure 4.6.7 and the matrix C at step p+1 ) are involved in the structural metric updates
since the structure of rows in Lp and columns in Up might have changed. The size of
this area is thus larger than the area involved in the update of the structure of C (see
Section 4.6.4) since columns (resp. rows) of Up \ RC

rowp (resp. of Lp \ CC
colp ) need also

be considered. The algorithm to update the structural metrics will thus be one of the most
costly steps of our algorithm. This will be further commented on in the implementation
appendix.
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Figure 4.6.7: Area involved in the structural metric updates. Up and Lp represent the row and column
structure of the pivot in A and the metric update concern the entries of C that intersect with the striped
areas.

As already explained in Section 4.5.1.2, we want the metrics to reflect the quality of an
entry if it were selected as the next pivot. That is why we compute metrics which are
related to the structure of our quotient graph on which local symmetrization has been
applied at each step of the elimination. For the sake of clarity, in the following we will
omit to say that degrees, approximate degrees, fill-ins and approximate fill-ins are related
to this quotient graph structure. Note that, since on symmetric matrices our quotient
graph becomes the standard symmetric quotient graph, all the properties demonstrated in
this section for unsymmetric matrices naturally apply to symmetric matrices.

Equations (4.5.1) and (4.5.2) that include local symmetrization could be used to compute
the exact external degrees, but it would be costly. Instead, similarly to AMD and DMLS
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algorithms, approximate row and columns external degrees can be computed. The
AMD like approximate external row and columns degree, amdr(i, j) and amdc(i, j)
respectively, are then defined by the following two equations:

amdr(i, j) = |Ai∗ \ Up|+ |Up \ j|+∑e∈Ri\Cj
(|Ue \ Up|) +

∑

e∈Cj
(|Ue \ Up|)− αj,

with αj = max(|Cj|, 1) if j /∈ Up else αj = 0.
(4.6.3)

amdc(i, j) = |A∗j \ Lp|+ |Lp \ i|+∑e∈Ri
(|Le \ Lp|) +

∑

e∈Cj\Ri
(|Le \ Lp|)− βi,

with βi = max(|Ri|, 1) if i /∈ Lp else βi = 0.
(4.6.4)

As observed in the DMLS algorithm, degree corrections ( αj and βi in equations (4.6.3)
and (4.6.4)) are introduced to improve the approximations of the row and column external
degrees. To justify these correction terms, one can observe that if j /∈ Up then j is
counted in each Ue \ Up such that e is adjacent to column j ( e ∈ Cj ). Furthermore,
if Cj is empty and j /∈ Up then column j has been counted in Ai∗ \ Up and should
then be subtracted. This explains the use of αj in the correction, βi can be justified in
a similar way. The correction terms αj and βi differ slightly from the DMLS correction
terms because DMLS removes diagonal entries from the quotient graph.

The |Ue \ Up| and |Le \ Lp| quantities are computed similarly to the AMD and DMLS
algorithms and will also be used to compute areas that can be subtracted during the
approximate minimum fill algorithm (see Section 4.6.6.4).

Moreover, since variable elimination is done in only one direction, the computation of the
metric is less accurate with CMLS than with DMLS. With DMLS, for any element e , row
index i ∈ Up and column index j ∈ Lp , we have Ai∗ ∩ Ue = ∅ and A∗j ∩ Le = ∅ . It is
no longer the case with CMLS but was exploited in Section 4.6.5 to help CMLS discover
the BTF form of the matrix.

Algorithm 4.6.6 describes the main components of a generic algorithm to compute the
approximate external row and column degrees that will be used to update the structural
metrics. In Loop 1, the metric of the entries in the horizontal rectangle of Figure 4.6.7
(Lp × Vc ∩ Pattern(C) ) is updated. In Loop 2 only the metric of the entries in the
vertical rectangle of Figure 4.6.7 that are not already visited is then updated.

4.6.6.2 Approximation of Markowitz cost

The approximation of the Markowitz cost comes directly from our approximation of the
external row and column degrees. After eliminating the kth pivot, we define

amdr(i, j) = min(amdr(i, j), n− k − 1), (4.6.5)

and

amdc(i, j) = min(amdc(i, j), n− k − 1). (4.6.6)
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Algorithm 4.6.6 Update of the structural metric.

for each row i ∈ Lp do /* Loop 1: */

1 rowdeg_save = |Ai∗ \ Up|+
∑

e∈Ri
|Ue \ Up|

2 coldeg_save =
∑

e∈Ri
|Le \ Lp|

for each column j such that (i, j) ∈ C do
3 amdr(i, j) = rowdeg_save +

∑

e∈Cj\Ri
|Ue \ Up|+ |Up \ {j}| − αj

4 amdc(i, j) = coldeg_save + |A∗j \ Lp|+
∑

e∈Cj\Ri
|Le \ Lp|+ |Lp \ {i}|

5 metric(i, j) = f(amdr(i, j), amdc(i, j))
end for

end for
for each column j ∈ Up do /* Loop 2: */

6 rowdeg_save =
∑

e∈Cj
|Ue \ Up|

7 coldeg_save = |A∗j \ Lp|+
∑

e∈Cj
|Le \ Lp|

for each row i such that (i, j) ∈ C and i /∈ Lp do
8 amdr(i, j) = rowdeg_save + |Ai∗ \ Up|+

∑

e∈Ri\Cj
|Ue \ Up|+ |Up \ {j}|

9 amdc(i, j) = coldeg_save +
∑

e∈Ri\Cj
|Le \ Lp|+ |Lp| − βi

10 metric(i, j) = f(amdc(i, j), amdr(i, j))
end for

end for

The metric associated with the approximate Markowitz cost is then defined as

metric(k+1)(i, j) = min







amdr(i, j)× amdc(i, j)
metric(k)(i, j) +|Up \ j| × amdc(i, j)

+|Lp \ i| × amdr(i, j)
−|Up \ j| × |Lp \ i|.

(4.6.7)

We use here the convention that if (i, j) is a new entry in C , then metric(k)(i, j) in
equation (4.6.7) is set to +∞ . Note that during the update of the degrees, contrary to
DMLS, we do not use the values of approximate row and column degrees computed at the
previous step. This could have been done but would have required us to store two other
arrays (one for row degrees, one for column degrees) of size |C| .

4.6.6.3 Basic approximation of the fill-in

The approximation for the Markowitz cost computes an upper bound of the area of the
Schur complement block. With a minimum fill-in based metric, we want to estimate the
new fill-in that would occur in the reduced matrix if an entry were selected as the next
pivot. For the sake of completeness, one should mention that the fill-in metric of variables
at distance two from the pivot might also decrease. In this work, we will only consider
variables adjacent to the pivot, i.e. at distance one, since results on symmetric matrices
have shown that considering distance two variables significantly increases the complexity
of the algorithm for relatively little gain in the quality of the ordering [85, 92].

A first upper bound of the fill-in that would occur can be obtained by removing the area
corresponding to Lp × Up from the Markowitz cost. This metric will be referred to as
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Figure 4.6.8: L̃e , Ũe , Ã∗j , Ãi∗ , L̂p and Ûp quantities.

AMF in the remainder of this document and is computed as follows:

metric(k+1)(i, j) = min







amdr(i, j)× amdc(i, j)− |Up \ j| × |Lp \ i|
metric(k)(i, j) +|Up \ j| × amdr(i, j)

+|Lp \ i| × amdc(i, j)
−2× |Up \ j| × |Lp \ i|

(4.6.8)

The second term of equation (4.6.8) holds the maximum increase in the metric due to
the elimination of pivot p . It should be noted that |Up \ j| × |Lp \ i| is removed from
metric(k+1)(i, j) in both terms of the minimum.

4.6.6.4 Improved approximation of the fill-in

A tighter approximation of the fill-in to the factors can be obtained by removing all the
areas already filled during the elimination of the previous elements. The approximation
described in this section is a generalization to unsymmetric matrices of an observation
made in the context of symmetric matrices but never formally expressed/proved. Finally
we explain how to compute this new upper bound using already computed information
and local correction terms.

Suppose that i ∈ Lp or j ∈ Up . Let F = Ri ∪ Cj . Let e be an element that belongs
to F . To simplify the notations we note L̃e = (Le \ Lp) \ {i} , Ũe = (Ue \ Up) \ {j} ,
Ã∗j = (A∗j \ Lp) \ {i} , Ãi∗ = (Ai∗ \ Up) \ {j} , L̂e = Le \ {i} and Ûe = Ue \ {j} .
This quantities are represented on Figure 4.6.8.

Let dr(i, j) and dc(i, j) denote the external row and column external degrees of entry
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(i, j) respectively. With our notations we have:

dr(i, j) = |(Up ∪ Ai∗ ∪
⋃

e∈F

Ue) \ {j}| ≤ |Ûp|+ |Ãi∗|+ |
⋃

e∈F

Ũe| (4.6.9)

dc(i, j) = |(Lp ∪ A∗j ∪
⋃

e∈F

Le) \ {i}| ≤ |L̂p|+ |Ã∗j|+ |
⋃

e∈F

L̃e|. (4.6.10)

Let S(i, j) denote the union of the area associated with all the elements adjacent to entry
(i, j) :

S(i, j) = |
⋃

e∈F

(L̂e × Ûe) \ (Lp × Up)|.

Ideally one might want to also subtract S(i, j) from the basic AMF metric. This tight
upper bound of the fill-in that would occur (including local symmetrization) in our
quotient graph if an entry (i, j) were eliminated is:

dr(i, j)dc(i, j)− |Ûp||L̂p| − S(i, j).

Note that this approximation of the fill-in would be much tighter than any of the
approximated upper bounds proposed in [92]. Concerning the deficiency approximation
in [85], there is no guaranty that it will be an upper bound of the fill-in.

In [92], the authors have observed that instead of using the exact external degrees one
could use the approximate (in the sense of the AMD algorithm) external degrees since both
produce results of comparable quality and since AMD based metrics are significantly faster
to compute. In this context, the corresponding upper bound of the fill-in metric becomes

amdr(i, j)amdc(i, j)− |Ûp||L̂p| − S(i, j). (4.6.11)

Let AS be an overestimation of area S ,

AS(i, j) =
∑

e∈F

|(L̂e × Ûe) \ (Lp × Up)|. (4.6.12)

Note that AS(i, j) should be easier to compute than S(i, j) since we also have :

AS(i, j) =
∑

e∈F

|L̃e||Ûe|+ |L̂e ∩ Lp||Ũe|. (4.6.13)

Using Property 6.5 we will prove that the area AS(i, j) can in fact be subtracted, instead
of S(i, j) , from equation (4.6.11) to obtain a better upper bound of the fill metric.

An intuitive proof of Property 6.5 is that, during the computation of the degree
approximation, the matrix is expanded in such a way that it is as if the intersections
between Ũe and L̃e were empty. The area AS corresponds to a real surface in the
expanded matrix and can be removed from the area amdr(i, j)amdc(i, j) to compute the
fill-in that would occur on the expanded matrix (see Figure 4.6.9) if (i, j) were selected
as next pivot. Moreover this fill-in on the expanded matrix is an upper bound of the exact
fill-in on the quotient graph.

PROPERTY 6.5. amdr(i, j)amdc(i, j) − |Ûp||L̂p| − AS(i, j) is an upper bound of the
fill-in that would occur in the quotient graph if (i, j) were eliminated.
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Figure 4.6.9: AMFI areas in the expanded matrix.

PROOF. In the following we provide a theoretical proof of Property 6.5. To establish our
property we will in fact prove that

amdr(i, j)amdc(i, j)− |Ûp||L̂p| − AS(i, j) ≥ dr(i, j)dc(i, j)− |Ûp||L̂p| − S(i, j).

With our definitions of amdr(i, j) and amdc(i, j) , we have :

amdr(i, j) ≥ |Ãi∗|+ |Ûp|+
∑

e∈F

|Ũe| (4.6.14)

and
amdc(i, j) ≥ |Ã∗j|+ |L̂p|+

∑

e∈F

|L̃e|. (4.6.15)

In the above formula, the difference between the left hand side and the right hand side
of either inequality is 0 or 1. For equation (4.6.14), the strict inequality corresponds to
Cj 6= ∅ , j ∈ Ai∗ and j /∈ Up since in this case the αj term of equation (4.6.3) cannot
take into account the fact that j ∈ Ai∗ .

From equations (4.6.14) and (4.6.9) we have

dr(i, j) ≤ amdr(i, j)−
∑

e∈F

|Ũe ∩
(

⋃

e′∈F , e′>e

Ũe′

)

|. (4.6.16)

From equations (4.6.15) and (4.6.10) we have

dc(i, j) ≤ amdc(i, j)−
∑

e∈F

|L̃e ∩
(

⋃

e′∈F , e′>e

L̃e′

)

|, (4.6.17)
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Furthermore, we also have

AS = S +
∑

e∈F

|(L̂e × Ûe) ∩
(

⋃

e′∈F , e′>e

(Le′ × Ue′)

)

\ (Lp × Up)|. (4.6.18)

Note that ˆ has been removed from over the e′ terms of equation (4.6.18) because of the
intersection with the L̂e × Ûe term.

From (4.6.16) and (4.6.17) we have

dr(i, j)dc(i, j) ≤ amdr(i, j)amdc(i, j)

+

T1
︷ ︸︸ ︷(
∑

e∈F

|Ũe ∩
(

⋃

e′∈F , e′>e

Ũe′

)

|
)(

∑

e∈F

|L̃e ∩
(

⋃

e′∈F , e′>e

L̃e′

)

|
)

−

T2
︷ ︸︸ ︷

amdc(i, j)

(
∑

e∈F

|Ũe ∩
(

⋃

e′∈F , e′>e

Ũe′

)

|
)

−

T3
︷ ︸︸ ︷

amdr(i, j)

(
∑

e∈F

|L̃e ∩
(

⋃

e′∈F , e′>e

L̃e′

)

|
)

.

(4.6.19)

From (4.6.18),

AS(i, j)− S(i, j) =
∑

e∈F |(L̂e × Ûe) ∩
(
⋃

e′∈F , e′>e(Le′ × Ue′)
)

\ (Lp × Up)|
=

∑

e∈F |(L̃e × Ûe) ∩
(
⋃

e′∈F , e′>e(L̃e′ × Ue′)
)

|
+
∑

e∈F |(L̂p × Ũe) ∩
(
⋃

e′∈F , e′>e(Le′ × Ũe′)
)

|

≤

T4
︷ ︸︸ ︷

∑

e∈F

|L̃e ∩
(

⋃

e′∈F , e′>e

L̃e′

)

| × |Ûe|

+

T5
︷ ︸︸ ︷

|L̂p|
∑

e∈F

|Ũe ∩
(

⋃

e′∈F , e′>e

Ũe′

)

| .

(4.6.20)
From (4.6.19) and (4.6.20) we have

dr(i, j)dc(i, j) + AS(i, j)− S(i, j) ≤ amdr(i, j)amdc(i, j) + T1 − T2 − T3 + T4 + T5.
(4.6.21)

Moreover, ∀e ∈ F , |Ue| ≤ amdr(i, j) which implies that

T4 − T3 ≤ 0. (4.6.22)
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Furthermore, since

|L̂p|+
∑

e∈F

|L̃e ∩
(

⋃

e′∈F , e′>e

L̃e′

)

| ≤ amdc(i, j),

we thus have

T1 + T5 − T2 ≤ 0. (4.6.23)

From (4.6.21), (4.6.22) and (4.6.23), we have

dr(i, j)dc(i, j)− amdr(i, j)amdc(i, j) + AS − S ≤ 0, (4.6.24)

which proves Property 6.5.

We now explain that, although computing AS(i, j) is not trivial it is however not costly
since it can be based on quantities already used in Algorithm 4.6.6 to compute the
approximate degrees combined with local correction terms. Algorithm 4.6.7 will then
revisit Algorithm 4.6.6 to show how to compute the new AMFI metric.

To compute the area AS , we need to evaluate Ûe , L̂e , Ũe and L̃e (see
equation (4.6.13)). It appears to be difficult to compute these quantities directly (without
an extra pass on the element structures) during the loops of Algorithm 4.6.6. Indeed only
the quantities |Ue| , |Le| , |Ue \ Up| , |Le \ Lp| , |Ue ∩ Up| and |Le ∩ Lp| are known.
For each entry (i, j) involved in the metric update, two quantities are computed. An
approximation of AS(i, j) , areaij , such that

areaij =
∑

e∈F

(|Ue \ Up||Le|+ |Le \ Lp||Ue ∩ Up|). (4.6.25)

Local correction terms, cor_locij , are then computed so that

AS(i, j) = areaij − cor_locij. (4.6.26)

Computing areaij only involves already known quantities. To compute the local
correction terms cor_locij we have to take into account for each e ∈ F all possible
cases: e ∈ Ri \ Cj , e ∈ Cj \ Ri , and e ∈ Cj ∩Ri .
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Figure 4.6.10: AMFI: different cases of local symmetrization. i1, i2, i3, i4, i5, i6 are cases encountered in
loop 1, i7, i8, i9 are cases encountered in loop 2.

Algorithm 4.6.7 explains how to modify Algorithm 4.6.6 to compute both areaij and
cor_locij from which the AMFI metric can be computed. To help understanding how
the local correction terms are computed, we have shown in Figure 4.6.10 the areas
corresponding to different values of the local correction. In the following, we explain how
the local correction terms of Loop 1 of the algorithm are computed. For i ∈ Lp (Loop
1), we note that, for each element e ∈ Ri , |Ue \ Up| must be added to the correction
term since it was taken into account by mistake in |Ue \ Up||Le| . This applies to cases
i1, i2, i3 and i4 and not to cases i5 and i6 for which |Ue \ Up| is not added at line [1]
of the algorithm since e1 /∈ Ri5 and e1 /∈ Ri6 in Figure 4.6.10. We then see at line
[2] of the algorithm that, since j ∈ Up , |Le \ Lp| must be added to the local correction
(case i2). For case i3 at line [3] of the algorithm, the complete column structure |Le| has
been taken into account in areaij and must be added to the correction term. Furthermore,
since the entry (i, j) had already been counted in |Ue \ Up| , one should remove it from
the correction term at line [3] of the algorithm. For case i5 (i6) in Figure 4.6.10, we add
|Le \Lp| ( |Le| ) that were counted by mistake in term |Le \Lp||Ue ∩Up| ( |Ue \ Up||Le| )
of areaij .

Using the modifications proposed in Algorithm 4.6.7, we define the AMFI metric as
follows:

metric(k+1)(i, j) = min







amdr(i, j)amdc(i, j)− |Up \ j||Lp \ i| − AS(i, j)
metric(k)(i, j) +|Up \ j| × amdr(i, j)

+|Lp \ i| × amdc(i, j)
−2× |Up \ j| × |Lp \ i|

(4.6.27)
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Algorithm 4.6.7 Revisiting Algorithm 4.6.6 to compute AMFI.
for i ∈ Lp do /* Loop 1 */

area_savei =
∑

e∈Ri
(|Ue \ Up||Le|+ |Le \ Lp||Ue ∩ Up|)

1 cor_loc_savei =
∑

e∈Ri
|Ue \ Up| /* cases i1, i2, i3 and i4 */

for each j such that (i, j) ∈ C do
areaij = area_savei , cor_locij = cor_loc_savei

for each e ∈ Cj do
if e ∈ Ri then /* e already visited, its fill-in already counted in areaij */

if j ∈ Up then
2 cor_locij = cor_locij + |Le \ Lp| /* case i2 */

else
3 cor_locij = cor_locij + |Le| − 1 /* case i3 */

end if
else /* e not already visited, we need to count its corresponding area */

areaij = areaij + |Ue \ Up||Le|+ |Le \ Lp||Ue ∩ Up|
if j ∈ Up then

4 cor_locij = cor_locij + |Le \ Lp| /* case i5 */
else

5 cor_locij = cor_locij + |Le| /* case i6 */
end if

end if
end for

end for
end for
for each j ∈ Up do /* Loop 2 */

area_savej =
∑

e∈Cj
(|Ue \ Up||Le|+ |Le \ Lp||Ue ∩ Up|)

cor_loc_savej =
∑

e∈Cj
|Le \ Lp| /* cases i8 and i9 */

for each row i such that (i, j) ∈ C and i /∈ Lp do
areaij = area_savej ; cor_locij = cor_loc_savej

for each e ∈ Ri do
if e /∈ Cj then

areaij = areaij + |Ue \ Up||Le|+ |Le \ Lp||Ue ∩ Up|
cor_locij = cor_locij + |Ue| /* case i7 */

else
cor_locij = cor_locij + |Ue| − 1 /* case i8 */

end if
end for

end for
end for
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In practice we use amdr(i, j) and amdc(i, j) as defined in equations (4.6.5) and (4.6.6)
instead of amdr(i, j) and amdc(i, j) .

Because of that it may happen that amdr(i, j)amdc(i, j) − |Up \ j||Lp \ i| − AS(i, j)
becomes negative. In such cases, as is done in the symmetric code or in the diagonal
Markowitz code, one can artificially set the metric to 0.

We propose here an alternative that could also be applied to the other approaches. When
our metric becomes negative, we propose reducing the size of the area AS . We introduce
a row scaling term rowscale , and a column scaling term colscale . Using the notation of
equations (4.6.5) and (4.6.6) we have

rowscale =
amdr(i, j)

amdr(i, j)
and colscale =

amdc(i, j)

amdc(i, j)
.

If one scales the area AS by rowscale × colscale , then we ensure a positive metric
and avoid tie-breaking problems due to metrics equal to 0. Our final AMFI metric is then
defined as follows:

metric(k+1)(i, j) = min







amdr(i, j)amdc(i, j)− |Up \ j||Lp \ i|
−rowscale colscale AS(i, j)

metric(k)(i, j) +|Up \ j| × amdr(i, j)
+|Lp \ i| × amdc(i, j)
−2× |Up \ j| × |Lp \ i|

(4.6.28)

4.6.6.5 Complexity

It is clear from our algorithms that the complexity of all the metrics described in this
section is comparable. That is why we will concentrate our analysis on Algorithm 4.6.6
which computes the approximation of the Markowitz cost at step p of Gaussian
elimination. The quantities |Ai∗ \ Up| and |A∗j \ Lp| are computed only once. The
total computation time for these quantities is bounded by

O(
∑

i

|Ai∗|+
∑

j

|A∗j|) = O(|E|).

The first loop is visited |Lp| times. The computation time of all the rowdeg_save and
coldeg_save is thus

O(
∑

i∈Lp

|Ri|).

The computation of all the amdr and amdc terms takes time

O




∑

i∈Lp

|Ri|+
∑

i∈Lp

∑

j∈RC
i

|Cj|



 . (4.6.29)

Let us define n1, . . . , n|Lp| by induction:

n1 = arg max |Cj|
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and for i > 1 ,
ni = arg max

j 6=ni−1,...,n1

|Cj|.

The double sum of equation (4.6.29) contains at most kp|Lp| terms ( kp was defined in
Section 4.5.1.1 and corresponds to the size of the largest row/column at step p ). Note that
at most kp terms can be equal to Cni

for all i ∈ [1, |Lp|] . Thus, we have the following
inequality:

∑

i∈Lp

∑

j∈RC
i

|Cj| ≤ kp ×
∑

1≤i≤|Lp|

|Cni
|.

Then we have

∑

i∈Lp

(|Ri|+
∑

j∈RC
i

|Cj|) ≤ kp ×




∑

i∈Lp

|Ri|+
∑

1≤i≤|Lp|

|Cni
|



 .

Finally, thanks to the in-place property of our algorithm to handle the bipartite quotient
graph we obtain

∑

i∈Lp

|Ri|+
∑

1≤i≤|Lp|

|Cni
| ≤ |E|.

We can do the same computation for the second loop. Finally, the total cost for
updating the metric is O(kp|E|) per elimination step. The total time complexity is
O(
∑

1<p≤n kp|E|) . If kp is bounded, the complexity becomes O(n|E|) which is also
a bound for the DMLS time. In practice, we observe a linear behaviour compared with
DMLS (see Section 4.7).

4.6.7 Supervariables and mass elimination

For the sake of clarity, the algorithms described in the previous section did not include
supervariables. In this section, we first define our generalization of supervariables
and mass elimination to bipartite quotient graphs with off-diagonal pivots. We then
revisit the previous algorithms and explain what has to be modified to detect and exploit
supervariables.

4.6.7.1 Adaptation of CMLS main scheme

Supervariables have been successfully used in the context of quotient graphs based
orderings for symmetric matrices [4, 43, 56] and in the context of bipartite quotient graph
when local symmetrization is performed and pivots are chosen from the diagonal [12].
It has been shown that the use of supervariables leads to a decrease in the number of
metric computations and thus to a significant reduction in the cost of the ordering. With
the CMLS algorithm we cannot use exactly the same kinds of supervariables because
the approaches used in [4, 12, 43, 56] assume that pivots are on the diagonal so that a
row can be associated with a column before being selected as pivot. That is why our
concept of supervariable is closer to the one used in [48]: we define indistinguishable row
variables (resp. indistinguishable column variables) as row variables (resp. columns
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variables) which have the same adjacency in G . Note that indistinguishability in G
implies indistinguishability in G and that the reverse is not true.

If i and j are two indistinguishable row variables, they are replaced in G by a row
supervariable containing both i and j , labelled by its principal row variable ( i , say) [42,
43, 44]. The notation i is used to denote this row supervariable and i = {i, j} . j is said
to be a subordinate row variable of i . i and j are said to be constituent row variables
of the row supervariable i and the notation i ∈ i and j ∈ i is used. At the beginning
of the Gaussian elimination, the row variables are said to be simple row variables. Each
simple row variable i can also be seen as a row supervariable i = {i} . For each row
supervariable i , |i| corresponds to its size , i.e. its number of constituent variables.

Similar definitions and notation can be introduced for the column supervariables, the
principal column variables, the subordinate column variables, the constituent column
variables and the simple column variables. When it is clear from the context, we do not
differentiate between a column or a row supervariable.

Let r1 and r2 be two row variables which belong to the same row supervariable r and
c1 and c2 be two column variables which belong to the same column supervariable
M . After eliminating the pivot p1 = (r1, c1) , p2 = (r2, c2) can be eliminated in G
without causing extra fill-in. This process is called mass elimination [55]. Moreover
the elimination of these two pivots creates a new element p = (r,M) . Indeed since
both rows and columns have the same adjacency structure (Lp1 = Lp2 and Up1 = Up2 )
only one representative is needed in G . To simplify the description of the algorithms,
for each constituent variable i of a supervariable v , i will also be used to denote the
supervariable v .

Algorithm 4.6.8 is the adaptation of Algorithm 4.6.3 to supervariables. Note that on the
bipartite quotient graph of A , we manipulate supervariables whereas on the bipartite
graph of C we only use simple variables. In the following paragraphs we comment on
the modifications due to the introduction of supervariables.

The first modification of the algorithm concerns the use of a scaled structural metric
during the pivot selection at step (2.1.1). The structural metric is divided by
min(|r|, |M|) since it corresponds to the size of the largest pivot block which could
be eliminated if a pivot at the intersection of these row and column supervariables were
selected.

The second modification of the algorithm concerns the elimination of supervariables. It
is done in three steps. During the first step (2.1.1), a pivot is selected in C . During the
second step (2.1.2), we retrieve its associated row and column supervariable in A . During
the third step (2.3.1), we eliminate “as many as possible” variables in C belonging to the
intersection of this row and column supervariables. Note that the meaning of “as many as
possible” will depend on the context. If a hybrid strategy is used then pivot entries might
be rejected because of numerical criteria. Furthermore, since the C matrix is updated
during the elimination of a pivot, new nonzeros entries that might be at the intersection
between the pattern of C and the supervariables need also be considered. The same three
steps are applied to the mass elimination at step (2.5.3). Note that after step (2.3.1), if
some constituent variables of a supervariable have not been eliminated, then we have to
build a new supervariable at step (2.3.2) and to insert it in G .
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Algorithm 4.6.8 CMLS main steps with supervariables.
(1) Initialization of C .

(2) Main loop
while there are still uneliminated variables do

(2.1.1) Select pivot (r, c) in C with priority based on structural and/or numerical metrics : the structural metric was
scaled with min(|r|, |M|) .
(2.1.2) Let p = (r,M) be the new element.
(2.2) Build Lp , Up and let Fp = CM ∪Rr .

(2.3.1) Eliminate “as much as possible” entries (i, j) ∈ C ∩ (r×M) .
(2.3.2) Update supervariables and quotient graph:
Let r′ be the set of constituent variables of r which have not been eliminated.
Let c′ be the set of constituent variables of M which have not been eliminated.
if r′ 6= ∅ then

Form a new row supervariable r′ with Rr′ = {p} and Ar′∗ = ∅ .
Lp = Lp ∪ {r′}

end if
if c′ 6= ∅ then

Form a new row supervariable M′ with CM′ = {p} and A∗M′ = ∅ .
Up = Up ∪ {M′}

end if
(2.4) Update quotient graph G of A and compute hash keys for each row/column supervariable in Lp/Up .
(2.5.1) Update the structural metric and mark candidates for mass elimination (Algorithm 4.6.9).
(2.5.2) Detect row and column supervariables using hash values.
(2.5.3) Mass elimination:
for all (i, j) ∈ C marked at step (2.5.1) do

Eliminate “as much as possible” pivots (k, l) ∈ C∩ (i× j) (remove k from i and remove l from
j ).
if i = ∅ then remove i from G and Lp = Lp \ {i} .
if j = ∅ then remove j from G and Up = Up \ {j} .

end for
(2.6) Remove the absorbed elements.

end while

The third modification concerns the update of the bipartite quotient graph (step 2.4). For
each row supervariable in Lp and for each column supervariable in Up , we compute a
hash value (see for example [15]) to reduce the pairs of supervariables whose structure
will be compared during step (2.5.2).

The final modification concerns the update of the structural metric at step (2.5.1) that will
be fully described in Section 4.6.7.2. Note that at step (2.5.1) we also mark candidates for
mass elimination that will be eliminated at step (2.5.3).

4.6.7.2 Revisiting computation of the structural metrics

When using supervariables, after eliminating pivot p , the AMD like approximate external
row and column degrees (equations (4.6.3) and (4.6.4)) become:

amdr(i, j) = |Ai∗ \ Up|+ |Up \ {j}|+
∑

e∈Ri∪Cj
(|Ue \ Up|)− αj |j|,

with αj = max(|Cj|, 1) if j /∈ Up else αj = 0.
(4.6.30)
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amdc(i, j) = |A∗j \ Lp|+ |Lp \ {i}|+
∑

e∈Ri∪Cj
(|Le \ Lp|)− βi |i|,

with βi = max(|Ri|, 1) if i /∈ Lp else βi = 0.
(4.6.31)

Indeed the metric computation has to take into account the area of the intersection between
row and column supervariables. Equations (4.6.5) and (4.6.6) then become:

amdr(i, j) = min(amdr(i, j), n− k − |j|), (4.6.32)

and
amdc(i, j) = min(amdc(i, j), n− k − |i|). (4.6.33)

In Algorithm 4.6.9 we revise Algorithm 4.6.6 to include supervariables. We recall that this
algorithm is composed of two external loops. Loop 1 refers to the pass over variables in
Lp and Loop 2 refers to the pass over variables in Up . Note that supplementary external
loops have been added since, for each supervariable, we need to visit all of its constituent
variables.

We save the values of the metrics which can be reused in the future and thus benefit from
a double improvement. Firstly, at steps 1, 2, 6 and 7 all quantities are computed once for
each supervariable instead of once for each variable. Secondly, if an entry of C belongs
to the intersection between a row and a column supervariable which has already been
visited, its metric is saved at step (5b) and can be reused. Since the saved quantities are
no longer needed when a row supervariable is finished, saving this information requires at
most an array of size n . The same property is used at steps 8, 9 and 10 of Loop 2. Finally,
at step 5c candidates for mass elimination can be easily detected and are also marked.

We now discuss the modifications resulting from the use of supervariables on the
computation of the approximate Markowitz cost and of the AMF and AMFI metrics.
Equations (4.6.7) and (4.6.8), with the above redefinition of the approximate external
degrees, are still valid to compute the approximate Markowitz cost and the AMF metric
respectively. Adapting equation (4.6.28) to compute the AMFImetric requires some more
care and will be described in the next paragraph.

In Section 4.6.6.4, we have shown that to evaluate the AMFI metric of an entry (i, j)
we need to compute the area AS(i, j) (see equations (4.6.27) and (4.6.28)). To compute
AS(i, j) we have also shown that it is easier to define it as as the sum of two terms
areaij and cor_locij (see equation (4.6.26)). The areaij term (see equation (4.6.25))
is related to the areas of all the bi-cliques of the already eliminated elements so that
its computation does not depend on the use of supervariables. The computation of the
local correction terms cor_locij must however be revisited. We split this correction term
into two parts. Each part, row_cor_locij and col_cor_locij , refers to entries in the
row supervariable and to entries in the column supervariable respectively so that the new
equation for defining the area AS is :

AS(i, j) = areaij − row_cor_locij |i| − col_cor_locij|j|. (4.6.34)

For an entry (i, j) ∈ C , the expression of the local corrections for the different cases of
Figure 4.6.10 is:

• Case i1 : row_cor_loc = |Ue \ Up| and col_cor_loc = 0 ,
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• Case i2 : row_cor_loc = |Ue \ Up| and col_cor_loc = |Le \ Lp| ,
• Case i3 : row_cor_loc = |Ue \ Up| and col_cor_loc = |Le| − |i| ,
• Case i4 : row_cor_loc = |Ue \ Up| and col_cor_loc = 0 ,

• Case i5 : row_cor_loc = 0 and col_cor_loc = |Le \ Lp| ,
• Case i6 : row_cor_loc = 0 and col_cor_loc = |Le| ,
• Case i7 : row_cor_loc = |Ue| and col_cor_loc = 0 ,

• Case i8 : row_cor_loc = |Ue| − |j| and col_cor_loc = |Le \ Lp| ,
• Case i9 : row_cor_loc = 0 and col_cor_loc = |Le \ Lp| .

It is now straightforward to accumulate these corrections by adapting Algorithm 4.6.7 to
the modified scheme described in Algorithm 4.6.9. Note that we could have accumulated
all the corrections in one term, but we would then have needed to multiply the above
corrections by the size of the row or the column supervariable at each step of the
accumulation. With our approach, we thus only perform two multiplications to compute
the total correction.
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Algorithm 4.6.9 Update of the structural metric using supervariables.

for each row supervariable r ∈ Lp do /* Loop 1: */

1 rowdeg_save = |Ar∗ \ Up|+
∑

e∈Rr
|Ue \ Up|

2 coldeg_save =
∑

e∈Rr
|Le \ Lp|

for each row constituent i ∈ r do
for each column j such that (i, j) ∈ C do

if the metric of (r, j) has not already been computed then
3 amdr(r, j) = rowdeg_save +

∑

e∈Cj\Rr
|Ue \ Up|+ |Up \ {j}| − αj |j|

4 amdc(r, j) = coldeg_save + |A∗j \ Lp|+
∑

e∈Cj\Rr
|Le \ Lp|+ |Lp \ {r}|

5 metric(r, j) = f(amdr(r, j), amdc(r, j))
5b save metric(r, j) until the end of the processing of r .

if j ∈ Up and amdr(r, j) = |Up \ {j}| and amdc(r, j) = |Lp \ {r}| then
5c mark (i, j) as candidate for mass elimination.

end if
end if
metric(i, j) = metric(r, j)

end for
end for

end for
for each column supervariable M∈ Up do /* Loop 2: */

6 rowdeg_save =
∑

e∈CM
|Ue \ Up|

7 coldeg_save = |A∗M \ Lp|+
∑

e∈CM
|Le \ Lp|

for each column constituent j ∈M do
for each row i such that (i, j) ∈ C and i /∈ Lp do

if the metric of (i,M) has not already been computed then
8 amdr(i,M) = rowdeg_save + |Ai∗ \ Up|+

∑

e∈Ri\CM
|Ue \ Up|+ |Up \ {M}|

9 amdc(i,M) = coldeg_save +
∑

e∈Ri\CM
|Le \ Lp|+ |Lp| − βi |i|

10 metric(i,M) = f(amdc(i,M), amdr(i,M))
save metric(i,M) until the end of the processing of M .

end if
metric(i, j) = metric(i,M)

end for
end for

end for

4.6.8 Aggressive absorption

4.6.8.1 Classical aggressive absorption: advantages and drawbacks

The aggressive absorption process performed in the AMD and DMLS algorithms can be
generalized to the CMLS algorithm. For an element e , if the condition

Ue ⊂ Up and Le ⊂ Lp, (4.6.35)

holds then e is no longer needed because variables adjacent to e will also be adjacent
to p (left picture of Figure 4.6.11). If e /∈ Up and e /∈ Lp , e is not absorbed in a
classical way. As already observed, aggressive absorption may improve the precision
of the approximate degrees because it may reduce the number of element candidates for
overlapping. Furthermore, when an element is aggressively absorbed its parent is set to p
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in the elimination tree. This can be a drawback because elimination trees with long chains
can appear and limit the parallelism due to the sparsity (middle picture of Figure 4.6.11).

p
e

i

p

e

i

pe

i

Figure 4.6.11: Aggressive absorption. From left to right: condition for aggressive absorption/ classical
aggressive absorption elimination tree/ modified aggressive absorption elimination tree.

4.6.8.2 New aggressive absorption

To avoid this lost of parallelism, we propose performing the aggressive absorption in two
steps. Firstly, when an element e satisfies condition (4.6.35), its adjacency is removed.
This element becomes an element such that |Ue| = 0 and |Le| = 0 . Finally when
row i ∈ Le or column j ∈ Ue is removed e is attached to the current pivot (i, j) in
the elimination tree (right picture of Figure 4.6.11). This new aggressive absorption can
also be applied to the DMLS code and to even more classical minimum degree orderings
for symmetric matrices and has the advantage of better preserving parallelism while
improving the quality of the approximate degrees and reducing the size of the quotient
graph.
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4.7 Experiments

In this section we analyse the influence of the preprocessing and the updating strategies
of the CMLS ordering on the performance of sparse solvers. Our new ordering will be
compared to the combination of DMLS+MC64 because it is the most robust in-place local
heuristic (better than AMD see [12]) in terms of numerical stability and fill-in in the factors.

With the CMLS ordering, our pivot sequence results from a combination of structural and
numerical information (even when only structural metrics are used to select the pivots, the
initialization of our constraint matrix is based on numerical considerations). Therefore it
is important to analyse the numerical quality of the proposed sequence of pivots. In this
context, for a very different motivation, we may want to experiment both an approach that
performs partial pivoting to preserve numerical stability and with an approach based on
static pivoting. In the first case, the numerical quality of the proposed sequence of pivots
is not so critical to obtaining a backward stable factorization and we expect to improve the
sparsity of the factors because of the freedom to select entries in the constraint matrix C .
In the case of a static pivoting based factorization, we expect that the capacity of CMLS to
select pivots according to numerical criteria can be used to control the numerical quality
of the sequence better while still offering some more freedom than a diagonal Markowitz
algorithm. In fact with the CMLS algorithm we can define a family of orderings and can
expect that two probably different members of this family can be used to satisfy these two
cases: a CMLS ordering in which C offers a lot of freedom to choose the pivots and a
CMLS ordering in which the selection of the pivots is strongly guided by the numerical
values in C .

To represent each class of approaches to numerical factorization, we consider the
multifrontal code MA41_UNS [13, 6]) which performs numerical pivoting during the
factorization and the supernodal code SuperLU_DIST [79] which performs static
pivoting. Both codes are run in sequential mode. As shown in [9, 13, 67, 26] the
approaches used to factorize the matrix in MA41_UNS and SuperLU_DIST are very
competitive in shared/sequential and distributed memory environments respectively. Note
also that because of the important algorithmic similarities between MA41_UNS and the
distributed memory code MUMPS, this work will be also very beneficial to the distributed
memory code.

In Section 4.7.1, we present our experimental environment. In Section 4.7.2, we focus
on structural metrics. In Section 4.7.3, we illustrate the benefits of using a hybrid
strategy with one threshold. In Section 4.7.4, we present an alternative strategy for the
preprocessing step and analyse its influence on the performance. Performance in terms of
time and memory used during factorization is reported in Section 4.7.5.

4.7.1 Experimental environment

4.7.1.1 What do we want to measure ?

To evaluate the quality of our sequence of pivots with MA41_UNS, we measure the ratio
between the number of nonzeros in the factors and the forecast number of nonzeros in
the factors (delayed pivots will increase this ratio). Note that from a software point of
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view it is critical that the estimations reflect the reality. Concerning SuperLU_DIST, we
measure the component-wise backward error of the solution [14] before and after iterative
refinement and the number of steps of iterative refinement. Note that one step of iterative
refinement costs at least as much as one forward and backward substitution. The cost of
the solution phase is thus very much related to the number of steps of iterative refinement.
Note that when we report the number of operations in our statistics, it always corresponds
to the number of operations actually performed during the factorization phase. With
MA41_UNS, the extra cost due to numerical pivoting is thus always included.

We also want to evaluate the gains from our new ordering and what its cost is. On the one
hand, we expect our ordering to be slower than DMLS because it performs more metric
computations and because it has to perform the explicit storage and manipulation of the
constraint matrix C . Indeed even if the pivot sequence were limited to the transversal of
the matrix then one should expect CMLS to be more costly than DMLS. On the other hand,
we expect to decrease the fill-in in the factors and the number of operations performed
during the factorization phase, and so to decrease the factorization time.

Moreover both factorization codes are sensitive, though in a different way, to the
amalgamation of nodes of the elimination tree for MA41_UNS and of the edag
(elimination direct acyclic graph) [57] for SuperLU_DIST. For our performance
analysis, we prefer to separate the influence of the ordering on number of nonzeros in
the factors from the fill-in increase, even if relatively small, due to this amalgamation.
Therefore the amalgamation will be activated only when we are concerned by the time and
the memory for factorization in Section 4.7.5. Otherwise no amalgamation is performed.

To be less sensitive to the effects of tie-breaking, we systematically apply random row
and column permutations to our initial matrix. We run each problem with five random
permutations and select the run whose ordering returns the median fill-in in the factors.
When, in Section 4.7.5, we analyse the influence of the orderings on the factorization time
then we activate the amalgamation process and select the execution which corresponds to
the median time.

4.7.1.2 Test matrices and computing environment

A representative set of all the matrices of order between 10000 and 100000 has been
selected (see Table 4.7.1) from Tim Davis’ collection [25]. All our results have been
obtained on a Linux PC computer (Pentium 4, 2.8 GHz, 2 GBytes of memory and 1 MByte
of cache).

If we consider a matrix A = (aij) , its structural symmetry, s(A) is defined as:

s(A) =
size {(i, j) s.t. aij 6= 0 and aji 6= 0}

nnz(A)
.

In the remainder of this section, the symmetry of a matrix always refers to the structural
symmetry once the MC64 permutation has been applied (see column sym of Table 4.7.1).
We expect our CMLS ordering to be more efficient on very structurally unsymmetric
matrices and have thus decided to separate our test problems into two sets. The first
set with 21 matrices (Set 1) refers to the matrices with a structural symmetry lower than
0.5 and the second set with 19 matrices (Set 2) corresponds to all the others.
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nnz
Group/Matrix n ×103 sym description
Set 1
Vavasis/av41092 41092 1683 0.08 Unstructured finite element
Hollinger/g7jac140sc 41490 565 0.10 Economic model
Hollinger/g7jac120sc 35550 475 0.10 Economic model
Hollinger/jan99jac120sc 41374 260 0.16 Economic model
Hollinger/jan99jac100sc 34454 215 0.16 Economic model
Grund/bayer10 13436 94 0.18 Chemical process simulation
Grund/bayer04 20545 159 0.19 Chemical process simulation
Mallya/lhr34c 35152 764 0.19 Light hydrocarbon recovery
Mallya/lhr71c 70304 1528 0.20 Light hydrocarbon recovery
Hollinger/mark3jac120sc 54929 342 0.21 Economic model
Hollinger/mark3jac140sc 64089 399 0.21 Economic model
Hohn/sinc15 11532 568 0.27 Single-material crack problem (sinc-basis)
Hohn/sinc18 16428 973 0.27 Single-material crack problem (sinc-basis)
Zhao/Zhao2 33861 166 0.27 Electromagnetics
Hohn/fd18 16428 63 0.28 Single-material crack problem (finite difference)
Hohn/fd15 11532 44 0.29 Single-material crack problem (finite difference)
Sandia/mult_dcop_03 25187 193 0.36 Circuit simulation
Sandia/mult_dcop_02 25187 193 0.36 Circuit simulation
ATandT/onetone1 36057 341 0.43 Harmonic balance method
Grund/poli_large 15575 33 0.47 Chemical process simulation
Simon/bbmat 38744 1771 0.49 2D airfoil, turbulence
Set 2
Shen/shermanACb 18510 145 0.50 Matrix from Kai Shen
Goodwin/rim 22560 1014 0.54 Finite-element method, fluid mechanics problem
ATandT/onetone2 36057 227 0.56 Harmonic balance method
Shyy/shyy161 76480 329 0.69 CFD / Navier-Stokes equations
Bomhof/circuit_3 12127 48 0.70 Circuit simulation
Averous/epb2 25228 175 0.71 Static simulation of a plate fin heat exchanger
Averous/epb3 84617 463 0.72 Static simulation of a plate fin heat exchanger
Bomhof/circuit_4 80209 307 0.73 Circuit simulation
Shen/e40r0100 17281 553 0.88 Matrix from Kai Shen
FEMLAB/ns3Da 20414 1679 0.91 FEMLAB test matrix
Sanghavi/ecl32 51993 380 0.93 Semiconductor device simulation
Zhao/Zhao1 33861 166 0.93 Electromagnetics
Bai/af23560 23560 484 0.97 Airfoil, non-Hermitian eigenvalue problem
Schenk_IBMSDS/3D_28984 28984 599 0.98 Semiconductor Device Simulation (IBM)
Schenk_IBMSDS/3D_51448 51448 1056 0.99 Semiconductor Device Simulation (IBM)
Schenk_IBMSDS/ibm_matr 51448 1056 0.99 Semiconductor Device Simulation (IBM)
Schenk_IBMSDS/2D_54019 54019 996 0.99 Semiconductor Device Simulation (IBM)
Schenk_IBMSDS/2D_27628 27628 442 0.99 Semiconductor Device Simulation (IBM)
FEMLAB/sme3Da 12504 874 1.00 FEMLAB test matrix

Table 4.7.1: Test matrices.
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For each table presented in this section, we select a subset of the most significant results.
However, we also always report average statistics with respect to each complete set and
provide the complete tables of result in Appendix B. For a given criterion c (number of
operations, fill-in,. . . ), we define the average gain of CMLS over DMLS as the mean of the
c(DMLS)/c(CMLS)− 1 quantities.

The mult_dcop_02 and mult_dcop_3 matrices are special problems since they have 7418
and 7448 irreducible components respectively. We add them to our set to illustrate the
effect of the one way absorption discussed in Section 4.6.4. We also observe, as one could
have expected, that if we offer freedom to CMLS to select pivots outside the irreducible
components of matrices that have a large number of irreducible blocks, then the fill-in
increases. Therefore, even though we provide complete results in Appendix B, we decide
not to take them into account when computing the average behaviour.

4.7.1.3 CMLS default parameters

When it is not explicitly mentioned, the initialization of the constraint matrix C is done
with the following options:

• MC64 based preprocessing, as explained in Section 4.3.4, is used.

• The dropping threshold is adjusted dynamically according to the repartition of the
entries of A (see DYNDROP strategy of Section 4.6.2) and mindrop = 0.1 .

• To limit the initial number of entries in C and the complexity of our algorithms we
set the parameter StructThresh of Algorithm 4.3.1 to

n×max(2, min(3,
nnz(A)

4n
)).

• To limit the number of compressions of C related data structures, we double the
size of the data structures associated with C0 .

With such settings the number of entries in C0 is bounded by 3n and the number of
entries in C that can be represented by our data structures is bounded by 6n .

When it is not explicitly mentioned, the CMLS ordering is computed with the following
options:

• We use the Improved Approximate Minimum Fill metric AMFI of Section 4.6.6.4
(the same metric is also used in DMLS) since it is the most efficient metric for both
orderings.

• To have an efficient in-place implementation, MATCHUPDATE is performed
automatically when (|Up| − 1) × (|Lp| − 1) > n , i.e. the area of the contribution
block in C is greater than n .

• We activate our new aggressive absorption in CMLS.
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4.7.2 Structural strategy

4.7.2.1 Limiting the size of C0 to n

In this section, we assume that the constraint matrix C0 contains only the entries from
the MC64 matching. This approach is referred to as Diag in the tables of Appendix B.
Note that in this case, since the set of candidate pivots for CMLS and DMLS is identical,
one should expect a comparable behaviour in terms of fill-in in the factors. The initial
objective of this test was then to quantify the extra cost for CMLS of handling more
complex data structures and to the manipulation of the C matrix.

As expected, we see in Table 4.7.2 that CMLS is in general slower than DMLS. For example
on g7jac140sc, CMLS spends more than 2.5 seconds to insert entries in the doubly linked
lists and more than 3 seconds to remove entries from them. The two following opposite
aspects may also influence the ordering time, but they are difficult to detect. On the one
hand, the better we preserve sparsity, the smallest might be the quotient graph and so the
faster we can expect to process it. On the other hand, the better we preserve sparsity, the
fewer elements are absorbed, the fewer supervariables are detected and so the complexity
might become higher.

However we also notice in Table 4.7.2 the difference of behaviour between the two
orderings is not at all negligible. When using the CMLS ordering, MA41_UNS and
SuperLU_DIST tend to have sparser factors and to do fewer operations and larger gains
are obtained on more unsymmetric matrices. Moreover one should note that the numerical
behaviour of both solvers is unchanged (for SuperLU_DIST, compare columns Diag
and DMLS in Tables B.1.7 and B.1.8).

MA41_UNS SuperLU_DIST ordering
size of factors operations size of factors time

Matrix CMLS DMLS CMLS DMLS CMLS DMLS CMLS DMLS
Set 1
av41092 8687 9654 2798 3664 7223 8098 3.5 3.9
g7jac140sc 22385 24146 26452 30254 14953 15204 18.3 6.2
sinc18 32598 41563 62163 96970 28792 35287 18.1 19.7
mult_dcop_03 502 844 25 106 297 403 0.5 0.4
mult_dcop_02 439 860 14 111 292 403 0.5 0.4
bbmat 44799 53641 50887 77900 41040 41315 46.0 17.5
Avg. gain 7.5% 15.7% 7.1% −38.7%
Set 2
Avg. gain 1.5% 5.4% 0.9% −60.0%

Table 4.7.2: Comparison between DMLS+MC64 and CMLS with C only the MC64 matching. Number of
entries in thousands, number of operations in millions and times in seconds.

The following algorithmic differences can explain the behaviour of the CMLS and the
DMLS orderings:

• DMLS performs variable elimination in two directions. The approximation of the
row and column degrees and the structural metric are thus more accurate.

• Thanks to the one direction only variable elimination, CMLS can eliminate all
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elements with empty adjacency in L or in U . It has thus more chance to preserve
the sparsity of reducible matrices better.

• CMLS can create a row (resp. column) supervariable if two rows (resp. columns)
have the same structure. DMLS can create a supervariable only if both rows and
columns have the same structure. Thus, on the same quotient graph CMLS will
detect more supervariables than DMLS. Note that the use of supervariables improves
the precision of the structural metric. For example, if we consider variables i and
j , which belong to the same row supervariable, then the entries in Ai∗ and Aj∗ will
not be counted as fill-in.

• In the CMLS implementation, we use rowscale and colscale coefficients (see end
of Section 4.6.6.4) to reduce the amount of tie-breaking between variables that would
have a negative metric (reset to 0) with DMLS.

What is interesting to stress is that most of these algorithmic differences were justified
by the fact that CMLS is designed to handle more complex situations than DMLS. For
example, in CMLS, we are using one direction variable elimination only because we
could not perform the two direction variable elimination. Supervariables are different
because their definition in DMLS does not make sense with off-diagonal pivots. In fact
what was not at all predicted is that the best implementation of DMLS should use the more
general framework of the CMLS ordering. Note that applying these modifications to DMLS
involves simpler and easier management of data structures than in CMLS.

Finally, as already mentioned before, the two mult_dcop_* matrices are reducible
matrices. For each matrix, DMLS and CMLS detect 845 singletons during a common
preprocessing step. Then on mult_dcop_02, DMLS detects 90 supplementary blocks
versus 429 blocks for CMLS. On mult_dcop_03, DMLS detects 86 supplementary blocks
versus 408 blocks for CMLS. We see in Table 4.7.2 that it has quite a significant impact
on the performance of both solvers in terms of fill-in and number of operations.

4.7.2.2 C updates: MATCHUPDATE versus TOTALUPDATE

We now assume that we use the default parameters to construct C (see Section 4.7.1.3)
and want to analyse the influence of the choice of structural update strategy. A first
strategy is to perform only MATCHUPDATE. It is referred to as MAT in the tables and in
our comments. A second strategy is to perform TOTALUPDATE on C (see Section A.4).
This strategy is referred to as TOT in the tables and in our comments. An intermediate
strategy is to perform TOTALUPDATE until a fixed number of entries with respect to the
size of C0 have been added to C and then to only perform MATCHUPDATE. We expect
that this strategy will limit the complexity of our ordering and that it will offer enough
choices for the selection of the pivots. This third strategy is referred to as LIM in the
tables and in our comments.

In Table 4.7.3 we report the size of the factors estimated by the MA41_UNS analysis
phase. We also compare the number of operations. As expected larger gains are obtained
for unsymmetric matrices ( symmetry < 0.5 ). In general better results in terms of fill-in
(average gain of 20% on Set 1) and number of operations (average gain of 40% on Set 1)
are obtained with the CMLS ordering. Two classes of matrices in Set 1 do not follow
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Size of the factors Number of operations
Matrix MAT LIM TOT DMLS MAT LIM TOT DMLS
Set 1
av41092 8171 8033 8056 9448 2650 2539 2652 3664
g7jac140sc 18284 16080 17065 24138 19656 13907 17015 30254
lhr34c 7628 8296 7775 6979 2238 2546 2403 1794
mark3jac140sc 16125 16793 17142 16372 9306 10618 11185 9295
sinc18 29842 31581 31118 41445 59757 64041 63273 96970
fd18 568 569 569 1082 44 43 45 128
mult_dcop_03 1018 991 1021 895 170 150 161 106
bbmat 39785 39034 38548 53596 40435 39553 40474 77900
Avg. gain 19.7% 22.3% 22.1% 35.5% 45.0% 40.6%
Set 2
onetone2 1611 1269 1280 1396 367 234 243 243
circuit_4 441 441 441 464 10 10 10 14
ibm_matr 39588 38492 38369 33202 39934 37495 38211 30736
Avg. gain −3.0% 0.2% 0.1% −2.5% 1.1% 1.2%

Table 4.7.3: Estimated size of the factors and number of operations with MA41_UNS. MAT, LIM and TOT
strategies are used. Number of entries in thousands and number of operations in millions.

this conclusion: the mark3jac*sc and the lhr* matrices. Furthermore, the MAT approach
seems to be less robust than the two other strategies (see for example the g7jac*sc, bbmat,
onetone2 and ibm_matr matrices). The LIM and TOT approaches have very similar
behaviour. Table 4.7.3 also confirms that it is preferable not to offer freedom to select
pivots outside the diagonal blocks of the BTF for reducible matrices (see results with
mult_dcop_*).

Table 4.7.4 shows that comparable structural gains are obtained with CMLS on
SuperLU_DIST ( 19.8% on Set 1).

Matrix MAT LIM TOT DMLS
Set 1
g7jac140sc 13363 12062 12134 15204
lhr34c 5162 5770 6018 5787
mark3jac140sc 12822 13328 12531 12867
sinc18 25489 26162 27688 35287
fd18 523 531 520 935
mult_dcop_03 569 618 589 403
bbmat 40303 34813 35064 41315
Avg. gain 19.2% 19.7% 19.8%
Set 2
onetone2 1297 1034 1082 1032
ibm_matr 37631 37476 38262 32820
Avg. gain −3.2% −0.7% −0.9%

Table 4.7.4: Number of nonzeros in SuperLU_DIST factors (in thousands of reals).

In Table 4.7.5 we compare the ordering time of CMLS with the MAT, LIM and TOT
strategies with the ordering time of DMLS. As expected, the three CMLS approaches are
clearly slower than the DMLS ordering. CMLS pays the cost of indirect addressing and
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Matrix MAT LIM TOT DMLS
Set 1
av41092 8.8 10.4 10.4 3.9
g7jac140sc 22.5 27.7 71.3 6.2
lhr34c 6.6 8.7 8.2 3.4
mark3jac140sc 10.3 13.3 13.3 4.4
sinc18 29.6 27.3 35.3 19.7
fd18 0.3 0.4 0.4 0.1
mult_dcop_03 0.6 0.7 0.6 0.4
bbmat 51.6 57.5 115.3 17.5
Avg. gain −55.0% −62.9% −65.6%
Set 2
onetone2 0.7 0.8 0.8 0.3
circuit_4 57.7 60.1 60.9 15.0
ibm_matr 5.2 8.3 8.9 0.6
Avg. gain −71.7% −76.9% −79.1%

Table 4.7.5: Ordering time (in seconds).

structural metric updates. Let us define for our discussion that a quasi-dense variable is
a variable that has a significantly higher degree that the average degree of the variables
in the graph. CMLS is also more sensitive to quasi-dense variables in the quotient graph
than DMLS. Indeed the larger the size of C , the higher the probability of accessing a
quasi-dense structure. Moreover the same quasi-dense structure may have to be accessed
more than once (see the inner loops of Algorithm 4.6.6). To illustrate this remark, we
ran the CMLS ordering on circuit_4 with the following modification. Each time that we
access an entry of metric greater than 5n , we do not update its metric. By doing so, we
skip the metric update 21, 3× 106 times and decrease the ordering time to 20.9 seconds
(instead of 60 seconds as before). With DMLS the same modification only leads to
skipping 6716 computations of the metric and does not produce any significant time
reduction. Note that this modification did not change the quality of the ordering. Thus,
developing quasi-dense rows/columns management [3] should reduce the gap between
the two orderings.

Finally one should mention that, with CMLS, we also expect a reduction in the
factorization and solve time (see Section 4.7.5). We also expect that the features of the
CMLS algorithm enable us to replace the MC64 preprocessing by a cheaper preprocessing
phase (see Section 4.7.4).

Since the LIM strategy is comparable to the TOT strategy in terms of sparsity and since
it is significantly faster on problems such as the g7jac*sc, sinc* and bbmat matrices, it is
used as our default update strategy in the remainder of this study.

4.7.2.3 Precision of the solution with structural strategies

Thanks to numerical pivoting, we have observed that with MA41_UNSwe obtain the same
precision (in terms of backward error) with the CMLS and the DMLS orderings. However,
with MA41_UNS, numerical pivoting can significantly increase the estimated size of the
factors. We see in Table B.1.3 of Appendix B that it is not the case and that the ratio
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of the real factor size over the estimated size always represents an increase smaller than
10% . With MA41_UNS we thus fully benefit from the fill-in reduction of the structural
strategies.

With SuperLU_DIST, we will show that the structural strategies do not provide a
numerically good enough sequence of pivots. As expected we probably need to use hybrid
strategies and we discuss this issue in Section 4.7.3. In the following we analyse in more
detail the numerical behaviour of SuperLU_DIST with the CMLS ordering based on
structural strategies. We show that the mindrop parameter (defined in Section 4.6.2)
used to control the numerical entries in the C0 matrix can improve the numerical quality
of our sequence of pivots.

4.7.2.4 Numerical precision of SuperLU_DIST with structural strategies

In Table 4.7.6, we report results on which at least one of our structural approaches fails to
find an accurate solution. We see that it is more difficult for SuperLU_DIST to converge
with the CMLS ordering than with the DMLS ordering.

Matrix MAT LIM TOT DMLS
Set 1
av41092 1.0e+00 1.0e+00 1.0e-00 1.0e+00
g7jac140sc 1.0e+00 1.0e+00 1.0e+00 6.4e-16
g7jac120sc 1.0e+00 1.0e+00 1.0e+00 5.9e-16
bayer04 3.2e-15 1.0e+00 1.0e-00 2.1e-16
lhr34c 8.9e-04 9.9e-01 6.7e-01 9.5e-14
lhr71c 1.2e-01 2.1e-01 9.6e-01 1.7e-07
mark3jac120sc 1.0e+00 9.9e-16 1.0e+00 4.3e-16
mark3jac140sc 2.1e-15 6.8e-01 9.9e-01 4.2e-16
sinc18 5.5e-01 8.7e-01 8.8e-01 7.9e-01
sinc15 4.8e-15 9.7e-01 9.3e-01 9.0e-15
Zhao2 1.0e+00 1.0e+00 1.0e+00 1.0e+00
bbmat 9.2e-01 6.9e-15 9.7e-01 4.5e-16

Set 2
rim 1.8e-05 9.7e-01 9.9e-01 9.0e-13
shyy161 4.6e-16 9.9e-01 1.0e+00 2.0e-16
e40r0100 4.8e-12 9.9e-01 1.0e-00 4.1e-16
af23560 4.6e-13 3.9e-16 8.2e-01 3.1e-16
3D_28984 1.0e+00 1.0e+00 9.9e-01 1.2e-14
3D_51448 1.9e-15 9.9e-01 1.0e+00 3.6e-16
ibm_matr 1.9e-15 1.0e-00 6.1e-01 2.7e-16
2D_54019 1.6e-05 7.2e-01 1.9e-01 3.6e-16
2D_27628 6.6e-16 1.0e-00 9.9e-01 2.9e-16

Table 4.7.6: SuperLU_DIST: component-wise backward error after iterative refinement.

We now study the influence of the mindrop threshold parameter introduced in
Section 4.6.2. We recall that this threshold value is designed to control the relevance
of numerical information in C0 . We expect that if this parameter is large enough then
the numerical stability will be improved but at the cost of less freedom to select pivots
(reduction of the size of C ). We mentioned in the previous section that MA41_UNS is
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already stable with mindrop = 0.1 . We thus focus on SuperLU_DIST. and consider
mindrop values of 0.1, 0.9 and 0.99.

Number of entries in the factors Backward error
mindrop = 0.1 0.9 0.99 DMLS 0.1 0.9 0.99 DMLS
Set 1
av41092 6769 6795 6817 8098 1.0e+00 1.0e+00 1.0e+00 1.0e+00
g7jac140sc 12062 13054 12971 15204 1.0e+00 1.0e+00 8.4e-16 6.4e-16
g7jac120sc 10393 9863 9804 14486 1.0e+00 1.0e+00 1.9e-14 5.9e-16
bayer04 475 482 487 538 1.0e+00 1.0e-00 1.0e-12 2.1e-16
lhr34c 5770 5803 6172 5787 9.9e-01 5.1e-03 3.8e-02 9.5e-14
lhr71c 11966 11790 11871 10847 2.1e-01 3.5e-03 7.3e-01 1.7e-07
mark3jac120sc 10941 10722 11324 10828 9.9e-16 6.0e-01 1.6e-15 4.3e-16
mark3jac140sc 13328 12906 12567 12867 6.8e-01 4.1e-16 1.0e+00 4.2e-16
sinc18 26162 26589 29100 35287 8.7e-01 2.7e-14 3.5e-13 7.9e-01
sinc15 12732 13863 13102 15284 9.7e-01 6.7e-01 5.2e-14 9.0e-15
Zhao2 9777 9932 9730 12226 1.0e+00 1.0e+00 1.0e+00 1.0e+00
bbmat 34813 36272 37426 41315 6.9e-15 4.7e-16 5.4e-16 4.5e-16
Avg. gain 19.7% 18.9% 18.0%
Set 2
rim 5332 5227 5614 5283 9.7e-01 8.1e-01 1.8e-05 9.0e-13
shyy161 3198 3088 3080 3391 9.9e-01 2.7e-16 4.6e-16 2.0e-16
e40r0100 1738 1695 1738 2028 9.9e-01 9.9e-01 4.8e-12 4.1e-16
af23560 10889 10798 11020 10961 3.9e-16 2.8e-16 4.6e-13 3.1e-16
3D_28984 13817 12261 12165 12025 1.0e+00 1.2e-07 1.0e+00 1.2e-14
3D_51448 38744 32925 32890 32448 9.9e-01 2.9e-16 1.9e-15 3.6e-16
ibm_matr 37476 33569 32551 32820 1.0e-00 3.0e-16 1.9e-15 2.7e-16
2D_54019 8315 7634 7632 7591 7.2e-01 2.7e-16 1.6e-05 3.6e-16
2D_27628 3445 3043 3043 2996 1.0e-00 2.1e-15 2.9e-16 2.9e-16
Avg. gain −0.7% 2.1% 0.9%

Table 4.7.7: SuperLU_DIST: number of entries in the factors and precision of the solution after iterative
refinement with different value of mindrop . Number of entries in thousands. Component-wise backward
error given after iterative refinement.

When increasing mindrop , the initial number of entries in C is smaller so that we have
less freedom to select the pivots. In fact CMLS is not very sensitive to this restriction
and even a fairly limited number of additional entries with respect to MC64 matching
is sufficient. Indeed, the sparsity gain in the SuperLU_DIST factors decreases from
19.7% to only 18.9% and 18.0% for mindrop = 0.9 , and 0.99 , respectively (see
Table 4.7.7).

We see also that increasing mindrop improves the robustness of SuperLU_DIST static
pivoting, especially when mindrop = 0.99 . For example, we succeed in obtaining
a good backward error on the g7jac*sc, bayer04 and sinc* matrices. Unfortunately,
even with mindrop = 0.99 SuperLU_DIST is not as stable as with the DMLS+MC64
ordering.

Table 4.7.8 shows that reducing the size of C slightly decreases the ordering time (see
for example, the g7jac*sc, lhr*, bbmat and ibm_matr matrices with mindrop = 0.99 ).
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Matrix / mindrop = 0.1 0.9 0.99 DMLS
Set 1
av41092 10.4 10.0 10.1 3.9
g7jac140sc 27.7 29.3 17.6 6.2
lhr34c 8.7 8.2 6.6 3.4
mark3jac140sc 13.3 12.3 12.8 4.4
sinc18 27.3 28.2 27.6 19.7
bbmat 57.5 49.9 43.7 17.5
Avg. gain −62.9% −60.8% −57.9%
Set 2
onetone2 0.8 0.8 0.7 0.3
circuit_4 60.1 55.4 57.0 15.0
ibm_matr 8.3 4.7 4.9 0.6
Avg. gain −76.9% −69.6% −68.3%

Table 4.7.8: Ordering time (in seconds).

4.7.2.5 Comments on structural strategies

Before considering hybrid strategies let us summarize the properties of the structural
strategies:

• CMLS is always slower than DMLS and quasi-dense variables detection should be
implemented in CMLS to reduce the time difference.

• The exclusive use of MATCHUPDATE may be dangerous; TOTALUPDATE might
be too costly. We can limit the number of calls to TOTALUPDATE (LIM strategy)
and reduce the cost of ordering while still preserving the sparsity of the factors. So
the LIM strategy is our default structural strategy.

• MA41_UNS factorization is numerically stable even with mindrop = 0.1 .
Significant gains in terms of fill-in (22%) and flops (45%) have been obtained.

• SuperLU_DIST is more sensitive to mindrop than MA41_UNS and still has
numerical problems with mindrop = 0.99 . That is why we need hybrid approaches
that are presented in the next section.

4.7.3 Hybrid strategies with MC64 based preprocessing

Based on our previous study, only SuperLU_DIST can expect benefits from a hybrid
strategy. In the hybrid strategy, a relative threshold is set to avoid the selection of small
pivots in C . After testing different values, we fixed the relative threshold to 0.01.
We have also observed that increasing the relative threshold too much ( > 0.1 ) does
not improve the numerical behaviour of SuperLU_DIST very much and degrades the
structural property of our algorithm.

In this section, we run CMLS with different values for mindrop and give results for
mindrop = 0.1 , 0.9 and 0.99 . An important parameter which defines the set on which
the pivot search is applied is the parameter NCOL defined in Section 4.6.3. NCOL
defines the maximum number of columns that can be accessed to find a good pivot. We
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test the particular case of NCOL = 0 and the more typical case of NCOL = 10 for
each mindrop value.

CMLS
mindrop = 0.1 0.9 0.99 0.1
Matrix/ NCOL = 0 10 0 10 0 10 STR DMLS
Set 1
g7jac140sc 12216 13949 13207 13790 12990 13642 12062 15204
bayer04 482 469 462 486 489 477 475 538
lhr34c 6238 5764 7208 5730 5621 5902 5770 5787
lhr71c 13617 12452 12188 12193 12752 12415 11966 10847
mark3jac140sc 13656 13073 13174 12621 13245 13256 13328 12867
sinc18 28362 26518 26397 26813 28072 30447 26162 35287
Zhao2 10403 11039 10497 10679 10453 11051 9777 12226
bbmat 35145 35991 37350 38658 34230 34855 34813 41315
Avg. gain 12.3% 12.4% 13.5% 14.2% 14.6% 13.6% 19.7%
Set 2
Avg. gain −2.1% −1.7% 0.3% 0.2% 0.1% 0.1% −0.7%

Table 4.7.9: Number of nonzeros in the SuperLU_DIST factors (in thousands of reals). STR: structural
strategy, otherwise the hybrid strategy used.

Table 4.7.9 compares the fill-in of hybrid approaches, of a structural approach (column
STR of the tables) and of the DMLS+MC64 approach. The hybrid strategy prevents us from
taking bad numerical pivots but does not always select the best structural pivot. This may
explain why the average gain in sparsity on Set 1 decreases when we use a hybrid strategy.
But this trend is not confirmed when mindrop is increased and the best structural gains
are obtained with mindrop = 0.9 and 0.99 . Sometimes numerical information leads
to a better global structural decision than a local structural decision. Moreover, we can
see that increasing NCOL to 10 does not always increase the number of nonzeros in the
factors.

As one can see in Table 4.7.10 and in Figure 4.7.1, the numerical behaviour of
SuperLU_DIST is clearly improved on Set 1 by the hybrid strategy. Setting NCOL to
10 systematically decreases the number of failures with respect to NCOL = 0 . Finally
we see that the hybrid approach with mindrop = 0.99 and NCOL = 10 is better
than the DMLS+MC64 approach on Set 1. Its solution phase always converges except on
the av41092 and Zhao2 matrices for which all approaches do not converge. We see that
the CMLS ordering with mindrop = 0.99 and NCOL = 10 performs less iterative
refinement steps for a comparable quality of solution (see for example, the lhr34c, sinc15
and bbmat matrices).

As was observed in Table 4.7.8, we see in Table 4.7.11 that reducing the freedom offered
to CMLS only slightly decreases the ordering time. It is also interesting to notice that the
hybrid strategies are not significantly more costly than the structural strategies (compare
average gains in Table 4.7.8 and Table 4.7.11). Zhao2 is the only matrix which completely
contradicts this trend. Actually after the MC64 scaling, 124731 of its 166453 entries
have an absolute value equals to one. Then numerical cancellation occurs in C and
the hybrid strategy has difficulty in selecting pivots. It spends more than 90% of its
time in the pivot selection. Clearly, algorithmic improvements must be done to take into
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Figure 4.7.1: Component-wise backward error before and after iterative refinement. mindrop = 0.99 and
hybrid strategy used.

CMLS
mindrop = 0.1 0.9 0.99 0.1
Matrix/ NCOL = 0 10 0 10 0 10 STR DMLS
Set 1
av41092 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗

g7jac140sc 9 7 5 4 4 4 2∗∗ 3
jan99jac120sc 3 4 3 3 3 3 3 3
bayer04 3 3 3 3 3 4 2∗∗ 4
lhr34c 5 6 10 6 5 6 2∗∗ 9
lhr71c 6 7 6∗ 5∗ 9∗ 5 2∗∗ 3∗

mark3jac140sc 2∗∗ 11 8 6 5 9 3∗∗ 4
sinc18 2∗∗ 2∗∗ 5 5 4 6 2∗∗ 2∗∗

sinc15 2∗∗ 7 2∗∗ 6 4 3 2∗∗ 6
Zhao2 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗

bbmat 6 5 3 3 3 3 9 8

Set 2
rim 5 4 4∗∗ 3 5 5 2∗∗ 5
shyy161 3 3 2 2 3 3 2∗∗ 2
e40r0100 2∗∗ 2∗∗ 5∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 3
3D_28984 2∗∗ 2∗∗ 4 3 3 3 2∗∗ 3
3D_51448 4 4 3 3 3 3 2∗∗ 3
ibm_matr 2∗∗ 4 3 3 3 3 2∗∗ 3
2D_54019 5∗ 2∗∗ 5 4 4 4 2∗∗ 3
2D_27628 8 4 3 3 3 3 2∗∗ 3

Table 4.7.10: SuperLU_DIST: number of steps of iterative refinement to get the precision of Table B.2.4.
∗∗ means that after iterative refinement the component-wise backward error is greater than 10−4 and ∗

means that after iterative refinement the component-wise backward error is between 10−4 and 10−8 . STR:
structural strategy, otherwise the hybrid strategy used.
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CMLS
mindrop = 0.1 0.9 0.99 0.1
Matrix/ NCOL = 0 10 0 10 0 10 STR DMLS
Set 1
av41092 10.1 10.7 10.6 10.3 10.9 10.1 10.4 3.8
g7jac140sc 36.2 56.1 50.5 36.7 18.2 18.6 28.9 5.7
bayer04 1.1 1.0 0.9 0.9 0.9 0.8 1.0 0.3
lhr34c 8.7 8.3 9.9 8.5 8.2 8.0 8.2 4.1
sinc15 17.8 19.1 12.6 13.3 11.2 11.9 16.3 3.7
Zhao2 17.6 57.2 12.0 56.3 14.6 125.6 3.5 1.0
bbmat 62.5 57.3 39.7 45.2 38.6 40.5 55.4 13.2
Avg. gain −71.5% −71.8% −67.6% −68.0% −64.1% −63.9% −64.6%
Set 2
rim 2.1 2.1 1.6 1.7 1.2 1.2 1.9 0.4
shyy161 1.8 1.8 1.4 1.4 1.4 1.4 1.8 0.7
af23560 8.4 8.1 2.9 2.6 2.2 2.2 7.3 0.7
3D_51448 7.8 7.3 5.0 4.8 5.0 5.1 7.3 0.6
ibm_matr 7.6 7.4 5.0 5.0 5.0 5.0 8.0 0.6
2D_27628 1.1 1.1 0.5 0.6 0.6 0.6 1.0 0.1
Avg. gain −81.7% −81.8% −74.4% −74.2% −72.6% −72.9% −80.8%

Table 4.7.11: Ordering time (in seconds). STR: structural strategy, otherwise the hybrid strategy used.

account this kind of situation. Moreover the hybrid strategy is very sensitive to random
permutations on this matrix: the ordering time varies from 17.5 seconds to 167.6 seconds
with mindrop = 0.99 and NCOL = 10 .

4.7.4 Influence of preprocessing phase

In the previous sections, all results were obtained with an MC64 based preprocessing. In
order to avoid using MC64, we propose a way of computing an alternative preprocessing.
We use the MC77 one-norm scaling [93] and the MC21 maximum matching [35, 36] to
build C (see Algorithm 4.3.1): we first apply MC77 scaling and drop entries, MC21
is then used to compute a maximum matching and finally the entries of the matching
not already in C are added. The MC77 scaling has the advantage of being easy to
parallelize, its sequential complexity is bounded by O(it_step nnz(A)) where it_step
is the number of iterations (in our experiments it_step = 20 ). The MC21 algorithm
only computes a structural maximum matching and is simpler than the MC64 one that
needs numerical values of the original matrix. The coupling between MC77 and MC21
can certainly be enhanced but it is out of the scope of our study. This preprocessing is
referred to as MC77_MC21. We analyse the performance of this preprocessing with the
MA41_UNS solver.

MC77_MC21 improves the predicted size of the factors compared with MC64. It might
come from the fact that the one-norm scaling tends to increase the numerical value of
entries with low connectivity and to decrease the numerical value of entries with high
connectivity. Thus, the C matrix has more chance to contain entries which are good
potential pivots for numerical stability and for sparsity preservation. However, we also
see in Table B.3.1 that, because of numerical pivoting, the real size of the factors increases
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more with a structural strategy (STR) and the MC77_MC21 preprocessing than with
the MC64 preprocessing. For example the size of the factors of lhr34c increases from
8574 predicted entries to 13629 during MA41_UNS factorization. Because of this, we also
report results with a hybrid strategy with two thresholds combined with the MC77_MC21
preprocessing (the relative threshold is set to 0.01 and the absolute threshold is set to
10−6 ). Table B.3.1 shows that the hybrid metric with two thresholds solves the estimation
problem. The counterpart is that on some problems (the bbmat and mark3jac*sc matrices)
it significantly increases the number of entries in the factors.

estimated size real size
Matrix MC21_MC77 MC64 MC21_MC77 MC64

STR HYB STR DMLS STR HYB STR DMLS
Set 1
g7jac140sc 12810 12734 16080 24138 13443 (1.05) 13113 (1.03) 16252 24146
lhr34c 8574 7268 8296 6979 13629 (1.59) 8288 (1.14) 8696 7122
lhr71c 16832 13758 16663 15450 24634 (1.46) 15888 (1.15) 17573 15824
sinc18 22968 21680 31581 41445 23785 (1.04) 22084 (1.02) 32334 41563
bbmat 42954 55530 39034 53596 48187 (1.12) 60927 (1.10) 39600 53641
Avg. gain 36.9% 22.7% 22.3% 27.4% 18.9% 22.0%
Set 2
Avg. gain −4.5% −5.5% 0.2% −10.0% −8.8% −0.5%

Table 4.7.12: MA41_UNS: number of entries in the factors with different preprocessings. Number of entries
in thousands. STR: structural strategy. HYB: hybrid strategy. In parenthesis, the ratio between the real size
and the estimated size of the factors.

Table 4.7.13 evaluates the gain in terms of number of operations. We see that CMLS
combined with a structural strategy and a MC77_MC21 preprocessing is clearly better
than the other approaches on Set 1. As already mentioned, it is not interesting to run
CMLS on matrices of Set 2. Table 4.7.13 also shows large variations in the CMLS ordering
time. For example, it increases for the bbmat and lhr* matrices and decreases for the
av41092 and g7jac*sc matrices. The ordering time also increases to 90.2 seconds when
the heuristic of the hybrid strategy increases the fill-in on the mark3jac120sc matrix.

We have also used MC77_MC21 preprocessing in a SuperLU_DIST context, but did
not succeed in getting accurate solutions (see Table B.3.4). This will be discussed in our
conclusion.

4.7.5 Influence on the performance of sparse solvers

In this section, we are concerned by the performance of the MA41_UNS solver (time
and memory used by the factorization phase). We have thus activated the default
amalgamation parameter to run our experiments.

We report the time required by the ordering, the factorization and the solution and the
total time. Note that this total time may not be a good criterion to analyse performance.
Firstly, because in this experimental study we decided to run the two solvers in sequential
mode, but if we had run them in parallel, then the factorization time and the solution
time would have been smaller. Secondly, because in a large range of applications the user
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number of operations ordering time
MC21_MC77 MC64 MC21_MC77 MC64

Matrix STR HYB STR DMLS STR HYB STR DMLS
Set 1
av41092 1537 16321 2539 3664 8.2 12.0 10.4 3.9
g7jac140sc 11118 10708 13907 30254 20.2 23.1 27.7 6.2
lhr71c 12877 6356 5503 5281 27.4 23.9 19.0 7.9
mark3jac140sc 9429 68426 10618 9295 20.3 75.8 13.3 4.4
sinc18 40850 38391 64041 96970 24.8 35.2 27.3 19.7
Zhao2 4884 5707 6471 10080 3.3 4.6 3.4 0.9
bbmat 56950 104520 39553 77900 90.2 80.9 57.5 17.5
Avg. gain 54.1% 31.7% 45.3% −66.4% −73.2% −61.6%
Set 2
Avg. gain −16.5% −16.5% 0.8% −76.5% −78.7% −75.2%

Table 4.7.13: MA41_UNS: number of operations (in millions) and ordering time (in seconds) with different
preprocessings. STR: structural strategy. HYB: hybrid strategy.

may perform several factorizations of matrices which have the same pattern and similar
numerical values and/or call the solution phase with multiple right-hand sides.

We see in Table 4.7.14 that the gains in terms of factorization time are slightly smaller
than the gains in terms of number of operations (in Table 4.7.3 the average decrease in the
number of operations is around 45% on Set 1). For example, we observed that the flops
rate of MA41_UNS tends to be slowest with CMLS than with DMLS: the average flops rate
is nearly 555 MFlops with the DMLS ordering whereas it is around 510 MFlops with the
CMLS ordering.

We also note that on matrices that are relatively small, the factorization is too fast
to compensate for the extra time spent in the analysis. On the 11 larger matrices of
Table 4.7.14 CMLS does not succeed in decreasing the fill-in on the lhr* and mark3jac*sc
matrices. On the other large matrices, we get a better execution time with the CMLS
based approaches. Note that the time for preprocessing is not reported in our tables. We
finally compare in Table 4.7.15, the memory used to perform the factorization. We see
that all CMLS approaches often improve the memory used and that with the MC77_MC21
preprocessing the average reduction is around 28%.

4.8 Concluding remarks

CMLS is an ordering whose originality is to compute simultaneously a row and a column
permutation with the following goals in mind: to reduce the fill-in in the factors and to
preselect numerically good pivots for the factorization. It is based on a constraint matrix
which contains the entries that can be selected and a quotient graph that is used to compute
structural information. After having detailed our algorithmic choices, we identified its
main characteristics:

• It generates factors which are sparser than the combination of DMLS and MC64. It
often involves faster factorizations.
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ordering time factorization time
CMLS with DMLS CMLS with DMLS

MC21_ MC21_
Matrix MC77 MC64 MC77 MC64
av41092 8.3 10.3 3.7 3.0 4.4 6.7
g7jac140sc 20.1 31.2 5.2 17.4 24.0 39.0
g7jac120sc 16.2 23.2 4.0 13.9 20.7 29.9
lhr34c 10.2 8.4 3.6 18.3 7.8 3.8
lhr71c 23.7 20.8 8.0 39.0 15.5 9.1
mark3jac120sc 17.0 10.6 3.4 12.7 12.0 10.1
mark3jac140sc 21.9 12.9 4.3 16.0 13.9 11.4
sinc18 25.0 37.7 14.7 62.2 91.2 146.4
sinc15 10.6 13.2 3.8 20.2 34.7 38.8
Zhao2 3.4 3.4 0.9 7.6 11.4 15.7
bbmat 91.0 67.9 17.5 169.0 67.4 144.1
Avg. gain −70.0% −69.8% 35.1% 20.5%

solution time total time
CMLS with DMLS CMLS with DMLS

MC21_ MC21_
MC77 MC64 MC77 MC64

av41092 0.7 0.8 0.9 8.3 10.3 3.7
g7jac140sc 1.0 1.4 2.4 38.6 56.7 46.7
g7jac120sc 0.9 1.2 1.4 31.2 45.2 35.4
lhr34c 1.3 0.8 0.7 29.9 17.1 8.1
lhr71c 4.5 2.0 1.7 67.3 38.4 18.9
mark3jac120sc 1.7 1.3 1.2 31.5 23.9 14.8
mark3jac140sc 1.5 1.8 2.0 39.5 28.7 17.7
sinc18 1.3 1.8 2.2 88.7 130.7 163.4
sinc15 0.7 0.9 0.8 31.6 48.9 43.4
Zhao2 0.9 0.7 0.9 12.0 15.6 17.6
bbmat 4.3 2.6 3.5 264.4 138.0 165.1
Avg. gain 14.0% 12.7% −8.8% −17.2%

Table 4.7.14: MA41_UNS ordering, factorization, solution and total time (in seconds).

CMLS
MC21_

Matrix MC77 MC64 DMLS
Set 1
av41092 6594 8891 10662
g7jac140sc 14245 19850 27537
g7jac120sc 13396 17098 20669
lhr34c 10800 10014 7967
lhr71c 27067 20279 16657
mark3jac120sc 14481 15722 14599
mark3jac140sc 17592 17740 17588
sinc18 29831 42553 51498
sinc15 13441 20560 21059
Zhao2 10422 12641 15344
bbmat 57290 40030 53132
Avg. gain 28.6% 10.1%

Table 4.7.15: MA41_UNS memory used (in thousands of reals).
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• The larger and the more structurally unsymmetric are our matrices, the more we
improve the total execution time of MA41_UNS.

• CMLS can be parametrized to perform a stable factorization in a MA41_UNS
framework using a structural metric. In a SuperLU_DIST framework using a
hybrid metric, we obtain an accurate solution with SuperLU_DIST on matrices
for which DMLS+MC64 did not converge.

• It enables cheaper preprocessings than MC64 when combined with a solver such as
MA41_UNS which performs numerical pivoting. This point has to be quantified in
our future work.

• It is slower than DMLS. We will discuss future improvements at the end of the
conclusions.

• If C is restricted to the entries of the MC64 matching, then CMLS benefits from
some algorithmic choices that could be implemented in DMLS.

This last point emphasizes that DMLS could also benefit from our new aggressive
absorption, our approach to scaled metrics in order to avoid tie-breaking and our
supervariables which improve the metric computation. These changes may be done
without extra cost and could even decrease the ordering time. Let us illustrate this on
a small example. Let i and j be two indices, let ri and rj be the corresponding rows
and let ci and cj be the corresponding columns. If ri and rj have the same pattern
and ci and cj have different patterns then DMLS will not recognize any supervariables.
During the update of the quotient graph and the metric computation it will access the
four structures. This represents a complexity of O(|Ri| + |Rj| + |Ci| + |Cj| + |Ai∗| +
|Aj∗| + |A∗i| + |A∗j|) . If DMLS had decorrelated row and column supervariables, it
would have recognized a row supervariable. During the update of the quotient graph and
the computation of the metric it would access one row supervariable and the structure of
the two columns. So the complexity would decrease to O(|Ri| + |Ci| + |Cj| + |Ai∗| +
|A∗i|+ |A∗j|) .

We have the following perspectives to improve CMLS. We want to improve the
MC77_MC21 preprocessing to make it robust in a SuperLU_DIST context. Indeed
doubly stochastic scalings have not been precisely studied in our context. In particular,
such a preprocessing could be interesting in the case of non-trivial reducible matrices
(like the mult_dcop_* matrices) since the doubly stochastic limit will have zeros instead
of the entries outside the diagonal blocks. If the iterative process of MC77 is close enough
to convergence, these entries will not appear in C . Unfortunately, the convergence of
these entries is often very slow. That is why one of our targets is to accelerate the doubly
stochastic scaling. Moreover we think that tie-breaking limits MC21 performance and
using information from MC77 scaling could accelerate the maximum matching algorithm.

We also noticed that CMLS is significantly slower than DMLS. As mentioned before, this
gap can be reduced by quasi-dense variable detection that should benefit CMLS more than
DMLS. We could also consider removing from C entries that are either numerically too
small or that have a too large structural metric. Obviously removed variables must not
belong to the matching.
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The constraint matrix C contains information that can be seen as an incomplete
factorization. It is in our intention to use it as a preconditioner and to compare its quality
and cost with existing incomplete LU factorizations.



III





Chapter 5

Adapting a parallel sparse direct solver
to architectures with clusters of SMPs 1

We consider the direct solution of general sparse linear systems based on a multifrontal method. The

approach combines partial static scheduling of the task dependency graph during the symbolic factorization

and distributed dynamic scheduling during the numerical factorization to balance the work among the

processes of a distributed memory computer. We show that to address clusters of SMP (Symmetric Multi-

Processor) architectures, and more generally non-uniform memory access multiprocessors, our algorithms

for both the static and the dynamic scheduling need to be revisited to take account of the non-uniform cost

of communication. The performance analysis on an IBM SP3 with 16 processors per SMP node and up to

128 processors shows that we can significantly reduce both the amount of inter-node communication and

the solution time.

5.1 Introduction

We consider the direct solution of large sparse systems of linear equations Ax = b on
distributed memory parallel computers using multifrontal Gaussian elimination.

For an unsymmetric matrix, we compute its LU factorization; if the matrix is symmetric,
its LDLT factorization is computed. Because of numerical stability, pivoting is required
in these cases in contrast to symmetric positive definite sparse systems where pivoting can
be avoided.

The multifrontal method was initially developed for indefinite sparse symmetric linear
systems [44] and was then extended to unsymmetric matrices [45]. It belongs to the
class of approaches which separates the factorization into two phases. The symbolic
factorization phase is not concerned with numerical values. It looks for a permutation
of the matrix that will reduce the number of operations in the subsequent phase, and
then computes an estimation of the dependency graph associated with the factorization.
Finally, in an implementation for parallel computers, this phase partially maps the graph
onto the target multiprocessor computer. The numerical factorization phase computes
the matrix factors. It exploits the partial mapping of the dependency graph and performs
dynamic task creation and scheduling to balance the work performed on each process [8,

1The MUMPS package, Version 4.3, is available at http://www.enseeiht.fr/apo/mumps. Part of this research was
supported by a grant NSF-INRIA number NSF-INT-0003274. CINES (Montpellier) has provided access to their computer resources.
The work of the second author was supported by the EPSRC Grant GR/R45441.
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7, 11]. The work in this chapter is based on the solver, MUMPS, a MUltifrontal Massively
Parallel Solver [7]. For an overview of the multifrontal method we refer to [38, 44, 82],
for the discussion of other direct approaches to [28, 65, 70].

Our previous work on MUMPS implicitly assumed that our target computer was
a distributed memory computer with uniform memory access and uniform cost of
communication. We show in this chapter the limitations of this approach and indicate
how we can remedy these limitations. Our modifications of the algorithms will affect
both the symbolic factorization and the numerical factorization phases. Our experiments
on the IBM SP3 from CINES (Montpellier) with 16 processors per SMP node and up
to 128 processors shows that we can significantly reduce both the amount of inter-node
communication and the factorization time. We also show that even larger gains can be
obtained on an IBM SP4.

In Section 5.2, we briefly describe the parallelism involved in MUMPS. In Section 5.3, we
present our experimental environment. We discuss in detail the the dynamic scheduling
and the static mapping and the effect of architecture on the related algorithms in
Section 5.4. We discuss, in Section 5.5, how to mix MPI and OpenMP in our approaches.
In the final section, we give some concluding remarks.

We remark that the algorithms presented in this chapter have been integrated into the new
Version 4.3 of MUMPS.

5.2 Description of the parallelism involved in the sparse solver

In this section, we describe the tasks arising in the factorization phase of a multifrontal
algorithm.

The so called elimination tree [44, 81] represents the order in which the matrix can be
factorized, that is, in which the unknowns from the underlying linear system of equations
can be eliminated. For a dense matrix, the elimination tree is a chain and defines a
complete ordering of the eliminations. However, for a general sparse matrix, the definition
yields only a partial ordering which allows some freedom for the order in which pivots
can be eliminated. (This graph is in the most general case a forest, but we will assume in
our discussions, for the sake of clarity, that it is a tree. That is the matrix is irreducible).

One central concept of the multifrontal approach [44] is to group (or amalgamate)
columns with the same sparsity structure to create bigger supervariables or
supernodes [44, 83] in order to make use of efficient dense matrix kernels. The
amalgamated elimination tree is called the assembly tree.

The work associated with an individual node of the assembly tree corresponds to the
factorization of a so called frontal matrix. Frontal matrices are always considered as dense
matrices and we can make use of efficient BLAS kernels and avoid indirect addressing,
see for example [32]. Frontal matrices can be partitioned as shown in Figure 5.2.1.

Here, pivots can be chosen only from within the block of fully summed variables
F11 . Once all eliminations have been performed, the Schur complement matrix F22 −
F21F

−1
11 F12 is computed and used to update later rows and columns of the overall matrix



5.2 Description of the parallelism involved in the sparse solver 145

fully summed rows -

partially summed rows -

fully summed columns

?

partially summed columns

?
[

F11 F12

F21 F22

]

Figure 5.2.1: A frontal matrix.

which are associated with the parent nodes. We call this Schur complement matrix the
contribution block of the node.

The notion of child nodes which send their contribution blocks to their parents leads to
the following interpretation of the factorization process. This is illustrated in Figure 5.2.2
where the tree is processed from the leaf nodes to the root node. When a node of the
assembly tree is being processed, it assembles the contribution blocks from all its child
nodes into its frontal matrix. Afterward, the pivotal variables from the fully summed
block are eliminated and the contribution block computed. The contribution block is then
sent to the parent node to be assembled once all children of the parent (which are the
siblings of the current node) have been processed. If some variables are not eliminated
because of numerical issues, they are delayed and sent to the parent node.
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Figure 5.2.2: Matrix A and corresponding
assembly tree. Fully summed variables (in
boldface) are eliminated. The contribution blocks
of the children (below) are assembled by the
parent node (above).
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A pair of nodes of the assembly tree where neither is an ancestor of the other can be
factorized independently from each other, in any order or in parallel. Consequently,
independent branches of the assembly tree can be processed in parallel, and we refer to
this as tree parallelism or type 1 parallelism. It is obvious that, in general, tree parallelism
can be exploited more efficiently in the lower part of the assembly tree than near the root
node. Additional parallelism is then created using distributed memory versions of blocked
algorithms to factorize the frontal matrices (see, for example, [8, 32]).

The contribution block is partitioned and each part of it is assigned to a different process.
The so called master process is responsible for the factorization of the block of fully
summed variables and will also decide (only during the numerical phase) how many and
which processes (the so called slave processes) will be involved in the parallel activity
associated with this node. We refer to this approach as type 2 parallelism and call the
nodes concerned type 2 nodes (see Figure 5.2.3). Of course, if the node is not large
enough, it will not be split and will be a type 1 node. Finally, the factorization of the dense
root node can be treated in parallel with ScaLAPACK [23]. The root node is partitioned
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and distributed to the processes using a 2D block cyclic distribution. This is referred to as
type 3 parallelism (see Figure 5.2.3).
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Figure 5.2.3: Different types of parallelism in the assembly tree.

5.2.1 Partial task mapping during the symbolic factorization phase

The selection of slaves for type 2 nodes during the factorization phase is an attempt to
detect and adjust a possible imbalance of the workload between the processes at run time.
However, it is necessary to carefully control the freedom given to dynamic scheduling
(see [11] for a detailed analysis). Our sparse solver, MUMPS, addresses these issues by
using the concept of candidate processes. Each type 2 node is associated, during the
symbolic factorization phase, with a limited set of processes from which the slaves can
be selected during numerical factorization. The candidate concept can be thought of as
an intermediate step between full static and full dynamic scheduling. While we leave
some freedom for dynamic decisions at run time, this is directed by static decisions on the
candidate assignment.

The assignment and the choice of the candidate processes is guided by a relaxed
proportional mapping (see Pothen and Sun [91]), slightly modified in [11] (shown here as
step (2) of Algorithm 5.2.1). It consists of a recursive assignment of processes to subtrees
according to their associated computational work. The assembly tree is processed from
top down, starting with the root node. For each child of the root node, we calculate
the work associated with the factorization of all nodes in its subtree, and the available
processes are distributed cyclically among the children of the root node according to
their weight. Each node thus gets its set of so called preferential processes which
guide the selection of the candidate processes in a second bottom-up step (step (3) in
Algorithm 5.2.1). The bottom-up mapping approach takes account of concurrency in the
factorization and maps not only the master tasks of type 2 nodes but also chooses the
candidates for slave tasks of type 2 nodes using the previously computed preferential
processes. The main objective of this step is to balance the work between the processes.
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Algorithm 5.2.1 Task mapping during the symbolic factorization.
(1) Given the assembly tree of a sparse matrix A
(2) Top down tree processing: Relaxed proportional mapping to select so called preferential processes
(3) Bottom up processing of the upper part of the tree: Decide type of parallelism, map the master node
tasks, and choose the so called candidate processes for type 2 slave tasks.

5.2.2 Dynamic task scheduling during the factorization phase

For a better balance of the actual computational work at run time, both the number and the
choice of the slaves of type 2 nodes are dynamically determined during factorization in the
following way (see [8, 7] for further details). When the master of a type 2 node receives
the symbolic information on the structure of the contribution blocks of the children, the
slaves that will be involved in the factorization are selected based on their current work
load, the least loaded processes being chosen from among the candidate processes of
the node. The master then informs the processes handling the child nodes which slaves
are participating in the factorization of the node so that they can send the entries in their
contribution blocks directly to the appropriate slaves. The load of a process is defined here
as the total number of operations ready to be performed on this process. Each process
is in charge of updating its load information and informing the other processes of any
“significant variation” of its load.

5.2.3 Limitation of the approach

Firstly, one should notice that the dynamic choice of the type 2 slaves is limited to the less-
loaded processes from the list of candidates whose selection does not take into account the
non-uniform cost of communication on networks of Symmetric Multi-Processors (which
we will be referred to as SMP architectures).

Thus, improving the mapping of the type 2 slaves can influence the overall performance
of the factorization. Secondly, in [11] it is shown that often most of the work and memory
is spent on type 2 nodes and that when the number of processes and/or when the size of
the matrix increases, the relative number of operations spent in type 2 nodes increases.
For example, on 64 processes, more than 75% of the work is in general spent on type
2 slave tasks. This implies that modifying the mapping of these tasks is critical for
the performance on large matrices. These two observations give both the scope and the
motivation for modifying the scheduling of type 2 tasks on SMP architectures.

5.3 Experimental environment

5.3.1 Target machine

Our main target machine is the IBM SP3 from CINES. It is composed of 29 SMP nodes
of 16 processors (Power3+, 375 Mhz). Each node shares 16 GBytes of memory and
is interconnected to the others by a Colony switch (1 GBytes/s). When not explicitly
mentioned, the results are obtained on this IBM SP3 configuration. We will also provide
results on Regatta SMP nodes with 32 Power4/1.3 Ghz processors with 64 GBytes of
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memory per SMP node and the same network as above at the end of Section 5.4.2.1.
This machine will be referred to as the IBM SP4. We show, in Figure 5.3.1, the
differences in the bandwidth and latency when using point-to-point communications
based on MPI_ISEND and MPI_RECV on the IBM SP3.
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Figure 5.3.1: Influence of IBM SP3 architecture on point-to-point communication (ping-pong based on
MPI_ISEND/RECV).

We observe a difference of 476 µs of latency time (64 µs of latency for intra node
communications and 540 µs for inter node) and a variation of bandwidth of 288 MBytes/s
in the worst case (depending on the message size). Furthermore, we note that these
estimations can be even worse when the network is congested during communication.
For instance, if 16 processes on the same node communicate simultaneously with 16
processes on another node (worst case on our IBM SP3 target machine), the effective
bandwidth will be very poor.

For our sparse solver, the communication pattern is very irregular as it is driven by
dynamic decisions and often involves one-to-many communications. Moreover, messages
from a master of a type 2 node to all its slave processes are of a size between 64 KBytes
and few MBytes. Therefore, from Figure 5.3.1, we are clearly in the area where there is
quite a difference in the bandwidth between internal and external node communications.

5.3.2 Test problems

The matrices described in this section all arise from industrial applications and include
test matrices from the PARASOL Project [2], the Rutherford-Boeing Collection [39] and
the University of Florida sparse matrix collection [25].

In Table 5.3.1, we describe the characteristics of these test matrices arising from real life
problems.

We also consider, as in [9], a set of test matrices obtained from an 11-point discretization
of the Laplacian on 3D grids of either cubic or rectangular shape. The grid sizes
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Matrix name Order No. of entries Origin
PRE2 659033 5959282 Rutherford-Boeing (circuit sim)
G7JAC 59310 837936 Jacobian from CEPII’s
XENON2 157464 3866688 ronis@onsager.chem.mcgill.ca (crystals)
SHIP_003 121728 8086034 Ship structure from production (PARASOL)
BMWCRA_1 148770 5396386 Automotive crankshaft (PARASOL)
AUDIKW_1 943695 39297771 Automotive crankshaft (PARASOL)
INLINE_1 503712 18660027 Inline skater (PARASOL)

Table 5.3.1: Test matrices.

are given in Table 5.3.2. The set of problems is designed so that when the number
of processes increases, the number of operations per process in the LU factorization
stays approximately constant when employing a nested dissection ordering [53]. In the
remainder of this chapter, and when not explicitly mentioned, the number of processes
used for a rectangular/cubic matrix will then characterize the matrix according to
Table 5.3.2.

Procs rectangular cubic
Name NX NY NZ order nnz Name N order nnz

1 RECT120 120 30 15 54000 573360 CUB36 36 46656 495216
8 RECT168 168 42 21 148176 1589448 CUB51 51 132651 1422951

16 RECT184 184 46 23 194672 2092816 CUB57 57 185193 1991865
32 RECT208 208 52 26 281216 3031288 CUB64 64 262144 2826496
64 RECT224 224 56 28 351232 3791536 CUB72 72 373248 4033440

128 RECT248 248 62 31 476656 5154928 CUB80 80 512000 5542720

Table 5.3.2: 3D grid problems.

As we are concerned with understanding the behaviour of our algorithms on a large
variety of different dependency graphs, we use a range of different matrix orderings for
our experiments.

• AMD (Approximate Minimum Degree [4]) has the advantage of being fast and
generating a good ordering for rectangular grids and irregular problems (in terms
of minimizing the number of operations). On cubic grid problems, it involves larger
frontal matrices than other orderings such as SCOTCH.

• SCOTCH ([89, 90]) is a hybrid ordering. It has the advantage of giving a tree with
good parallelism. It computes permutations which result in fewer operations than
AMD in all cases of the test set. However, it is more costly to compute than the AMD
ordering.

• AMF (Approximate Minimum Fill [85, 92]) minimizes fill-in at each pivot selection
based on local heuristics (similar to AMD). It often results in fewer operations than
the other local heuristics but leads to trees with less parallelism.

Note that our default (and most efficient) orderings for the solver are SCOTCH and AMD
and we will focus more on these since we clearly are more interested in obtaining gains
on graphs resulting from these orderings.
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5.4 Task scheduling on heterogeneous architectures

An efficient scheduling has to take into account the balancing of memory, floating-point
operations, and communication. This last point can be very critical when working on
heterogeneous network architectures (for instance clusters of Linux PCs). But common
strategies of scheduling often do not take into account this heterogeneity.

In Figure 5.4.1, we show two groups of processes linked by a slow network. The
proportional mapping of the tree shown on the right does not take this into account and
is inefficient. If the processes 3,4,5 and 6 were assigned to the bigger subtree, the cost of
communication would decrease, and we would have better scheduling.
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Figure 5.4.1: Example of a two-level architecture and of an inefficient mapping of the nodes of the tree onto
the processors. (We assume here that the size of the nodes is proportional to the work in the subtree).

The main computer architecture that we target can be defined as a so called two-level
architecture. Each level is composed of a set of identical processors sharing a common
memory (that is, is an SMP node). This type of architecture includes quite a large set
of commonly used computers such as the IBM SP3, HP-COMPAQ, and clusters of PCs.
Two processors of the same SMP node are thus linked with a faster network than two
processors of two different SMP nodes.

In this section, we will take into account architecture considerations to modify the
dynamic and the static scheduling algorithms of our solver. We first describe architecture
considerations in the fully dynamic version v4.1 of the MUMPS solver (the master of a
type 2 node has complete freedom to choose its slaves among all the other processes).
Then, we will consider the impact of architecture considerations also on the choice of the
candidate processes; this code will be referred to as Cand.

We have compared the factorization time on different configurations (4 processes on the
same SMP node, 4 processes on 2 SMP nodes, 4 processes on 4 SMP nodes...). The largest
variation was obtained when comparing 16 processes on the same node with 8 processes
on two SMP nodes. Those results are reported in Table 5.4.1 in order to illustrate the
potential of an algorithm which takes into account of the architecture of the machine,
We notice variations of about 25 % in the factorization time. Indeed, in the rightmost
column, we have the effect of network congestion in addition to the extra cost of external
node communication
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Matrix Factorization Time (sec)
Name 1 SMP node 2 SMP nodes
CUB51 73.7 91.3
CUB57 105.1 130.7
CUB64 226.8 282.4

RECT168 43.2 53.6
RECT208 132.5 166.2

PRE2 70.4 83.0

Table 5.4.1: Influence of architecture on the performance. LU factorization with 1 × 16 and 2 × 8
processes (AMD ordering and v4.1 code).

5.4.1 Improving the fully dynamic solver (v4.1)

During the factorization, when a process becomes the master of a type 2 node, it examines
the load (measured in flops) of the other processes. Based on this information, it decides
both the number of slave tasks to create and the slave processes to which work will be
assigned (see Section 5.2.2).

5.4.1.1 Modelling

We assume that each process has information on the load of the other processes. To
take into account the distribution of the processes, we decided to penalize the load of the
processes which are not on the SMP node of the master. If process j is the master of a
type 2 task, it computes the penalized load, referred to as loadreal (in number of flops), of
process number i . The dynamic scheduling then uses the penalized load function when
determining the least-loaded processes.

Algorithm 5.4.2 Computation of loadreal(i) by master j .
if i is on my SMP node then

if load(i) < load(j) then loadreal(i)← load(i)− load(j)
else loadreal(i)← load(i)

else loadreal(i)← penalty(load(i))

In all cases, we consider that a process which is on the same node and less loaded than
the master is a good potential slave (its loadreal is strictly negative). Indeed, when the
master sends to it the rows of the contribution block, it will be ready to treat them. On
the other hand, since we ensure that penalty(load(i)) is positive, processes which are
not on the SMP node of the master will be selected after the good potential slaves. In our
experiments, we apply three basic rules for the penalty function, where Q is the number
of bytes of information that has to be transmitted between the master and its slaves and
λ , α and β are parameters that will be further discussed:

penalty(load(i)) = λ× load(i) , (5.4.1)

penalty(load(i)) = load(i) + α×Q + β , (5.4.2)

penalty(load(i)) =∞+ load(i) . (5.4.3)
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Rule (5.4.1) penalizes the processes which are far away and loaded. It corresponds to a
simple scaling of the loads. It prevents the selection of slaves which will not be ready to
make a reception in the near future and thus reduces congestion of network and buffers. λ
is a dimensionless parameter and should be linked to the size of the SMP nodes. Indeed,
if we work with large SMP nodes, there is more danger of congestion in the network and
λ has to be relatively large to prevent the selection of too many far away slaves.

Rule (5.4.2) corresponds to a modelling of the network. A good knowledge of the network
is required to choose the values of α and β and to understand their physical meanings.
The master of a type 2 node wants to select the slaves which will compute the fastest
answer. We assume that each process has the same speed ( vproc in Mflops/s) on all
nodes, that the bandwidth between processes on the same node is v1 and between two
different nodes is v2 , that the latency time on the same node is tlat1 and tlat2 between
different nodes, that communications and work do not overlap, and that the values of load
are correct. Let k be a process on the SMP node of the master and l a process on another
SMP node. Let T1 be the time needed by k and T2 the time needed by l to do its work
if they are chosen as slaves. With these assumptions, we have:

T1 =
load(k)

vproc

+ tlat1 +
Q

v1

+
work as slave

vproc

and

T2 =
load(l)

vproc
+ tlat2 +

Q

v2
+

work as slave

vproc
.

To make a good decision we have to compare these two values, which is equivalent to
comparing loadreal(k) and loadreal(l) where:

loadreal(k) = load(k) , and loadreal(l) = load(l) + αQ + β ,

with

α = vproc × (
1

v2
− 1

v1
) , and β = vproc × (tlat2 − tlat1) .

Rule (5.4.3) will never (if there is no constraint on the minimum number of processes that
must be created on a given node) take, as a slave process, a process located on a different
node from the master. When a minimum number of slaves is imposed (often because of
memory/buffer constraints) then a sorting based on an initial load is still used (we have
used the notation ∞+ load(i) for this purpose).

5.4.1.2 First experiments and tuning of the algorithms

Different values for α , β and λ in the previous formulae have been tested. The best
results on the IBM SP3 were obtained for λ = 4 , α = 1.5 and β = 50000 . Rule (5.4.3)
provided the best results on matrices involving nodes with relatively large contribution
blocks such as in the cubic grid problems. For this reason, we introduce a threshold
(of 3MBytes) in the strategies below. Rule (5.4.2) seemed to be more stable on irregular
problems. Based on a first set of experiments, not reported here, we retained the following
two strategies:
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Strategy SCAL (scaling):
if Q < threshold then

penalty(load(i)) = λ× load(i)
else penalty(load(i)) = 2× λ× load(i)

Strategy NETW (network modelling):
if Q < threshold then

penalty(load(i)) = load(i) + α×Q + β
else penalty(load(i)) = 2× (load(i) + α×Q + β)

We first show, in Table 5.4.2, results obtained on 16 processes with our largest problems.

SCOTCH AMD
Matrices 16x1 8x2 16x1 8x2

v4.1 v4.1 SCAL NETW v4.1 v4.1 SCAL NETW
CUB64 92.8 121.7 124.2 116.5 226.8 282.4 286.9 294.6
RECT208 72.8 81.0 76.8 80.4 132.5 166.2 135.3 136.7

Table 5.4.2: Results with different distributions of 16 processors on MUMPS unsymmetric code. 16x1: 16
MPI processes on 1 SMP node. 8x2: 16 MPI processes distributed on 2 SMP nodes.

On RECT208 we succeeded in eliminating more than half of the penalty of the
architectural distribution of the processes (see Table 5.4.2). This comes from the fact
that there is enough tree parallelism, which enables us to decrease the number of slaves
without affecting parallelism. We almost obtain the same factorization time on 16
processes on 1 SMP node and on 16 processes distributed on 2 SMP nodes.

We do not obtain gains on 2 SMP nodes and 16 processes (8 processes per nodes) for
cubic grids (see Table 5.4.2). An explanation could be the physical limitation of locality
(number of processes per SMP node). This limitation has more effect on cubic-grid
problems and on small size SMP nodes. For instance, using AMD we obtain an assembly
tree with large type 2 nodes and the master cannot keep the data on its SMP node because
of constraints on the granularity of the task for slaves of type 2 nodes due to both memory
and parallelism issues. We will see, however, in the following that, on more processors,
there is still scope for interesting gains even on cubic matrices.

SCOTCH AMD
Matrices Ops(×109) v4.1 Arch Ops(×109) v4.1 Arch
CUB64 744 107.8 81.0 1722 244.0 174.9
RECT208 511 81.0 62.3 657 142.7 123.7

Table 5.4.3: Influence of architectural decision on 32 processors (16 processes on each SMP node). LU
factorization time in seconds.

Moreover, we want our algorithms to be as independent as possible from the low-level
machine architecture characteristics. The NETW strategy aims to model the network. It
turns out that it strongly depends on the target machine characteristics and potentially on
the load on the machine. Because of this, in the remainder of this chapter, we will only
consider the SCAL strategy. This will be referred to as the Arch code in the remainder
of this chapter.
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Figure 5.4.2: Influence on communication when using SCOTCH. From left to right: unsymmetric code on
rectangular grids, unsymmetric code on cubic grids, symmetric code on rectangular grids, symmetric code
on cubic grids. Problem sizes vary with number of processes as given in Table 5.3.2.

We obtain good speedups (between v4.1 and Arch codes) on two SMP nodes with 32
processes (see Table 5.4.3). This illustrates our argument about issues of congestion (as
we deal with the worst possible case of 16 processes communicating with 16 processes
of another SMP node). On our target architecture, we obtain gains of between 10 %
and 40 % with an average gain of 25 % . In Figure 5.4.2, we show the decrease in the
volume of total communication (TotComm) and in the volume of external communication
(ExtComm). Comparing Figures 5.4.2 and 5.4.3, we see that there is a link between
the volume of external communication and factorization time for the LU factorization.
Indeed, the architecture-aware algorithm prevents the masters from doing expensive
communications, and hence the factorization time correspondingly decreases. In the case
of the LDLT factorization, the relative variation of the total amount of communication
is not negligible compared to the relative variation of the external communication. Thus,
the factorization time with the Arch version of the symmetric code might be influenced
more equally by the combination of these two variations. Analysing the behaviour of
v4.1 for an LDLT factorization shows that it does not take much advantage of tree
parallelism. For each type 2 task, the master tends to select most of the other processes as
slaves. In the Arch version, the master will select fewer processes that are not on its SMP
node. In this case, MUMPS will thus use the tree structure more to provide parallelism.
That is why the volume of total communication decreases in the same way as the external
communication.

Since our strategies penalize some processes, taking into account the SMP architecture
during dynamic scheduling will lead to a reduction in the average number of slaves (see
Figure 5.4.4). This corresponds to a decrease in the amount of tasks created for type 2
parallelism and is obviously most critical near the root where tree parallelism is limited.
Our algorithms have, however, been designed to automatically maintain a minimum level
of parallelism. Furthermore, memory constraints might also force the masters to work
with slaves on other SMP nodes.

The threshold of 15 in Figure 5.4.4 corresponds, on the IBM SP3, to the maximum number
of slaves that can be chosen on the SMP node of a master. The comparison of results
obtained with the symmetric and the unsymmetric codes on cubic grids (see Figures 5.4.3
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Figure 5.4.3: Factorization time when using SCOTCH. From left to right: unsymmetric code on rectangular
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Figure 5.4.4: Influence on the average number of slaves of the type 2 node when using SCOTCH. From
left to right: unsymmetric code on rectangular grids, unsymmetric code on cubic grids, symmetric code on
rectangular grids, symmetric code on cubic grids. Problem sizes vary with the number of processes as given
in Table 5.3.2.

and 5.4.4) illustrates the effect of different algorithm and memory constraints. On 128
processes with the symmetric code, our constraints prevent us from reducing the average
number of slaves enough. We then do not obtain an improvement in factorization time
comparable to that obtained for the unsymmetric code for which the parallel management
of type 2 nodes (see [8]) introduces less constraints.

We have thus observed two limitations of our strategy of taking into account the SMP
architecture:

• the physical configuration (number of processes per SMP node) prevents us from
keeping the data on the same SMP node,

• too strong a penalty of processes which do not belong to the SMP node of the master
of a type 2 task decreases type 2 parallelism too much and can affect the efficiency
of the code.

In conclusion, we have thus succeeded in accelerating the factorization step of v4.1
by architectural considerations in our dynamic scheduling algorithm. In order to obtain
further gains, it seems necessary to combine our modification of the dynamic scheduling
with improvements to the candidate based algorithm with relaxed proportional partial
mapping. On machines like the IBM SP3, we thus also guide the static mapping using
architectural knowledge.
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5.4.2 Influence of the architecture on candidate based algorithms

In this section, we describe how the architecture of the computer can be taken into account
to influence the decision taken by the MUMPS version based on candidate processes
(referred to as Cand in the following). In Section 5.4.1.2, we have described how the
dynamic scheduling can be influenced by our algorithm and that work naturally extends
to the candidate concept. We can limit the computation of loadreal of Algorithm 5.4.2 to
the list of the candidate processes.

To facilitate the description of our algorithm we introduce the followings definitions and
notations.

DEFINITION 4.1. The SMP node of a process i will be noted SMP (i) . The size of an
SMP node is the number of processes on it. For a process i , the size of its SMP node will
be denoted by |SMP (i)| .

DEFINITION 4.2. The distance between two processes i and j is equal to 0 if i and
j are on the same SMP node. We will denote this by dSMP (i, j) . For multilevel
architectures, we define dSMP (i, j) as a function of the average time to communicate
between i and j . In our target architectures, we set dSMP (i, j) = 1 when i and j are
not on the same SMP node.

DEFINITION 4.3. A process i is said to be SMP predominant among a list of processes
if it minimizes

∑

j∈list dSMP (i, j) .

During the symbolic factorization, a partial mapping of the tasks is performed and we
thus want our approach to merge information from the proportional mapping and from
the architecture. During the static mapping a master and a list of so called candidate
processes are associated with each type 2 node. We thus add two new controls:

• the candidates are chosen according to an architecture criterion.

• a master of a type 2 node must have enough candidates on its SMP node in order to
keep communication as local as possible.

During the top-down phase of the task mapping (Algorithm 5.2.1), the subtrees are sorted
layer-wise in decreasing order of size. Then the preferential processes are recursively
assigned cyclically (according to the MPI process numbering in the communicator) to
the subtrees. To take into account the architecture, we assign the preferential processes
cyclically but, instead of using MPI process numbering, we use the positions of the
processes in reordered lists. We only build the reordered list of processes for the root layer
so that the distance between two neighbours is minimized and the processes are sorted in
decreasing order of the size of their SMP node (see step (2’) of Algorithm 5.4.3). In a
more formal way, L is a list which satisfies the two following conditions:

• L minimizes
∑nprocs

i=1 dSMP (L(i), L(i + 1)),

• for any two processes i and j , if |SMP (i)| > |SMP (j)| , then i is sorted before
j .
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Algorithm 5.4.3 Task mapping with architecture consideration during the symbolic factorization.
(1) Given the assembly tree of a sparse matrix A
(2’) Top down
-Build the reordered list L of processes to minimize the distance between neighbouring processes.
-Tree processing: relaxed proportional mapping to select preferential processes with cyclic assignment
on L
(3’) Bottom up processing of the upper part of the tree: decide type of parallelism, map the master node
tasks using the architecture criterion, and choose candidate processes for type 2 slave tasks.

In the recursive implementation of the proportional mapping, we can expect more or
less to keep these properties throughout the tree. Thus, we increase the probability of
having lists of preferential processes with fewer SMP nodes represented than in the Cand
version. We also expect to map the largest tasks onto a smaller number of SMP nodes,
because the largest SMP nodes are sorted at the beginning of the list and for each layer,
large tasks are mapped first (see [11]). For instance, on the example of Figure 5.4.1, we
will have L = [ P3 P4 P5 P6 P1 P2 ] . Then the strict proportional mapping, influenced
by this reordered list, will affect the preferential list L1 = [ P3 P4 P5 P6 ] for the biggest
subtree and the list L2 = [ P1 P2 ] for the other subtree, and so forth. For this example,
we get a mapping that minimizes the communication costs.

During the bottom-up phase we guide the choice of the master processes using
the preferential list. We add an architecture criterion in order to minimize the
communication cost from the master to its slaves: a preferential process can be selected
as a master of a type 2 node if and only if it is SMP predominant within the preferential
list.

In the remainder of this chapter, we refer to the approach combining the use of Algorithm
5.4.2 and Algorithm 5.4.3 as v4.2 since it is available in the new release 4.2 of the
MUMPS package.

This thus gives us four versions of the code that we can summarize as follows.

• v4.1 Original code that assumes all processes can be slaves of type 2 nodes.

• Cand v4.1 but with choice for slaves restricted to set of candidate processors.

• Arch In the dynamic choice of slaves during factorization account is taken of
locality (using modified load values).

• v4.2 Arch plus a modification of the candidate selection in analysis to encourage
communication within SMP nodes.

5.4.2.1 Results

We have run MUMPSwith SCOTCH and AMF orderings. In this section, we focus on results
with the SCOTCH ordering since it is the most general purpose ordering that provides, in
general, the best performance in terms of flop counts and timings on a large class of
matrices. In Tables 5.4.4 and 5.4.5, we show results obtained on 64 processes (4 SMP
nodes) and 128 processes (8 SMP nodes), respectively. We focus on the rectangular and
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Matrices Code Ops v4.1 Arch Cand v4.2
Rectangular SYM 3.9D+11 39.3 27.7 27.4 27.1

UNS 7.9D+11 93.2 70.5 76.6 68.6
Cubic SYM 1.1D+12 83.2 70.4 72.6 73.8

UNS 2.3D+12 252.7 191.0 229.8 204.2
G7JAC UNS 1.6D+11 35.2 31.2 33.3 26.8
XENON2 UNS 1.1D+11 11.7 10.4 10.2 8.3
PRE2 UNS 1.7D+11 26.2 21.0 23.5 19.4
BMWCRA_1 SYM 6.4D+10 9.0 5.8 6.8 4.8
INLINE_1 SYM 1.3D+11 10.0 8.2 8.8 8.3
AUDIKW_1 SYM 5.4D+12 300.9 249.7 289.7 275.2
SHIP_003 SYM 9.2D+10 11.0 6.5 8.3 7.4

Table 5.4.4: Influence of architecture on 64 processors using the SCOTCH ordering. SYM: LDL T

factorization. UNS: LU factorization. Time in seconds.

Matrices Code Ops v4.1 Arch Cand v4.2
Rectangular SYM 7.1D+11 62.7 43.4 37.1 35.5

UNS 1.4D+12 365.9 273.9 136.1 111.9
Cubic SYM 2.3D+12 138.7 118.7 93.9 98.7

UNS 4.7D+12 896.8 296.5 294.6 272.9
AUDIKW_1 SYM 5.4D+12 211.1 192.1 192.4 184.5

Table 5.4.5: Influence of architecture on 128 processors using SCOTCH ordering. SYM: LDL T

factorization. UNS: LU factorization. Time in seconds.

cubic grids and a large symmetric irregular problem, AUDIKW_1, because we want to
keep reasonable granularity.

Our previous remarks on communications, architecture constraints and decrease of type 2
parallelism also apply to this set of results. For instance, during the factorization of PRE2
on 64 processors, the total amount of communication varies from 5.2 GB (v4.1) to 5.4
GB (v4.2) while the external communication decreases from 4.3 GB to 2.3 GB and the
average number of slaves decreases from 14 to 10.5. It is important to note that the MPI
numbering on the IBM SPs is the same as the architecture numbering. This property is,
however, not defined in the MPI standard and will be much less likely to be satisfied on
clusters of Linux based PCs. Even if, because of this property, our algorithm has little
impact on our target machines during the top-down phase, it is important to apply it in
a more general context, as was shown when running on the fully dynamic version of the
code, not driven by a “good” candidate list of processes. This explains why our algorithms
are less effective on the Cand code (see Tables 5.4.4 and 5.4.5).

Let tj denote the time to execute a given job involving a total of opsj floating-point
operations on j parallel processes. Then, we define the scaled speedup, Sj , by

Sj =
t1/ops1

tj/opsj

.

In Figure 5.4.5, we show the scaled speedup for the regular matrices with SCOTCH
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ordering. It shows that we obtain good improvements over v4.1. Moreover, the relative
speedups between 16 and 32 processes, 32 and 64, 64 and 128 are also quite good. The
average relative scaled speedup is nearly 1.5 when doubling the number of processes
(between 16 and 32 processes, 32 and 64 etc ...). v4.2 is clearly the most robust even
in our case where the “natural” process numbering of MPI tasks in the communicator
is already “good”. We also gain in the stability of the performance of the code when
including architecture considerations. Indeed when the architecture consideration is
activated in the code, MUMPS becomes less sensitive to the partial static mapping. If
we compare the gap Area1 between the graphs for v4.1 and of Cand, with the gap
Area2 between the graphs for Arch and v4.2, Area2 is smaller than Area1 . In other
words, the improvement shown between the graphs for Arch and v4.2 is less than the
improvement between v4.1 and Cand.

Matrices Code v4.1 Arch Cand v4.2
Rectangular SYM 46.8 18.5 27.1 21.0

UNS 65.4 36.2 40.2 27.3
Cubic SYM 131.5 56.0 63.7 52.8

UNS 213.0 97.5 96.3 71.4
G7JAC UNS 17.5 14.7 17.6 10.7
XENON2 UNS 8.1 5.7 9.2 5.5
PRE2 UNS 18.0 12.2 26.5 15.6
BMWCRA_1 SYM 12.9 5.6 4.1 2.8
INLINE_1 SYM 15.2 8.5 6.9 5.8
AUDIKW_1 SYM 359.6 180.1 214.0 209.0
SHIP_003 SYM 15.4 6.1 12.5 6.8

Table 5.4.6: Factorization time on IBM SP4 on 64 processors (2 SMP nodes) using SCOTCH ordering.
SYM: LDLT factorization. UNS: LU factorization.

Table 5.4.6 shows the MUMPS factorization time on 2 SP4 SMP nodes. We observe the
same behaviour as on the IBM SP3. The gains between the different versions of MUMPS
are better on this architecture because the congestion of the network is even more critical:
32 processors communicate with 32 processors on another node.

5.5 Hybrid parallelization

Another interesting possibility with SMP architectures is to use hybrid parallelization.
Indeed on the same node, we can use a shared memory paradigm by means of the
multithreaded BLAS library ([1], [30], [31]). Our first experiments on the IBM SP3 show
that, on our application, the time to factorize on 2 MPI processes is comparable with that
obtained for one MPI process with two OpenMP threads. Thus we can expect gains due
to a decrease of the communication volume on a larger number of processes by halving
the number of the MPI processes and taking two OpenMP threads for each MPI process.
We first tried to evaluate which rate of OpenMP threads per MPI process would be best.
As shown in Table 5.5.1 the performance of our solver can be improved by using 2 or 4
OpenMP threads per MPI process.

On a large number of processors, we see in Table 5.5.2 that significant performance gains
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MPI process OpenMP threads Factorization time (sec)
per MPI process AMD

16 1 37.6
8 2 29.8
4 4 31.1
2 8 41.1
1 16 52.2

16 2 77.5
8 4 70.9

Table 5.5.1: Hybrid parallelization on 1 node (16 processors) on a cubic grid (46x46x46) (v4.1 used).

can be obtained by mixing OpenMP and MPI. One reason is that a 1D block partitioning
is less scalable than a 2D block partitioning (see [94]). When we use OpenMP, each
task (master or slave task) will be subdivided leading to a pseudo 2D block partitioning
among OpenMP threads. Results with the AMF ordering illustrate this point well. When
running the AMF ordering, we obtain a tree with very limited parallelism which can be
approximated by a chain. Thus we often have a sequence of type 2 nodes for which the
gain from this implicit 2D partitioning is even more critical. We develop this argument in
the next paragraph.

SCOTCH AMF
Procs MPI OpenMP RECT CUB RECT CUB

Tasks Threads Ops Facto Ops Facto Ops Facto Ops Facto
/ MPI Time Time Time Time

16 16 _ 2.2 36.2 4.1 56.7 1.7 34.0 8.0 131.4
8 2 25.7 44.6 40.4 101.7
4 4 33.6 47.8 46.9 114.9

32 32 _ 5.1 60.5 7.4 82.4 4.6 71.6 16.8 280.8
16 2 46.5 72.4 68.9 205.2
8 4 46.4 75.3 72.0 190.1

64 64 _ 7.9 68.5 23.8 204.2 8.5 163.9 41.1 626.2
32 2 61.8 173.7 130.2 422.5
16 4 52.0 145.4 117.1 316.2

Table 5.5.2: Unsymmetric code (v4.2). RECT : Rectangular grid. CUB : Cubic grid. Ops : Total number
of operations (×1011 ). Time in seconds. Problem sizes as given in Table 5.3.2.

Let C be a chain of n nodes of type 2 ( C(1) , ..., C(n) ), and Tmi
be the time needed

to compute the fully summed rows of C(i) on 1 process (that is, the time taken by the
master of C(i) to do its work when we are not using OpenMP threads). Let Tsi

denote
the time needed to compute the partially summed rows of C(i) on 1 process (it is the time
needed to compute the slave part of C(i) if the master of C(i) chooses only one slave
and if we are not using OpenMP threads). Let Nmpi be the number of MPI processes,
Nomp be the number of OpenMP threads per MPI process and Nprocs = Nmpi × Nomp

be the total number of processes calling BLAS routines. Finally, let Ttot denote the total
time needed to treat the chain. If we assume perfect scalability and no communication
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overheads, we then have

Ttot =
n∑

i=1

max(
Tmi

Nomp

,
Tsi

Nprocs −Nomp

).

If Nomp is small, Ttot tends to be determined by the terms Tmi
/Nomp , otherwise it

tends to be determined by the terms Tsi
/(Nprocs −Nomp) . Thus, for a given chain there

exists an optimum depending on Nomp (see Table 5.5.2). For example, we halve the
factorization time on a cubic grid on 64 processors with 4 OpenMP threads per MPI
process, whereas one OpenMP thread is best on rectangular grids with 16 processes. A
safe compromise can be obtained with 2 OpenMP threads per MPI process.

To summarize the gains obtained and to give an idea of the parallelism obtained by
our final code, we show, in Table 5.5.3, the scaled speedup with and without hybrid
parallelism in Version 4.2 of our code. We first see that the gains due to OpenMP on
a single SMP node propagate but do not extend to more SMP nodes. On the other hand,
we also see that there is additional speedup from 32 to 64 processors, once we have paid
the cost for using more than only one SMP node.

Grid OpenMP Procs
type (on/off) 16 32 64

Rectangular off 6.7 9.7 13.3
on 9.9 12.7 17.5

Cubic off 7.2 9.7 12.5
on 9.9 11.0 17.6

Table 5.5.3: Comparison of scaled speedup between pure MPI (off) and hybrid parallelization (on) (v4.2,
SCOTCH and LU factorization). For the hybrid version we report the best scaled speedup (2 or 4 OpenMP
threads per MPI process).

5.6 Conclusion

Our study of the distributed memory general sparse solver MUMPS has shown that
its performance with respect to computation time can be improved on networks of
SMPs. In this chapter, we have presented scheduling algorithms designed to address the
problem of heterogeneous architectures. Our approach consists of including architectural
considerations during both the partial static mapping of the tasks onto the processes and
during the dynamic scheduling.

We have illustrated key properties of our approach by detailed case studies on a wide range
of test problems. The comparison of versions with and without architecture considerations
has illustrated the main benefit of our approach, an improved scalability when running on
a two-level architecture represented by an IBM SP3 with up to 8 SMP nodes and 128
processors. Even greater benefits are shown by our new approaches on an IBM SP4.
Finally, we have discussed the mixing of OpenMP and MPI in order to further improve
the scalability of the code.

We want to mention that the algorithms presented in this chapter, although only
experimented on such target computers, will naturally adapt to a more general framework
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of computers with heterogeneous processors and multilevel architectures. Most of the
additional effort that has still to be done is in the development of middleware tools that
will enable us to have a good estimation (with probably dynamic readjustments) of the
parameters characterizing such a multilevel architecture. This will clearly require further
significant work that is outside the scope of this chapter but that will benefit from the
algorithms and results presented here.
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Chapter 6

Hybrid scheduling for the parallel
solution of unsymmetric matrices
In this chapter, we consider the problem of designing a dynamic scheduling strategy that takes into account

both workload and memory information in the context of the parallel multifrontal LU factorization. The

originality of our approach is that we base our estimations (work and memory) on a static optimistic scenario

during the analysis phase. We then use it during the factorization phase to constraint the dynamic decisions.

The task scheduler has been redesigned and improved to take into account these new features. Performance

analyses show that the memory estimation becomes very close to the memory used and that even in a

constrained memory environment we decrease the factorization time with respect to the initial approach.

6.1 Introduction

The work presented in [64] has shown how to use a memory based dynamic scheduling
to improve the memory management of a parallel multifrontal approach. However, the
authors also noticed that they can significantly improve the memory behaviour but at
the cost of an increase in the factorization time. Another important issue concerns the
overestimation of the memory needed for parallel factorization. Indeed, even if in [11] the
authors have shown that with the concept of candidate processors the memory estimates
can be significantly reduced, there is still an important and unpredictable gap between real
and estimated memory. Hence another target will be to decrease the memory estimates of
the analysis and to respect them during the factorization.

In this chapter, we propose a scheduling approach that uses both memory and workload
information in order to obtain a better behaviour in terms of factorization time, estimated
memory and memory used in the context of the parallel LU factorization. We will
explain in the conclusions why the symmetric case is in fact more complicated. The
main principle of our approach is to use an optimistic scenario during the analysis that is
then relaxed to offer flexibility for the factorization phase.

To conclude this introduction section, we first describe in 6.1.1 and 6.1.2 two
functionalities which have been added to MUMPS since the work described in the previous
chapter. In Section 6.1.3, we then describe the constraints and objectives of our work.
This chapter is then organized as follows. Section 6.2 introduces the quantities that
will influence the dynamic decisions or our dynamic scheduling algorithm described in
Section 6.3. In Section 6.4 we then present experimental results on large unsymmetric
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matrices. We advise the reader to refer to Section 5.2 or to [8] if he is not familiar with
the types of parallelism involved in MUMPS.

6.1.1 The four zones

Initially, the assembly tree was separated into two zones, the upper part of the tree (above
layer 0) and the bottom part of the tree (below layer 0) where each subtree is mapped onto
a unique process.

We decided to separate the tree into 4 zones instead of 2 (see Figure 6.1.1). Zone 4
corresponds to the bottom of the tree. It was suggested in the conclusion of [11] that
the mapping of the upper part of the assembly tree could be separated into two zones.
The first zone (zone 1) would correspond to a relaxed proportional mapping whereas the
second zone (zone 2) would correspond to a stricter proportional mapping. Hence the
flexibility offered at the top of the tree would enable the master processes to correct the
mistakes or the unbalances due to the variations of the load of the machine. Guided by
this remark, zones 1 and 2 have been implemented.

Zone 2

Zone 1

Zone 3 Sx

Sx Sy

Sy

Sy

Sy Sy

Sx

L

Zone 4

0

Relaxed proportional mapping

Strict proportional mapping

Fully dynamic on clusters of processes

Figure 6.1.1: The four zones of the assembly tree. Sx and Sy are sets of preferential processes.

Moreover we decided to add another zone (zone 3) in which each son inherits the
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preferential processes from its parent. This choice was motivated by the following
experimental observations:

• on a small number of processors the fully dynamic code is very competitive,

• increasing the number of candidate processes in the first layers decreases the size
of the buffers (if a node with few candidates and a large contribution block appears
then the size of the communication buffers and the memory estimates increase),

• with more candidates above zone 4 the proportional mapping is better respected on
layer 0,

• on clusters of SMPs, this will naturally take into account the memory locality.

The limit of zone 3 depends on a parameter procmax which corresponds to a number of
processes. During the top-down approach of the proportional mapping, if the number of
preferential processes of a node x is smaller than or equal to procmax then x and all
its descendants (above zone 4) belong to zone 3 and have the same set of preferential
processes (see sets Sx and Sy in Figure 6.1.1).

The extra freedom given in zone 1 does not perturb too much the memory estimation of
MUMPS version 4.3 which is based on an average worst case. It is not the case for zone 3.
In this zone, the memory estimates behave like the fully dynamic code which has shown
that it severely overestimates the required space. That is why the four zones approach will
not be included for the standard version of the experimental section (Section 6.4). We will
give more details about this issue in Section 6.2.1.

6.1.2 Irregular tasks scheduling

In [64], the authors developed an approach with irregular partitions to decrease the
memory usage. We will also use this capability (actually we need it) to offer more
flexibility to our new scheduling strategy.

6.1.3 Our constraints and objectives

When the target is time reduction, the master process of each node determines a partition
in order to “balance as much as possible the workload” between the processes. In our
context, we have the same objective, but also have to respect additional constraints. In
this section, we first present the memory constraints taken into account during scheduling.
Then, we give a generic formulation of this new constrained problem.

We recall that a frontal node is composed of fully summed rows and partially summed
rows. The partially summed rows are given to slave processes which store factors and
contributions blocks (see Figure 6.1.2.a).

The different criteria which are used to estimate the memory constraints are presented
below:

• Amount of memory available. It corresponds to the remaining memory which
can be used to store the contribution blocks and the factors. It varies during the



168 Hybrid scheduling

���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������

���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������

���������
���������
���������
���������

���������
���������
���������
���������

����

�����	�	npiv

nfront

nb_row

block of factors

contribution block

(6.1.2.a) Regular partition of a type 2 node on 4 slaves.

nfront

(6.1.2.b) Regular partition of a type 2 node on 5
slaves.

Figure 6.1.2: Examples of partitions of a type 2 node.

factorization. For each process i , memi will refer to this quantity (see Section 6.2.1
for more details).

• Maximum factor size. It corresponds to the maximum size of the factors that a
master can give to a slave process i . It will be denoted by facti . This quantity is
related to both the static scenario used to estimate the memory during analysis and
to dynamic information obtained during factorization (see Section 6.2.2).

• Maximum buffer size. Since we want to be able to send and receive messages
corresponding to a slave task, we take the most restrictive size between the send and
receive buffers. We give more details about the size of the send and receive buffers
in Section 6.2.3. For each process i , bufi will denote this quantity.

We now define the notation used to describe our algorithms. Let us consider a node of
the assembly tree of order nfront with npiv variables to eliminate. We recall that the
expressions below correspond to the unsymmetric case (see Section 6.5 for the symmetric
case). Let nb_row be a function such that for each slave process i and for a buffer size
bufi ,

nb_row(bufi) =
bufi

nfront
,

for an available memory memi ,

nb_row(memi) =
memi

nfront
,

for a maximum factor size facti ,

nb_row(facti) =
facti
npiv

,

for a maximum number of operations loadi ,

nb_row(loadi) =
loadi

npiv(2× nfront− npiv)
.
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If the master of a node knows the above quantities, it knows the maximum number of
rows that it can assign to each candidate. During the factorization, each master has to
“balance as much as possible the workload” between its s1 , s2 , . . . , sk candidates
giving them n1 , n2 , . . . , nk rows respectively such that for each slave i , ni ≤
min{nb_row(bufi), nb_row(memi), nb_row(facti)} .

Even if the problem of finding the best workload balance which respects the memory
constraints is easy to solve theoretically, in practice, communication schemes, granularity
and the topology of the assembly tree need to be considered to answer this question. That
is why we do not give, in this section, more details about the meaning of “balance as much
as possible the workload”. Note also that the above problem may not have a solution
because the memory constraints are too restrictive. These points will be examined in
Section 6.3.

6.2 Static and dynamic estimates

This section describes the measures that are used by our scheduler. Some of these
quantities are computed during the analysis (the memory estimations, the size of the
buffers, the size of the area reserved for factors), some are also adjusted during the
factorization (the memory available to store contribution blocks, the memory available
to store factors).

6.2.1 Memory estimates and available memory

We first explain how we decrease the total memory allocated compared to the standard
version of MUMPS.

After mapping the candidates, the memory estimates are performed during a bottom-
up processing of the assembly tree. For each process involved in the computation of
a node, its memory estimate is decreased when a contribution block is removed and is
increased when assemblies, activation of tasks and storage of factors occur. Note that
it is only during factorization that for a type 2 node we decide how many and which
processes among the candidate processes will be used to help the master process in its
task. For type 2 nodes our new estimates, computed during the analysis phase, are based
on an average optimistic scenario instead of the worst case as in [11]. In both cases the
estimation assumes regular partitions of the contribution block. In the worst case, we first
compute the minimum number of slaves, min_needed , to perform all the work for the
slaves (this number depends on internal parameters and algorithmic aspects that fix the
maximum granularity). Then, for our simulation each candidate receives a block of size
nfront(nfront − npiv)/min_needed where nfront and npiv are defined earlier. In
the optimistic case, we assume that work can be given to all available slaves and so each
candidate receives a block of size nfront(nfront − npiv)/ncand where ncand is the
number of candidates of the type 2 node. As nfront(nfront − npiv)/min_needed >
nfront(nfront − npiv)/ncand then the estimates will be smaller in the optimistic
scenario. For example, let us consider the type 2 node of Figure 6.1.2.a. Let us suppose
that it has 5 slaves, that the block which has to be distributed to the slaves has a size of
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200 MBytes and that at least 4 slaves are needed. Then the worst case (Figure 6.1.2.a) will
give 50 MBytes to each candidate process whereas the optimistic scenario (Figure 6.1.2.b)
will give 40 MBytes to each slave. So we save 10 MBytes per process.

These estimates are then relaxed by a percentage (by default it is equals to 20% ) to offer
more flexibility to the scheduling. This supplementary memory enables us to take into
account extra fill-in due to numerical pivoting and to offer more freedom to the dynamic
decisions. It will also reduce the amount of data compressions involved in a parallel
environment because of the irregular access to the contribution blocks. The memory
available on each processor is then dynamically updated as proposed in [63].

6.2.2 Maximum size of factors

The maximum size of factors is used by the scheduler to determine the largest portion of
the factors that can be given to a candidate process. It is composed of two terms.

For each node J of the assembly tree, the first term fact_anali(J) is estimated during
the analysis. It corresponds to the size of the factors given to the process i with the
optimistic scenario (with the convention that if a process i is neither the master nor a
candidate of node J , fact_anali(J) = 0 ). Thus, according to the analysis scenario, a
process i will store the quantity fact_anali =

∑

J fact_anali(J) of factors.

Algorithm 6.2.1 Update of the supplementary memory for the factors.

Initialization on process pi :
Let ∆i be the initial supplementary memory for the factors.
Include (pi, ∆i) in a message msg_sup_mem .
Asynchronous send of msg_sup_mem to the other processes.

After selection of a set S of slaves by process pi for the node J :
for all candidate process pk do

if pk ∈ S then /* pk has been selected */
δk = Estimated size of the factors for a slave task − Real size of the factor given to pk

else
δk = Estimated size of the factors for a slave task

end if
Include (pk, δk) in a message msg_sup_mem .

end for
Asynchronous send of msg_sup_mem to the other processes.

After the reception of a message msg_sup_mem :
for all (pi, δi) do

∆i = ∆i + δi

end for

The second term, the flexibility ∆i , is initialized to the supplementary memory given
to store the factors. It enables the scheduling to deviate from the optimistic analysis
scenario. Using Algorithm 6.2.1 ∆i is adjusted dynamically during the factorization
phase. Hence, after having updated information about workload and memory during
the selection of the slaves of a node J , the master knows that it cannot give more than
facti(J) = fact_anali(J) + ∆i factors to the candidate i . Obviously, if there are no
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numerical problems and if ∆i = 0 for each process i , then the factorization will respect
the partition of the factors predicted by the analysis phase.

6.2.3 Buffer size

During the bottom-up phase of the memory estimation, the size of the send and receive
buffers is computed. For each node it is based on the optimistic scenario. For each
candidate process, the size of the buffer is adjusted to the maximum size of the messages
that it may have to send or receive. As for the memory estimation, a relaxation parameter
is then used.

6.2.4 Workload and anticipation

The decision of a master of a type 2 task is guided by its view of the workload of its slaves
referred to as loadi . For each process pi , loadi and its variations are taken into account
thanks to an asynchronous communication scheme. Experiments in [63] have shown the
positive effects of anticipating the memory variations. Algorithm 6.2.2 describes this
mechanism for the workload. The workload of a master of a node is updated as soon as
all of its children have been activated.

Algorithm 6.2.2 Anticipation of the tasks.

Initialization on process pi

for all nodes J for which pi is the master do
Set nb_children(J) to the number of children of J .

end for

Sending of a message child_OK when task J starts on the master pi :
Let K be the parent of node J .
Let pk be the master in charge of task K .
Include K in a message child_OK .
Asynchronous send of child_OK to the process pk .

After receiving a message child_OK on process pi :
Extract task J from the message child_OK .
nb_children(J) = nb_children(J)− 1 .
if nb_children(J) = 0 then

Let WJ be the work associated with the task of the master of node J .
Include (pi, WJ ) in a message msg_load_update .
Asynchronous send of msg_load_update to the other processes.

end if

After receiving a message msg_load_update :
for all (pi, W ) do /* Update the workload of processor pi */

loadi = loadi + W
end for
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6.3 Hybrid dynamic scheduling

In this section, we describe the algorithms used to balance the workload while taking into
account the memory constraints.

Algorithm 6.3.3 Main steps of hybrid scheduling
Receive information related to workload and memory.

1 Define a reference number of processes nref and an advised maximum number of slaves nslaveslim
( nref ≤ nslaveslim ).

2 Try to balance the work on a number of processes between nref and nslaveslim taking into account
memory constraints.

3 If step 2 did not succeed then increase nref until a balanced partition that satisfies memory constraints
has been found or the number of candidates has been reached.

4 If steps 2 and 3 did not succeed then for each candidate relax the constraint of analysis prediction and try
to balance the work on the candidates taking into account these new constraints.

5 If steps 2, 3 and 4 did not succeed then try to balance the work among the candidates taking into account
only the buffer constraints.

Algorithm 6.3.3 presents the main scheme of our hybrid dynamic scheduling. Note that
violating a constraint due to the buffers would automatically lead to a failure. That is why
we never relax them during steps 4 and 5.
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(6.3.1.a) Step 1
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(6.3.1.b) Step 2.1
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(6.3.1.d) Step 3

Figure 6.3.1: Example of hybrid scheduling on 5 processes.

Before describing in full details our algorithms we illustrate in Figure 6.3.1 the behaviour
of first steps of Algorithm 6.3.3. Let us assume that at step 1 both the reference number of
processors nref and the advised number of processors nslaveslim are set to 3. Work is
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then assigned at step 2 to these three processes (Figures 6.3.1.b and 6.3.1.c). Note that the
numbering of the steps 2.1 and 2.3 is used to have a coherent description with the detailed
Algorithm 6.3.6 (on our example step 2.2 is inactive because nref = nslaveslim ).
Finally the remaining amount of work can be assigned after having included P4 in the
set of slaves (Figure 6.3.1.d).

We now give a more precise and formal description of our hybrid scheduling algorithm.
Let us define first notations used in our algorithms. For each node J we have :

• ncand the number of candidates,

• {p1, . . . , pncand} the set of candidates sorted by increasing workload,

• Wmaster the workload of the master task,

• Wslave the workload associated with the sum of all the slave tasks,

• for each candidate pi :

– memi the size of available memory,

– bufi its buffer size,

– facti the maximum factor size that can be given to this process,

– loadi its workload and

– MAXloadi (≥ loadi ) the workload limit that it cannot exceed to respect the
previous memory limitations.

Algorithms 6.3.4 and 6.3.5 are the elementary pieces used during our dynamic scheduling
algorithm. Algorithm 6.3.4, referred to as ASSIGN, tries to equilibrate, in a one pass
algorithm, the distribution of a number of rows, Rin , over a set S of k processes.
Memory constraints per process are also considered.

ASSIGN will be used in three contexts:

• Context 1. We want to adjust the workload of the processes to a specific work limit
per process Wmax . There is not additional constraints on the number of row and
Rmax is set to ∞ . The algorithm then tries, while respecting memory constraints,
to assign W − loadi work to each process i . For example, let us consider the
processes of Figure 6.3.1.a. If ASSIGN is called with Rmax =∞ and Wmax equals
to the workload of process P3, then process P1 becomes as loaded as P3 and P2 is
saturated as shown in Figure 6.3.1.b.

• Context 2. We want to give at most Rmax rows per process. For example, let us
suppose that a master has to distribute 500 rows to 5 candidates p1, . . . , p5 and that
none of them is loaded ( loadi = 0 ) and that MAXloadi is set to ∞ . If ASSIGN
were called in Context 1 with Wmax large enough, the system would be unbalanced
after the distribution. If ASSIGN is called with Rmax = 100 and Wmax =∞ , then
each candidate receives 100 rows and the system remains balanced.

• Context 3. We want to mix the two previous cases. We try to give almost the same
number of rows to each process but we also want to respect a workload limit (in this
case, Wmax 6=∞ and Rmax 6=∞ ).
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Algorithm 6.3.4 Assignment of a number of rows to a set of processes which respect memory and workload
constraints with one pass.
ASSIGN ( S , Wmax , Rmax , Rin , Rout , nsat ):
INPUT:

S = {p1, . . . , pk} : set of processes sorted by increasing workload.
Wmax : workload limit.
Rmax : maximum number of rows which can be assigned per process.
Rin : the number of rows to assign.

OUTPUT:

Rout : number of remaining rows ( Rin− the number of assigned rows).
nsat : number of saturated processes in S .

nsat = 0 and Rout = Rin .
for j = 1 to k do

if loadj < Wmax then
nj = min{nb_row(bufj), nb_row(memj), nb_row(factj )} .
nj = min{nj , nb_row(Wmax − loadj), Rmax, Rout} .
Assign nj rows to pj and update memj , factj , loadj and bufj .
if nj = 0 or memory bound reached after update then nsat = nsat + 1 .
Rout = Rout − nj .

end if
end for
return Rout , nsat .

Algorithm 6.3.5, referred to as ASSIGN_EQ, is an iterative algorithm that tries, at each
iteration, to give an equal number of rows per process. After one iteration of the algorithm,
if some rows still have to be distributed then the fixed number of rows Rmax is adjusted
for the next pass with the objective of equilibrating the load of the slaves which have not
already saturated their memory constraints.

Algorithm 6.3.5 Assignment of a number of rows to a set of processes which respect memory and workload
constraints with several passes.
ASSIGN_EQ ( S , Wmax , Rin , Rout ):
INPUT:

S = {p1, . . . , pk} : set of processes sorted by increasing workload.
Wmax : workload limit.
Rin : the number of rows to assign.

OUTPUT:

Rout : number of remaining rows ( Rin− the number of assigned rows).

Rmax = Int(Rin/k) + 1 .
ASSIGN ( S , Wmax , Rmax , Rin , Rout , nsat ).
while Rout 6= 0 and Rout 6= Rin and nsat < k do /* there are still unassigned rows and a call to
ASSIGN can improve the partition */

Rmax = Int(Rout/(k − nsat)) + 1 .
Rin = Rout .
ASSIGN ( S , Wmax , Rmax , Rin , Rout , nsat ).

end while
return Rout .

Algorithm 6.3.6 describes how our hybrid scheduling produces a balanced partition. We
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use GET_NREF defined in Algorithm 6.3.7 to compute a reference number of processes
and an advised maximum number of slaves. The reference number of processes will be
used at step 2.1 of Algorithm 6.3.6 to balance the workload.

The second part of Algorithm 6.3.6 is divided into 3 stages (lines 2.1, 2.2 and 2.3).
During the first call to ASSIGN (line 2.1), work is given to nref processes to reach
the workload limit Wmax = loadnref (Context 1). In stage 2.2, we increase the number
of slaves until reaching the advised maximum number of processes or until all rows have
been distributed. Note that at the end of this loop, the workload of the selected slaves
is necessarily smaller than loadnslaveslim

(the calls to ASSIGN done by ASSIGN_EQ
corresponds to Context 3). In the third stage 2.3, if there are remaining rows we try to
balance the workload without imposing a workload limit (in this case the calls to ASSIGN
correspond to Context 2). The same approach is used during step 3 while increasing the
number of processes.

Algorithm 6.3.6 Hybrid dynamic scheduling on a set {p1, . . . , pncand} of candidates sorted by increasing
workload.

Receive information related to workload and memory.
1 GET_NREF ( nref , nslaveslim ).

Rin = nb_row(Wslave ).
2.1 ASSIGN ( {p1, . . . , pnref} , Wmax = loadnref , Rmax =∞ , Rin ,Rout , nsat ).
2.2 while nref < nslaveslim and Rout > 0 do

nref = nref + 1 .
ASSIGN_EQ ( {p1, . . . , pnref} , Wmax = loadnref , Rout , Rout ).

end while
2.3 if Rout > 0 then ASSIGN_EQ ( {p1, . . . , pnref} , Wmax =∞ , Rout , Rout ).
3.1 while nref < ncand and Rout > 0 do

nref = nref + 1 .
ASSIGN_EQ ( {p1, . . . , pnref} , Wmax = loadnref , Rout , Rout ).

end while
3.2 if Rout > 0 then

nref = ncand .
ASSIGN_EQ ( {p1, . . . , pnref} , Wmax =∞ , Rout , Rout ).

end if
4 if Rout > 0 then

Set facti =∞ for each candidate i .
ASSIGN_EQ ( {p1, . . . , pnref} , Wmax =∞ , Rout , Rout ).

end if
5 if Rout > 0 then

Set facti =∞ and memi =∞ for each candidate i .
ASSIGN_EQ ( {p1, . . . , pnref} , Wmax =∞ , Rout , Rout ).

end if
if Rout > 0 then

return failure because of buffer constraint.
else

return nref and partition.
end if

Moreover, since in zone 3 the tree parallelism is sufficient, we want to allow the algorithm
to create unbalanced partitions and large type 2 tasks. In this way we can expect to
improve the performance and limit the volume of communications. That is why in
Algorithm 6.3.7 we decide that all candidates can receive work during the first call to
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ASSIGN ( nref = ncand ) and their workload is adjusted on the most loaded process
( Wmax = loadncand ). Hence larger tasks will be given to the selected candidates and the
type 2 parallelism will be limited.

If the node is not in zone 3, we want to balance as much as possible the workload between
the candidates and have tasks of reasonable granularity. We compute the following two
quantities to take into account these two aspects:

• the minimum number of slaves which would ensure a balanced partition

max{i such that
i∑

j=1

min(loadi, MAXloadj)− loadj ≤ Wslaves},

• the maximum number of slaves nslaveslim which prevent us from creating tasks
smaller than ρ times the work of the master task. In practice, we set ρ = 70% .

To illustrate our discussion about nslaveslim , let us consider that the work is well
equilibrated among all candidates of a relatively small type 2 node. In this case nref
might be very large (probably equal to the number of candidates) which might not
be appropriate for efficiency. Since nslaveslim is designed to maintain a minimum
granularity, we make sure in Algorithm 6.3.7 that nref is smaller that nslaveslim .

Algorithm 6.3.7 Computation of a reference number of slaves.
GET_NREF ( nref , nslaveslim ):
OUTPUT:

nref : reference number of slaves.
nslaveslim : advised maximum number of slaves.

Let ρ > 0 be a granularity parameter.
if the current node is not in zone 3 then

nslaveslim = min(ncand, max( Wslave

ρ Wmaster
, 1)) .

nref = max{i such that
∑i

j=1 min(loadi, MAXloadj) − loadj ≤ Wslaves} . /* candidate
processes are sorted by increasing workload */
nref = min(nref, nslaveslim) .

else /* the node is in zone 3 */
nref = ncand and nslaveslim = ncand .

end if
return nref and nslaveslim .

6.4 Experimental results

In this section we analyse the effects of our hybrid approach. We first describe our testing
environment. In Section 6.4.2, we analyse the behaviour of our algorithms in terms of
estimated memory and memory effectively used during factorization. The influence on
the factorization time is discussed in Section 6.4.3.
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6.4.1 Experimental environment

In this section, we focus on two very large unsymmetric test matrices described in
Table 6.4.1:

• CONV3D64 has been provided by CEA-CESTA and was generated using
AQUILON (http ://www.enscpb.fr/master/aquilon),

• ULTRASOUND80 comes from propagation of 3D ultrasound waves and has been
provided by Masha Sosonkina.

We consider two orderings PORD [95] and ME T IS [73] to analyse the behaviour of our
hybrid scheduling on different tree topologies.

PORD METIS
nnz(L|U) Ops nnz(L|U) Ops

Matrix order nnz ×106 ×109 ×106 ×109

CONV3D64 836550 12548250 4699.9 48540 2693.9 23880
ULTRASOUND80 531441 33076161 1044.9 5225 981.4 3915

Table 6.4.1: Test set. nnz: number of nonzeros in the matrix. nnz(L|U) : number of nonzeros in the
factors. Ops: total number of operations during factorization.

Our target machine is the IBM SP from IDRIS1. It is composed of 6 clusters with 16 SMP
nodes of 4 processors (Power 4/1.7Ghz P655). Each node shares 8GBytes of memory and
is interconnected to the others by a Federation switch. We will compare the following
versions of MUMPS on 64 and 128 processors:

• The fully dynamic version will be referred to as MUMPS_dyn. It corresponds to the
dynamic version of MUMPS used in [9]: when a master wants to select a slave, it can
choose any process. In other words, for each node of the assembly tree, all processes
are candidates.

• The standard version with proportional mapping and candidates will be referred
to as MUMPS_cand. It corresponds to the version used in [11] except that the
mechanism of Algorithm 6.2.2 for anticipating the workload has also been included.
A master selects its slaves among candidates and balances the workload using
regular partitions.

• The hybrid version will be referred to as MUMPS_hyb. It corresponds to a candidate
version implementing all the algorithms described in this section. In particular,
the separation of the tree in four zones (see Section 6.1.1), the estimation of the
supplementary available memory for the factors (see Algorithm 6.2.1) and the hybrid
scheduling (see Section 6.3) are included. The estimation of the maximum number
of slaves returned by GET_NREF is done with ρ = 70% .

1Institut du Développement et des Ressources en Informatique Scientifique
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6.4.2 Estimated and used memory

In this section, we analyse the memory behaviour of the three versions of our solver. We
look at both the predicted memory peak and the actually used memory. We are interested
in both the average memory per process and the peak between processes.

MUMPS_dyn MUMPS_cand MUMPS_hyb
Matrix Estim Estim Real Estim Real

CONV3D64 Max – – – – –
PORD Avg – – – – –
CONV3D64 Max 137.7 98.44 84.53 84.99 76.78
METIS Avg 118.3 68.98 60.84 61.30 60.93
ULTRASOUND80 Max 103.8 45.31 32.85 33.23 34.66
PORD Avg 94.3 30.03 24.82 25.40 24.73
ULTRASOUND80 Max 110.1 36.08 37.42 28.75 26.75
METIS Avg 104.0 26.24 22.79 23.02 22.37

Table 6.4.2: Estimated and real memory for the factorization on 64 processors. Max: maximum amount of
memory. Avg: average memory per process. Memory in millions of reals. Memory allocated is 20% more
than estimated. – means that the execution did not succeed because memory limits has been attained.

We recall that MUMPS_dyn and MUMPS_cand versions estimate the memory using a
worst case scenario whereas the MUMPS_hyb version uses an optimistic scenario. Note
for all cases we relax the memory estimated by 20% to run the factorization (except
for MUMPS_cand version on CONV3D64 with 64 processors and the ME T IS ordering
where this percentage is reduced because of memory limitations on the machine).

MUMPS_cand MUMPS_hyb
Matrix Ordering Estim Real Estim Real
CONV3D64 Max 93.17 – 89.71 68.06
PORD Avg 64.91 – 53.61 49.26
CONV3D64 Max 72.98 46.28 50.85 46.78
METIS Avg 39.55 31.41 34.96 32.09
ULTRASOUND80 Max 63.18 26.56 24.47 20.99
PORD Avg 23.19 14.57 14.64 13.19
ULTRASOUND80 Max 32.69 17.45 18.99 18.22
METIS Avg 18.16 12.43 13.15 11.91

Table 6.4.3: Estimated and real memory for the factorization on 128 processors. Max: maximum amount
of memory. Avg: average memory per process. Memory in millions of reals. Memory allocated is 20%
more than estimated. – means that the execution did not succeed because memory limits has been attained.

Tables 6.4.2 and 6.4.3 show the memory estimated and the memory used on 64 and 128
processors respectively. We first see in Table 6.4.2, already reported in [9] and [11],
that the fully dynamic version severely overestimates the size of the factors. We also
notice that the hybrid version significantly reduces the estimated memory (both average
and peak) and does nearly an exact prediction. This behaviour is emphasized on 128
processors. Moreover the new strategy can lead to a significant decrease in the memory
peak (see for example ULTRASOUND80 with ME T IS on 64 processors).
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6.4.3 Factorization time

In this section, we analyse the factorization time. We observe two different effects.
On the one hand, irregular partitions of Section 6.1.2 offer the flexibility to balance the
workload better, which should improve the factorization time. On the other hand, memory
constraints prevent the master from making an optimal decision in terms of balancing the
workload, which should moderate the effect of mapping irregular tasks.

64 processors 128 processors
Matrix Ordering MUMPS_cand MUMPS_hyb MUMPS_cand MUMPS_hyb
CONV3D64 PORD – – – 617.34
CONV3D64 METIS 293.11 228.64 236.59 181.76
ULTRASOUND80 PORD 62.21 55.68 57.32 61.93
ULTRASOUND80 METIS 57.66 48.83 45.62 46.65

Table 6.4.4: Factorization time in seconds with 64 and 128 processors.

Table 6.4.4 shows the impact of our new strategy on the factorization time. Note that
hybrid scheduling enables the solution of CONV3D64 with the PORD ordering on 128
processors. On most of the cases, the hybrid approach improves the factorization time
on both 64 and 128 processors. In other words the memory constraints do not prevent
the scheduling from balancing the workload well. We can observe a small increase in the
factorization time with ULTRASOUND80 on 128 processors. This increase is not due
to wrong dynamic decisions but to an increase in the amount of data compressions when
memory estimates are very tight (MUMPS_cand and MUMPS_dyn perform respectively
17 and 157 compressions). Note also that for this matrix the huge gain in terms of
estimated memory (a reduction by a factor 2.5) makes the small speed-down of 7%
affordable. Furthermore, if we relax the memory estimated by 100% , the new strategy
becomes 5% faster than the MUMPS_cand version while still allocating 38% less
memory.

Table 6.4.4 also shows that the factorization time does not scale well between 64 and
128 processors. Note that it is worse for the hybrid version because it is significantly
faster than the candidate version on 64 processes. We will come back to this point in our
conclusions.

Figure 6.4.1 shows the influence of the memory relaxation parameter on the factorization
time and memory used to factorize the CONV3D64 matrix on 128 processors using
ME T IS. If the relaxation is too small ( < 20% ), MUMPS does not have enough flexibility
to balance the workload and performs too many memory compressions (there are 636,
541, 394, 321 and 238 memory compressions for a relaxation of 5% , 10% , 20% ,
30% and 40% respectively) which severely penalizes the factorization time. Note that
for a relaxation greater than 20% the factorization time does not significantly change.
Note also that the total memory peak and the peak of the stack are less sensitive to
the variation of the relaxation. Finally one should point out that the candidate version
computes the factors in 236 seconds and does 293 compressions whereas the factorization
with our hybrid strategy takes 181 seconds and performs 394 compressions. Thus, the
improvement of the performance is not due to a decrease in the number of compressions,
but to an improvement of the decisions taken by our new scheduler.
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Figure 6.4.1: Influence of the memory relaxation on factorization time and memory with the CONV3D64
matrix on 128 processors. ME T IS ordering is used.

6.5 Concluding remarks and future work

We presented in this chapter a hybrid approach to dynamic scheduling which takes
into account information about workload and memory in the context of parallel LU
factorization. We proposed an approach with modifications of the static mapping and
the dynamic execution. We have shown the benefits of our approach on two large real test
cases with two different orderings on 64 and 128 processors. Our intention for future work
is to improve and develop the three axes reported below to address symmetric matrices
and improve the scalability of the solver.

Firstly, we want to adapt the hybrid scheduling to the symmetric case. This is slightly
more complex, since in the symmetric case, the relations between the memory, the
workload (in number of operations) and the number of rows is not straightforward and
depends on the previous selection of slaves (see the partition of a type 2 node in the
symmetric case in [8]). Moreover, in the unsymmetric cases all communications come
from the master whereas in the symmetric case slaves have to communicate between each
other. This communication scheme has to be taken into account for an optimal decision.

Secondly, the candidate version of MUMPS has been adapted to clusters of SMPs in [10].
We want to develop hybrid approaches which also exploit this feature of the computer
architecture. In our context, it seems already that the size of the SMP nodes will give a
quite natural criteria to define the new zone 3.

Finally, we saw in our experiments that even if the absolute behaviour in terms of memory
and factorization time has been improved, the time did not scale well between 64 and 128
processors. We think that the memory peaks and the workload balance between processes
could be enhanced with a deeper layer 0. Our tighter memory estimation makes this
possible in a simpler way than with the candidate version. In this context, it should
also become useful to apply the proportional mapping on layer 0 (it is easier than in the
candidate version because of the new zone 3).
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Symmetric indefinite matrices

The first part of this thesis has dealt with symmetric indefinite matrices. In the
first chapter, we have shown how the use of an appropriate scaling can solve many
computational difficulties. We have shown how a bipartite maximum weighted matching
can be used on such matrices to effect a symmetric scaling and identify potential 2×2
pivots. Another benefit of our work is that the analysis phase gives a better indication of
the work and storage required by the subsequent factorization, since numerical problems
are anticipated.

We have developed new classes of greedy orderings that we called “(relaxed) constrained
orderings” and that succeed in decreasing the factorization time. Our intention is to
decrease even more the fill-in while keeping a stable factorization by extending the
concept of constrained ordering in the context of graph partitioning.

In Chapter 2, we have adapted the analysis phase of a solver that manages the diagonal
zeros of augmented systems and we have improved the behaviour of its factorization. We
have stressed some advantages such as the reduction of the number of operations, of the
memory used, and of the size of the factors. However, multifrontal methods designed
for general symmetric indefinite matrices remain better on a large range of augmented
systems.

We have presented in Chapter 3 different alternatives for static pivoting. We have
developed a first static pivoting approach that applies 1× 1 and 2× 2 perturbations
automatically whenever there is a numerical issue and a second approach which tries
to eliminate as many stable pivots as possible before considering static pivoting. This last
approach only performs 1×1 perturbations. Our approaches address a large range of
symmetric indefinite problems and are significantly faster than approaches only based on
numerical pivoting.

Although our results are promising, the precision of the solution and the number of steps
of iterative refinement can still be improved. In our future work, we would like to include
2×2 perturbations of the first approach in the second one. Hence, it might be useful
to discover dynamically patterns of 2×2 pivots during the factorization and to have a
criterion to decide between 1×1 or 2×2 perturbations.

Furthermore we have noticed that the second approach was not robust if the threshold
using for numerical pivoting is too far from the one used in static pivoting. To overcome
this problem we want to develop pivoting strategies that smooth the switching from
numerical to static pivoting.
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Structurally unsymmetric matrices

The second part of this thesis has dealt with ordering for structurally unsymmetric
matrices. We have designed an ordering approach whose originality is to compute
simultaneously a row and a column permutation with the following goals in mind:
to reduce the fill-in in the factors, and to preselect numerically good pivots for the
factorization. We have shown that it generates factors that are sparser than existing
approaches and that it speeds-up the factorization. We have proposed different
parameterizations both in the context of a solver that performs numerical pivoting and
in the context of a solver that performs static pivoting.

We have designed a preprocessing based on a doubly stochastic scaling. Nevertheless, we
have identified that it is less robust because of the low convergence rate of the iterative
process involved. That is why one of our targets is to accelerate the convergence toward
doubly stochastic matrices.

We also plan to include functionalities such as detection of quasi-dense variables which
would accelerate our ordering and/or enable us to work with larger sets of off-diagonal
entries. Note that we have mentioned the huge effect of these improvements on our
ordering compared to the classical orderings.

Furthermore, since the constraint matrix contains information that can be seen as an
incomplete factorization, it is our intention to use it as a preconditioner and to compare
its quality and cost with those of existing incomplete LU factorizations.

Scheduling

In the last part of this thesis we have studied dynamic scheduling strategies adapted to
a general distributed memory sparse solver, MUMPS. In chapter 5, we have proposed
scheduling algorithms designed to address the problem of heterogeneous architectures
and shown that the performance with respect to computation time can be improved on
networks of SMPs.

Chapter 6 has presented a hybrid approach to dynamic scheduling which takes into
account information about workload and memory in the context of the parallel LU
factorization. We have shown significant improvements in the memory estimation of the
analysis, in the memory usage during the factorization and also in the execution time.

We have mentioned that the hybrid scheduling has to be adapted to the symmetric case and
to clusters of SMPs. Thanks to our hybrid approach some issues (in particular the memory
estimation) which prevented the static part of the scheduling from creating parallelism do
no more exist. That is why some algorithmic constraints can now be more relaxed and we
expect to improve the scalability.
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Appendix A

CMLS: data structure and
implementation

In this appendix, we describe our choices with respect to the implementation of the
bipartite graph C . They are strongly connected to the functionalities that need to be
provided :

• knowledge of the exact structure of C and of the metric value of each nonzero entry,

• selection of a pivot in C ,

• update of the structure of each row and column and update of the metric of each
entry, and finally

• compression of free space.

We will illustrate our implementation on the small example of Figure A.1.1 in which
C1 represents the constraint matrix before the elimination of pivot (1, 4) and C2 the
constraint matrix after elimination. Note that here, and in the remainder of this section, we
will use also the matrix representation of the bipartite graph of C (as in Figure A.1.1.a)
and refer to it as the C matrix. When the pth pivot (rowp, colp) is eliminated, Up , Lp ,
Up and Lp will represent Rp

rowp , Cp
colp , Rp

rowp\{colp} and Cp
colp\{rowp} respectively.

A.1 Bipartite graph and metric

A standard bipartite graph representation will allow us to represent the exact structure of
C , and to access the row and column structures of C .

We now discuss why we want to store the metric of each entry in C . If we were only
interested in a Markowitz cost then we could have stored the row degree and the column
degree separately and then computed the metric when it is needed. The framework of
our implementation is more general and can address more complicated metrics such as
approximate Markowitz cost, approximate minimum fill-in, and hybrid metrics involving
both structural and numerical criteria. Note that, even in the case of our approximate
Markowitz cost, we have shown that the approximation strongly depends on the local
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Figure A.1.1: Example of implementation of C : data structure and functionalities.
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symmetrization. In other words (see Algorithm 4.6.6), we cannot use the approximation
of the row degree of an entry (i, j1) to compute the real approximate Markowitz cost
of an entry (i, j2) , j2 6= j1 . For example , if an element, e1 /∈ Ri , belongs to Cj1 ,
because of local symmetrization Ue1 must be considered in the approximate degree of
row i (local symmetrization will occur if (i, j1) is selected as pivot). But if e1 /∈ Cj2
then Ue1 need not be considered to compute the approximate degree of row i .

Three arrays colptr , rowptr and iw are used to represent the structure of C . The array
rowptr gives the position of the beginning of each row adjacency in the array iw . The
array colptr gives the position of the beginning of each column adjacency in the array
iw . Furthermore we add flags at the beginning of each rows and columns (see array iw
in Figure A.1.2). We will show in this section how these flags are used to accelerate the
pivot selection and the compression of the iw array.
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Figure A.1.2: C : storage and functions.

This is illustrated in Figure A.1.1.b where we show how C1 entries are stored in the array
iw with rowptr = [2, 8, 10, 14] and colptr = [22, 26, 28, 30] . Moreover, we also see
that the beginning of each row i (resp. column j ) is marked with a flag ri (resp. cj )
that indicates that it is the beginning of the adjacency list of row i (resp. column j ).

The metric of each entry in C can be accessed using the information stored in an array
score (see Figures A.1.1 and A.1.2). Note that, depending on the strategies used, the
array score can be of more than one dimension. For example, with a hybrid strategy
with one threshold we have score[i] = (score1[i], score2[i]) where score1[i] represents
a structural metric, and score2[i] represents a numerical metric. In order to accelerate the
pivot selection process, a doubly linked list is used to store the indices with the same first
coordinate (structural metric) in the score array. An array of pointers called head stores
the address of the beginning of each list.

Moreover, each entry (i, j) in C is associated with two entries in the iw array (one in
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position pr in the structure of row i and one position pc in the structure of column j ) and
one in position ps in the score array. We keep the link between these positions thanks
to two arrays called from_iw and from_score which satisfy the following equalities:

from_iw[pr] = from_iw[pc] = ps (A.1.1)

and from_score[ps] = pr. (A.1.2)

We then define two functions f1 and f2 = f1
−1 such that f1(ps) = (i, j) . Given a

position ps in the score array, f1 computes its associated entry (i, j) . Given an entry
(i, j) , f2 returns its associated position ps in the score array. In practice, the array
from_score is used to implement f1 and the array from_iw is used to implement f2 .
Details on the computation of these functions will be given in the following sections.

A.2 Selection of a pivot

Given the position ps of a “good” pivot (for example = head[mincost] with a pure
structural strategy) in score , we need to compute the indices of the entry (i, j) in C

such that (i, j) = f1(ps) . In our implementation, we first compute the position pr =
from_score[ps] from which we deduce j ( j = iw[pr] ). The first flag on the left of
pr in iw is then used to determine i . This process is illustrated in Figure A.1.2 with a
bottom-up reading.

For example, head[1] of Figure A.1.1.b points to the doubly linked list 8↔ 22 . It means
that the entries whose score values are stored in positions 8 and 22 of the score array
have a structural metric equal to 1 . Let us consider the entry stored in position ps = 8
of the score array which minimizes the structural metric. from_score[8] = 3 = pr

gives the position in the iw array of the corresponding C1 entry. Then iw[3] = 4 gives
the column index of this entry. To find the row of this entry, we follow iw in decreasing
order until we visit a row flag. Hence we know that the entry (1, 4) of C1 is stored in
position 8 of the score array.

A.2.1 Structural selection

The selection of a pivot with a structural strategy is straightforward: the first visited
pivot of minimum structural metric is chosen. Thanks to the doubly linked lists and the
array head , the access to this entry is direct using the address of head[mincost] where
mincost is the minimum value in the score array. The corresponding entry represents a
minimum of the m0 metric.

A.2.2 Hybrid pivot selection

In the hybrid case, the selection of a pivot consists in finding the best pivot according to a
hybrid metric within a set of pivots that are good with respect to a structural metric.
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Algorithm 1.2.1 Pivot selection( th, MS, NCOL ), hybrid strategy with one threshold.

Let p = (rowp, colp) be an entry of minimum structural metric m0 in C .
Set valbest← |crowp,colp|/||c.colp||∞ .
if valbest ≥ th then

Accept pivot p and return
end if
i = 2
/* Loop 1: examine the MS first best pivots with respect to m0 and stop as soon as a numerically
acceptable pivot is found. */
while i ≤MS do

Let p = (rowi, coli) the ith entry of minimum structural metric in C .
Set val← |crowi,coli |/||c.coli ||∞ .
if val ≥ th then

p← (rowi, coli) , valbest← val
Accept pivot p and return

end if
i← i + 1

end while
/* Loop 2: find the best numerically acceptable structural pivot. */
best_metric = +∞ , i = 1 .
while i ≤ min(MS, NCOL) do

Let p = (rowi, coli) be the ith entry of minimum structural metric m0 .
if coli never visited in Loop 2 then

for each entry (l, coli) in C do
if |cl,coli |/||c.coli ||∞ ≥ th then

if m0(l, coli) < best_metric then
p← (l, coli) , best_metric← m0(l, coli)

end if
end if

end for
end if
i = i + 1

end while
Accept pivot p and return

As explained in Section 4.6.3, to bound the complexity of the hybrid strategies, the search
is limited to the subset S of the Ck entries at step k . Two threshold parameters MS
and NCOL are introduced to define S and the ordered relation <th is used to select the
best entry p in S (see Section 4.6.3). We recall here equation (4.6.1) that characterizes
the hybrid strategy with one threshold.

p = arg min≤th
(i, j, cij/||c.j||∞)

(i, j) ∈ S
(A.2.1)

Algorithm 1.2.1 exploits Remark 6.1 (see Section 4.6.3), to stop the search as soon as
a numerically acceptable pivot is found in the first MS entries of S (Loop 1 of the
algorithm).

The infinite norm of the columns is held in an array of size n and updated as explained
in Section A.4.2. The choice of a relative threshold based on column norms (instead of
the row norms) is only motivated by our choice of data structures.
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It may happen that all the MS pivots are not acceptable. In this case, we visit a fixed
number of columns (maximum NCOL ≥ 0 ) of the entries with a small structural
metric. We visit the column because we have a direct access to the column number thanks
to the from_score values. If NCOL > 0 , the best structural pivot which satisfies
the numerical constraint among the entries of these columns is accepted. Such a pivot
exists because the set of acceptable pivots for a column is non-empty (see Remark 6.2).
Indeed, at least the entry which corresponds to the maximum in absolute value verifies the
numerical criterion. If NCOL = 0 and no acceptable pivots have been found, the pivot
of minimum structural metric is selected (it is a minimum with respect to equation (A.2.1),
see Remark 6.3) even if it does not satisfy the numerical criterion.

For the hybrid selection with two thresholds, the selection is based on the relation ≤absth
th

applied to (i, j, cij/||c.j||∞, cij) for each entry in S . The implementation of the hybrid
selection with two thresholds differs in the first loop because now a pivot needs to satisfy
both cij/||c.j|| ≥ th and |cij| > absth to be numerically acceptable. During this first
loop, we also store the first entry prel = (i, j) such that |cij| ≥ th×||c.j||∞ since it might
not be visited in the second loop and could correspond to a minimum when none of the
entries visited in the second loop satisfies both numerical criteria (see Remark 6.5). When
none of the entries in the MS -set is numerically acceptable, the second loop computes
the best entry with respect to ≤absth

th and compares it to entry prel to find the minimum
on the complete set S (see Remark 6.4).

A.3 Compression

Compression of the bipartite graph related arrays ( iw and from_iw ) needs to be done
when there is not enough place to perform the updates. It is difficult to change the doubly
linked lists during the compression of the data in an efficient way. Therefore, we want
to preserve the linked lists during the compression and to keep the position of the metric
of an entry in the score array. Hence during the compression, indices in iw are moved
to the left and we have to keep the link between a new position and its position in score
which does not change. The two arrays from_iw and from_score are used for this
purpose.

During compression both arrays iw and from_iw are compressed in the same way and
only the values in from_score change. This can be done in-place and in linear time.
Figure A.3.1 shows the effect of a compression on the different arrays representing the
structure of C . The memory needed for Area 1 is reduced and the size of contiguous free
memory increases (Area 2).

Note that, during the update of C , memory flags are inserted (see explanation in
Section A.4). These flags enable us to skip entries in iw and to accelerate the
compression. For example, we can skip in Figure A.1.1.d the i barred entries (× ) after
each memory flag Mi .
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Figure A.3.1: C : Compression and areas.

A.4 Updating the bipartite graph C

In Algorithm 4.6.3, we underlined the fact that two passes are required to update the
bipartite graph C . Firstly new entries are added to C and, in the context of a hybrid
metric algorithm, numerical values are updated. Secondly the structural metrics are
updated. How C is updated depends on the choice of the structural strategy and
on the memory available. In Algorithm 1.4.2, we describe the implementation of
Algorithm 4.6.4 and explain how we estimate the memory needed. If the memory needed
is available in Area 2 of Figure A.3.1, or if it is available after one compression, then
TOTALUPDATE can be performed. Otherwise MATCHUPDATE must be done.

When hybrid metrics are used, updates (with TOTALUPDATE strategy) could be avoided
when the magnitude of the update is small. Furthermore, entries in C can also be dropped
when they become too small.

To compute the updates in one pass, we use a buffer memory of fixed size n . This buffer
must be greater than |Up \ colp| × |Lp \ rowp| = (|Up| − 1)× (|Lp| − 1) to complete a
TOTALUPDATE (see Section A.4.2 for details on the use of this buffer).

When an update begins, it must be completed, since if it fails the cost of backtracking is
expensive. The choice of type of update depends on the available memory, which can be
compared to the following easy-to-compute upper bound of the space needed:

2 |Up \ colp||Lp \ rowp|+
∑

k∈Up\colp

|Ck \ rowp|+
∑

k∈Lp\rowp

|Rk \ colp|. (A.4.1)

The first term of this estimation corresponds to the Schur complement. The second
term corresponds to the entries of the shaded columns of Figure A.4.1. The third term
corresponds to the entries of the shaded rows of Figure A.4.1.
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Algorithm 1.4.2 Update of C (UpdateStrategy, NumericalStrategy) (Implementation of
Algorithm 4.6.4)

Let (rowp, colp) be the pivot selected at step k , Up = Rrowp and Lp = Ccolp

EnoughMemory = true
if (|Up| − 1)× (|Lp| − 1) > Buffer Size then
EnoughMemory = false /* not enough space in the buffer */

end if
Let space_needed be an upper bound of the real space needed to do all the update with at most one
compression (see for example Equation A.4.1).
if memory available < space_needed then
EnoughMemory = false /* not enough space in the bipartite graph structure */

end if
if ((UpdateStrategy == MATCHUPDATE) or (Not EnoughMemory)) then

perform MATCHUPDATE and set S = {(i, j) ∈ Ck+1 ∩ (Lp×Up)} .
else

Compress if necessary.
perform TOTALUPDATE and set S = Lp×Up .

end if
if (NumericalStrategy==hybrid strategy) then

for all (i, j) ∈ S do

c
(k+1)
ij = c

(k)
ij −

c
(k)
i colp

c
(k)
rowp j

c
(k)
rowp colp

end for
end if

This bound corresponds to the worst case: the block corresponding to the Schur
complement was a zero block before the elimination of pivot p . If this upper bound
is respected then the update can be done with only one compression of the data structure
(see Algorithm 1.4.4). The complexity of this phase clearly depends on the data structure.
This will be discussed in Section A.4.3.

During the second pass of Algorithm 4.6.3, the structural metric of C entries which are
either in Up columns or in Lp rows is updated. Once the structural metric of (i, j) is
computed we store it at position ps = f2(i, j) of the array score . If i ∈ Lp and j /∈ Up

then the new value of m0(i, j) will be stored in the array score while accessing the rows
of C which belong to Lp . If i /∈ Lp and j ∈ Up then the new value of m0(i, j) will be
stored in the array score while accessing the columns of C which belong to Up . This
explains why we want to maintain the relation from_iw[pr] = from_iw[pc] = ps . This
process is illustrated in Figure A.1.2 by a top-down reading. More precisely, as illustrated
in Figure A.1.1, let us suppose that Up = {1} and Lp = {2, 4} and that the pivot entry
(1, 4) of C1 is eliminated. We also assume that the C related arrays iw , from_iw and
from_score have been updated. We first access row 2 and find entry (2, 1) in position
24 of iw . from_iw[24] = 23 and we store the metric of (2, 1) in position 23 of score
( score[23]← 2 ) and we add 23 to the doubly linked list which begins at head[2] .

A.4.1 MATCHUPDATE implementation

Algorithm 1.4.3 describes how the coherence between the row and the column
descriptions is maintained during MATCHUPDATE.
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Figure A.4.1: C : Structure update.

If an entry is added (because of Property 4.3.1), we arbitrarily take the free score
position corresponding to the old matching entry in the row of the pivot (we could
have chosen the column of the pivot). Note that when a pivot is eliminated, all the
score positions associated with the entries in its row and column are freed. This data
manipulation is included in the line “Suppress all entries in row rowp or in column
colp ” of Algorithm 1.4.3. These keys may be required later because of the growth of C .
Moreover, memory flags are used to indicate the size of the new free blocks in the array
iw . As mentioned before, this enables us to accelerate the compression process and to
accelerate the search of free score positions during TOTALUPDATE (more free keys are
available).

Algorithm 1.4.3 Data management of C related data during a MATCHUPDATE.
Suppress the information related to all entries in row rowp or in column colp from from_iw ,
from_score , score and iw (optionally do numerical dropping in hybrid strategies) and add memory
flags.
Let (rowp, j1) and (i1, colp) ∈M .
if j1 6= colp then

/* (rowp, colp) /∈ M and (i1, j1) /∈M */
ps ← f2(rowp, j1) . /* it is an unused entry in score array because entry (rowp, j1) has been removed
*/
Add entry (i1, j1) in C (compute its value if necessary) : set pr and pc .
from_iw[pr] = from_iw[pc] = ps .
from_score[ps] = pr .

end if
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A.4.2 TOTALUPDATE implementation

During a TOTALUPDATE the rows and the columns which are modified are copied at the
beginning of Area 2 in Figure A.3.1. Algorithm 1.4.4 shows that we first update the row
structure and then the column structure.

Algorithm 1.4.4 Data management during C TOTALUPDATE.
posbuf ← 1 /* Initialize the writing position in the buffer */
for each row k ∈ Lp do /* Loop on rows */

for each column l ∈ Rk \ Up do /* Part 1 */
Let pold

r be the old position in iw of (k, l) .
Set pnew

r to the new position in iw of (k, l) .
ps = from_iw[pold

r ] ; from_iw[pnew
r ]← ps ; from_score[ps]← pnew

r .
end for
for each column l ∈ Up do /* Part 2 */

Set pnew
r to the new position in iw of (k, l) .

if (k, l) is a new entry in C then
Find an unused position ps in score array.

else
Let pold

r be the old position in iw of (k, l) .
ps ← from_iw[pold

r ] .
end if
from_iw[pnew

r ]← ps ; from_score[ps]← pnew
r

buffer[posbuf ]← ps ; posbuf ← posbuf + 1
With the hybrid strategies: update numerical value and optionally do dropping or avoid updates,
update global numerical information relative to column l and/or C matrix.

end for
end for
for each column k ∈ Up do /* Loop on columns */

for each row l ∈ Ck \ Lp do /* Part 1 */
Let pold

c be the old position in iw of (l, k) .
Set pnew

c to the new position in iw of (l, k) .
ps = from_iw[pold

c ] ; from_iw[pnew
c ]← ps .

end for
With the hybrid strategies: update global numerical information relative to column k of C matrix.
for each row l ∈ Lp do /* Part 2 */

Set pnew
c to the new position in iw of (l, k) .

Find the value ps in position poskey of buffer (see Equation A.4.2).
from_iw[pnew

c ]← ps .
end for

end for

Each loop of the algorithm is split into two parts. In the first part, the columns that are
not in Up (respectively the rows that are not in Lp ) are copied. In the second part, the
columns that are in Up (respectively the rows that are in Lp ) are copied. During the
second part of the first loop, values of ps are computed for new entries ( ps corresponds
to an unused place in the arrays score and from_score ) and from_iw[pr] = ps is set.
These values are temporarily saved in a buffer. During the second part of the second loop,
the values of ps are read this buffer and from_iw[pc] = ps is set. Since the rows and
columns of Lp and Up respectively are visited in the same order during both loops (on
rows and columns), there is a relation between the place of an entry in the buffer and when
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it is visited. Thus, during the column adjacency update, the values of the score positions
of an entry in the Schur complement of C can be found easily. If the entry corresponding
to the ith row of Lp and jth column of Up is visited, its score position is stored in
position

poskey = i× (|Lp \ rowp| − 1) + j (A.4.2)

in the buffer.

In theory a convenient size for the arrays score and from_score is sizeof(iw)/2 (one
entry in the score array corresponds to one row index and one column index in the
iw array). In practice, each of the arrays of Figure A.1.2 have the same length. The
implementation of the structure of C and the initialization of the functions f1 and f2 are
easier. Moreover it accelerates the search of unused places in the score array for new
entries: at least half of the entries in the score array are not used. The probability for
finding an unused place at the first attempt is 0.5 in the worst case (when the array iw is
full, half of the array score is used). The average length for a search of an unused place
in the worst case is

∑∞
k=1 k · 0.5k = 2 .

To illustrate our discussion with an example, we describe how to proceed from the
compressed structure of C1 in Figure A.1.1.c to the structure of C2 in Figure A.1.1.d.
Firstly row 1 and column 4 are removed (barred position of iw ). In practice we only insert
memory flags at the beginning of the row and column description in iw . As mentioned
before the length of the row (resp. the column) appears in these memory flags and will
be used to accelerate a future compression. Row 2 is first updated and a free position
in the score array is found (here 23 ) to store the metric of the fill-in corresponding to
entry (2, 1) . This value is saved: buffer[1] ← 23 . Then we process row 4 . Firstly
entry (4, 2) is added during Part 1 of the algorithm and then entry (4, 1) which belongs
to the bi-clique is copied during Part 2 of the row loop and buffer[2] is set to 9 . Finally
column 1 is updated: first for entry (2, 1) , iw[29]← 2 and from_iw[29]← buffer[1] ,
then for entry (4, 1) , iw[30]← 4 and from_iw[30]← buffer[2] .

A.4.3 Complexity

In the worst case in terms of complexity, we perform a TOTALUPDATE at each
step. The upper bound of the space needed to perform a TOTALUPDATE (quantity of
equation (A.4.1)) can be computed in O(|Up| + |Lp|) . The first part of the loop on
Lp rows ( Rk ← Rk \ Up ) does at most |Rk| copies. The second part performs |Up|
copies and searches at most |Up| free positions. We approximate the cost of searching
for a free position by 2 (see the worst case computation in Section A.4) The complexity
of the first loop is thus in O(|Lp|(|Up| + kp)) where kp was defined as the densest
row/column in Section 4.5. For the second loop, the complexity is O(|Up|(|Lp| + kp)) .
Furthermore |Lp||Up| is bounded by the size of the buffer which is set to O(n) . The
worst cost of a TOTALUPDATE is thus O(nkp) . The total complexity of C update
in CMLS is then O(n

∑n
k=1 kp) . In practice, because the size of C is in O(n) and

because of memory constraints (the maximum number of nonzeros in rows and columns
is bounded by a constant) the total complexity of our algorithm to update C is O(n2) . In
the above analysis we neglected the compression complexity. In practice the compression
does not occur at every step and does not dominate the update phase complexity.
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Moreover the number of compressions can be artificially bounded by involving more
often MATCHUPDATE when the working space is very limited.



Appendix B

CMLS: experimental results

This appendix presents exhaustive results. The matrices have been described in
Tables 4.7.1 and in Section 4.7.1. To avoid effects of tie-breaking, we systematically
apply a row and a column random permutation. We ran each problem 5 times and present
in this appendix the execution whose ordering returns the median fill-in in the factors.
The average gains correspond to either the average gain on Set 1 or to the average gain
on Set 2. When not explicitly mentioned, the CMLS default parameters of Section 4.7.1.3
are used.

Diag refers to the version that initializes C with the entries of the MC64 matching.

MAT refers to the strategy that performs only MATCHUPDATE.

TOT refers to the strategy that performs TOTALUPDATE if we are sure that
it requires less than one compression (see the computation of the spaceneeded
quantity in equation (A.4.1)).

LIM refers to the strategy that performs TOT strategy until a certain number of
entries have been added to C and then performs MATCHUPDATE.
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B.1 Structural strategies

CMLS
mindrop = — 0.1 0.9 0.99
Matrix Diag MAT LIM TOT MAT LIM LIM DMLS
Set 1
av41092 8454 8171 8033 8056 8108 8095 8101 9448
g7jac140sc 22380 18284 16080 17065 18998 18872 18231 24138
g7jac120sc 18433 14606 14246 14547 14521 15336 14898 19271
jan99jac120sc 3660 3623 3535 3520 3587 3462 3469 3849
jan99jac100sc 3080 3038 2810 2852 2915 2860 2831 3134
bayer10 425 395 365 361 383 358 366 413
bayer04 706 547 514 516 535 527 534 627
lhr34c 6374 7628 8296 7775 7610 7879 7784 6979
lhr71c 13451 16791 16663 16506 15661 17601 18194 15450
mark3jac120sc 12428 13975 14109 13968 13971 14531 13744 13674
mark3jac140sc 14776 16125 16793 17142 16146 16458 16844 16372
sinc18 32454 29842 31581 31118 31112 31529 34300 41445
sinc15 15218 14676 14860 14664 16154 15400 16645 17446
Zhao2 13008 11892 11128 11102 11863 11233 10904 14334
fd18 1053 568 569 569 594 584 594 1082
fd15 648 349 349 346 357 354 366 655
mult_dcop_03 502 1018 991 1021 1059 1062 1059 895
mult_dcop_02 439 762 761 804 735 790 806 897
onetone1 3082 3496 3177 3310 3599 3109 2829 3215
poli_large 33 33 33 33 33 33 33 33
bbmat 44745 39785 39034 38548 41405 43277 42580 53596
Avg. gain 7.5% 19.7% 22.3% 22.1% 18.6% 19.2% 18.9%
Set 2
shermanACb 398 364 366 362 365 363 364 399
rim 5877 5993 5907 5708 6060 5947 6006 5957
onetone2 1399 1611 1269 1280 1547 1250 1281 1396
shyy161 3732 3746 3774 3737 3702 3727 3757 4145
circuit_3 60 59 59 59 59 60 60 60
epb2 2027 2053 1902 1929 2045 2073 2050 2129
epb3 6864 6655 5975 5986 6874 6748 6711 7112
circuit_4 450 441 441 441 441 441 442 464
e40r0100 1986 1895 1750 1751 1904 1738 1747 2113
ns3Da 17149 17146 16918 17040 16883 17082 17111 16998
ecl32 32665 36717 35643 36484 33568 33758 32964 33354
Zhao1 5877 6192 6214 6294 6249 6220 6144 5891
af23560 11326 11405 11637 11490 11388 11216 11316 10913
3D_28984 11919 14008 14017 13895 12330 12362 12292 11971
3D_51448 32491 39847 38694 38414 34002 33535 33482 32647
ibm_matr 32582 39588 38492 38369 34090 34015 33595 33202
2D_54019 7714 8431 8432 8524 7714 7688 7729 7614
2D_27628 3021 3500 3529 3545 3101 3080 3068 3043
sme3Da 3951 3913 3862 3921 3824 3906 3784 3848
Avg. gain 1.5% −3.0% 0.2% 0.1% 0.7% 2.5% 2.6%

Table B.1.1: Number of nonzeros in the factors predicted by the analysis (in thousands of reals).
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CMLS
mindrop = — 0.1 0.9 0.99
Matrix Diag MAT LIM TOT MAT LIM LIM DMLS
Set 1
av41092 8687 8417 8224 8299 8298 8302 8330 9654
g7jac140sc 22385 18413 16252 17540 19006 19039 18277 24146
g7jac120sc 18438 14701 14359 14894 14536 15527 14938 19277
jan99jac120sc 3668 3625 3539 3527 3593 3465 3472 3854
jan99jac100sc 3090 3046 2812 2854 2921 2863 2835 3139
bayer10 425 396 366 363 384 360 367 414
bayer04 707 549 520 523 535 528 536 627
lhr34c 6523 8066 8696 8155 8023 8299 8179 7122
lhr71c 13676 17680 17573 17404 16543 18706 19104 15824
mark3jac120sc 12449 14019 14184 14046 14034 14603 13818 13708
mark3jac140sc 14808 16208 16879 17228 16213 16525 16949 16410
sinc18 32598 30631 32334 31916 31330 31749 34466 41563
sinc15 15270 15011 15158 15052 16347 15588 16808 17573
Zhao2 13370 12167 11453 11423 12158 11580 11296 14674
fd18 1093 569 570 569 595 585 596 1119
fd15 673 349 349 346 357 354 368 673
mult_dcop_03 502 1018 991 1021 1059 1062 1059 844
mult_dcop_02 439 762 761 805 735 790 806 860
onetone1 3082 3496 3192 3321 3602 3109 2830 3215
poli_large 33 33 33 33 33 33 33 33
bbmat 44799 40361 39600 39541 41729 43595 42870 53641
Avg. gain 7.4% 19.4% 22.0% 21.4% 18.6% 19.1% 18.9%
Set 2
shermanACb 399 364 366 362 365 363 364 399
rim 5878 6010 5944 5763 6075 5972 6017 5959
onetone2 1399 1611 1270 1282 1548 1252 1281 1396
shyy161 3732 3746 3838 3809 3702 3727 3757 4145
circuit_3 60 59 59 59 59 60 60 60
epb2 2027 2053 1942 1952 2045 2073 2050 2129
epb3 6864 6655 6008 6013 6874 6748 6711 7112
circuit_4 450 442 442 442 442 442 442 464
e40r0100 1986 1896 1813 1814 1906 1802 1813 2114
ns3Da 17149 17146 16921 17040 16883 17082 17112 16998
ecl32 32665 36717 35655 36485 33568 33758 32964 33354
Zhao1 5877 6192 6214 6294 6249 6220 6144 5891
af23560 11326 11419 11660 11547 11391 11217 11316 10913
3D_28984 12049 14210 14265 14172 12456 12483 12415 12057
3D_51448 32738 40225 39136 38822 34286 33800 33859 32891
ibm_matr 32872 39950 38909 38883 34319 34243 33879 33491
2D_54019 7900 8647 8686 8751 7900 7869 7906 7836
2D_27628 3045 3558 3598 3618 3118 3094 3089 3057
sme3Da 3951 3913 3862 3922 3824 3906 3784 3848
Avg. gain 1.5% −3.1% −0.5% −0.6% 0.6% 2.2% 2.4%

Table B.1.2: Number of nonzeros in the MA41_UNS factors (in thousands of reals).
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CMLS
mindrop = — 0.1 0.9 0.99
Matrix Diag MAT LIM TOT MAT LIM LIM DMLS
Set 1
av41092 1.03 1.03 1.02 1.03 1.02 1.03 1.03 1.02
g7jac140sc 1.00 1.01 1.01 1.03 1.00 1.01 1.00 1.00
g7jac120sc 1.00 1.01 1.01 1.02 1.00 1.01 1.00 1.00
jan99jac120sc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
jan99jac100sc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
bayer10 1.00 1.00 1.00 1.01 1.00 1.01 1.00 1.00
bayer04 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00
lhr34c 1.02 1.06 1.05 1.05 1.05 1.05 1.05 1.02
lhr71c 1.02 1.05 1.05 1.05 1.06 1.06 1.05 1.02
mark3jac120sc 1.00 1.00 1.01 1.01 1.00 1.00 1.01 1.00
mark3jac140sc 1.00 1.01 1.01 1.00 1.00 1.00 1.01 1.00
sinc18 1.00 1.03 1.02 1.03 1.01 1.01 1.00 1.00
sinc15 1.00 1.02 1.02 1.03 1.01 1.01 1.01 1.01
Zhao2 1.03 1.02 1.03 1.03 1.02 1.03 1.04 1.02
fd18 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.03
fd15 1.04 1.00 1.00 1.00 1.00 1.00 1.01 1.03
mult_dcop_03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94
mult_dcop_02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96
onetone1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
poli_large 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
bbmat 1.00 1.01 1.01 1.03 1.01 1.01 1.01 1.00

Set 2
shermanACb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
rim 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00
onetone2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
shyy161 1.00 1.00 1.02 1.02 1.00 1.00 1.00 1.00
circuit_3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
epb2 1.00 1.00 1.02 1.01 1.00 1.00 1.00 1.00
epb3 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00
circuit_4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
e40r0100 1.00 1.00 1.04 1.04 1.00 1.04 1.04 1.00
ns3Da 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ecl32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Zhao1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
af23560 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00
3D_28984 1.01 1.01 1.02 1.02 1.01 1.01 1.01 1.01
3D_51448 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
ibm_matr 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
2D_54019 1.02 1.03 1.03 1.03 1.02 1.02 1.02 1.03
2D_27628 1.01 1.02 1.02 1.02 1.01 1.00 1.01 1.00
sme3Da 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table B.1.3: Ratio between the number of nonzeros in the MA41_UNS factors and the number of nonzeros
predicted by the analysis.
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CMLS
mindrop = — 0.1 0.9 0.99
Matrix Diag MAT LIM TOT MAT LIM LIM DMLS
Set 1
av41092 7223 6840 6769 6679 6820 6795 6817 8098
g7jac140sc 14953 13363 12062 12134 13578 13054 12971 15204
g7jac120sc 13088 10489 10393 10142 10064 9863 9804 14486
jan99jac120sc 1902 1734 1675 1657 1765 1654 1665 1908
jan99jac100sc 1728 1435 1445 1377 1454 1422 1373 1576
bayer10 333 310 296 296 310 297 294 329
bayer04 527 449 475 461 432 482 487 538
lhr34c 4296 5162 5770 6018 5264 5803 6172 5787
lhr71c 9306 10419 11966 12611 10991 11790 11871 10847
mark3jac120sc 10169 11127 10941 11177 11180 10722 11324 10828
mark3jac140sc 12100 12822 13328 12531 13214 12906 12567 12867
sinc18 28792 25489 26162 27688 26478 26589 29100 35287
sinc15 13716 12334 12732 12659 12533 13863 13102 15284
Zhao2 11019 10512 9777 9845 10308 9932 9730 12226
fd18 931 523 531 520 529 515 542 935
fd15 558 316 315 311 316 328 336 564
mult_dcop_03 297 569 618 589 610 607 612 403
mult_dcop_02 292 391 387 392 393 388 393 403
onetone1 2484 2743 2640 2757 2944 2602 2459 2660
poli_large 33 33 33 33 33 33 33 33
bbmat 41040 40303 34813 35064 36984 36272 37426 41315
Avg. gain 7.1% 19.2% 19.7% 19.8% 18.7% 18.9% 18.0%
Set 2
shermanACb 375 346 349 348 343 341 344 373
rim 5420 5620 5332 5435 5486 5227 5614 5283
onetone2 1058 1297 1034 1082 1237 1036 1125 1032
shyy161 3092 3203 3198 3200 3103 3088 3080 3391
circuit_3 60 59 59 59 59 59 60 59
epb2 1976 1962 1875 1848 1991 2005 2008 2057
epb3 6325 6016 5367 5506 6372 6260 6271 6669
circuit_4 449 441 441 441 441 441 441 463
e40r0100 1970 1892 1738 1729 1890 1695 1738 2028
ns3Da 16700 16313 16475 16431 16708 16457 17033 16777
ecl32 30731 35265 35253 34633 32427 32348 32854 30174
Zhao1 5870 6088 6220 5979 6104 6049 6128 5865
af23560 11401 10923 10889 10901 11004 10798 11020 10961
3D_28984 12000 13506 13817 13889 12063 12261 12165 12025
3D_51448 32090 37807 38744 38554 32980 32925 32890 32448
ibm_matr 32185 37631 37476 38262 33474 33569 32551 32820
2D_54019 7623 8300 8315 8356 7587 7634 7632 7591
2D_27628 3021 3471 3445 3416 3057 3043 3043 2996
sme3Da 3721 3850 3806 3816 3820 3741 3744 3764
Avg. gain 0.9% −3.2% −0.7% −0.9% 0.0% 2.1% 0.9%

Table B.1.4: Number of nonzeros in the SuperLU_DIST factors (in thousands of reals).



202 CMLS: experimental results

CMLS
mindrop = — 0.1 0.9 0.99
Matrix Diag MAT LIM TOT MAT LIM LIM DMLS
Set 1
av41092 2798 2650 2539 2652 2594 2725 2601 3664
g7jac140sc 26452 19656 13907 17015 21232 20110 18324 30254
g7jac120sc 21203 14959 12811 13997 14411 15856 13763 22405
jan99jac120sc 1285 1225 1187 1200 1242 1181 1165 1348
jan99jac100sc 1105 1090 918 954 975 963 932 1058
bayer10 19 17 14 14 15 14 14 18
bayer04 57 31 25 26 28 26 28 34
lhr34c 1486 2238 2546 2403 2259 2618 2377 1794
lhr71c 3376 6046 5503 5494 4841 6686 6888 5281
mark3jac120sc 6101 8368 8793 8480 8155 9328 7981 7534
mark3jac140sc 7429 9306 10618 11185 9482 10090 10836 9295
sinc18 62163 59757 64041 63273 61782 63588 69047 96970
sinc15 19195 20635 21370 20653 22586 20174 23845 24567
Zhao2 8372 7298 6471 6430 7511 6791 6376 10080
fd18 121 44 43 45 48 47 45 128
fd15 63 22 22 22 23 23 24 61
mult_dcop_03 25 170 150 161 184 189 191 106
mult_dcop_02 14 80 81 95 73 89 92 111
onetone1 1205 1673 1332 1489 1542 1185 979 1296
poli_large 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051
bbmat 50887 40435 39553 40474 43281 47854 47213 77900
Avg. gain 15.7% 35.5% 45.0% 40.6% 35.0% 34.9% 37.3%
Set 2
shermanACb 25 21 21 20 20 20 21 26
rim 1144 1187 1208 1091 1233 1168 1201 1145
onetone2 240 367 234 243 333 224 237 243
shyy161 539 543 576 562 525 536 549 693
circuit_3 0.24 0.23 0.24 0.24 0.24 0.24 0.24 0.25
epb2 304 337 320 317 304 333 318 347
epb3 1111 1102 938 951 1135 1099 1071 1149
circuit_4 10 10 10 10 10 10 10 14
e40r0100 251 225 202 204 227 198 201 280
ns3Da 12916 12451 12554 12591 12392 12559 12841 12861
ecl32 35977 43505 40558 41759 37082 38127 36564 37816
Zhao1 2321 2500 2517 2584 2504 2530 2411 2267
af23560 4970 4819 5099 4982 5071 4721 4985 4576
3D_28984 5756 7394 7435 7482 6028 6041 5991 5657
3D_51448 28641 39756 38310 37417 31318 30079 30588 28911
ibm_matr 28388 39934 37495 38211 31020 31182 30453 30736
2D_54019 1430 1691 1722 1826 1433 1433 1436 1390
2D_27628 416 560 585 582 440 423 417 416
sme3Da 963 935 900 934 882 912 876 884
Avg. gain 5.4% −2.5% 1.1% 1.2% 4.2% 7.2% 6.9%

Table B.1.5: MA41_UNS: number of operations (in millions).
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CMLS
mindrop = — 0.1 0.9 0.99
Matrix Diag MAT LIM TOT MAT LIM LIM DMLS
Set 1
av41092 3.5 8.8 10.4 10.4 8.9 10.0 10.1 3.9
g7jac140sc 18.3 22.5 27.7 71.3 21.8 29.3 17.6 6.2
g7jac120sc 14.0 16.8 23.2 43.3 14.4 20.4 13.4 3.8
jan99jac120sc 5.1 6.4 7.4 7.2 6.4 6.7 7.2 2.8
jan99jac100sc 4.0 4.7 5.2 5.6 4.7 5.5 5.5 2.0
bayer10 0.3 0.3 0.5 0.5 0.4 0.4 0.4 0.1
bayer04 0.6 0.7 0.9 0.8 0.6 0.8 0.7 0.3
lhr34c 3.2 6.6 8.7 8.2 6.4 8.2 6.6 3.4
lhr71c 7.7 15.5 19.0 18.2 14.7 19.0 16.7 7.9
mark3jac120sc 7.2 9.1 10.7 10.3 9.1 10.9 10.2 3.7
mark3jac140sc 8.8 10.3 13.3 13.3 10.7 12.3 12.8 4.4
sinc18 18.1 29.6 27.3 35.3 28.5 28.2 27.6 19.7
sinc15 6.7 10.2 13.1 15.7 11.4 10.7 10.6 6.5
Zhao2 2.2 2.3 3.4 3.3 2.1 3.4 3.3 0.9
fd18 0.4 0.3 0.4 0.4 0.3 0.4 0.4 0.1
fd15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1
mult_dcop_03 0.5 0.6 0.7 0.6 0.6 0.6 0.6 0.4
mult_dcop_02 0.5 0.9 1.2 1.2 0.9 1.1 1.1 0.4
onetone1 1.1 1.5 2.3 2.2 1.5 1.8 1.6 0.5
poli_large 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
bbmat 46.0 51.6 57.5 115.3 48.8 49.9 43.7 17.5
Avg. gain −38.7% −55.0% −62.9% −65.6% −54.4% −60.8% −57.9%
Set 2
shermanACb 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.1
rim 0.8 1.2 1.8 3.0 1.1 1.5 1.2 0.5
onetone2 0.6 0.7 0.8 0.8 0.8 0.8 0.7 0.3
shyy161 1.4 1.6 1.8 1.8 1.4 1.4 1.4 0.6
circuit_3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
epb2 0.6 0.7 0.8 0.8 0.6 0.6 0.6 0.3
epb3 3.2 3.2 3.5 3.5 3.1 3.2 3.0 1.5
circuit_4 22.3 57.7 60.1 60.9 57.6 55.4 57.0 15.0
e40r0100 0.3 0.4 0.7 1.0 0.4 0.6 0.6 0.1
ns3Da 0.8 1.7 2.4 3.5 1.3 1.7 1.2 0.3
ecl32 4.6 7.0 8.4 8.4 5.1 5.1 5.3 1.3
Zhao1 1.1 1.2 1.4 1.4 1.2 1.4 1.4 0.4
af23560 2.1 4.0 8.3 20.6 2.2 2.5 2.2 0.8
3D_28984 1.4 2.3 4.6 9.8 1.9 2.1 2.3 0.3
3D_51448 2.7 5.2 7.8 8.1 4.5 4.9 4.7 0.6
ibm_matr 2.9 5.2 8.3 8.9 4.4 4.7 4.9 0.6
2D_54019 1.0 1.6 2.8 3.0 1.1 1.2 1.2 0.2
2D_27628 0.4 0.7 1.0 1.0 0.5 0.6 0.6 0.1
sme3Da 0.3 0.4 0.7 0.9 0.2 0.2 0.2 0.1
Avg. gain −60.0% −71.7% −76.9% −79.1% −66.9% −69.6% −68.3%

Table B.1.6: Ordering time (in seconds).



204 CMLS: experimental results

CMLS
mindrop = — 0.1 0.9 0.99
Matrix Diag MAT LIM TOT MAT LIM LIM DMLS
Set 1
av41092 1.0e+00 9.9e-01 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e-00 1.0e+00
g7jac140sc 5.7e-06 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e+00 9.2e-01 6.4e-07
g7jac120sc 1.2e-06 9.9e-01 1.0e+00 1.0e+00 9.9e-01 1.0e+00 9.7e-01 3.5e-07
jan99jac120sc 6.0e-10 2.9e-07 2.1e-07 2.8e-03 2.6e-10 6.1e-07 9.5e-06 4.3e-09
jan99jac100sc 2.3e-09 1.1e-09 9.0e-08 9.8e-09 7.1e-08 6.0e-07 1.8e-06 4.5e-08
bayer10 1.4e-09 3.1e-06 1.7e-02 2.8e-01 9.7e-05 1.0e+00 4.7e-06 9.9e-10
bayer04 5.5e-11 9.0e-03 1.0e+00 1.0e-00 9.4e-01 9.9e-01 9.6e-01 1.5e-05
lhr34c 1.1e-02 7.5e-03 1.0e+00 9.8e-01 6.9e-04 5.2e-03 3.1e-02 8.3e-06
lhr71c 3.1e-04 1.6e-01 3.6e-01 9.9e-01 2.0e-03 1.0e+00 6.7e-01 6.2e-06
mark3jac120sc 1.8e-05 9.6e-01 8.6e-01 1.0e+00 1.0e+00 9.6e-01 9.0e-01 1.3e-03
mark3jac140sc 4.9e-04 7.7e-01 9.9e-01 9.9e-01 6.4e-04 1.0e+00 9.9e-01 2.9e-05
sinc18 1.3e-06 7.1e-01 7.9e-01 9.8e-01 3.6e-02 5.6e-01 5.2e-01 5.4e-01
sinc15 2.0e-07 1.0e-01 7.7e-01 8.5e-01 8.4e-01 9.0e-01 4.3e-02 2.4e-04
Zhao2 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
fd18 1.2e-02 8.9e-12 1.1e-09 4.0e-02 7.5e-10 2.1e-05 1.0e-11 3.6e-08
fd15 1.5e-08 1.6e-12 5.6e-08 1.1e-05 3.0e-12 2.9e-12 2.0e-08 7.5e-07
mult_dcop_03 1.6e-14 1.6e-08 3.0e-08 4.3e-08 3.0e-11 2.6e-08 2.6e-08 2.0e-14
mult_dcop_02 5.3e-15 2.0e-08 7.7e-04 1.9e-03 1.7e-06 1.6e-05 1.6e-05 4.3e-14
onetone1 9.0e-14 4.5e-13 9.4e-08 6.2e-04 2.5e-13 4.2e-08 4.7e-13 2.8e-13
poli_large 3.2e-16 2.7e-16 3.8e-16 2.1e-16 1.9e-16 2.1e-16 3.5e-16 2.3e-16
bbmat 2.5e-01 2.7e-01 7.9e-03 9.8e-01 3.6e-04 1.2e-02 6.1e-05 1.3e-02

Set 2
shermanACb 2.6e-13 2.3e-13 1.1e-12 3.4e-14 9.4e-15 1.5e-14 2.1e-14 1.5e-13
rim 9.0e-07 9.2e-01 9.8e-01 9.4e-01 9.2e-01 8.6e-01 5.9e-01 1.8e-05
onetone2 1.3e-13 8.4e-10 1.1e-07 2.8e-07 7.5e-10 1.2e-07 1.1e-09 8.4e-14
shyy161 5.1e-16 9.2e-11 1.0e+00 1.0e+00 5.4e-16 4.8e-16 5.5e-16 4.6e-16
circuit_3 1.3e-11 8.3e-13 5.4e-11 1.1e-12 2.6e-13 7.0e-14 1.1e-13 1.5e-11
epb2 1.8e-15 1.2e-14 1.5e-07 1.0e-07 1.3e-15 2.4e-15 1.1e-15 2.0e-15
epb3 2.0e-15 1.4e-14 4.1e-03 8.2e-04 1.7e-15 3.9e-15 1.3e-15 1.4e-15
circuit_4 1.3e-11 3.5e-12 3.3e-12 5.7e-12 3.8e-12 3.2e-12 3.1e-12 1.4e-11
e40r0100 1.4e-04 8.4e-01 9.9e-01 1.0e-00 9.7e-01 9.9e-01 9.9e-01 4.8e-12
ns3Da 2.3e-12 7.6e-11 1.4e-10 1.8e-09 7.8e-10 1.0e-08 2.1e-10 9.3e-12
ecl32 5.2e-14 9.9e-12 1.0e+00 4.6e-07 6.9e-13 5.0e-13 3.4e-13 3.1e-14
Zhao1 1.5e-15 1.6e-15 2.1e-15 2.5e-12 2.4e-15 5.2e-15 5.9e-14 1.5e-15
af23560 9.2e-13 7.9e-06 1.1e-02 8.0e-01 1.5e-08 1.0e-08 3.2e-09 4.6e-13
3D_28984 9.4e-01 1.0e+00 1.0e+00 1.0e+00 9.9e-01 1.0e-00 1.4e-01 1.0e+00
3D_51448 2.0e-15 4.2e-03 9.0e-01 1.0e+00 2.7e-06 1.2e-06 2.9e-04 1.9e-15
ibm_matr 2.3e-15 1.8e-04 9.0e-01 9.7e-01 1.3e-06 1.4e-04 7.9e-08 1.9e-15
2D_54019 7.8e-16 9.9e-01 8.7e-01 6.1e-01 1.0e+00 3.1e-02 1.6e-06 1.6e-05
2D_27628 8.1e-16 5.4e-01 9.8e-01 9.9e-01 1.1e-06 3.3e-01 8.8e-06 6.6e-16
sme3Da 3.8e-16 2.9e-13 7.3e-12 8.9e-11 4.0e-16 4.3e-16 5.4e-16 4.1e-16

Table B.1.7: SuperLU_DIST: precision without iterative refinement.
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CMLS
mindrop = — 0.1 0.9 0.99
Matrix Diag MAT LIM TOT MAT LIM LIM DMLS
Set 1
av41092 1.0e+00 1.0e+00 1.0e+00 1.0e-00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
g7jac140sc 5.1e-16 1.0e+00 1.0e+00 1.0e+00 9.8e-01 1.0e+00 8.4e-16 6.4e-16
g7jac120sc 5.7e-16 1.0e+00 1.0e+00 1.0e+00 9.8e-01 1.0e+00 1.9e-14 5.9e-16
jan99jac120sc 3.7e-16 4.8e-16 5.0e-16 6.5e-16 5.4e-16 4.9e-16 5.0e-16 4.6e-16
jan99jac100sc 3.3e-16 5.1e-16 3.5e-16 4.1e-16 3.8e-16 5.1e-16 3.9e-16 3.7e-16
bayer10 2.1e-16 2.1e-16 2.1e-16 4.4e-14 3.0e-16 1.5e-13 2.1e-16 2.7e-16
bayer04 2.2e-16 3.2e-15 1.0e+00 1.0e-00 3.2e-16 8.0e-01 1.0e-12 2.1e-16
lhr34c 1.4e-04 8.9e-04 9.9e-01 6.7e-01 5.1e-03 4.7e-03 3.8e-02 9.5e-14
lhr71c 4.1e-04 1.2e-01 2.1e-01 9.6e-01 3.5e-03 1.0e+00 7.3e-01 1.7e-07
mark3jac120sc 4.5e-16 1.0e+00 9.9e-16 1.0e+00 6.0e-01 9.0e-01 1.6e-15 4.3e-16
mark3jac140sc 3.9e-16 2.1e-15 6.8e-01 9.9e-01 4.1e-16 1.0e+00 1.0e+00 4.2e-16
sinc18 2.7e-16 5.5e-01 8.7e-01 8.8e-01 2.7e-14 4.7e-01 3.5e-13 7.9e-01
sinc15 2.8e-16 4.8e-15 9.7e-01 9.3e-01 6.7e-01 8.4e-01 5.2e-14 9.0e-15
Zhao2 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
fd18 2.6e-15 2.4e-16 2.1e-16 2.5e-16 2.5e-16 2.1e-16 2.4e-16 2.1e-16
fd15 3.2e-16 2.1e-16 2.6e-16 2.7e-16 2.2e-16 2.3e-16 2.0e-16 2.6e-16
mult_dcop_03 1.8e-16 1.5e-16 1.5e-16 1.5e-16 2.3e-16 1.8e-16 1.9e-16 1.4e-16
mult_dcop_02 1.6e-16 1.9e-16 1.6e-16 2.1e-16 2.0e-16 1.5e-16 1.6e-16 2.0e-16
onetone1 4.9e-16 4.4e-16 4.6e-16 1.0e-14 5.2e-16 4.9e-16 5.1e-16 5.0e-16
poli_large 2.1e-16 2.1e-16 1.6e-16 2.1e-16 1.9e-16 2.1e-16 1.6e-16 1.0e-16
bbmat 4.7e-16 9.2e-01 6.9e-15 9.7e-01 4.7e-16 5.7e-16 5.4e-16 4.5e-16

Set 2
shermanACb 4.5e-16 1.5e-13 4.3e-16 2.4e-16 2.3e-16 2.5e-16 1.5e-13 3.4e-16
rim 5.5e-12 1.8e-05 9.7e-01 9.9e-01 9.8e-01 8.1e-01 1.8e-05 9.0e-13
onetone2 3.7e-16 8.4e-14 4.0e-16 4.1e-16 3.0e-16 3.7e-16 8.4e-14 4.6e-16
shyy161 2.7e-16 4.6e-16 9.9e-01 1.0e+00 1.7e-15 2.7e-16 4.6e-16 2.0e-16
circuit_3 3.4e-16 1.5e-11 5.3e-16 4.1e-16 6.0e-16 6.6e-16 1.5e-11 2.5e-16
epb2 2.8e-16 2.0e-15 2.8e-16 3.4e-16 2.8e-16 2.8e-16 2.0e-15 2.6e-16
epb3 2.7e-16 1.4e-15 3.8e-16 3.4e-16 2.5e-16 2.4e-16 1.4e-15 2.8e-16
circuit_4 6.4e-15 1.4e-11 8.4e-14 1.7e-14 1.4e-14 4.4e-14 1.4e-11 1.4e-14
e40r0100 3.7e-16 4.8e-12 9.9e-01 1.0e-00 8.3e-01 9.9e-01 4.8e-12 4.1e-16
ns3Da 2.9e-16 9.3e-12 2.8e-16 3.6e-16 3.7e-16 3.8e-16 9.3e-12 3.4e-16
ecl32 3.9e-16 3.1e-14 4.7e-06 3.7e-16 3.3e-16 3.5e-16 3.1e-14 3.6e-16
Zhao1 1.9e-16 1.5e-15 2.0e-16 2.2e-16 2.2e-16 2.0e-16 1.5e-15 1.3e-16
af23560 3.3e-16 4.6e-13 3.9e-16 8.2e-01 3.1e-16 2.8e-16 4.6e-13 3.1e-16
3D_28984 3.3e-15 1.0e+00 1.0e+00 9.9e-01 2.5e-05 1.2e-07 1.0e+00 1.2e-14
3D_51448 3.1e-16 1.9e-15 9.9e-01 1.0e+00 3.3e-16 2.9e-16 1.9e-15 3.6e-16
ibm_matr 3.3e-16 1.9e-15 1.0e-00 6.1e-01 3.4e-16 3.0e-16 1.9e-15 2.7e-16
2D_54019 3.1e-16 1.6e-05 7.2e-01 1.9e-01 3.5e-16 2.7e-16 1.6e-05 3.6e-16
2D_27628 2.6e-16 6.6e-16 1.0e-00 9.9e-01 3.1e-16 2.1e-15 6.6e-16 2.9e-16
sme3Da 4.9e-16 4.1e-16 4.2e-16 4.6e-16 4.7e-16 4.1e-16 4.1e-16 6.6e-16

Table B.1.8: SuperLU_DIST: precision of the solution after iterative refinement.



206 CMLS: experimental results

CMLS
mindrop = — 0.1 0.9 0.99
Matrix Diag MAT LIM TOT MAT LIM LIM DMLS
Set 1
av41092 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗

g7jac140sc 3 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 6 3
g7jac120sc 3 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 6 3
jan99jac120sc 3 3 3 5 3 4 4 3
jan99jac100sc 3 3 3 3 3 4 4 3
bayer10 3 4 5 4 4 4 4 3
bayer04 3 6 2∗∗ 2∗∗ 5 2∗∗ 6 4
lhr34c 4∗∗ 4∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 3∗∗ 9
lhr71c 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 3∗

mark3jac120sc 4 2∗∗ 10 2∗∗ 2∗∗ 2∗∗ 9 5
mark3jac140sc 4 7 3∗∗ 2∗∗ 6 2∗∗ 2∗∗ 4
sinc18 5 2∗∗ 2∗∗ 2∗∗ 7 2∗∗ 7 2∗∗

sinc15 5 8 2∗∗ 2∗∗ 2∗∗ 2∗∗ 7 6
Zhao2 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗

fd18 7 3 3 7 3 4 3 4
fd15 4 2 3 4 3 3 3 4
mult_dcop_03 2 3 3 3 3 3 2 3
mult_dcop_02 2 2 2 2 2 2 2 3
onetone1 3 3 4 6 3 4 3 3
poli_large 2 2 2 1 1 1 2 2
bbmat 11 2∗∗ 9 2∗∗ 6 9 5 8

Set 2
shermanACb 3 4 4 3 3 3 4 4
rim 3 2∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2 5
onetone2 3 4 4 4 4 4 3 3
shyy161 2 3 2∗∗ 2∗∗ 2 2 3 2
circuit_3 3 3 3 3 3 4 3 3
epb2 3 3 4 3 3 3 3 3
epb3 3 3 6 5 3 3 3 3
circuit_4 4 3 3 4 4 3 4 4
e40r0100 5 2 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2 3
ns3Da 3 4 4 3 3 3 4 3
ecl32 3 3 3 4 3 3 3 3
Zhao1 2 3 3 3 3 2 3 2
af23560 3 4 8 2∗∗ 4 4 3 3
3D_28984 3 2∗∗ 2∗∗ 2∗∗ 3∗ 3∗ 4∗∗ 3
3D_51448 3 5 2∗∗ 2∗∗ 4 4 4 3
ibm_matr 3 4 2∗∗ 2∗∗ 4 4 3 3
2D_54019 3 4∗ 2∗∗ 3∗∗ 3 6 3∗ 3
2D_27628 3 7 2∗∗ 2∗∗ 4 4 3 3
sme3Da 2 3 3 3 2 2 2 2

Table B.1.9: SuperLU_DIST: number of steps of iterative refinement to get the precision of Table B.1.8.
∗∗ means that after iterative refinement the component-wise backward error is greater than 10−4 and ∗

means that after iterative refinement the component-wise backward error is between 10−4 and 10−8 .
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B.2 Hybrid strategies

CMLS
mindrop = 0.1 0.9 0.99 0.1
Matrix/ NCOL = 0 10 0 10 0 10 STR DMLS
Set 1
av41092 6815 6820 6797 6755 6762 6657 6769 8098
g7jac140sc 12216 13949 13207 13790 12990 13642 12062 15204
g7jac120sc 11102 11116 10203 10224 9693 9842 10393 14486
jan99jac120sc 1680 1713 1721 1686 1745 1669 1675 1908
jan99jac100sc 1377 1527 1374 1450 1376 1434 1445 1576
bayer10 314 304 293 300 308 303 296 329
bayer04 482 469 462 486 489 477 475 538
lhr34c 6238 5764 7208 5730 5621 5902 5770 5787
lhr71c 13617 12452 12188 12193 12752 12415 11966 10847
mark3jac120sc 11305 10511 11581 10903 11500 11643 10941 10828
mark3jac140sc 13656 13073 13174 12621 13245 13256 13328 12867
sinc18 28362 26518 26397 26813 28072 30447 26162 35287
sinc15 12711 12739 14002 13932 13792 13126 12732 15284
Zhao2 10403 11039 10497 10679 10453 11051 9777 12226
fd18 601 615 625 609 631 634 531 935
fd15 378 366 383 378 385 387 315 564
mult_dcop_03 648 632 626 570 621 601 618 403
mult_dcop_02 401 403 388 389 389 388 387 403
onetone1 3859 4020 2712 2709 2592 2620 2640 2660
poli_large 33 33 33 33 33 33 33 33
bbmat 35145 35991 37350 38658 34230 34855 34813 41315
Avg. gain 12.3% 12.4% 13.5% 14.2% 14.6% 13.6% 19.7%
Set 2
shermanACb 346 345 345 343 348 348 349 373
rim 5658 5431 5515 5565 5484 5499 5332 5283
onetone2 1276 1272 1313 1288 1322 1323 1034 1032
shyy161 3138 3171 3056 3067 3095 3050 3198 3391
circuit_3 59 59 59 59 60 60 59 59
epb2 1869 1840 1974 2001 2013 1984 1875 2057
epb3 5442 5537 6192 6259 6247 6294 5367 6669
circuit_4 444 444 441 441 441 441 441 463
e40r0100 1762 1780 1783 1765 1769 1780 1738 2028
ns3Da 16640 16697 16875 16505 16724 16845 16475 16777
ecl32 34521 34172 32882 32502 32559 31951 35253 30174
Zhao1 6170 6127 6021 6177 6096 6087 6220 5865
af23560 10844 10774 10967 10978 11054 11068 10889 10961
3D_28984 13761 13844 12270 12091 12107 12177 13817 12025
3D_51448 38417 37787 33608 33360 32953 33213 38744 32448
ibm_matr 37872 37621 33066 33382 33119 33048 37476 32820
2D_54019 8241 8276 7657 7627 7618 7610 8315 7591
2D_27628 3440 3443 3026 3026 3033 3044 3445 2996
sme3Da 3916 3811 3722 3868 3776 3777 3806 3764
Avg. gain −2.1% −1.7% 0.3% 0.2% 0.1% 0.1% −0.7%

Table B.2.1: Number of nonzeros in the SuperLU_DIST factors (in thousands of reals). STR: structural
metric used to select the pivots. Otherwise we use a hybrid metric.
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CMLS
mindrop = 0.1 0.9 0.99 0.1
Matrix/ NCOL = 0 10 0 10 0 10 STR DMLS
Set 1
av41092 10.1 10.7 10.6 10.3 10.9 10.1 10.4 3.8
g7jac140sc 36.2 56.1 50.5 36.7 18.2 18.6 28.9 5.7
g7jac120sc 47.3 36.5 27.3 24.4 14.4 13.1 24.0 3.8
jan99jac120sc 7.4 7.3 7.3 7.6 7.6 7.6 7.5 2.6
jan99jac100sc 5.8 5.8 5.4 5.8 5.5 5.7 5.4 2.1
bayer10 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.1
bayer04 1.1 1.0 0.9 0.9 0.9 0.8 1.0 0.3
lhr34c 8.7 8.3 9.9 8.5 8.2 8.0 8.2 4.1
lhr71c 20.9 20.5 20.8 21.9 18.7 19.3 20.9 9.3
mark3jac120sc 10.4 10.2 10.5 10.8 11.0 10.6 10.4 3.4
mark3jac140sc 12.5 12.5 12.3 12.2 12.5 12.5 13.0 4.3
sinc18 45.2 42.5 34.3 32.1 30.6 28.2 38.0 14.6
sinc15 17.8 19.1 12.6 13.3 11.2 11.9 16.3 3.7
Zhao2 17.6 57.2 12.0 56.3 14.6 125.6 3.5 1.0
fd18 2.2 1.4 0.8 0.8 0.6 0.6 0.4 0.1
fd15 0.7 1.5 0.4 0.5 0.3 0.3 0.2 0.1
mult_dcop_03 0.7 0.8 0.7 0.7 0.7 0.6 0.7 0.4
mult_dcop_02 1.3 1.2 1.2 1.2 1.1 1.1 1.2 0.4
onetone1 15.0 15.4 2.2 2.2 1.9 2.2 2.2 0.5
poli_large 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
bbmat 62.5 57.3 39.7 45.2 38.6 40.5 55.4 13.2
Avg. gain −71.5% −71.8% −67.6% −68.0% −64.1% −63.9% −64.6%
Set 2
shermanACb 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1
rim 2.1 2.1 1.6 1.7 1.2 1.2 1.9 0.4
onetone2 1.0 1.1 1.0 1.0 0.9 1.0 0.8 0.3
shyy161 1.8 1.8 1.4 1.4 1.4 1.4 1.8 0.7
circuit_3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
epb2 0.8 0.8 0.7 0.6 0.6 0.6 0.8 0.3
epb3 3.6 3.7 3.2 3.3 3.1 3.1 3.5 1.5
circuit_4 65.4 65.9 60.4 58.6 61.7 62.2 66.2 14.7
e40r0100 0.9 0.9 0.6 0.6 0.6 0.6 0.8 0.1
ns3Da 2.7 2.8 1.7 1.7 1.2 1.2 2.4 0.3
ecl32 8.6 8.4 5.5 5.9 5.2 5.5 8.5 1.4
Zhao1 1.4 1.4 1.4 1.5 1.5 1.4 1.5 0.4
af23560 8.4 8.1 2.9 2.6 2.2 2.2 7.3 0.7
3D_28984 4.7 4.8 2.4 2.3 2.2 2.4 4.8 0.3
3D_51448 7.8 7.3 5.0 4.8 5.0 5.1 7.3 0.6
ibm_matr 7.6 7.4 5.0 5.0 5.0 5.0 8.0 0.6
2D_54019 3.1 3.1 1.3 1.2 1.2 1.2 2.8 0.2
2D_27628 1.1 1.1 0.5 0.6 0.6 0.6 1.0 0.1
sme3Da 0.8 0.8 0.2 0.2 0.2 0.2 0.7 0.1
Avg. gain −81.7% −81.8% −74.4% −74.2% −72.6% −72.9% −80.8%

Table B.2.2: Ordering time (in seconds). STR: structural metric used to select the pivots. Otherwise we use
a hybrid metric.
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CMLS
mindrop = 0.1 0.9 0.99 0.1
Matrix/ NCOL = 0 10 0 10 0 10 STR DMLS
Set 1
av41092 9.9e-01 1.0e+00 1.0e+00 1.0e-00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
g7jac140sc 9.7e-01 1.0e+00 1.9e-03 3.2e-04 6.5e-05 2.1e-04 1.0e+00 6.4e-07
g7jac120sc 9.4e-01 1.0e+00 5.4e-02 1.2e-05 2.1e-05 6.4e-04 1.0e+00 3.5e-07
jan99jac120sc 1.4e-09 1.7e-06 3.7e-08 7.4e-09 1.3e-08 1.0e-07 2.1e-07 4.3e-09
jan99jac100sc 1.6e-07 4.3e-08 5.0e-09 1.2e-08 6.2e-08 7.8e-08 9.0e-08 4.5e-08
bayer10 1.6e-06 3.0e-07 3.6e-07 3.3e-07 1.2e-06 6.0e-09 1.7e-02 9.9e-10
bayer04 9.0e-08 1.0e-07 1.1e-06 8.9e-07 6.9e-08 1.7e-06 1.0e+00 1.5e-05
lhr34c 4.3e-06 4.3e-06 3.7e-05 6.0e-07 7.2e-07 4.2e-07 1.0e+00 8.3e-06
lhr71c 3.6e-04 2.8e-04 6.7e-01 5.4e-03 1.0e-01 3.6e-07 3.6e-01 6.2e-06
mark3jac120sc 1.0e+00 2.0e-01 8.7e-01 8.5e-04 8.2e-02 6.5e-02 8.6e-01 1.3e-03
mark3jac140sc 1.0e+00 9.1e-01 9.1e-01 3.5e-02 8.1e-05 9.4e-01 9.9e-01 2.9e-05
sinc18 1.1e-01 7.3e-01 1.5e-03 7.8e-05 2.8e-06 6.4e-04 7.9e-01 5.4e-01
sinc15 5.9e-01 1.5e-02 2.4e-01 1.4e-02 2.7e-07 4.5e-08 7.7e-01 2.4e-04
Zhao2 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
fd18 9.5e-01 9.7e-01 5.5e-09 1.5e-08 3.9e-09 2.5e-11 1.1e-09 3.6e-08
fd15 8.5e-01 1.0e-02 1.9e-10 1.1e-11 2.1e-12 7.3e-11 5.6e-08 7.5e-07
mult_dcop_03 2.6e-08 3.2e-08 2.6e-08 2.6e-08 2.6e-08 2.6e-08 3.0e-08 2.0e-14
mult_dcop_02 3.3e-08 7.8e-08 4.3e-10 4.3e-10 9.3e-11 4.3e-10 7.7e-04 4.3e-14
onetone1 8.7e-10 3.0e-10 2.2e-13 7.3e-13 1.6e-13 1.9e-13 9.4e-08 2.8e-13
poli_large 3.5e-16 2.1e-16 2.8e-16 1.8e-16 1.9e-16 3.1e-16 3.8e-16 2.3e-16
bbmat 1.2e-03 1.8e-03 1.2e-07 2.0e-07 4.1e-08 5.2e-08 7.9e-03 1.3e-02

Set 2
shermanACb 7.0e-13 7.6e-13 9.5e-15 1.9e-14 1.7e-14 1.8e-14 1.1e-12 1.5e-13
rim 9.8e-06 9.0e-07 6.9e-02 8.3e-07 8.8e-05 1.3e-07 9.8e-01 1.8e-05
onetone2 2.0e-13 2.9e-13 1.7e-13 1.6e-13 1.8e-13 1.3e-13 1.1e-07 8.4e-14
shyy161 3.7e-06 6.7e-05 5.2e-16 4.7e-16 5.9e-16 5.9e-16 1.0e+00 4.6e-16
circuit_3 1.2e-09 1.7e-13 7.6e-14 2.3e-14 2.3e-13 7.7e-14 5.4e-11 1.5e-11
epb2 1.4e-08 7.5e-08 2.6e-15 1.4e-15 2.3e-15 2.9e-15 1.5e-07 2.0e-15
epb3 3.0e-08 2.9e-07 5.1e-15 5.7e-15 1.4e-15 1.8e-15 4.1e-03 1.4e-15
circuit_4 7.3e-12 9.0e-12 3.3e-12 1.8e-12 1.8e-12 2.0e-12 3.3e-12 1.4e-11
e40r0100 9.9e-01 9.9e-01 5.0e-01 8.3e-01 9.7e-01 7.3e-01 9.9e-01 4.8e-12
ns3Da 1.0e-10 3.3e-10 5.1e-10 4.1e-10 1.5e-09 6.8e-10 1.4e-10 9.3e-12
ecl32 4.0e-11 1.0e-10 5.2e-13 4.1e-13 7.6e-13 6.2e-13 1.0e+00 3.1e-14
Zhao1 3.9e-15 1.5e-15 1.8e-15 1.8e-15 1.9e-15 1.5e-15 2.1e-15 1.5e-15
af23560 4.1e-08 1.3e-07 1.1e-07 2.0e-10 2.1e-11 2.2e-08 1.1e-02 4.6e-13
3D_28984 9.9e-01 9.6e-01 8.6e-01 5.2e-01 9.9e-01 9.3e-01 1.0e+00 1.0e+00
3D_51448 1.3e-03 1.8e-03 2.6e-07 7.5e-07 1.4e-06 1.1e-08 9.0e-01 1.9e-15
ibm_matr 1.6e-01 8.4e-02 1.6e-08 3.1e-08 2.0e-07 3.0e-08 9.0e-01 1.9e-15
2D_54019 1.0e+00 5.2e-01 1.4e-01 6.5e-02 3.3e-02 6.3e-01 8.7e-01 1.6e-05
2D_27628 1.0e-02 9.7e-01 6.4e-05 7.1e-07 1.1e-06 1.5e-06 9.8e-01 6.6e-16
sme3Da 2.3e-12 6.2e-12 4.4e-16 4.3e-16 3.6e-16 3.7e-16 7.3e-12 4.1e-16

Table B.2.3: SuperLU_DIST: precision without iterative refinement. STR: structural metric used to select
the pivots. Otherwise we use a hybrid metric.
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CMLS
mindrop = 0.1 0.9 0.99 0.1
Matrix/ NCOL = 0 10 0 10 0 10 STR DMLS
Set 1
av41092 1.0e+00 1.0e+00 1.0e+00 1.0e-00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
g7jac140sc 7.7e-14 1.7e-14 7.3e-16 5.5e-16 5.4e-16 6.0e-16 1.0e+00 6.4e-16
g7jac120sc 1.5e-14 1.0e+00 5.8e-16 5.4e-16 4.7e-16 6.5e-16 1.0e+00 5.9e-16
jan99jac120sc 5.0e-16 4.8e-16 5.4e-16 5.1e-16 4.9e-16 3.7e-16 5.0e-16 4.6e-16
jan99jac100sc 5.5e-16 4.1e-16 5.1e-16 4.8e-16 3.8e-16 4.6e-16 3.5e-16 3.7e-16
bayer10 2.6e-16 2.5e-16 2.4e-16 2.1e-16 2.4e-16 2.4e-16 2.1e-16 2.7e-16
bayer04 2.3e-16 3.0e-16 2.5e-16 2.5e-16 2.6e-16 2.6e-16 1.0e+00 2.1e-16
lhr34c 1.6e-12 6.6e-14 1.3e-12 1.1e-13 1.2e-13 8.7e-16 9.9e-01 9.5e-14
lhr71c 2.0e-12 2.9e-11 3.0e-08 5.7e-06 3.3e-08 8.5e-16 2.1e-01 1.7e-07
mark3jac120sc 8.2e-01 4.7e-16 9.9e-01 3.5e-16 3.7e-16 4.7e-16 9.9e-16 4.3e-16
mark3jac140sc 1.0e+00 3.0e-13 3.9e-16 3.5e-16 3.3e-16 5.6e-16 6.8e-01 4.2e-16
sinc18 2.9e-01 7.3e-01 1.9e-15 3.2e-16 3.3e-16 1.2e-14 8.7e-01 7.9e-01
sinc15 3.3e-01 7.1e-15 6.7e-01 1.9e-14 3.0e-16 3.1e-16 9.7e-01 9.0e-15
Zhao2 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00
fd18 8.6e-01 4.0e-11 2.3e-16 2.9e-16 2.3e-16 2.2e-16 2.1e-16 2.1e-16
fd15 8.0e-13 6.6e-15 2.2e-16 2.0e-16 2.2e-16 1.9e-16 2.6e-16 2.6e-16
mult_dcop_03 1.4e-16 1.5e-16 1.5e-16 1.4e-16 1.4e-16 1.4e-16 1.5e-16 1.4e-16
mult_dcop_02 1.6e-16 1.7e-16 1.7e-16 1.7e-16 1.7e-16 1.8e-16 1.6e-16 2.0e-16
onetone1 3.9e-16 3.9e-16 5.8e-16 4.9e-16 4.5e-16 4.8e-16 4.6e-16 5.0e-16
poli_large 1.1e-16 2.1e-16 1.4e-16 1.8e-16 1.9e-16 1.2e-16 1.6e-16 1.0e-16
bbmat 3.9e-16 7.7e-16 5.2e-16 4.6e-16 4.2e-16 3.9e-16 6.9e-15 4.5e-16

Set 2
shermanACb 2.4e-16 3.1e-16 4.5e-16 8.9e-16 5.5e-16 4.2e-16 4.3e-16 3.4e-16
rim 6.8e-12 1.3e-12 2.4e-02 1.1e-11 1.8e-13 3.9e-13 9.7e-01 9.0e-13
onetone2 3.9e-16 3.2e-16 4.0e-16 3.6e-16 3.6e-16 3.6e-16 4.0e-16 4.6e-16
shyy161 2.0e-16 2.0e-16 3.1e-16 2.5e-16 2.2e-16 2.1e-16 9.9e-01 2.0e-16
circuit_3 6.2e-16 3.5e-16 3.1e-16 4.6e-16 6.1e-16 5.4e-16 5.3e-16 2.5e-16
epb2 3.3e-16 3.0e-16 2.6e-16 2.8e-16 2.7e-16 2.8e-16 2.8e-16 2.6e-16
epb3 3.5e-16 3.2e-16 2.5e-16 2.7e-16 2.5e-16 2.7e-16 3.8e-16 2.8e-16
circuit_4 3.4e-14 2.9e-14 4.3e-14 2.7e-14 3.3e-14 6.9e-14 8.4e-14 1.4e-14
e40r0100 9.9e-01 9.9e-01 1.4e-02 8.7e-01 9.5e-01 6.5e-01 9.9e-01 4.1e-16
ns3Da 4.3e-16 3.7e-16 3.9e-16 2.9e-16 3.5e-16 3.6e-16 2.8e-16 3.4e-16
ecl32 3.5e-16 3.4e-16 3.5e-16 3.2e-16 3.6e-16 3.8e-16 4.7e-06 3.6e-16
Zhao1 2.0e-16 2.0e-16 2.1e-16 2.0e-16 2.0e-16 2.1e-16 2.0e-16 1.3e-16
af23560 2.8e-16 2.9e-16 3.1e-16 3.2e-16 2.6e-16 3.8e-16 3.9e-16 3.1e-16
3D_28984 9.8e-01 6.4e-01 1.2e-12 1.3e-12 2.3e-13 2.0e-11 1.0e+00 1.2e-14
3D_51448 3.0e-16 2.9e-16 3.1e-16 3.0e-16 3.3e-16 3.0e-16 9.9e-01 3.6e-16
ibm_matr 1.7e-01 2.9e-16 3.4e-16 3.3e-16 2.8e-16 3.0e-16 1.0e-00 2.7e-16
2D_54019 2.0e-06 4.2e-01 3.6e-16 3.1e-16 3.6e-16 7.6e-15 7.2e-01 3.6e-16
2D_27628 2.6e-16 2.7e-11 2.6e-16 2.7e-16 3.1e-16 3.3e-16 1.0e-00 2.9e-16
sme3Da 4.5e-16 3.6e-16 3.8e-16 4.5e-16 5.2e-16 4.3e-16 4.2e-16 6.6e-16

Table B.2.4: SuperLU_DIST: precision of the solution after iterative refinement. STR: structural metric
used to select the pivots. Otherwise we use a hybrid metric.
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CMLS
mindrop = 0.1 0.9 0.99 0.1
Matrix/ NCOL = 0 10 0 10 0 10 STR DMLS
Set 1
av41092 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗

g7jac140sc 9 7 5 4 4 4 2∗∗ 3
g7jac120sc 8 2∗∗ 6 4 3 4 2∗∗ 3
jan99jac120sc 3 4 3 3 3 3 3 3
jan99jac100sc 3 3 3 3 3 3 3 3
bayer10 4 4 4 3 4 4 5 3
bayer04 3 3 3 3 3 4 2∗∗ 4
lhr34c 5 6 10 6 5 6 2∗∗ 9
lhr71c 6 7 6∗ 5∗ 9∗ 5 2∗∗ 3∗

mark3jac120sc 2∗∗ 5 2∗∗ 4 5 6 10 5
mark3jac140sc 2∗∗ 11 8 6 5 9 3∗∗ 4
sinc18 2∗∗ 2∗∗ 5 5 4 6 2∗∗ 2∗∗

sinc15 2∗∗ 7 2∗∗ 6 4 3 2∗∗ 6
Zhao2 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗

fd18 2 6 3 3 3 3 3 4
fd15 6 7 2 3 2 3 3 4
mult_dcop_03 4 3 3 3 2 3 3 3
mult_dcop_02 2 2 2 2 2 2 2 3
onetone1 3 3 3 3 3 3 4 3
poli_large 2 1 2 1 1 2 2 2
bbmat 6 5 3 3 3 3 9 8

Set 2
shermanACb 4 3 3 3 3 4 4 4
rim 5 4 4∗∗ 3 5 5 2∗∗ 5
onetone2 3 3 3 3 3 3 4 3
shyy161 3 3 2 2 3 3 2∗∗ 2
circuit_3 3 4 3 3 3 3 3 3
epb2 3 4 3 3 3 3 4 3
epb3 3 4 3 3 3 3 6 3
circuit_4 4 3 3 3 3 3 3 4
e40r0100 2∗∗ 2∗∗ 5∗∗ 2∗∗ 2∗∗ 2∗∗ 2∗∗ 3
ns3Da 3 3 3 3 3 3 4 3
ecl32 3 3 3 3 3 3 3 3
Zhao1 2 3 2 2 2 2 3 2
af23560 3 3 4 3 3 3 8 3
3D_28984 2∗∗ 2∗∗ 4 3 3 3 2∗∗ 3
3D_51448 4 4 3 3 3 3 2∗∗ 3
ibm_matr 2∗∗ 4 3 3 3 3 2∗∗ 3
2D_54019 5∗ 2∗∗ 5 4 4 4 2∗∗ 3
2D_27628 8 4 3 3 3 3 2∗∗ 3
sme3Da 3 3 2 2 2 2 3 2

Table B.2.5: SuperLU_DIST: number of steps of iterative refinement to get the precision of Table B.2.4.
∗∗ means that after iterative refinement the component-wise backward error is greater than 10−4 and ∗

means that after iterative refinement the component-wise backward error is between 10−4 and 10−8 . STR:
structural metric used to select the pivots. Otherwise we use a hybrid metric.
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B.3 Preprocessing influence

estimated size real size
Matrix MC21_MC77 MC64 MC21_MC77 MC64

STR HYB STR DMLS STR HYB STR DMLS
Set 1
av41092 5497 13199 8033 9448 6083 (1.11) 13991 (1.06) 8224 9654
g7jac140sc 12810 12734 16080 24138 13443 (1.05) 13113 (1.03) 16252 24146
g7jac120sc 10644 10377 14246 19271 11144 (1.05) 10736 (1.03) 14359 19277
jan99jac120sc 2895 2996 3535 3849 3000 (1.04) 3058 (1.02) 3539 3854
jan99jac100sc 2401 2459 2810 3134 2460 (1.02) 2501 (1.02) 2812 3139
bayer10 358 383 365 413 383 (1.07) 396 (1.03) 366 414
bayer04 562 597 514 627 616 (1.10) 632 (1.06) 520 627
lhr34c 8574 7268 8296 6979 13629 (1.59) 8288 (1.14) 8696 7122
lhr71c 16832 13758 16663 15450 24634 (1.46) 15888 (1.15) 17573 15824
mark3jac120sc 13075 29359 14109 13674 13599 (1.04) 30068 (1.02) 14184 13708
mark3jac140sc 15037 34738 16793 16372 15587 (1.04) 35667 (1.03) 16879 16410
sinc18 22968 21680 31581 41445 23785 (1.04) 22084 (1.02) 32334 41563
sinc15 10273 9803 14860 17446 10498 (1.02) 9911 (1.01) 15158 17573
Zhao2 9024 10019 11128 14334 9633 (1.07) 10386 (1.04) 11453 14674
fd18 648 685 569 1082 703 (1.08) 702 (1.02) 570 1119
fd15 394 421 349 655 419 (1.06) 429 (1.02) 349 673
mult_dcop_03 971 1063 991 895 1293 (1.33) 1145 (1.08) 991 844
mult_dcop_02 890 754 761 897 1120 (1.26) 792 (1.05) 761 860
onetone1 2781 3498 3177 3215 3398 (1.22) 3844 (1.10) 3192 3215
poli_large 33 33 33 33 33 (1.00) 33 (1.00) 33 33
bbmat 42954 55530 39034 53596 48187 (1.12) 60927 (1.10) 39600 53641
Avg. gain 36.9% 22.7% 22.3% 27.4% 18.9% 22.0%
Set 2
shermanACb 376 382 366 399 382 (1.02) 387 (1.01) 366 399
rim 5909 6216 5907 5957 6894 (1.17) 7297 (1.17) 5944 5959
onetone2 1285 1200 1269 1396 1678 (1.31) 1409 (1.17) 1270 1396
shyy161 3815 3751 3774 4145 3883 (1.02) 3757 (1.00) 3838 4145
circuit_3 60 60 59 60 61 (1.02) 60 (1.00) 59 60
epb2 1848 1919 1902 2129 1926 (1.04) 1940 (1.01) 1942 2129
epb3 4812 5135 5975 7112 4963 (1.03) 5179 (1.01) 6008 7112
circuit_4 440 463 441 464 449 (1.02) 465 (1.00) 442 464
e40r0100 1926 1882 1750 2113 2004 (1.04) 1905 (1.01) 1813 2114
ns3Da 19605 19348 16918 16998 19632 (1.00) 19370 (1.00) 16921 16998
ecl32 38584 37918 35643 33354 39969 (1.04) 38256 (1.01) 35655 33354
Zhao1 8668 8709 6214 5891 8891 (1.03) 8959 (1.03) 6214 5891
af23560 13022 12532 11637 10913 15382 (1.18) 13478 (1.08) 11660 10913
3D_28984 14922 15417 14017 11971 16422 (1.10) 16640 (1.08) 14265 12057
3D_51448 45208 45503 38694 32647 48531 (1.07) 47555 (1.05) 39136 32891
ibm_matr 45017 45438 38492 33202 48183 (1.07) 47980 (1.06) 38909 33491
2D_54019 9689 9736 8432 7614 10724 (1.11) 10399 (1.07) 8686 7836
2D_27628 3682 3767 3529 3043 3892 (1.06) 3919 (1.04) 3598 3057
sme3Da 3884 4048 3862 3848 3884 (1.00) 4049 (1.00) 3862 3848
Avg. gain −4.5% −5.5% 0.2% −10.0% −8.8% −0.5%

Table B.3.1: MA41_UNS: number of entries in the factors with different preprocessings. Number of entries
in thousands. STR: structural strategy. HYB: hybrid strategy. In parenthesis, the ratio between the real size
and the estimated size of the factors.
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Matrix MC21_MC77 MC64
STR HYB STR DMLS

Set 1
av41092 1537 16321 2539 3664
g7jac140sc 11118 10708 13907 30254
g7jac120sc 8890 8490 12811 22405
jan99jac120sc 859 880 1187 1348
jan99jac100sc 655 710 918 1058
bayer10 16 18 14 18
bayer04 42 46 25 34
lhr34c 7673 3180 2546 1794
lhr71c 12877 6356 5503 5281
mark3jac120sc 8466 58071 8793 7534
mark3jac140sc 9429 68426 10618 9295
sinc18 40850 38391 64041 96970
sinc15 12086 11212 21370 24567
Zhao2 4884 5707 6471 10080
fd18 60 62 43 128
fd15 29 31 22 61
mult_dcop_03 271 209 150 106
mult_dcop_02 211 84 81 111
onetone1 1366 1998 1332 1296
poli_large 0.051 0.051 0.051 0.051
bbmat 56950 104520 39553 77900
Avg. gain 54.1% 31.7% 45.3%
Set 2
shermanACb 24 25 21 26
rim 1801 2169 1208 1145
onetone2 418 270 234 243
shyy161 585 534 576 693
circuit_3 0.26 0.258 0.24 0.25
epb2 306 315 320 347
epb3 603 703 938 1149
circuit_4 12 14 10 14
e40r0100 268 239 202 280
ns3Da 17303 16462 12554 12861
ecl32 49973 46706 40558 37816
Zhao1 5052 4989 2517 2267
af23560 9028 7343 5099 4576
3D_28984 9794 10680 7435 5657
3D_51448 54767 55798 38310 28911
ibm_matr 56374 56167 37495 30736
2D_54019 2936 2707 1722 1390
2D_27628 699 742 585 416
sme3Da 894 1004 900 884
Avg. gain −16.5% −16.5% 0.8%

Table B.3.2: MA41_UNS: number of operations (in millions) with different preprocessings. STR: structural
strategy. HYB: hybrid strategy.
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Matrix MC21_MC77 MC64
STR HYB STR DMLS

Set 1
av41092 8.2 12.0 10.4 3.9
g7jac140sc 20.2 23.1 27.7 6.2
g7jac120sc 16.5 17.6 23.2 3.8
jan99jac120sc 10.1 12.9 7.4 2.8
jan99jac100sc 7.7 9.5 5.2 2.0
bayer10 0.5 0.6 0.5 0.1
bayer04 1.1 1.6 0.9 0.3
lhr34c 10.8 12.3 8.7 3.4
lhr71c 27.4 23.9 19.0 7.9
mark3jac120sc 17.5 90.2 10.7 3.7
mark3jac140sc 20.3 75.8 13.3 4.4
sinc18 24.8 35.2 27.3 19.7
sinc15 11.0 13.8 13.1 6.5
Zhao2 3.3 4.6 3.4 0.9
fd18 0.7 0.9 0.4 0.1
fd15 0.4 0.5 0.2 0.1
mult_dcop_03 0.7 0.8 0.7 0.4
mult_dcop_02 0.6 1.0 1.2 0.4
onetone1 5.5 13.9 2.3 0.5
poli_large 0.1 0.1 0.1 0.1
bbmat 90.2 80.9 57.5 17.5
Avg. gain −66.4% −73.2% −61.6%
Set 2
shermanACb 0.4 0.4 0.3 0.1
rim 2.2 2.5 1.8 0.5
onetone2 0.9 1.0 0.8 0.3
shyy161 1.8 1.8 1.8 0.6
circuit_3 0.1 0.1 0.1 0.1
epb2 1.2 1.5 0.8 0.3
epb3 3.8 7.1 3.5 1.5
circuit_4 25.2 25.8 60.1 15.0
e40r0100 0.8 0.9 0.7 0.1
ns3Da 2.5 2.8 2.4 0.3
ecl32 13.2 13.0 8.4 1.3
Zhao1 2.5 2.7 1.4 0.4
af23560 9.2 7.7 8.3 0.8
3D_28984 4.2 5.2 4.6 0.3
3D_51448 9.4 10.0 7.8 0.6
ibm_matr 9.4 10.4 8.3 0.6
2D_54019 3.2 3.7 2.8 0.2
2D_27628 1.4 1.6 1.0 0.1
sme3Da 0.6 1.0 0.7 0.1
Avg. gain −76.5% −78.7% −75.2%

Table B.3.3: Influence of preprocessing on CMLS execution time (in seconds). STR: structural strategy.
HYB: hybrid strategy.
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Before iterative refinement After iterative refinement
Matrix CMLS DMLS CMLS DMLS
Set 1
av41092 1.0e+00 1.0e+00 1.0e+00 1.0e+00
g7jac140sc 1.0e+00 6.4e-07 1.0e+00 6.4e-16
g7jac120sc 1.0e+00 3.5e-07 1.0e+00 5.9e-16
jan99jac120sc 2.3e-03 4.3e-09 3.6e-16 4.6e-16
jan99jac100sc 7.4e-01 4.5e-08 9.7e-14 3.7e-16
bayer10 1.0e+00 9.9e-10 1.0e+00 2.7e-16
bayer04 1.0e+00 1.5e-05 1.0e+00 2.1e-16
lhr34c 1.0e+00 8.3e-06 1.0e+00 9.5e-14
lhr71c 1.0e+00 6.2e-06 1.0e+00 1.7e-07
mark3jac120sc 1.0e+00 1.3e-03 1.0e+00 4.3e-16
mark3jac140sc 1.0e+00 2.9e-05 1.0e+00 4.2e-16
sinc18 8.5e-01 5.4e-01 6.1e-12 7.9e-01
sinc15 1.8e-04 2.4e-04 3.8e-16 9.0e-15
Zhao2 1.0e+00 1.0e+00 1.0e+00 1.0e+00
fd18 9.9e-01 3.6e-08 9.4e-01 2.1e-16
fd15 9.8e-01 7.5e-07 1.0e-12 2.6e-16
mult_dcop_03 5.8e-06 2.0e-14 1.8e-16 1.4e-16
mult_dcop_02 4.8e-10 4.3e-14 1.8e-16 2.0e-16
onetone1 1.0e+00 2.8e-13 1.0e+00 5.0e-16
poli_large 2.3e-15 2.3e-16 2.1e-16 1.0e-16
bbmat 1.0e+00 1.3e-02 1.0e+00 4.5e-16
Set 2
shermanACb 4.6e-01 1.5e-13 2.8e-01 3.4e-16
rim 9.8e-01 1.8e-05 9.9e-01 9.0e-13
onetone2 1.0e+00 8.4e-14 1.0e+00 4.6e-16
shyy161 1.8e-03 4.6e-16 2.2e-16 2.0e-16
circuit_3 9.5e-03 1.5e-11 5.0e-16 2.5e-16
epb2 2.2e-03 2.0e-15 3.1e-16 2.6e-16
epb3 1.0e+00 1.4e-15 3.7e-16 2.8e-16
circuit_4 1.2e-03 1.4e-11 3.6e-13 1.4e-14
e40r0100 9.9e-01 4.8e-12 9.9e-01 4.1e-16
ns3Da 1.3e-09 9.3e-12 3.1e-16 3.4e-16
ecl32 1.0e+00 3.1e-14 1.0e+00 3.6e-16
Zhao1 1.0e+00 1.5e-15 1.0e+00 1.3e-16
af23560 1.0e+00 4.6e-13 1.0e+00 3.1e-16
3D_28984 1.0e+00 1.0e+00 1.0e+00 1.2e-14
3D_51448 1.0e+00 1.9e-15 1.0e+00 3.6e-16
ibm_matr 1.0e+00 1.9e-15 1.0e+00 2.7e-16
2D_54019 1.0e+00 1.6e-05 1.0e+00 3.6e-16
2D_27628 1.0e+00 6.6e-16 1.0e+00 2.9e-16
sme3Da 5.9e-11 4.1e-16 5.3e-16 6.6e-16

Table B.3.4: SuperLU_DIST component-wise backward error. CMLS is run with MC77_MC21
preprocessing and a hybrid strategy with two thresholds is used.
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Résumé

Nous nous intéressons à la résolution de systèmes linéaires creux de grande taille par des solveurs creux
directs opérant en trois phases qui sont l’analyse, la factorisation et la résolution.

L’analyse est le lieu de prétraitements et doit dans la mesure du possible assurer à la fois des facteurs
aussi creux que possible et une factorisation numériquement stable. La factorisation doit exploiter
l’indépendance des calculs pour être efficace dans un environnement parallèle distribué. Cette étude
contribue à l’amélioration de ces comportements sur des classes de problèmes connues comme étant
difficiles ou mal appréhendées par des stratégies classiques.

Dans une première partie, nous développons des techniques de prétraitements numériques et structurels
pour les matrices symétriques indéfinies. Nous étudions aussi de manière plus prospective des approches
de factorisation LDLT avec pivotage statique et l’élaboration d’ordonnancements pour les systèmes
augmentés.

Dans une deuxième partie, nous présentons des techniques d’ordonnancements pour les matrices très non
symétriques visant à la fois à réduire le remplissage et à stabiliser la factorisation. Ces ordonnancements
reposent sur des métriques hybrides prenant en compte des informations structurelles et numériques.

Dans une troisième partie, nous discutons des stratégies de séquencement des tâches dans un solveur
multifrontal parallèle, MUMPS. Dans un premier temps, nous essayons de prendre en compte
l’hétérogénéité des architectures des machines cibles. Dans un second temps, nous prenons en compte
à la fois des critères de charge de travail et de mémoire pour une prise de décision dynamique optimale.

Mots-clés: calcul distribué, calcul parallèle, élimination de Gauss, matrices creuses, maximum matching,
méthode multifrontale, ordonnancement, séquencement de tâches.

Abstract

We consider the three different phases (analysis, factorization, solution) for the direct solution of large
sparse systems of linear equations.

During the analysis phase, preprocessing is applied in order to, on the one hand, permute the matrix to
decrease the number of nonzeros in the factors and, on the other hand, to determine pivots that ensure
as much as possible a stable factorization. During the factorization phase, the independence of the
computations must be exploited to achieve a good performance on a distributed memory parallel computer.
Our study contributes to the improvement of these aspects for some classes of matrices which are known
for being difficult or for which default strategies clearly do not perform well.

In the first part of our thesis, we develop numerical and structural preprocessing strategies for symmetric
indefinite matrices. We also study, in a more prospective way, static pivoting approaches for LDLT

factorizations and orderings for augmented systems.

In the second part, we present orderings for highly unsymmetric matrices that aim at decreasing the fill-in
and at stabilizing the factorization. These orderings are based on hybrid metrics which take into account
both structural and numerical information.

In the last part, we discuss task scheduling strategies in a parallel multifrontal solver, MUMPS. We study
two kinds of strategies. Firstly, we investigate strategies that take into account heterogeneous architectures.
Secondly, we study strategies that mix information about workload and memory to make optimal dynamic
decisions.

Keywords: distributed computing, Gaussian elimination, maximum matching, multifrontal method,
ordering, parallel computing, sparse matrices, tasks scheduling.
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