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Résumé

De nombreuses simulations numériques nécessitent la résolution d’une série de systèmes linéaires
impliquant une même matrice mais des second-membres différents. Des méthodes efficaces pour
ce type de problèmes cherchent à tirer bénéfice des résolutions précédentes pour accélérer les
résolutions restantes. Deux grandes classes se distinguent dans la façon de procéder: la première
vise à réutiliser une partie du sous-espace de Krylov, la deuxième à construire une mise à jour du
préconditionneur à partir de vecteurs approximant un espace invariant. Dans cette thèse, nous nous
sommes intéressés à cette dernière approche en cherchant à améliorer le préconditionneur d’origine.

Dans une première partie, une seule mise à jour du préconditionneur est considérée pour tous
les systèmes. Cette mise à jour consiste en une correction spectrale de rang faible qui permet de
translater de un la position des plus petites valeurs propres en module de la matrice du système
préconditionné de départ. Des expérimentations numériques sont réalisées en utilisant la méthode
GMRES couplée à un préconditionneur de type inverse approchée. L’information spectrale est
obtenue par un solveur de valeurs propres lors d’une phase préliminaire au calcul.

Dans une deuxième partie, on autorise une possible mise à jour entre chaque système. Une cor-
rection spectrale incrémentale est proposée. Des expérimentations numériques sont réalisées en
utilisant la méthode GMRES-DR, d’une part parce qu’elle est efficace en tant que solveur linéaire,
et d’autre part parce qu’elle permet une bonne approximation des petites valeurs propres au cours
de la résolution linéaire. Des stratégies sont développées afin de sélectionner l’information spectrale
la plus pertinente.

Ces approches ont été validées sur des problèmes de grande taille issus de simulations industrielles
en électromagnétisme. Dans ce but, elles ont été implantées dans un code parallèle développé par
EADS-CCR.

Mots-clés: systèmes linéaires denses et creux, méthodes de Krylov, GMRES, GMRES-DR,
préconditionneur spectral incrémental, valeurs harmoniques de Ritz, simulations numériques de
grande taille en électromagnétisme, calcul sientifique, calcul parallèle distribué.



Abstract

Many numerical simulations in scientific and engineering applications require the solution of a set
of large linear systems involving the same coefficient matrix but different right-hand sides. Efficient
methods for tackling this problem attempt to benefit from the previously solved right-hand sides
for the solution of the next ones. This goal can be achieved either by recycling Krylov subspaces
or by building preconditioner updates based on near invariant subspace information. In this the-
sis, we focus our attention on this last approach that attempts to improve a selected preconditioner.

In the first part, we consider only one update of the preconditioner for all the systems. This
update consists of a spectral low-rank correction that shifts by one the smallest eigenvalues in
magnitude of the matrix of the original preconditioned system. We perform experiments in the
context of the GMRES method preconditioned by an approximate inverse preconditioner. The
spectral information is computed by an eigensolver in a preprocessing phase.

In the second part, we consider an update of the preconditioner between each system. An in-
cremental spectral correction of the preconditioner is proposed. We perform experiments using the
GMRES-DR method, thanks to its efficiency as a linear solver and its ability to recover reliable
approximations of the desired eigenpairs at run time. Suitable strategies are investigated for se-
lecting reliable eigenpairs.

The efficiency of the proposed approaches is in particular assessed for the solution of large and chal-
lenging problems in electromagnetic applications. For this purpose, they have been implemented
in a parallel industrial code developed by EADS-CCR.

Keywords: dense and sparse linear systems, Krylov methods, GMRES, GMRES-DR, incre-
mental spectral preconditioner, harmonic Ritz value, large scale numerical simulations in electro-
magnetism, scientific computing, parallel distributed computing.
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Je remercie Iain Duff, chef de l’équipe, pour toutes les questions soulevées pendant ma thèse et
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Gerstner, professeur à l’université de Brême, qui m’ont fait l’honneur d’être rapporteurs de ma
thèse.
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Introduction

In this thesis we consider the iterative solution of sequences of linear systems with the same coeffi-
cient matrix but different right-hand sides. Such a situation occurs in many numerical simulations
in scientific and engineering applications. Efficient solutions to tackle this problem can consist in
studying new variants of iterative schemes, or in developing new preconditioning techniques or in
combining the two approaches. In our work, we mainly focus our attention on the development and
the study of new preconditioning variants. Our techniques apply to any situation where sequences
of linear systems have to be solved. We assess their efficiency and robustness in particular on large
challenging problems arising in boundary integral equations in electromagnetism. For this purpose,
we have implemented these techniques in a large parallel distributed simulation code. An accurate
numerical solution of these problems is required in the simulation of many industrial processes,
such as the prediction of the Radar Cross Section (RCS) of arbitrarily shaped 3D objects like
aircraft, the analysis of electromagnetic compatibility of electrical devices with their environment,
and many others.

This manuscript is structured as follows. Because many of our numerical experiments are per-
formed on linear systems arising from boundary integral equations in electromagnetism, we give
in Chapter 1 an overview of the underlying physical models and of the discretization technique.
We also provide a synthetic description of the Fast-Multipole method. The emergence of this lat-
ter technique introduced a significant technological gap because it enables the simulation of very
large problems that were out of reach until then. For the solution of large scale dense problems,
direct methods become impractical even on large parallel platforms because they require storage of
N2 single or double precision complex entries of the coefficient matrix and O(N 3) floating-point
operations to compute the factorization, where N denotes the size of the linear system. Conse-
quently, iterative solvers are the only alternative and new solvers and preconditioners should be
designed to efficiently solve these problems. In Chapter 2, we describe the variants of GMRES [76]
that we consider for our numerical experiments. We focus on variants of GMRES because the
GMRES method has been shown to be very robust for the solution of large electromagnetism
problems [16, 20]. We conclude the first part of this manuscript with the description of candidate
preconditioning techniques and illustrate their behaviour for the solution of one linear system.

In Part II, we study the numerical behaviour of a spectral two-level preconditioner for the
calculation of a complete radar cross section on various real life test problems. The definition of
this class of preconditioners [18] requires the knowledge of some eigen information. In this part,
the spectral information is obtained in a preprocessing phase using an eigensolver. We illustrate
the significant gains observed on large geometries on parallel distributed platforms.

In Part III, we investigate a new spectral preconditioning technique that relaxes the constraint of
computing the eigen information in the preprocessing phase. In that approach, an approximation of
the spectral information is extracted on the fly during the solution of one right-hand side and is used
to solve the subsequent linear systems. We first study the numerical behaviour of this technique
on small sparse linear systems and illustrate its efficiency on large problems in electromagnetism.
Finally we give some conclusions and possible directions for future research.
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Chapter 1

The electromagnetism problem

This chapter presents the main physical application we have considered throughout this manuscript
to assess the performance of our numerical schemes. The first section describes the physical problem
we focus on and the properties of the resulting matrices associated with the linear systems we intend
to solve. The second section quickly describes the fast multipole method which implements a fast
matrix-vector product and allows us to address the solution of very large problems. The last section
presents the industrial code we use to test our numerical schemes in the solution of problems arising
in electromagnetism. We also describe the test examples we consider in our numerical experiments.

1.1 Integral equations formulation and discretization

1.1.1 Problem definition

In Figure 1.1 we present a perfect conductor Ω lying in a vacuum. The outgoing normal on the
boundary Γ of the object is denoted by ~n . We denote by ~E the electric field and by ~H the
magnetic field. An incident plane wave ( ~Einc, ~H inc) with a frequency f and a pulsation ω = 2πf

illuminates the object. We take as unknowns the generated scattered fields ( ~Escat, ~Hscat) in the
outer domain Ωout . They are solutions of the harmonic Maxwell equations:































~rot ~Escat − iωµ0
~Hscat = 0, in Ωout,

~rot ~Hscat + iωε0 ~E
scat = 0, in Ωout,

~Escat ∧ ~n = − ~Einc ∧ ~n, in Γ,

lim
r→+∞

r

∣

∣

∣

∣

√
ε0 ~E

scat −√
µ0
~Hscat ∧ ~r

r

∣

∣

∣

∣

= 0,

(1.1)

where ε0 is the permittivity of the vacuum and µ0 the permeability of the vacuum. We denote
by Z0 =

√

µ0/ε0 the vacuum impedance. The total fields ( ~E, ~H) are formed by:

{

~E = ~Einc + ~Escat,

~H = ~H inc + ~Hscat.

In order to solve the problem defined by Equation (1.1), we derive in the next section its integral
formulation.

1.1.2 Integral equations

Let ~ be the field tangent to the surface Γ and defined by: ~ = ~n ∧ ~H . The field ~ is called the
electric current and is the true unknown of the problem. The Stratton-Chu representation theorem
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Ω

Ω
n

Γ

out

ε , µ
0       0

E  , H  inc       inc(             )

E  , Hscat      scat(              )

Figure 1.1: Scattered problem.

[25] gives the expression of the fields ~E and ~H at any point y /∈ Γ as a function of the field ~ :























~E(y) = ~Einc + iωµ0

∫

Γ

G(x, y)~(x)ds(x) +
i

wε0

∫

Γ

~gradyG(x, y)divΓ(~(x))ds(x),

~H(y) = ~H inc −
∫

Γ

~gradyG(x, y) ∧~(x)ds(x),
(1.2)

where:

G(x, y) =
1

4π|x− y|e
ik|x−y|.

The Green’s function G(x, y) is the fundamental solution of the harmonic Helmholtz equation:

∆u+ k2u = −δ0,

coupled with the Sommerfeld radiation condition:

lim
r→+∞

r

(

∂u

∂r
− iku

)

= 0.

We define k = ω
√
ε0µ0 and we denote by divΓ(~) the surfacic divergence of ~ , defined on the plan

tangent to the surface Γ . Using Equations (1.1) and (1.2) the electric equation becomes on Γ :

i

kZ0

~Einc
T =

[
∫

Γ

G(x, y)~(x)ds(x)

]

T

+
1

k2

[
∫

Γ

~grady (G(x, y)) divΓ(~(x))ds(x)

]

T

, (1.3)

where ~uT denotes the tangential component of the vector ~u . This equation is called the Electric
Field Integral Equation (EFIE). In a slightly more complicated way, an equation for the magnetic
field can also be obtained and can be written as:

(~n ∧ ~H inc)(y) =
1

2
~(y) + ~n(y) ∧

∫

Γ

(

~gradx(G(x − y)) ∧~(x)
)

ds(x). (1.4)

Equation (1.4) is called the Magnetic Field Integral Equation (MFIE). The problem of inner res-
onant frequencies leads the EFIE and MFIE equations to have non-unique solutions for certain
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values of k . In order to prevent such a problem, we can introduce the Combined Field Integral
Equation (CFIE), which is a linear combination of EFIE defined by (1.3) and MFIE defined by
(1.4): CFIE = αEFIE + (1 − α) i

kMFIE . The constant α is defined with 0 < α < 1 . In
pratice, α = 0.2 is often used.

1.1.3 Discretization

Let ~
′

be a test field, tangent to the surface Γ . By multiplying Equations (1.3) and (1.4) by ~
′

,

and integrating them on the surface Γ , we obtain the variational formulations for the fields ~E
and ~H .

In variational form, the EFIE formulation becomes:

Find the current ~(x) such as, for any current test function ~
′

(y) , we have:






















∫

Γ

∫

Γ

G(x, y)

(

~(x)~
′

(y) − 1

k2
divΓ(~(x))divΓ(~

′

(y))

)

ds(x)ds(y)

=
i

kZ0

∫

Γ

~Einc(y)~
′

(y)ds(y).
(1.5)

In variational form, the MFIE formulation becomes:

Find the current ~(x) such as, for any current test function ~
′

(y) , we have:






















1

2

∫

Γ

~(y)~
′

(y)dy +

∫

Γ

~
′

(y)~n(y) ∧
(
∫

Γ

~gradx(G(x, y)) ∧~(x)ds(x)ds(y)
)

=

∫

Γ

~
′

(y)~n(y) ∧ ~H inc(y)dy.
(1.6)

We suppose that the surface of Γ is discretized with triangles. We use the standard discretiza-
tion of Raviart-Thomas [69], where the degrees of freedom are associated with the edges. The

basis functions ~Φp are associated with the edges of the surfacic mesh; its value is zero everywhere

except on the two triangles T+ and T− that share the edge edp . On these two triangles, ~Φp is
defined by :

~Φp(x) =























1

2.area(T+)

(

x− V +
)

,

− 1

2.area(T−)

(

x− V −
)

,

where V + is the vertex opposite the edge edp in the triangle T+ and V − the vertex opposite
the edge edp in the triangle T− . The field ~ can be written in terms of basis functions as:

~(x) =

m
∑

q=1

jq~Φq(x)

where m is the total number of edges. The components jq can be interpreted as the flux of the
current ~(x) across the edge edq .

By taking ~
′

= ~Φp with 1 ≤ p ≤ m , we obtain a linear system of order m where the unknowns
are the components jq . The m linear equations are:

m
∑

q=1

Ap,qjq = fp.
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In matrix form, this gives:
A.j = f, (1.7)

For the EFIE formulation, the entry (p, q) of A is:

Ap,q =

∫

Γ

∫

Γ

G(x, y)

(

~Φp(x)~Φq(y) −
1

k2
divΓ(~Φp(x))divΓ(~Φq(y))

)

ds(x)ds(y),

and the entry p of f is

fp =
i

kZ0

∫

Γ

~Einc(y)~Φp(y)ds(y).

Consequently, the coefficient matrix A is symmetric non-Hermitian.

For the MFIE formulation, the entry (p, q) of A is:

Ap,q =
1

2

∫

Γ

~Φq(y)~Φpds(y) +

∫

Γ

∫

Γ

~gradx(G(x, y)) ∧ ~Φq(x) ·
(

~Φp(y) ∧ ~n(y)
)

ds(x)ds(y),

and the entry p of f is

fp =

∫

Γ

~n(y) ∧ ~H inc(y) · ~Φp(y)ds(y).

Consequently, the coefficient matrix A is no longer symmetric.

As the CFIE formulation leads to linear systems that are easy to solve, it is preferably used by
the electromagnetics community. When the scattering object presents a cavity whose the length of
the outline is very small, or when the mesh shows some salient edges, the outgoing normal can no
longer be defined. The MFIE and CFIE formulations are no longer applicable as they require the
definition of the outgoing normal ~n . The EFIE formation becomes the only alternative to deal
with such cases. Unfortunately it gives rise to linear systems that are more difficult to solve.

Dealing with objects of large size in terms of wavelength, leads to dense matrices of very large
size. For example, the surfacic mesh of a sphere of diameter 150 λ leads to a dense linear system
with 25,579,200 unknowns [85]. The resulting dense matrix can no longer be built. The fast
multipole method briefly described in the next section becomes the only alternative to perform
matrix-vector products for this class of huge problems.

1.2 The parallel fast multipole method

1.2.1 Presentation of the method

The Fast Multipole Method (FMM), introduced by Greengard and Rokhlin in [44], provides an
algorithm for computing approximate matrix-vector products for electromagnetic scattering prob-
lems. The method is fast in the sense that the computation of one matrix-vector product costs
O(n logn) arithmetic operations instead of the usual O(n2) operations for a regular dense matrix-
vector product. The storage is also reduced from O(n2) to O(n logn) . Owing to these desirable
properties its use in combination with iterative solvers is the only alternative for the solution of
large problems.

The basic idea of the algorithm is to compute interactions amongst degrees of freedom in the
mesh at different levels of accuracy depending on their physical distance. Single and multilevel
variants of the FMM exist. In the one-level FMM, the 3D obstacle is entirely enclosed in a
large domain, and the domain is divided into eight boxes (four in 2D). Each box is recursively
divided until the size of the boxes is small enough compared with the wavelength. The near-field
interactions, that is those between degrees of freedom from neighbouring boxes, are computed from
Equation (1.3) using the regular expression of the discrete Green’s function. The neighbourhood



1.2 The parallel fast multipole method 9

of a box is defined by the box itself and its 26 adjacent neighbours (eight in 2D). The far-field
contribution from far away cubes is computed approximately. More precisely, for each far away
box, multipole coefficients are computed from Equation (1.3) using a truncated series expansion
of the Green’s function

G(x, y) =

P
∑

p=1

ψp(x)φp(y), (1.8)

which separates the Green’s function into two sets of terms, ψi and φj , that depend on the obser-
vation point x and the source point y , respectively. In Equation (1.8) the integer P is generally
very small, and the origin of the expansion is near the source point y while the observation point
x is far away. Multipole coefficients of far-away boxes are summed together to compute local
coefficients for the observation cube, and the total effect of the far field on each observation point
is evaluated from the local coefficients (see Figure 1.2 for a 2D illustration). Local and multipole
coefficients can be computed in a preprocessing step, reducing the overall computational cost of
the matrix-vector product to O(n3/2) in the basic one-level algorithm.

In the hierarchical multilevel algorithm, the box-wise partitioning of the obstacle is carried out
until the size of the smallest box is generally half a wavelength, and a tree-structured data is used at
each level. In particular, only non-empty cubes are indexed and recorded in the data structure. The
resulting tree is called the oct-tree (see Figure 1.3) and its leaves are generally referred to as the leaf-
boxes. The oct-tree provides a hierarchical representation of the computational domain partitioned
by boxes: each box has one parent in the oct-tree, except for the largest cube which encloses the
whole domain, and up to eight children. Obviously, the leaf-boxes have no children. Multipole
coefficients are computed for all cubes starting from the lowest level of the oct-tree, that is from the
leaf-boxes, and then recursively for each parent cube by summing together multipole coefficients of
their children. An observation cube is any cube which can have children. For each observation cube,
an interaction list is defined which consists of those cubes that are not neighbours of the cube itself
but whose parent is a neighbour of the cube’s parent (see Figure 1.4 for a 2D representation, dashed
lines). The interactions of degrees of freedom within neighbouring boxes are computed exactly (see
Figure 1.4, the gray boxes), while the interactions between cubes that are in the interaction list are
computed using the FMM. All the other interactions are computed hierarchically on a coarser level
traversing the oct-tree. Both the computational cost and the memory requirement of the algorithm
are of order O(n logn) . Further information on the algorithmic steps and recent theoretical
investigations of the FMM can be found in [26, 27], and details on the parallel implementation
issues are given in [41, 43, 85, 90].

1.2.2 Different levels of accuracy

One feature of the FMM is that it can be tuned to be more or less accurate and fast. By adjusting
parameters such as the size of the octree’s leaves or the order of the expansion, the method may
be either very accurate (and not so fast) or less accurate (and really fast). In our work we consider
two accuracy levels in order to exploit this feature in iterative solvers:

• Accurate FMM: the FMM is very accurate. It governs the final accuracy of the solution.
We refer to the Section 2.5.1 for related considerations.

• Fast FMM: the FMM is very fast while keeping the forward error below a few percents. This
feature will be used to implement efficient inner-outer scheme. We refer to the Section 2.3
for the description of linear solvers that can exploit this feature.

A complete description of this feature is given in [85]. The next section presents two classic cal-
culations in scattering problems. The monostatic calculation studies the sensitivity of an incident
electromagnetic wave on the scattering of an object. The bistatic calculation estimates the elec-
tromagnetic field generated by a source. We finish with a description of the geometries and the
test code we use in our numerical experiments.
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Figure 1.2: Interactions in the one-level FMM. For each leaf-box, the interactions with the gray
neighbouring leaf-boxes are computed directly. The contribution of far away cubes are computed
approximately. The multipole expansions of far away boxes are translated to local expansions for
the leaf-box; these contributions are summed together and the total field induced by far away cubes
is evaluated from local expansions.

Figure 1.3: The oct-tree in the FMM algorithm. The maximum number of children is eight. The
actual number corresponds to the subset of eight that intersect the object (courtesy of G. Sylvand,
EADS-CCR).
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Figure 1.4: Interactions in the multilevel FMM. The interactions for the gray boxes are computed
directly. We denote by dashed lines the interaction list for the observation box, that consists of
those cubes that are not neighbours of the cube itself but whose parent is a neighbour of the
cube’s parent. The interactions of the cubes in the list are computed using the FMM. All the other
interactions are computed hierarchically on a coarser level, denoted by solid lines.

1.3 The radar cross section calculation

1.3.1 Monostatic and bistatic calculation

The Figure 1.5 shows the situation of a point P. For an origin 0 , such a point can be located in
the Cartesian basis (êa, êb, êc) by (a, b, c) or in the spherical basis (ûr, ûθ, ûϕ) by (r, θ, ϕ) .

PSfrag replacements

êa

êb

êc

r θ

ϕ

ûr

ûθ
ûϕ

P

O

Figure 1.5: spherical coordinates.
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The wave vector ~k is oriented from P to 0, i.e. ~k = −kûr . As the incident wave is planar, we
have ~Einc ∧ ûr = 0 , that is ~Einc is defined in the plan spanned by < ûθ, ûϕ > . The expression
for the incident plane wave is then:

~Einc(~r, θ, ϕ) = (pθûθ)e
i~k·~r + (pϕûϕ)ei~k·~r, (1.9)

where pθ and pϕ are two complex numbers. We call (pθ, pϕ) = (1, 0) the ϕ polarization, and
(pθ, pϕ) = (0, 1) the θ polarization.

The monostatic calculation consists in sending an incident wave ~Einc in a direction (r, θ, ϕ)
and recovering the energy of the back-scattered field in the direction (−r, θ, ϕ) . For an angular
section corresponding to a variation of θ (resp. φ ) for a fixed value of φ (resp. θ ), a monostatic
computation is performed for each incident angle (θ`, ϕ) (resp. (θ, ϕ`) ). This procedure is called
the monostatic Radar Cross Section calculation. It implies that the number of linear systems to
be solved will be equal to the number of incident waves considered. The coefficient matrix remains
the same for all the waves, only the right-hand sides change. For an angle (θ`, ϕ) , the associated
linear system can be written:

A.jθl
= fθl

.

Once this system has been solved, we obtain the quantity:

~θl
(x) =

m
∑

q=1

jq~Φq(x).

Definition 1.3.1 The monostatic Radar Cross Section (RCS) [24] in the direction (θ, ϕ) is the

ratio of the energies between the scattered field ~Escat at infinity and the incident field ~Einc ,

RCS = 10 × log10(γ), (1.10)

where γ is defined as:

γ = lim
r→+∞

4πr2

∣

∣

∣

~Escat(~r)
∣

∣

∣

2

∣

∣

∣

~Einc
∣

∣

∣

2 . (1.11)

The unit of measurement is the decibel by square meter (db×m2) .

The quantity γ can be written as an expression of the far field:

a∞(θl) =
ikZ0

4π

∫

Γ

(ûr(θl) ∧ (~θl
(x) ∧ ûr(θl))) ds(x). (1.12)

Then, the back-scattered radar cross section for an incident angle (θl, ϕ) is computed as:

RCS(θl) = 20× log10(|a∞(θl)|).

In Figure 1.6, we plot the computed RCS for a Cobra discretized with 60 695 degrees of freedom
(we refer to Figure 1.7 for the shape of this geometry), when varying θ for a fixed value of ϕ
( ϕ polarization). The point P on the curve has the following meaning. An incident plane wave
(θl, ϕ) = (40o, 0o) is illuminating the Cobra. We recover the energy of the associated back-scattered
field from the same position (θl, ϕ) . Depicted in a decibel scale in the curve, the value of the energy
RCS(θl = 40o) is equal to −5 . By varying θl from 0 to 90o we obtain the whole curve. One
application of the radar cross section is in radar furtivity. In that context, the aim is to obtain a
RCS as small as possible for certain angular sections of the object of interest. It will prevent any
conclusions about the original shape of the object on these angular sections.

The bistatic calculation consists in sending only one incident wave ~Einc in a direction (~r, θl, ϕ)
and recovering the energy of the back-scattered field in any observation direction (−~r, θh, ϕ) . For
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Figure 1.6: monostatic Radar Cross Section (RCS) for the Cobra 60695.

this case, only one incident wave is required (only one system has to be solved). The expression of
the far field for the bistatic calculation is given by:

a∞(θl, θh) =
ikZ0

4π

∫

Γ

(ûr(θh) ∧ (~θl
(x) ∧ ûr(θh))) ds(x).

One application of the bistatic calculation is the data transmission between a scattering antenna
on a satellite in space and a receiver on earth. The maxima on the bistatic RCS curve give the
best scattering directions of the antenna. Such directions are used to fix inclination angles of the
receiver.

In this manuscript, we focus our attention on the monostatic case using both θ polarization
and ϕ polarization.

1.3.2 Test geometries

As scatterer object, we choose the four geometries depicted in Figure 1.7. They consist of a wing
with a hole referred to as Cetaf, an aircraft from a European manufacturer, an air intake referred
to as Cobra, and finally an Almond. The Cetaf and Almond cases are classic test problems in
the computational electromagnetics community; the other two have been kindly provided to us by
EADS–CCR.

1.3.3 The simulation code and the targeted parallel computers

This section is devoted to a brief presentation of the industrial code developed by EADS-CCR,
that we use for our numerical investigations. This code, called AS ELFIP, simulates scattering
problems in electromagnetic calculations. It is a joint effort of three partners. The main contribu-
tor is EADS-CCR: they develop such a software for solving Maxwell and Helmholtz equations in
the frequency domain based on a boundary finite-element discretization. The linear systems can be
solved either by direct or iterative methods. The second contributor, Guillaume Sylvand, has de-
veloped during his PhD thesis [85] at CERMIC/INRIA, an implementation of the fast multipole
method in this code, for sequential and parallel distributed platforms. And the last contribution
to this work comes from the Parallel Algorithm Project at CERFACS. A PhD thesis by Bruno
Carpentieri [16] shows the performance of an efficient Frobenius norm minimization preconditioner
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Figure 1.7: Various geometries used in the numerical experiments.

in the electromagnetic context. A second PhD thesis from Julien Langou [53] deals with numer-
ical techniques for the solution of linear systems with multiple right-hand sides. All these recent
developments have been integrated in the AS ELFIP code. From a technical point of view, the
code is written mainly in the C language with several Fortran 77 libraries. It is parallel and suited
for shared or distributed memory computers. Moreover the code uses out-of-core data structures
to reduce memory requirements so enabling the possibility of performing huge calculations. In
particular all the vectors involved in the linear algebra operations are out-of-core; for a detailed
description of the other features we refer the reader to [39, 85].

Finally we mention that all the numerical experiments reported in this manuscript have been
performed on a Compaq Alpha Server which is a cluster of Symmetric Multi-Processors. A server
located at CERFACS offers ten nodes of four DEC Alpha processors EV 68 each. Each processor
has a frequency of 1GHz for a theoretical peak of 2 GFlops. Each node has 8 Gb of memory
and a local temporary disk of 7 Gb. A second server located at CEA (Commissariat à l’Énergie
Atomique) offers ninety-five nodes consisting of four DEC Alpha processors EV 68. Each processor
has a frequency of 1.25 GHz for a theoretical peak of 2.5 GFlops. Each node has 4 Gb of memory
and a local temporary disk of 12 Gb.



Chapter 2

Some variants of the GMRES

linear solver

This chapter describes several iterative linear solvers suitable for the solution of large non-Hermitian
linear systems. All these methods are designed to solve a linear system of the form:

Ax = b, (2.1)

where A ∈ Cn×n is a n × n nonsingular matrix, x ∈ Cn and b ∈ Cn . In many cases, such
methods converge slowly, or even diverge. The convergence of iterative methods may be improved
by transforming the system (2.1) into another system which is easier to solve. A preconditioner is
a matrix that realizes such a transformation. If M is a nonsingular matrix which approximates
A−1 , then the transformed linear system:

MAx = Mb, (2.2)

might be solved faster. The system (2.2) is preconditioned from the left, but one can also precon-
dition from the right:

AMt = b. (2.3)

Once the solution t is obtained, the solution of the system (2.1) is recovered by x = Mt .
The Section 2.1 briefly describes the iterative procedure and the GMRES algorithm [76]. We

give in Section 2.2 a presentation of the GMRES-DR [64] method, a solver that can recover eigen
information of the preconditioned matrix during the iterative solve. In particular, we show that an
estimation of the accuracy of the computed eigen information can be computed using by-products
of the algorithm. Section 2.3 is devoted to the Flexible GMRES [74] method which enables us
to vary the preconditioner at each iteration. Finally, an approach for multiple right-hand sides is
given in Section 2.4, that corrects the initial guesses of subsequent systems using approximations
of the solution of the current solve. We conclude in Section 2.5 by indicating some features shared
by all these solvers.

2.1 The GMRES method

The Generalized Minimum RESidual (GMRES) method was proposed by Saad and Schultz in
1986 [76] for the solution of large non-Hermitian linear systems. GMRES belongs to the class of
Krylov based iterative methods. For the sake of generality, we describe this method for linear
systems whose entries are complex; everything also extends to real arithmetic.

Let x0 ∈ Cn be an initial guess for the solution to the linear system (2.1) and r0 = b − Ax0

be its corresponding residual. At step j , the GMRES algorithm builds an approximation of the
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solution to (2.1) of the form
xj = x0 +Qjyj , (2.4)

where yj ∈ Cj and Qj = [q1, · · · , qj ] is an orthonormal basis for the Krylov space of dimension
j defined by

K(A, r0, j) = span
{

r0, Ar0, . . . , A
j−1r0

}

.

The vector yj is determined so that the 2–norm of the residual rj = b − Axj is minimized
over x0 +K(A, r0, j) . The basis Qj for the Krylov subspace K(A, r0, j) is obtained via the well
known Arnoldi process [6]. The orthogonal projection of A onto K(A, r0, j) results in an upper
Hessenberg matrix Hj = QH

j AQj of order j . The Arnoldi process satisfies the relationship

AQj = QjHj + hj+1,jqj+1e
T
j , (2.5)

where ej is the jth canonical basis vector. Equation (2.5) can be rewritten in matrix form as

AQj = Qj+1H̄j ,

where

H̄j =

[

Hj

0 · · · 0 hj+1,j

]

is an (j + 1) × j matrix.

Let q1 = r0/β where β = ‖r0‖2 . The residual rj associated with the approximate solution
xj defined by (2.4) satisfies

rj = b−Axj = b−A(x0 +Qjyj)

= r0 −AQjyj = r0 −Qj+1H̄jyj

= βq1 −Qj+1H̄jyj

= Qj+1(βe1 − H̄jyj).

Because Qj+1 is a matrix with orthonormal columns, the residual norm ‖rj‖2 = ‖βe1 − H̄jyj‖2

is minimized when yj solves the linear least-squares problem

min
y∈Cj

‖βe1 − H̄jy‖2. (2.6)

We denote by yj the solution of (2.6). Therefore, xj = x0 + Qjyj is an approximate solution
of (2.1) for which the residual is minimized over x0 + K(A, r0, j) . The GMRES method owes its
name to this minimization property that is its key feature as it ensures the decrease of the residual
norm associated with the sequence of iterates.

In exact arithmetic, GMRES converges in at most n steps. However, in practice, n can be
very large and the storage of the orthonormal basis Qj may become prohibitive. On top of that,
the orthogonalization of qj with respect to the previous vectors q1, · · · , qj−1 requires 4nj flops,
for large j , the computational cost of the orthogonalization scheme may become very expensive.
The restarted GMRES method is designed to cope with these two drawbacks. Given a fixed m ,
the restarted GMRES method computes a sequence of approximate solutions xj until xj is ac-
ceptable or j = m . If the solution was not found, then a new starting vector is chosen on which
GMRES is applied again. Often, GMRES is restarted from the last computed approximation, i.e.
x0 = xm to comply with the monotonicity property of the norm decrease even when restarting.
The process is iterated until a good enough approximation is found. We denote by GMRES(m )
the restarted GMRES algorithm for a projection size of at most m . A detailed description of the
restarted GMRES with right preconditioner and modified Gram-Schmidt algorithm as orthogonal-
ization scheme is given in Algorithm 1.
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An implementation of the GMRES algorithm for real and complex, single and double precision
arithmetic suitable for serial, shared memory and distributed memory computers is available from
the Web at the following URL:

http://www.cerfacs.fr/algor/Softs/

The implementation is based on the reverse communication mechanism for the matrix-vector prod-
uct, the preconditioning and the dot product computations. The AS ELFIP code uses an out-of-
core version of this package.

Algorithm 1 Right preconditioned restarted GMRES algorithm: GMRES(m).

1: Choose a convergence threshold ε ;
2: Choose an initial guess t0 ;
3: r0 = b−AMt0 ;
4: for s = 1, . . . do

5: β = ‖r0‖ ;
6: q1 = r0/β ;
7: for j = 1, . . . ,m do

8: w = AMqj ;
9: for i = 1 to j do

10: hi,j = qH
i w ;

11: w = w − hi,jqi ;
12: end for

13: hj+1,j = ‖w‖ ;
14: qj+1 = w/hj+1,j ;
15: Find yj the least-squares solution of miny‖βe1 − H̄jy‖
16: if (stopping criterion ≤ ε ) then

17: t = t0 +Qjyj ;
18: goto 24 ;
19: end if

20: end for

21: t0 = t0 +Qmym ;
22: r0 = b−AMt0 ;
23: end for

24: x = Mt ;

2.2 The GMRES-DR method

It is well known that the convergence of Krylov methods for solving the linear system often depends
to a large extent on the eigenvalue distribution. It is often observed that removing or deflating the
small eigenvalues can greatly improve the convergence rate. One way to deflate unwanted eigen-
values is to add the corresponding eigenvectors to the Krylov subspace [73]. This is the philosophy
that governed the development of the GMRES-DR method [64]. This method recycles some ap-
proximate eigenvectors from one restart to the next by augmenting the next Krylov subspace with
these approximate eigenvectors. The purpose of this section is to describe this algorithm and
to illustrate some of its properties. We first present some procedures for extracting approximate
eigenpairs from a subspace for large non-Hermitian matrices. We then describe the GMRES-DR
algorithm which is a way to combine such eigen information retrieval with a restarted Arnoldi
method. The last part is devoted to a criterion to estimate the accuracy of the eigenvectors com-
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puted by the GMRES-DR algorithm. This criterion is estimated using by-products of the method,
i.e. at very low extra cost.

2.2.1 The Rayleigh-Ritz procedures

For any subspace S ⊆ Cn , a vector y ∈ S is a Ritz vector of the matrix A with Ritz value λ if

wH(Ay − λy) = 0, ∀ w ∈ S. (2.7)

Let Q ∈ Cn×m be an orthonormal matrix whose columns span S . Let z1 ∈ Cm and z2 ∈ Cm

be so that y = Qz1 and w = Qz2 . Equation (2.7) can be written:

zH
2 (QHAQz1 − λz1) = 0, ∀z2 ∈ C

m, (2.8)

which leads to the standard eigenvalue problem:

QHAQg = λg,

where z1 is replaced by g in Equation (2.8). Let (λi, gi) be the eigenpairs of QHAQ . The λi ’s
are approximate eigenvalues of A and are referred to as Ritz values. The Qgi ’s are approximate
eigenvectors of A and are referred to as Ritz vectors. This approach is described in [62, 72] and
is called the regular Rayleigh-Ritz procedure. Frequently, we choose S = K(A, r0,m) for which
an orthonormal basis is built using the Arnoldi procedure. We then have S = span{q1, · · · , qm} ,
with Qm = [q1, · · · , qm] such that QH

mAQm = Hm , where Hm is an upper Hessenberg matrix.
In that case, computing the Ritz eigenpairs reduces to solving the standard eigenvalue problem

Hg = λg.

Unfortunately, the Rayleigh-Ritz procedure usually does a better job in finding estimates for
exterior eigenvalues than for interior eigenvalues. A variant of the Rayleigh-Ritz procedure has
been proposed in [62] for finding interior eigenvalues and is described below. It defines the harmonic
Ritz values as the Ritz values of A−1 with respect to the space AS ; that is

wH (A−1y − αy) = 0, ∀ w ∈ AS, (2.9)

where α ∈ C . Let Q ∈ Cn×m be an orthonormal matrix whose columns span S . Equation (2.9)
with y = AQz1 and w = AQz2 gives us:

zH
2 Q

HAH(A−1AQz1 − αAQz1) = zH
2 Q

HAH(Qz1 − αAQz1) = 0, ∀z2 ∈ C
m

which leads to the generalized eigenvalue problem:

QHAHQg = αQHAHAQg, (2.10)

where z1 is replaced by g . Let us choose S = K(A, r0,m) for which an orthonormal basis is
built using the Arnoldi procedure. We then have S = span{q1, · · · , qm} , with Qm = [q1, · · · , qm]
such that QH

mAQm = Hm and AQm = Qm+1H̄m . Because H̄H
m H̄m = HH

mHm + h2
m+1,meme

T
m ,

we have HH
mg = α(HH

mHm + h2
m+1,meme

T
m)g ; the generalized eigenvalue problem (2.10) reduces

to
(Hm + h2

m+1,mfe
T
m)g = α−1g, (2.11)

where f = H−H
m em . The value θ = α−1 is the harmonic Ritz value and the corresponding

harmonic Ritz vector is Qmg . Because the Ritz values α are supposed to well approximate the
large eigenvalues of A−1 , the values θ are expected to be good approximations of the eigenvalues
of A close to zero.

From a computational point of view, the difference between the Ritz eigenpairs and the har-
monic Ritz eigenpairs is very small. The former requires the computation of the eigenpairs of Hm

and the latter are obtained as the eigenpairs of Hm + h2
m+1,mfe

T
m . Forming this last quantity

requires O(m) operations and is negligible compared to the size of the matrix A .
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2.2.2 Description of the GMRES-DR algorithm

The first restart of the GMRES-DR algorithm is a regular restart of the standard GMRES(m )
algorithm where we denote by r the residual vector at the end of the first restart. At the end
of the first restart, k harmonic eigenpairs (θi, gi) associated with the k harmonic Ritz values
with smallest modulus are extracted among the m available pairs. For the second restart, the
first k columns of Q are formed by orthonormalizing the k harmonic eigenvectors gi . Then
r is orthogonalized against them to form qk+1 . Let H be the Hessenberg matrix from the
Arnoldi recurrence. The full leading k + 1 by k + 1 portion of H is formed following Step 5 of
Algorithm 2. From there, the rest of H and Q can be generated with the usual Arnoldi approach.
This procedure generates the space K :

K = span
{

g1, g2, ..., gk, r, Ar,A
2r, . . . , Am−k−1r

}

.

In [64], it is proved that the space K is a Krylov space. Distinct harmonic Ritz values for each
restart are considered. If the matrix is real, conjugate harmonic eigenvectors can appear. If all the
complex eigenvectors have their conjugates among the k selected eigenvectors, for each conjugate
pair a real basis of the complex subspace spanned by this pair is formed. This real basis will be
recycled for the next Krylov subspace. If a complex eigenvector does not have its conjugate, it is
discarded. In this way, we prevent the next Krylov subspace from becoming complex.

The storage required by the GMRES-DR(m, k ) is the same as for GMRES(m ). Indeed, the
first restart of GMRES-DR creates a subspace of size m . All the other restarts start with k
eigenvectors in their Krylov subspaces and stop when the size of subspace is equal to m . The
GMRES-DR algorithm performs m matrix-vector products in the first restart and (m−k) matrix-
vector products in the others.

2.2.3 Some remarks on the approximation of the eigenvectors

Because we stop the GMRES-DR iterations when the stopping criterion for the linear solver is less
than a prescribed tolerance ε , there is no guarantees that the spectral information has converged at
the same time. One of our preconditioning strategies makes use of these approximate eigenvectors
(see Section 4.2.1) and then the performance of our preconditioner might depend on the quality
of the eigenvectors. Consequently, we need to estimate the quality of the eigenvectors that will be
checked via their backward error. The backward error associated with a normalized approximate
eigenvector u of a matrix A [84] is defined by:

min
∆A

{

ξ > 0 : ‖∆A‖ ≤ ξ‖A‖ : (A+ ∆A)u = (uHAu)u
}

=
‖Au− (uHAu)u‖

‖A‖ . (2.12)

We suppose that the harmonic eigenvector g is normalized. In our context we have then to
get a cheap upper-bound for

||AQmg − ρQmg||2
||A||2

,

where Qmg is a normalized approximate eigenvector, and ρ is the Rayleigh quotient associated
with Qmg that is defined by

ρ = (Qmg)
HAQmg = gHHmg.

The residual norm ||AQmg − ρQmg||2 can be computed using a formula from [62]:

||AQmg − ρQmg||2 =

√

||(Hm − ρI)g||22 + |hm+1,m|2.|eT
mg|

2
.
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Algorithm 2 Right preconditioned restarted GMRES–DR algorithm: GMRES–DR(m,k).

1: Start
Choose m , the maximum size of the subspace, and k , the desired number of approximate
eigenvectors. Choose an initial guess t0 and compute r0 = b−AMt0 . Let v1 = r0/‖r0‖ and
β = ‖r0‖ .

2: First restart
Apply standard GMRES(m ): generate Qm+1 and H̄m with the Arnoldi iteration, solve
min ‖c−H̄md‖ for d , where c = βe1 , and form the new approximate solution tm = t0+Qmd .
Let β = hm+1,m , t0 = tm , and r0 = b − AMtm . Then compute k smallest harmonic

eigenpairs (θ̃i, g̃i) .
3: Orthonormalization of the first k vectors

Orthonormalize g̃i ’s, in order to form an m× k matrix Pk .
4: Orthonormalization of the (k + 1)−th vector

First extend p1, . . . , pk (the columns of Pk ) to length (m + 1) by appending a zero entry
to each. Then orthonormalize the vector c − H̄md against them to form pk+1 . Pk+1 is
(m+ 1) × (k + 1) .

5: Form portions of new H and Q using the old H and Q
Let H̄new

k = PH
k+1H̄mPk and Qnew

k+1 = Qm+1Pk+1 . Then let H̄k = H̄new
k and Qk+1 = Qnew

k+1 .

6: Reorthogonalization of the (k + 1)−th vector
Orthogonalize qk+1 against the preceding columns of Qnew

k+1 .
7: Arnoldi iteration

Apply the Arnoldi iteration from qk+1 to form the rest of Qm+1 and H̄m . Let β = hm+1,m .
8: Form the approximate solution

Let c = QH
m+1r0 and solve min ‖c− H̄md‖ for d . Let tm = t0 +Qmd . Compute the residual

vector r = b − AMtm = Qm+1(c − H̄md) . Check ‖r‖ = ‖c− H̄md‖ for convergence. If it is
the case xm = Mtm , if not proceed.

9: Eigenvalue computations
Compute the k smallest harmonic eigenpairs (θ̃i, g̃i)

10: Restart
Let t0 = tm and r0 = r . Go to 3

We derive below an alternative expression to evaluate this residual norm.
From the definition (2.11) of g , we have:

(Hm + h2
m+1,mfe

T
m)g = gθ

gH(Hm + h2
m+1,mfe

T
m)g = gHgθ

gHHmg = θ − h2
m+1,m(gHf)(eT

mg)

ρ = θ − h2
m+1,m(gHf)(eT

mg). (2.13)

Using equalities (2.11) and (2.13), the harmonic residual vector can be written as:

AQmg − ρQmg = QmHmg + hm+1,mvm+1(e
T
mg) − ρQmg

= θQmg − h2
m+1,mQmf(eT

mg) + hm+1,mvm+1(e
T
mg)

− θQmg + h2
m+1,m(gHf)(eT

mg)Qmg

= Qm+1

[

h2
m+1,m(eT

mg)((g
Hf)g − f)

hm+1,m(eT
mg)

]

.

We finally obtain:

||AQmg − ρQmg||2 = |hm+1,m|.|eT
mg|
√

|hm+1,m|2.||(gHf)g − f ||2
2

+ 1.
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The quantity ||A||2 can be bounded below. From the Arnoldi relation (2.5) on the matrix A ,
it is easy to deduce that: ||Hm|| ≤ ||A|| . Then the backward error associated with a normalized
approximate eigenvector Qmg can be bounded above by:

||AQm − ρQmg||2
||A||2

≤ |hm+1,m|.|eT
mg|

||Hm||2

√

|hm+1,m|2.||(gHf)g − f ||2
2

+ 1. (2.14)

This calculation is of order O(m2) and requires an estimation of the spectral norm of the Hessen-
berg matrix Hm . This computation is negligible since m remains small in comparison with the
size of the matrix A .

2.3 The Flexible GMRES method

In 1993, Saad [74] introduced a variant of the GMRES method with variable right preconditioning.
This algorithm enables the use of a different preconditioner at each step of the Arnoldi process.
With a right preconditioner, the GMRES algorithm computes its iterates as

xk = x0 +MQkyk, (2.15)

where yk = arg miny ‖βe1 − H̄ky‖ and is based on the Arnoldi relation

AMQk = A[Mq1, · · · ,Mqk] = Qk+1H̄k.

With variable preconditioners, a similar relation holds that can be written as:

A[M1q1, · · · ,Mkqk] = A[z1, · · · , zk] = AZk = Qk+1H̄k,

where Qk+1 has orthonormal columns and H̄k is upper Hessenberg. The algorithm generates iter-
ates xk = x0+Zkyk that have minimal residual norm on the space x0+span{z1, · · · , zk} . That is,
with yk = argminy ‖βe1 −H̄ky‖ . Because this GMRES variant allows for flexible preconditioners
it is referred to as Flexible GMRES and we denote it by FGMRES. From an implementation point
of view the main difference between right preconditioned GMRES and FGMRES is the memory
requirement. In that latter algorithm, both Qk and Zk need to be stored. Furthermore, while
only happy breakdowns might occur in GMRES, FGMRES can break down at some step before
it has computed the solution. We describe this method in Algorithm 3 and refer to [74] for a
complete description of the convergence theory.

As for the GMRES algorithm, we use an implementation of the FGMRES algorithm with a reverse
communication mechanism [32], also available via the same Web address:

http://www.cerfacs.fr/algor/Softs/

The AS ELFIP code uses an out-of-core version of this package.

2.4 The Seed-GMRES method

The Seed-GMRES [80] can be used for solving a sequence of linear systems with the same coefficient
matrix. The idea consists in benefiting from the current solve at each restart by using the associated
Krylov space to compute a better initial guess for all of the other linear systems. For the sake of
simplicity of the notation, we describe below the method for the solution of only two right-hand
sides. The problem for a right preconditioned version can be written:

{

AM(t1, t2) = (b1, b2) with,
(t10, t

2
0) initial guesses.
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Algorithm 3 Right preconditioned restarted FGMRES algorithm: FGMRES(m).

1: Choose a convergence threshold ε ;
2: Choose an initial guess x0 ;
3: r0 = b−Ax0 ;
4: for s = 1, . . . do

5: β = ‖r0‖ ;
6: q1 = r0/β ;
7: for j = 1, . . . ,m do

8: zj = Mjqj
9: w = Azj ;

10: for i = 1 to j do

11: hi,j = qH
i w ;

12: w = w − hi,jqi ;
13: end for

14: hj+1,j = ‖w‖ ;
15: qj+1 = w/hj+1,j ;
16: Find yj the least-squares solution of miny ‖βe1 − H̄jy‖
17: if (stopping criterion ≤ ε ) then

18: x = x0 + Zjyj ;
19: stop ;
20: end if

21: end for

22: x0 = x0 + Zmym

23: r0 = b−Ax0 ;
24: end for

The seed GMRES method starts by solving the first system AMt1 = b1 using the GMRES
algorithm. It computes an orthonormal basis of the Krylov space Q1

m+1 and the upper-Hessenberg
matrix H̄1

m such that AMQ1
m = Q1

m+1H̄
1
m. At each restart of the current solve, the initial guess

t20 is updated by minimizing the norm of the residual r20 = b2 − AMt20 of the second system on
the current basis Q1

m+1 . We search for a new initial guess t̂20 so that:

{

t̂20 = t20 +Q1
mu

2 with,
u2 = arg min

u∈Cm

||b2 −AM(t20 +Q1
mu)||2.

Using the fact that:

||b2 −AM(t20 +Q1
mu)||22 = ||r20 −AMQ1

mu||22
= ||(In −Q1

m+1(Q
1
m+1)

T )r20 +Q1
m+1(Q

1
m+1)

T r20 −AMQ1
mu||22

= ||(In −Q1
m+1(Q

1
m+1)

T )r20 +Q1
m+1((Q

1
m+1)

T r20 − H̄1
mu)||22

= ||(In −Q1
m+1(Q

1
m+1)

T )r20 ||22 + ||Q1
m+1((Q

1
m+1)

T r20 − H̄1
mu)||22

= ||(In −Q1
m+1(Q

1
m+1)

T )r20 ||22 + ||(Q1
m+1)

T r20 − H̄1
mu||22,

we finally should solve at each restart the least-squares problem: arg minu ||(Q1
m+1)

T r20 − H̄1
mu||2 ,

where we already have a QR factorization of H̄1
m built by the GMRES algorithm. Once the first

system has been solved, we simply run a new GMRES method for the second right-hand side using
the new initial guess. For a sequence of nb right-hand sides, during the solve of the current system
` , we have to update at each restart the subsequent (nb− `+ 1) initial guesses. In order to take
account of all the updates of all guesses, extra storage of nb vectors is required for the nb initial
guesses. The Seed-GMRES algorithm is described in Algorithm 4 for nb right-hand sides.
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Algorithm 4 Right preconditioned restarted Seed-GMRES algorithm: Seed-GMRES(m).

1: Choose a convergence threshold ε ;
2: for ` = 1, . . . , nb do

3: Choose an initial guess t`0 ;
4: r`

0 = b` −AMt`0 ;
5: for s = 1, . . . do

6: β = ‖r`
0‖ ;

7: q`
1 = r`

0/β ;
8: for j = 1, . . . ,m do

9: w = AMq`
j ;

10: for i = 1 to j do

11: hi,j = (q`
i )

H
w ;

12: w = w − hi,jq
`
i ;

13: end for

14: hj+1,j = ‖w‖ ;
15: q`

j+1 = w/hj+1,j ;

16: Find yj of the least-squares solution of miny ‖βe1 − H̄jy‖
17: if (stopping criterion ≤ ε ) then

18: t = t0 +Q`
jyj ;

19: goto 29 ;
20: end if

21: end for

22: t`0 = t`0 +Q`
mym ;

23: r`
0 = b−AMt`0 ;

24: for q = `+ 1, . . . , nb do

25: uq = argminu ||bq −AM(tq0 +Q`
mu)||2 ;

26: tq0 = tq0 +Q`
mu

q ;
27: end for

28: end for

29: x` = Mt ;
30: end for

2.5 Some computational aspects in the implementation of

the solvers

2.5.1 Stopping criterion

We have chosen to base the stopping criterion for any GMRES type linear solver on the normwise
backward error [22, 47, 70]. Backward error analysis, introduced by Wilkinson [89], is an appealing
concept for analysing the quality of an approximate solution:

1. it is independent from the details of round-off propagation: the errors introduced during the
computation are interpreted in terms of perturbations of the initial data, and the computed
solution is considered as exact for the perturbed problem;

2. because round-off errors are seen as data perturbations, they can be compared with errors due
to numerical approximations (consistency of numerical schemes) or to physical measurements
(uncertainties on data coming from experiments for instance) or to the FMM accuracy in
our framework.

The backward error measures in fact the distance between the data of the initial problem and that
of the perturbed problem. In the context of linear systems, classical choices are normwise and



24 Some variants of the GMRES linear solver

componentwise perturbations [22, 47]. These choices lead to explicit formulae for the backward
error (often a normalized residual) which is then easily evaluated. For iterative methods, it is
generally admitted that the normwise model of perturbation is appropriate [8, 33].

Let x̃ be an approximate solution of x = A−1b . The relative normwise backward error as-
sociated with x̃ , considering a perturbation ∆A on A and a perturbation ∆b on b , can be
defined as:

ηA,b(x̃) = min
∆A,∆b

{ξ > 0; ‖∆A‖ ≤ ξ‖A‖, ‖∆b‖ ≤ ξ‖b‖ and (A+ ∆A)x̃ = b+ ∆b}

=
‖Ax̃− b‖

‖A‖‖x̃‖ + ‖b‖ .

The relative normwise backward error associated with x̃ , considering only a perturbation ∆b
on b , can be defined as:

ηb(x̃) = min
∆b

{ξ > 0; ‖∆b‖ ≤ ξ‖b‖ and Ax̃ = b+ ∆b}

=
‖Ax̃− b‖

‖b‖ . (2.16)

The best we can require from an algorithm is a backward error of the order of the machine
precision. In practice, the approximate solution is acceptable when its backward error is of the
order of the uncertainty in the data. Therefore, there is often no gain in iterating after the backward
error has reached machine precision or data accuracy. Either ηA,b or ηb are recommended for
implementing a stopping criterion strategy. Nevertheless, implementing the stopping criterion
ηb(x̃) ≤ ε is far simpler than for ηA,b(x̃) ≤ ε , as we do not need to estimate the norm of A .
That is why we choose ηb for the stopping criterion for all our experiments with GMRES and its
variants.

The packages [32, 33] implement a stopping criterion based on the backward error associated
with the preconditioned linear system and not with the original linear system, to comply with
the backward stability argument for the GMRES method given in [42]. Furthermore, for a left
preconditioner, the residual which is readily available in the algorithm is that of the preconditioned
system. It would be too expensive to compute the residual of the unpreconditioned system at
each iteration. It should be pointed out that the stopping criterion ηb(x̃) associated with the
preconditioned system MAx = Mb depends on the chosen preconditioner. This is no longer true
for a right preconditioner where the stopping criterion ηb(t̃) associated with the preconditioned
system AMt = b with x = Mt , can be written:

ηb(t̃) =
‖AMt̃− b‖

‖b‖ =
‖Ax̃− b‖

‖b‖ = ηb(x̃).

Consequently, it does not depend on the chosen preconditioner. This is the reason why right
preconditioning is often preferred in many applications. Moreover, as we plan to compare the
efficiency of different preconditioners on the same problem in the following chapters, we have to
select a stopping criterion independent of the chosen preconditioner. For this reason we choose
right preconditioners for all our numerical experiments.

In electromagnetism simulations, the stopping criterion consists in reducing ηb(x̃) down to
10−3 . Although this value may appear to be large, it is sufficient to obtain accurate radar cross
section results.

2.5.2 Evaluation of the norm of the residual

At each step j of any GMRES-like method, one needs to solve the least-squares problem (2.6).
The matrix H̄j involved in this least-squares problem is a (j + 1) × j complex matrix which is
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upper Hessenberg. We make the same choice as in [33]. The solution of (2.6) will be based on the
QR factorization of the matrix [H̄j , βe1] : if QR = [H̄j , βe1] where Q is a orthonormal matrix
and R = (rik) is an (j + 1) × (j + 1) upper triangular matrix. The solution yj of (2.6) is given
by:

yj = R(1 : j, 1 : j)−1R(1 : j, j + 1). (2.17)

Here, R(1 : j, 1 : j) denotes the first j × j submatrix of R and R(1 : j, j + 1) stands for the
last column of R . The 2 –norm of the residual is a by-product of the solution of the least-squares
problem:

‖rj‖2 = ‖b−Axj‖2 = ‖βe1 − H̄jyj‖2 = |rj+1,j+1 |. (2.18)

However, it is well known that, in finite-precision arithmetic, the norm of the computed residual
|rj+1,j+1| given by the Arnoldi process may differ significantly from the norm of the true residual
||rj ||2 . From our numerical experiments, we follow the strategy implemented in [32, 33]. Let η̃b(x̃)
be the normwise backward error associated with x̃ and defined as:

η̃b(x̃) =
|rj+1,j+1|

‖b‖ . (2.19)

As soon as η̃b(x̃) becomes less than the prescribed tolerance ε , we iterate until ηb(x̃) becomes
itself lower than the tolerance.

2.5.3 Computation of the orthonormal basis Qm

The quality of the orthogonality of the Qj plays a central role in GMRES as deteriorating it
might delay or slow down the convergence. On the other hand, ensuring very good orthogonality
might be expensive and useless for some applications. Consequently a trade-off has to be found to
balance the numerical efficiency of the orthogonalization scheme and its inherent implementation
efficiency on a given target computer.

It is well known that the classical Gram-Schmidt algorithm (CGS) is numerically worse than the
modified Gram-Schmidt algorithm (MGS) [13]. But the CGS algorithm can be implemented in an
efficient manner by gathering the dot products into one matrix–vector product. In finite-precision
arithmetic, there might be a severe loss of orthogonality in the computed basis; this loss can
be compensated by selectively iterating the orthogonalization scheme. The resulting algorithm is
called iterative classical Gram-Schmidt (ICGS). It is particularly attractive in a parallel distributed
environment, where the global reduction involved in the computation of the dot product is a well-
known bottleneck [31, 34, 56, 79]. An iterative modified Gram-Schmidt (IMGS) results in an
algorithm of the same numerical quality as ICGS [38], but its main drawback is the increased
number of dot products. For our numerical experiments, we select the ICGS algorithm [32, 33].
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Chapter 3

One level preconditioning

techniques for integral equations

The design of robust preconditioners for boundary integral equations can be challenging. Simple
preconditioners like the diagonal of A, diagonal blocks, or a band can be effective only when the co-
efficient matrix has some degree of diagonal dominance depending on the integral formulation [82].
Block diagonal preconditioners are generally more robust than their point-wise counterparts, but
may require matrix permutations or renumbering of the grid points to cluster the large entries
close to the diagonal. Incomplete factorizations have been successfully used on nonsymmetric
dense systems in [78] and hybrid integral formulations in [55], but on the EFIE the triangular
factors computed by the factorization are often very ill-conditioned due to the indefiniteness of
A [19].

Approximate inverse methods are generally less prone to instabilities on indefinite systems,
and several preconditioners of this type have been proposed in electromagnetism (see for instance
[1, 23, 54, 77, 87]). Owing to the rapid decay of the discrete Green’s function, the location
of the large entries in the inverse matrix exhibits some structure. In addition, the entries of
large magnitude represent only a very small number compared to the others. This means that a
very sparse matrix is likely to retain the most relevant contributions to the exact inverse. This
desirable property can be effectively exploited in the design of robust approximate inverses in
electromagnetism.

3.1 Frobenius-norm minimization preconditioner

3.1.1 General description

In this section we describe an approximate inverse preconditioner based on Frobenius-norm min-
imization. The original idea, due to Benson and Frederickson [10, 35], is to compute the sparse
approximate inverse as the matrix M which minimizes ‖I −MA‖F (or ‖I − AM‖F for right
preconditioning) subject to certain sparsity constraints. The Frobenius norm is usually chosen
since it allows the decoupling of the constrained minimization problem into n independent linear
least-squares problems, one for each column of M (when preconditioning from the right) or row
of M (when preconditioning from the left). The independence of these least-squares problems
follows immediately from the identity:

‖I −MA‖2
F = ‖I −AMT ‖2

F =
n
∑

j=1

‖ej −Amj•‖2
2 (3.1)
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where ej is the j−th canonical unit vector and mj• is the column vector representing the j−th

row of M . In the case of right preconditioning, the analogous relation

‖I −AM‖2
F =

n
∑

j=1

‖ej −Am•j‖2
2 (3.2)

holds, where m•j is the column vector representing the j−th column of M . Clearly, there is
considerable scope for parallelism in this approach. The main issue is the selection of the nonzero
pattern of M , that is the set of indices

S = { (i, j) ⊆ [1, n]2 | mij = 0 }. (3.3)

The idea is to keep M reasonably sparse while trying to capture the “large” entries of the inverse,
which are expected to contribute the most to the quality of the preconditioner. Two different
approaches can be followed for this purpose, that is an adaptive technique that dynamically tries
to identify the best structure for M , and a static technique, where the pattern of M is prescribed
a priori based on some heuristics.

Adaptive strategies can solve fairly general or hard problems but tend to be very expensive.
The use of effective static pattern selection strategies can greatly reduce the amount of work in
terms of CPU-time, and improve substantially the overall setup process, introducing significant
scope for parallelism. On boundary integral equations the discrete Green’s function (1.1.2) decays
rapidly far from the diagonal, and the inverse of A may have a very similar structure to that of
A . The discrete Green’s function can be considered as a row or as a column of the exact inverse
depicted on the physical computational grid. In this case, a good pattern for the preconditioner can
be computed in advance using graph information from Ã , a sparse approximation of the coefficient
matrix constructed by dropping all the entries lower than a prescribed global threshold [1, 17, 49].
When fast methods are used for the matrix-vector products, all the entries of A are not available in
memory and the pattern can be formed by using the near-field part of the matrix that is explicitly
computed and available in the FMM [54].

Since we work in an integral equation context, relevant information for the construction of
the pattern of M can be extracted from the triangular mesh. Each degree of freedom (DOF),
representing an unknown in the linear system, corresponds to an edge. The sparsity pattern for
any column of the preconditioner can be defined according to the concept of level k neighbours.
Level 1 neighbours of a DOF are the DOF plus the four DOFs belonging to the two triangles that
share the edge corresponding to the DOF itself. Level 2 neighbours are all the level 1 neighbours
plus the DOFs in the triangles that are neighbours of the two triangles considered at level 1, and so
forth. When the object geometries are smooth, only the neighbouring edges in the mesh can have
a strong interaction with each other, while far-away connections are generally much weaker. Thus
an effective pattern for the j−th column of the approximate inverse can be computed by selecting
in the mesh the edge j and its q−th level nearest-neighbours. Three levels can generally provide a
good pattern for constructing an effective sparse approximate inverse. Using more levels increases
the computational cost but does not improve substantially the quality of the preconditioner [17].
When the object geometries are not smooth or have disconnected parts, far-away edges in the mesh
can have a strong interaction with each other and be strongly coupled in the inverse matrix. In
this case a more robust pattern for the preconditioner can be computed using physical information,
that is selecting for each edge all those edges within a sufficiently large geometric neighbourhood.
A comparison of the pattern selection strategies based both on algebraic and mesh information
on a large set of problems is described in [17]. It has been found that those exploiting geometric
information are the most effective at capturing the large entries of the inverse. We refer to the
Frobenius-norm minimization method described in this section and computed using a static pattern
strategy based on geometric information as the MFrob preconditioner.

The construction of MFrob costs O(n2) arithmetic operations. This cost can be significantly
reduced if the preconditioner is computed using as input a sparse approximation Ã of the dense



3.1 Frobenius-norm minimization preconditioner 29

coefficient matrix A . On general problems, this approach can cause a severe deterioration of the
quality of the preconditioner. In an integral equation context it is likely to be more effective because
the boundary element method generally introduces a very localized strong coupling among the
edges in the underlying mesh. It means that a very sparse matrix can still retain the most relevant
contributions from the singular integrals that give rise to dense matrices. If the sparsity pattern
of M is known in advance, the nonzero structure for the j−th column of M is automatically
determined, and defined as

J = {i ∈ [1, n] s.t. (i, j) ∈ S} .

The least-squares solution involves only the columns of Ã indexed by J ; we indicate this subset
by Ã(:, J) . When Ã is sparse, many rows in Ã(:, J) are usually null, not affecting the solution
of the least-squares problems (3.1). Thus if I is the set of indices corresponding to the nonzero
rows in Ã(:, J) , and if we define by Â = Ã(I, J) , by m̂j = mj(J) , and by êj = ej(J) , the actual
“reduced” least-squares problems to solve are

min‖êj − Âm̂j‖2, j = 1, ..., n. (3.4)

Usually problems (3.4) have much smaller size than problems (3.1) and can be effectively solved
by dense QR factorization. In [1] the same nonzero sparsity pattern is selected both for A and
M ; in that case, especially when the pattern is very sparse, the computed preconditioner may
be poor on some geometries. Up to a certain limit, selecting more entries in M than in Ã can
enable the computation of a more robust preconditioner, and the additional cost in terms of CPU
time is negligible because of the complexity of the QR factorization used to solve the least-squares
problems [17]. Increasing the number of rows in problem (3.4), that is the number of entries of Ã ,
is much cheaper in terms of overall CPU time than increasing the density of the preconditioner,
that is the number of columns in the least-squares problems.

3.1.2 Implementation of the preconditioner in the fast multipole context

The box-wise decomposition of the domain naturally leads to an a priori pattern selection strategy
for M and Ã in the FMM context. We adopt the following criterion: the nonzero structure of
the column of the preconditioner associated with a given edge is defined by retaining all the edges
within its leaf box and those within one level of neighbouring boxes. The structure for the sparse
approximation of the dense coefficient matrix is defined by retaining the entries associated with
edges included in the given leaf box as well as those belonging to the two levels of neighbours. The
approximate inverse has a sparse block structure; each block is dense and is associated with one
leaf box. Indeed the least-squares matrices corresponding to edges within the same leaf box are
identical because they are defined using the same nonzero structure and the same set of entries of
A . It means that we only have to compute one QR factorization per leaf box. Consequently, the
numerical complexity to build the preconditioner is linear with the number of leaf boxes. In our
implementation we use two different octrees, and thus two different partitionings, to assemble the
preconditioner and to compute the matrix-vector product via the FMM. The size of the smallest
boxes in the partitioning associated with the preconditioner is a user-defined parameter that can
be tuned to control the number of nonzeros computed per column. According to our criterion,
the larger the size of the leaf boxes, the larger the geometric neighbourhood that determines the
sparsity structure of the columns of the preconditioner. The parallel implementation for building
the preconditioner consists in assigning disjoint subsets of leaf boxes to different processors and
performing the least-squares solutions independently on each processor. At each step of the Krylov
solver, applying the preconditioner is easily parallelizable as it reduces to a regular matrix-vector
product [85].
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3.1.3 Numerical experiments

As already mentioned, all the numerical experiments arising from electromagnetism calculations in
this thesis use a threshold equal to 10−3 for the stopping criterion based on ηb(x̃) . This tolerance
is accurate for engineering purposes, as it enables the correct construction of the radar cross section
of the objects. The initial guess for all GMRES type solvers except the seed-GMRES is the zero
vector.

In this section, we present the numerical behaviour of the Frobenius-norm minimization pre-
conditioner on many sizes of the target problems. Those results have been extracted from [20]
but for the sake of comparison with other techniques we think that it is worth summarizing the
main ones below. The size of the problems is varied by increasing the frequency of the illumi-
nating wave, while the number of points per wavelength remains constant, equal to ten [9]. The
leaf box dimension in the partitioning associated with the preconditioner keeps the same value for
increasing frequency. This means that the number of nonzeros per column in the preconditioner is
constant and independent of the problem size. Consequently, the density of MFrob decreases for
increasing problem size. We choose for each geometry described in Figure 1.7, a right-hand side,
associated with an incident wave, giving rise to a linear system among the most difficult to solve.
The illuminating direction (θ, φ) for the Cetaf case is (65o, 0o) , for the Aircraft case (30o, 30o) ,
for the Cobra case (25o, 0o) and for the Almond case (90o, 40o) . The choice of the angle per
geometry is fixed for all numerical experiments in this chapter. All the runs have been performed
on eight processors of a Compaq Alpha server.

In Table 3.1 we display for each geometry the size of the problems, the density and the con-
struction time of MFrob , the number of matrix-vector products and the elapsed time required to
converge using full-GMRES or GMRES(120) preconditioned with MFrob . We see that the nu-
merical behaviour of MFrob does not scale well with the size of the problem, except for the Cobra
case. Using full-GMRES, the Aircraft case of size 591 900 and the Almond case of size 943 137
exceed the memory limit and the time limit allocated to the runs performed with 8 processors.
The orthogonalization involved in the Arnoldi procedure strongly affects the solution time. Good
illustrations of this phenomenon are the two largest Cetaf cases: the elapsed time to obtain the
solution with full-GMRES is twice as great as with GMRES(120), while the number of matrix-
vector products with full-GMRES is half that for GMRES(120). Provided we get convergence, the
use of a restarted GMRES often reduces the solution time even though it significantly deteriorates
the convergence. There is no convergence on the largest aircraft problems after 2000 iterations
of GMRES(120). The preconditioner becomes less and less effective as the size of the problem
increases because it becomes sparser. The number of unknowns per box remains constant, but the
number of boxes increases leading to a decrease in the density of the preconditioner and a reduced
efficiency. We investigate now the influence of the density of MFrob on the numerical results.

The size of the leaf boxes in the oct-tree associated with the preconditioner is increased in
the Cobra case of size 179 460, using GMRES(120) and the same right-hand side (illuminating
direction (θ, φ) = (25o, 0o) ). In Table 3.2, we display the number of matrix-vector products
required to achieve convergence, the elapsed time for the construction of MFrob , the solution time
and the overall time to deal with one right-hand side, when the density of MFrob varies. The
size of the leaf box is denoted by “Radius”; we have to multiply it by the wavelength to obtain its
physical size. Increasing the number of nonzeros per column tends usually to decrease the number
of iterations. Going from the density 0.039 to the density of 0.358 , that is nine times larger, only
reduces by a factor of 1.5 the number of matrix-vector products. On top of that, the corresponding
construction time is multiplied by 22 and becomes larger than the solution time. The size of the
least-squares problem increases very much. Then a trade-off between the construction cost and the
numerical performance has to be found. In most of the cases it is obtained for a size of leaf box equal
to 0.12 wavelengths. This is the default value set in the AS ELFIP code. If the preconditioner is
used to solve systems with the same coefficient matrix and multiple right-hand sides, it might be
worth computing more nonzeros if we have enough disk space, because the construction cost can
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be quickly amortized. However, significantly enlarging the density is not feasible on the largest
problems because we would exceed the memory and disk capacity of our computer. For more
details on the numerical behaviour of MFrob , we refer to [16, 20]. In order to solve very large
problems, we investigate other preconditioning approaches in the rest of this manuscript.

Aircraft

Size Density Setup time
GMRES(∞) GMRES(120)

# Mat.V Time # Mat.V Time
94 704 0.28 11mn 746 2h 09mn 1956 3h 13mn

213 084 0.13 31mn 973 7h 19mn +2000 > 7h 56mn

591 900 0.09 1h 30mn 1461 16h 42mn(64) +2000 > 1d 57mn

Almond

Size Density Setup time
GMRES(∞) GMRES(120)

# Mat.V Time # Mat.V Time
104 793 0.19 6mn 234 20mn 253 17mn
419 172 0.05 21mn 413 2h 44mn 571 2h 26mn

943 137 0.02 49mn 454 3h 35mn(32) 589 5h 55mn

Cetaf

Size Density Setup time
GMRES(∞) GMRES(120)

# Mat.V Time # Mat.V Time
48 519 0.32 3mn 499 33mn 521 21mn

134 775 0.11 6mn 618 1h 45mn 1125 1h 55mn
264 156 0.06 13mn 710 9h 1373 4h 46mn
531 900 0.03 20mn 844 1d 18mn 1717 14h 08mn

Cobra

Size Density Setup time
GMRES(∞) GMRES(120)

# Mat.V Time # Mat.V Time
60 695 0.24 2mn 369 26mn 516 23mn

179 460 0.09 7mn 353 1h 11mn 406 1h 02mn

Table 3.1: Number of matrix-vector products and elapsed time to achieve converge for the four
geometries using full-GMRES and GMRES(120), preconditioned with MFrob . All these results
are obtained on 8 processors, except those marked with (k), that were run on k processors.

3.2 Exact inverse versus approximate inverse

The governing ideas that led to the study and implementation of the preconditioner MFrob were
its relatively good numerical efficiency and its embarrassingly parallel implementation both in its
construction and in its application to a vector. Its construction from a sparse approximation Ã
of A reduces to the solution of a set of small independent linear least-squares and its application
is just a sparse matrix-vector product. A natural concern that arises is how much have we lost
in terms of the numerical efficiency of the preconditioner by using an approximate inverse rather
than an “exact inverse” of Ã . To address this question and because we are still interested in
large parallel distributed computation we select the Mumps package [3, 4] to perform the LDLT

factorization of Ã and refer to the associated preconditioner as MMumps .
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Radius Density (%)
# Mat.V

in GMRES(120)
Construction

Time
Solution

Time
Overall
Time

0.08 0.039 430 4mn 1h 1h 04mn
0.10 0.062 383 5mn 50mn 55mn
0.12 0.091 406 7mn 49mn 56mn
0.14 0.120 380 11mn 48mn 59mn
0.18 0.204 351 31mn 52mn 1h 23mn
0.24 0.358 280 1h 22mn 43mn 2h 05mn

Table 3.2: Number of matrix-vector products and elapsed time to build MFrob and to obtain the
solution using preconditioned GMRES(120) on a Cobra problem of size 179 460, varying the radius
monitoring the density of the preconditioner. The tests were run on 8 processors of the Compaq
machine.

3.2.1 Brief overview of the parallel distributed sparse direct solver:

Mumps

The MUltifrontal Massively Parallel Solver (Mumps, [3, 4]) is a parallel distributed sparse direct
solver. The matrix to be factorized can be either symmetric positive definite, general symmetric
or general unsymmetric, in complex or real arithmetic. The Mumps software uses a multifrontal
technique to perform either an LU or an LDLT factorization of the matrix. It implements three
phases: symbolic analysis, numerical factorization and solution. During the symbolic analysis
phase some preprocessing is applied in order to permute the matrix in an attempt to decrease
the number of nonzeros in the factors. The factorization phase tries to follow the decision of the
analysis but numerical pivoting is applied to ensure as much as possible a stable factorization. The
independence of the computation arising from the elimination tree and in the dense calculation in
the frontal matrices are efficiently exploited to achieve good performance on a distributed memory
parallel computer. The solution phase performs a forward and backward substitution on the
computed factors. The software is written in Fortran 90 and a C interface is available. We use this
latter interface to call Mumps in the AS ELFIP code. The parallel version of Mumps requires
MPI for message passing and makes use of BLAS, BLACS and ScaLAPACK libraries. We refer
the reader to the Users’ Guide [2] for more details. Many orderings are already available in the
Mumps package, and we choose to use the METIS package [48].

3.2.2 Choice of the pattern for the MMumps preconditioner

The exact factorization is computed for the sparse approximation Ã of the dense coefficient matrix
A . As previously defined in Section 3.1.2, the structure for Ã is defined by retaining the entries
associated with edges included in the given leaf box of the oct-tree as well as the edges belonging to
the neighbours and the neighbours of the neighbours (level two neighbours). The preconditioner
MFrob is classically built from two levels of neighbours for Ã . For MMumps we investigate

three possibilities: using an approximation Ã obtained from zero level, one and two levels of
neighbours. We notice that the zero-level variant reduces to a block diagonal preconditioner,
where each diagonal block is associated with one leaf box.

In Figure 3.1 we depict the pattern of upper triangular part of Ã (resp. the lower triangular
part) obtained using zero level of neighbours (resp. using one level of neighbours) on the Cetaf
5 391 example. The zero level produces a block diagonal pattern, each new level of neighbours
adds extra off-diagonal blocks. Because we consider the EFIE formulation, Ã is symmetric then
we perform a LDLT factorization.

Because all the data structures of Mumps are in-core while the AS ELFIP code uses out-of-core
functionalities intensively, a comparison between the performance of MFrob and MMumps in terms
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Figure 3.1: Cetaf 5 391 - upper triangular part corresponds to zero level of neighbours, lower
triangular part corresponds to one level of neighbours.

of elapsed time would be unfair. For this reason the elapsed times are only given for information
and certainly not for comparison. In the sequel, the two approaches are mainly compared in terms
of floating-point operations to build and apply the preconditioners. This latter cost is directly
related to the number of nonzero entries in the L and D factors computed by MMumps and in
the MFrob matrix.

3.2.3 Cost of the construction of MMumps

For one level of neighbours in Ã , we report in Table 3.3 the performance of Mumps in terms of
millions of nonzero entries in the factors, floating-point operations (GFlop) and elapsed time to
perform the factorization. For the sake of comparison, we also display these quantities for MFrob .
On the Almond of size 419 172, we see that the number of nonzeros in the factors computed by
Mumps is five time larger than the number of nonzero in MFrob . This leads to significant increase
in the memory requirement. The cumulated memory space needed for the factors on all processors
is about 25 Giga Bytes (GB) for this example. Similarly, the largest Cetaf requires 17 GB, the
largest Aircraft needs 9 GB and the largest Cobra requires 6 GB. Both the largest Aircraft and
Almond have been run on more than 8 processors so that enough memory was available for the
factors (1 GB per processor on the Compaq Alpha Server). Concerning the number of floating-point
operations in the setup phase of the preconditioner, it is not surprising that building MMumps is
cheaper than MFrob ; computing the inverse of a matrix by solving a sequence of least-squares
problems is not a very efficient approach. Nevertheless, because MFrob is built using only dense
linear algebra kernels (mainly level 3 BLAS), we note that the sustained MFlop rate is higher for
MFrob than for MMumps .

In Table 3.4, we display the memory required by Mumps if the number of levels of neighbours is
changed from one to two in the definition of Ã . The column entitled “GB” represents the amount
of distributed memory space required to store the factor computed by Mumps . We see that
for problems of moderate size the amount of memory required to compute and store the factors
becomes fairly large when two levels of neighbours are considered. In particular, for the Cetaf of
size 86 256, we had to perform the experiments on 63 processors in order to have enough memory
space to perform the factorization.
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Aircraft
Millions of nonzero entries Construction Construction

Mumps GFlop Time
Size nnz(MFrob) (nnz(Ã) + n)/2 nnz(L) + nnz(D) MFrob MMumps MFrob MMumps

94 704 24.9 12.5 49.1 5 054.6 27.4 11mn 26s

213 084 58.7 29.5 133.9 15 829.7 105.6 15mn (16) 56s (16)

Almond
Millions of nonzero entries Construction Construction

Mumps GFlop Time
Size nnz(MFrob) (nnz(Ã) + n)/2 nnz(L) + nnz(D) MFrob MMumps MFrob MMumps

104 793 21.0 10.5 86.9 2 578.7 97.7 6mn 1mn

419 172 83.5 41.9 417.2 9 918.3 813.8 8mn (20) 4mn (20)

Cetaf
Millions of nonzero entries Construction Construction

Mumps GFlop Time
Size nnz(MFrob) (nnz(Ã) + n)/2 nnz(L) + nnz(D) MFrob MMumps MFrob MMumps

86 256 13.3 6.6 47.7 1 558.8 38.5 5mn 27 s
134 775 19.7 9.9 79.1 19 737.0 73.9 6mn 48 s
264 156 39.4 19.8 172.4 4 593.3 210.5 14mn 2mn

Cobra
Millions of nonzero entries Construction Construction

Mumps GFlop Time
Size nnz(MFrob) (nnz(Ã) + n)/2 nnz(L) + nnz(D) MFrob MMumps MFrob MMumps

60 695 8.8 4.4 30.1 690.8 19.8 2mn 16 s
179 460 29.2 14.7 122.5 2 787.3 141.2 8mn 1mn

Table 3.3: Construction phase. All these results are obtained on 8 processors except those marked
with (k) , that were run on k processors.

One level Two levels
nnz(L) + nnz(D) GB of RAM nnz(L) + nnz(D) GB of RAM

Aircraft 23 676 8.8 0.8 19.1 2
Cobra 60 695 30.1 2 92.5 7

Cetaf 86 256 (63) 47.7 5 181.1 36

Table 3.4: Effect of the level of neighbours to compute Ã on size of the factors computed by
Mumps . All the experiments have been performed on eight processors except the Cetaf that
required the use of 63 processors.

One way to reduce the size of the factors is to sparsify the approximation of A constructed
using the neighbouring approach. In that context, we discard all the entries of Ã that are small
in magnitude and build a sparse approximation denoted by Ãτ . More precisely, to preserve the
symmetry of Ãτ we apply the following strategy:

{

Ãτ (i, j) = Ã(i, j) if |Ã(i, j)| > τ ∗max(|Ã(i, i)|, |Ã(j, j)|,
Ãτ (i, j) = 0 otherwise.

We display in Figure 3.2 (a) the ratio:

nnz(Ãτ )

nnz(Ã)
,
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when the threshold parameter τ is varied for Ã constructed using two levels of neighbours. In
Figure 3.2 (b), we depict the ratio:

nnz(Lτ) + nnz(Dτ)

nnz(L) + nnz(D)
,

where Ãτ = LτDτL
T
τ and Ã = LDLT when the threshold τ varies. We observe that the number

of nonzero entries decreases more quickly in the approximations Ãτ than in their corresponding
factors. Unfortunately as we will see in the next section the numerical behaviour of the resulting
preconditioner also quickly deteriorates.
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Figure 3.2: MMumps - Effect on the number of nonzero entries in Ãτ and its factors when τ is
varied.

3.2.4 Numerical experiments

In Table 3.5 we depict the number of matrix-vector products observed with the MFrob and
MMumps preconditioners. Both full-GMRES and restarted GMRES are considered in these ex-
periments. For the case of full-GMRES, the preconditioner MMumps reduces the number of
matrix-vector products by 20% on average for the smaller sizes of each geometry. The gain tends
to decrease as the size of the problem increases. The exception is for the Aircraft where we obtain
a reduction of 50% whatever the size. For the case of restarted GMRES, the reduction is larger on
the smaller problems (until 30%) but again shrinks when the problem becomes larger. The Aircraft
case remains an exception with a reduction of around 75% on the first example; convergence is
achieved on the second example with MMumps while it is not observed with MFrob .

Moving from one level to two level neighbours does not introduce a significant reduction in
the number of iterations as illustrated in Table 3.6. This reduction is not significant enough to
balance the large extra cost in memory. The idea of using Ãτ instead of Ã to reduce the memory
constraint leads to very poor preconditioners. The behaviour of this approach is illustrated in
Figure 3.3. We see that the number of full-GMRES iterations using Ãτ quickly deteriorates when
entries are discarded.

The main drawback of the MMumps approach is the memory required by the factorization
which becomes prohibitive for very large computations. For this reason we do not further consider
this preconditioning approach in the rest of the manuscript. We will rather focus on techniques
that exploit MFrob in various ways to design robust preconditioners and numerical schemes.
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Aircraft
full-GMRES GMRES(120)

Size MFrob MMumps MFrob MMumps

94 704 746 367 1 956 507

213 084 973(16) 508(16) +2000(16) 951(16)

Almond
full-GMRES GMRES(120)

Size MFrob MMumps MFrob MMumps

104 793 234 202 253 215

419 172 413(20) 377(20) 571(20) 464(20)

Cetaf
full-GMRES GMRES(120)

Size MFrob MMumps MFrob MMumps

86 256 656 542 1 546 1 080
134 775 618 517 1 125 852
264 156 710 590 1 373 1 003

Cobra
full-GMRES GMRES(120)

Size MFrob MMumps MFrob MMumps

60 695 369 286 516 341
179 460 353 315 406 355

Table 3.5: Number of matrix-vector products using MFrob and MMumps preconditioners. All
these results are obtained on 8 processors except those marked with (k) , that were run on k
processors.

one level two level
Aircraft 23 676 160 120

Cobra 60 695 286 272
Cetaf 86 256 542 464

Table 3.6: Number of full-GMRES iterations using MMumps based on one and two levels of

neighbours to construct Ã .

3.3 Stationary scheme as preconditioner

3.3.1 Governing ideas and properties

Any preconditioner can be used to design a stationary iterative scheme and reciprocally, any
stationary iterative scheme can lead to the definition of a preconditioner. In this section we
exploit this close relationship between preconditioners and stationary iterative schemes to design
a new preconditioner M . This new preconditioner will eventually be based on MFrob for our
experiments in electromagnetics.

Let us consider the stationary scheme based on M that is given by:

x(j) = x(j−1) + ωM(b−Ax(j−1))

= (I − ωMA)x(j−1) + ωMb, (3.5)

where ω is a relaxation parameter that must be set such that the spectral radius ρ(I − ωMA)
is less than 1 to ensure the convergence of the scheme for any choice of x(0) . If e(j) = x(j) − x∗
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Figure 3.3: Sensitivity of the threshold τ on the degradation of the number of full-GMRES
iterations. The “ratio” is the number of iterations using Ãτ divided by the number of iterations
using Ã to build the preconditioner MMumps .

denotes the error associated with the jth iterate x(j) , the error equation associated with (3.5) is:

e(j) = (I − ωMA)e(j−1). (3.6)

Let us now consider the stationary scheme where each iteration comprises µ steps of the
scheme (3.5). The error equation associated with this new scheme can be written:

ẽ(j) = (I − ωMA)µẽ(j−1),

where ẽ(j) = e(j−µ) . This latter equation can be written in the general form similar to Equa-
tion (3.6) which gives:

ẽ(j) = (I −MIter(µ)A)ẽ(j−1) = (I − ωMA)µẽ(j−1),

where MIter(µ) = (I − (I − ωMA)µ)A−1 . The matrix MIter(µ) can also be used as a precondi-
tioner for a Krylov method. The spectrum of the preconditioned matrix is given by the following
proposition.

Proposition 3.3.1 Let MIter(µ) be the operator (I − (I − ωMA)µ)A−1 . Let {λi}i∈1,..,n be the
eigenvalues of MA (or AM ). The eigenvalues of the matrix MIter(µ)A (or AMIter(µ) ) are:

ηi = 1 − (1 − ωλi)
µ.

Proof

This is a direct consequence of the property of the eigenvalues of polynomials of matrices. Let
p(x) be a polynomial. If λ is an eigenvalue of the matrix B , p(λ) is an eigenvalue of the matrix
p(B) .

�

We focus our attention on the eigenvalue transformation produced by the MIter(µ) precondi-
tioner. The parameter ω scales the eigenvalues of MA . For symmetric positive definite (SPD)
matrices where all the eigenvalues are real positive, the function f(y) = 1 − (1 − y)µ gives the
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transformation of the eigenvalues of the preconditioned matrix MIter(µ)A (that are also those
of AMIter(µ) ). We plot in Figure 3.4 the function f(λ) when all the eigenvalues λ are strictly
positive. For µ odd, the preconditioned matrix remains similar to a SPD matrix for any choice
of ω . For µ even, this is no longer the case. Choosing ω so that 0 < ω < 2

|λmax|
, forces all the

eigenvalues to stay between 0 and 2 and then the preconditioned matrix remains similar to a SPD
matrix. In the neighbourhood of zero, the smallest eigenvalues are moved away from the origin.
The neighbourhood of one tends to remain unchanged. For µ even, the relaxation parameter
prevents some eigenvalues in the neighbourhood of two becoming negative or too close to zero. By
taking for example: ω = 3

2 |λmax|−1 , we restrict the function to its most contracting part ]0; 3
2 ] .

Large values of µ result in enlarging the interval around one where the eigenvalues are moved very
close to one. An extension to the complex nonsymmetric case is possible but the transformation
is no longer simple to depict.

All the eigenvalues lying in the open disk of radius one centered in (1,0) are contracted towards
(1,0), those out of this disk are moved away from (1,0).

The algorithm for the construction of MIter(µ) is displayed in Algorithm 5, which of course does
not require access to A−1 . The algorithm takes as input the residual r we want to precondition,
and returns as output the preconditioned vector z after µ steps of a stationary scheme involving
M .
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Figure 3.4: Shape of the polynomial that governs the eigenvalue distribution of MIter(µ) .

Algorithm 5 Stationary scheme as preconditioner: z = MIter(µ)r .

/* MIter(µ) is implicitly defined by µ steps of a stationary scheme */

1: /* Initialization */
z(0) = 0;

2: /* Perform µ steps of the stationary scheme */
3: for ` = 1, · · · , µ do

4: z(`) = z(`−1) + ωM(r −Az(`−1));
5: end for

6: z = z(µ);

3.3.2 Numerical experiments

We investigate the numerical behaviour of MIter(µ) in the electromagnetic application. In that
framework, we use an accurate FMM calculation for the matrix-vector product required by GMRES
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and a less accurate, cheaper to compute, FMM calculation for the matrix-vector product involved
in the preconditioning operation. On average one accurate FMM takes from 1.5 to 2 times more
than a less accurate FMM. This behaviour can be observed in Table 3.7 where we list the set of
test examples we have considered.

Aircraft
Size Inner FMM Outer FMM

94 704 3.5 4.8
213 084 6.9 11.8
591 900 17.4 30.2

Almond
Size Inner FMM Outer FMM

104 793 1.8 3.0
419 172 6.2 11.2
943 137 14.3 25.5

Cetaf
Size Inner FMM Outer FMM

86 256 1.9 3.7
134 775 3.2 5.2
264 159 5.6 11.4
539 100 11.5 19.3

Cobra
Size Inner FMM Outer FMM

60 695 1.1 2.0
179 460 3.2 5.6

Table 3.7: Average elapsed time in seconds observed on 8 processors for a matrix-vector product
using either an accurate (Outer) or a fast (Inner) FMM.

For the numerical experiments, the relaxation parameter ω in Algorithm 5 is set to 3
2 |λmax|−1 ,

where |λmax| is estimated as the Ritz value of largest magnitude obtained from a few steps of
GMRES performed in a preprocessing phase.

In Figure 4.8, we plot the spectrum of AMIter(1) , AMIter(2) and AMIter(3) for the Cetaf
example of size 5 391, with M = MFrob . As can be expected, the contraction of the neighbourhood
of one to one is stronger as µ increases. The size of the cluster centered at one is much smaller
for µ = 3 than for µ = 1 . The positive part of the neighbourhood of zero is attracted towards
one, and the negative part tends to move away in the left plane. For the numerical experiments,
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(c) µ = 3

Figure 3.5: Spectrum of AMIter(µ) for different values of µ on the Cetaf 5391.
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we consider only two values for µ : µ = 2 and µ = 3 . The case µ = 1 reduces to MFrob scaled
by ω and is consequently not interesting. In Table 3.8 we report on the elapsed time and the
number of accurate FMM calculations (i.e. number of accurate matrix-vector products ) required
to solve the various linear systems using GMRES(120) for the Cetaf and the Aircraft problems and
GMRES(60) for the Cobra and Almond problems. We consider MFrob , MIter(2) and MIter(3) on
the four geometries varying their size. The MIter(2) preconditioner requires 1.8 to 2.8 times less
accurate matrix-vector products than MFrob , except for the largest Almond case where a factor
of 4.3 is obtained. Moreover, convergence can be achieved on the Aircraft of size 213 084 and the
Almond of size 419 172 with MIter(2) , whereas it is not the case with MFrob .

Increasing the value of µ to 3 enables us to reduce the number of accurate matrix-vector
products again. We obtain a gain ranging from 1.5 to 1.9 using MIter(3) in comparison with
MIter(2) . The gain in elapsed time is less significant because applying MIter(µ) requires µ extra
less accurate FMM calculations. The observed ratio in elapsed time between MFrob and MIter(2)

varies between 1.1 and 1.5. The gains in time introduced by MIter(3) range from 1.1 to 1.7
compared to MFrob . The preconditioner MIter(3) outperforms MIter(2) both in the number of
accurate FMM calculations and in the solution time. Using a larger value for µ would probably
decrease the number of accurate FMM calculations, but the cost per iteration would increase so
that the overall elapsed time will not reduce much. Even though we do not report any numerical
experiments to assess this claim we believe that large values of µ might be an alternative to MFrob

when this latter preconditioner does not enable convergence.

3.4 Embedded solution scheme

For the sake of comparison with the results of the previous section, we briefly summarize below
some of the results presented in [20]. In [20], the authors describe an embedded iteration scheme for
the solution of large electromagnetic problems using an FMM approximation for the matrix-vector
products. The idea consists in using for each outer iteration a variable preconditioner defined by
a few steps of an inner Krylov method. The efficiency of such an embedded scheme relies on two
main factors: the inner solver has to be preconditioned so that the residual in the inner iterations
can be significantly reduced in a few steps, and the matrix-vector product within the inner and
the outer solvers can be carried out with a different accuracy and thus a different computational
cost. An accurate FMM is implemented in the outer solver because it governs the final accuracy
of the computed solution. A less accurate FMM is used in the inner solver as it is a precondi-
tioner for the outer scheme. The outer solver is the Flexible GMRES algorithm [32], denoted by
FGMRES(m), and the inner solver is p iterations of preconditioned full-GMRES (that can also
be viewed as one complete restart of GMRES(p)). The preconditioner for the inner solver is the
MFrob preconditioner. For the same restart value m , the storage requirement for the FGMRES
algorithm is twice that for the standard GMRES algorithm, because it also stores all the variable
preconditioned vectors obtained from the inner solver (see Section 2.3). The authors compare
the FGMRES(m)/GMRES(p) approach with the GMRES(2*m+p) approach in order to use the
same amount of memory. On medium cases (until 200 000 unknowns), FGMRES(m)/GMRES(p)
already gives better performance in terms of elapsed time than GMRES(2*m+p). In Table 3.9 we
report the results of [20] on the largest problems where FGMRES(30)/GMRES(60) is compared
with GMRES(120). For the embedded scheme we report on the number of outer steps. The corre-
sponding cumulated number of inner matrix-vector products are displayed after the symbol “+” in
the column entitled “Mat.V”. It can be seen that the combination FGMRES/GMRES with MFrob

leads to a remarkably robust numerical scheme. The increase in the number of outer matrix-vector
products is fairly modest except on the largest aircraft test case. Thanks to this inner-outer scheme,
convergence can be achieved on challenging problems where classical restarted GMRES does not
converge and where full GMRES exceeds the memory of the computer. This scheme is currently
the default in the AS ELFIP code and we notice that some of the results presented in Table 3.8
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Aircraft
GMRES(120)

Size MFrob MIter(2) MIter(3)

# Mat.V Time # Mat.V Time # Mat.V Time
94 704 1956 3h 13mn 692 2h 15 430 2h

213 084 +2000 > 7h 56mn 1150 8h 20 609 5h 40
591 900 +2000 > 1d 57mn +2000 > 2d +2000 > 2d

Almond
GMRES(60)

Size MFrob MIter(2) MIter(3)

# Mat.V Time # Mat.V Time # Mat.V Time
104 793 302 19mn 157 17mn 105 15mn
419 172 +2000 > 10h 348 2h 204 1h 45
943 137 1633 6h 36mn(16) 377 6h 225 4h 45

Cetaf
GMRES(120)

Size MFrob MIter(2) MIter(3)

# Mat.V Time # Mat.V Time # Mat.V Time
86 256 1546 1h 43mn 628 1h 15 392 1h

134 775 1125 1h 55mn 494 1h 30 330 1h 20
264 156 1313 4h 46mn 572 3h 30 363 3h
531 900 1717 14h 08mn 708 10h 449 9h

Cobra
GMRES(60)

Size MFrob MIter(2) MIter(3)

# Mat.V Time # Mat.V Time # Mat.V Time
60 695 708 29mn 322 21mn 221 19mn

179 460 433 48mn 237 46mn 171 45mn

Table 3.8: Number of accurate matrix-vector products and elapsed time required to converge,
using MFrob , MIter(2) and MIter(3) preconditioners with the restarted GMRES method. The

tests were run on 8 processors of the Compaq machine, except those marked with (k) , that were
run on k processors.

compare favourably with those presented in Table 3.9.

3.5 Conclusions

In this first part, we have presented the scattering problem arising from electromagnetism calcu-
lations. The fast multipole method allows us to consider very large problems using approximate
matrix-vector products while reducing the memory requirement. The Chapter 2 describes many
variants of the GMRES method, which turn out to be effective when they are combined with
the Frobenius-norm minimization preconditioner MFrob . But the numerical efficiency of MFrob

decreases as the size of the problem increases. Playing on the parameters that govern the construc-
tion of MFrob to improve it often results in strongly increasing the cost of applying it without a
significant effect on the number of iterations. Different techniques involving MFrob are success-
fully investigated to improve its robustness. In the next part, we explore another strategy based
on a spectral update of MFrob , which could be used to complement these existing techniques.
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Aircraft
GMRES(120) FGMRES(30)/GMRES(60)

# Mat.V Time # Mat.V Time
94 704 1956 3h 13mn 27+1560 2h 14mn

213 084 +2000 > 7h 56mn 34+1920 5h
591 900 +2000 > 1d 57mn 57+3300 1d 9h 45mn

Almond
GMRES(60) FGMRES(15)/GMRES(30)

# Mat.V Time # Mat.V Time
104 793 302 19mn 11+300 14mn
419 172 +2000 > 10h 20+540 1h 24mn

943 137 1633 6h 36mn(16) 22+600 3h 32mn

Cetaf
GMRES(120) FGMRES(30)/GMRES(60)

# Mat.V Time # Mat.V Time
86 256 1546 1h 43mn 17+ 960 55mn

134 775 1125 1h 55mn 15+ 840 1h 19mn
264 156 1373 4h 46mn 17+ 960 2h 22mn
531 900 1717 14h 8mn 19+1080 6h

Cobra
GMRES(60) FGMRES(15)/GMRES(30)

# Mat.V Time # Mat.V Time
60 695 708 29mn 24+660 18mn

179 460 433 48mn 20+540 42mn

Table 3.9: Number of accurate matrix-vector products and elapsed time required to converge,
using MFrob with the restarted GMRES method and MFrob with the inner GMRES solver of the
restarted Flexible-GMRES method. The tests were run on 8 processors of the Compaq machine,
except those marked with (k) , that were run on k processors.
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Chapter 4

Preconditioners based on a

spectral low-rank update

4.1 Motivation

It is well known that the convergence of Krylov methods for solving the linear system Ax = b
depends to a large degree on the eigenvalue distribution; there are exceptions as the right-hand side
might also play an important role and, even with a good eigenvalue distribution, the convergence
can be poor [5, 42]. Additionally, quite frequently there are small eigenvalues that adversely affect
the convergence. In the symmetric positive definite (SPD) case, this can be illustrated by the
bound on the rate of convergence of the Conjugate Gradient method (CG) given by [40] viz.

||e(k)||A ≤ 2 ·
(

√

κ(A) − 1
√

κ(A) + 1

)k

||e(0)||A,

where e(k) = x∗ − x(k) denotes the error associated with the iterate at step k and:

κ(A) =
λmax

λmin
,

denotes the condition number. From this bound, it can be seen that increasing the size of the small-
est eigenvalues might improve the convergence rate of CG. Consequently if the smallest eigenvalues
of A could be somehow “removed”, the convergence of CG might be improved [50, 59, 60, 66]. Sim-
ilar arguments exist for unsymmetric systems to mitigate the bad effect of the smallest eigenvalues
on the rate of convergence of the unsymmetric Krylov solver [7, 28, 29, 61]. The main argument
is that the Krylov methods build a polynomial expansion that should be equal to one when the
argument is zero and whose roots are the eigenvalues. To get fast convergence it is necessary to
find a low order polynomial with these properties (for example, strategies have been developed to
improve the convergence of GMRES [76]). Clearly the presence of eigenvalues close to the origin
makes this difficult.

For GMRES there are essentially two different approaches for exploiting information related
to the smallest eigenvalues, that consist either in modifying the Krylov solver to derive a variant
of GMRES or in using this information to design preconditioners. The first idea is to compute a
few, k say, approximate eigenvectors of A corresponding to the k smallest eigenvalues in mag-
nitude, and augment the Krylov subspace with those directions. At each restart, let u1, u2, ..., uk

be approximate eigenvectors corresponding to the approximate eigenvalues of A closest to the
origin. The updated solution of the linear system in the next restart of GMRES is extracted from
Span{r0, Ar0, A2r0, A

3r0, ..., A
m−k−1r0, u1, u2, ..., uk} . This approach is referred to as the aug-

mented subspace approach (see [15, 61, 63, 64, 73]). The standard implementation of the restarted
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GMRES algorithm is based on the Arnoldi process, and spectral information on A might be recov-
ered during the iterations. We notice that the GMRES-DR method described in Section 2.2 belongs
to this class of techniques. The second idea also exploits spectral information gathered during the
Arnoldi process to determine an approximation of an invariant subspace of A associated with the
eigenvalues nearest the origin, but it uses this information to construct a preconditioner or to adapt
an existing one. The idea of using exact invariant subspaces to improve the eigenvalue distribu-
tion was proposed in [71]. Information from the invariant subspace associated with the smallest
eigenvalues and its orthogonal complement are used to construct an adaptive preconditioner in the
approach proposed in [7]. This information can be obtained from the Arnoldi decomposition of a
matrix A of size n that has the form

AQm = QmHm + hm+1,mqm+1e
T
m.

Let the matrix Qk ∈ Cn×k consists of the first k columns q1, q2, ..., qk of Qm , and let the
columns of the orthogonal matrix Pn−k span the orthogonal complement of Span{q1, q2, ..., qk} .
As PH

n−kPn−k = In−k , the columns of the matrix [Qk Pn−k ] form an orthogonal basis of C
n .

In [7] the inverse of the matrix

M = QkHkQ
H
k + Pn−kP

H
n−k

is used as a preconditioner. It can be expressed as:

M−1 = QkH
−1
k QH

k + Pn−kP
H
n−k .

At each restart, the preconditioner is updated by extracting new eigenvalues which are the smallest
in magnitude as well as their associated eigenvectors. The algorithm proposed uses the recursion
formulae of the implicitly restarted Arnoldi (IRA) method described in [83], and the determination
of the preconditioner does not require the evaluation of any matrix-vector products with the matrix
A in addition to those needed for the Arnoldi process. Another similar adaptive procedure to
determine a preconditioner during GMRES iterations was introduced earlier in [29]. It is based on
the same idea of estimating an invariant subspace corresponding to the smallest eigenvalues. The
preconditioner is based on a deflation technique such that the linear system is solved exactly in an
invariant subspace of dimension k corresponding to the k smallest eigenvalues of A .

Most of these schemes are combined with the GMRES procedure as they derive information
directly from its internal Arnoldi process. In this part, we consider an additional explicit eigen-
computation that is used to update the selected preconditioner. This makes the preconditioner
independent of the Krylov solver used for the actual solution of the linear system. This extra cost
can be overcome if the same linear system has to be solved for several right-hand sides, because
the number of Krylov iterations can be significantly reduced. Such a situation exists for instance
in radar cross section calculations in electromagnetism and is further discussed in Section 4.3.3.

In this chapter we consider two different approaches to exploit this spectral information to
design a preconditioner. These techniques are inspired by schemes developed for the solution
of partial differential equations such as coarse space correction in domain decomposition tech-
niques [14, 81] or multigrid techniques [46]. The first preconditioning technique referred to as
spectral low-rank update was introduced in [18]. The additive two-level spectral preconditioner
was presented in [21]. This chapter is organized as follows. The main features of these two spectral
preconditioners are recalled in Section 4.2. In Section 4.3, we illustrate the effect of the size of the
spectral low-rank update on the convergence rate of the GMRES solver for one right-hand side.
We show the gain for a complete radar cross section on the geometries described in Section 1.3.2.
Since the spectral low-rank update compensates for some possible weaknesses of the approximate
inverse, we illustrate that a balance has to be found between the two components of the resulting
preconditioner. Then, we show that the gain induced by the low-rank update becomes larger as
the size of the restart in GMRES decreases. A possible combination of this preconditioner with
the Flexible-GMRES method is also investigated. Finally, since many right-hand sides have to be
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solved, we illustrate the benefit of using such a preconditioner in the context of seed GMRES. In
Section 4.3.8, we conclude with some experiments with the additive two-level approach.

4.2 Description of the spectral preconditioners

Many preconditioners are able to cluster most of the eigenvalues close to one but still leave a
few close to the origin. To move these eigenvalues close to one might be possible by tuning the
parameters that control these preconditioners; however this is often difficult and might lead to
very expensive preconditioners to setup and to apply. We refer to Table 4.8 in Section 4.3.4 for
an illustration of this fact in electromagnetism calculations. However, other alternatives can be
considered. In the next sections we describe two techniques that attempt to improve a prescribed
preconditioner using spectral information on the preconditioned matrix.

4.2.1 Spectral low-rank update preconditioner

In [18] a spectral low-rank update (SLRU) preconditioning technique that exploits the knowledge of
the eigenvectors associated with the smallest eigenvalues is described. The proposed precondition-
ers shift the corresponding eigenvalues close to one and numerical examples show the relevance of
this approach to speed up the convergence of Krylov solvers. Roughly speaking, the proposed tech-
nique consists in solving exactly the preconditioned system in the low dimensional space spanned
by its eigenvectors associated with the eigenvalues closest to the origin. This is then used to up-
date the preconditioned residual. Let us now briefly recall the formulation of this preconditioner as
well as its spectral properties. We notice that its formulation depends on the spectral information
available, that is whether the eigenvectors of AM or MA are available.

Let us consider the solution of the linear system

Ax = b, (4.1)

where A is a nonsingular matrix in Cn×n , and x and b are vectors of Cn . The linear system is
solved using a preconditioned Krylov solver and we denote by M the initial preconditioner. Let
{λ1, · · · , λn} be the set of eigenvalues of MA where the multiple eigenvalues are repeated. Let
the columns of U be the basis of a right invariant subspace of MA of dimension k . Suppose
without loss of generality that MAU = UJk where the eigenvalues of Jk are {λ1, · · · , λk}. Using
this information we can design a preconditioner for the linear system for which we can derive the
following result related to the spectrum of the preconditioned matrix.

Proposition 4.2.1 Let W be such that Ac = WHAU is nonsingular, Mc = UA−1
c WH and

MSLRU(MA,k) = M +Mc. (4.2)

Then the eigenvalues ηi of MSLRU(MA,k)A (or AMSLRU(MA,k) ) are

{

ηi = 1 + λi if i ≤ k,
ηi = λi if i > k.

Proof

Let U⊥ be an orthogonal complement of U . We have

MA
[

UU⊥
]

=
[

UU⊥
]

(

Jk E
0 F

)

,

where the eigenvalues of Jk are {λ1, · · · , λk} and those of F are {λk+1, · · · , λn} . Consequently
we have

(M +Mc)A
[

UU⊥
]

=
[

UU⊥
]

(

I + Jk E +A−1
c WHAU⊥

0 F

)

,
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which concludes the proof.
�

Notice that the result above is similar to [18, Prop. 2] but we no longer require the assumption
that MA is diagonalizable. This result indicates that the preconditioner MSLRU(MA,k) can be
used either as a right or as a left preconditioner. In both cases, the preconditioned matrix has the
same spectrum.

Similarly, assume that a basis V of a right invariant subspace of AM (and no longer of MA )
associated with {λ1, · · · , λk} is given. Then, MV is a basis of the right invariant subspace of
MA associated with the same eigenvalues and the following property holds, by setting U = MV
in Proposition 4.2.1.

Proposition 4.2.2 Let W be such that Ac = WHAMV is nonsingular, Mc = MV A−1
c WH

and MSLRU(AM,k) = M +Mc. The eigenvalues ηi of AMSLRU(AM,k) (or MSLRU(AM,k)A ) are

{

ηi = 1 + λi if i ≤ k,
ηi = λi if i > k.

We notice again that this result is similar to [18, Prop. 4] but it relies on weaker assumptions
because it does not require that AM is diagonalizable.

The matrix Mc is the projection of the preconditioned matrix on the space spanned by the
eigenvectors of the preconditioned matrix associated with the smallest eigenvalues in magnitude.
It is a rank-k correction of M , which ensures that the new preconditioned system no longer has
eigenvalues with magnitude smaller than |λk+1| . We made the assumption that the prescribed
preconditioner was such that the preconditioned matrix already has most of its eigenvalues close
to one, so that shifting the remaining smallest eigenvalues close to one makes sense. Similar
preconditioners can be derived if other shifts are preferred and/or other parts of the spectrum are
identified as responsible for slowing down the convergence. In practice, the columns of V are the
right eigenvectors associated with the k smallest eigenvalues of the preconditioned matrix and
W = V is often selected. Finally, for the sake of simplicity of the notation, MSLRU(AM,k) and
MSLRU(MA,k) will be denoted by MSLRU(k) in the rest of this manuscript. Whether it is built
from the eigenvector of MA or AM will be clear in the context.

4.2.2 Additive spectral two-level preconditioner

Other numerical techniques can be designed to take advantage of the spectral information avail-
able from the preconditioned matrix. From the philosophy of the two-grid approach solving elliptic
partial differential equations, we can view the prescribed preconditioner as a smoother. The eigen-
vectors associated with the “smooth” modes of the preconditioned system define the coarse space
of a two-grid scheme. In classical multigrid, the coarse space is not defined explicitly through
the knowledge of the eigencomponents but by the selection of a space that is expected to capture
them. In our framework the coarse space is defined by the columns of U which are a basis of
the invariant subspace of dimension k associated with the smallest eigenvalues in magnitude of
MA (i.e. the components of the error that are not efficiently damped by the smoother that cor-
responds to the slowly converging modes). In that context, the prolongation operator is P = U ,
the restriction operator is denoted by R = WH and the matrix involved in the coarse grid error
problem is defined by a Galerkin formula Ac = RAP . Multiplicative and additive two-grid tech-
niques are described in [21] that both enable us to define preconditioned systems that have the
same spectrum. The latter variant, the additive approach, has some computation advantages since
it exhibits very similar efficiency in reducing the number of iterations of the Krylov solvers [21].
We describe below the additive variant and establish its spectral properties using again weaker
assumptions than those considered in [21].
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In the additive algorithm, the coarse grid correction and the smoothing operation are decoupled.
Each process generates an approximation of the preconditioned residual vector in complementary
subspaces. The coarse grid correction computes only components in the space spanned by the
eigenvectors associated with the few selected small eigenvalues, while at the end of the smoothing
step the preconditioned residual is filtered so that only components in the complementary subspace
are retained. These two contributions are summed together for the solution update. A simple
additive two-level multigrid is illustrated in Algorithm 6. In this algorithm we follow [30] and
select the procedure advocated in [86]; we define the filtering operators using the grid transfer
operators as (I − UWH) . This operator is supposed to remove all the components in the U
directions. A natural choice is to select WH so that (I − UWH)U = 0 (i.e. WHU = I ).

Algorithm 6 Additive spectral preconditioner

1: set z1 = 0 ;
2: for ` = 1, . . . , iter do

3: Compute the residual: s` = r −Az` ;
4: /* Compute the high and low frequency corrections */
5: /* High frequency correction */
6: /* Damp all the frequencies of the error */

7: e`,0
1 = 0 ;

8: for j = 1, . . . , µ1 + µ2 do

9: e`,j
1 = e`,j−1

1 + ωM(s` −Ae`,j−1
1 ) ;

10: end for

11: /* Filter the high frequencies of the correction */

12: c`1 = (I − UWH)e`,µ
1 ;

13: Low frequency correction: c`2 = UA−1
c WHs` ;

14: Update the solution: z`+1 = z` + c`1 + c`2 ;
15: end for

16: z = ziter ;

Proposition 4.2.3 Let W be such that Ac = WHAU has full rank and satisfies (I−UWH)U =
0 . The preconditioning operation described in Algorithm 6 can be written in the form z = MAdd r .
In the case iter = 1 the preconditioner MAdd has the following expression:

MAdd = UA−1
c WH + (I − UWH)(I − (I − ωMA)µ)A−1. (4.3)

Proof

Hereby we remove the superscript ` in Algorithm 6, as we analyse the case iter = 1 . The
smoothing steps generate a sequence of vectors of the form ej

1 = (I−ωMA)ej−1
1 +ωMr , that can

be written eµ
1 = [I − (I −ωMA)µ]A−1r because e`,0

1 = 0 . Consequently, z1 = (UA−1
c WH + (I −

(I − ωMA)µ]A−1)r .

�

We notice that the term associated with the smoothing steps: (I−(I−ωMA)µ)A−1 is identical
to the iteration matrix that defines MIter(µ) in Section 3.3 (see Proposition 3.3.1).

Proposition 4.2.4 The preconditioner MAdd defined by Proposition 4.2.3 is such that the pre-
conditioned matrix MAddA ( or AMAdd ) has eigenvalues:

{

ηi = 1 if i ≤ k,
ηi = 1 − (1 − ωλi)

µ if i > k.
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Proof

Let U⊥ be an orthogonal complement of U . We have

MA
[

UU⊥
]

=
[

UU⊥
]

(

Jk E
0 F

)

,

where the eigenvalues of Jk are {λ1, · · · , λk} and those of F are {λk+1, · · · , λn} .
We first show that MAddAU = U . We have (I−ωMA)U = U(I−ωJk) , then (I−ωMA)µU =

U(I − ωJk)µ . Consequently we obtain:

MAddAU = UA−1
c WHAU + (I − UWH)U(I − ωJk)µ = U,

because (I − UWH)U = 0 and UA−1
c WHAU = U .

We now show that MAddAU
⊥ =

[

UU⊥
]

(

A−1
c WHAU⊥ −WHU⊥(I − (I − ωF )µ)

I − (I − ωF )µ

)

.

We first observe that (I − ωMA)U⊥ =
[

UU⊥
]

(

−ωE
(I − ωF )

)

, that generalizes to:

(I − ωMA)µU⊥ =
[

UU⊥
]

(

P(Jk, E, F )
(I − ωF )µ

)

,

where P is a polynomial.

It follows that (I − (I − ωMA)µ)U⊥ =
[

UU⊥
]

(

P(Jk, E, F )
I − (I − ωF )µ

)

, then:

(I − UWH)(I − (I − ωMA)µ)U⊥ = (I − UWH)
[

UU⊥
]

(

P(Jk, E, F )
I − (I − ωF )µ

)

=
[

0 (I − UWH)U⊥
]

(

P(Jk, E, F )
I − (I − ωF )µ

)

= (I − UWH)U⊥ (I − (I − ωF )µ)

= −UWHU⊥ (I − (I − ωF )µ) + U⊥ (I − (I − ωF )µ) .

Consequently, MAddAU
⊥ =

[

UU⊥
]

(

A−1
c WHAU⊥ −WHU⊥(I − (I − ωF )µ)

I − (I − ωF )µ

)

.

It follows that:

MAddA
[

UU⊥
]

=
[

UU⊥
]

(

I A−1
c WHAU⊥ −WHU⊥(I − (I − ωF )µ)

0 I − (I − ωF )µ

)

,

which completes the proof.

�

For the choice of W , we use W = QR−H , where V = QR , to ensure that WHV = I .
The governing ideas that led to the definition of MSLRU and MAdd are quite different even

though they exploit the same ingredients. In MSLRU , we project the preconditioned matrix on
U and use the solution in this low dimensional space to update the preconditioner. In MAdd , we
project the original matrix A on the space spanned by U and solve the error equation in that
low dimensional space. The update is then performed so that it does not mix with the correction
computed by the smoothing iterations. This latter technique is very close to the spirit of classical
two-grid methods for partial differential equations.

For µ = 1 , MAdd is fairly similar to MSLRU , the difference is that MAdd splits the correction
so that the coarse space part component does not mix with the component that comes from the
prescribed preconditioner M . The result is that the k smallest eigenvalues are moved exactly to
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one with MAdd while they are shifted by one with MSLRU . This observation assumes knowledge
of the exact right eigenvectors. In practice, because only the computed eigenvectors are available we
can expect that the two preconditioners will have very similar numerical behaviour. For µ > 1 ,
we expect that MAdd outperforms MSLRU as MIter(µ) outperforms MFrob as illustrated in
Section 3.3.

4.2.3 Some computational considerations

In this section, we investigate the computational cost in terms of floating-point operations as well
as in extra memory requirements associated with the two preconditioners MSLRU and MAdd .
In Table 4.1 we summarize the main numerical kernels involved in the spectral preconditioners
as well as their numerical complexity in floating-point operations. These numerical kernels are
involved either in the setup phase to construct the preconditioners or in the iterative process at
each step of the Krylov method. We assume that A and M are n × n matrices, V and W
are n × k matrices and z is a vector of size n . We denote by nnz(A) (resp. nnz(M) ) the
number of nonzero entries in A (resp. M ). In that table, because k � n , we do not consider
the computation that has a complexity which is polynomial in k like the LU factorization of Ac

which is 2
3k

3 .

Basic kernel # Flop
Mz 2nnz(M)− n

Setup phase # Flop
WHAMV 2k (nnz(A) + nnz(M) + n(k − 1))
WHAV k (2nnz(A) + n(2k − 1))
V = QR 2nk(k − 3) + 4n

Basic kernel in MAdd # Flop
1. z = 0
2. for j = 1, . . . , µ do

3. z = z + ωM(b−Az)
4. end for

(µ− 1) (2nnz(A) + 2nnz(M) + n) + 2nnz(M)

(I − V WH)z 4kn
V A−1

c WHz (4k − 1)n

Preconditioner # Flop
MAddz 8kn+ (µ− 1) (2nnz(A) + 2nnz(M) + n) + 2nnz(M)
MSLRU(AM)z 2nnz(M) + (4k − 1)n
MSLRU(MA)z 2nnz(M) + (4k − 1)n

Table 4.1: Numerical kernels and associated floating-point cost.

We see that the setup of the coarse space operator involved in MSLRU(AM) (i.e. WHAMV )
is more expensive than the one of MSLRU(MA) (i.e. WHAV ), thanks to a product by M . The
setup of MAdd is more expensive than that of MSLRU(MA) because it requires an extra QR
factorization of V . During the iterations, both MSLRU(AM) and MSLRU(MA) have the same
application cost. MAdd is more sophisticated than MSLRU , and is also potentially much more
expensive. To outperform MSLRU , MAdd should significantly speed up the convergence.

From a memory point of view MAdd is also more demanding than MSLRU . This latter re-
quires the storage of k vectors of dimension n , the former requires slightly more than twice this
amount. Both V and WH (in its implicit form QR−H for MAdd ) have to be stored. Similarly
to the floating-point complexity calculation, we assume that the storage required to store the LU
factors of Ac and the R factor of the QR factorization of V involved in MAdd are negligible
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because they are of size O(k2) .

4.3 Application to electromagnetic calculations

4.3.1 Presentation of an eigensolver: ARPACK

The spectral information on AMFrob is computed by an external eigensolver ARPACK [58] in a
preprocessing phase. The ARPACK software is a collection of Fortran77 subroutines designed to
solve large scale symmetric, nonsymmetric, and generalized eigenvalue problems from significant
application areas. The package is designed to compute a few eigenpairs with user specified features
for the selection of the eigenvalues such as the largest real part or the largest magnitude, or the
smallest real part or the smallest magnitude, etc. This software is based upon an algorithmic variant
of the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM) [57]. A matrix
factorization is not required, the matrix-vector product can be defined via a reverse communication
mechanism.

The numerical accuracy of the computed eigenpairs is user specified. The backward error
associated with a normwise approximate eigenpair (λ, u) of a matrix A [84] is defined by:

min
∆A

{ξ > 0 : ‖∆A‖ ≤ ξ‖A‖ : (A+ ∆A)u = λu} =
‖Au− λu‖

‖A‖ . (4.4)

Let Hj be the Hessenberg matrix from an Arnoldi procedure and y an eigenvector of Hj asso-
ciated with a smallest eigenvalue λ . By applying the eigenvector y in the Arnoldi relationship,
we obtain:

AQjy = QjHjy + hj+1,jqj+1(e
T
j y), i.e :

AQjy = λQjy + hj+1,jqj+1(e
T
j y), i.e :

Au− λu = (eT
k y)hj+1,jqj+1,

where u = Qjy . The quantity ‖Au − λu‖ can then be estimated by |eT
k y|.|hj+1,j | . Since

|λ| ≤ ‖Hj‖ ≤ ‖A‖ , an upper bound for the backward error associated with a normwise approximate
eigenpair (λ, u) can be deduced:

‖Au− λu‖
‖A‖ ≤ |eT

k y|.|hj+1,j |
|λ| .

The IRAM procedure from ARPACK stops at the end of the first restart that offers k Ritz value
approximations (λ,Qmy) satisfying:

|eT
k y|.|hj+1,j | ≤ tol.|λ|, (4.5)

where tol is a user-defined tolerance [58, p 70].

ARPACK is called in sequential mode, the use of a parallel version of ARPACK (PARPACK)
being impossible due to the complexity of the out-of-core configuration of the AS ELFIP code
used to perform the matrix-vector product in the reverse communication. The cost of a parallel
use of ARPACK in terms of elapsed time and number of matrix-vector products is then estimated
to be taken in account when we assess performance. ARPACK uses the routine ZNAUPD that
implements the IRAM procedure. Once the desired Ritz values have converged, the subroutine
ZNEUPD computes associated approximate Ritz vectors. These routines work in forward mode;
that is they only work on A (i.e. no invert).
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4.3.2 Efficiency of the preconditioner with respect to the rank of the

update

In Table 4.2 we indicate, for each geometry described in Section 1.3.2, the number of unknowns
we consider that are associated with each linear system, the density of MFrob , the angular section
considered (given in spherical coordinates, see Figure 1.5) as well as “# RHS”, the number of
right-hand sides to be solved for the complete monostatic calculation. This table defines the four
test cases we consider in this chapter. The inital guess is set to the zero vector. In Figure 4.1, we

Geometry Size Density θ ϕ # RHS
Cetaf 5 391 3.3 % (-90) - 90 0 181
Aircraft 23 676 0.94 % 90 0 - 180 181
Cobra 60 695 0.24 % 0 - 90 0 91
Almond 104 793 0.19 % 90 0 - 180 181

Table 4.2: Angular section of interest for each geometry; the sampling step is one degree.

use the symbol “x” to plot the spectrum of AMFrob , the matrix preconditioned with the Frobenius
preconditioner, for the Cetaf case. As can be observed, MFrob succeeds in clustering most of the
eigenvalues around (1.0, 0.0) . Such a distribution is highly desirable to get fast convergence of
Krylov solvers. Nevertheless the remaining eigenvalues nearest to zero can potentially slow down
the convergence. Using the symbol “o” we plot, in Figure 4.1, the spectrum of the matrix pre-
conditioned with MSLRU(20) . We observe that the 20 smallest eigenvalues of the matrix AMFrob

have been shifted close to one, in agreement with Proposition 4.2.2. Consequently, we expect the
Krylov solver to perform better with MSLRU(20) than with MFrob . In Figure 4.2, we plot the
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Figure 4.1: Spectrum of AMFrob denoted by x and AMSLRU(20) depicted with o on the Cetaf
test problem.

convergence histories obtained by varying the size of the low rank update. It can be observed that
the larger the rank, the faster the convergence of full GMRES. However, in going from 15 to 20
the gain is negligible and going beyond 20 does not give further improvements.

As we mentioned earlier, we have used this technique for monostatic calculations. Because
many linear systems with the same coefficient matrix but different right-hand sides have to be
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Figure 4.2: Convergence history when varying the rank of the update on the Cetaf example, using
full GMRES.

solved, some are easier to solve than others. In Figure 4.3, we illustrate an important feature
of the low rank update by showing the number of full GMRES iterations for convergence for a
difficult right–hand side and for an easy one. It can be observed that, when the number of shifted
eigenvalues increases, the number of iterations to reach convergence decreases. Furthermore, there
is not much difference between a difficult right–hand side and an easy one when the rank of the
update increases. Later in this chapter, we illustrate the advantage of this feature in the context
of restarted GMRES and seed GMRES.
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Figure 4.3: Number of full GMRES iterations when varying k in MSLRU(k) on the Cobra test
problem.
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4.3.3 Results on a complete monostatic calculation

The use of a preconditioner is often beneficial. However, its usefulness depends not only on its
effect on convergence but also its construction time and the time spent in applying it at each
step. In Table 4.3, we give the construction time for the FMM operator, for MFrob and for
MSLRU(k) . In our experiments, the eigenvalue calculation is performed in a preprocessing phase
using ARPACK, that represents the main part of the time required to setup MSLRU(k) . In that
table, we also display the average time spent in one FMM operation, one product by MFrob , and
one application of MSLRU(k) for a number of processors denoted by “# Proc”.

We expect to reduce the overall number of iterations, but each new iteration is more expensive.
One application of MSLRU(k) compared with one application of MFrob introduces around 4.k.n
additional flops, where k is the chosen number of eigenvalues and n the size of the problem.
On our test examples the extra cost per iteration in elapsed time ranges from 6% (Cobra case)
to 35% (Almond case), but it remains small in comparison to the FMM application times. In

Construction Time Application Time
Geometry # Proc k FMM MFrob MSLRU(k) FMM MFrob MSLRU(k)

Cetaf 8 20 13 s 25 s 45 s 0.21 s 0.03 s 0.04 s
Aircraft 32 20 27 s 51 s 19 mn 0.83 s 0.12 s 0.15 s
Cobra 32 15 36 s 73 s 28 mn 1.26 s 0.11 s 0.12 s
Almond 32 60 59 s 3 mn 2 h 1.91 s 0.14 s 0.19 s

Table 4.3: Average elapsed time per matrix-vector product.

Figure 4.4, we show the number of full GMRES iterations for each right-hand side using either
MFrob (solid line) or MSLRU(k) (dashed line). For each geometry, the value of k is given in the
third column. While without the spectral preconditioner, the numbers of iterations between one
right–hand side and another vary a lot, with the spectral preconditioner the number of iterations
per right–hand side is more similar and almost constant for some geometries. This behaviour was
already observed in Figure 4.3. Table 4.4 summarizes the cumulated number of matrix–vector

MFrob MSLRU(k)

Geometry # Proc # Mat.V Time # Mat.V Time
Cetaf 8 16 391 1 h 40 mn 5 349 47 mn

Aircraft 32 87 121 46 h 47 385 18h 40 mn
Cobra 32 29 777 21 h 16 921 8h 30 mn

Almond 32 34 375 25 h 30 mn 21 273 14h 40 mn

Table 4.4: Cost for a complete monostatic calculation.

products and the total elapsed solution time for a complete radar cross section calculation for each
geometry using full GMRES. For all geometries except the Cetaf, 181 linear systems are solved;
only 91 are considered for the Cetaf test problem. Depending on the geometry, the overall gain
ranges from a factor of 1.6 to 3 for both the CPU time and the total number of GMRES iterations.
It should be pointed out that this could be improved on some examples if more eigenvalues were
shifted. Our purpose in these experiments is to illustrate the potential of MSLRU(k) . We did
not try to find the best values of k for each geometry. For example, by shifting 10 more small
eigenvalues for the Cobra case, we move from a factor of 1.6 to a factor of 3.

The extra cost for computing the eigenspace during the preprocessing phase in terms of matrix–
vector products by AMFrob as well as the corresponding elapsed time is displayed in Table 4.5.
By fixing the ARPACK parameter tol defined in Equation (4.5) to 10−1 , the backward error of
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Figure 4.4: Number of full GMRES iterations with MFrob and MSLRU(k) for the different incident
angles for each geometry.

the eigenvectors after a construction of a Krylov space of size “# Mat.V” ranges from 10−7 to
10−6 , whatever the test case.

In that table, we also give the number of right-hand sides, # RHS, in the monostatic calcu-
lation for which the gain introduced by MSLRU(k) compensates for the cost of computing the
preconditioner. It can be seen that the preprocessing calculation is quickly amortized when a few
right-hand sides need to be solved.

Geometry # Proc # Mat.V Time # RHS
Cetaf 8 170 45 s 3

Aircraft 32 1 000 19 mn 6
Cobra 32 1 000 28 mn 6

Almond 32 2 200 2 h 32

Table 4.5: Cost of the eigencomputation preprocessing phase.
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4.3.4 Balancing the two components of the preconditioner

Although we save a significant number of iterations using MSLRU(k) , we might ask whether it
could be more effective to use a better MFrob , by allowing the preconditioner to have more
nonzero entries, combined with a migration of only some smallest eigenvalues, or a worse MFrob ,
but combined with a migration of many smallest eigenvalues. To deal with this, we first investigate
the effect of the quality of MFrob on the calculation time of the smallest eigenvalues of AMFrob .
In that respect, we vary the number of nonzeros per column leading to different densities of MFrob .
In Figure 4.5, we display the spectrum of AMFrob on the Cetaf example for various values of the
density. As we might expect, the denser MFrob is, the better the clustering around one and
the fewer eigenvalues close to zero; moreover these are better separated. A consequence for the
eigensolver is that the few well separated eigenvalues that are near zero for the largest density of
the preconditioner are more easily computed. When the density is relaxed, the eigenvalue cluster
close to zero becomes wider and the eigensolver has more difficulty in computing those near zero.
To illustrate this claim we show, in Table 4.6, the number of matrix–vector products and the
corresponding elapsed time required by ARPACK to find the eigenvectors associated with the
60 smallest eigenvalues as the density increases. As expected, we observe that the denser the
preconditioner, the easier it is for the eigensolver to find the smallest eigenvalues. A question
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Figure 4.5: Spectrum of AMFrob for various density of MFrob .

Density # Mat.V Time
0.7% 365 7 mn 57 s
3.3% 240 4 mn 41 s

15.7% 152 2 mn 52 s

Table 4.6: Number of matrix–vector products and elapsed time (one processor) required to compute
the 60 smallest eigenvalues of AMFrob for the Cetaf when the density of MFrob is varied.

that seems natural to raise is: how many eigenvalues should be shifted for these three densities
of MFrob to get convergence in the same number of full GMRES iterations ? On the Cetaf for a
difficult angle and a density equal to 3.3 %, full GMRES needs 98 iterations to converge. Using
MSLRU(20) GMRES needs 31 iterations to converge. The number 31 is taken as a reference value
to compare the performance with the three densities. Table 4.7 shows the cost for ARPACK to
compute the corresponding number of eigenvalues for each density and the total cost of computing
the preconditioner.

To obtain the same number of full GMRES iterations, we need to shift more and more eigen-
values as we decrease the density. On the other hand, the construction cost of MFrob with a low
density is cheaper than with a higher density. There is a trade-off to be found between a cheap
MFrob that requires shifting many eigenvalues that might be difficult to compute, and a more
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expensive MFrob where only a few eigenvalues need to be shifted to get a similar convergence
behaviour. As Table 4.7 shows, the medium density 3.3% offers the best trade-off among the three
densities considered. The preconditioner already works well and only a few eigenvalues need to be
shifted. In each case shown in Table 4.7, 31 iterations of preconditioned full GMRES are needed
for convergence. The symbol “k” is the number of eigenvalues computed by ARPACK. Let us il-

MFrob Construction Eigensolver
Density Time k Time Total

0.7% 41 s 54 7 mn 49 s 8 mn 30 s
3.3% 143 s 20 2 mn 41 s 5 mn 04 s

15.7% 1114 s 2 1 mn 04 s 19 mn 38 s

Table 4.7: Construction times when varying the MFrob density on the Cetaf test problem.

lustrate, on another example, the advantage of using MSLRU(k) rather than increasing the density
of MFrob . We consider now the Almond test problem, that is the biggest, using two densities for
MFrob . The targeted number of iterations of full GMRES is 157 that is obtained with a density
of 0.19% and by shifting 30 eigenvalues using MSLRU(30) . To get the same number of iterations
without shifting eigenvalues, we need to increase the density of MFrob to 1.76 %. In Table 4.8,
we show the computation cost for both preconditioners. It can be seen that the eigencalculation
in the preprocessing phase of MSLRU(30) combined with the low cost of its MFrob component is
significantly less expensive than the denser MFrob that exhibits the same convergence property.
We compare the application times for these two approaches and the time to obtain the solution.
The second approach is four times as expensive, needing 1.21 s per application as opposed to the
first with 0.38 s. The use of MFrob with a density of 0.19% in the first case would have cost 0.36
s; it means that MSLRU(30) yields an extra cost of only 0.02 s per application. Moreover, it gives
a smaller solution time and a much cheaper setup time. Setup time appears to be too dominant
with respect to solution time, but these results are obtained on just one angle. For solutions on
an angular section, we will pay this setup time only once.

Setup Solution
MFrob Eigensolver Total Application Time Total

Density Time k Time Time MFrob MSLRU(30) Time
0.19% 6 mn 30 3 h 3 h 06 mn - 0.38 s 8 mn 30 s
1.76% 5 h 40 mn 0 - 5 h 40 mn 1.21 s - 10 mn 48 s

Table 4.8: Comparison of a denser MFrob with a sparser MSLRU(30) on 8 processors on the
Almond test example to obtain 157 iterations with full GMRES.

4.3.5 Sensitivity of the restarted GMRES method

All the numerical experiments reported on so far have been obtained with full GMRES. In this
section we will investigate the effect of restarted GMRES on the efficiency of the preconditioners.
For each value m of the restart, we show in Table 4.9 the number of GMRES iterations of
MFrob and MSLRU(k) on an easy and a hard right-hand side. The illuminating direction (θ, φ)
corresponding to an easy right-hand side is set to (90o, 140o) for the Aircraft case, (−40o, 0o) for
the Cetaf case, (75o, 0o) for the Cobra case and (90o, 0o) for the Almond case. Concerning the
choice of a difficult right-hand side, (θ, φ) is fixed to (90o, 20o) for the Aircraft case, (65o, 0o) for
the Cetaf case, (25o, 0o) for the Cobra case and (90o, 40o) for the Almond case. The symbol “-”
means that convergence is not obtained within 5000 iterations. As can be seen, the smaller the
restart, the larger the improvement with MSLRU(k) . With MSLRU(20) on the Cetaf example, we
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see that GMRES converges quickly and that GMRES(10) behaves very similarly to GMRES(∞ ).
This observation is no longer true for the other geometries. It might depend on the number of
eigenvalues that are computed: the choice is the best for the Cetaf example but not for the other
geometries. The MSLRU(k) preconditioner allows us to use a smaller restart than usual; this might

Easy Case

m Cetaf Aircraft Cobra Almond
MFrob MSLRU(20) MFrob MSLRU(20) MFrob MSLRU(15) MFrob MSLRU(60)

10 271 30 - 639 514 378 492 95
30 128 27 - 439 280 196 149 67
50 100 27 - 390 264 188 118 68
∞ 74 27 421 242 222 172 109 63

Difficult Case

m Cetaf Aircraft Cobra Almond
MFrob MSLRU(20) MFrob MSLRU(20) MFrob MSLRU(15) MFrob MSLRU(60)

10 669 37 - 1200 2624 481 - 1497
30 275 31 - 688 1031 232 429 163
50 197 31 - 608 760 207 334 144
∞ 98 31 490 283 367 187 232 126

Table 4.9: Sensitivity of the restart parameter m on the number of iterations of the restarted
GMRES using MFrob and MISLRU(k) on the four geometries, both on an easy and a difficult
right-hand side. The tests were run on 8 processors of the Compaq machine.

be a significant asset on very large problems where using a large restart becomes a severe bottleneck
because of the prohibitive memory requirements. There are some problems where MFrob does not
converge, for instance on the Aircraft case with a restart between 10 and 50, or on the Almond
example with a restart of 10, while MSLRU(k) does converge in a reasonable number of iterations.
On that latter example, as we see in Figure 4.6, the convergence rate of GMRES increases with the
restart whatever the chosen preconditioner. Furthermore, the slope of the convergence history for
MSLRU(k) becomes quickly comparable to that of full GMRES, while for MFrob this phenomenon
takes more time to appear. Although not reported here, the same behaviour was observed on the
other geometries.

4.3.6 Results with the Flexible-GMRES method

In this section, we do not consider the multiple right-hand sides case as we intend just to illustrate a
possible effect of the spectral low rank update on the numerical behaviour of the Flexible-GMRES
method. The embedded scheme FGMRES(m)/GMRES(p) described in Section 3.4 is used, where
m is the size of the outer restart and p the number of the full inner iterations allowed. An accurate
matrix-vector product is used for each outer iteration and a fast matrix-vector product for each
inner iteration. We then need eigen information from the matrix AMFrob where A is defined by
the fast matrix-vector product. This eigen information is again computed using ARPACK.

We keep the same easy and difficult angles per geometry as those defined in Section 4.3.5.
Table 4.10 displays the number of accurate matrix-vector products of the outer system and the
corresponding elapsed time to solve an easy and a difficult angle, using MFrob or MSLRU to
precondition the inner system. In the column “# Mat.V”,“ x+y ” indicates x outer (i.e. accurate)
matrix-vector products and y is the cumulated number of inner (i.e. fast) matrix-vector products.
We keep the same number of eigenvectors per geometry for applying MSLRU as in the previous
section. That is, 20 for the Aircraft and the Almond case, and 15 for the Cobra case. With
MSLRU , the number of accurate matrix-vector products is reduced by a factor between 1.9 and
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Figure 4.6: Convergence history varying the restart for a “difficult” angle of the Almond test
problem.

2.4 on the difficult angle, and a factor between 1.2 and 2 for the easy angle. For the elapsed time
we observe the same trend but not exactly with the same ratio as we use two accuracies for the
matrix-vector product. The difference between easy and difficult angles tends to disappear with
the use of MSLRU . This observation has already been noticed in Figure 4.3 on the Cobra example
once enough eigenvalues have already been shifted.

Aircraft
Easy Case Difficult Case

FGMRES(30)/GMRES(60) FGMRES(30)/GMRES(60)
MFrob MSLRU(20) MFrob MSLRU(20)

# Mat.V Time # Mat.V Time # Mat.V Time # Mat.V Time
24+1380 40 mn 12+660 19 mn 29+1680 45 mn 12+660 19 mn

Almond
Easy Case Difficult Case

FGMRES(10)/GMRES(20) FGMRES(10)/GMRES(20)
MFrob MSLRU(20) MFrob MSLRU(20)

# Mat.V Time # Mat.V Time # Mat.V Time # Mat.V Time
8+140 9 mn 6+100 6 mn 17+300 19 mn 9+160 10 mn

Cobra
Easy Case Difficult Case

FGMRES(10)/GMRES(20) FGMRES(10)/GMRES(20)
MFrob MSLRU(20) MFrob MSLRU(20)

# Mat.V Time # Mat.V Time # Mat.V Time # Mat.V Time
16+280 11 mn 14+240 9 mn 32+580 22 mn 14+240 9 mn

Table 4.10: Number of accurate matrix-vector products and elapsed time required to converge,
using the restarted Flexible-GMRES method with MFrob and MSLRU(k) for the inner GMRES
solver, on an easy and a difficult right-hand side. The tests were run on 8 processors of the Compaq
machine.
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4.3.7 Complementarity of MSLRU(k) and the Seed-GMRES algorithm

As mentioned already for a complete monostatic calculation, several linear systems with the same
coefficient matrix but different right-hand sides have to be solved. In that framework, it is crucial
not only to use an efficient preconditioner but also a suitable Krylov solver. There are basically
two classes of techniques designed for this purpose. These are the seed techniques and the block
approaches [36, 67, 88]. In this section, we investigate the benefit of using MSLRU(k) in the context
of seed GMRES.

The seed GMRES algorithm is described in Section 2.4. In order to illustrate the advantage
of using MSLRU(k) in a multiple right-hand sides context, we consider eleven right–hand sides:
φ = 15o : 1o : 25o for θ = 90o , involved in the radar cross section calculation of the Aircraft test
problem. On these right–hand sides, seed GMRES combined with MFrob behaves rather poorly.
To illustrate this, we first compare the numerical behaviour of GMRES with three strategies for
defining the initial guess: first using the zero vector, second using the solution of the previous linear
system, and finally the initial guess computed by the seed technique. In Table 4.11, we display
the number of iterations for each right–hand side for the three initial guess strategies. In the case
of zero for the initial guess, the initial backward error ‖r0‖2/‖b‖2 = ‖b− Ax0‖2/‖b‖2 is equal to
one.

MFrob preconditioner
zero guess simple strat. seed GMRES

(θ, ϕ) # iter # iter ‖r0‖2/‖b‖2 # iter ‖r0‖2/‖b‖2

(90,15) 474 474 1 474 1
(90,16) 474 443 0.284 440 0.13
(90,17) 483 435 0.298 338 0.05
(90,18) 491 442 0.311 387 0.023
(90,19) 491 438 0.325 458 0.008
(90,20) 490 438 0.338 543 0.004
(90,21) 492 436 0.352 605 0.003
(90,22) 497 418 0.365 599 0.003
(90,23) 499 424 0.379 589 0.003
(90,24) 499 431 0.392 601 0.003
(90,25) 499 406 0.406 573 0.003

# iterations 5389 4785 5607
elapsed time (s) 4 h 50 mn 4 h 17 mn 8 h

Table 4.11: Number of iterations per right–hand side using three strategies for the initial guess on
the Aircraft example with the MFrob preconditioner on 8 processors.

In Table 4.11, we see that the seed GMRES method does a good job of decreasing the initial
residual norm; it is always by far the smallest. Unfortunately, starting from the seed initial guess
that is the closest (in the backward error sense) to the solution does not guarantee fast convergence.
That is, from that good initial guess, GMRES performs rather poorly. It performs only slightly
better than starting from zero and is outperformed by the approach that starts from the initial
guess provided by the simple strategy of using the solution to the previous system. In other words
and quite surprisingly, the approach that gives the smallest initial residual norm is not the method
that gives the smallest number of iterations.

We have observed this behaviour of the seed GMRES method on some other difficult problems.
Intuitively, it seems to us that an analogy exists between this behaviour and the observed stagnation
of the classical restarted GMRES method. In the two cases, an initial guess is extracted from a
Krylov space to generate a new Krylov space. As illustrated in the previous section, one possible
remedy for the restarted GMRES method is to replace MFrob by MSLRU(k) .
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In Table 4.12, we investigate this possibility. We keep the same strategies as in Table 4.11
but now use MSLRU(20) rather than MFrob . The initial guess computed by the seed GMRES
method becomes the strategy with the best performance. In Figure 4.7, for each right–hand side,
φ = 15o : 1o : 25o , we plot the convergence history of the seed GMRES method with the two
preconditioners. It can be seen that although the norm of the initial residuals are about the
same for the two preconditioners, the rate of convergence is significantly improved by MSLRU(20) .
The seed GMRES method provides a small initial residual and MSLRU(k) ensures a fast rate of
convergence of GMRES iterations: in a race starting close to the finish (seed strategy) and running
fast (MSLRU(k) preconditioner) this ensures we finish first!

MSLRU(20) preconditioner
zero guess simple strat. seed GMRES

(θ, ϕ) # iter # iter ‖r0‖2/‖b‖2 # iter ‖r0‖2/‖b‖2

(90,15) 280 280 1 280 1
(90,16) 275 198 0.284 201 0.14
(90,17) 275 188 0.298 145 0.052
(90,18) 276 190 0.311 167 0.025
(90,19) 280 198 0.325 165 0.009
(90,20) 283 205 0.338 171 0.006
(90,21) 284 208 0.352 171 0.005
(90,22) 286 212 0.365 170 0.005
(90,23) 289 214 0.379 172 0.005
(90,24) 291 218 0.392 176 0.005
(90,25) 292 219 0.406 171 0.005

# iterations 3111 2330 1989
elapsed time (s) 2 h 19 mn 1 h 44 mn 1 h 32 mn

Table 4.12: Number of iterations per right–hand side using three strategies for the initial guess on
the Aircraft example with the MSLRU(20) preconditioner on 8 processors.
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Figure 4.7: Convergence history of seed GMRES for the right-hand sides associated with φ = 15o :
1o : 25o using MFrob ( © , in dashed line) and MSLRU(20) (× , in solid line) on the Aircraft test
problem.
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4.3.8 Efficiency of the additive spectral two-level preconditioner

In this section, we investigate the numerical efficiency of the MAdd preconditioner. We use a
fast FMM calculation in the preconditioning operation during the smoothing iterations. The
preconditioner MAdd requires eigenvectors of the matrix MFrobA . We keep the same ARPACK
basis formed by the right eigenvectors of AMFrob with an accurate matrix-vector product, but we
multiply it by MFrob to obtain right eigenvectors of MFrobA . For these numerical experiments,
we setup ω such that:

ω =
3

2
|λmax(MFrobA)|−1

.

This seems to be a good choice overall. The value |λmax| is estimated by ARPACK during
the calculation of the eigenvectors in the preprocessing phase. We construct MAdd from a left
preconditioner but we apply it as a right preconditioner. In Figure 4.8, we plot the spectrum
of AMAdd on the Cetaf problem of size 5 391, varying the number µ of smoothing iterations
for a low frequency correction based on twenty eigenvectors of MFrobA . For the same value of
µ , the preconditioner MAdd applies the same transformation as the preconditioner MIter on all
eigenvalues except the twenty closest to zero. These latest eigenvalues are shifted to one thanks to
the low frequency correction implemented by MAdd .
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(c) µ = 3

Figure 4.8: Spectrum of AMAdd for different values of µ on the Cetaf 5391. All the low frequency
corrections are based on twenty eigenvectors of MFrobA .

In Table 4.13 we report on the number of accurate matrix-vector products and the elapsed
time obtained with full and restarted GMRES using the MFrob and the MAdd preconditioners
on the Cobra case of size 60 695 and on the Almond case of size 104 793. We consider a difficult
angle for both cases: (90o, 140o) for the Almond case and (25o, 0o) for the Cetaf case. For the
use of the preconditioner MAdd , we vary the size of the spectral correction and the number µ of
smoothing iterations. It can be seen that the use of MAdd is always beneficial both from a number
of iterations point of view but also from an execution time viewpoint. Using GMRES(10) on the
Cobra problem, we observe a reduction by a factor of 12 between the elapsed time obtained by
MFrob and the elapsed time obtained by MAdd with 3 smoothing iterations and 15 eigenvectors.
On the Almond problem, GMRES(10) preconditioned with MFrob does not converge, whereas a
combination with MAdd requires 6 mn to achieve convergence using 3 smoothing iterations and
50 eigenvectors.

From a numerical point of view, we observe on these examples that, the larger the size of the
correction, the better the preconditioner; and that the number of matrix-vector products decreases
when the number µ of smoothing iterations increases. Furthermore, the gain is larger if restarted
GMRES is considered than if full GMRES is used as the solver. With µ = 3 and 15 eigenvectors for
the Cobra case or 50 eigenvectors for the Almond case, GMRES(10) and full GMRES tend to have
the same performance in terms of number of matrix-vector products and elapsed time. We mention
that on large electromagnetic problems (of size larger than 0.5 million unknowns) the use of small
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restarts is recommended in order to save the heavy cost of reorthogonalization and to reduce the
final solution cost. The choice of a small restart is also dictated by memory constraints [20]. With
full GMRES, the number of matrix-vector products is significantly decreased but the total solution
cost is likely to only slightly decrease when the number of smoothing iterations is large because the
preconditioner is expensive to apply. The optimal selection of the size of the spectral correction
and the number of smoothing iterations remains an open question; the choice mainly depends on
the clustering properties of the initial preconditioner.

In terms of computational cost, the two transformations are complementary components that
have to be suitably combined. On the Cobra problem, whatever the chosen GMRES, using µ = 3
and 5 eigenvectors we obtain a better convergence rate but a similar computational time to using
µ = 1 with 15 eigenvectors. Enabling a reduction in the number of eigenvectors by using more
smoothing iterations is a desirable feature in the context where computing many eigenvalues can
become very expensive.

4.4 Conclusions

In this chapter, we have shown that the MSLRU(k) preconditioner based on the MFrob precon-
ditioner is effective for solving large linear systems arising in challenging real-life electromagnetics
applications. It is important to point out that, to be effective, the spectral low rank update should
be built on top of a good enough preconditioner that already succeeds in clustering most of the
eigenvalues close to a point far from the origin (one in our case). There are two main reasons
that motivate this observation. Firstly, if only a few eigenvalues are left close to the origin, a
small rank update will be sufficient to significantly improve the convergence. Secondly, these few
isolated eigenvalues will be easily found by an eigensolver. Of course a trade-off between the two
components of MSLRU(k) should be found as the low rank update might be unnecessary if MFrob

is very dense, or it might be too expensive to improve a poor MFrob because too many eigenvalues,
potentially difficult to compute, have to be shifted.

We observe that the convergence of GMRES using MSLRU(k) only weakly depends on the
choice of the initial guess. This is particularly useful in the seed GMRES or restarted GMRES
contexts. Moreover, the benefit of using MSLRU(k) increases as the size of the restart decreases.
In an embedded scheme, using a better preconditioner for the inner iterations is also beneficial
both in elapsed time and number of outer iterations.

The MAdd preconditioner also turns out to be very effective. On the one hand, the eigenvalues
close to zero are shifted to one. On the other hand, the smoothing operation acts on the rest of
the spectrum and succeeds in clustering its main part also close to one. These two transformations
are complementary. For difficult problems where computing many eigenvalues is expensive, this
approach seems to be quite interesting as it can require less eigenvectors.

When several right-hand sides have to be solved with the same coefficient matrix, the extra cost
of the eigencalculation in a preprocessing phase is quickly amortized by the reduction in the number
of iterations as the extra cost per iteration is negligible. However, the cost of the preprocessing
phase can be decreased in different ways. A first approach, as the accuracy of the eigenvectors
in terms of backward error does not need to be very good, would be to still compute them in a
preprocessing phase but with a less accurate FMM. Implementing this idea for the Cobra example
leads to the plot reported in Figure 4.9. In that figure, it can be seen that using a low accuracy
FMM only deteriorates the efficiency of the MSLRU(k) preconditioner by less than 20% in terms of
number of iterations. Consequently, using a fast FMM for the eigencalculation might also be a way
of reducing the cost for the preprocessing phase. Another possibility would consist in constructing
the preconditioner as we solve different right-hand sides by extracting the spectral information
from previous GMRES solutions. A question that remains open is the a priori identification of the
optimal number of eigenvalues to be shifted. We have seen that increasing this number is always
beneficial, but the relative gain tends to vanish when this number becomes large.
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Cobra problem of size 60 695

With MFrob GMRES(10) 2871 (59 mn)
GMRES(∞) 368 (14 mn)

µ = 1
Dimension of the coarse space
5 10 15

GMRES(10) 1492 (31 mn) 556 (12 mn) 510 (11 mn)
GMRES(∞) 262 ( 9 mn) 216 ( 7 mn) 188 ( 6 mn)

µ = 2
Dimension of the coarse space
5 10 15

GMRES(10) 471 (15 mn) 209 ( 7 mn) 201 ( 7 mn)
GMRES(∞) 161 ( 7 mn) 132 ( 6 mn) 115 ( 5 mn)

µ = 3
Dimension of the coarse space
5 10 15

GMRES(10) 281 (12 mn) 132 (6 mn) 124 (5 mn)
GMRES(∞) 120 ( 6 mn) 98 (5 mn) 85 (5 mn)

Almond problem of size 104 793

With MFrob GMRES(10) +3000
GMRES(∞) 242 (14 mn)

µ = 1
Dimension of the coarse space

10 30 50
GMRES(10) +3000 +3000 1867 (1 h)
GMRES(∞) 229 (13 mn) 157 ( 9 mn) 132 ( 8 mn)

µ = 2
Dimension of the coarse space

10 30 50
GMRES(10) 494 (25 mn) 231 (12 mn) 168 ( 9 mn)
GMRES(∞) 133 (10 mn) 91 ( 7 mn) 76 ( 6 mn)

µ = 3
Dimension of the coarse space

10 30 50
GMRES(10) 205 (14 mn) 110 ( 8 mn) 85 ( 6 mn)
GMRES(∞) 95 ( 9 mn) 65 ( 7 mn) 55 ( 6 mn)

Table 4.13: Number of accurate matrix-vector products and elapsed time required to converge on a
single right-hand for the Cobra and Almond examples using GMRES(10) and full-GMRES solvers.
Different values for the number µ of smoothing iterations and for the size of the coarse space are
investigated. The tests were run on 16 processors of the Compaq machine.
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Figure 4.9: Influence of the multipole precision used in the calculation of the eigenvectors on the
iterations on a difficult range for the Cobra test problem of size 60 695.
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Chapter 5

Preconditioners based on a series

of low-rank updates

5.1 Introduction

In this chapter, we study a solution technique suited for the solution of a set of large linear systems
involving the same coefficient matrix but different right-hand sides. That is, the solution of

Ax(`) = b(`) for ` = 1, . . . , (5.1)

where A is a nonsingular matrix in Cn×n , and x(`) and b(`) are vectors of Cn . Several numerical
techniques can be considered to attempt to reduce the cost of solving subsequent systems in the
sequence. The approach to follow might consist in changing the Krylov solver or in improving the
preconditioner.

Sophisticated changes to the Krylov solver can be envisaged ranging from the seed approach, as
described in Section 2.4 for GMRES where the initial guess vector is chosen so that it complies with
an optimum norm or an orthogonality criterion over the Krylov space associated with the previous
right-hand sides, to the more elaborate approaches such as GCRO-DR recently proposed in [68]
that further exploits deflating ideas present in GMRES-E [63] or GMRES-DR [64]. The underlying
idea in these latter techniques is to recycle Krylov vectors to build the space where the minimal
residual norm solution will be searched for the subsequent system as described in Section 2.2. The
GCRO-DR method is a flexible variant of the GMRES-DR method capable of Krylov subspace
recycling between linear systems. GMRES-DR and GMRES-E cannot be modified to do so [68].

Other possible complementary alternatives consist in improving a selected preconditioner. In
most of the situations, the linear systems are solved using an application dependent preconditioner
whose efficiency and cost are controlled by a few parameters. Because the preconditioner is used for
all the right-hand sides, some extra effort can be dedicated to improve it. The extra work involved
in its construction can be easily amortized as many systems have to be solved. For instance, if
an incomplete factorization [12, 45, 75] is considered, the threshold parameter can be decreased to
allow for more fill-in in the factors giving rise to a more efficient preconditioner but more costly to
build and to apply. This latter behaviour has been observed for instance in Table 4.8 of Section 4.3.4
in the electromagnetism calculation using MFrob . Similarly, in the algebraic multigrid context we
might decide to select techniques that lead to better preconditioners but that have a more expensive
setup phase.

Even though such an approach is certainly beneficial, the gain is often limited and other comple-
mentary techniques can be envisaged. In particular, after each linear solution we might attempt
to extract from the Krylov subspace approximations to some of the eigenvectors to update the
preconditioner for the subsequent right-hand sides. We investigate a combination of a low rank
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update spectral preconditioner and a Krylov solver that computes on the fly approximations of the
eigenvectors associated with the smallest eigenvalues. We consider in this chapter the unsymmet-
ric case but most of the techniques we describe in the sequel have a counterpart in the Hermitian
positive definite situation.

In Section 5.2, we describe how the updates can be taken into account when extra eigen in-
formation is extracted after each linear solution. From one linear system to the next, a low rank
correction is added to the preconditioner and we therefore use the terminology “incremental pre-
conditioner”. We discuss in Section 5.3 the choice of a linear Krylov solver that provides us with
the spectral information we are seeking. We show that all the ingredients involved both in the
definition and in the implementation of the incremental spectral preconditioner are by-products of
the selected Krylov solver. In Section 5.4 we illustrate on academic problems some of the typical
observed behaviours for the proposed numerical scheme. Section 5.5 is devoted to the implemen-
tation of our solution technique in the large parallel industrial code presented in Section 1.3.3.
For that real life application, significant gains in computational time on parallel computers are
obtained thanks to the incremental preconditioner approach.

5.2 Incremental spectral preconditioners

5.2.1 Formulations and properties

In this section, we provide a heuristic motivation for our incremental preconditioning methods.
In Chapter 4, a spectral low rank update (SLRU) preconditioning technique that exploits the
knowledge of the eigenvectors associated with the smallest eigenvalues has been described. The
proposed preconditioners shift the corresponding eigenvalues close to one and numerical examples
show the relevance of this approach to speed-up the convergence of Krylov solvers. We consider
now a repeated use of the spectral preconditioner.

Let assume that we solve the first linear system using a left preconditioned Krylov solver and we
denote by M the initial preconditioner. Let U (1) be the basis of a right invariant subspace of MA
of dimension k1 , such that MAU (1) = U (1)Jk , where the eigenvalues of Jk are {λ1, · · · , λk1

}.
From Proposition 4.2.1, we can define a preconditioner M

(2)
ISLRU so that {λ1, · · · , λk1

} will be

shifted in the spectrum of the matrix M
(2)
ISLRUA , involved in the solution of the second linear

system:

M
(2)
ISLRUAx

(2) = M
(2)
ISLRUb

(2).

Similarly after the solution of this system, we suppose that we obtain U (2) associated with the
eigenvalues {λk1+1, · · · , λk2

} so that these eigenvalues will be shifted in the spectrum of the matrix

M
(3)
ISLRUA , involved in the solution of the third linear system:

M
(3)
ISLRUAx

(3) = M
(3)
ISLRUb

(3).

Notice, under the assumptions of Proposition 4.2.1, we have the following expression for that latter
preconditioner:

M
(3)
ISLRU = M

(2)
ISLRU + U (2)

(

W (2)H
AU (2)

)−1

W (2)H
.

We repeat this procedure until step ` and assume that once the `−th linear system has been
solved, we not only have the solution x(`) but we also know the ( k`−k`−1 ) vectors of the set U (`)

that span the invariant subspace associated with the ( k`−k`−1 ) eigenvalues {λk`−1+1, · · · , λk`
} of

M
(`)
ISLRUA . We can then update the preconditioner M

(`)
ISLRU so that the eigenvalues of M

(`+1)
ISLRUA

are:
{

η
(`+1)
i = 1 + λi if i ≤ k`,

η
(`+1)
i = λi if i > k`.

(5.2)
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The preconditioner for the (`+ 1)−th linear system can be written as:

M
(`+1)
ISLRU = M +

∑̀

j=1

U (j)(W (j)H
AU (j))−1W (j)H

. (5.3)

Assume that a basis V (1) of a right invariant subspace of AM (and no longer MA ) associated
with {λ1, · · · , λk1

} is given. Let us consider now a right preconditioned Krylov solver to deal
with problem (5.1). Using a similar incremental process as before, under the assumptions of
Proposition 4.2.2, the preconditioner for the (`+ 1)−th linear system is:

M
(`+1)
ISLRU = M +

∑̀

j=1

M
(j)
ISLRUV

(j)(W (j)H
AM

(j)
ISLRUV

(j))−1W (j)H
. (5.4)

Using Proposition 4.2.2, it can also be shown by induction that the eigenvalues of AM
(`+1)
ISLRU are

given by (5.2). For any ` , if V (`) is a basis of a right invariant subspace of AM
(`)
ISLRU associated

with {λkl−1+1, · · · , λkl
} , M

(`)
ISLRUV

(`) is a basis of the right invariant subspace of M
(`)
ISLRUA

associated with the same eigenvalues. By setting U (`) = M
(`)
ISLRUV

(`) for any ` , Equation (5.3)
becomes equivalent to Equation (5.4). As mentioned earlier the slow convergence of Krylov solvers
is often attributed to the presence of small eigenvalues in the spectrum of the preconditioned
matrix. In that context, it is natural to target for V (`) a right invariant subspace associated with
the eigenvalues close to the origin.

As we plan to compare the numerical efficiency obtained by an initial preconditioner M with
the numerical efficiency obtained by the incremental preconditioner based on M , we consider a
right preconditioning version. The sketch of the solution scheme for a sequence of right-hand sides
in Matlab like syntax is described in Algorithm 7 for the case where the basis of the right invariant

subspaces associated with any AM
(`)
ISLRU are available. Algorithm 7 is by no means well suited

for practical implementation. The computation of an invariant subspace is generally far more
expensive than the solution of a linear system and the low rank-update as performed by step 5
would generally fill the preconditioner which is unacceptable. The purpose of the next section is
to show how this algorithm can be adapted so that it is suitable to practical implementation.

Algorithm 7 Basic scheme for a sequence of right-hand sides.

1: M
(1)
ISLRU = M

2: for ` = 1, 2, . . . do

3: [x(`)] =Solve( b(`) ,M
(`)
ISLRU ,A )

4: [V (`)] =Right Invariant Space(AM
(`)
ISLRU )

5: M
(`+1)
ISLRU = M

(`)
ISLRU

(

I + V (`)
(

W (`)H
AM

(`)
ISLRUV

(`)
)−1

W (`)H
)

6: end for

5.3 A Krylov linear solver recovering spectral information

The spectral preconditioning techniques are likely to be particularly efficient if they are imple-
mented to complement a prescribed ad-hoc and efficient preconditioner that only leaves a few
outliers near the origin. Because our primary interest is to solve a sequence of linear systems we
would like to recover the eigen information almost for free; that is, either because it is a by-product
of the linear solver or because it can be computed at a low computational cost from information
already computed by the linear solver. In that context, natural candidates among the Krylov lin-
ear solvers are those that rely on an Arnoldi procedure and belong to the variants of GMRES. In
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particular, because we are looking for the smallest eigenvalues and because for large scale computa-
tion a restart mechanism has to be implemented, GMRES-DR(m, k ) [64] appears as an appealing
candidate.

This solver provides us with a nice trade-off between its efficiency to solve a linear system and
its ability to compute approximations of the eigenvectors associated with the smallest eigenvalues
as a by-product of the method. This latter feature is due to the harmonic restarted Arnoldi
technique that it implements. At each restart of size m , GMRES-DR (m, k) computes the k
smallest harmonic Ritz vectors of the (m + 1) ×m Hessenberg matrix that are used to span a
subspace of the Krylov space to be explored in the next restart. We refer the reader to Section 2.2
for more details, and to [64] for a complete description.

Because GMRES-DR exhibits nice capabilities to recover harmonic spectral information we are
targeting with our preconditioner, we explore in the rest of the study the numerical behaviour
of the combination of our incremental technique with this Krylov linear solver. In practice, the
columns of V (`) are the right eigenvectors associated with the k smallest eigenvalues and we
set W (`) = V (`) for our experiments. The resulting implementation of the numerical method is
obtained by replacing steps 3 and 4 of Algorithm 7 by a call to GMRES-DR where of course the
preconditioner MISLRU is kept in implicit form. That is, it is never assembled and whenever a
preconditioning operation is required we only have to perform matrix-vector products involving

V (`) and to solve small linear systems involving matrices V (`)H
AM

(`)
ISLRUV

(`) . These matrices
can be cheaply recovered from the GMRES-DR process without any extra matrix-vector product

by A or M
(`)
ISLRU as is shown in the next section.

Because we stop the GMRES-DR iterations when the scaled residual ηb(xk) of the linear
systems is less than a prescribed tolerance ε , there is no guarantee that the spectral information
has converged at the same time. The quality of an approximate eigenvector is checked via the
backward error defined by Equation (2.12). This eigenvector backward error is estimated via the
upper bound defined in Equation (2.14). This upper bound is cheap to compute because it uses
by-products of the GMRES-DR algorithm.

5.4 Analysis of the incremental mechanism

5.4.1 Some computational considerations

We see in Algorithm 7, that after each right-hand side the preconditioner is updated. Even though
the preconditioner is kept in its implicit form, the update requires the calculation and the LU

factorization of a k` × k` matrix A
(`)
c = V (`)H

AM
(`)
ISLRUV

(`) , where k` denotes the rank of the
update to be performed after the solution of the `−th right-hand side. Similarly to the analysis we
made in Section 4.2.3 we give below some details on the computational cost in terms of floating-
point operations and memory requirements associated with the incremental preconditioner. We
assume that k` � m so that any terms that are only polynomial in k` are neglected; we only
keep the terms in m with the highest degree. Because the approximations of the eigenvectors are

recovered by GMRES-DR, the matrix A
(`)
c can be cheaply computed. Using the same notation

as in Section 2.2 and denoting by G(`) the m × k` matrix whose columns are the gi used to
construct the harmonic Ritz eigenvectors (see Section 2.2.1), we have:

A(`)
c = V (`)H

AM
(`)
ISLRUV

(`)

= G(`)H
Q(`)

m

H
AM

(`)
ISLRUQ

(`)
m G(`)

= G(`)H
H(`)

m G(`). (5.5)

Using Equation (5.5) the calculation of A
(`)
c costs O(m2k2) operations and its LU factorization

that requires 2
3k`

3 flops is negligible.
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The application of the preconditioner reduces to the application of a sequence of MSLRU

preconditioners whose individual cost is given in Table 4.1. It reads:

2nnz(M) + 4n
∑̀

j=1

kj .

From a memory point of view, we have to store
∑̀

j=1

kj vectors of dimension n plus ` small

matrices of size kj × kj .

5.4.2 Selection of the initial guess

When a sequence of linear systems has to be solved where the right-hand sides do not vary a lot
from one to the next, it can be natural to setup the initial guess for a given right-hand side as a
function of the solution of the previous linear system. Let x(`−1) be the solution of the (`− 1)−th

linear system and x
(`)
0 the initial guess of the `−th system. The implementation of this idea is

straightforward when a left preconditioner is used as it is enough to set x
(`)
0 = x(`−1) . For a right

preconditioner, this approach requires us to pay a little more attention and might not be feasible.
In this case, we solve AMt = b and we have access to the matrix-vector product with M . For

the initial guess we have to choose t
(`)
0 so that Mt

(`)
0 = x(`−1) or equivalently t

(`)
0 = M−1x(`−1)

that requires the ability to perform a matrix vector product by M−1 or to solve the linear system
associated with M . Consequently for a right preconditioner, the implementation of this strategy
for computing the initial guess requires us to have access to both M and M−1 . This is the case
of the implicit preconditioners based on incomplete factorizations like ILU [75], AINV [11, 12],
FSAI [51, 52], . . . . In these cases, it is as simple to perform a backward/forward substitution as
to perform two triangular matrix-vector products. For our incremental right preconditioner, this
idea can also be implemented under the assumption that both M and M−1 are available. This

reduces to defining t
(`)
0 so that it is a solution of:

x
(`)
0 = M

(`)
ISLRU t

(`)
0 = x(`−1).

Because MISLRU , defined by Equation (5.4), is a series of low-rank updates, it is possible to get
an expression for M−1

ISLRU using a sequence of Sherman-Morrison formulae [40]. The resulting
expression is given in the next proposition.

Proposition 5.4.1 Assume that the initial preconditioner M as well as all the matrices A
(i)
c +

V (i)H
V (i) , with i ∈ {1, ..., `− 1} for ` ≥ 2 are nonsingular. Then M

(`)
ISLRU is nonsingular and

its inverse is:

(

M
(`)
ISLRU

)−1

=

`−1
∏

i=1

(

I − V (`−i)
(

A(`−i)
c + V (`−i)H

V (`−i)
)−1

V (`−i)H
)

M−1

Proof:
This statement can be proved by induction. Let D ∈ Cn×k , E ∈ Ck×k and F ∈ Cn×k . Assume
that (E−1 + FD) are nonsingular, the Sherman-Morrison formula gives a convenient expression
for the inverse of (I +DEF ) :

(I +DEF )−1 = I −D(E−1 + FD)
−1
F .

If we take ` = 2 , D = V (1) , E =
(

A
(1)
c

)−1

and F = V (1)H
: (E−1 + FD) = A

(1)
c + V (1)H

V (1) .

This quantity is nonsingular by assumption, then:
(

I + V (1)
(

A(1)
c

)−1

V (1)H
)−1

= I − V (1)
(

A(1)
c + V (1)H

V (1)
)−1

V (1)H
, (5.6)
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and M
(2)
ISLRU is nonsingular. In this way, we can write:

t
(2)
0 =

(

M
(2)
ISLRU

)−1

x(1)

=

(

I + V (1)
(

A(1)
c

)−1

V (1)H
)−1

M−1x(1)

=

(

I − V (1)
(

A(1)
c + V (1)H

V (1)
)−1

V (1)H
)

M−1x(1).

Induction on ` enables us to complete the proof.

�

The above result indicates that the calculation of t
(`)
0 requires a product by M−1 and (`− 1)

constructions and factorizations of small matrices: A
(`−i)
c + V (`−i)H

V (`−i) . We omit the details
and only give the overall floating-point cost associated with the calculation of t

(`)
0 , that is:

2nnz(M)− n+ 2n

`−1
∑

i=1

ki(ki + 2).

5.4.3 Sensitivity to the quality of the eigenvectors

The numerical motivations given in Section 5.2 for using the incremental scheme assume that the
basis of the invariant space or the corresponding eigenvectors are known exactly. This does not
make sense in finite-precision and is certainly too strong a constraint in our incremental precondi-
tioning framework. However, a natural question is how the performance of the incremental spectral
preconditioner is affected by approximate eigen information ? In order to investigate this, we com-
pute the eigenpairs (using a backward stable eigensolver that is the eig function of Matlab ) of a

slightly perturbed matrix, (AM1 + E) , with ||E||
||AM1||

= η , and we use these eigenvectors to build

our preconditioners. By varying η , we can monitor the level of the backward error associated with
each eigenvector.

We report on numerical experiments for two real unsymmetric matrices from Matrix Market
namely Hor131 and Gre1107 with an initial preconditioner that is ILU(t) . We set t = 2.10−1

for Hor131 and t = 6.10−2 for Gre1107. The stopping criterion is based on ηb(x̃) defined by
Equation (2.16) with a threshold equal to 10−8 . The right-hand side is obtained by multiplying
the test matrix by a vector whose entries are equal to one. We measure the benefit of using the
spectral preconditioner by considering the ratio between the number of GMRES-DR iterations with
the spectral update divided by the number of iterations with only the ILU(t) preconditioner. In
Figure 5.1, we plot this ratio as a function of η for MSLRU(4) and MSLRU(8) used as a right
preconditioner. Several comments are in order. Firstly we notice that the more eigenvalues that
are shifted, the better the preconditioner. Secondly, it is clear that knowing the eigenvectors
with full accuracy is not necessary. For instance a backward error of about 10−4 gives rise to a
preconditioner that is as efficient as the one obtained with a backward error of about 10−16 for
the Hor131 example. The range of backward errors that leads to preconditioners with optimum
efficiency is problem dependent. We see the deteriorations of the ratio appear for different values
of η for the two examples considered in the Figure 5.1. Furthermore, it can be seen that in terms
of number of iterations using four “accurate enough” eigenvectors is as efficient as using eight
less accurate ones. For instance on the Hor131 example, we have a 20 % gain either using four
eigenvectors computed with a backward error of 10−3 or using eight eigenvectors computed with
a backward error of 10−1 . Of course in terms of computational cost, it is more efficient to only
use four eigenvectors as the application of the preconditioner will be cheaper. Finally, we see that
very inaccurate eigen information does not help and even slightly deteriorates the convergence of
the linear solver.
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Figure 5.1: Sensitivity of spectral preconditioner varying the accuracy and the number of eigen-
vectors.

In an incremental mechanism, where the eigenvectors are extracted from the Krylov space built
by the linear solver it might naturally happen that some of the eigenvectors are quite inaccurate.
Using these vectors would increase the application cost of the preconditioner, without necessar-
ily reducing the number of iterations. Consequently, we implement a criterion for the selection
of the candidate vectors to be used for building the low rank updates. Only the approximate
eigenvectors that have a backward error smaller than τξ are selected. This criterion is based on
the backward error associated with a normalized approximate eigenvector and is estimated using
Equation (2.14). Furthermore, because we assume that the smallest eigenvalues are those that
slow down the convergence the most, we only consider the candidate vectors that are associated
with eigenvalues which have a magnitude smaller than a prescribed threshold τλ .

5.4.4 Results on a sequence of sparse linear systems

We report on the numerical experiments that have been performed in Matlab using right pre-
conditioners. We keep the same stopping criterion: it is based on ηb(x̃) with a threshold equal to
10−8 . We denote by MILU the initial preconditioner constructed using regular ILU(t) . We in-
tend to compare the numerical behaviour of the incremental preconditioner MISLRU with MILU .
In Table 5.1, we display the list of our test problems from Matrix Market; all these matrices are real
nonsymmetric. We set the threshold t for MILU to illustrate the behaviour generally observed
when the spectrum of the preconditioned system has only a few eigenvalues close to the origin.
That is, when the initial preconditioner MILU is already effective in clustering most of the eigen-
values near one. For information, we also present the number of nonzero entries of the factors L
and U resulting from the incomplete factorization of the matrix A , the number of nonzero entries
of A as well as the domain of each matrix. We use GMRES-DR (m, k) with a restart m = 30 and
a number of recycled eigenvectors k = 5 . Because we setup our sequences of right-hand sides so
that they do not vary much from one to the next we performed the experiments using the strategy
described in Section 5.4.2 to define the initial guess. The selection of the candidate eigenvectors is
based on the two thresholds τλ = 0.5 and τξ = 10−2 . The sequence of right-hand sides is defined
as:

b(i) = b(i−1) ∗ (1 + α ∗ rand(n, 1)), (5.7)
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Matrix Size t nnz(LA) nnz(UA) nnz(A) Discipline
bwm200 200 6.10−1 200 200 796 Chemical engineering
bfw398a 398 5.10−1 412 416 3678 Electrical engineering
hor131 434 2.10−1 819 1468 4182 Flow in networks
pores3 532 5.10−1 705 874 3474 Reservoir modeling
orsirr1 1 030 3.10−1 1648 1838 6858 Oil reservoir simulation
gre1107 1 107 2.10−2 33435 31587 5664 Computer systems simulation
bwm2000 2 000 4.10−1 3992 4106 7996 Chemical engineering
rdb2048 2 048 1.10−2 36941 36857 12032 Chemical engineering

Table 5.1: Set of real nonsymmetric test matrices.

where b(i) is the i−th right-hand side, and α a real parameter controlling the gap between the
right-hand sides. For the experiments reported in this manuscript we consider two values for α :
10−1 and 10−4 .

To illustrate the numerical benefit introduced by the incremental preconditioner, we first plot
in Figure 5.2 (resp. in Figure 5.3) the backward error histories obtained with the matrix bwm200
for a sequence of eleven right-hand sides setup with α = 10−1 (resp. with α = 10−4 ). More
precisely, we display in Figure 5.2 (a) and Figure 5.3 (a) the convergence history observed using
MISLRU , and in Figure 5.2 (b) and Figure 5.3 (b), the convergence history observed using MILU .
For the MISLRU preconditioner, each increment is at most a rank-5 update of the preconditioner,
that corresponds to the value of k used for GMRES-DR. The benefit of using the incremental
spectral preconditioner is clear because performing the update always implies a reduction in the
number of GMRES-DR iterations. It translates into a better convergence rate for GMRES-DR.
In Figure 5.2 (a) the fastest convergence is obtained when 32 eigenvalues are shifted for the 11−th

right-hand side, whereas in Figure 5.2 (b) it is for a total of 28 eigenvalues.

In these figures, we can also observe the effect of the initial guess strategy. For the MILU

preconditioner, the strategy consists in using the solution of the previous system to define the
initial guess for the subsequent system. For the MISLRU preconditioner, the initial guess is
deduced from the solution of the previous system using Proposition 5.4.1. We see that whatever
the preconditioner is, the initial backward error for the first right-hand sides is one (because we
choose x0 = 0 for the first right-hand side) while this initial backward error is much smaller for
the subsequent right-hand sides. This reflects the fact that the first residuals are much smaller.
We also observed that this gap is larger when the right-hand sides, and consequently the solutions,
are closer than those generated with α = 10−1 . We also see in Figure 5.2 (b) and Figure 5.3 (b)
that, for MILU , the rate of convergence remains the same for all the right-hand sides, while it
improves with MISLRU as illustrated in Figure 5.2 (a). To illustrate the overall gain introduced
by MISLRU versus MILU on this sequence of right-hand sides, for α = 10−1 , we need 2470
iterations to solve all the systems using MILU , and 837 iterations using MISLRU(32) : it saves
66% of the iterations. With α = 10−4 we need 1505 iterations to solve all the systems using
MILU , and 637 iterations using MISLRU(28) : it saves 58% of the iterations.

In Figure 5.4 (a) (resp. Figure 5.5 (a)), we depict the number of GMRES-DR iterations when
the right-hand sides are generated using α = 10−1 (resp. α = 10−4 ) for the matrix bfw398a.
The solid line gives the number of iterations observed using MILU as a preconditioner and the
dashed line gives the number of iterations when using MISLRU . The gap between the two curves
reveals the significant gain in number of iterations introduced by MISLRU . In Figure 5.4 (b) and
Figure 5.5 (b) we indicate how the number of shifted eigenvalues increases as the right-hand sides
are solved. The steps indicate that, after each solution, not all of the five candidate eigenvectors
comply with the magnitude ( τλ ) or backward error ( τξ ) constraints.

However, from a computational point of view the picture is slightly different as illustrated
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Figure 5.2: Convergence histories of some systems using MISLRU (a) and MILU (b) with α =
10−1 on the matrix bwm200.
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Figure 5.3: Convergence histories of some systems using MISLRU (a) and MILU (b) with α =
10−4 on the matrix bwm200.

in Figure 5.6 (a) and Figure 5.7 (a). Always for the matrix bfw398a, these figures display for
each system the number of millions of floating-point operations (’MFlops’) required to achieve
convergence using MILU (solid line) and MISLRU (dashed line) for a sequence of 51 right-
hand sides generated either with α = 10−1 or α = 10−4 . Because we keep incrementing the
preconditioner, the cost per iteration increases as we solve the right-hand sides. Consequently,
although we decrease the number of iterations, we do not reduce in the same proportion the number
of floating-point operations and hence the elapsed time. At a certain point the MFlops per right-
hand side starts to grow. The update of the preconditioner does not improve the convergence much
(i.e. the number of iterations does not decrease) but the weight of each iteration increases. This
can be observed in particular in Figure 5.6 (a) where, at the end of the sequence, 81 eigenvalues
have been shifted. This behaviour also appears in Figure 5.7 (a) with α = 10−4 but is more
moderate. In that latter case, only 43 eigenvalues have been shifted because the convergence
of GMRES-DR, thanks to the better efficiency of the initial guess strategy, is faster so that less
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Figure 5.4: Efficiency of MISLRU(k) in decreasing the number of iterations (a) when varying k (b)
as the right-hand side changes with α = 10−1 on the matrix bfw398a.
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Figure 5.5: Efficiency of MISLRU(k) in decreasing the number of iterations (a) when varying k (b)
as the right-hand side changes with α = 10−4 on the matrix bfw398a.

eigenvectors comply with the magnitude and backward error criteria. Finally, we mention that,
from a memory point of view, the preconditioner requires more space as increments are performed
and it would become unaffordable at some point.

In Tables 5.2 and 5.3 we summarize and compare the performance of MILU and MISLRU

for the two sets of right-hand sides using or not using the initial guess strategy described in
Section 5.4.2. A sequence of 31 right-hand sides is considered. We see in these tables that MISLRU

always outperforms MILU in terms of number of iterations. Even though the ratio is smaller with
respect to the number of floating-point operations than with respect to the number of iterations,
MISLRU also outperforms MILU for all examples but orsirr1. Both the fact that the floating-
point ratio is smaller than the number of iterations ratio and the fact that MILU outperforms
MISLRU on orsirr1 is due to the relative high cost of MISLRU compared to the other numerical
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Figure 5.6: Number of MFlops and number of shifted eigenvalues on a sequence of 51 right-hand
sides with α = 10−1 on the matrix bfw398a.
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Figure 5.7: Number of MFlops and number of shifted eigenvalues on a sequence of 51 right-hand
sides with α = 10−4 on the matrix bfw398a.

kernels involved in GMRES-DR.

Let us illustrate this phenomenon on the orsirr1 case. As can be shown in Figure 5.8 (a), the
spectrum of AMILU , with A the orsirr1 matrix, has many eigenvalues in the neighbourhood of
zero (around 20 % of the total). The rest of the eigenvalues are clustered in the neighbourhood of
one except one eigenvalue near 1.5. A large sequence of 90 right-hand sides is considered for this
experiment. As depicted in Figure 5.8 (b), the incremental procedure performs a rank-5 update
between each right-hand side, until approximately the 40−th where the size of the forthcoming
updates decreases until it vanishes at the 47−th right-hand side. The impact on the number of
iterations is displayed in Figure 5.8 (c), where we compare the number of iterations to achieve
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convergence using either MILU or MISLRU . The preconditioner MISLRU succeeds in decreasing
the number of iterations, but the gain in iterations from one system to the next remains constant,
at about 10% . We have to wait for the 30−th right-hand side to obtain a significant decrease
in the number of iterations. Figure 5.8 (d) shows the number of MFlops required by MILU and
MISLRU to achieve convergence. From the first 29−th right-hand side, the reduction in the number
of iterations is not sufficient to balance the higher cost of MISLRU that shifts 5 eigenvalues at
each right-hand side. Consequently, the number of MFlops is still growing and MILU is the best
approach. From the 30−th system, as enough small eigenvalues have been shifted, a significant
decrease in the number of iterations results in a more significant decrease in the MFlops. The
trend for the MFlops is reversed and the MISLRU approach eventually outperforms the MILU

preconditioner.

Matrix Iterations MFlops kmax RHS
MILU MISLRU Ratio Ratio α

bwm200 4 031 932 4.3 2.7 40 10−4

6 866 1 245 5.5 3 53 10−1

bfw398a 3 090 672 4.6 2.9 37 10−4

4 112 941 4.4 2.1 62 10−1

hor131 2 012 626 3.2 1.3 63 10−4

3 264 895 3.6 1.5 62 10−1

pores3 ? 8 244 1 289 6.4 4.2 63 10−4

10 380 1 615 6.4 3.9 60 10−1

orsirr1 2 702 1 995 1.4 0.4 139 10−4

4 913 2 624 1.9 0.5 148 10−1

gre1107 ? 4 316 1 017 4.2 3.4 33 10−4

5 418 1 206 4.5 3.6 30 10−1

bwm2000 805 412 2 1.1 18 10−4

940 515 1.8 1.3 17 10−1

rdb2048 2 188 811 2.7 2.1 22 10−4

3 880 1 010 3.8 3.2 19 10−1

Table 5.2: Cumulated flops and iterations with MILU and MISLRU for all test problems using
two sequences of 31 right-hand sides: α = 10−4 and α = 10−1 . The initial guess strategy is used.
The symbol ’ ? ’ corresponds with the use of GMRES-DR(50,5) instead of GMRES-DR(30,5), in
order to ensure convergence of the first system of the sequence.

Finally in Figure 5.9 and 5.10, we plot the spectrum of the preconditioned matrix AMISLRU(k)

through the sequence of right-hand sides for two test cases: bwm200 and pores3. Because the
eigenvectors are not computed exactly we see that the smallest eigenvalues (in magnitude) are not
exactly shifted to one while the rest of the spectrum is unchanged. In Appendix A, for all the test
cases described in Table 5.1, some spectrum of the preconditioned matrix AMISLRU(k) through
the sequence of right-hand sides are displayed. In most of the examples the complete spectrum is
changed when spectral increments are applied to the preconditioner. However, these plots show
that MISLRU does its job in “cleaning” the neighbourhood of the origin and in still clustering
most of the eigenvalues close to one.
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Matrix Iterations MFlops kmax RHS
MILU MISLRU Ratio Ratio α

bwm200 8 804 1 800 4.9 3 27 10−4

8 772 1 472 6 3.2 54 10−1

bfw398a 4 526 1 083 4.2 2.2 41 10−4

4 572 1 054 4.3 2.1 59 10−1

hor131 3 875 1 022 3.8 1.8 58 10−4

3 899 1 045 3.7 1.8 55 10−1

pores3 ? 16 886 1 765 9.6 6 60 10−4

16 708 1 731 9.7 6.3 57 10−1

orsirr1 6 076 2 857 2.1 0.6 148 10−4

6 049 2 896 2.1 0.6 149 10−1

gre1107 ? 5 580 1 170 4.8 4.4 18 10−4

5 542 1 204 4.6 4.1 29 10−1

bwm2000 1 147 460 2.5 2.7 7 10−4

1 147 501 2.3 2.3 10 10−1

rdb2048 5 301 1 458 3.6 3.1 10 10−4

5 031 1 458 3.5 3.1 10 10−1

Table 5.3: Cumulated flops and iterations with MILU and MISLRU for all test problems using
two sequences of 31 right-hand sides: α = 10−4 and α = 10−1 . The initial guess is x0 = 0 . The
symbol ’ ? ’ corresponds with the use of GMRES-DR(50,5) instead of GMRES-DR(30,5), in order
to ensure convergence of the first system of the sequence.

5.4.5 Controlling the number of vectors involved in the setup of MISLRU

The description we made so far of MISLRU assumes that we do not have any memory limit
so that we can keep updating the preconditioner as long as candidate eigenvectors computed by
GMRES-DR can be selected for one right-hand side to the next. This is clearly unrealistic and
a mechanism must be defined to control the growth of MISLRU . We notice that this memory
constraint is very similar to the one encountered with Krylov linear solvers like GMRES which has
given rise to the restarted variants. Similarly to the solution that consists in limiting the size of
the Krylov space, we limit the amount of storage we can afford for the incremental preconditioner.
Since most of the memory for the incremental preconditioner is used for the storage of the vectors
V (`) , we control the memory required by the preconditioner by limiting the total number of these
vectors. If kmax is the maximum number of vectors we can afford, we denote by MISLRU(kmax)

the preconditioner that is eventually built once kmax vectors have been selected while solving the
sequence of right-hand sides.

Different strategies can be considered to fill this memory space as we solve the sequence of
right-hand sides. That is, we might want to take any candidate eigenvector that complies with the
backward error and the eigenvalue magnitude criteria as long as there is still memory available or
we might prefer to select only a subset of the candidate vectors. In particular, to have a better
chance to capture the eigenvectors associated with the smallest eigenvalues, we might be tempted
to select among the candidates only a subset of those associated with the smallest eigenvalues. In
Figure 5.11, we illustrate the effect of various strategies to set-up a MISLRU(15) preconditioner on
the orsirr1 example, using a sequence of 31 right-hand sides defined by α = 100 with the same
initial guess strategy, and an initial preconditioner ILU(3 · 10−1) . More precisely, among the up
to five candidates computed by GMRES-DR( 30, 5 ) we either only select those associated with the
smallest, or the three smallest or all the five eigenvalues.
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Figure 5.8: Efficiency of MISLRU(k) in decreasing the number of iterations (c) and MFlops (d)
when varying k (b) as the right-hand side changes, with α = 10−1 on the matrix orsirr1. The
spectrum of AMILU is displayed in (a).

Two regimes can be identified in that figure. In the start-up phase, i.e. the first right-hand sides
that enable us to build the MISLRU(15) preconditioner, we can see that taking any values enables
us to get the fastest convergence. For the first four right-hand sides, keeping five candidates per
right-hand side is the most efficient. For the next nine, choosing three among the five becomes
more efficient. In the stationary phase, i.e. kmax vectors have been collected by each of the three
strategies, we observe that the strategy that took the longer to fill the memory allocated for the
preconditioner is eventually the one that enables the fastest convergence. In that example, the
strategy selecting one candidate per system turns out to be the best. In Figure 5.12, we give a
heuristic explanation for that behaviour. In Figure 5.12 (a) we display, for the first three right-
hand sides, the magnitude of the five approximate harmonic Ritz values computed by GMRES-DR
(using the symbol “ ◦ ”) and the magnitude of the five smallest eigenvalues computed by eig (using
the “ ∗ ” symbol) of the first three preconditioned matrices involved in the sequence. Similarly, in
Figure 5.12 (b) we display the magnitude of the three harmonic Ritz values and exact eigenvalues
for the first five preconditioned matrices. When looking at the magnitude of the 15 harmonic Ritz
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Figure 5.9: Spectrum of AMISLRU(k) for different systems of the sequence, where A is the matrix
bwm200.
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matrix pores3.
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Figure 5.11: orsirr1, α = 100 : Number of iterations of GMRES-DR with three start-up strategies
to build a MISLRU(15) preconditioner.

values shifted by each of the two strategies, we see that selecting only three eigenvectors per system
enables us to shift smaller eigenvalues, which is the target of the spectral preconditioners. In all
cases, the accuracy of the eigenvectors measured by their backward error are comparable for all the
displayed harmonic Ritz values and are around 10−4 on the orsirr1 example. The final better
performance exhibited by the incremental preconditioners built using a delaying strategy in the
start-up phase has been observed on many of the examples we have considered. Consequently the
selection strategy for a given sequence of right-hand sides should be a balance between the cost
associated with the start-up phase (that is more expensive using the delaying strategy because the
first linear systems are more costly to solve due to a “poorer” preconditioner) and the eventual
gain in the stationary phase that is related to the overall number of right-hand sides. So if only
a few right-hand sides have to be solved a short start-up phase (i.e. taking any candidate vector
that complies with the magnitude and backward error conditions) should be advised; for large
sequences of right-hand sides a delaying strategy should be preferred.

Finally, we performed experiments with various sets of right-hand sides, ranging from vectors
slowly varying to orthogonal right-hand sides. The convergence histories were different but the
general trends were the same; that is, the incremental preconditioner is always beneficial in terms
of number of iterations, and implementing a delaying selection strategy to set-up the incremental
preconditioner when the amount of memory is limited gives rise to more efficient preconditioners
in the stationary phase.

5.5 Application to large electromagnetism calculations

5.5.1 Results on a monostatic calculation

For the experiments in electromagnetism we consider a radar cross section that is an angular
section of width 30o discretized every degree so that we end up with a sequence of 31 right-
hand sides. The angular section of interest (θ, φ) is ( 90o , 150o – 1800 ) for the Aircraft geometry,
( 60o – 90o , 0o ) for the Cetaf geometry, and ( 60o – 900 , 0o ) for the Cobra geometry. The initial
guess strategy described in Section 5.4.2 can no longer be applied in this framework, because
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Figure 5.12: orsirr1, α = 100 : Eigenvalues captured by the different strategies in the start-up
phase.

the inverse of the preconditioner is required and the preconditioner MFrob is only given in an
implicit form. The initial guess is x0 = 0 for all the experiments. The out-of-core capability
significantly alleviates the memory constraint that previously motivated our choice to limit the
amount of space to store the incremental preconditioner. We select any candidate eigenvector that
has a backward error less than τξ = 10−2 and a corresponding eigenvalue of magnitude smaller
than τλ = 0.3 . In Figure 5.13, we display, for the large problems of each geometry presented in
Section 1.3.2, the number of iterations with and without the incremental preconditioner on the
sequence of right-hand sides. It can be seen that the incremental preconditioner enables us to
significantly reduce the number of iterations. For the solution of the last right-hand side of the
sequence, the reduction in GMRES-DR iterations is equal to about 10 for the Aircraft 94 000
example, about 4 for the Cetaf 264 000 and greater than 4 for the Cobra 179 000. In Table 5.4,
we give more details on these numerical experiments. We report on the size of the problems for
each geometry, the number of processors denoted by “# Proc”, the size of the restart “m ” and
the number “ k ” of harmonic vectors required by the GMRES-DR solver, the cumulated number
of matrix-vector products denoted by “# Mat.V” and the parallel elapsed time “Time” to perform
the complete simulation. Finally, “ kmax ” denotes the total number of eigenvalues shifted by the
incremental preconditioner. We can see that the incremental mechanism enables us not only to
reduce significantly the number of iterations but also the elapsed time.

The gain in time ranges from two to eight depending on the problem and is almost proportional
to the reduction in the total number of iterations. This can be explained by the fact that the cost of
a matrix-vector product is quite high and the relative cost of our preconditioner remains low even
for large kmax ; consequently any reduction in the number of iterations translates to a reduction
in the computational time. We notice that this property is not necessarily true for sparse linear
systems, where the cost of the incremental preconditioner might dominate even for small values
of kmax so that the preconditioner might not be effective if it does not significantly reduce the
number of iterations.

In Table 5.5, we report on the parallel elapsed time required by each linear algebra kernel
involved in the solution scheme. For MISLRU the application time corresponds to the time to
apply the preconditioner for the last linear system; that is, when the preconditioner is the most
expensive. We see that the application time, given in seconds, of the most expensive MISLRU is
always significantly cheaper that the matrix-vector product implemented by the efficient parallel
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Figure 5.13: Number of GMRES-DR iterations with MFrob and MISLRU for the different incident
angles for each geometry. The sampling for the illuminating wave is one degree.

MFrob MISLRU

Geometry Size # Proc (m, k) # Mat.V Time # Mat.V kmax Time

Aircraft 23 676 8 (200,50) 20 613 12h 15 2 688 246 1h 30
Aircraft 94 704 31 (200,50) 66 411 2d 21h 9 801 686 10h

Cetaf 86 256 31 (150,30) 23 047 14h 30 6 558 462 4h 30
Cetaf 134 775 31 (150,30) 22 254 23h 20 9 098 577 10h
Cetaf 264 159 31 (150,30) 30 804 2d 8h 13 921 770 1d 3h

Cobra 60 695 8 (100,20) 9 672 8h 30 2 092 200 2h
Cobra 179 460 31 (100,20) 13 418 14h 3 876 365 4h

Table 5.4: Cost for a monostatic calculation of an angular section of width 30o .

FMM. This confirms that, if the preconditioner succeeds in decreasing the number of iterations, it
will also decrease the total solution time.

In Figure 5.14, we give another view on the gain introduced by the incremental preconditioner



5.5 Application to large electromagnetism calculations 87

Application Time (sec)
Geometry Size # Proc FMM MFrob MISLRU

Aircraft 23 676 8 1.23 0.17 0.43
Aircraft 94 704 31 2.23 0.33 0.75

Cetaf 86 256 31 1.55 0.12 0.46
Cetaf 134 775 31 2.62 0.19 0.70
Cetaf 264 159 31 4.07 0.39 1.44

Cobra 60 695 8 2.16 0.21 0.66
Cobra 179 460 31 2.79 0.23 0.78

Table 5.5: Parallel elapsed time for each linear algebra kernel involved in the numerical scheme.

versus simple MFrob in terms of elapsed time for the largest problems of each geometry. The solid
line represents the ratio:

∑`
i=1 Ti(M

(i)
ISLRU )

∑`
i=1 Ti(MFrob)

,

where Ti(M) is the elapsed time to solve the i−th system using the preconditioner M . Fur-
thermore, to give an idea about how the incremental preconditioner grows we give using a dashed
line the percentage of the total shifted eigenvalues. This line illustrates that we have not limited
the space allocated to the incremental preconditioner. We see that we keep updating the precon-
ditioner until the last right-hand sides for the two largest examples. Those graphs illustrate the
significant gains introduced by the incremental approach.

5.5.2 Limitation of the number of shifted eigenvalues

Even though in this out-of-core context the memory constraint is weaker, we report in Figure 5.15
on numerical experiments where we limit to 50 the number of approximate eigenvectors involved
in the incremental preconditioner. We consider a radar cross section of width 90o discretized
every 3 degrees so that we end up with a sequence of 31 right-hand sides. We select the GMRES-
DR(100,20) solver. As in the experiments of Section 5.4.5, we investigate the performance of
the incremental preconditioner for different selection strategies. More precisely, we consider the
strategies that take any eigenvectors that comply with τξ and τλ criteria, and a strategy that only
retains three eigenvectors associated with the smallest eigenvalues associated with the candidate
eigenvectors. Similarly to what we observed in the previous section, it can be seen that delaying the
fill-in of the incremental preconditioner enables us to end up with a more efficient preconditioner.
We see in Figure 5.15 (a) that after the start-up phase, i.e. 4−th system for the greedy approach
and 17−th system for the delaying strategy, this latter approach enables a larger reduction of the
number of iterations. Furthermore, as illustrated in Figure 5.15 (b) the delaying strategy eventually
outperforms the greedy strategy by about 10% in elapsed time. A heuristic explanation of this
behaviour is that delaying the fill-in of the incremental preconditioner enables the possibility of
capturing smaller eigenvalues. These eigenvalues are those that are suspected to contribute the
most to slowing down the convergence of the Krylov solvers. This is illustrated for the Cobra
example in Figure 5.16 where we display the magnitude of the 50 shifted eigenvalues using three
strategies. It can be seen that the greedy approach tends to shift eigenvalues that are larger than
those captured by the delaying strategies.
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Figure 5.14: Ratio of cumulated elapsed solution times (solid line) - percentage of shifted eigen-
values (dashed line).

5.6 Conclusions

In this last part, we have proposed a solution technique suited for the solution of a sequence of
linear systems. This technique is a combination of a low rank update spectral preconditioner and
a Krylov solver that recovers at run time approximations to the eigenvectors associated with the
smallest eigenvalues, namely GMRES-DR in our case. As the eigenvectors are extracted from
the Krylov space built by the linear solver, it is not surprising that we recover some inaccurate
eigenvectors. Not only do these vectors increase the application cost and the memory requirement
of the spectral preconditioner but they are likely to be inefficient at reducing the number of
iterations. To prevent such a phenomenon, we consider a selection criterion based on the backward
error of the eigenvector. As we target the eigenvalues of smallest magnitude, we define a selection
criterion based on the magnitude.

We illustrate on a set of Matlab examples the behaviour of this technique on academic sparse
linear systems using an initial guess based on the previous solution. The gain in iterations is always
larger than the gain in MFlops, due to the extra cost involved in the application of MISLRU , that
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Figure 5.15: Number of iterations for two start-up strategies to build a MISLRU(50) preconditioner
on the Cobra 60695 example. The tests were run on 8 processors of the Compaq machine.

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275
Magnitude

  3/system   
  5/system   
20/system    

Figure 5.16: Magnitude of shifted eigenvalues using different start-up strategies to build a
MISLRU(50) preconditioner on the Cobra 60695 example.

increases monotonically with the number of shifted eigenvalues. The clear interest of this technique
is shown in large parallel calculations for electromagnetics simulations. In this latter context, the
solution technique enables us to reduce by a factor of up to eight the simulation times, that
previously exceeded several hours of computation on a modern high performance computer.

For memory constraints which allow the storage of only a few eigenvectors, we investigate
different strategies for the setup of the spectral preconditioner. If only a few right-hand sides
have to be solved, a short setup phase consisting in collecting any candidate complying with the
magnitude and the backward error conditions should be advised. If the sequence of the right-
hand sides is large enough, a delaying strategy consisting in the selection of only a few candidates
amongst the best ones should be preferred, as the resulting preconditioner will be more efficient in
the stationary phase than the one built from a short setup.

The significant benefit of this approach is illustrated through extensive numerical experiments
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but more theoretical studies would deserve to be undertaken to better understand the role of
the sensitivity of the eigenvectors on the efficiency of the solver. This would enable us to better
understand how this technique can be adapted in a nonlinear context where the matrix associated
with the sequence of the right-hand sides varies slightly from one nonlinear step to the next. We
think that extending the work developed for the symmetric Hermitian case [37] to the nonsymmetric
situation can be a first track to follow.



Conclusions and prospectives

In this thesis, we have presented some preconditioning techniques suitable for the solution of
sequences of right-hand sides. To assess the robustness and the efficiency of the preconditioning
techniques, we studied the behaviour of the proposed techniques on challenging problems arising
in large industrial calculations in electromagnetism.

Starting from ad-hoc application-dependent preconditioners, such as MFrob for the electro-
magnetism calculation, we proposed techniques to improve their robustness. We first considered
an improvement that consists in using the preconditioner to define a stationary scheme that even-
tually defines a new preconditioner MIter . A more sophisticated improvement technique MSLRU

implements a low-rank correction applied to the ad-hoc first level preconditioner. A possible weak-
ness of this approach is that the spectral information is computed in a preprocessing phase using
an eigensolver. If only a few right-hand sides have to be solved, this extra cost might not be
amortized. To address this drawback, we used a variant of GMRES, namely GMRES-DR that
solves the linear system and computes an approximation of the spectral information required by
MSLRU . When applied to a sequence of linear systems we proposed performing a series of up-
dates using the selected spectral information from each linear solve for the subsequent one. This
led us to define an incremental spectral preconditioner MISLRU for which we investigated some
possible strategies to control the memory required to store the resulting preconditioner. Using our
preconditioning techniques, we successfully accelerated significantly the calculation of a complete
radar cross section calculation for objects of very large size.

For huge calculations, where MFrob becomes less and less effective so that the use of an em-
bedded scheme is the only way to solve the resulting linear systems, we think that using the
incremental preconditioner on top of Miter might be a fruitful track to follow. The incremental
technique could be implemented as described in this manuscript between the solution of the se-
quence of right-hand sides. When only one right-hand side needs to be solved, we can think of
implementing this technique to update the preconditioner used within the inner solves involved
in an iterative embedded scheme. For example, for a Flexible-GMRES method, a GMRES-DR
method combined with a spectral preconditioner can play the role of the flexible preconditioner.
An improvement in the number of outer iterations could be expected if spectral information is
recycled from one preconditioning operation to the next.

We mention that the calculation of radar cross section is a particular case of sequences of linear
systems. Indeed, the right-hand sides are given simultaneously and better techniques based on
block-Krylov solvers exist to deal with this situation [53]. For very large objects, the number of
right-hand sides necessary to compute a radar cross section accurately becomes so large that its
computation cannot be performed by a single block solver. A treatment based on sequences of
blocks of right-hand sides must be considered. In that framework, we think that extending the
incremental spectral preconditioner to the block situation deserves to be investigated. The block
solver of choice is the block variant of GMRES-DR recently introduced in [65].

Finally, among the applications that could benefit from our work, still in electromagnetism, we
point out the solution scheme where boundary elements and finite-elements are coupled. The overall
solution is computed by alternatively solving the linear system associated with the finite-element
discretization and the linear system associated with the boundary-element discretization. In that



92 Preconditioners based on a series of low-rank updates

context, we end up with two sequences of linear systems to be solved within a overall iterative
scheme; the solution of both sequences of linear systems would benefit from our approach.



Appendix A

Effect of the low-rank updates on

the spectrum of AMILU

This Appendix is dedicated to illustrating the effect of the incremental spectral preconditioner
MISLRU(k) on the eigenvalue distribution of the preconditioned matrix AMILU , when varying
the number k of shifted eigenvalues as described in Chapter 5. We consider a sequence of 31
right-hand sides defined by α = 10−1 (Equation (5.7)) with the initial guess strategy described in
Section 5.4.2, and all the test matrices shown in Section 5.1. For each test case, we draw spectra
of AMISLRU(k) obtained for different systems in the sequence. As we use inexact eigeninfor-
mation, the unwanted eigenvalues are not exactly shifted to one while the rest of the spectrum is
unchanged. Applying a spectral low-rank update to the preconditioner has an impact on the whole
eigenvalue distribution in most of the cases. However, as can be seen in the plots, the incremental
spectral preconditioner succeeds in recovering eigenvalues lying in the neighbourhood of zero and
in clustering more eigenvalues to one.



94 Effect of the low-rank updates on the spectrum of AMILU

−0.5 0 0.5 1 1.5 2 2.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

(a) 1−st Syst – k = 0

−0.5 0 0.5 1 1.5 2 2.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

(b) 10−th Syst – k = 30

−0.5 0 0.5 1 1.5 2 2.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

(c) 20−th Syst – k = 47

−0.5 0 0.5 1 1.5 2 2.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

(d) 31−th Syst – k = 53

Figure A.1: Spectrum of AMISLRU(k) for different systems of the sequence, where A is the matrix
bwm200.
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Figure A.2: Spectrum of AMISLRU(k) for different systems of the sequence, where A is the matrix
bfw398a.
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Figure A.3: Spectrum of AMISLRU(k) for different systems of the sequence, where A is the matrix
hor131.
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Figure A.4: Spectrum of AMISLRU(k) for different systems of the sequence, where A is the matrix
pores3.
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Figure A.5: Spectrum of AMISLRU(k) for different systems of the sequence, where A is the matrix
orsirr1.
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Figure A.6: Spectrum of AMISLRU(k) for different systems of the sequence, where A is the matrix
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Figure A.8: Spectrum of AMISLRU(k) for different systems of the sequence, where A is the matrix
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