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Abstract

Given the square complex matrices A and E , we consider their coupling by the
complex parameter t into A(t) = A + tE . The deviation matrix E is singular.
The complex parameter t varies in the completed complex plane and its modulus
can be unbounded.
This work on Homotopic Deviation theory has two components.
1. The purely algebraic aspect of the theory introduces new kinds of singularities
such as frontier and critical points.
2. Computer experiments are used to perform a qualitative analysis of Homotopic
Deviation in finite precision. For this aim, several graphical tools are developed.
As an application of this theory, the dependence of the structure of the regular pencil
is analyzed by means of the notion of frontier points.
This work also performs a homotopic backward analysis and contrasts it with the
classical normwise backward analysis. The thesis ends by an application of this
theory to Arnoldi’s method.

Résumé

Soient deux matrices carrées complexes A et E données. Nous considérons leur
couplage par le paramètre complexe t sous la forme A(t) = A + tE . La matrice de
déviation E est singulière. Le paramètre complexe t varie dans le plan completé
par le point à l’infini.
Ce travail sur la Déviation Homotopique a deux composantes.
1. L’aspect purement algébrique de la théorie introduit de nouveaux types de sin-
gularités tels que les points-frontière et les points critiques.
2. Des expériences sur ordinateur sont utilisées pour exécuter une analyse qualitative
en précision finie. Dans ce but, plusieurs outils graphiques sont développés.
Une application de la théorie est faite pour caractériser la structure d’un faisceau
régulier à l’aide des points-frontière.
Ce travail réalise aussi une analyse inverse homotopique et a compare avec l’analyse
inverse classique (de type normwise). La thèse se termine par une application de la
théorie à la méthode d’Arnoldi.

Keywords: Resolvent matrix, singular value decomposition, Jordan form, fron-
tier point, critical point, limit point, Lidskii’s theory, regular matrix pencil, norm-
wise backward analysis, homotopic backward analysis, invariant eigenvalue, evolving
eigenvalue, spectral portrait, frontier portrait, Krylov subspace methods, Arnoldi
method.
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General presentation

Homotopic Deviation theory, HD, is concerned with the properties of a linear cou-
pling by a complex parameter t of two square matrices A and E of order
n , yielding A(t) = A + tE . A = A(0) is the original matrix and E is the
deviation matrix, with 1 ≤ rank E = r ≤ n . Typically r ¿ n , but |t| can be
unbounded: t ∈ Ĉ = C ∪ {∞} .

Of special interest are the properties of the resolvent R(t, z) = (A(t) − zI)−1

when it exists, as well as the spectrum t 7→ σ(A(t)) , for (t, z) ∈ Ĉ× C .

The study starts with the formal factorization

A + tE − zI = (I + tE(A− zI)−1)(A− zI).

The singular value decomposition of E allows us to write E = UV H ,
with U, V ∈ Cn×r , so that

−E(A− zI)−1U = U(V H(zI − A)−1U) = UMz,

for z ∈ re(A) = C\σ(A) . The algebraic properties of the rational matrix map
z 7→ Mz ∈ Cr×r , for z ∈ re(A) are key concepts in the theory. For example, z ∈ C
is an eigenvalue of A(t) iff tµz = 1 , where µz is an eigenvalue of Mz and t ∈ Ĉ .

It is common wisdom in perturbation theory that, for z ∈ re(A) , the resolvent
R(t, z) is analytic for |t| < 1

ρ(Mz)
. But one has more at any z in re(A) such that

Mz is invertible: lim|t|→∞ R(t, z) = R(∞, z) ( 6= 0 for r < n ) exists, and R(t, z)
is analytic in t around ∞ (that is analytic in s = 1/t around 0 ) for |t| > ρ(M−1

z ) .
Points z in re(A) such that Mz is singular are called frontier points, which form
the frontier set F (A,E) = {z ∈ re(A), rankMz < r} . At a frontier point z , there
is only one possibility of analyticity for R(t, z) : analyticity around 0 . At a regular
point z ∈ re(A)\F (A, E) , the two possibilities coexist: analyticity around 0 and
∞ .

When the frontier set is discrete, it is easily characterized from the data A,U, V
as the (at most n − r ) roots of π̂(z) = detÂ(z) not in σ(A) , where Â(z) is the
augmented matrix

Â(z) =

[
zI − A −U

V H 0

]

of order n + r . The simplicity of this characterization is remarkable.
When they exist, the points z in F (A,E) such that ρ(Mz) = 0 are called critical
points. At such points z , R(t, z) has a finite representation: it is a polynomial in
t of degree ≤ r .



The companion study of t 7→ σ(A(t)) , and in particular of lim|t|→∞ σ(A(t)) re-
veals also very interesting properties when r < n . We define lim|t|→∞ σ(A(t)) =
{∞, Lim} : the set Lim consists of the limit points lim|t|→ λi(t) , of the eigenval-
ues λi(t) ∈ σ(A(t)) which are in C , at finite distance. When r = n , then Lim = ∅ :
all eigenvalues escape to ∞ . But when 1 ≤ r < n , Lim can be nonempty. When
0 ∈ σ(E) is semi-simple, Lim consists of n−r points which are simply characterized
as the eigenvalues of Π = PAP¹KerE , P being the eigenprojection for E on the
eigenspace Ker E .
When 0 ∈ σ(E) is defective, the theory is more difficult. The arithmetic mean of m
eigenvalues of A(t) converges to the point 1

m
tr (PAP¹M) which is at finite distance,

where m is the algebraic multiplicity, and P becomes the spectral projection on
the invariant subspace M = Ker Em associated with 0 ∈ σ(E) . The analysis of
individual eigenvalues requires to extend the Lidskii-Puiseux perturbation theory. A
complete characterization of Lim, the set of individual limits, is not always known.
Therefore, the theoretical analysis presented in Part I remains incomplete.

To compensate for the possible lack of theoretical prediction about Lim, visual-
ization tools based on the graphical representation of the spectral field t 7→ σ(A(t)) ,
as well as of the maps z 7→ ρ(Mz), ρ(M−1

z ) , are developed in Part II. These tools
allow us to perform a qualitative analysis of Homotopic Deviation. In particu-
lar, the homotopic backward analysis is contrasted with the normwise backward
analysis classically used in Numerical Analysis to assess the validity of computer
simulations. In this latter approach, the structure of the modification ∆A of A
is arbitrary with a constraint on ‖∆A‖ . Such a broad context does not allow us
to go further about A + ∆A − zI than the simple discrimination between exis-
tence/nonexistence of the inverse, which leads to the concept of normwise spectral
portrait: z 7→ 1/‖(A − zI)−1‖ . As useful as it is, this portrait does not measure
up to the spectral information provided by the homotopic portraits associated with
Mz .
The homotopic notions of analyticity in t at ∞ , of frontier and critical points
that can be associated with R(t, z) have no counterpart in normwise analysis. This
illustrates dramatically the computational wealth of HD.

The last chapter of the thesis is devoted to an attempt to use HD to further our
understanding of the success of the basic incomplete Arnoldi algorithm to compute
eigenvalues in finite precision.

To conclude we remark that, as computer simulation becomes ubiquitous in science
and engineering, there is an increasing concern about issues such as reliability, safety
and robustness for non linear structural dynamics. It becomes crucial to understand
the effects that uncertainties may have on non linear models for natural and man-
made systems which are used in Engineering, as well as in physical and biological
Sciences. We view the theory of HD which is to be presented (for the first time in



a single written document) as a necessary and very preliminary first step towards a
satisfactory understanding of the issues at stake. This work presents the mathemat-
ical foundations. Much, much more research is needed to transform basic homotopic
tools into useful validation concepts for nonlinear model theories and simulations.





Part I

HD in exact arithmetic: the theory





Chapter 1

Background in Matrix Algebra

1.1 Introduction

Let Cn represent the space of column vectors x with complex components ζj, j =
1, · · · , n . Then xH is the row vector with components ζ̄j . The Euclidean scalar
product on Cn is given by < x, y >= yHx . The vectors x and y are said to be
orthogonal when < x, y >= 0 . Let {xj : j = 1, · · · , n} be a basis of Cn , that is
a set of n linearly independent vectors. The basis is orthonormal if and only if
< xi, xj >= δij for i, j = 1, · · · , n where δij is the Kronecker symbol, equal to 1 if
i = j and 0 if i 6= j .
Let {aj : j = 1, · · · , r} be a set of r vectors of Cn . The rectangular matrix of size
n × r whose columns are the vectors a1, · · · , ar is denoted by A = [a1, · · · , ar] ∈
Cn×r .

If a = (aij) for i = 1, · · · , n and j = 1, · · · , r , then A = (aij) ∈ Cn×r . The
range of the matrix A ∈ Cn×r is the subspace

Im A = {Ax | x ∈ Cr} ⊂ Cn,

generated by the r column vectors of A . The rank of a matrix is equal to the
dimension of the range of A , that is dim (Im A) = rank A . The kernel ( or null
space ) of A is defined by

Ker A = {x ∈ Cr | Ax = 0} ⊂ Cr.

A matrix belonging to Cn×n is said to be square matrix. The transpose of a
matrix A ∈ Cn×r is a matrix B ∈ Cr×n whose elements are defined by bij = aji

for i = 1, · · · , r and j = 1, · · · , n . The transpose of a matrix A is denoted by AT .
The transpose conjugate matrix of matrix A is denoted by AH and is defined by

AH = A
T

= AT , where the bar denotes the (element-wise ) complex conjugation. If
A = AH , then A is Hermitian. By definition, a hermitian matrix must be square.
If a real matrix A ∈ Rn×n is hermitian, then it is said to be symmetric.
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The n × n identity matrix In is defined by the column partitioning In = I =[
e1 · · · en

]
where the n×1 column vector ek is the k th canonical basis vector

whose unique nonzero entry is its k th entry which is equal to 1 . The identity matrix
satisfies the equality AI = IA = A for every square matrix A of order n . The
inverse of a square matrix, when it exists, is a matrix C such that CA = AC = I .
The inverse of A is denoted by A−1 . If A−1 exists, then A said to be nonsingular
or invertible, or regular. Otherwise, it is called singular.
Let A and B be matrices of compatible dimensions, then

(AB)H = BHAH . (1.1.1)

Similarly, the product of two invertible square matrices A and B , satisfies

(AB)−1 = B−1A−1. (1.1.2)

The Sherman-Morrison formula [43] states that

(A + uvH)−1 = A−1 − (A−1u)(vHA−1)

1 + vHA−1u
, (1.1.3)

provided that A is invertible and vHA−1u =< A−1u, v > 6= −1 .

The Sherman-Morrison-Woodbury formula [38] gives the expression for the in-
verse of (A + UV H) where A ∈ Cn×n and U, V ∈ Cn×r :

(A + UV H)−1 = A−1 − A−1U(Ir + V HA−1U)−1V HA−1, (1.1.4)

provided that A of order n and (Ir + V HA−1U) of order r are invertible. The
formula (1.1.4) shows that a rank r deviation added to a matrix entails a rank r
deviation in the inverse.

1.2 Norms

The notions of size and distance for a vector space are described by norms. A norm
is a function ‖ · ‖ : Cn → R that assigns a real-valued length to each vector. It is
called a norm on Cn and is denoted by ‖ · ‖Cn . In order to conform to a reasonable
notion of length, a norm must satisfy the following three conditions. For all vectors
x and y and for all scalars α ∈ C ,

(1) ‖x‖ ≥ 0 , and ‖x‖ = 0 if and only if x = 0 ,

(2) ‖x + y‖ ≤ ‖x‖+ ‖y‖ ,

(3) ‖αx‖ = |α| ‖x‖ .

An important class of vector norms, consists of the p -norms. We cite the most
frequently used ones, corresponding to p = 1, 2,∞ respectively:
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‖x‖1 =
∑n

j=1 |ζj| ,

‖x‖2 = (
∑n

j=1 |ζj|2)1/2 ,

‖x‖∞ = max1≤j≤n |ζj| .
The norm ‖x‖2 is the Euclidean norm, deriving from the complex scalar product:
‖x‖2

2 =< x, x >= xHx .

By considering a vector norm on Cnr , one can define a norm for A ∈ Cn×r . To take
advantage of the structure L(Cr,Cn) , one considers arbitrary vector norms ‖ · ‖Cr

and ‖ · ‖Cn given on Cr and Cn respectively. The induced norm (or subordinate
norm) on matrices in Cn×r is derived from vector norms in Cr and Cn as follows:

‖A‖ = max
06=x∈Cr

‖Ax‖Cn

‖x‖Cr

, A ∈ Cn×r.

When the norm ‖ · ‖1 is used for both Cr and Cn , then

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij|.

We have

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij|,

when the norm ‖ · ‖∞ is used for both Cr and Cn .
Let A ∈ Cn×r and B ∈ Cr×q . For any x ∈ Cq we have ‖Bx‖ ≤ ‖B‖‖x‖ [40],
hence

‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖.
This implies that an induced norm satisfies the following submultiplicative property

‖AB‖ ≤ ‖A‖‖B‖.

Matrix norms do not have to be induced by vector norms. A matrix norm is a
particular vector norm which has the submultiplicative property.

Not all norms for A satisfy the submultiplicative property. For instance, ‖A‖∆ =

max |aij| defines a matrix norm but for A = B =

[
1 1
1 1

]
, ‖AB‖∆ > ‖A‖∆‖B‖∆ .

A matrix norm of practical importance which is not induced by a vector norm
is the Hilbert-Schmidt or Frobenius norm, defined for A ∈ Cn×r by

‖A‖F =

(
n∑

i=1

r∑
j=1

|aij|2
)1/2

= (trAHA)1/2.
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An m × m square matrix Q is called unitary if QHQ = QQH = I . This is
equivalent to say that an m ×m square matrix Q ∈ Cm×m is called unitary if its
columns forms an orthonormal basis of Cm .

An important property of unitary matrices is that they preserve Euclidean norms,
because inner products are preserved. Via (1.1.1), for unitary matrix Q ∈ Cm×m

and vectors x, y ∈ Cm ,
(Qx)H(Qy) = xHy,

which simply shows that ‖Qx‖2 = ‖x‖2 , and also ‖Q‖2 = 1 .
Matrix 2 -norm and Frobenius norm are invariant under multiplication by unitary
matrices. In fact, for any A ∈ Cm×n and unitary matrix Q ∈ Cm×m , it is easy to
show [52] that

‖QA‖2 = ‖A‖2, (1.2.1)

and
‖QA‖F = ‖A‖F . (1.2.2)

1.3 Eigenvalues of matrices

Let A be a real or complex square matrix of order n . The eigenvalue problem
is:

find λ ∈ C and 0 6= x ∈ Cn such that Ax = λx. (1.3.1)

The scalar λ in (1.3.1) is called an eigenvalue of A and 0 6= x ∈ Cn is a right
eigenvector associated with λ . The complex number λ is an eigenvalue of the
matrix A iff it is a zero of the so-called characteristic polynomial π(z) :

π(z) = det(zI − A), (1.3.2)

the determinant of zI−A . The polynomial π(z) has n zeros in C , not necessarily
distinct. The set of such zeros forms the spectrum of A and is denoted by σ(A) .
This means that σ(A) = {λ ∈ C : π(λ) = 0} .

Proposition 1.3.1 If λ is an eigenvalue of A ∈ Cn×n then λ̄ is an eigenvalue
of AH . An eigenvector y of AH associated with the eigenvalue λ̄ is called left
eigenvector of A .

The eigenvalue λ , the right and left eigenvectors, x and y , satisfy the relations

Ax = λx , yHA = λyH ,

for x, y 6= 0 .

The spectral radius of matrix A is a real non negative number defined by

ρ(A) = max{|λ|; λ ∈ σ(A)}.
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Let ‖·‖ denote any norm on Cn and also the induced matrix norm on Cn×n . Then
we have

ρ(A) ≤ ‖A‖.
The sum of all diagonal elements of matrix A ∈ Cn×n is called the trace of matrix
A .

tr(A) = Σn
i=1aii.

If λ1, · · · , λn are eigenvalues of matrix A ∈ Cn×n ( not necessarily distinct), then

tr(A) =
n∑

i=1

λi, (1.3.3)

and
det(A) = Πn

i=1λi. (1.3.4)

Let us denote the set of distinct eigenvalues of A by

{λ1, · · · , λp ; p ≤ n},
then

a) An eigenvalue λ of A is said to have algebraic multiplicity m if it is a root
of multiplicity m of the characteristic polynomial, which means

π(z) = (z − λ)mπ1(z); π1(λ) 6= 0.

b) The geometric multiplicity of λ ∈ σ(A) , denoted by g , is the number of
linearly independent eigenvectors which correspond to λ , that is

g = dim Ker(A− λI).

It is clear that 1 ≤ g ≤ m .

c) An eigenvalue λ of algebraic multiplicity 1 is called simple; otherwise it is
said to be multiple.

d) An eigenvalue of multiplicity m > 1 is said to be semi-simple if it admits m
linearly independent eigenvectors, that is g = m . Otherwise it is said to be
defective.

e) A matrix is said to be derogatory if the geometric multiplicity of at least one
of its eigenvalues is larger than one.

A subspace S is said to be invariant under a square matrix A if AS ⊂ S . In
particular, for any eigenvalue λ of A the subspace Ker (A− λI) is invariant under
A . The subspace Ker (A−λI) is called the eigenspace associated with λ : it consists
of all the eigenvectors of A associated with λ , plus the vector 0 .
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1.3.1 The Hadamard-Gershgorin Theorem

In some situations one wishes to have a rough (global) idea of where the eigenvalues
lie in the complex plane, by directly exploiting some knowledge on the entries of the
matrix A . We already know a simple localization result that uses any matrix norm,
since we have

|λi| ≤ ‖A‖,
i.e., any eigenvalue belongs to the disk centered at the origin and of radius ‖A‖ . A
more precise localization result is provided by the following theorem often attributed
to Gershgorin, although it was already known to Hadamard.

Theorem 1.3.2 Any eigenvalue λ of a matrix A is located in at least one of the
n closed disks of the complex plane centered at aii and having the radius

j=n∑

j=1, j 6=i

|aij|.

In other words,

∀ λ ∈ σ(A), ∃i such that |λ− aii| ≤
j=n∑

j=1, j 6=i

|aij|.

Let us denote the n closed disks of the complex plane defined in Theorem 1.3.2 by
Di = {z ∈ C : |z − aii| ≤

∑j=n
j=1, j 6=i |aij|} , i = 1, . . . , n . It is shown that if the

Gershgorin disk Di is isolated from the other disks, then it contains precisely one
of A ’s eigenvalues [55].

1.4 The adjoint matrix

An important scalar-valued function associated with the elements of a square ma-
trix is the determinant. According to Cramer’s rule, solving linear systems can be
realized theoretically by means of determinants.

Let A = [aij]
n
i,j=1 be an n×n matrix. A minor of order n−1 of A is defined to

be the determinant of a submatrix of A obtained by striking out one row and one
column from A . The minor obtained by striking out the i th row and j th column
is denoted by Mij ( 1 ≤ i, j ≤ n ).

For an arbitrary n× n matrix A and any i, j with 1 ≤ i, j ≤ n , one has

detA = ai1Ai1 + ai2Ai2 + · · ·+ ainAin (1.4.1)

or, similarly,

detA = a1jA1j + a2jA2j + · · ·+ anjAnj (1.4.2)
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where Apq = (−1)p+qMpq . The numbers

Apq (1 ≤ p, q ≤ n) (1.4.3)

are called the cofactors of the elements apq , and therefore, formulas (1.4.1) and
(1.4.2) are referred to as, respectively, row and column cofactor expansions of det A .

The adjoint of matrix A , written by adj A , is defined to be the transposed matrix
of cofactors of A [37, 43]. Thus

adjA = ([Aij]
n
i,j=1)

T . (1.4.4)

Also adj (αA) = αn−1 adj A for α ∈ C .

Example 1.4.1 Let A =




1 2 1
0 1 0
1 1 1


 . Then

adjA =




∣∣∣∣
1 0
1 1

∣∣∣∣ −
∣∣∣∣

0 0
1 1

∣∣∣∣
∣∣∣∣

0 1
1 1

∣∣∣∣

−
∣∣∣∣

2 1
1 1

∣∣∣∣
∣∣∣∣

1 1
1 1

∣∣∣∣ −
∣∣∣∣

1 2
1 1

∣∣∣∣
∣∣∣∣

2 1
1 0

∣∣∣∣ −
∣∣∣∣

1 1
0 0

∣∣∣∣
∣∣∣∣

1 2
0 1

∣∣∣∣




T

=




1 −1 −1
0 0 0
−1 1 1


 ,

where

∣∣∣∣
a b
c d

∣∣∣∣ = det

[
a b
c d

]
.

4

Theorem 1.4.1 [43] For any nonsingular n× n matrix A ,

A−1 =
1

detA
adjA. (1.4.5)

An immediate corollary of Theorem 1.4.1 is that for z 6∈ σ(A) , one has

(zI − A)−1 =
1

π(z)
adj(zI − A). (1.4.6)

A nonzero scalar polynomial p(λ) is defined as an annihilating polynomial of the
matrix A if p(A) = 0 . There are many annihilating polynomials for every matrix
A . One of them has lowest degree [43]. The monic annihilating polynomial of the
least possible degree is called minimal polynomial for A and is denoted by m(z) .



14 Background in Matrix Algebra

But the adjoint matrix of zI −A can be derived by an effective formula [37] which
uses the characteristic polynomial

π(z) = det(zI − A) = zn − p1z
n−1 − p2z

n−2 − · · · − pn, for z ∈ C.

where p1 = tr A and pn = (−1)n−1 det A .
It is shown [37] that the adjoint matrix of zI − A is

adj(zI − A) = zn−1I + B1z
n−2 + B2z

n−3 + · · ·+ Bn−1, (1.4.7)

where
B1 = A− p1I, B2 = A2 − p1A− p2I, . . .

and, in general,

Bk = Ak − p1A
k−1 − p2A

k−2 − · · · − pkI (k = 1, 2, . . . , n− 1). (1.4.8)

The matrices B1, . . . , Bn−1 can be computed in succession, by the recurrence rela-
tion

Bk = ABk−1 − pkI (k = 1, 2, . . . , n− 1; B0 = I).

Moreover,

B1 = A− (trA)I, Bn−1 = (−1)n−1adjA, and ABn−1 − pnI = 0, (1.4.9)

with pn = (−1)n−1 det (A) . When A is nonsingular, then pn 6= 0 , and it follows
from (1.4.9) that Bn−1 has rank n and we get back (1.4.5), that is

A−1 =
1

pn

Bn−1 =
1

detA
adjA.

When A is singular, ABn−1 = 0 : the n columns of Bn−1 belong to Ker A 6= {0}
and rank Bn−1 ≤ dim KerA , which represents the geometric multiplicity of 0 ∈
σ(A) .

Let A ∈ Cn×n and let B(z) = adj (zI − A) . As noted in (1.4.7), B(z) is a monic
matrix polynomial over C of order n and degree n − 1 . Let c(z) denote the
(monic) greatest common divisor of the elements of B(z) . Then it is shown [43]
that π(z) is divisible by m(z) and π(z)/m(z) is the polynomial c(z) just defined:

π(z) = c(z)m(z), for m(z) = minimal polynomial = Πd
i=1(z−λi)

li with d distinct
eigenvalues λi ∈ σ(A) .

Now degree c(z) ≥ 0, and c(z) ≡ 1 ⇔ degree c(z) = 0 ⇔ A is non derogatory ⇔
π(z) = m(z) .

When A is derogatory, one gets the reduced adjoint

C(z) =
1

c(z)
B(z),

for the matrix A . This causes a simplification for the resolvent of derogatory ma-
trices.
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1.5 Projections

In this section, we shall introduce the fundamental tool consisting of projection ma-
trices. A projection is a square matrix P that transforms Cn into a subspace of
itself. Such a matrix is idempotent, i.e. P 2 = P .
When P is a projection, then (I−P ) is a projection too and Ker (P ) = Im (I−P )
such that Ker (P )∩ Im (P ) = {0} . In addition, every element x of Cn can be
written uniquely as x = Px+(I−P )x . As a result, the space Cn can be decomposed
as the direct sum

Cn = Ker(P )⊕ Im(P ).

Conversely, every pair of subspaces S1 and S2 that form a direct sum of Cn define a
unique projection P such that Im (P ) = S1 and Ker (P ) = S2 [34]. The projection
P is said to be the orthogonal projection onto S1 , when the subspace S2 is the
orthogonal complement of S1 , i.e., when

Ker(P ) = Im(P )⊥.

Proposition 1.5.1 A projection matrix P is orthogonal if and only if it is Her-
mitian, that is PH = P = P 2 .

1.6 Equivalence transformation on A ∈ Cm×n

We recall that the rank of a matrix is invariant under an equivalence transformation.

1.6.1 Singular Value Decomposition

The singular value decomposition (SVD) is an equivalence transformation on
A ∈ Cm×n . We assume without loss of generality that m ≥ n . The singular
values of the m × n rectangular matrix A are the non-negative square roots of
the eigenvalues of the square matrix AHA of order n . The n × n square matrix
Â = AHA is Hermitian and positive semidefinite, that is for every 0 6= x ∈ Rn ,
xHÂx ≥ 0 . This means that the singular values of matrix A (the eigenvalues of Â )
are real and nonnegative and we can write them in decreasing order of magnitude
0 ≤ σn ≤ · · · ≤ σ1 . The m×m matrix AAH is also Hermitian positive semidefinite.
Its largest n eigenvalues are identical to those of AHA , and the others are zero.

The n eigenvectors of AHA are called right singular vectors for A . We denote
them by v1, · · · , vn , where vi is the eigenvector for the eigenvalue σ2

i . The m eigen-
vectors of AAH are called left singular vectors which are denoted by u1, · · · , um ,
where u1 through un are eigenvectors for eigenvalues σ2

1 through σ2
n , and un+1

through um are eigenvectors for the zero eigenvalues of AAH .

Theorem 1.6.1 [38] Let A ∈ Cm×n and rank A = r ≤ min(m,n) . There exist
unitary matrices U1 and V1 of orders m and n respectively such that UH

1 AV1 =
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diag(σi) = Σ is the following m× n matrix

Σ =




σ1

. . .

σr

0
. . .

0




,

whose only nonzero elements are σ1, σ2, · · · , σr > 0 on the diagonal where σ1 ≥
σ2 ≥ · · · ≥ σr > 0 , for r = rank A = rank AAH = rank AHA .

By comparing columns in the equations AV1 = U1Σ and AHU1 = V1Σ
H , we can

see that Avi = Σiui and AHui = Σivi for i = 1, · · · , r . The left singular vectors
u1, · · · , um (resp. the right singular vectors v1, · · · , vn ) are used to define the m×m
(resp. n× n ) matrix U1 (resp. V1 ) in Theorem 1.6.1.

Under the assumptions of Theorem 1.6.1, we have A = U1ΣV H
1 . Now let us denote

the first r columns of the matrix U1Σ by U and the first r columns of the matrix
V1 by V . Then we get

A = UV H . (1.6.1)

Using the definitions of the matrices U and V above, every matrix A ∈ Cm×n of
rank r can be written under the form (1.6.1). This decomposition plays a key
role in HD (with m = n ).

The 2 -norm and Frobenius norm of A can be expressed in terms of singular values:
for σ1 ≥ σ2 ≥ · · · ≥ σr , where r is the rank of A ,

‖A‖2
F = σ2

1 + · · ·+ σ2
r ,

‖A‖2 = σ1,

min
x6=0

‖Ax‖2

‖x‖2

= σr.

1.6.2 The Schur complement matrix

In linear algebra, the Schur complement (named after Issai Schur) of an invertible
block matrix A within a larger matrix plays an important role. It is defined as
follows. Suppose that the 4 blocks A,B, C, D are respectively of size p × p , p ×
q , q × p and q × q , and that A is invertible. Let

N =

[
A B
C D

]
, (1.6.2)



1.6 Equivalence transformation on A ∈ Cm×n 17

be so that N is a (p + q)× (p + q) matrix. The Schur complement of the block A
in the matrix N [43] is the q × q matrix

S = D − CA−1B. (1.6.3)

It satisfies

detN = det

[
A B
C D

]
= detS detA, (1.6.4)

which is in accord with the formula for the determinant of a 2× 2 matrix with the
additional assumption that det A 6= 0 . Therefore det N = 0 ⇔ det S = 0 . We make
three remarks:

1. The Schur complement (1.6.3) arises as the result of performing a block Gaussi-
an elimination by multiplying the matrix N from the right with the “upper
triangular” block matrix

U =

[
A−1 −A−1B
0 Iq

]
, (1.6.5)

which yields

NU =

[
Ip 0

CA−1 S

]
. (1.6.6)

2. One can also block-diagonalize N as follows.

[
I 0

CA−1 I

] [
A 0
0 S

] [
I A−1B
0 I

]
=

[
A B
C D

]
. (1.6.7)

The matrix N has the equivalent block diagonal form

[
A 0
0 S

]
.

3. For the case p = 1 , A = α is a scalar, D is a q× q matrix and both BT = b
and C = c are q × 1 matrices. It is shown ([43], page 65 ) that

det

[
α bT

c D

]
= α detD − bT adjD c. (1.6.8)

When det D 6= 0 , (1.6.8) can be written as det D(α − bT D−1c) , where the
scalar α− bT D−1c is the 1× 1 Schur complement of D . The formula (1.6.8)
is valid even if α = 0 , or D is not invertible. This identity will be important
for our analysis of Arnoldi’s method.
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1.7 Similarity transformation on A ∈ Cn×n

In many applications, the reduction of a square matrix into a simpler form by
similarity is useful. We shall be concerned with diagonal, Schur and Jordan forms.
Here similarity means a transformation that preserves the eigenvalues of a matrix.

Definition 1.7.1 Two matrices A and B are said to be similar if there is a non-
singular matrix X such that

A = XBX−1.

The mapping B 7→ A is a similarity transformation, which preserves the eigenvalues
of the matrix A . An eigenvector uB of matrix B is transformed into the eigenvector
uA = XuB of matrix A .

1.7.1 Diagonalizability

The simplest desired form in which a matrix can be transformed is the diagonal
form. In fact, the matrix A is diagonalizable iff it is similar to a diagonal matrix.
This transformation is not always possible. More precisely, the matrix A is diag-
onalizable iff it possesses n linearly independent eigenvectors xi ( i = 1, · · · , n ),
that is iff it can be decomposed into the form

A = XDX−1, (1.7.1)

where the i th column of X (resp. the i th column of X−1 ) is the right eigenvector
xi (resp. the left eigenvector xH

i ) associated with the eigenvalue λi [34].
The decomposition (1.7.1) exists for every matrix with distinct eigenvalues. But not
all matrices with multiple eigenvalues are similar to a diagonal matrix.

Proposition 1.7.2 [34] A matrix A is diagonalizable iff its eigenvalues are semi-
simple. In this case, the matrix A is called semi-simple.

When A is not diagonalizable, it is called defective. In practice, even if A is
diagonalizable, the matrix X , though invertible, may be ill-conditioned with respect
to inversion. This could make X−1AX difficult to compute in finite precision.

1.7.2 Unitary Diagonalization

It may happen that not only does an n×n matrix A have n linearly independent
eigenvectors, but these can be chosen to be orthogonal. In such a case, A is unitarily
diagonalizable, that is , there exists a unitary matrix Q such that

A = QΛQH . (1.7.2)

This is both an eigenvalue decomposition and a singular value decomposition, except
for the matter of complex signs ( σ = |λ| for λ ∈ C ) of the entries of Λ . By
definition, we say that a matrix A is normal iff AAH = AHA . The class of
matrices that are unitarily diagonalizable has the following elegant characterization.
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Theorem 1.7.3 A matrix is unitarily diagonalizable if and only if it is normal.

Hermitian matrices are therefore unitarily diagonalizable.

Theorem 1.7.4 A Hermitian matrix is unitarily diagonalizable, and its eigenvalues
are real.

Another example for a unitarily diagonalizable matrix is given by unitary matrices.
They have eigenvalues on the unit circle centered at 0 in the complex plane.

Theorems 1.7.3 and 1.7.4 follow from Theorem 1.7.5 below.

1.7.3 The Schur form

Any matrix A , is unitarily similar to an upper triangular matrix which is the Schur
form for A . This is what the following existence theorem asserts.

Theorem 1.7.5 [34] For every matrix A , there exists a unitary matrix Q such
that S = QHAQ is an upper triangular matrix whose diagonal elements are the
eigenvalues λ1, · · · , λn in an arbitrary order.

The chosen order for the eigenvalues {λi} determines the Schur basis Q up to a
unitary block-diagonal matrix. The matrix A in Theorem 1.7.5 is normal iff the
matrix S is diagonal. We get the theorems 1.7.3 and 1.7.4 as corollaries.

Similarity transformation by unitary matrices is optimal from a computational point
of view. The so-called algorithm QR, provides the Schur form after an infinite
number of steps. In practice, it is the most powerful and reliable software to compute
eigenvalues and roots of polynomials of degree less than a few 103 .

1.7.4 The Jordan (canonical) form

The Jordan form is an upper bidiagonal matrix with only ones or zeros on
the first super diagonal. This reduction is always possible as proved by C. Jordan.
When A is in Jordan form, the invertible Jordan basis matrix X replaces the
unitary Schur matrix Q , and the bidiagonal matrix J = D + U replaces the upper
triangular matrix S = D + N in the Schur form. Here D is a diagonal matrix of
eigenvalues, N is a triangular nilpotent matrix, and U is a matrix with 1 or 0
on its first super-diagonal and 0 elsewhere. The following theorem establishes the
Jordan form of an arbitrary matrix.

Theorem 1.7.6 [34] Let A be a matrix of order n with distinct eigenvalues λ1, · · · , λp

( p ≤ n ). Then there exists an invertible matrix X such that

X−1AX = diag(Jij) = J, (1.7.3)
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where

Jij = λiI + Uij

and Uij is a matrix of order kij of the form

Uij =




0 Ikij−1

0 0


 (j = 1, · · · , gi),

that is there are gi blocks Uij corresponding to a particular λi .

The set of Jordan blocks Jij (j = 1, · · · , gi) associated with λi constitutes the
Jordan box associated with λi . The order of the Jordan box Ji is

mi = ki1 + · · ·+ kigi
,

and it contains gi blocks, so

gi ≤ mi.

Here, we list some important consequences of Theorem 1.7.6.

a) For every integer l and each eigenvalue λi , one has the inclusion

Ker(A− λiI)l+1 ⊃ Ker(A− λiI)l in Cn.

b) The above property implies that there is a least integer li ≥ 1 such that

Ker(A− λiI)li+1 = Ker(A− λiI)li ,

and in fact Ker (A − λiI)l = Ker (A − λiI)li for all l ≥ li . The integer li is
called the index (or ascent) of λi .

c) The subspace

Mi = Ker(A− λiI)i (1.7.4)

is invariant under A . Moreover,

Cn = ⊕p
i=1Mi,

and we have

dim(Mi) = mi,

which is the algebraic multiplicity of λi .
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d) Since Cn is the direct sum of the subspaces Mi, i = 1, · · · , p , each vector
x ∈ Cn can be written in a unique way as

x = x1 + x2 + · · ·+ xi + · · ·+ xp,

where xi is a member of the subspace Mi . The linear transformation defined
by

Pi : x → xi

is a projection onto Mi along the direct sum of the subspaces Mj, j 6= i .
The family of projections Pi, i = 1, · · · , p satisfies the following properties,

Im(Pi) = Mi (1.7.5)

PiPj = PjPi = 0, if i 6= j (1.7.6)
p∑

i=1

Pi = I. (1.7.7)

Any family of projections that satisfies the above three properties is uniquely
determined and is associated with the decomposition of Cn into the direct
sum of the images of the P ′

is [49].

The matrix representation J of A in the new basis described in (1.7.3) can be
expanded as follow,

X−1AX = J =




J1

J2

. . .

Ji

. . .

Jp




(1.7.8)

where each Ji corresponds to the subspace Mi associated with the eigenvalue λi .
The size of Ji is mi and its structure is as follows,

Ji =




Ji1

Ji2

. . .

Jigi




with

Jik =




λi 1
. . . . . .

λi 1
λi


 , k = 1, . . . , gi.
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Each of the blocks Jik corresponds to a different eigenvector associated with the
eigenvalue λi .

Example 1.7.1 When the size of every Jordan block Jik in each Jordan box Ji

corresponding to the matrix A ∈ Cn×n is one, the matrix A is diagonalisable. Such
a matrix is semi-simple ( gi = mi for all eigenvalues).

Example 1.7.2 For the matrix A defined by

A =




1 0 2 0 0
0 1 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 1




,

the Jordan form, J , and the similarity transformation matrix, X , are

J =




0 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




, X =




2 2 −2 0 0
0 1 −1 −1 0
−1 0 1 0 0
0 0 1 0 0
0 1 0 0 1




respectively such that X−1AX = J =

[
J1

J2

]
where J1 = [0]1×1 ,

J2 =




J21

J22

J23


 , for J21 =

[
1 1
0 1

]
and J22 = J23 = [1]1×1 .

The complete Jordan decomposition of A is

J = diag

[
[0],

[
1 1
0 1

]
, [1], [1]

]
.

4

1.8 Spectral decomposition

Let λ1, · · · , λp be the distinct eigenvalues of A . The spectral projection associated
with λi of algebraic multiplicity mi is the projection Pi on the invariant subspace
Mi = Ker (A − λiI)mi parallel to

⊕
j 6=i Mj . The following spectral decomposition

exists for every matrix A ∈ Cn×n .
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Theorem 1.8.1 [34] Any matrix A possesses a spectral decomposition of the form

A =

p∑
i=1

(λiPi + Di), Dli
i = 0, (1.8.1)

where Di = (A− λiI)Pi and li is the index of λi .

By theorem 1.7.6, we have A = XJX−1 where J is a block-diagonal matrix con-
sisting of p Jordan boxes B1, · · · , Bp . The box Bi is an mi ×mi matrix of the
form

Bi = λiImi
+ Ni

where Ni is a matrix whose only non-zero elements appear on the first super-
diagonal and can be taken to be equal to unity.

Let Xi (resp. XH
i∗ ) be the matrix constructed by the mi columns of X (resp.

rows of X−1 ) which are associated with λi . The column vectors of Xi are a basis
for Mi which possesses as the adjoint basis the corresponding row vector of X−1 ,
that is XH

i∗Xi = Imi
. The matrix

Pi = XiX
H
i∗

represents the projection on Mi parallel to
⊕

j 6=i Mi = {x ∈ Cn : XH
i x = 0} .

If A is diagonalizable, then for each eigenvalue λi the invariant subspace Mi is
identical to the eigenspace Ker (A− λiI) , that is li = 1 , Di = 0 . In this case it is
said the spectral projection Pi reduces to the eigenprojection.

Corollary 1.8.2 [34] The spectral decomposition of a diagonalizable matrix A is
of the form

A =

p∑
i=1

λiPi, (1.8.2)

where Pi is the eigenprojection associated with λi .

Proposition 1.8.3 [34] The transpose conjugate matrix AH admits the following
Jordan decomposition

AH =

p∑
i=1

(λ̄iP
H
i + DH

i ). (1.8.3)

The Proposition 1.8.3 shows that λi and λ̄i have the same multiplicities and indices
in A and AH respectively.



24 Background in Matrix Algebra

1.9 Matrix polynomials and pencils

1.9.1 Matrix polynomials, PEVP, and PEP

We consider, the matrix polynomial

P (z) = zmAm + zm−1Am−1 + · · ·+ A0, (1.9.1)

where Ak ∈ Cn×n, k = 0, · · · ,m and z ∈ C . The number m is called the degree
of the matrix polynomial, provided Am 6= 0 . The number n is called the order of
the matrix polynomial [37].
Next we consider the scalar polynomial of degree ≤ nm

detP (z) = det(P (z)) =
nm∑
j=0

ζjz
j (1.9.2)

with ζnm = det (Am) and ζ0 = det (A0) . We write

Z = Z(detP (z)) = {z ∈ C; detP (z) = 0}. (1.9.3)

When det P (z) is not identically zero, it is said that P (z) is regular [43]. In this
case det P (z) has at most nm roots in C .

When det P (z) ≡ 0 , then the matrix polynomial P (z) is called singular and
Z(detP (z)) = C .

Classically, two problems are associated with P (z) in (1.9.1) for m ≥ 1 :

find λ ∈ C such that detP (λ) = 0, (1.9.4)

find λ ∈ C and X ∈ Cn×nm such that P (λ)X = 0. (1.9.5)

We refer to (1.9.4) as a polynomial eigenvalue problem, PEVP, and to (1.9.5) as a
polynomial eigenproblem, PEP.
These two problems are related but not equivalent. For instance, for m = 1 , where
X ∈ Cn×n and A1 = In (where we have an ordinary eigenvalue problem), the
condition numbers of the eigenvalues and eigenvectors may be decoupled [34, 23].
In the generic situation, one has:

Lemma 1.9.1

(a). card (Z( det P (z))) = nm iff ζnm 6= 0, that is Am invertible.

(b). 0 6∈ Z( det P (z)) iff ζ0 6= 0, that is A0 invertible.

Proof. Clear by (1.9.2) 2

Exceptional cases correspond to less than nm roots (iff ζnm = 0 ), or to at least
one zero root (iff ζ0 = 0 ).
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1.9.2 Matrix pencils, GEVP, and GEP

A matrix pencil A− zB is a particular case of matrix polynomial (1.9.1) for which
we have m = 1 , A1 = −B and A0 = A in (1.9.1). A matrix pencil (A, B) =
{A− zB : z ∈ C} is regular if det( A− zB ) is not identically zero [37, 34]. Here,
we restrict our study to regular matrix pencils.

A generalized eigenvalue problem, GEVP, consists in finding the eigenvalues of the
pencil A− zB defined by

sp(A,B) = {λ ∈ C : det(A− λB) = 0}, (1.9.6)

where
z 7→ det(A− zB) (1.9.7)

is a polynomial of degree n iff B is nonsingular . This means that GEVP has
n finite eigenvalues iff rank B = n . These are the roots of the scalar polynomial
(1.9.7).

When B is nonsingular then sp(A,B) = sp(B−1A, I) = sp(B−1A) . This sug-
gests a method for solving (1.9.6) when B is regular:

• Solve BC = A for C using (say) Gaussian elimination with pivoting.

• Use the QR algorithm to compute the eigenvalues of C .

Note that when B is ill-conditioned, a popular alternative approach to the A−λB
problem is the QZ method [38, 10].

The generalized eigenproblem, GEP, consists in finding λ ∈ sp(A,B) and
0 6= x ∈ Cn an associated eigenvector such that

Ax = λBx x 6= 0. (1.9.8)

The eigenvectors generate a basis X ∈ Cn×n iff they are independent.

When B is rank deficient, then sp(A,B) may be finite, empty, or infinite. This is
shown by the example 1.9.1.

Example 1.9.1

(i) For A =

[
1 2
0 3

]
and B =

[
1 0
0 0

]
, we have sp(A,B) = {1} .

This means that sp(A,B) is a finite set.

(ii) For A =

[
1 2
0 3

]
and B =

[
0 1
0 0

]
, we have sp(A,B) = ∅ .

(iii) For A =

[
α 0
0 0

]
and B =

[
β 0
0 0

]
, we have sp(A,B) = C .

This means that sp(A,B) is an infinite set. In this case Ker A∩Ker B 6= {0} .

4
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1.9.3 Linearization of a PEP by augmentation

Lemma 1.9.2 The PEP in (1.9.5) is equivalent to a generalized eigenproblem,
GEP, of the form

Aξ = λBξ, ξ ∈ Cnm (1.9.9)

where A (resp. B ) is in block-companion (resp. block-diagonal) form of order nm
with blocks of order n .

Proof. Let In be the identity matrix of order n . Using the following block struc-
tures

A =




0 In 0 · · · 0

0 0 In
. . .

...
...

. . . 0
In

−A0 −A1 −A2 · · · −Am−1




, (1.9.10)

and

B =




In

In

. . .

In

Am




, (1.9.11)

it is easy to check that

ξ =




x
λx
...

λm−2x
λm−1x




, (1.9.12)

with 0 6= x ∈ Cn , satisfies (1.9.9). Therefore rankB = rank Am .

¤



Chapter 2

Theory of Homotopic Deviation, I

2.1 Introduction

The coupling of the square matrices A and E by the complex parameter t into
A(t) = A + tE , t ∈ C is Inexact Computing. The matrix A becomes A(t) by
addition of the matrix tE which has a fixed structure E as t varies in C . The
matrix E is the deviation matrix.

Let B = A + E . The term homotopy method has been given in numerical analysis
to the study of the family of matrices A(t) = A + tE when the parameter t is
restricted to be real in [0, 1] , so that A(0) = A and A(1) = B .

Because the eigenvalues of A(t) are complex, the restriction t ∈ [0, 1] is too
limiting: it is necessary to consider t in C . The analytic properties of t 7→ R(t, z) =
(A(t)−zI)−1 and t 7→ σ(A(t)) for t ∈ C with |t| small enough, have been used by
various authors to relate the eigenvalues of A = A(0) and B = A(1) , in particular
to get upper bounds on the distance between their spectra. See for example Kato
( 1965 , [42]), or Chatelin ( 1983 , [32], 1993 , [34]).

More recently, with the advent of easy-to-use graphical software in the 1990s , it
became possible to explore the properties of the non linear spectral map t ∈ C 7→
σ(A(t)) = {λ(t) eigenvalue of A(t)} ∈ Cn , where the color is used to parameterize
the variation of t = heiθ , with either h = |t| or θ fixed. See the PhD thesis of E.
Traviesas in 2000 [51], and [27, 29]. It is important to observe that in [27, 51], the
variation of |t| is bounded.

A crucial observation was made during the Summer 2002 by Prof. M. B. van Gijzen
(University of Delft) upon his arrival at Cerfacs as a Senior Researcher. He realized
that it made sense to look at the limits of R(t, z) and σ(A(t)) as |t| → ∞ . See
[16, 30]. The reason for that will become clear later.

To make explicit the difference between classical analytic perturbation theory ( |t|
small enough or t in C ) and the new viewpoint where |t| is unbounded in Ĉ =
C ∪ {∞} , the name Homotopic Deviation theory has been coined.
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Inexact Computing offers a computational approach for the study of the para-
meter dependence:

(t, z) ∈ Ĉ× C→ (A + tE − zI)−1 = R(t, z)

based on the factorization

A(t, z) = A + tE − zI = (I + tE(A− zI)−1)(A− zI). (2.1.1)

In A(t, z) , the parameter t multiplies E (possibly rank deficient) whereas z mul-
tiplies I (nonsingular and semi-simple).
Analytic perturbation theory [11, 32, 42, 48] is the favourite tool to study the
phenomena of Inexact Computing locally for |t| small enough, however there may be
non local effects. To study such a possibility, the theory of Homotopic Deviation
was developed [16, 18, 21, 31].
The framework of Homotopic Deviation allows us to perform a Backward Analysis
for computational methods which are Inexact [21, 4]. Homotopic Deviation is also
of interest for engineering when the complex parameter t has a physical meaning
and can be naturally unbounded [30, 31].
Various approaches have been used to study A(t, z) , ranging from analytic/algebraic
spectral theory [8, 32, 33, 34, 23, 30] to linear control system theory [43, 35]. The
theory presented here is Homotopic Deviation [16, 18, 30, 21, 5, 4] which specifically
looks beyond analyticity for |t| large and unbounded: t ∈ Ĉ .

2.2 Presentation of the Homotopic Deviation the-

ory (HD)

Given the matrices A and E in Cn×n , the family

A(t) = A + tE, (2.2.1)

for t ∈ C represents the coupling between A and E by the complex parameter
t . We denote the spectrum of A by σ(A) and the resolvent set of A by re(A) =
C\σ(A) .

By definition [33, 34], the matrix

R(t, z) = (A + tE − zI)−1

is called the resolvent matrix, because it allows to solve the associated linear system

(A + tE − zI)x(t, z) = y. (2.2.2)

From the point of view of solving the system (2.2.2) when non local effects of singu-
larities are of importance, the following two categories of questions are considered:
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Q1) existence and analyticity of the resolvent

t ∈ Ĉ→ R(t, z) = (A(t)− zI)−1, z ∈ C, (2.2.3)

and, if existence, its limit as |t| → ∞ .

Q2) limit of the spectrum
lim
|t|→∞

σ(A(t)), (2.2.4)

that is the limit, as |t| → ∞ , of the spectrum of A(t) (or of the singularity
set of R(t, z) ).

In section 2.3, we will consider the questions of existence and analyticity of the
resolvent R(t, z) , the limits lim|t|→∞ R(t, z) and lim|t|→∞ σ(A(t)) for the case where
the matrix E in (2.2.1) is regular. It will appear that the case of interest corresponds
to the deviation matrix E being singular, which yields a much richer situation. In
section 2.4, we will discuss the existence and analyticity of resolvent matrix R(t, z)
when the matrix E is singular. Questions about the limit of the spectrum of A(t)
as |t| → ∞ when 0 ∈ σ(E) is semi-simple will be answered in section 2.5.

Notation 2.2.1 The sets considered in HD consist of roots of polynomials. There-
fore points are counted with their algebraic multiplicity, unless otherwise stated.

A ⊂ B ⇐⇒ if x ∈ A then x ∈ B and the algebraic multiplicity of x relative to A

is not larger than its algebraic multiplicity relative to B.

Observe that this differs from the usual definition in set theory. When we occa-
sionally use this classical notion, we denote it ⊂s .

2.3 HD when the deviation matrix E is regular

Let us denote re(A) = C\σ(A) . For z ∈ re(A) , one can write,

R(t, z) = (A + tE − zI)−1 = (A− zI)−1(I + tE(A− zI)−1)−1. (2.3.1)

By substituting the notation

Fz = −E(A− zI)−1 = E(zI − A)−1, z ∈ re(A), (2.3.2)

into (2.3.1), we get
R(t, z) = R(0, z)(I − tFz)

−1, (2.3.3)

which exists for t 6= 1
µz

, µz ∈ σ(Fz)\{0} . R(t, z) is computable as

R(t, z) = R(0, z)
∞∑

k=0

(tFz)
k (2.3.4)

for |t| < 1
ρ(Fz)

, and ρ(Fz) = max{|µz|, µz ∈ σ(Fz)} .
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Lemma 2.3.1 [16] The point z ∈ re(A) is an eigenvalue of A+ tE iff there exists
an eigenvalue µz 6= 0 of Fz such that tµz = +1 .

Proof. Let y 6= 0 be an eigenvector of Fz associated with µz 6= 0 . Then

−E(A− zI)−1y = µzy, y 6= 0 ⇔ −Eu = µz(A− zI)u,

for u = (A− zI)−1y 6= 0 . It means that,

−E(A− zI)−1y = µzy, y 6= 0 ⇔ (A +
1

µz

E)u = zu.

¤
We assume that the rank of matrix E in (2.2.1) is equal to n , then 0 /∈ σ(Fz) .
Let the n eigenvalues of Fz be denoted by µiz, i = 1, · · · , n . Therefore R(t, z) is
defined for all t ∈ C , t 6= ti = 1

µiz
, i = 1, · · · , n . Consequently any z ∈ re(A) is an

eigenvalue of the n matrices A(ti), i =, · · · , n . What happens for R(t, z) in the
limit when |t| → ∞?

Proposition 2.3.2 [16] When the matrix E is regular, then for z ∈ re(A)

lim
|t|→∞

R(t, z) = 0.

Proof. We set s = 1
t
, t 6= 0 . Then, one has

I − tFz = (sF−1
z − I)tFz,

and
(I − tFz)

−1 = −sF−1
z (I − sF−1

z )−1 → 0 as s → 0

hence
lim
|t|→∞

R(t, z) = lim
|t|→∞

R(0, z)(I − tFz)
−1 = 0.

¤

The relation A+tE = t(E+ 1
t
A) = 1

s
(E+sA) , with s = 1

t
, shows that A(t) = A+tE

and E(s) = E + sA share the same eigen/Jordan vector structure for s, t 6= 0 [18].
Below, we use the relationship between the spectra σ(A(t)) and σ(E(s)) to find
lim|t|→∞ σ(A(t)) when the matrix E is regular.

The definition of the characteristic polynomial for both A(t) and E(s) can be used
to show the relationship between their eigenvalues.

Lemma 2.3.3 For every i ∈ {1, · · · , n} , λi(t) = νi(s)
s

, where λi(t) ∈ σ(A + tE) ,
νi(s) ∈ σ(E + sA) and s = 1

t
, s, t 6= 0 .
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Proof. For t 6= 0 , one has

σ(A + tE) = {λ(t) : det(A + tE − λ(t)I) = 0}, (2.3.5)

which for s = 1
t
, is equal to

σ(A + tE) = {λ(t) :
det(E + sA− sλ(t)I)

sn
= 0}. (2.3.6)

Since t 6= 0 , therefore using (2.3.5) and (2.3.6), it is clear that νi(s) = sλi(t)
for i = 1, · · · , n .

¤
Using the above lemma, the limit of every λ(t) ∈ σ(A + tE) , as |t| → ∞ can be
computed as follows

lim
|t|→∞

λ(t) = lim
|s|→0

ν(s)

s
, (2.3.7)

where ν(s) belongs to σ(E + sA) .

Proposition 2.3.4 [16] When the matrix E is regular, then for every λi(t) ∈
σ(A(t)) , i = 1, . . . , n ,

lim
|t|→∞

λi(t) = ∞.

Proof. For s = 1
t
, t 6= 0 , we have

A(t) = A + tE = t(sA + E) =
1

s
(E + sA).

The lemma 2.3.3 says that an eigenvalue λ(t) of A(t) is such that

λ(t) =
ν(s)

s
,

for ν(s) ∈ σ(E + sA) . Clearly, by continuity,

ν(s) → ν ∈ σ(E) as s → 0, s 6= 0.

But here ν 6= 0 which implies |λ(t)| → ∞ .

¤
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2.4 The matrix E is singular : 1 ≤ r < n

2.4.1 Existence of R(t, z) , t ∈ Ĉ
In this section, we shall consider the family A(t) with a singular matrix E 6= 0 .
We recall that any matrix E 6= 0 of rank r ≤ n can be written under the form

E = UV H , (2.4.1)

where U, V ∈ Cn×r of rank r represent a basis for Im E , Im EH respectively. We
assume from now on in this chapter that 1 ≤ r < n . dim Ker E = g , 1 ≤ g ≤ n−1 ;
g = n− r is the geometric multiplicity of 0 ∈ σ(E) .

For a singular matrix E with rank r , the n× n matrix Fz in (2.3.2) has rank r ,
so at most r eigenvalues µiz, i = 1, · · · , r are nonzero. These are the r eigenvalues
of the r × r matrix Mz defined by

Mz = V H(zI − A)−1U ∈ Cr×r, (2.4.2)

for z ∈ re(A) .

By applying (1.1.4) for
(I − tFz)

−1

in (2.3.3), one has

R(t, z) = R(0, z)[In − tU(Ir − tMz)
−1V HR(0, z)], (2.4.3)

which exists for z ∈ re(A), t 6= 1
µz

, where 0 6= µz ∈ σ(Mz) . This means that

R(t, z) is not defined for z ∈ re(A) when t ∈ C satisfies tµz = 1, 0 6= µz ∈ σ(Mz) .
If Mz is regular , this condition is equivalent to t ∈ σ(M−1

z ) .

The fact that z ∈ re(A) is an eigenvalue of A + tE iff tµz = 1 is of fundamental
importance. It means that any z in re(A) is an inexact eigenvalue for A at
homotopic distance |t| = 1/|µz| which can be unbounded: if µz = 0 then |t| = ∞ .
This is the reason why it makes sense to look at the limits as |t| → ∞ , as was
remarked by Prof. M. B. van Gijzen. We therefore assume that t ∈ Ĉ . And z is
the exact eigenvalue of r matrices A(ti) = A + tiE with ti = 1

µiz
∈ C , µiz 6= 0 ,

i = 1, · · · , r, when Mz is of rank r .

When r = 1 , U and V are the vectors u , v . There is a unique homotopic distance
|t| = 1/|µz| where µz = vH(zI − A)−1u . But when r > 1 , the homotopic distance
is not uniquely defined. There are at most r homotopic distances |ti| = 1/|µiz| ,
µiz 6= 0 .

The r × r matrix Mz defined in (2.4.2), for z ∈ re(A) , plays a crucial role in HD.

This role will become clear as we progress.
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2.4.2 Frontier points in F (A,E) ⊂ re(A)

Definition 2.4.1 We call frontier points the elements in the frontier set

F (A,E) = {z ∈ re(A); rankMz < r},
for which Mz is rank deficient. A point z in re(A) which is not in F (A,E) is
generic.

The term frontier point comes from the following

Proposition 2.4.2 For z ∈ re(A)\F (A,E) the matrix pencil (A − zI) + tE has
exactly r finite eigenvalues and n− r = g infinite ones.

Proof. See [20] Lemma A1. and Lemma A2. and my talk at ICIAM07 [3].
¤

When z ∈ F (A,E) , there are less than r finite eigenvalues for the pencil. The
exact number depends on the location of z in F (A,E) as we shall see in Chapter
4.

F (A,E) is a set in re(A) which can be empty (for r = n for example), discrete
with finite cardinal, or continuous equal to re(A) . This will be proved in due course.
Proposition 2.4.4 below will justify even more the term “frontier point”.

Definition 2.4.3 A point z in F (A,E) is critical when ρ(Mz) = 0 . The set of
critical points is denoted by C(A, E) .

At a critical point, Mz is nilpotent (M δ
z = 0 with M δ−1

z 6= 0, 1 ≤ δ ≤ r) . Therefore

(Ir − tMz)
−1 =

δ−1∑

k=0

(tMz)
k, (2.4.4)

and t 7→ R(t, z) is a polynomial of degree δ at a critical point. The right hand side of
(2.4.4) can be computed for any t in δ steps. δ is the size of the largest Jordan block
(that is the ascent or index) of 0 ∈ σ(Mz) [33, 34]. It is algorithmically important
to look at the question of whether Mz can be nilpotent for some z ∈ re(A) . We
leave the investigation of this question for the chapter 3 . For now, we only remark
that F (A,E) = C(A,E) when r = 1 .

2.4.3 R(∞, z) = lim|t|→∞R(t, z) for z ∈ re(A)\F (A,E)

Let the r × r matrix Mz be regular for z ∈ re(A)\F (A,E) . We can order the
magnitude of the eigenvalues of Mz decreasingly such that, with an additional
subscript index running from 1 to r , we have

|µ1z| ≥ |µ2z| ≥ · · · ≥ |µrz| > 0, (2.4.5)
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or
|t1z| ≤ |t2z| ≤ · · · ≤ |trz| < ∞, (2.4.6)

where µiz = 1/tiz is the ith eigenvalue of Mz in terms of magnitude. We suppose
that |t| > 1

min1≤i≤r |µiz | = 1/|µrz| = ρ(M−1
z ) for Mz of rank r .

Proposition 2.4.4 [21] For 1 ≤ r < n and z given in re(A)\F (A,E) ,
lim|t|→∞ R(t, z) exists, and is denoted by R(∞, z) . Its representation in closed
form is given by

R(∞, z) = R(0, z)[In + UM−1
z V HR(0, z)].

Proof. By assumption, M−1
z exists. Ir − tMz = (sM−1

z − Ir)tMz ,

(Ir − tMz)
−1 = −sM−1

z (Ir − sM−1
z )−1,

Now
−tU(Ir − tMz)

−1 = UM−1
z (Ir − sM−1

z )−1 → UM−1
z

when
|t| → ∞ ( or |s| → 0).

The rest follows from (2.4.3).

¤

Suppose that rank U = rank V = r < n . Then the r × r matrix V HU (resp.
Mz = V H(zI−A)−1U ) is regular iff 0 is a semi-simple eigenvalue for E (resp. Fz )
of multiplicity g = n− r [16]. In proposition 2.4.4, Prz = In + UM−1

z V HR(0, z) is
the eigenprojection for Fz associated with the semi-simple eigenvalue 0 ∈ σ(Fz) of
multiplicity g = n− r .

When M−1
z exists, the asymptotic resolvent R(∞, z) exists and is computable

in closed form as R(0, z)Prz , using M−1
z .

2.4.4 Analyticity of R(t, z) around 0 and ∞ for
z ∈ re(A)\F (A,E)

We assume in this section that Mz is invertible, i.e. z ∈ re(A)\F (A,E) . Propo-
sition 2.4.4 shows the dual role played by the two quantities |t1z| = 1

max1≤i≤r |µiz | =
1

ρ(Mz)
= 1

|µ1z | and |trz| = 1
min1≤i≤r |µiz | = ρ(M−1

z ) = 1
|µrz | defined in (2.4.5) and (2.4.6)

when M−1
z exists. More precisely, one can say for z ∈ re(A)\F (A,E) the following

two analytic developments hold for R(t, z) .

(i) |t1z| defines the largest analyticity disk for R(t, z) . It rules the convergence
of the initial analytic development for |t| around 0

R(t, z) = R(0, z)[In − tU

∞∑

k=0

(tMz)
kV HR(0, z)] (2.4.7)
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based on Mz and valid for |t| < |t1z| (around t = 0 ).

The series expansion (2.4.7) becomes finite when Mz is nilpotent ( ρ(Mz) =
0 ), that is when z is critical, if this happens.

(ii) |trz| defines the smallest value for |t| beyond which R(t, z) is analytic in
s = 1

t
. This is analyticity in t around ∞ . It rules the convergence of the

asymptotic analytic development in s = 1/t

R(t, z) = R(0, z)[In + UM−1
z

∞∑

k=0

(sM−1
z )kV HR(0, z)] (2.4.8)

= R(∞, z) + R(0, z)UM−1
z

∞∑

k=1

(tMz)
−kV HR(0, z),

based on M−1
z and valid for |t| > |trz| , (around |t| = ∞ , that is s = 0 ).

Observe that M−1
z cannot be nilpotent (because it is invertible).

2.5 lim|t|→∞ σ(A(t)) for a singular deviation E with

0 as a semi-simple eigenvalue

2.5.1 The assumption (Σ)

When E is singular, it is possible that certain eigenvalues λ(t) in σ(A(t)) do not
diverge to ∞ , as |t| → ∞ as is the rule when E is regular. We call Lim the set of
such limit points at finite distance in C :

lim
|t|→∞

σ(A(t)) = {Lim,∞}. (2.5.1)

We denote the cardinality of Lim by l∗ = card Lim (counting multiplicities). Clearly
n ≥ l∗ ≥ 0 and l∗ = 0 when Lim = ∅ . The points in Lim which are not eigenvalues
are called limit points. The others are limit eigenvalues.

Notation 2.5.1 The assumption 0 ∈ σ(E) is semi-simple is denoted by (Σ) , i.e.
0 ∈ σ(E) semi-simple ⇐⇒ (Σ) ⇐⇒ det (V HU) 6= 0 .

We assume that (Σ) holds throughout the rest of the chapter. We denote the
geometric(=algebraic) multiplicity of 0 ∈ σ(E) by g = n− r for n = order A and
r = rank E . Chapter 3 will be devoted to the general case where 0 ∈ σ(E) can be
defective. It will require a more in-depth analysis.

Lemma 2.5.2 [18] Cn = Ker E⊕ Im E ⇐⇒ rank G = rank (V HU) = r ⇐⇒
(Σ) .
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Remark. When we have both Ker E∩ Im E = {0} and (KerE)⊥ = ImE = ImEH ,
the direct sum of lemma 2.5.2 becomes orthogonal. Also in this case, the bases U
and V in Im E satisfay U = V B for B ∈ Cr×r of rank r . It is possible to choose
B = Ir , then E = UUH is Hermitian, semi positive definite: (Σ) is satisfied.

Since we assume that (Σ) holds, the invariant subspace for E associated with 0 is
the eigenspace Ker E . The associated eigenprojection is P = I − UG−1V H which
projects onto Ker E along Im E .

2.5.2 Characterization of Lim

Proposition 2.5.3 [16, 30] Under the assumption (Σ) , there exist g eigenvalues
λ(t) such that lim|t|→∞ λ(t) = ξ , with ξ ∈ σ(Π) where Π is the g × g matrix
representing PAP restricted to Ker E . Therefore Lim = σ(Π) , and l∗ = n−r = g .

Proof. We recall that λ(t) = ν(s)
s

, where ν(s) ∈ σ(E +sA) . By assumption, ν = 0
is semi-simple. Therefore the series expansion ν(s) = ξs+ O (sα) , α > 1 is valid
around ν = 0 of multiplicity g for s small enough as is classical [32], [33], [42].

¤
Among the n eigenvalues of A(t) , r escape to infinity, while g = n− r remain at
finite distance as |t| → ∞ . That is 1 ≤ l∗ = n − r = g ≤ n − 1 . Their limits are
the g Ritz values for A , associated with the projection P on Ker E .

2.5.3 Limit points and their relationship with F (A,E) and
C(A,E) under (Σ)

Observing the evolution t 7→ λ(t) leads to the distinction for the eigenvalues in
σ(A) = σi ∪ σe between invariant eigenvalues λ ∈ σi ( λ(t) = λ for any t ∈ C )
and evolving eigenvalues λ ∈ σe ( λ(t) 6= λ for almost all t ∈ C ). Clearly, Lim =
σi∪ Lim e , where Lim e is the set of limits at finite distance of evolving eigenvalues.

Since Lim = σ(Π) , it is possible that σ(Π) ∩ σ(A) 6= ∅ . When this happens,
λ ∈ σ(Π) ∩ σ(A) is an eigenvalue of A as well as a limit of λ(t) as |t| → ∞ : it is
a limit eigenvalue.

Definition 2.5.4 The limit points of (A,E) are defined by Λ(A,E) = Lim∩ re(A) .

We have proved that Λ(A,E) = σ(Π) ∩ re(A) : the limit points are the (at most
g = n−r ) kernel points in σ(Π)∩re(A) , (see the general definition 3.9.8 in Chapter
3 ).

Under (Σ) , the matrix E cannot be nilpotent because 0 is semi-simple and E 6= 0 .
card C(A,E) ≤ card Lim = g =⇒ C(A,E) is discrete. Now we show that under
(Σ) , F (A,E) is necessarily discrete containing a finite number of points in re(A) .
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Proposition 2.5.5 [18] Under (Σ) , F (A,E) is necessarily discrete and

0 ≤ card F (A,E) ≤ (n− 1)r, and 0 ≤ card C(A,E) ≤ n− r.

Proof. Let π(z) = det (zI−A) denote the characteristic polynomial for the matrix
A . One can formally write

Mz =
1

π(z)
V Hadj(zI − A)U =

1

π(z)
Q(z) (2.5.2)

where Q(z) = V H adj (zI −A)U is a matrix polynomial of order r and degree
≤ n − 1 , defined for z ∈ C . The matrix coefficient for zn−1 is G = V HU which
is regular when 0 ∈ σ(E) is semi-simple (assumption (Σ) ): Q(z) has degree
n− 1 . For z in re(A) , the values z for which at least one µz ∈ σ(Mz) is zero are
the roots of det Q(z) [5, 18]. This is a scalar polynomial equation of degree (n−1)r
under (Σ) ⇔ V HU has rank r . This means that det Q(z) has at most (n− 1)r
roots in re(A) , which are the elements of F (A,E) .

We have seen that for r = n , F (A,E) = ∅ since 0 6∈ σ(Fz) = σ(Mz) . When
r < n , F (A, E) = ∅ iff 0 ∈ σ(Fz) is semi-simple, which is equivalent to
0 6∈ σ(Mz) , for any z ∈ re(A) . From the proposition 2.5.3, Lim = σ(Π) . And from
the proposition 2.5.6 below, one has card C(A,E) ≤ card Λ(A,E) ≤ g = n− r .

¤

This result will be strengthened in Chapter 3 (Proposition 3.5.1). We know that the
2 sets F (A,E) and C(A,E) are discrete under (Σ) . We now prove the following
more general property, that we shall need in Chapter 3.

Proposition 2.5.6 In general, with no assumption on 0 ∈ σ(E) , the following
implication holds

card F (A,E) < ∞ =⇒ Λ(A,E) ⊆ F (A,E) .

Proof. We suppose that F (A,E) is discrete. According to the lemma 2.3.1, z
′ ∈

re(A) belongs to σ(A(t)) ⇔ there exists an eigenvalue µz
′ 6= 0 of Mz such that

t = 1/µz
′ ∈ C . Now, z

′ ∈ Λ(A,E) ⇔ |t| is unbounded ⇔ limz→z
′ µz = 0 . By

continuity of µz as z → z
′ ∈ re(A) , one has µz′ = 0 and z

′ ∈ F (A,E) . This
shows that Λ(A,E) ⊆ F (A,E) .

We observe that in general C(A,E) ⊆ F (A,E) . When r = 1 , we have C(A,E) =
F (A,E) .

¤

The proposition 2.5.6 states that if ξ is in Λ(A,E) then ξ ∈ F (A,E) .
This means that ξ is an inexact eigenvalue of A at “infinite” homotopic
distance |t| = ∞ . This is one more reason to consider t ∈ Ĉ = C ∪ {∞} ,
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as advocated by M. B. van Gijzen. This Proposition is valid in full generality: 0
need not be semi-simple in σ(E) . What follows assumes again that (Σ) holds.

Under (Σ) , Lim = σ(Π) 6= ∅ . Can we have card F (A,E) = ∅ ? This would imply
Λ(A, E) = ∅ ⇐⇒ σ(Π) ⊂ σ(A) . An example is given below for r = 1 .

2.5.4 The critical and frontier sets for r = 1

When r = 1 , Mz is the scalar µz = vH(zI − A)−1u and the frontier
points are critical. Moreover R(t, z) is a polynomial in t of degree 1 for
z ∈ F (A,E) = C(A,E) : R(t, z) = R(0, z)[In + tER(0, z)] when µz = 0 . In this
case, one has

C(A,E) = Λ(A, E) = σ(Π) ∩ re(A) = F (A,E). (2.5.3)

There is a possibility that C(A,E) = F (A,E) = ∅ as shown below.

Example 2.5.1 Let consider A = λI . This yields Mz = 1
z−λ

V HU = 1
z−λ

G for
z ∈ re(A) . When 0 ∈ σ(E) is semi-simple, Mz is regular for any z 6= λ . Therefore
C(A,E) = F (A,E) = ∅ and one has ∅ 6= σ(Π) ⊂ σ(A) = {λ} . More precisely,
σ(Π) = {(λ1)g} and σ(A) = {(λ1)n} .

4
For r = 1 , l∗ = card Lim takes its maximum value l∗ = g = n− 1 , and

0 ≤ card F (A,E) = card C(A,E) ≤ n− 1. (2.5.4)

We present below an important application of the case r = 1 (that is, when the
matrix deviation E has rank r = 1 ). It is concerned with problems known with
uncertainty on the data.

2.6 An example of rank 1−deviation: the norm-

wise backward analysis for Ax = b

We review the fundamental example of a rank 1− deviation matrix provided by
the normwise backward analysis for the linear system Ax = b . Let be given any
x̃ ∈ Cn . The associated residual, r = b − Ax̃ , is assumed to be nonzero. There
is an infinity of matrices ∆A such that (A + ∆A)x̃ = b . Among them, the rank
1−matrix E below is special. For simplicity, we assume that the matrix norm is
induced by ‖ · ‖2 . (see [23]).

Let E = 1
x̃H x̃

rx̃H , then Ex̃ = r and (A + E)x̃ = Ax̃ + b−Ax̃ = b : x̃ is the exact
solution for (A + E)x = b . Then

‖E‖ = max
x 6=0

‖ r

x̃H x̃
x̃Hx‖ =

‖r‖
‖x̃‖ max

x6=0

|x̃Hx|
‖x̃‖‖x‖ =

‖r‖
‖x̃‖ ,



2.6 An example of rank 1−deviation: the normwise backward analysis
for Ax = b 39

which is the normalized residual norm at x̃ . One has the following result for A, b,
and x̃ of fundamental practical importance.

Proposition 2.6.1 Given any x̃ ∈ Cn . Then for the associated residual r =
b− Ax̃ , the rank 1−matrix E = 1

x̃H x̃
rx̃H realizes

‖r‖
‖x̃‖ = min{‖∆A‖, for ∆A ∈ Cn×n such that (A + ∆A)x̃ = b}.

Proof. Let (A + ∆A)x̃ = b for some ∆A ∈ Cn×n . This means that Ax̃ + ∆Ax̃ =
(b− r) + ∆Ax̃ = b which evidently yields the equality

∆A x̃ = r. (2.6.1)

Using (2.6.1) one has ‖∆A‖‖x̃‖ ≥ ‖r‖ or ‖∆A‖ ≥ ‖r‖
‖x̃‖ . This shows that

∀ ∆A , ‖∆A‖ ≥ ‖E‖ . Therefore

min ‖∆A‖ =
‖r‖
‖x̃‖

for ∆A ∈ Cn×n such that (A + ∆A)x̃ = b is achieved by E = 1
x̃H x̃

rx̃H .
¤

The quantity ‖E‖ = ‖r‖
‖x̃‖ is the normwise backward error associated with x̃ and

A, b : it gives the minimum size perturbation ∆A such that x̃ is an exact
solution for (A + ∆A)x̃ = b . The matrix A + E is a rank 1−modification of A .

The relative version is

min{‖∆A‖
‖A‖ , for ∆A ∈ Cn×n such that (A + ∆A)x̃ = b} =

‖r‖
‖A‖‖x̃‖ . (2.6.2)

This is the version used to assess results computed in finite precision: optimally, the
backward error should be of the order of machine precision (∼ 10−16 ). However, if
A is known only with limited accuracy α , then the backward error should be ≤ α .
Any x̃ for which ‖Ax̃−b‖

‖x̃‖ < α can be accepted as a solution of Ax = b with the
level α of uncertainty on the data in A .

In this normwise backward analysis, the structure of ∆A is arbitrary in Cn×n ( n2

parameters). Only its norm matters. We shall present, in chapter 5, the homotopic
backward analysis, where ∆A = tE has a fixed structure E , and only t varies in
C ( 1 parameter).

However, the application of the ideas above is much broader than finite precision
computation. It concerns all Experimental Sciences where data are only known
with uncertainty. Indeed, the specificity of Experimental Sciences (as opposed to
Mathematics) is that the data are collected from measurements hence they have no
absolute certainty. Therefore a kind of normwise backward analysis is required to
assess the validity of modeling results against Nature’s results. This is an important
aspect of the engineering computation activity.
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Chapter 3

Theory of Homotopic Deviation, II

3.1 Introduction

In chapter 2 , the essential of Homotopic Deviation theory was presented under the
simplifying assumption that 0 ∈ σ(E) is semi-simple. In this chapter, when we
assume that 0 ∈ σ(E) is defective, this is symbolically denoted as (∆) .

We look at the 2 following questions successively when (Σ) does not necessarily
hold. What can be said about the sets

(i) C(A,E) , Λ(A,E) , F (A,E) in re(A) ?

(ii) Lim in C ?

Answers to the first question are based on an analysis of the algebraic structure of
z 7→ Mz , z ∈ re(A) which is more thorough than what was needed in Chapter 2
under (Σ) .

3.2 The algebraic structure of Mz, z ∈ re(A)

The analysis of chapter 2 has already shown that the r× r matrix Mz plays a key
role in HD because of the relation tµz = 1 . The role is computationally important
when r is small compared to n : the necessary information for HD lies in σ(Mz) .
Under the simplifying assumption (Σ) we have been able to develop the theory with
a very limited knowledge about Mz = V H(zI−A)−1U . To venture into the general
case, where (Σ) does not necessarily hold, a deeper knowledge of Mz is required.

During his post-doctoral visit at Cerfacs (March 2004 to February 2005), Prof. F.
S. V. Bazán from the Universidade Federal de Santa Catarina, Florianópolis, Brazil,
directed my attention to the rich algebraic structure of Mz [5, 12]. I acknowledge
many illuminating discussions on HD with Prof. Bazán during the Summer and Fall
of 2004.
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3.2.1 Mz as a particular transfer function in Linear System
theory

Consider the linear dynamical system

S :

{
ẋ = Ax + Bu
y = Cx

where A ∈ Cn×n , B ∈ Cn×r , C ∈ Cr×n are invariant matrices, x ∈ Cn, u, y, ∈ Cr

are vector functions of the time. This state-space description can be rewritten in
the frequency domain C as

y(s) = C(sI − A)−1Bu(s), s 6∈ σ(A)

= H(s)u(s)

The transfer matrix H(s) ∈ Cr×r identifies with Mz for s = z and C = V H ,
B = U [43, 35].

3.2.2 A Schur complement interpretation

We recall that for a singular matrix E with rank r < n , the n× n matrix Fz in
(2.3.2) has rank r , so at most r eigenvalues µiz, i = 1, · · · , r are nonzero. These
are the r eigenvalues of the r × r matrix Mz . Here, we use the following Schur
complement interpretations to derive important properties of the r× r matrix Mz

which should be considered instead of the n× n matrix Fz [5, 4].

Set N = n + r . One has the following equivalence formulae in CN×N , for z
given in re(A) , and t ∈ C [5]:

[
In 0

−V HR Ir

] [
A− zIn −tU

V H Ir

] [
In tRU
0 Ir

]
=

[
A− zIn 0

0 Ir − tMz

]

(3.2.1)
where R = (A− zIn)−1 for z 6∈ σ(A)

[
Ir 0
−tU In

] [
Ir 0
0 A− zIn + tE

] [
Ir V H

0 In

]
=

[
Ir V H

−tU A− zIn

]
.

(3.2.2)
The rank of the augmented matrix, for z ∈ re(A) , remains constant equal to N =
n + r as long as rank (Ir − tMz) = r (resp. rank (A− zI + tE) = n ) in case (3.2.1)
(resp. case (3.2.2)).

Lemma 3.2.1 [5] Let A ∈ Cn×n and z ∈ re(A) , then

det(A + tE − zIn) = det(A− zIn) det(Ir − tMz). (3.2.3)
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Proof. For 1 ≤ r ≤ n , n + 1 ≤ N ≤ 2n , the augmented matrix

B̂(z, t) =

[
A− zIn −tU

V H Ir

]

has the equivalent block diagonal forms (3.2.1) and (3.2.2). Their determinants are
equal to det (B̂(z, t)) = det (A + tE − zI) .

1. First,

[
A− zIn 0

0 Ir − tMz

]
,

where its second diagonal block has rank r as long as tµz 6= 1 for µz ∈ σ(Mz) .

2. Second,

[
A− zIn + tE 0

0 Ir

]
,

where its first diagonal block has rank n as long as z is not an eigenvalue of
A(t) .

Thus for z /∈ σ(A) , the equality (3.2.3) is valid.

¤

This lemma shows the role of Mz of order r ≤ n in the study of R(t, z) of order
n .

3.2.3 Mz as a matrix rational function of z in re(A)

Let A, E ∈ Cn×n with rank E = r < n . π(z) = det (zI − A) denotes the charac-
teristic polynomial for the matrix A . One can formally write

Mz =
1

π(z)
V Hadj(zI − A)U =

1

π(z)
Q(z) (3.2.4)

where Q(z) = V H adj (zI −A)U is a matrix polynomial of order r and degree
≤ n − 1 , defined for z ∈ C . The matrix coefficient for zn−1 is G = V HU which
is regular when 0 ∈ σ(E) is semi-simple (assumption (Σ) ). For z in re(A) ,
the values z for which at least one µz ∈ σ(Mz) is zero are the roots of det Q(z)
[5, 18]. This is a scalar polynomial equation of degree (n−1)r under (Σ) ⇔ V HU
has rank r . This means that det Q(z) , when 6≡ 0 , has at most (n − 1)r roots in
re(A) , which are the elements of F (A,E) .

3.3 Singularities of Mz for z in re(A)

The frontier points in F (A,E) have been defined in chapter 2, (see [18, 21]) as the
points z ∈ re(A) such that 0 ∈ σ(Mz) : at such points, R(∞, z) = lim|t|→∞ R(t, z)
does not exist. How are these points defined in terms of Q(z) ?
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3.3.1 Eigenvalues µz of Mz , z ∈ re(A)

We define di(z), i = 1, . . . , r , as the r functions of z ∈ C which satisfy

det(Q(z)− d(z)Ir) = 0, (3.3.1)

for any arbitrary but fixed z in C .
The r eigenvalues µiz , i = 1, . . . , r , of Mz are defined for z ∈ re(A) by

µiz =
di(z)

π(z)
. (3.3.2)

For z ∈ re(A) , µz = 0 iff d(z) = 0 since π(z) 6= 0 . Therefore, det Mz = 0 iff
det Q(z) = 0 for z ∈ re(A) .

3.3.2 Zeroes of detQ(z) in C and in re(A) : a preliminary
study

For z ∈ C , the set of zeroes of det Q(z) is defined as

Zer = Zer(detQ) = {z ∈ C : detQ(z) = 0} = {z ∈ C : ∃i such that di(z) = 0} .

This means that Zer = Zer(detQ) =
⋃r

i=1 Zer(di(z)) where

Zer(di(z)) = {z ∈ C : di(z) = 0},
for i = 1, · · · , r , which is equivalent to write,

detQ(z) = d1(z)d2(z) · · · dr(z). (3.3.3)

Also we have card Zer =
∑r

i=1 cardZer(di(z)) , where the roots in Zer(di(z)) are
counted with their algebraic multiplicities, i = 1, . . . , r .

When det Q(z) 6≡ 0 , det Q(z) is a scalar polynomial of degree ≤ (n − 1)r . When
G = V HU has rank r , the (n−1)r points in Zer can be interpreted as the (n−1)r
eigenvalues of the block companion matrix of order (n− 1)r




0 −C0

Ir
. . .

...
. . . 0 −Cn−3

0 Ir −Cn−2


 ,

where Q(z) = V H adj (zI−A)U = V HU (Irz
n−1 + Cn−2z

n−2 + · · ·+ C0) [43]. These
(n− 1)r eigenvalues will be derived from Proposition 3.4.1 below.

When 0 ∈ σ(E) is defective, V HU is singular and the degree of det Q(z) is
< (n− 1)r .
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Lemma 3.3.1 The singularities of Mz in re(A) are the frontier points in the
discrete set F (A,E) = Zer ∩ re(A) when det Q(z) 6≡ 0 .

Proof. The singularities of Mz are the roots of the equation det Mz = 0 where

detMz =
1

π(z)r
detQ(z) = 0. (3.3.4)

Now, the relations (3.3.3) and (3.3.2) show that when det Q(z) 6≡ 0 ,
F (A,E) = Zer ∩ re(A) .

¤
When det Q(z) ≡ 0 , Zer = C and F (A,E) = re(A) is continuous.

3.4 The factorization of detQ(z)

Considering the importance of frontier points for localizing the limit points, in
Λ(A,E) , the following factorization of det Q(z) provides a remarkable simplification
of the theory. All what we should seek is a scalar polynomial in z of degree ≤ n−r
which easily derived from the data A , U and V .

Let us consider the following augmented matrix of order n + r

Â(z) =

[
zIn − A −U

V H 0

]
. (3.4.1)

It is interesting to contrast Â(z) with B̂(z, t) already introduced. Via (1.6.3), the
Schur complement of zIn − A in the augmented matrix Â(z) for z ∈ re(A) is

0− V H(zI − A)−1(−U) = Mz. (3.4.2)

Using Laplace formula we see that det Â(z) = π̂(z) is a polynomial in z of degree
d̂ ≤ n− r = g , d̂ = n− r iff V HU is invertible.

Using the relation (1.6.4), one has

π̂(z) = detÂ(z) = π(z) detMz (3.4.3)

for z ∈ re(A) .

Proposition 3.4.1 [20] For r ≥ 1 ,

detQ(z) = (π(z))r−1π̂(z), (3.4.4)

where π̂(z) = det Â(z) is the scalar polynomial in z of degree ≤ n − r satisfying

(3.4.3). Hence for z ∈ re(A) , det Mz = π̂(z)
π(z)

= Πr
i=1µiz .
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Proof. Using the relation (3.2.4), we get

detMz =
1

π(z)r
detQ(z). (3.4.5)

This, together with (3.4.3), shows that det Q(z) = (π(z))r−1π̂(z) for z ∈ re(A) .
This means that for every z in the open set re(A) , we have an identity between
two polynomials in z . Therefore, the identity is true for any z ∈ C . Observe that
det Q ≡ 0 ⇔ π̂(z) ≡ 0 .

¤

The coefficient of z(n−1)r in det Q(z) is det (V HU) ; this is the coefficient of zn−r

in π̂(z) . We know that

deg detQ(z) = (n− 1)r ⇐⇒ (Σ). (3.4.6)

Therefore
deg π̂(z) = (n− 1)r − n(r − 1) = n− r ⇐⇒ (Σ).

When (Σ) does not hold, deg det Q(z) < (n− 1)r ⇔ deg π̂(z) < n− r .

For r = 1 , det Q(z) = π̂(z) has degree ≤ n−1 (easy to check by direct computation
of vH adj (zI − A)u ).

3.5 Analysis of F (A,E) , Λ(A,E) , C(A,E) in re(A)

In this section, we make no assumption on 0 ∈ σ(E) . We analyse the frontier
points in F (A,E) , the critical points in C(A,E) , the limit points in Λ(A,E) and
the relationships between these 3 sets in C .

3.5.1 The zeroes of detQ(z)

Using the proposition 3.4.1, one has

Zer = Zer(detQ(z)) = (σ(A))r−1 ∪ Ẑ (3.5.1)

where Ẑ = Zer(π̂(z)) = {z ∈ C : π̂(z) = 0} . And Zer = Ẑ ⊂ C⇔ r = 1 .

According to Proposition 3.4.1, one has the remarkably simple characterization for
the frontier set

F (A,E) = re(A) ∩ Ẑ = re(A) ∩ Zer. (3.5.2)

The set Zer is replaced by Ẑ ⊂ Zer to get the frontier set F (A,E) for r > 1 .

Under (∆) and when π̂(z) 6≡ 0 , card Ẑ < n − r , but when π̂(z) ≡ 0 ,
Zer = Ẑ = C .
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3.5.2 F (A,E) is discrete when π̂(z) 6≡ 0

The proposition 3.4.1 shows that when π̂(z) 6≡ 0 , then F (A,E) is a discrete set
which is derived from (3.5.2).

Proposition 3.5.1 [18] When π̂(z) 6≡ 0 , then card C(A,E) ≤ card F (A,E) ≤
n− r , and

{C(A,E), Λ(A,E)} ⊆ F (A,E) (3.5.3)

with equality C(A,E) = F (A,E) when r = 1 .

Proof. Using the relation (3.5.2), one has F (A,E) ⊆ Ẑ = Zer(π̂(z)) . Therefore,
when π̂(z) 6≡ 0 , F (A,E) is discrete and

cardC(A,E) ≤ cardF (A,E) ≤ cardẐ ≤ n− r.

The rest is a result of proposition 2.5.6.
¤

Under (∆) , card F (A,E) < n − r : there are at most g − 1 = n − r − 1 frontier
points in re(A) where R(∞, z) does not exist.

3.5.3 Zer = Ẑ = C when π̂(z) ≡ 0

We suppose now that π̂(z) ≡ 0 . Therefore F (A,E) = re(A) is continuous by
(3.5.2). But the critical set C(A,E) can be either discrete or continuous.

Theorem 3.5.2 [18] When the critical set C(A, E) is continuous, then
F (A,E) = C(A,E) = re(A) , and Lim = σ(A) : σ(A(t)) = σ(A) for t ∈ C . A
necessary condition is that E is nilpotent.

More precisely, we can show the following:

Theorem 3.5.3 [5] When C(A,E) contains at least n distinct points, then
C(A,E) = re(A) is continuous and ∀t ∈ C, σ(A(t)) = σ(A) .

Proof. For z ∈ C(A,E) , Mz is nilpotent or zero and

det(A + tE − zI) = det(A− zI) 6= 0,

for t ∈ C . In other words,

Πn
i=1(λi(t)− z) = Πn

i=1(λi − z)

for t ∈ C with λi(0) = λi . This can be written as

zn + Σn
i=1ai(t)z

n−i = zn + Σn
i=1aiz

n−i,
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where ai(0) = ai . Therefore

Σn
i=1(ai(t)− ai)z

n−i = 0. (3.5.4)

If we assume that C(A,E) contains n distinct points zj , j = 1, . . . , n , then for
t given in C , (3.5.4) is a linear system in the unknowns ai(t) − ai , i = 1, . . . , n ,
corresponding to the n×n Vandermonde matrix based on the n distinct points zj .
Therefore, the unique solution to (3.5.4) is ai(t) = ai for t ∈ C . Hence λi(t) = λi ,
i = 1, . . . , n , for any t and C(A,E) = re(A) ([18], Corollary 5.2). It follows that,
when C(A,E) is discrete, it contains at most n−1 distinct points. When C(A,E)
contains at least n distinct point, C(A,E) = re(A) and σ(A(t)) is invariant under
t : no evolution takes place for λ(t) ≡ λ, t ∈ C .

¤
Under the assumption of the Theorem 3.5.3, one has Lim = σ(A) , l∗ = card Lim = n
and Λ(A,E) = ∅ and there is no evolution for the eigenvalues in σ(A(t)) .

When π̂(z) ≡ 0 , F (A,E) is continuous and if C(A,E) is finite and contains at
most n−1 distinct points, then C(A,E) is discrete and the eigenvalues of σ(A(t))
evolve. When π̂(z) 6≡ 0 , the fact that card C(A,E) ≤ n− r ≤ n− 1 yields that
the property ∀t ∈ C, σ(A(t)) = σ(A) is impossible: σ(A(t)) always evolve.

3.6 The case (Σ) revisited

Thanks to the remarkable factorization

detQ(z) = (π(z))r−1π̂(z)

we are able to further the special study of HD which was presented in Chapter 2
under (Σ) . We have seen that π̂(z) has exactly the degree n − r under (Σ) .
Therefore Proposition 2.5.5 can be strengthened into the Proposition 3.5.1 above.
Hence card C(A,E) ≤ card Λ(A,E) ≤ card F (A,E) ≤ n− r .

Lemma 3.6.1 Under (Σ) , if card Λ(A,E) = n−r = g , then Λ(A,E) = F (A,E) .
Moreover

σ(A) ∩ σ(Π) = σ(A) ∩ Ẑ = ∅
and

Lim = σ(Π) = Ẑ = F (A,E) ⊂ re(A)

.

Proof. Direct consequence of the inclusion Λ(A,E) ⊆ F (A,E) and
deg π̂(z) = n− r = g ⇔ (Σ) .

2
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Theorem 3.6.2 Under the assumptions of Lemma 3.6.1, one has the identity

1

detG
π̂(z) =

1

detG
detÂ(z) ≡ det(zIg − Π) (3.6.1)

where G = V HU .

Proof. The polynomials 1
detG

π̂(z) and det (zIg − Π) are monic polynomials with
same degree g = n− r and same roots. Therefore they are equal for all z ∈ C .

¤

Lemma 3.6.3 Under (Σ) , card Λ(A,E) = g = n− r iff σ(A) ∩ σ(Π) = ∅ . This
implies that σ(A) ∩ Ẑ = ∅ .

Proof. Clear since under (Σ) , Λ(A,E) = σ(Π) ∩ re(A) .

¤

The algebraic identity (3.6.1) is remarkable. It is valid under (Σ) iff A and
Π = PAP¹ KerE have distinct eigenvalues. It implies that no eigenvalue of A can
be a frontier point. One observes that the assumption 0 ∈ σ(E) semi-simple is
essential in the proof.

3.7 Analysis of Lim in C under (∆)

Under the condition (∆) , one has 0 ≤ l∗ ≤ m ≤ n where m denotes the algebraic
multiplicity of 0 ∈ σ(E) , g = n− r < m .

3.7.1 Comparison between Λ(A,E) and Lim

By definition, Lim is the set of all finite limits of lim|t|→∞ σ(A(t)) . And Λ(A,E) =
Lim∩ re(A) contains finite limits which belongs to re(A) : Λ(A,E) as a subset of
Lim which differs from Lim in the eigenvalues of A which are limit eigenvalues if
they exist.

Let d = l∗− card Λ(A,E) be the number of limit eigenvalues. Then

(i) when C(A,E) is discrete =⇒ d ≤ m ≤ n ,

(ii) when C(A,E) = re(A) =⇒ d = n .

We shall go back to the possibility λ ∈Lim in Chapter 7 .



50 Theory of Homotopic Deviation, II

3.7.2 Double inclusion for Lim

In general when π̂(z) 6≡ 0 ( F (A,E) is discrete), one can determine two different
sets L1 and L2 in C such that

L1 ⊆ Lim ⊆s L2 (3.7.1)

The right inclusion in (3.7.1) is setwise ⊆s .
Because Λ(A,E) ⊆ F (A, E) , Lim⊆s Λ(A,E) ∪ σ(A) ⊆s Ẑ ∪ σ(A) ⊆ Zer for

r ≥ 2 . Therefore L2 = Ẑ ∪ σ(A) .

As it was shown in Proposition 3.4.1, the determination of π̂(z) (hence of L2 ) is
easy from the knowledge of the matrix Â(z) of order n + r .

When π̂(z) ≡ 0 , then L2 = Zer = Ẑ = C . When C(A,E) is also continuous then
Λ(A, E) = ∅ and L1 = Lim = σ(A) .

3.7.3 About the subset L1

The left inclusion in (3.7.1) is algebrawise ⊆ . The algebraic determination of the set
L1 is much more difficult than that of L2 . The question is intimately connected with
the theory of the convergence ν(s) → 0 defective, as s → 0 , for ν(s) ∈ σ(E(s)) .

We review this theory first. The main references are [48, 45, 11, 46].

3.8 A survey of perturbation theory for the eigen-

values of a matrix in Jordan form

Let us rewrite

A(t) = A + tE = t(E + sA) = tE(s), s =
1

t
,

for t 6= 0 . Therefore

λ(t) → ξ ∈ Lim as |t| → ∞ , λ(t) ∈ σ(A(t)) ⇐⇒

ν(s) = ξs + o(s) as s → 0 , ν(s) ∈ σ(E(s)) .

This clearly requires that ν(s) → 0 as s → 0 , hence ν(0) = 0 ∈ σ(E) . Any
eigenvalue λ(t) which does not escape to ∞ , has as its limit, the coefficient ξ ( 0
or not) for s in the asymptotic expansion of ν(s) in s : Lim is nonempty iff at least
one eigenvalue ν(s) converges to 0 with order ≥ 1 in s , and

ξ = lim
s→0

ν(s)− ν(0)

s
= ν

′
(0).
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The problem of finding lim|t|→∞ λ(t) can be treated as a special instance of
Lidskii’s theory applied to E(s) = E + sA as |s| → 0 when there exists at least
one trivial Jordan block for 0 ∈ σ(E) .

More precisely, the order of convergence in s is 1 (resp. > 1 ) if ξ 6= 0 (resp.
= 0 ).

3.8.1 Definitions

Let ν(s) is an eigenvalue of

E(s) = E + sA = J + sA = J(s), (3.8.1)

where E = J is under Jordan form, A is a given matrix, J, A in Cn×n , and s ,
the complex perturbation parameter, tends to 0 . As s → 0 ,

ν(s) → ν ∈ σ(J)

with algebraic (resp. geometric) multiplicity m (resp. g ). Without loss of gener-
ality, we assume that ν = 0 . It is supposed to be defective ( 1 ≤ g < m ). Let nj ,
j = 1, . . . , q , q ≥ 1 be the different sizes of the Jordan blocks for 0 ∈ σ(J) ordered
by decreasing value

n1 > n2 > · · · > nq.

We remark that if nq = 1 , then q ≥ 2 under (∆) . Each block of size nj is repeated
rj times. The structure of 0 ∈ σ(E) = σ(J) is therefore (0n1)r1(0n2)r2 . . . (0nq)rq .

Let us define

fi =
i∑

j=1

rj

with fq = g and

mi =
i∑

j=1

rjnj

with mq = m .
We want to determine, when possible, for each of the m eigenvalues ν(s) con-

verging to ν = 0 , its order of convergence, p , and its nonzero leading coefficient
ξ 6= 0 :

ν(s) = ξsp + o(sp), p ∈ Q, 0 6= ξ ∈ C,

which is the first order term in the asymptotic expansion for ν(s) . It is known since
Puiseux in the 19 th century [48, 42] that, when there is no interaction between
the Jordan blocks, the possible exponents are the q rational numbers 1/ni , i =
1, . . . , q . These exponents are called Puiseux exponents, they are generic [41]. But
no attention was given then to the coefficients ξ .
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In a fundamental work published in 1965 [45], Lidskii looks at the coefficients ξ .
He proposes an algorithm to compute them under the non interaction assumption
of Puiseux.

3.8.2 The generic Lidskii process

The Lidskii algorithm constructs a sequence of imbedded matrices Γj of increasing
order fj , starting from Γ1 of order f1 > 0 , and setting f0 = 0 . In a 2× 2 block
representation, this gives, for j = 1, . . . , q :

Γ1 = ∆1, Γj =

[
Γj−1 R
L ∆j

]
. (3.8.2)

Lidskii [45] introduces the following assumption:

Assumption (Li): Γj−1 is nonsingular for all j = 2, . . . , q . Equivalently, Γj is
nonsingular for j = 1, . . . , q − 1 .

Because Γj−1 is nonsingular for j ≥ 2 , the Schur complement

Ωj = ∆j − LΓ−1
j−1R

of Γj−1 in Γj is well-defined. In addition, since Γj is nonsingular, Ωj is itself
nonsingular for j < q , because det Γj = det Γj−1 det Ωj , j = 2, . . . , q . For j = q ,
Ωq may be singular. By a slight abuse of language, we still say that Ω1 = ∆1 = Γ1

is a Schur complement (it corresponds to Γ0 inexistent: f0 = 0 ).

Under the assumption (Li), the Lidskii process asserts that for each step j there
are exactly njrj eigenvalues with Puiseux order 1/nj and coefficients deduced from
σ(Ωj) by taking the nj roots of order nj of each of the rj eigenvalues. This follows
from the resolution of the equation

det Γj(t) = 0, (3.8.3)

with t = znj and

Γj(t) =

(
Γj−1 R
L ∆j − tIrj

)
.

For det Γj−1 6= 0 by the Schur complement formula:

detΓj(t) = detΓj−1 det(Ωj − tIrj
).

For each j , the eigenvalues of Ωj , yield the nj roots equal to the nj coefficients
which are sought for.

The set of matrices A that do not satisfy (Li) is nongeneric in Cn×n [41]. See
section 3.8.3.
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3.8.3 The nongeneric step where Γj is singular

The challenge to go beyond (Li) has been faced in [11] and more directly in [6, 7,
46, 19, 20]. In [11, 46], a nongeneric step in the Lidskii process is analyzed under
the hypothesis:

(H): there exists j , 1 ≤ j ≤ q such that det Γj = 0 and det Γi 6= 0 , i 6= j .

What happens when the Lidskii process hits the first nongeneric step j ?

It is shown in [11] that the spectral projection P (s) associated with 0 ∈ σ(J)
can be represented as the sum of two analytic projections in s . The first (resp.
second) one concerns the mj−1 (resp. m − mj−1 ) eigenvalues ν(s) converging
with order ≤ 1/nj−1 (resp. ≥ 1/nj ). Analyticity cannot be guaranteed any more.
However, it is clear that more algebraic computation can be performed [46, 19, 20].

3.8.4 What can we conclude when (Li) does not hold ?

What happens when one Γj is singular? Baumgärtel [11] does not face the com-
putational issue, which is studied in [46]. Results presented in [6, 7] rely partly
on [46]. However, the conclusions presented in [46] are not entirely correct. The
necessary modifications are presented in [19, 20]. In section 3.9, we will depend on
these modifications to establish that L1 = σ(Ω) ⊆Lim under an assumption weaker
than (Li).

We explicit what happens when either the first or last step is nongeneric. When
j = 1 is nongeneric, det Γ1 = 0 . In this case, some eigenvalues converge with
orders > 1/n1 and others with orders < 1/n2 .

If we look at the case j = q , det Γq = 0 , det Γi 6= 0 , i < q . The new feature is
that there are no subsequent steps. At step q − 1 , all mq−1 eigenvalues have been
classified. When det Γq = 0 , nq(rq − ωq) (resp. nqωq ) eigenvalues converge with
order = 1/nq (unknown orders > 1/nq ), where ωq is the algebraic multiplicity of
0 ∈ σ(Ω) .

Let us illustrate the generic theory by the following example adapted from [46] which
uses the explicit formulation of Lidskii to find the sequence of imbedded matrices
Γj of increasing order fj , j = 1, 2 .

Example 3.8.1 Let E be a 7×7 Jordan matrix with a unique zero eigenvalue and
three Jordan blocks with respective dimensions 3 , 3 , and 1 . Lidskii’s results show
that for a small |s| , there are six eigenvalues for E + sA of order s1/3 , and one of
order s . Lidskii has shown [45] that the coefficients of the leading terms depend only
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on the elements of the matrix A marked with a diamond in the following matrix:

A =




∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ 3 ∗ ∗ 3
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ 3 ∗ ∗ 3
3 ∗ ∗ 3 ∗ ∗ 3




= [aij]. (3.8.4)

More precisely, let Γ1 be the 2 × 2 matrix whose four entries are the four
diamonds in the top left block of A in (3.8.4), that is,

Γ1 =

[
a31 a34

a61 a64

]
of order f1 = 2.

Γ1 is assumed to be invertible under (Li) . Then the perturbed matrix E(s) = E+sA
has six eigenvalues with leading terms in s of the form

(ξ
(k)
1 )1/3s1/3, k = 1, 2,

for ξ
(1)
1 , ξ

(2)
1 ∈ σ(Γ1) . Now, for the 7th eigenvalue, ν(s) ,

Γ2 =

[
Γ1 R
L ∆2

]
=




a31 a34 a37

a61 a64 a67

a71 a74 a77


 .

The Schur complement of Γ1 in Γ2 is

ξ2 = ∆2 − LΓ−1
1 R = a77 − [a71 a74] Γ−1

1

[
a37

a67

]
.

This shows that the perturbed matrix E(s) has one eigenvalue ν(s) with leading
term (ξ2)s for ξ2 6= 0 : this corresponds to the trivial Jordan block associated with
(01) . If ξ2 = 0 , then the eigenvalue ν(s) converges to 0 with order > 1 .

This concludes the presentation given in [46].

Because ∆2 is of order 1 , we can say more by using (1.6.8).

detΓ2(z) = det

[
Γ1 R
L ∆2 − z

]
= (∆2 − z)detΓ1 − LT adjΓ1R,

and ξ2 is a root of det Γ2(z) which is a polynomial of degree 1 (resp. 0 )
iff det Γ1 6= 0 (resp. = 0 ).

If det Γ1 6= 0 , ξ2 is the 1 × 1 Schur complement predicted by Lidskii. If
det Γ1 = 0 , det Γ2(z) reduces to the constant −LT adjΓ1 R , which may be 0
( ξ2 ∈ C ) or 6= 0 ( ξ2 does not exist).

4
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3.9 Algebraic determination of L1 under (∆)

3.9.1 Notations associated with σ(E) when Ker E ∩ Im
E = S 6= {0}

The following notations are associated with 0 ∈ σ(E) when Ker E ∩ Im E =
S 6= {0} :

m = algebraic multiplicity of 0 ∈ σ(E) ,

g = geometric multiplicity of 0 , 1 ≤ g = dim Ker E , n − r = g < m ,
r = rank E < n ,

r
′
= rank G = rank (V HU) , r

′ ≤ r = rank E ,

g
′
= number of trivial Jordan blocks corresponding to 0 , 0 ≤ g

′
< g ,

f = number of Jordan blocks of size ≥ 2 (nontrivial Jordan blocks corre-
sponding to 0 ), f = g − g

′ ≤ g ,

K
′

= eigenspace generated by the g
′

= g − f eigenvectors belonging to a
(trivial) Jordan chain of length 1 , g

′
= dim K

′
,

S = subspace generated by the f eigenvectors starting a non trivial Jordan
chain,

T = subspace generated by the f vectors ending a non trivial Jordan chain.

3.9.2 Application of Lidskii’s theory when g
′ ≥ 1 : the ma-

trix Π̃(z) of order g

In this section, we restrict our attention to (∆) with g > g
′ ≥ 1 when 0 ∈ σ(E)

is defective. This is equivalent to the assumption nq = 1 , hence q ≥ 2 , rq = g
′
,

0 < f = g − g
′
< g . We look for the possible convergence of ν(s) to 0 with order

≥ 1 in s , that is

ν(s) = ξs + o(s), (3.9.1)

and ξ ∈Lim is possibly 0 .

The g Jordan blocks for ν = 0 ∈ σ(E) are ordered by non increasing size. The
same arrangement for non zero eigenvalues induces a complete Jordan basis X such
that E = XJX−1 , therefore

E + sA = X(J + sX−1AX)X−1 = X(J + sB)X−1, (3.9.2)
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where J is a Jordan form for E , and X−1AX = B . We assume that ν = 0 is

placed first and X̄ =
[

e1 . . . em

]
(resp. Ȳ T =




eT
1
...

eT
m


 ) represents the right

(resp. left) Jordan basis for 0 of algebraic multiplicity m . X̄ (resp. Ȳ T ) consists
of the m first canonical vectors (resp. rows).

In these bases, we select the eigenvectors. This defines the n × g matrix X̃ =
[Z, X

′
] (resp. Ỹ = [W,Y

′
] ) such that Z , X

′
(resp. W , Y

′
) are the eigenvectors

starting the non trivial and trivial Jordan blocks for J (resp. JT ) respectively.
Therefore Z is a basis for S , W a basis for T and X

′
a basis for K

′
which

satisfy

Y
′T

X
′
= Ig′ , W T Z = 0f and Ỹ T X̃ =

[
0f 0
0 Ig′

]
(3.9.3)

[45, 46, 18].
P̃ = X̃Ỹ T is not a projection (on Ker E or K

′
= Im X

′
). In fact it satisfies

P̃ 2 = P
′
= X

′
Y
′T 6= P̃ , where P

′
= X

′
Y
′T

is the eigenprojection on K
′
.

Let us define Π̃ = Ỹ T BX̃ =

[
Γ R
L Π

′

]
, with

Γ = W T BZ, of order f, L = Y
′T

BZ, R = W T BX
′

and where Π
′
= Y

′T
BX

′
of order g

′
represents the Galerkin approximation P

′
BP

′

restricted to K
′
, whereas Π̃ does not correspond to a Galerkin approximation ( P̃

is not a projection).

We define Π̃(z) =

[
Γ R
L Π

′ − zIg
′

]
, so that

q̃(z) = det Π̃(z) (3.9.4)

is an scalar polynomial in z of degree ≤ g
′
.

Such a construction is possible for g
′ ≥ 1 , which we assume below. We shall

look at the case g
′

= 0 later. When g
′ ≥ 1 , then nq = 1 for the last step in

Lidskii’s algebraic theory. Lidskii’s theory asserts that the coefficients ξ are the
roots of q̃(z) = 0 with g

′ ≥ 1 under the assumption (Li). Can this assumption be
weakened?

3.9.3 (G) : detΓ 6= 0 ⇒ L1 = σ(Ω) ⊆ Lim

When Γ is invertible, let Ω be the Schur complement of the block Γ in Π̃ , that is

Ω = Π
′ − LΓ−1R. (3.9.5)
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Then, we can write

Ω = Π
′ − LΓ−1R = Y

′T
(In −B(ZΓ−1W T ))BX

′
. (3.9.6)

Assumption (G) : g
′ ≥ 1 and Γ = W T BZ invertible (⇔ det Γ 6= 0 ).

The following Proposition shows that the elements of Lim are deduced in part from
σ(Ω) .

Proposition 3.9.1 [18] Under the assumption (G ), l∗ ≥ g
′
and L1 = σ(Ω) ⊆Lim.

Proof. By assumption Γ exists and is invertible. Then, we have

q̃(z) = detΠ̃(z) = detΓ det(Ω− zIg′ ),

for Ω defined in 3.9.5 as the Schur complement of Γ in Π̃ ∈ Cg
′×g

′
. This shows

that deg det Π̃(z) = g
′
, and Z(q̃(z)) = {z ∈ C : q̃(z) = 0} = σ(Ω) . And of course,

l∗ ≥ g
′ ≥ 1 , since g

′ ≥ 1 by assumption.

The assumption (G) on Γ guarantees that at least g
′

eigenvalues stay at finite
distance. But there is no guarantee that exactly n− g

′
eigenvalues diverge to ∞ .

Hence, σ(Ω) ⊆ Lim.
¤

Example 3.9.1 Let E = J = diag







0 1 0
0 0 1
0 0 0


 ,

[
0 1
0 0

]
, 0


 be in Jordan form

and A =




1 0 1 1 0 0
0 1 1 0 0 0
0 1 1 1 0 1
0 1 0 0 0 1
1 0 0 0 1 1
0 0 0 0 1 0




= [aij] . g = 3 , g
′
= 1 .

Then Γ1 = a31 = 0 , and Γ2 =

[
a31 a34

a51 a54

]
=

[
0 1
1 0

]
which is nonsingular. For

X̃ = [e1, e4, e6] and Ỹ = [e3, e5, e6] , one has

Π̃ = Ỹ T AX̃ = Γ3 =




a31 a34 a36

a51 a54 a56

a61 a64 a66


 =




0 1 1
1 0 1
0 0 0


 , and Π

′
= (0) .

Then

Ω = (a66 −
[

a61 a64

]
Γ−1

2

[
a36

a56

]
) = (0− 0) = (0).

This example satisfies the condition (G) but not (Li), where q = 3, n3 = 1 and
Γ2 = Γq−1 is nonsingular. This shows that σ(Ω) = {0} ⊆Lim. In fact, by computing
the eigenvalues of A(t) = A+tE for increasingly large |t| , one finds that {0} = Lim.

4
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Under (G) , let us define

F = ZΓ−1W T ∈ Cn×n. (3.9.7)

Lemma 3.9.2 [18] (i) The matrix F defined in (3.9.7) satisfies F 2 = 0 and
rank F = 1 .

(ii) Q = FB is a rank 1− projection.

Proof. (i) Using the properties of W and Z in (3.9.3) and according to the
definition of the matrix F in (3.9.7) one has F 2 = ZΓ−1(W T Z)Γ−1W T = 0 since
W T Z = 0 and F 6= 0 . Therefore rank F = 1 , and F is nilpotent.

(ii) The matrix Q = FB = ZΓ−1W T B satisfies

Q2 = ZΓ−1[W T BZΓ−1]W T B = Q, since W T BZ = Γ,

and Q = FB shows that 1 ≤ rank Q ≤ min(rankF, rankB) = 1 . Therefore Q is a
rank 1− projection.

¤

Lemma 3.9.3 [18] Ω represents the map P
′
B(I−Q)P

′
restricted to K

′
= Im X

′
.

Proof. The assertion is derived from the following equalities.

P
′
B(I −Q)P

′
= X

′
(Y

′T
BX

′ − Y
′T

BZΓ−1W T BX
′
)Y

′T

= X
′
(Π

′ − LΓ−1R)Y
′T

= X
′
ΩY

′T
.

¤

Theorem 3.9.4 [18] When (Σ) does not hold, but (G) is valid, the matrix Ω
replaces Π . This amounts to replace PAP by P

′
B(I − Q)P

′
, where I − Q is a

projection with rank n− 1 .

Proof. Clear by Lemma 3.9.2 and 3.9.3.

¤

Under (Σ) , 1 ≤ g
′
= g and Z = W = 0 . Therefore Q = 0 . In fact Q 6= 0 ⇐⇒

(∆) . Theorem 3.9.4 indicates how PAP and Π are modified to get P
′
B(I −Q)P

′

and Ω when Q 6= 0 and 1 ≤ g
′
< g under (∆) .
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3.9.4 (Li) ⇒ L1 = σ(Ω) = Lim

The stronger result Lim = σ(Ω) requires the assumption (Li). As we saw, this
stronger assumption (which implies (G) ) makes it sure that there is no interaction
between the Jordan blocks of different sizes. Therefore Lim = σ(Ω) where Ω can
be singular. And exactly n− g

′
eigenvalues diverge to ∞ , by Lidskii’s theory

[45, 46].

Proposition 3.9.5 [18] Under the assumption (Li), l∗ = g
′

and Lim = L1 = σ(Ω) .

This Proposition is the generic case studied in [45, 46]. Under (Li) l∗ = g
′

and
Lim = L1 = σ(Ω) generalizes Lim = σ(Π) which is valid under (Σ) . Note that (Li)
reduces to (G) when q = 2 .

Proposition 3.9.6 [41] Let the matrix E be given in Cn×n . The set of matrices
A such that (A,E) satisfies (Li) is a dense open subset in Cn×n .

The Proposition 3.9.6 leads naturally to the following definition.

Definition 3.9.7 When 0 ∈ σ(E) is defective with at least one trivial Jordan block,
the deviation process (A,E) is generic iff (Li) is satisfied.

Via the Proposition 3.9.5, when ( A,E ) is generic, there are exactly g
′ ≥ 1 eigen-

values converging to σ(Ω) and n− g
′

eigenvalues diverging to ∞ .

Definition 3.9.8 We call kernel points for (A,E) the values in σ(Ω) which are
in the resolvent set re(A) . We denote the set of kernel points, as

K(A, E) = σ(Ω) ∩ re(A).

We know that under (G) , σ(Ω) ⊆Lim and under (Li), σ(Ω) = Lim. Therefore
under (G) , K(A,E) ⊆ Λ(A,E) and under (Li), K(A,E) = Λ(A,E) . And under
(Σ) , K(A, E) = Λ(A,E) = σ(Π) ∩ re(A) .

Example 3.9.2 Let A be the companion matrix associated with π(z) = z11 + 1 ,
in upper Hessenberg form, and first column e2 .
Let E = UV T with U = [e, e2] and V = [e11, e3] of rank r = 2 for e = [1, . . . , 1]T .
E is in Jordan form for 0 ∈ σ(E) , with 1 block of size 2 for 0 ∈ σ(E) , g =
n− 2 = 9 , g

′
= 8 , m = 10 < n = 11 .

We use the complete Jordan decomposition of E with the similarity transformation
matrix X into the Jordan form J . The Jordan blocks associated with 0 ∈ σ(E)
satisfy n1 = 2 > n2 = 1 , for r1 = 1, r2 = 8 , q = 2 . Then we get:

J = diag

[[
0 1
0 0

]
, 0, . . . , 0, 1

]
, J = X−1EX and B = X−1AX,
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Π̃ = Ỹ T BX̃ = Γ2 =




1 0 1 · · · · · · · · · 1
0 0 | −1 −1 · · · −1 0

−− −− −− −− −− −−
... 0 | −1 −1 · · · · · · −1
... 0 | 1 0 · · · · · · 0
...

... | 0
. . . . . .

...
...

... | . . . . . . . . .

0 0 | 0 0 1 0




of order 9.

for X̃ = [e1, e3, . . . , e10] and Ỹ = [e2, e3, . . . , e10] . Therefore, Γ1 = eT
2 Be1 = 1 6= 0 ,

and Ω is the down right 8 × 8 diagonal block of Γ2 of order g
′

= 8 . Hence
(G) = (Li) holds.
Ω has a simple block diagonal structure: 1 scalar 0 , 1 block of order
7 which is in companion form, associated with p(z) = z7 + z6 + · · · + 1 .
We conclude that σ(Ω) = Zer(p(z))∪ {0} = F (A,E)∪ {−1} : a direct computation
shows that det Â(z) = π̂(z) = z(z7 + z6 + · · ·+ 1) = z(z + 1)(z2 + 1)(z4 + 1) .

In summary, (G) = (Li) holds, the eigenvalue 0 in σ(Ω) is simple, and σ(Ω) = Lim:
7 eigenvalues ν(s) converge with order 1 and 1 eigenvalue ν(s) converges with
order > 1 . See numerical illustration in chapters 6 and 7.

4

3.9.5 g
′ ≥ 1 and Γ is singular

When Γ is not invertible, Ω does not exist, and 0 ≤ deg q̃(z) ≤ g
′ − 1 . The

trivial and nontrivial Jordan blocks interact. For f ≥ 1 , all we can say is
Lim⊇ L1 = Z(q̃(z)) when q̃(z) 6≡ 0 .

When f = 1 (hence q = 2 for g
′ ≥ 1 ), Γ is restricted to the scalar γ = 0 . In

general, for γ ∈ C ,

Π̃(z) =

[
γ rT

l Π
′ − zI

]
.

The formula (1.6.8) yields

q̃(z) = detΠ̃(z) = γdet(Π
′ − zI)− rT adj(Π

′ − zI)l.

The coefficient of zg
′

is γ(−1)g
′
. When z 6∈ σ(Π

′
) , then det Π̃(z) = 0 iff

rT (Π
′ − zI)−1l = γ . The case q = 2 , f = 1 corresponds to a unique non trivial

Jordan block, in addition to at least one trivial one. Because of its algorithmic
significance, a special case for q = 2, f = 1 is treated in more detail in Chapter 8.

3.9.6 q = f = 1 : a case where g
′
= 0

When there is a unique Jordan block with n1 > 1 then g = 1 and g
′

= 0 .
Generically the Puiseux exponent is 1/n1 < 1 , and all eigenvalues λ(t) escape to
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∞ . However Lim 6= ∅ is possible nongenerically. This is illustrated by the following
Example.

Example 3.9.3 [5]

A =




0 0 −1
1 0 0
0 1 0


 , E =




0 1 0
0 0 1
0 0 0


 , π(z) = z3 + 1.

U = [e1, e2] , V = [e2, e3] , G = V HU =

[
0 1
0 0

]
has rank 1 .

Bz = adj (zI3 − A) =




z2 −1 −z
z z2 −1
1 z z2


 ,

and

Q(z) = V HBzU =

[
z z2

1 z

]

det Q(z) ≡ 0 and Zer = Z( det Q) = Ẑ = C .

For z 6∈ σ(A) , Mz = 1
π(z)

[
z z2

1 z

]
has the spectrum σ(Mz) = {0, 2z

z3+1
}.

Therefore, F (A,E) = re(A) ⊂ C and C(A,E) = {0} .
λ(t) is any of the three roots of λ3 − 2λt + 1 = 0 : one tends to 0 , two roots tend
to ∞ as |t| −→ ∞ . Hence Lim = {0} .

4

Example 3.9.3 shows a case where E is nilpotent, A is companion, F (A,E) = re(A)
is continuous but C(A,E) is discrete. As a result, the eigenvalues evolve. Note also
that Lim = {0} is not empty even though g′ = 0 .

However, when g
′
= 0 in general, we do not know theoretically how to predict L1 .

3.10 The collective behaviour

So far we have looked at the individual behaviour of each of the m eigenvalues
λj(t) =

νj(s)

s
, j = 1, . . . , m which may possibly have a finite limit as |t| → ∞ . It

is classical that Proposition 2.5.3 remains valid for the arithmetic mean

ν̂(s) =
1

m

m∑
j=1

νj(s),

under the perturbation sA for E [32, 33, 18], provided that P denotes now the
spectral projection for 0 ∈ σ(E) on the invariant subspace Ker Em of dimension
m . Therefore Π = PAP¹ KerEm is of order m .
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Proposition 3.10.1 [18] Without assumption on 0 ∈ σ(E) ,

λ̂(t) =
ν̂(s)

s
→ 1

m
tr Π, as |t| → ∞.

The arithmetic mean of m eigenvalues stays at finite distance.

Among the m eigenvalues λj(t) , j = 1, . . . ,m appearing in λ̂(t) , l∗ of them,
0 ≤ l∗ ≤ m converge to Lim, and m − l∗ escape to ∞ . This escape is realized
in such a way that λ̂(t) converges to 1

m
trΠ . Even if some of the m eigenvalues

escape to ∞ , they remain connected: their sum converges to tr Π in C .
This connection will explain some of the amazing numerical results obtained in

the experimental Chapters of Part II.

3.11 A summary for (∆)

In general, we have

Zer = Zer(detQ(z)) = (σ(A))r−1 ∪ Ẑ

for Ẑ = Zer(π̂(z)) , π̂(z) = detÂ(z) and

Â(z) =

[
zI − A −U

V H 0

]
.

Under (∆) , one has

1. 0 ≤ g
′
< g < m ≤ n ⇐⇒ deg(detQ(z)) < (n− 1)r

⇐⇒ deg π̂ < n− r ⇐⇒ (∆) ,

2. F (A,E) = Ẑ ∩ re(A), and card Ẑ < n− r = g , or Ẑ = C ,

3. card Lim = l∗, 0 ≤ l∗ ≤ m ≤ n ,

4. When g
′ ≥ 1 and (G) holds =⇒ Ω = Π

′ − LΓ−1R of order g
′

exists.

I. When π̂(z) 6≡ 0 , then {C(A,E), Λ(A,E)} ⊆ F (A,E) = Ẑ ∩ re(A) ⊂ re(A) ,

1. when g
′ ≥ 1 , for Π̃(z) =

[
Γ R
L Π

′ − zIg′

]
, one has L1 = Zer(Π̃(z)) .

2. under (G) , L1 = σ(Ω) ⊆Lim,

(a) K(A,E) ⊆ Λ(A,E) ⊆ F (A,E) , with K(A,E) = σ(Ω) ∩ re(A) ,

(b) Ω represents the map P
′
B(I − Q)P

′
restricted to K

′
= Im X

′
, for a

rank 1− projection Q = FB with F = ZΓ−1W T , and F 2 = 0 .
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3. under (Li), L1 = σ(Ω) = Lim and {C(A,E), K(A,E) = Λ(A,E)} ⊆ F (A,E) .

4. when r = 1 , Λ(A,E) ⊆ F (A,E) and Zer = Ẑ .

II. When π̂(z) ≡ 0 , then Ẑ = Zer = C , and F (A,E) = re(A) , and

1. if C(A,E) contains at most n − 1 distinct points, then C(A,E) is discrete
and the eigenvalues evolve. In addition, under (G) K(A,E) = σ(Ω)∩re(A) ⊆
Λ(A,E) .

2. if C(A,E) contains at least n distinct points, then C(A,E) = re(A) is a
continuous set and

K(A,E) = Λ(A,E) = ∅, Lim = σ(A) = σ(A(t)), ∀ t ∈ C,

l∗ = n , and there is no evolution for the eigenvalues.

When (G) does not hold ( g
′
= 0 or det Γ = 0 ), there is no theoretical answer to the

algebraic determination of L1 . A computational approach is to plot the eigenvalue
maps: t ∈ C 7→ λi(t) , as t varies in C [27, 51, 30, 31, 5]. See the numerical
experiments for t 7→ σ(A(t)) in Chapters 6,7 and 8 of Part II.

3.12 A summary for (Σ)

To better appreciate the role of 0 defective / 0 semi-simple we list below the results
of Chapters 2 and 3 obtained under (Σ) . G = V HU has rank r .

Under (Σ) , we still use the notations Zer , Ẑ , π̂(z) , and Â(z) of the section 3.11.
One has

1. 1 ≤ g
′
= g = n− r = m < n ⇐⇒ deg(detQ(z)) = (n− 1)r

⇐⇒ deg π̂ = n− r ⇐⇒ (Σ) ,

2. F (A,E) = Ẑ ∩ re(A) ,

3. K(A,E) = Λ(A,E) , with cardinal ≤ g = n− r ,

4. card Ẑ = n− r = g = card Lim = l∗ ,

5. for r = 1 , g = n− 1

(a) Zer = Ẑ and σ(Π) = Lim, where Π is the g × g matrix representing
PAP restricted to Ker E . P = I − UG−1V H is the eigenprojection
associated with 0 ∈ σ(E) , which projects onto the eigenspace Ker E
along Im E ,
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(b) Λ(A,E) ⊆ F (A,E) = C(A,E) .

6. for 2 ≤ r < n ,

(a) σ(Π) = Lim, card σ(Π) = card Ẑ = g = n− r , but in general, σ(Π) 6= Ẑ
is possible,

(b) {C(A,E), Λ(A,E)} ⊆ F (A,E) .

7. Q = 0 ; Ω (resp. P
′
B(I −Q)P

′
) is replaced by Π (resp. PAP ).

8. If card Λ(A,E) = n− r then

σ(A) ∩ σ(Π) = Ẑ ∩ σ(A) = ∅ and

π̂(z) = det (zIg − Π) det G , σ(Π) = Ẑ .



Chapter 4

Regular matrix pencils and HD
theory

4.1 Introduction

Let A,E ∈ Cn×n be two given matrices, where rank E = r < n . The matrix E
of rank r is written under the form E = UV H where U, V ∈ Cn×r have rank
r . 0 is an eigenvalue of E with algebraic (resp. geometric) multiplicity m (resp.
g = n − r ≤ m ). Under the condition ( Σ ), one has m = g = n − r , and under
(∆) , g < m ≤ n . We consider the regular pencil (A− zI) + tE , defined for t ∈ C
and for the parameter z ∈ re(A) = C\σ(A) , where σ(A) denotes the spectrum of
A .
In this Chapter, we analyze how the structure of the pencil (A − zI) + tE varies
with the parameter z ∈ re(A) . Our analysis follows Gantmacher [37]. It turns
out that the appropriate notion is that of frontier points, which is essential in
Homotopic Deviation theory. As it was shown in Chapters 2 and 3, at frontier
points, rank (Mz) < r , where Mz = V H(zI −A)−1U is an r× r matrix defined for
z ∈ re(A) .
We shall show in section 4.3 that, when z is not (resp. is) a frontier point, the
structure of the pencil (A − zI) + tE depends only on r = rank E but not on A
(resp. depends on az , 1 ≤ az ≤ r , the algebraic multiplicity of 0 ∈ σ(Mz) ).
In section 4.4, as an example, the structure of the regular pencil A + tE for A
invertible ( z = 0 ∈ re(A) ) is determined.

4.2 Strictly equivalent forms for pencils of matri-

ces

4.2.1 Pencils of rectangular matrices

The present section deals with the following problem:
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Given four matrices A , E , A1 and E1 all of dimension m× n with elements
from C , it is required to find under what conditions there exist two square non-
singular matrices P and Q of orders m and n , respectively, such that

PAQ = A1, PEQ = E1. (4.2.1)

By introduction of the pencils of matrices A + tE and A1 + tE1 the two matrix
equations (4.2.1) can be replaced by the single equation

P (A + tE)Q = A1 + tE1. (4.2.2)

Definition 4.2.1 Two pencils of rectangular matrices A+ tE and A1 + tE1 of the
same dimensions m× n connected by the equation (4.2.2) in which P and Q are
constant square non-singular matrices (i.e., matrices independent of t ) of orders m
and n , respectively, will be called strictly equivalent.

A criterion for equivalence of the pencils A+ tE and A1 + tE1 follows from the
general criterion for equivalence of matrix polynomials and consists in the equality
of the invariant polynomials or, what is the same, of the elementary divisors of the
pencils A + tE and A1 + tE1 [37].

Now, we shall establish a criterion for strict equivalence of two pencils of matrices
and we shall determine for each pencil a strictly equivalent canonical form. This
strict equivalence has the following natural geometrical interpretation given in [37].

We consider a pencil of linear operators A + tE mapping Cn into Cm . For a
definite choice of bases in these spaces the pencil of operators A + tE corresponds
to a pencil of rectangular matrices A+ tE (of dimension m×n ); under a change of
bases in Cn and Cm the pencil A + tE is replaced by a strictly equivalent pencil
P (A + tE)Q , where P and Q are square nonsingular matrices of order m and
n . Thus, a criterion for strict equivalence gives a characterization of that class of
matrix pencils A + tE mapping Cn into Cm for various choices of bases in these
spaces.

In order to obtain a canonical form for a pencil it is necessary to find bases for Cn

and Cm in which the pencil of operators A + tE is described by matrices of the
simplest possible form.

4.2.2 Regular pencils of matrices

All the pencils of matrices A+tE of dimension m×n fall into two basic categories:
regular and singular pencils.

Definition 4.2.2 A pencil of matrices A + tE is called regular if

1. A and E are square matrices of the same order n ; and



4.2 Strictly equivalent forms for pencils of matrices 67

2. the determinant det (A + tE) does not vanish identically.

In all other cases (m 6= n , or m = n but det (A + tE) ≡ 0 ), the pencil is called
singular.

A criterion for strict equivalence of regular pencils of matrices and also a canonical
form for such pencils were established by Weierstrass in 1867 on the basis of his
theory of elementary divisors. The analogous problems for singular pencils were
solved later, in 1890, by the investigations of Kronecker [37].

Let us consider the special case where the pencils A + tE and A1 + tE1 consist of
square matrices ( m = n ) such that det E 6= 0 , det E1 6= 0 . In this case, the two
concepts of equivalence and strict equivalence of pencils coincide [37].

Theorem 4.2.3 [37] Two pencils of square matrices of the same order A+ tE and
A1 + tE1 for which det E 6= 0 and det E1 6= 0 are strictly equivalent if and only if
the pencils have the same elementary divisors in C .

Example 4.2.1 [37] Let A + tE =




2 1 3
3 2 5
3 2 6


 + t




1 1 2
1 1 2
1 1 3


 , and

A1 + tE1 =




2 1 1
1 2 1
1 1 1


 + t




1 1 1
1 1 1
1 1 1


 . It is shown that each of the

pencils A + tE and A1 + tE1 has one elementary divisor, t + 1 , and
det (A + tE) ≡ det (A1 + tE1) ≡ t + 1 does not vanish identically. However,
they are not strictly equivalent, since the matrices E and E1 are of rank
2 and 1 , respectively. If an equation (4.2.2) were to hold, it would follow
from it that the ranks of E and E1 are equal.

4
According to the definition 4.2.2, it is quite possible in a regular pencil to have
det E = 0 (and even det A = det E = 0 ). By the way the example 4.2.1 shows that
Theorem 4.2.3 does not hold for the regular pencils satisfying definition 4.2.2 where
det E = 0 or det E = det E1 = 0 .

In order to preserve Theorem 4.2.3, we need to introduce the concept of infinite
elementary divisors of a pencils. We shall consider the pencil A + tE as a homoge-
neous function of the two parameters t, λ ∈ C : λA + tE . Then the determinant
det (λA + tE) is a homogeneous function of t and λ . By determining the great-
est common divisor Dk(t, λ) of all the minors of order k of the matrix λA + tE
( k = 1, 2, . . . , n ), we obtain the invariant polynomials by the well known formulas

i1(t, λ) =
Dn(t, λ)

Dn−1(t, λ)
, i2(t, λ) =

Dn−1(t, λ)

Dn−2(t, λ)
, . . .

where all the Dk(t, λ) and ij(t, λ) are homogeneous polynomials in t and λ .
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Splitting the invariant polynomials into powers of homogeneous polynomials irre-
ducible over C , we obtain the elementary divisors eα(t, λ) ( α = 1, 2, . . . ) of the
pencil λA + tE in C .

When we set λ = 1 in eα(t, λ) we are back to the elementary divisors eα(t)
of the pencil A + tE . Conversely, from each elementary divisor eα(t) of degree q
we obtain the correspondingly elementary divisor eα(t, λ) by the formula eα(t, λ) =
λqeα( t

λ
) . We can obtain in this way all the elementary divisors of the pencil λA+tE

apart from those of the form λq .
Elementary divisors of the form λq exist iff det E = 0 and are called infinite

elementary divisors of the pencil A + tE .
Since strict equivalence of the pencils A+ tE and A1 + tE1 implies strict equiv-

alence of the pencils λA + tE and λA1 + tE1 , we see that for strictly equivalent
pencils A+ tE and A1 + tE1 not only their finite but also their infinite elementary
divisors must coincide.

Theorem 4.2.4 [37] Two regular pencils A + tE and A1 + tE1 are strictly equiv-
alent iff they have the same finite and infinite elementary divisors.

In the example 4.2.1, the pencils have the same finite elementary divisor t + 1 ,
but different infinite elementary divisors (the first pencil has one infinite elementary
divisor λ2 and the second has two: λ, λ ). Therefore these pencils turn out to be
not strictly equivalent.

Theorem 4.2.5 [37] Every regular pencil A + tE can be reduced to a (strictly
equivalent) canonical quasi-diagonal form

{N (u1), N (u2), . . . , N (us), J + tI} (N (u) = Iu + tH(u)), (4.2.3)

where the first s diagonal blocks correspond to infinite elementary divisors λu1 ,λu2 ,
. . . ,λus of the pencil A + tE and where the normal form of the last diagonal block
J + tI is uniquely determined by the finite elementary divisors of the given pencil.

Proof. Suppose that A + tE is an arbitrary regular pencil. Then there exists a
number c such that det (A + cE) 6= 0 . The given pencil can be represented in the
form A1 + (t − c)E , where A1 = A + cE , so that det A1 6= 0 . We multiply the
pencil on the left by A−1

1 : I +(t− c)A−1
1 E . By a similarity transformation we put

the pencil in the form

I + (t− c){J0, J1} = {In0 − cJ0 + tJ0, In1 − cJ1 + tJ1}, (4.2.4)

where {J0, J1} is the quasi-diagonal normal form of A−1
1 E , J0 is a nilpotent Jordan

matrix, det J1 6= 0 and ni = order Ji for i = 0, 1 .
We multiply the first diagonal block on the right-hand side of (4.2.4) by (In0−

cJ0)
−1 and obtain: In0 + t(In0 − cJ0)

−1J0 . Here the coefficient of t is a nilpotent
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matrix: from J l
0 = 0 for some integer l > 0 , it follows that [(In0 − cJ0)

−1J0]
l = 0 .

Therefore by a similarity transformation we can put this pencil into the form

I + tJ0 = {N (u1), N (u2), . . . , N (us)}, (N (u) = Iu + tH(u)), (4.2.5)

where H(u) is a matrix of order u whose elements in the first superdiagonal are 1 ,
while the remaining elements are zero, that is

H(u) =




0 1
. . . . . .

. . . 1
0


 .

We multiply the second diagonal block on the Right-hand side of (4.2.4) by J−1
1 ; it

can then be put into the form J + tI by a similarity transformation, where J is a
matrix of normal form (or of Jordan form).

¤

We recall that two families of square matrix pencils have been encountered in HD
theory. They play an essential role. They are for z ∈ C :

a) Â(z) = z

[
In 0
0 0

]
−

[
A U

−V H 0

]
of order n + r ,

b) Π̃(z) =

[
Γ R
L Π

′

]
− z

[
0 0
0 Ig′

]
of order g .

In each case, we supposed that the matrix pencils were regular. Then, we looked for
the roots of the polynomials π̂(z) 6≡ 0 and q̃(z) 6≡ 0 .

Therefore it is natural, in HD theory, to analyze the structure of regular pencils.
In what follows, t ∈ Ĉ defines the pencil (A − zI) + tE , and z ∈ re(A) ⊂ C is a
parameter.

4.3 The structure of the regular pencil (A−zI)+tE

depending on the parameter z in re(A)

We consider the pencil (A− zI) + tE for z given in re(A) : it is a regular pencil,
since its determinant is nonzero for t = 0 . How does the structure of the pencil
evolve as z varies in re(A) ?
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Proposition 4.3.1 For z ∈ re(A)\F (A,E) , the pencil (A − zI) + tE is strictly
equivalent to the 2× 2 block matrix




1 tε 0
. . . . . .

1
1

µ1z
ε 0
. . . . . .

1
µrz




(4.3.1)

corresponding to the partition n = g + r , where ε represents 0 or 1 and µiz ∈
σ(Mz) , i = 1, . . . , r , t ∈ C .

Proof. From the Lemmas 3.2.1 and 3.3.1, we know that, for any z ∈ re(A)\F (A, E) ,
Mz is invertible. In this case, the equality det ((A− zI) + tE) = 0 for any t ∈ C is
equivalent to say that z is an eigenvalue of A + tE in HD and

z ∈ σ(A + tE) ⇐⇒ t =
1

µiz

, for 0 6= µiz ∈ σ(Mz) and i = 1, . . . , r.

This quantifies the normal form of the last diagonal block of (4.2.3) by substituting
t = 1

µiz
for i = 1, . . . , r . The r finite eigenvalues of (A − zI) + tE are the r

numbers 1
µiz

. There are g = n− r infinite eigenvalues.
¤

The structure of the pencil is given by the partition n = g+r for any z 6∈ F (A,E) :
it depends only on r = rank E but not on A . This is the generic situation when
F (A,E) is a discrete set. When z is close to being a frontier point, then some of
the finite eigenvalues of the pencil are large.

When z ∈ F (A,E) , there is an abrupt change in structure of the pencil (A− zI)+
tE . Let

az, 1 ≤ az ≤ r (4.3.2)

be the algebraic multiplicity of 0 ∈ σ(Mz) , for z ∈ F (A, E) .

Proposition 4.3.2 For z ∈ F (A,E) , the structure of the pencil (A− zI) + tE is
determined by the partition n = (g+az)+(r−az) which depends on z in F (A,E) .

Proof. For z ∈ F (A,E) , there is at least one i ∈ {1, . . . , r} such that
0 = µiz ∈ σ(Mz) which is equivalent to |ti| = 1/|µiz| = ∞ . Thus for az defined
in (4.3.2), the strictly equivalent structure (4.3.1) of the pencil (A − zI) + tE is
determined by the partition n = (g + az) + (r− az) which shows how the structure
of the pencil (A− zI) + tE depends on az (and of course, on z in F (A,E) ).

¤
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According to the Proposition 4.3.2, if for example, the critical set C(A,E) is not
empty and z ∈ C(A,E) , then az = r and the pencil has no finite eigenvalue. When
the frontier set is discrete, there are at most n−r frontier points z in re(A) where
the structure of the pencil depends on A . In particular, the number r−az of finite
eigenvalues for the regular pencil is always smaller than the generic value r , the
rank of E . These frontier points signal a tight algebraic coupling between A and
E such that R(∞, z) does not exist (there is no analyticity at ∞ ).

Example 4.3.1 Let

A =




1 0 2 0 0 0
0 0 1 0 0 1
2 0 1 0 1 0
0 0 2 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0




and E =




0 4 1 2 0 0
−1 3 4 2 0 1
0 4 1 2 0 0
−1 4 3 3 0 1
0 0 0 0 0 0
0 1 −1 1 0 0




.

Now, one can use (1.6.1) to get E = UV H for

U =




1 1 0
1 0 1
1 1 0
1 1 1
0 0 0
0 1 0




, and V =




0 0 −1
3 1 0
2 −1 2
1 1 1
0 0 0
0 0 1




.

Here, rank E = 3 = r , det (V HU) = −15 6= 0 and 0 ∈ σ(E) is semi-simple with
the geometric multiplicity g = 3 . Then

π(z) = z(z5 − 2z4 − 4z3 + 1),

and

detQ(z) = −(15z3 + 8z2 − 8z + 1)(z5 − 2z4 − 4z3 + 1)2z2 = (π(z))2π̂(z),

for π̂(z) = −(15z3 + 8z2 − 8z + 1) .

This shows that F (A,E) = {−1.0828, 0.1568, 0.3926} . These points are de-
noted by fk , k = 1, 2, 3 . The algebraic multiplicity of 0 ∈ σ(Mzk

) , for each
frontier point fk , is afk

= 1 , k = 1, 2, 3 . See Table 4.1 below. Therefore
according to the Proposition 4.3.2, the structure of the pencil (A− zI) + tE
for z ∈ F (A,E) is determined by the partition n = 6 = (g+1)+(g−1) = 4+2 .
This means that the pencil (A − zI) + tE , for z = fk ∈ F (A,E) , k = 1, 2, 3 , is
strictly equivalent to the 2×2 block matrix corresponding to the partition 6 = 4+2
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1 tε 0 0
1 tε 0

1 tε
1

1
µ1fk

ε
1

µ2fk




(4.3.3)

where ε represents 0 or 1 and µjfk
∈ σ(Mfk

) , j = 1, 2 , t ∈ C .

fk ∈ F (A,E) µ1fk
µ2fk

µ3fk

f1 = −1.0828 2.6680 −4.0644 −3.3422× 10−15

f2 = 0.1568 2.6864 + 3.9821i 2.6864− 3.9821i 1.0192× 10−15

f3 = 0.3926 0.3082 + 2.1113i 0.3082− 2.1113i −4.9706× 10−15

Table 4.1: The computed values of µjfk
, j = 1, 2, 3 for each fk ∈ F (A,E)

For z 6∈ F (A,E) , the pencil (A− zI) + tE is strictly equivalent to the 2× 2 block
matrix corresponding to the partition 6 = 3 + 3




1 tε 0
1 tε

1
1

µ1z
ε 0
1

µ2z
ε
1

µ3z




(4.3.4)

where ε represent 0 or 1 and µjz ∈ σ(Mz) , j = 1, 2, 3 , t ∈ C .

To visualize the change at frontier points, it is useful to consider the map z 7→
max1≤i≤3

1
|µiz | for z ∈ C .

Since the 3 frontier points are real, we plot in Figure 4.1 max1≤i≤3
1

|µiz | as

z is maintained real and varies in [−1.5 1.5] to indicate how the corresponding
eigenvalue, 1

µiz
, for the pencil (A−zI)+tE escapes to infinity at z = fk ∈ F (A,E) ,

k = 1, 2, 3 .
The 2D and 3D versions of the frontier portrait φ2 : z 7→ ρ(M−1

z ) related to this
example will be displayed in Example 7.2.5 of Chapter 7 .
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Figure 4.1: max1≤i≤3
1

|µiz | versus z ∈ [−1.5 1.5]

4

4.4 z = 0 ∈ re(A) : a reduction method for solving

GEVP

In this section, we determine the structure of the regular pencil A + tE when A is
nonsingular, by applying the theory of Section 4.3 for z = 0 fixed in C .

Let A,E ∈ Cn×n , r = rank E < n , E is written in the form E = UV H for U
and V defined in (1.6.1) and A is nonsingular. An application of the lemma 3.2.1
for this case and where 0 = z 6∈ σ(A) states

det(A + tE) = det(A) det(Ir − tM), (4.4.1)

where M0 = M = −V HA−1U is of order r .

When the matrix A is nonsingular, a direct application of the Propositions 4.3.1
and 4.3.2 for the matrix pencil A + tE is as follows.

Proposition 4.4.1 Let A ∈ Cn×n be nonsingular, E ∈ Cn×n has rank r < n , and
A + tE is a regular matrix pencil. The r× r matrix M = −V HA−1U is defined in
(4.4.1).
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(a) When 0 6∈ σ(M) , the pencil A+tE is strictly equivalent to 2×2 block matrix




1 tε 0
. . . . . .

1
1
µ1

ε 0
. . . . . .

1
µr




(4.4.2)

corresponding to the partition n = g + r , where ε represents 0 or 1 and
µi ∈ σ(M) , i = 1, . . . , r , t ∈ C .

(b) When 0 ∈ σ(M) with algebraic multiplicity 1 ≤ a0 ≤ r , then the pencil
A + tE has r − a0 finite eigenvalues.

Proof. For 0 = z ∈ re(A) , (A− zI) + tE = A + tE .
¤

The Proposition 4.4.1 offers a reduction method for solving the following generalized
eigenvalue problem, GEVP,

sp(A,E) = {t ∈ C : det(A + tE) = 0} (4.4.3)

associated with the regular pencil A+tE , where the matrix A is nonsingular and
rank E = r < n : when the matrix M is nonsingular, GEVP (4.4.3) has r < n
finite eigenvalue which are sp(A,E) = σ(M−1) , and when 0 ∈ σ(M) , GEVP (4.4.3)
has less than r finite eigenvalues, which are the inverse of the nonzero eigenvalues
of the r × r ordinary eigenvalue problem

Mx = µx 0 6= x ∈ Cr. (4.4.4)

Therefore, finding the generalized eigenvalues in (4.4.3) of order n , is equivalent to
finding the non zero eigenvalues of the matrix M of order r = rank E .

This may be computationally effective when n is large but r ¿ n . To the best of
my knowledge, the SVD decomposition for E has not been used in the currently
available software for GEVP [3, 1, 10].



Chapter 5

Homotopic backward analysis, I
Basic concepts

5.1 Introduction about backward analysis

Let A ∈ Cn×n be a given matrix , z arbitrary in C . We consider the problem
(P): find 4A ∈ Cn×n such that A +4A− zI is singular.

That is

(P): find 4A such that z is an eigenvalue of A +4A .

In other words, given z and A what are the modifications ∆A of A such that
z is an exact eigenvalue of A + ∆A ? If ∆A = 0 , then z ∈ σ(A) is an exact
eigenvalue for A itself.

With no further assumption on 4A ∈ Cn×n , the problem (P) has an infinity of
solutions, and one looks for modifications ∆A which are small in some sense.

In section 5.3, the problem (P) is considered in the framework of the classical norm-
wise backward analysis which looks for 4A with minimum norm [23].

On the other hand, in homotopic deviation theory [5, 16, 18, 30, 21], 4A has a
prescribed structure E such that 4A = tE , t ∈ C ,and E ∈ Cn×n being fixed.
In this case z is the eigenvalue of at most n matrices A + tkE , k = 1, .., r ≤ n ,
with tk ∈ Ĉ = C ∪ {∞} . This is the subject of the section 5.4.

Modifications 4A of A with a prescribed structure seem to play an important
role in our current understanding of the evolution of living organisms [39].

The detailed comparison of the two backward analyses, normwise and homotopic,
shows that the latter is computationally much richer than the first [5, 4, 2, 29, 18, 21].
In section 5.2, some general tools related to backward analysis are presented.
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5.2 Theoretical tools for inexact computation

Finite precision computation requires the assessment of the computed result with
respect to machine precision. Similarly, in exact computation, when the operator,
for example, is replaced by a discrete approximation, one also wants, in Theoretical
Numerical Analysis, to assess the validity of the approximate solution (computed
exactly) with respect to the truncation error. Both problems can be treated within
the unique framework of backward analysis which is based on the simple but powerful
notion of backward error developed by Givens and Wilkinson for round-off errors in
the late 1950s [23, 54].

5.2.1 Classes of modification ∆A

The validity of the conclusions of any backward stability analysis strongly depends
on the adequacy of the class of modification to represent the phenomenon which
is the source of modifications. In fact while software developers focus on a class of
modification appropriate to represent faithfully the modifications generated by finite
precision, physicists may be more interested in the one generated by measurement
uncertainties on the data or by the variation of specific parameters in the model.

5.2.2 Norms

After deciding on the data to be modified and the class of modifications to be
applied, we have to choose a norm to measure the modifications on the data and
their effect on the solution.

In mathematics, the distance of the approximate solution x̃ to the exact solution
x is measured by the absolute norm ‖x̃− x‖ = ‖4x‖ , the ideal being that
‖4x‖ → 0 as the source of modifications vanishes.

On the other hand, numerical analysis and physicists most often consider a
relative formulation of the norm ‖4x‖

‖x‖ or ‖4x‖
‖x̃‖ (with x or x̃ fixed) instead of

‖4x‖ such that, if possible, this fraction be small with respect to some threshold.
The threshold can be chosen as machine precision or the level of uncertainty in the
data. (The reason is that in numerical software as in physics, often, it is the relative
assessment of an approximate solution x̃ which makes sense, not an absolute one).
Such a strategy for measuring relative variations has been systematically developed
in [23] under the generic name of scaling.

5.2.3 Scaling

Scaling consists in applying some linear transformation on the data and the solution.
For example, one considers the transformed data ẑ = S1z and the transformed
solution x̂ = S2x , where S1 and S2 are linear transformations. So x = g(z)
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becomes x̂ = S2 o g o S−1
1 (ẑ) if we assume that S1 is invertible: The nonlinear

map g is transformed into ĝ = S2 o g o S−1
1 .

Here, we describe three classes of modifications, mainly the componentwise, norm-
wise and homotopic modification which are used in numerical analysis. Let us
consider A ∈ Cn×n , and the modification 4A .

1. For the componentwise case (upperscript C ), 4A ∈ Cn×n with the scaled
norm satisfies

‖4A‖C = max
ij

|4aij|
bij

where B = (bij) is a matrix having a prescribed structure ( bij ≥ 0 and, if
bij = 0 , then 4aij = 0 ). The norm is absolute when the matrix B is such
that bij = 1 if aij 6= 0 and bij = 0 otherwise. It is relative when B = |A| .

2. For the normwise case (upperscript N ), 4A ∈ Cn×n with the scaled norm
satisfies

‖4A‖N =
‖4A‖

α

where ‖ · ‖ is any subordinate norm. The norm is absolute if α = 1 and
relative if α = ‖A‖ .

For example, a normwise modification such that ‖4A‖N = ε can be obtained
with |aij| = εα where in this case all the components of A can be perturbed.

3. For the homotopic case (upperscript H ), 4A is such that 4A = tE where E

is the given deviation matrix, t ∈ C . It is normed by choosing ‖4A‖H = |t|
α

.

The formulation is absolute if α = 1 and relative if α = ‖A‖
‖E‖ .

Once the data to be perturbed have been selected, we have to choose a metric to
quantify the size of the perturbation on data and solution [23].

In mathematics, convergence to the exact solution is characterized by the condi-
tion ‖4A‖ → 0 for some norm. By comparison, in numerical analysis, in physics,
and in all experimental sciences there is unavoidable uncertainty on the data. There-
fore, the best one can do to assess the validity of the computed solution is to satisfy
a relative criterion such as ‖4A‖

‖A‖ small compared with the level of uncertainty on
the data.

5.3 Normwise backward analysis for the eigen-

value problem

5.3.1 Normwise backward error

We define the backward error associated with a normwise analysis for the eigenvalue
problems. For any given z in re(A) , 4A ∈ Cn×n is arbitrary and (P) has an
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infinity of solutions. In the normwise analysis we use scaled norms.

Definition 5.3.1 Let z be a given point in re(A) = C\σ(A) for the eigenproblem
Ax = λx . The normwise backward error βN

z corresponding to z is defined by

βN
z = min{ε; ∃ u 6= 0, (A +4A)u = zu such that ‖4A‖N ≤ ε}

= min{‖4A‖N ; A +4A− zI is singular}. (5.3.1)

There are some equivalent formulations for βN
z [23]: βN

z is the distance of A− zI
to singularity. Equivalently, it measures, in terms of ‖4A‖N ∈ R+ , the smallest
amount by which z fails to be an eigenvalue of A .

Figure 5.1 shows how βN
z indicates the frontier for the two distinct groups

of ∆A , for which (A + ∆A − zI)−1 exists or not. (A + ∆A − zI)−1 exists for
‖∆A‖ < βN

z , and it does not exist for ‖∆A‖ ≥ βN
z .
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 ∃  ( A + ∆A − zI )−1 

 ( || ∆A|| < β
z
N ) 

 A + ∆A − zI   not  invertible  

 ( || ∆A ||  ≥ β
z
N ) 

Figure 5.1: Existence and non existence of (A + ∆A − zI)−1 depending on
‖∆A‖ compared with βN

z

Remark: Using the notation of subsection 5.2.3, the formulation for βN
z is absolute

if α = 1 , and is relative if α = ‖A‖ .

Lemma 5.3.2 [23] The normwise backward error associated with z ∈ re(A) , for
the eigenproblem Ax = λx can be computed as

βN
z =

1

α‖(A− zI)−1‖ . (5.3.2)



5.4 Homotopic backward analysis for the eigenvalue problem 79

Proof. Let us consider a non zero u ∈ Cn such that (A +4A)u = zu . It means
that Au− zu = −4Au and so,

‖(A− zI)u‖ ≤ ‖A− zI‖‖u‖ = ‖4A‖‖u‖ ≤ αε‖u‖. (5.3.3)

Now, considering this fact that for z /∈ σ(A) , 1
‖(A−zI)−1‖ ≤ ‖(A − zI)‖ , evidently

(5.3.3) implies the desired result.
¤

5.3.2 Normwise spectral portrait of A

During the decade of the 90 s, special attention has been given to the map
ψ : z 7−→ ‖(A − zI)−1‖ , defined for z ∈ re(A) . The reason is that the normwise
backward error defined in (5.3.2) for z ∈ re(A) , measures by how much z fails to
be an eigenvalue of A . The map ψ is called the normwise spectral portrait of A .
See the many plots in [23].

5.4 Homotopic backward analysis for the eigen-

value problem

Let r = rank E and µkz , k = 1, . . . , r̂z ≤ r denote the nonzero eigenvalues of the
matrix Mz defined in (2.4.2) for r̂z = r −az , where az ≥ 0 is algebraic multiplicity
of 0 ∈ σ(Mz) ( > 0 for z ∈ F (A,E) ). The same z is an eigenvalue of the r̂z (not
necessarily distinct) matrices A + tkE with tk = 1

µkz
∈ C , k = 1, . . . , r̂z ≤ r . r̂z

depends on z when z ∈ F (A,E) . Otherwise r̂z = r for z ∈ re(A)\F (A,E) .
z is an exact eigenvalue for r̂z ≤ r matrices A(tk) , where |tk| < ∞ . If one is

willing to consider t ∈ Ĉ = C ∪ {∞} , then z is an exact eigenvalue for exactly r
matrices A(t) with |t| ≤ ∞ (see section 5.4.1).

Amongst these r̂z matrices, one at least is closest to A , it is defined by t∗ of
minimum modulus:

|t∗| = min
k
|tk| = 1

maxk |µkz| . (5.4.1)

A(t∗) is a matrix of the family A(t) closest to A , if the distance is measured by
the modulus of t .

Similarly, amongst the r̂z matrices, one at least is furthest from A , it is defined by
t∗ of maximum modulus:

|t∗| = max
k
|tk| = 1

mink |µkz| . (5.4.2)

A(t∗) is a matrix of the family A(t) furthest from A , if the distance is measured
by the modulus of t .
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There is not a unique way to define the homotopic distance. For example, one can
choose the following.

Definition 5.4.1 The homotopic distance to spectral singularity of z is

|t∗| = min{|t|; z is an eigenvalue of A + tE}.

It is also called homotopic backward error which we denote it by βH
z , where

the upperscript H refers to homotopic.

Using the definition of |t∗| in (5.4.1), one has

βH
z = |t∗| = 1

ρ(E(A− zI)−1)
=

1

ρ(Mz)
, (5.4.3)

where |t∗| measures by how much z , which is an eigenvalue of A(t∗) = A + t∗E ,
fails to be an eigenvalue of A .

The bound

ρ(E(A− zI)−1) ≤ ‖E‖‖(A− zI)−1‖ ≤ ‖(A− zI)−1‖

valid for all E such that ‖E‖ ≤ 1 is useful to compare homotopic and normwise
backward errors.

5.4.1 Homotopic deviations from singularity at z ∈ re(A)

For z ∈ re(A) , there are at most r ways (or matrices) by which A − zI fails
to be singular: these are the deviations tkzE , with tkz = 1

µkz
, for µkz 6= 0 ,

k = 1, . . . , r̂z ≤ r .

We assume that µkz = 0 ⇔ |tkz| = ∞ . When z /∈ F (A, E), there are exactly r
finite deviations from singularity, namely tkzE , for tkz ∈ C . Below, we consider
that t ∈ Ĉ = C ∪ {∞} . Observe that the situation in homotopic deviation is very
different from that in normwise analysis. There is a finite (≤ r ) number of ways
to achieve singularity. Whereas in normwise analysis, the set of modifications is not
countable. This difference makes the homotopic backward analysis computationally
much richer than its normwise counterpart.

5.5 Two kinds of homotopic backward analyses at

z ∈ re(A) for t ∈ C
Let z be fixed in re(A) . When we consider the deviation tE with the complex
parameter t , it is important to introduce a qualitative difference on deviations,
deriving from t = |t|eiθ with |t| = h , and θ ∈ [0, 2π[ . The existence of the
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resolvent R(t, z) , defined in (2.2.3), can be analyzed from 2 points of view: the
modulus or argument of t .

Let be given the r̂z points tkz in C where R(t, z) does not exist. Then, R(t, z)
exists for t with |t| 6= |tkz| , or, for θ which satisfies θ 6= θkz mod 2π . This leads
to 2 types of homotopic backward analyses: metric or angular , and two ways to
partition the complex plane in which t varies.

5.5.1 Homotopic metric rings related to z ∈ re(A) , r > 1

For t = |t|eiθ (|t| = h) , the metric homotopic error is equal to the distance from
the set of deviations {eiθE, 0 ≤ θ < 2π} [4, 2]. For z fixed in re(A) , there are
at most r metric homotopic errors: |tkz| = 1

|µkz | , k = 1, · · · , r , bounded or not.

Definition 5.5.1 Let z be given in re(A) . The circles

O(hk) = {t = hke
iθ; for hk = |tkz| fixed, and θ ∈ [0, 2π[ }, k = 1, · · · , r̂z ≤ r,

(5.5.1)
represent the sets of t with equal metric homotopic error hk .

These circles define (at most) r̂z − 1 metric rings, in which R(t, z) exists for every
t which does not belong to any of the (at most) r circles with radii |tkz| , k =
1, . . . , r̂z . When z 6∈ F (A,E) , r̂z = r and the r circles define r̂z + 1 regions
in which R(t, z) exist. In this case, R(t, z) is analytic in t inside of the smallest
circle and outside of the largest one (around 0 , and ∞ ). R(t, z) exists in the r−1
circular rings for r > 1 .

See the 5 metric rings and the 2 regions of analyticity on Figure 5.2 for r = 6 .
Inside of the smallest circle and outside of the largest one, lie the regions where
R(t, z) is analytic in t , they are hatched.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Figure 5.2: The 5 metric rings and the 2 regions of analyticity for R(t, z) , r = 6 ,
t ∈ C , z given in re(A)

A numerical illustration is given in the following example.
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Example 5.5.1 We are given the following matrices,

A =




1 0 1 1 1 1
1 1 1 0 0 0
1 0 1 0 2 1
1 0 0 1 0 1
0 1 0 9 1 2
1 2 5 2 0 2




, U =




1 0 1 0
2 2 1 1
1 0 1 0
1 1 1 0
0 8 1 0
0 0 0 1




, V =




0 2 1 1
1 0 1 1
1 0 1 0
1 1 1 0
0 0 0 0
1 1 0 1




where E = UV H and r = rank E = 4 < n = 6 . Given z in re(A)\F (A,E) , there
are exactly 4 points tkz = 1

µkz
in C where R( 1

µkz
, z) does not exist, k = 1 to 4 .

We choose z in re(A)\F (A,E) as z? = 17.9763 + 2.3561i , the values and the
magnitudes of tkz = 1/µkz , for k = 1, . . . , 4 are shown in table 5.1. We drop the
index z . They satisfy |t1| < |t2| < |t3| < |t4| and define 3 rings. These 4 points
are plotted by ∗ with appropriate color in Figure 5.3. The 3 metric rings are shown
in Figure 5.3.

tk |tk| color
k=1 1.0781+0.2185i 1.1 green
k=2 14.9463+2.0656i 15.0883 magenta
k=3 -26.2868-1.6567i 26.3390 blue
k=4 -46.19485-9.7705i 47.2204 red

Table 5.1: The values and the magnitudes of tk = 1/µkz , k = 1, . . . , 4 for z = z?
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Figure 5.3: The 4 circles for z? = 17.9763 + 2.3561i , the 3 metric rings and the
2 regions of analyticity for t ∈ C
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In this example R(t, z?) = R(t, 17.9763+2.3561i) exists for every t which does not
belong to the 4 circles with radii |tkz| , k = 1, . . . , 4 . The 4 circles define 5 regions
in which R(t, z) exist. It is analytic in t inside of the smallest circle and outside
of the largest one (around 0 , and ∞ ). See Figure 5.3.

4

5.5.2 Homotopic angular sectors

The angular homotopic error for θ or ( eiθ ) is the distance from the set of deviations
{hE, h ∈ R+} [4, 2]. There are at most r angular homotopic errors : eiθkz ( or
θkz if one considers the logarithm), k = 1, . . . , r̂z ≤ r where θkz are the arguments
of tkz = 1

µkz
(mod 2π ) for µkz 6= 0 .

Observe that the argument of µkz = 0 is undetermined.

Definition 5.5.2 Let z be given in re(A)\F (A,E) . The oriented half lines

S(θk) = {t = heiθkz , for θkz fixed in [0, 2π[, and |t| = h ∈ R+}, k = 1, · · · , r̂z ≤ r,
(5.5.2)

represent the sets of t with equal angular homotopic error θkz .

The r̂z points tkz define (at most) r̂z angular sectors.

Example 5.5.2 We consider the family A + tE − zI defined in Example 5.5.1,
where z is fixed at the same value z? = 17.9763 + 2.3561i . The angles θk = θkz in
t = |t|eiθk for k = 1, . . . , 4 together with the corresponding colors used in the figure
5.4 are shown in the table 5.2.

In this example R(t, z?) exists for all θ 6= {θ1z, · · · , θ4z} ( mod 2π ) which are
the 4 different arguments of tk = 1/µkz , k = 1, . . . , 4 . They define 4 different
angular sectors in which R(t, z?) exists. See figure 5.4.

θk color
k=1 0.2000 green
k=2 0.1373 magenta
k=3 -3.0787 blue
k=4 -2.9332 red

Table 5.2: The values and the corresponding colors of θk , k = 1, . . . , 4 for z = z?
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Figure 5.4: The r = 4 angular sectors for z = z?

4

5.6 Homotopic normwise and spectral portraits

The map φ0 : z 7→ ‖Mz‖ is the homotopic analogue of the popular normwise
portrait map ψ : z 7→ ‖(A− zI)−1‖ , [23]. In φ0 , the matrix (A− zI)−1 of order
n is replaced by Mz of order r < n .
HD theory suggests to complement the qualitative study of z 7→ Mz by the alter-
native spectral portrait

φ1 : z 7→ ρ(Mz),

where ‖ · ‖ is replaced by ρ(·) .
An important consequence when r > 1 is that φ1 can localize the critical points

( ρ = 0 ) when they are isolated, whereas the normwise spectral portrait cannot [21].
To distinguish between the two portraits φ0 and φ1 , we call φ0 (resp. φ1 ) the
normwise (resp. spectral) portrait, see Chapter 7.

Definition 5.6.1 A map z ∈ C 7→ f(z) ∈ R+ is said to have a peak (resp. a well)
at z ∈ C iff f(z) is not defined (resp. f(z) = 0 ).

To increase the visibility, in practice, we scale the plot of the normwise (resp. spec-
tral) portrait by φ0 : z 7→ log10(‖Mz‖) (resp. φ1 : z 7→ log10(ρ(Mz)) ). Since
−∞ ≤ log10(a) < 0 for 0 ≤ a < 1 , hence a part of the plot φ0 : z 7→ log10(‖Mz‖)
(resp. φ1 : z 7→ log10(ρ(Mz)) ) which corresponds to ‖Mz‖ < 1 (resp. ρ(Mz) < 1 )
appears below the plane a = 0 in the 3D cartesian coordinates (x, y, a) .
In general, the plot of φ0 (resp. φ1 ) has peaks at the eigenvalues of A (resp. has
peaks at the eigenvalues of A and wells at certain frontier points). See in Chapter 7
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a detailed discussion about the notions of peaks and wells and their role in detecting
the spectrum of A , the frontier points, critical points and the set Lim.
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Part II

HD in finite precision: computer experiments for a
qualitative analysis





Chapter 6

A qualitative study of HD based
on the spectral field t 7→ σ(A(t))

6.1 Introduction

This Chapter is devoted to a general presentation of computer experiments which
can be performed to realize a qualitative study of HD in finite precision. The reason
to do this is that the theory is not complete: in practice, the sufficient conditions
(Li), or (G) encountered in sections 3.8.2 and 3.9.3 respectively may not be satisfied.

To get information about Lim, we use plots of the vector map t 7→ σ(A(t))
consisting of the n eigenvalues λi(t) , i = 1, . . . , n in σ(A(t)) . We present, in
section 6.2, the two families of curves which have been introduced in [27, 29, 31, 51].
In section 6.2.1, the coloring will be used to show the variation of spectral rays and
spectral orbits. In section 6.2.2, we present two meshes of rays and orbits. The
different rates of change for the spectral rays are examined in section 6.2.3.

In section 6.3, we introduce a practical method for finding the set Lim, and we
discuss the robustness of the convergence lim|t|→∞ σ(A(t)) to finite precision. In
the spectral rays, except for the Figure 6.1, we display the eigenvalues of σ(A)
by � and the points in Lim by � . The dependence of the convergence on the
parameters θ = Arg t and h = |t| in t = heiθ = |t|eiθ will be discussed in section
6.3.4.

6.2 Spectral rays and spectral orbits

In order to visualize the n spectral maps t → λi(t) ∈ σ(A(t)) , i = 1, . . . , n ,
we write the homotopic parameter t = heiθ , with h = |t| ∈ R+ and
θ = Arg t ∈ [0, 2π[ . By fixing either h or θ , and letting the other be a free variable,
we form two families of curves in the complex plane that are parameterized by a
real parameter. Specifically:
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1. the map h ∈ R+ 7→ λj(t), j = 1, . . . , n defines the set Λ(θ) , of n spectral
rays, corresponding to t = heiθ for a fixed θ in [0, 2π[ ,

2. the map θ ∈ [0, 2π[ 7→ λj(t), j = 1, . . . , n defines the set Σ(h) , of (at most)
n spectral orbits, corresponding to t = heiθ for a fixed h in R+ .

The rays show, for a fixed θ and increasing h , the trajectory in the complex plane
for an eigenvalue of A(t) . The rays start at an eigenvalue of A and either diverge
to infinity or converge to a limit point of (A,E) (possibly an eigenvalue of A ).
The orbits are closed curves in the complex plane, since t = heiθ is 2π -periodic in
θ . For a small enough h , each orbit encloses a distinct eigenvalue. Several orbits
may enclose the same eigenvalue, depending on its (algebraic) multiplicity. For h
large enough, each orbit encloses either a limit point, or the orbit escapes to infinity.
Again, several orbits may enclose the same limit point, depending on its multiplicity.
For a medium sized h , the same orbit may enclose several eigenvalues. See section
6.2.1. For an early discussion and many examples of spectral rays and orbits, the
reader is referred to [27, 29, 31, 51].

6.2.1 A standard color chart to parameterize the variation
of h or θ

In this section, we use the same coloring chart to represent the variation of the n
spectral rays Λ(θ) (resp. spectral orbits Σ(h) ) for a fixed value of θ (resp. h )
respectively.

In the examples to follow, we use the M-file, colormap, in Matlab: it defines the
colors (ranging from pure blue to pure red) assigned to the rays and orbits. We use
colorbar in Matlab, to append a vertical color scale (on the right hand side of each
figure).

Let h = |t| ∈ [0, hmax] and θ ∈ [0, θmax] = [0, 2π − ε] for a small
ε > 0 . We define the one-to-one correspondence between the interval [0, hmax]
(resp. [0, θmax] ) for a spectral ray (resp. for a spectral orbit) and the vertical color
scale which displays the range [0, 64] for the colors. When we use the color chart
for the spectral rays, we use the following linear equation for finding the values of
h ∈ [0, hmax] using the values of c ∈ [0, 64] ,

h = (
hmax

64
)c.

Similarly, when we use the color chart for the spectral orbits, we use the following
linear equation for finding the values of θ ∈ [0, θmax] using the values of c ∈ [0, 64] ,

θ = (
θmax

64
)c,

where 0 < θmax < 2π .
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Example 6.2.1 Let us go back to the Example 3.9.2 where A of order 11 is the
companion matrix associated with π(z) = z11 + 1 , in upper Hessenberg form, and
first column e2 , and E = UV T with U = [e, e2] and V = [e11, e3] of rank 2 ,
e = [1, . . . , 1]T . In this Example, we have (G) = (Li), and Lim consists of
the 8 points given by Lim = σ(Ω) = Zer(p(z)) ∪ {0} = F (A,E) ∪ {−1} for
p(z) = z7 + z6 + · · ·+ 1 . Three eigenvalues escape to ∞ .

On Figures 6.1, we display 4 different sets of rays corresponding to the 4 values
θ = 0, 2π/10, 8π/10, 16π/10 respectively. Here, |t| ∈ [0, 10] = [0, hmax] . Figures
6.1, (b) , (c) and (d) confirm that 3 rays escape to ∞ with different speeds.
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(b) θ = 2π/10
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(c) θ = 8π/10

−3 −2 −1 0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

10

20

30

40

50

60

(d) θ = 16π/10

Figure 6.1: Four different sets of 11 rays for t 7→ σ(A(t)) where hmax = 10

On Figures 6.2, we display 4 different orbits corresponding to the 4 values
h = 0.1, 0.6, 1.2, 2.2 respectively. Since θ varies in [0, 2π[ , therefore we let
θ ∈ [0, θmax] with θmax = 2π − ε for ε = 2π/63 . One can see 11 orbits for
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h = 0.1 but there are less than 11 orbits for the cases h = 0.6, 1.2, 2.2 because
they enclose several eigenvalues.
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(a) h = 0.1
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(b) h = 0.6
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(c) h = 1.2
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(d) h = 2.2

Figure 6.2: Four different sets of orbits for t 7→ σ(A(t))

4

6.2.2 Meshes of rays and orbits

In this section, we use the standard color chart introduced in section 6.2.1 for some
different rays Λ(θk) , k = 1, . . . , dθ (resp. orbits Σ(hk) , k = 1, . . . , dh ) which
are associated with dθ (resp. dh ) different values of θ (resp. h ). We plot the
corresponding sets of rays (resp. orbits) on the same Figure to get what we call a
mesh of rays (resp. orbits).
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1. A mesh of rays

Example 6.2.2 Let us go back to the Example 6.2.1. We partition the interval
[0, θmax] , with θmax = 2π − π

5
.

The segment [0, θmax] = [0, 2π − π
5
] = [0, 9π

5
] is evenly divided by 10 points

which realize a discretization of size
9π
5

10−1
= π

5
. We plot on Figures 6.3 the

10 sets of rays Λ(θk) corresponding to the 10 discrete values θk = k π
5
, k =

0, 1, . . . , 9 . And we let |t| = h vary in [0, 10] with a discretization step equal
to 10/63 = 0.1587 .
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(a) Global mesh
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(b) Zoom on the mesh
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(c) Close-up on the mesh

Figure 6.3: Mesh of rays for 10 values of θ and |t| = h ∈ [0, 10]

The 3 Figures 6.3, (a) , (b) and (c) show the global view and two successive
zooms for the mesh according to the description below. Since there are 3
escaping rays for each set of spectral rays, therefore there are 30 escaping rays
for 10 sets of spectral rays Λ(θk), k = 0, . . . , 9 .

On Figure 6.3, (a) , we can see the global shape of the mesh. Each one of
10 rays (which is an escaping ray) corresponds to one of the 10 values of θ
considered in [0, θmax] . Figure 6.3, (b) , is a zoom on the middle core of
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the mesh: it is the part of the global mesh which lies in [−4, 4]2 . It shows
the 20 rays which are again associated with the 10 values of θ considered in
[0, θmax] . On Figure 6.3, (c) , we display a close-up of the mesh: it is the part
of the global mesh which lies in [−1.5, 1.5]2 and shows the trajectories of the
rays starting from pure blue ( σ(A) ) and ending in pure red at the l∗ points
of Lim for large enough h .

4

2. A mesh of orbits

Example 6.2.3 Let us go back to the example 6.2.1. We evenly divide the
segment [0, 10] by 41 points. They realize a discretization of size 0.25 of the
segment [0, 10] . We plot on Figures 6.4 the 40 orbits Σ(hk) corresponding
to the discrete values hk = (0.25)k , k = 1, 2, . . . , 39, 40 .
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(a) Global mesh of orbits

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

10

20

30

40

50

60

(b) Zoom on mesh of orbits
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(c) Close-up on mesh of orbits

Figure 6.4: Mesh of orbits

Some parts of Figures 6.4, (a) and (b) , which look like rays, are in fact orbits.
This is a consequence of the discretization used for θ , which in theory varies
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continuously. On Figures 6.4, (c) , we can see how the spectrum of A and the
points of Lim are enclosed by orbits for h small and large respectively.

Zoom on Figures 6.4, (b) means a close view of the part of main (global) mesh
which lies in [−3.5, 3.5]2 . Close-up on Figures 6.4, (c) means a closer view
of the part of main (global) mesh which lies in [−1.7, 1.5]× [−1.5, 1.5] .

4

6.2.3 Rate of convergence/divergence for λ(t) : an analysis
by colors

As should be expected, usually the rate of change for λi(t) , i = 1, . . . , n as |t| varies
is not uniform. One way to illustrate this fact is to display all λi(t) , i = 1, . . . , n
with the same color for all i , but varying with the range of |t| . For instance, red
for 0 < |t| < b1 , magenta for b1 ≤ |t| < b2 , and so on.

Example 6.2.4 For the Example 3.9.2, the different ranges of h = |t| and the
corresponding colors are listed in the table 6.1. The computation of t = heiθ 7→
σ(A(t)) , for 3 different values of θ are shown in Figures 6.5, (a) , (b) and (c)
where the range of |t| and the corresponding colors for all eigenvalues in σ(A(t))
are the same.

|t| varies in color for λ(t)
[0, 0.5[ red
[0.5, 1[ magenta
[1, 1.5[ green
[1.5, 4[ cyan
[4, 300[ blue

Table 6.1: The 5 intervals for |t| and their associated colors

The three Figures 6.5, (a) , (b) and (c) show the different rates of change for
λi(t) , i = 1, . . . , n as |t| varies. The length of each sub-interval associated with
red, magenta, green and cyan is uniform but the lengths of the corresponding sub-rays
inside λi(t) , i = 1, . . . , n are different.
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(b) θ = −π/24

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) θ = π/4

Figure 6.5: t = heiθ 7→ σ(A(t)) for h ∈ [0, 300]

4

6.3 Robustness of convergence to finite precision

In finite precision, one expects that the computation of lim|t|→∞ λ(t) for λ(t) ∈
σ(A(t)) imposes some limitations on the maximum value of |t| that should be
considered, say hM . In this section, we show that for finding the points of Lim, the
determination of h

(i)
M for each λi(t) is very important. If we use |t| > h

(i)
M , some

λi(t) which are theoretically converging to a finite limit point, diverge from their
theoretical limit: they may go to ∞ or to a wrong limit.

How can we determine h
(i)
M , i = 1, . . . , l∗ = card Lim ≤ n− r for each example?

Does it depend on the data of each problem?

In section 6.3.1, we use an example to show that exceeding the specific value h
(i)
M

may cause wrong results.

In section 6.3.2, we present a heuristic method for finding h
(i)
M . We will see that

the value h
(i)
M varies from an example to another. In section 6.3.3, we shall present

some cases that require, for some λi(t) , huge values for h
(i)
M before convergence

manifests itself.
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6.3.1 An example where h is too large

Let us look at the following Examples.

Example 6.3.1 Let A of order 6 be the companion matrix of π(z) = z6 + 1 , and

E = diag

[[
0 1
0 0

]
, 0, 0, 0, 1

]
. σ(E) = {0, 1} , and 0 ∈ σ(E) is defective.

r = rank E = 2 , with q = 2 , nq = 1 , rq = 3 . Using Maple, we find the fac-
torization det Q(z) = z3(z6 + 1) and π̂(z) = z3 . This shows that 0 ∈ σ(M0)

and F (A, E) = {03} . Now we have Γ1 = 1 , Γ2 =




0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0


 , and Ω =




0 0 0
1 0 0
0 1 0


−




0
0
0


 [1]

[
0 0 0

]
=




0 0 0
1 0 0
0 1 0


 .

Therefore (G) = (Li) and {03} = σ(Ω) = Lim . Observe that, in this case,
Lim = F (A,E) . The computation of t 7→ σ(A(t)) for θ = π/3 and 0 ≤ |t| ≤ 102

shown in Figure 6.6, illustrates the existence of 3 rays converging to 0 and 3 rays
escaping to ∞ , as is expected from theory.
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Figure 6.6: t 7→ σ(A(t))

4

Example 6.3.2 Let us consider the example 6.3.1 where we let |t| > 102 . Figures
6.7, and 6.8 display the maps log10|t| 7→ log10|λ(t)| for each of the 3 eigenvalues
converging to 0 ∈Lim, for |t| ∈ [ε, 1022] (Figure 6.7) and |t| ∈ [ε, 1033] (Figure
6.8) with ε = 5× 10−2 . Here θ = π/3 .

As we can see on Figures 6.7, and 6.8, the computation for |t| > 1017 causes
that all 3 |λ(t)| increase from their local minimum obtained for |t| ≈ 1016 . The
increasing behaviour will continue until |t| = 1032 . From this value on, one of
the |λ(t)| still increases and the two others magnitudes stay near the value 1 .
This latter behaviour, which shows 2 eigenvalues staying at finite distance, and
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4 escaping eigenvalues instead of 3 , is preserved until the value |t| = 10140 . This is
the starting point for an oscillating behaviour of the diverging eigenvalue illustrated
by Figure 6.9.
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Figure 6.7: log10|t| 7→ log10|λ(t)| where |t| ∈ [5× 10−2, 1022] , θ = π/3
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Figure 6.8: log10|t| 7→ log10|λ(t)| where |t| ∈ [5× 10−2, 1033] , θ = π/3
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Figure 6.9: log10|t| 7→ log10|λ(t)| where |t| ∈ [5× 10−2, 10180] , θ = π/3

4
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The Examples 6.3.1 and 6.3.2 show that the determination of h
(i)
M , for each i =

1, . . . , l∗ is important to guarantee the validity of the computation of the points of
Lim in finite precision.

6.3.2 A heuristic method for finding hM

The value h
(i)
M is problem-dependent and we need a way to determine this value. In

addition, for each problem, h
(i)
M may depend on i . This means that for a problem

with l∗ = card Lim, one may find up to l∗ distinct values h
(i)
M , i = 1, . . . , l∗ .

We introduce a convergence criterion which provides us with values for h
(i)
M ,

i = 1, . . . , l∗ . To this end, we use the characteristics of the two families of eigenval-
ues, invariant and evolving, presented in sections 6.3.2.1 and 6.3.2.2 respectively, to
introduce a fast and reliable numerical alternative for finding h

(i)
M , i = 1, . . . , l∗ .

6.3.2.1 Determination of invariant eigenvalues

We know that λ ∈ σi ⊂ σ(A) is an invariant eigenvalue under the Homotopic
Deviation A + tE iff det (A + tE − λI) ≡ 0 for all t ∈ C [18]. An alternative way
for finding invariant eigenvalues is to check whether det (A + tE − λI) is zero or
not for two or three different values of t . This should be done for all λi ∈ σ(A) ,
i = 1, . . . , n .

In practice, calculation of det (A + tE−λI) is too costly and instead one can check
the equality λ = λ(t) for a few different values of t 6= 0 : usually, checking with 3
or 4 different values of t is enough for distinguishing invariant eigenvalues, if there
are any.

Example 6.3.3 Let

A =




1 1 0
1 1 0
0 1 1


 , E =




0 1 0
0 0 0
0 0 0


 .

Then π(z) = det (zI −A) = z(z − 1)(z − 2) , det Q(z) = q(z) = π̂(z) = z − 1 ,
and det (A + tE − zI) = −(z − 1)(z2 + 2z + t) . This means that there is just
one limit point which is equal to 1 . Since 1 ∈ σ(A) , the question about 1 is the
following: is 1 an invariant eigenvalue, or does lim|t|→∞ λi(t) = 1 for i = 1 or
i = 2 or i = 3 ?

The eigenvalues of A + tE listed in the Table 6.2 for 4 different values of t
show that 1 ∈ σ(A) is invariant.
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σ(A + tE) σ(A + tE) σ(A + tE) σ(A + tE)
for t = 0 for t = 10 for t = 105 for t = 1015

λ1(t) 1 1 1 1
λ2(t) 2 4.3166 317.2293 3.1623× 107

λ3(t) 0 -2.3166 −315.2293 −3.1623× 107

Table 6.2: σ(A + tE) for 4 values of t

4

6.3.2.2 A convergence criterion for finding hM

An evolving λ ∈ σe ⊂ σ(A) is an eigenvalue such that λ(t) 6= λ for almost all
t ∈ C . To discriminate between eigenvalues converging to Lim and eigenvalues
escaping to ∞ , we should let |t| increase. The convergence criterion is chosen as
follows

re
i,k =

|λi(tk)− λi(tk−1)|
|λi(tk)| ≤ 10−nmax , (6.3.1)

for a given integer 0 ≤ nmax ≤ 15 . It uses the relative error associated with
λi(t) for the two successive values tk−1 and tk of t . When the process is stopped

for each λi(t) , we set h
(i)
M = |tk| and λi(tk) is considered as an approximation

of lim|t|→∞ λi(t) with nmax significant digits. The first two successive values tk−1

and tk which obtain the inequality (6.3.1) may be different for each eigenvalue
λi(t) ∈ σ(A(t)) .

When there is a risk of a small |λi(tk)| , one may use the alternative absolute criterion

ae
i,k = |λi(tk)− λi(tk−1)| ≤ 10−nmax . (6.3.2)

Example 6.3.4 Let

A =




0 −1 1 1 −1
0 2 0 −1 0
2 −1 0 2 0
0 2 0 −1 1
2 −1 −1 2 2




, E =




0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0




,

Then we have the following results.

a) det (zI − A) = (z − 1)(z − 2)(z + 1)(z2 − z − 1) , and det Q(z) ≡ 0 , so that
F (A,E) = re(A) .

b) Using the notations of section 3.9, q = 2 , n1 = 3 , r1 = 1 , nq = 2 and

rq = 1 . Also, Γ1 = 2 6= 0 and Γ2 =

[
2 2
2 2

]
which is singular. This yields
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Ω = 2− 2(1/2)2 = 0 , and, σ(Ω) = {0} . We remark that here g
′
= 0 , hence

this example does not satisfy the condition (G) . Therefore Lim⊃ {0} does
not hold necessarily. We have to resort to computation to determine Lim.

c) The computation of t 7→ σ(A(t)) in Figure 6.10 shows that three eigenvalues
λi(t), i = 1, 2, 3 , go to ∞ as |t| → ∞ but two eigenvalues reach finite limits
(i=4,5). The blue � are the limit points, and the red � are the spectrum of
A .

To compute Lim, we use the stopping criterion (6.3.1) when |t| increases. Here,
|tk+1| = 102 |tk| , and θ = π/3 is fixed.

We can see on Figures 6.11 and 6.12 that re
4,18 ≤ 10−15 (red circles) and

re
5,9 ≤ 10−15 (green + ). The points in Lim are found as Lim = {2.4142, −0.4142}

(rounded to 5 significant digits).
See Figure 6.11 for nmax = 15 . For the localization of points in Lim , this

is the best that can be achieved in finite precision. This means that the condition
re
i,k ≤ 10−u has meaning for u . 15 and i = 4, 5 . See Figure 6.12 for nmax = 16 .
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Figure 6.10: The plot of σ(A(t)) for 0 < |t| < 102 , θ = π/3
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Figure 6.11: log10(|ti|) 7→ log10(r
e
i,k) where nmax = 15 , θ = π/3
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Figure 6.12: log10(|ti|) 7→ log10(r
e
i,k) where nmax = 16 , θ = π/3

Figure 6.11 indicates that for getting an accuracy of 15 significant digits, we need
h

(5)
M = 109 and h

(4)
M = 1018 .

Moreover, one can see on Figure 6.12 that, if we insist on increasing |t| above
1021 , then we suddenly loose the accuracy (of 15 significant digits) previously achieved.

4

6.3.3 Large values of the magnitude of some points in Lim

Depending on the entries of matrices A and E , it may happen that the magnitudes
of some points in Lim are very large. In such cases, one has to use even larger values
of |t| to find such limit points with some accuracy. Example 6.3.5 illustrates one
such case.

Example 6.3.5 Let a be a given real parameter

A =




0 −1 0 1 2
1 2 1 0 1
0 −1 0 0 1
0 0 1 1 a
0 0 0 2 2




, and E =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0




= e5e
T
4 of rank 1 .

The order of A and E is 5 , E is defective nilpotent with the eigenvalues
(01)3(02) , r = rank E = 1 , with q = 2 , nq = 1 , rq = 3 . In A + tE , the 2 × 2

bottom right matrix

[
1 a

2 + t 2

]
is related to top left 3 × 3 block matrix by the

scalar 1 : the computation of t 7→ σ(A(t)) for different values of a , suggests that
for a 6= 0 , 2 eigenvalues escape to ∞ and Lim consists of 3 points. The fact
that for a 6= 0 , exactly 2 eigenvalues escape to ∞ , will be shown in Chapter 8 ,
Theorem 8.6.2.

We use nmax = 7 for all the cases which are considered below. We consider
t = heiθ with a fixed θ = π/6 .
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1) When a = 1 , it is shown on Figure 6.13 that for approximating the three points

in Lim to 7 digits, we need to take h
(3)
M = 109 , h

(4)
M = 109 and h

(5)
M = 108 .

2) When a = 10−2 , Figure 6.14 shows the necessity of taking h
(3)
M = 1014 , h

(4)
M =

1011 and h
(5)
M = 109 respectively to get to the same accuracy of 7 significant

digits.

This phenomenon of smaller a - larger h
(3)
M continues until a = 10−102 . For the

value a = 10−102 , the limit lim|t|→∞ λ3(t) cannot be computed even with h = 10306

(the maximum usable number in Matlab). The values of a with the corresponding

h
(3)
M are listed in the Table 6.3.

The two other limit points, l4 and l5 , have a bounded magnitude for every value
of a .

a h
(3)
M computed l3 = λ3(t) with |t| = h

(3)
M

1 109 −0.7028 + 1.0758i
10−2 1014 −1.0096× 102 + 5.5209× 10−7i
10−8 1032 −1.000× 108 + 5.000× 10−1i
10−16 1056 −1.0000× 1016 + 5.0000× 107i
10−75 10233 −1.0000× 1075 + 5.0000× 1067i
10−95 10293 −1.0000× 1095 + 5.0000× 1087i
10−102 ≤ 10306 impossible

Table 6.3: Correspondence a 7→ h
(3)
M , θ = π/6

In each Figure 6.13, 6.14, . . . , 6.19, we respectively plot both t 7→ σ(A(t)) and
log10(|t|) 7→ log10(r

e
i,k) for i = 1, . . . , 5 corresponding to the cases mentioned in the

Table 6.3. The scale factor is indicated when larger than 1 . The left plots, (a) , of
the Figures 6.14, 6.15, . . . , 6.19 show that the scale factor increases as a decreases.
More precisely, we observe that the automatic scale factor given by Matlab is of the
order of 1/a .
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(b) log10(|t|) 7→ log10(re
i,k)

Figure 6.13: a = 1
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(b) log10(|t|) 7→ log10(re
i,k)

Figure 6.14: a = 10−2
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(a) t 7→ σ(A(t)) with scale factor 108
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(b) log10(|t|) 7→ log10(re
i,k)

Figure 6.15: a = 10−8
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(a) t 7→ σ(A(t)) with scale factor 1016
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(b) log10(|t|) 7→ log10(re
i,k)

Figure 6.16: a = 10−16
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(a) t 7→ σ(A(t)) with scale factor 1075
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(b) log10(|t|) 7→ log10(re
i,k)

Figure 6.17: a = 10−75
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(a) t 7→ σ(A(t)) with scale factor 1095
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(b) log10(|t|) 7→ log10(re
i,k)

Figure 6.18: a = 10−95
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(a) t 7→ σ(A(t)) with scale factor
10101
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(b) log10(|t|) 7→ log10(re
i,k)

Figure 6.19: a = 10−102

4

6.3.4 Dependence of the convergence on the parameter θ

In this Chapter, we have principally analysed the role of h = |t| in finding the limit
points. Here we shall make some remarks about the role of the parameter θ in the
determination of Lim.

As we have seen in section 6.2, the value of the parameter θ in [0, 2π[ does not
affect the number and the values of the points in Lim = {l1, . . . , ll∗} . The role of
the parameter θ is to govern the one-to-one correspondence

{λ1, . . . , λl∗} ⊂ σ(A) 7→ {l1, . . . , ll∗}. (6.3.3)

To illustrate this fact, we ask the reader to look at the Figures 6.5, (a) , (b) and
(c) in Example 6.2.4: they show how the correspondence (6.3.3) is affected by the
choice of different values for θ . We will present more Examples of this kind in
Chapter 7 .

6.3.5 A methodological remark

In the qualitative analysis of HD that we have presented, we have let h = |t| take
extremely large or small values, much in the spirit of pure mathematics, where a real
variable h can, in theory, tend to 0 or ∞ without any difficulty.

However, this is not usually the case in finite precision computation, because of
the intrinsically finite character of the computer arithmetic. Beginners in the art of
computer simulations quickly learn the limiting role played by machine precision in
the assessment of computer results [23].

In view of this well-established body of experience, it usually does not make sense
to let a parameter be too small or too large in magnitude when compared with
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machine precision. However, HD computer simulations reproduce extraordinarily
well the mathematical predictions for |t| extremely large (up to the largest usable
number 10306 ). The phenomenon is completely unexpected; this is the reason why
we have chosen to present at length the “unreasonable” robustness of HD to finite
precision.
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Chapter 7

Homotopic backward analysis, II
Numerical illustrations

This Chapter revisits the CERFACS technical report [5] to take into account the
important new result that det Q(z) = (π(z))r−1π̂(z) for z ∈ C . We mainly follow
[22]. In section 7.1, we study the matrix Mz and its spectrum σ(Mz) when
z → λ ∈ σ(A) in exact arithmetic and in finite precision. Then in section 7.2, the
three portraits associated with the map z ∈ re(A) 7→ Mz as visualisation tools in
2D and 3D are presented. Using the 2 homotopic portraits, φ1 : z 7→ ρ(Mz)
and φ2 : z 7→ ρ(M−1

z ) , we propose a qualitative representation of the map
z 7→ Mz . Finally in section 7.3, we treat in detail the case r = 2 and we present
numerical examples which illustrate the use of the visualization tools described in
Chapters 6 and 7 .

7.1 Study of Mz and σ(Mz) as the parameter z in

re(A) tends to λ ∈ σ(A)

Mz and σ(Mz) are well-defined for z ∈ re(A) . For z ∈ re(A) , we have

detMz = ϑ(z) =
π̂(z)

π(z)
= Πr

i=1µiz,

where π(z) and π̂(z) are polynomials in z ∈ C of respective degree n
and ≤ n− r and where µiz ∈ σ(Mz) . In what follows, we look at the situation
when z ∈ re(A) → λ ∈ σ(A) .

Remark: Certain limits limz→λ µiz = µiλ may exist when limz→λ Mz does not
exist. Below the notation limz→λ max |µiz| = ρ(Mλ) < ∞ is just a notation. It does
not imply that Mλ exists.

When λ ∈ σ(A) , π(λ) = 0 . We assume that π̂(z) 6≡ 0 . Let mλ > 0 (resp.
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λ Ẑ ∩ σ(A) σ(A)\Ẑ
τλ Q+ ∞
m̂λ ≥ 1 0

Table 7.1: The possible values for τλ and m̂λ when π̂(z) 6≡ 0

m̂λ ≥ 0 ) be the algebraic multiplicity of λ as a root of π(z) (resp. π̂(z) ): m̂λ = 0
(resp. ≥ 1 ) if λ 6∈ Ẑ (resp. λ ∈ Ẑ ).

Let us define τλ = mλ

m̂λ
. Then

m̂λ < mλ ⇐⇒ τλ > 1,

m̂λ ≥ mλ ⇐⇒ 0 < τλ ≤ 1.

The Table 7.1 displays the possible values of τλ and m̂λ under the 2 conditions
λ ∈ Ẑ ∩ σ(A) or λ ∈ σ(A)\Ẑ .

7.1.1 Partition of σ(A)

The eigenvalues in σ(A) are counted with their algebraic multiplicity. The behav-
iour of λ(t) as |t| → ∞ induces the following distinction between eigenvalues λ in
σ(A) : σ(A) = σe ∪ σi , with σe ∩ σi = ∅ , where

• λ ∈ σe ⇔ λ is an evolving eigenvalue, that is λ(t) 6= λ for almost all t ∈ C .

• λ ∈ σi ⇔ λ is an invariant eigenvalue, that is λ(t) = λ for all t ∈ C .

Looking at the limit of λ(t) as |t| → ∞ leads to the definition of σf ⊂ σ(A) :
λ ∈ σf ⇔ λ is a final eigenvalue, that is λ = lim|t|→∞ λ(t) , where λ(t)

originates in an evolving eigenvalue λ(0) = λ
′ ∈ σe . It is rare but possible that

λ
′
= λ : this creates a loop, see Example 7.3.2 in Section 7.3.

Therefore Lim = σi ∪ σf ∪ Λ(A,E) , for σi ∪ σf ⊂ σ(A) , and σi ∩ σf = ∅ .

7.1.2 Observability of λ ∈ σ(A) by HD for r ≥ 2

When z → λ then it is possible that for some i ∈ {1, . . . , r} , |µiz| → ∞ . This
means that, when z → λ then the possibilities are one of the following:

∀i = 1, . . . , r, |µiz| → ∞, or (7.1.1)

∃i, j ∈ {1, . . . , r} such that |µiz| → ∞, and, µjz → µjλ ∈ C or (7.1.2)

∀i = 1, . . . , r, µiz → µiλ ∈ C. (7.1.3)

Each one of (7.1.1), (7.1.2), and (7.1.3) results in a specific kind of observability for
λ ∈ σ(A) (by HD for r ≥ 2 ) as follows.
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7.1.2.1 Spectral observability

Under the condition (7.1.1), ∀i = 1, . . . , r, limz→λ |µiz| = ∞ and therefore
ρ(Mλ) = ∞ . In this case, we say that λ is spectrally observable or σ -observable.
In addition,

min
1≤i≤r

|µiλ| = ∞⇐⇒ ρ(M−1
λ ) = 0.

7.1.2.2 Partial observability

As it is written in (7.1.2), it is possible that only some eigenvalues µz , |µz| < ρ(Mz) ,
have a limit as z → λ , rather than the whole spectrum. In this case we say that
λ ∈ σ(A) is partially observable. A necessary condition is that µz = d(z)

π(z)
with

d(λ) = 0 .
Let λ have algebraic multiplicity mλ so that π(z) = (z − λ)mλπ

′
(z) with

π
′
(λ) 6= 0 . The condition d(z) = (z− λ)mλd

′
(z) , where d

′
(z) is continuous around

z = λ , implies that µz = d
′
(z)

π
′
(z)

and µz → µλ = d
′
(λ)

π
′
(λ)

as z → λ . If d
′
(λ) = 0 then

µλ = 0 . An example is provided in section 7.3, Example 7.3.2.

For a partially observable λ ∈ σ(A) , we have min1≤i≤r |µiλ| < ∞ which may be
equal to 0 . Also ρ(Mλ) = ∞ .

7.1.2.3 Spectral nonobservability

Under the condition (7.1.3), ∀i = 1, . . . , r , limz→λ |µiz| = |µiλ| < ∞ . In this
case, λ is said to be spectrally nonobservable, or σ -nonobservable. This is
a case where min1≤i≤r |µiλ| < ∞ with the possibility min1≤i≤r |µiλ| = 0 . This
happens when the r eigenvalues d(z) of Q(z) contain at least the common factor
(z − λ)mλ which again cancels with that in π(z) .

7.1.2.4 Normwise observability of λ : limz→λ Mz does not exist

This happens generically because the r2 elements of the matrix Q(z) do not have
z = λ as a common zero with multiplicity mλ at least (see section 7.2). The
presence of an eigenvalue λ for A is revealed by the fact that limz→λ Mz does not
exist : the map z 7→ ‖Mz‖ has a peak at any λ ∈ σ(A) which is ‖ · ‖− observable.

Since we have ρ(Mz) ≤ ‖Mz‖ , either σ− observability or partial observability
results in normwise observability.

7.1.2.5 Normwise nonobservability: limz→λ Mz = Mλ

The r2 element in Q(z) contain at least a factor (z − λ)mλ , which cancels with
the factor (z−λ)mλ in π(z) . A characterisation is given in [18, 30] under the form
V HDiU = 0 , Di = (A−λI)iPλ , i = 0 to lλ−1 where Pλ is the spectral projection
and lλ is the ascent of λ [34].
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It is clear that normwise nonobservability implies spectral nonobservability. How-
ever, the reciprocal does not hold for r > 1 . Normwise observability does not forbid
spectral non observability, since ρ(Mz) ≤ ‖Mz‖ . This is illustrated by the

Example 7.1.1 Let us consider the Example 3.9.2 where A is the companion ma-
trix associated with π(z) = z11 + 1 , in upper Hessenberg form, and first column
e2 .

E = UV T with U = [e, e2] and V = [e11, e3] of rank r = 2 , e = [1, . . . , 1]T .

Direct calculation leads to Mz = 1
π(z)

Q(z) with

Q(z) =

(
1 + z + · · ·+ z10 z

(−1− z − · · · − z7) + z8 + z9 + z10 z9

)

which is a matrix polynomial of order 2 and degree ≤ 10 = n− 1 , with

d±(z) = 1
2

[
trQ(z)± (tr2Q(z)− 4detQ(z))

1/2
]
,

trQ(z) = (z + 1)(1 + z2 + z4 + z6 + z8 + z9) .

det Q(z) = π(z)π̂(z) has degree 19 < 20 . This yields the factorizations

detQ(z) = (z + 1)2z(1− z + z2 − · · · − z9 + z10)(z2 + 1)(z4 + 1) ,

π(z) = (z + 1)(1− z + z2 − · · · − z9 + z10) , and

π̂(z) = (z + 1)z(z2 + 1)(z4 + 1) = z(1 + · · ·+ z7) = detQ(z)
π(z)

.

We have also ϑ(z) = π̂(z)
π(z)

= z(z2+1)(z4+1)
1−z+z2−···−z9+z10 , after simplification by (z + 1) .

λ = −1 is a root of π(z) with multiplicity mλ = 1 . It is also a root of π̂(z) with
multiplicity m̂λ = 1 . Clearly ϑ(−1) exists and

ϑ(−1) =
d1(−1)

π(−1)

d2(−1)

π(−1)
= detM−1 6= 0.

Here z+1 is a factor for both eigenvalues d±(z) and for π(z) , and limz→−1 σ(Mz)
exists, equal to {2 ± 4

√
3} = σ−1 : the eigenvalue λ = −1 for A is spectrally

unobservable. However, limz→−1 Mz does not exist: z + 1 is not a common factor
for the 4 elements of Q(z) : λ = −1 is normwise observable.

µ+
z = d+(z)/π(z) (resp. µ−z = d−(z)/π(z) ) does not exist (resp. exists) at

the 10 eigenvalues σ(A)\{−1} . Therefore all of the 10 eigenvalues, σ(A)\{−1} ,
are partially observable. This also show that the 10 eigenvalues σ(A)\{−1} are
normwise observable.

4
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In summary, the following conceptual inclusions hold for 2 ≤ r < n :

σ − nonobs. ⊂ partial obs. ⊂ σ − obs. ⊂
‖ · ‖ − nonobs. ⊂

}
‖ · ‖ − obs.

where obs. stands for observability.

For r = 1 , the two notions coalesce: σ− obs. ⇔ ‖ · ‖− obs.

For r = n , the matrices Mz and (zI−A)−1 are unitarily equivalent: they share the
same singular values. They are unitarily similar if V = U , that is E = UUH = I .
Hence A(t) = A + tI , λ(t) = λ + t , and µiz = 1

z−λi
for z 6= λi ∈ σ(A) ,

i = 1, . . . , n .

7.1.2.6 Dim observability in finite precision

The above discussion assumes exact arithmetic.
Normwise observable eigenvalues (Mλ does not exist) may nevertheless be difficult
to detect in finite precision when the matrices V HDiU have a small norm: no peak
appears at λ for the global spectral portrait, unless the mesh size is sufficiently
refined around λ . We say that λ is dimly normwise observable (or ‖.‖− observable
for short).

Example 7.1.2 Let A be the companion matrix associated with π(z) = (z−1)3(z−
3)4(z − 7) , in upper Hessenberg form and first column vector e2 . E = UV T with

U = [e1, e] and V = [e6, e8] of rank 2 for e = [1, . . . , 1]T . V T U =

(
0 1
0 1

)
has

rank 1. Direct calculation leads to Mz = 1
π(z)

Q(z) with

Q(z) =

(
z2 (z − 7)(z − 1)2(z − 3)4

1 (z − 7)(z − 1)2(z − 3)4

)

which is a matrix polynomial of order 2 and degree ≤ 7 = n− 1 , with

d(z) = 1
2

[
trQ(z)± (tr2Q(z)− 4detQ(z))

1/2
]
,

trQ(z) = −567 + 1971z − 2726z2 + 1947z3 − 781z4 + 177z5 − 21z6 + z7 .

det Q(z) = π(z)π̂(z) has degree 9 . This yields the factorization

detQ(z) = (z − 1)3(z − 3)4(z − 7)(z + 1) for

π(z) = (z − 1)3(z − 3)4(z − 7) , and

π̂(z) = (z + 1) = detQ(z)
π(z)

.
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We have also ϑ(z) = π̂(z)
π(z)

= (z+1)
(z−7)(z−1)3(z−3)4

.

The eigenvalue λ = 7 with eigenprojection Pλ is difficult to capture by the map
z 7→ log10(ρ(Mz)) because

a) λ = 7 competes with the two defective eigenvalues of ascent 3 and 4 , and

b) ‖V T PλU‖ = O(10−4) . See on Figure 7.1 the global spectral portrait (mesh
size ∼ 10−2 ), and on Figure 7.2 a zoom around 7 (mesh size ∼ 5 10−4 ).
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Figure 7.1: The global spectral portrait z 7→ log10(ρ(Mz))
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Figure 7.2: Zoom around λ = 7

4
It is well known [34] that, if Mz is highly nonnormal, the difference between ρ(Mz)
and ‖Mz‖ may be blurred by finite precision. Another more subtle computation
difficulty concerns the peaks and wells of the frontier portrait, and is addressed in
the next section.
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7.1.3 The product ϑ(z) = Πr
i=1µiz as z → λ

We recall that det Mz = ϑ(z) = π̂(z)
π(z)

for z ∈ re(A) , where π(z) and π̂(z) are
polynomials in z ∈ C of respective degree n and ≤ n − r . We address this
question: what is the relationship between observability and the product ϑ(z) =

Πr
i=1µiz = π̂(z)

π(z)
.

Proposition 7.1.1 [22] Suppose that λ ∈ σ(A) .

i) When λ is σ -observable, then the product ϑ(z) = π̂(z)
π(z)

does not exist at λ .

Hence m̂λ < mλ ( τλ > 1 ).
ii) When λ is partially observable, then the product ϑ(λ) = Πr

i=1µiλ exists iff
m̂λ ≥ mλ ≥ 1 ( τλ ≤ 1 ).
iii) When λ is σ -nonobservable, then the product ϑ(λ) = Πr

i=1µiλ exists. Hence
m̂λ ≥ mλ ≥ 1 , and ϑ(λ) 6= 0 (resp. = 0 ) iff m̂λ = mλ (resp. m̂λ > mλ ≥ 1 ).

Proposition 7.1.1 shows that when λ ∈ σ(A) is simple and σ− observable, then
λ 6∈ Ẑ . Another result is that under ii) and iii) , λ ∈ Ẑ if ϑ(λ) = 0 .

Example 7.1.3 Let us go back to Example 7.1.1. In this example −1 ∈ σ(A)
is σ− nonobservable and m−1 = 1 = m̂−1 , therefore 0 6= ϑ(−1) < ∞ :
0 6∈ σ−1 = {2± 4

√
3} .

4

7.1.4 Possible extension of F (A,E) or C(A,E) into σ(A)

7.1.4.1 Closure of F (A,E) into C

Let us define σ̄ = {λ ∈ σ(A): min1≤i≤r |µiλ| = 0} . When σ̄ 6= ∅ , then λ ∈ σ̄ is at
most partially observable: λ ∈ σ̄ is either σ− nonobservable or partially observable.
In this case, λ can be added to F (A,E) by continuity and we get what is called
the closure of F (A,E) into C (when π̂(z) 6≡ 0 ). It is denoted by F̄ (A,E) =
F (A,E) ∪ σ̄ ⊂ C .

Observe that σ̄ 6⊂ Ẑ is possible when λ is partially observable. Also σf ⊂ σ̄ , a
fact that is not true for σi : a necessary condition for λ ∈ σf is min1≤i≤r |µλ| = 0 .

See the Example 7.3.2 for a case where F (A,E) can be extended.

7.1.4.2 Closure of C(A,E) into C

Let us define σc = {λ ∈ σ(A): |µiλ| = 0, ∀i = 1, . . . , r} . When σc 6= ∅ , then
λ ∈ σc is necessarily σ− nonobservable and λ ∈ Ẑ . In this case, λ can be added to
C(A,E) by continuity. This yields the closure of C(A,E) into C which is denoted
by C̄(A,E) = C(A,E) ∪ σc ⊂ C .

When r = 1 , we have F̄ (A,E) = C̄(A, E) , and σc = σ̄ .
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Example 7.1.4 Let us look at Example 7.1.1 again.
λ = −1 is σ− unobservable , with µ1λ = 2− 4

√
3 and µ2λ = 2 + 4

√
3 . Therefore,

neither F (A, E) nor C(A,E) can be extended.

4

7.2 The three homotopic portraits associated with

z 7→ Mz

It is clear that the map z 7→ Mz, z ∈ re(A) contains an essential information
ruling the properties of the resolvent map z 7→ R(t, z) . The complete information
is contained in the r2 elements of the matrix map z 7→ Mz .
A more compact form for this information corresponds to the r numbers of the
vector map z 7→ σ(Mz) .
For r > 1 , such maps are not easy to visualise graphically. We addressed this ques-
tion in Chapter 6 with the spectral rays and orbits. Here we take a complementary
approach. We introduce three maps C 7→ R+ associated with z 7→ Mz , that we
call “portraits”.

7.2.1 Three portraits for z 7→ Mz

These are visualisation tools in 2D and 3D , that is maps C 7→ R+ represented in
R2 or R3 , which attempt to give a qualitative representation of the map z 7→ Mz ,
indicating in particular the location of its singularities ( Mz and M−1

z not defined
). We shall consider specifically:

1. the normwise portrait φ0 : z 7→ ‖Mz‖ , z ∈ re(A) ,

2. the spectral portrait φ1 : z 7→ ρ(Mz) , z ∈ re(A) ,

3. the frontier portrait φ2 : z 7→ ρ(M−1
z ) , z ∈ re(A)\F (A,E) .

We recall that ρ(Mz) ≤ ‖Mz‖ . The portrait φ1 (resp. φ2 ) is related to the
analyticity domain of R(t, z) around 0 (resp. ∞ ).

We have introduced the portraits φ0 and φ1 in section 5.6 where we compared φ0

with the well-known normwise spectral map ψ : z 7−→ ‖(A− zI)−1‖ . See more in
Section 7.2.2. In section 7.2.3, we discuss the properties of the frontier portrait. In
sections 7.2.4 and 7.2.5, we use some numerical examples to illustrate the abilities
of the homotopic spectral and frontier portraits in detecting the eigenvalues and the
frontier points.

The notions of peaks and wells have been defined in Chapter 5 , Definition 5.6.1. In
what follows, we shall use these notions for the frontier portraits as well.
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Remark. As it was mentioned in section 5.6, in practice and in what follows, we
plot the log10 of the normwise portraits, spectral portraits, and frontier portraits.
But, for simplicity, we do not write log10 for the plots of log10(‖Mz‖) , log10(ρ(Mz))
and log10(ρ(M−1

z )) .

7.2.2 The normwise and spectral portraits φ0 and φ1

These two portraits introduced in Chapter 5 both give global informations about
the map z 7→ Mz , which are qualitatively different. We study these differences.

Proposition 7.2.1 [5] φ0 has a peak at λ ∈ σ(A) if λ is ‖ · ‖− observable. It
cannot have wells.

Proposition 7.2.2 [5, 22] φ1 has a peak at λ ∈ σ(A) if λ is partially observable.
It has a well at z ∈ C̄(A,E) when the set is nonempty. It has sinks at
some z ∈ C \ {λ ∈ σ(A), λ partially observable} .

It follows that if φ1 has a sink at an eigenvalue λ , then λ is necessarily
σ− nonobservable. If λ ∈ σc , then the sink becomes a well.

Example 7.2.1 Let us return to the Example 3.9.3 where for

A =




0 0 −1
1 0 0
0 1 0


 , E =




0 1 0
0 0 1
0 0 0


 ,

π(z) = z3 + 1 , σ(A) = {−1, 0.5000± 0.8660i} , and
U = [e1, e2] , V = [e2, e3] , we get

Q(z) =

[
z z2

1 z

]

with det Q(z) ≡ 0 , hence π̂(z) ≡ 0 and Z(detQ(z)) = Ẑ = C . For z 6∈ σ(A) ,

Mz = 1
π(z)

[
z z2

1 z

]
has the spectrum σ(Mz) = {0, 2z

z3+1
}.

Therefore, F (A,E) = re(A) ⊂ Z(detQ(z)) and C(A, E) = {0} .

The computation t 7→ σ(A(t)) displayed on Figure 7.3 supports that one of the
eigenvalues λ(t) tends to 0 and the other two tend to ∞ as |t| → ∞ .

The matrix Mz does not defined at λ ∈ σ(A) . The 2D and 3D normwise portraits
φ0 : z 7→ ‖Mz‖ on Figures 7.4, (a) and (b) display 3 peaks corresponding to the
3 eigenvalues of A , confirming that the 3 eigenvalues are ‖ · ‖− observable.
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Figure 7.3: t 7→ σ(A(t)) for |t| = h ∈ [0, 300] and θ = π/24

(a) 2D -normwise portrait (b) 3D -normwise portrait

Figure 7.4: Normwise portrait φ0 : z 7→ ‖Mz‖

(a) 2D -spectral portrait (b) 3D -spectral portrait

Figure 7.5: Spectral portrait φ1 : z 7→ ρ(Mz)

Also the 3 eigenvalues of A are partially observable: limz→λ |µiz| = {0, ∞} . The
2D and 3D spectral portraits φ1 : z 7→ ρ(Mz) on Figures 7.5, (a) and (b) display
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3 peaks corresponding to the 3 eigenvalues of A and a well corresponding to the
critical point 0 , as expected.

4

Example 7.2.2 Let us go back to the Example 7.1.1.
The computation t 7→ σ(A(t)) displayed on Figure 7.6 supports that 8 eigenvalues
λ(t) tend to the 8 points in Lim and the other three tend to ∞ as |t| → ∞ .

All the 11 eigenvalues of A are ‖·‖−observable . The 10 eigenvalues σ(A)\{−1}
are partially observable but the eigenvalue −1 ∈ σ(A) is σ− nonobservable. No well
is present: C̄(A,E) = ∅ .

The Figures 7.7 and 7.8 display the normwise and spectral portraits respectively. On
Figure 7.7, (a) and (b) , one can see 11 peaks corresponding to the eigenvalues of
A . There is no well appearing on Figure 7.7, (c) , nor on Figure 7.8. The portrait
φ1 displays 2 sinks on Figures 7.8, (c) .

Figures 7.8, (a) and (b) , indicate that there is no peak corresponding to the common
point λ = −1 but there are 10 peaks corresponding to σ(A)\{−1} . Figures 7.8,
(c) , and (d) show that there is no well corresponding to λ ∈ σ(A) . There are sinks
at some z ∈ re(A) , but not at the σ− nonobservable eigenvalue λ = −1 .
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(a) θ = π
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(b) θ = 0.1

Figure 7.6: t 7→ σ(A) for h = |t| ∈ [0, 1000]

Observe that the absence of peak at λ = −1 modifies the form of the portrait φ1

compared to the portrait φ0 in the neighbourhood of −1 .
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(a) 2D -normwise portrait (b) 3D -normwise portrait

(c) 3D -normwise portrait from below

Figure 7.7: Normwise portrait φ0 : z 7→ ‖Mz‖
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(a) 2D -spectral portrait (b) 3D -spectral portrait

(c) 3D -spectral portrait from below (d) Zoom around the left sink, near a
z ∈ F (A,E)

Figure 7.8: Spectral portrait φ1 : z 7→ ρ(Mz)

4
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7.2.3 The frontier portrait φ2

The frontier portrait is the map z 7→ φ2(z) = ρ(M−1
z ) which is defined for

z ∈ re(A) at z 6∈ F (A,E) [18, 21]. For r = 1 , we have trivially ρ(Mz) = 1/ρ(M−1
z ) .

It is non trivial for r ≥ 2 . The study below follows [22].

Proposition 7.2.3 [22] For r ≥ 2 , φ2 has a peak at z ∈ F̄ (A,E) and a well at
λ ∈ σ(A) if it is σ− observable. It has sinks between peaks for some z ∈ C\F̄ (A,E) .

It follows that if φ2 has a sink at an eigenvalue λ , then λ is partially observable.
If λ is σ− observable then the sink becomes a well.

For r = 1 , the situation simplifies because ϑ(z) = µz , φ0 = φ1 and φ2 =
φ−1

1 : z 7→ 1
|µz | . The notions of ‖ · ‖− observability and σ− observability coa-

lesce.

Proposition 7.2.4 [22] For r = 1 , φ2 = φ−1
1 has no sink. It has peaks at z ∈

F̄ (A,E) = C̄(A,E) and wells at observable eigenvalues.

It is remarkable that neither φ0 = φ1 nor φ2 = φ−1
1 presents any sink for r = 1 .

The general situation r ≥ 2 is more complex with peaks, sinks and possibly wells.

For r = 2 , Mz has 2 eigenvalues and it is easy to predict algebraically when λ is a
σ− observable eigenvalue. See Section 7.3. For r ≥ 3 , the algebraic prediction is
more difficult. It can be useful to zoom around an eigenvalue to appreciate whether
the computed sink in the neighbourhood of an eigenvalue can actually be a well at
the eigenvalue which is therefore σ− observable.

Lemma 7.2.5 [22] For z ∈ re(A)\F (A,E) the inverse M−1
z exists and satisfies

the equivalent identities

M−1
z = α(z)adjQ(z) = β(z)adjMz,

where the coefficients α(z) = 1
(π(z))r−2π̂(z)

and β(z) = 1
ϑ(z)

= π(z)
π̂(z)

= 1
detMz

are
meromorphic functions of z ∈ C for 1 ≤ r < n .

Proof. We recall that for the matrix M of order r ≥ 1 , adj (βM) = βr−1 adj M .
Therefore Mz = 1

π(z)
Q(z) implies, for z ∈ re(A)\F (A, E) , that

M−1
z = π(z)(Q(z))−1 =

π(z)

detQ(z)
adjQ(z) =

1

(π(z))r−2π̂(z)
adjQ(z),

where α(z) = 1
(π(z))r−2π̂(z)

depends on r .

Equally adj Mz = 1
(π(z))r−1 adj Q(z) for z ∈ re(A) . Here β(z) = 1

detMz
= π(z)

π̂(z)
is

independent of r .
¤
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r 1 2 ≥ 3

α(z) π(z)
π̂(z)

= β(z) 1
π̂(z)

1
π(z)r−2π̂(z)

Table 7.2: Correspondence r 7→ α(z)

The functions α(z) and β(z) are meromorphic in C . And we observe that β(z) is
independent of r , whereas α(z) depends on r in the way that illustrated in Table
7.2.
The coefficient β(z) relates M−1

z to the adjoint matrix adj Mz . Similarly α(z)
relates M−1

z to the iterated adjoint matrix adj Q(z) = adj (V H adj (zI −A)U) . Ob-
serve that for r = 1 , adj Q(z) = adj Mz = 1 .

Because α(z) 6= β(z) for r ≥ 2 , the question arises: are the peaks of the
frontier portrait φ2 related to the poles of α(z) or of β(z) ? As a conclusion of
the above theoretical study, one should remark that φ2 follows β(z) and not α(z) .
This fact is supported by the examples given below.

We begin with the particular case r = 1 , φ2 = φ−1
1 : z 7→ 1

|µz | . φ2 has peaks at

F̄ (A,E) and wells at any λ which is observable. α(z) = β(z) = π(z)
π̂(z)

= 1
µz

.

Example 7.2.3 Let

A =




1 0 0 0 0 1
0 2 0 0 5 1
0 10 1 0 0 0
7 0 1 0 0 1
0 0 1 1 1 0
1 0 1 0 1 1




and E = uvT with u = e1 , and v = e6 .

Here, r = rank E = 1 , vT u = 0 and 0 ∈ σ(E) is defective with
n1 = 2 > n2 = 1 , for r1 = 1 , r2 = 4 , and q = 2 .

Then

π(z) = z6 − 6z5 + 13z4 − 73z3 + 61z2 + 56z − 302 ,

π̂(z) = z4 − 4z3 + 12z2 − 73z + 314 = det Q(z) = vHadj(zI − A)u ,

We calculate that Ẑ ∩σ(A) = ∅ and F (A,E) = Ẑ = {−1.6193±3.9117i, 3.6193±
2.1024i} has an empty intersection with σ(A) = {5.6461, −0.4265 ±
3.4905i, 1.2853± 1.2327i, −1.3638} .

All the 6 eigenvalues of A are observable: limz→λ |µz| = ∞ , for λ ∈ σ(A) .
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In Figures 7.9, (a) and (b) , we use the 2D-frontier and the 3D-frontier portraits
respectively to illustrate that the frontier portrait has 4 peaks at the frontier
points in F (A,E) and 6 wells at λ ∈ σ(A) . Here no simplification takes
place: m̂λ = 0 < mλ = 1 . The rational functions

α(z) =
z6 − 6z5 + 13z4 − 73z3 + 61z2 + 56z − 302

z4 − 4z3 + 12z2 − 73z + 314
= β(z).

are defined for z 6∈ F (A,E) .

(a) 2D -frontier portrait (b) 3D -frontier portrait

Figure 7.9: Frontier portrait φ2 : z 7→ ρ(M−1
z )

4
Example 7.2.4 Let

A =




1 0 0 0 0 1
0 −2 0 0 0 1
0 1 1 0 0 1
0 0 1 0 0 1
0 0 1 1 1 0
1 0 1 0 1 0




and E = uvT with u = e6 = v .

Here, r = rank E = 1 , vT u = 1 and 0 ∈ σ(E) is semi-simple. Then

π(z) = z(z5 − z4 − 5z3 + 2z2 + 2z − 1) ,

π̂(z) = z(z + 2)(z − 1)3 = detQ(z) = d(z) ,

We calculate that Ẑ ∩ σ(A) = {0} , for σ(A) = {−1.8650, −0.7199, 0, 0.5152±
0.1617i, 2.5544} and F (A,E) = {−2, (1)3} .

The 5 eigenvalues λ ∈ σ(A)\{0} are observable: limz→λ |µz| = ∞ , for λ ∈
σ(A)\{0} . Therefore they are normwise observable too. The eigenvalue λ = 0
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is nonobservable: limz→0 |µz| = 2 < ∞ . In addition, det Q(z) = Q(z) , therefore

Mz = µz = Q(z)
π(z)

is defined at λ = 0 which means that λ = 0 is nonobservable.
Here we have

α(z) =
z(z5 − z4 − 5z3 + 2z2 + 2z − 1)

z(z + 2)(z − 1)3
=

(z5 − z4 − 5z3 + 2z2 + 2z − 1)

(z + 2)(z − 1)3
= β(z).

The simplification by z entails that α(λ) = β(λ) = 0 for 0 6= λ ∈ σ(A) .

In Figures 7.10, (a) and (b) , we use the 2D-frontier and the 3D-frontier portraits
respectively to illustrate that the frontier portrait has 2 peaks at the 2 distinct
frontier points F (A, E) = {−2, (1)3} and 5 wells at λ ∈ σ(A)\{0} .

(a) 2D -frontier portrait (b) 3D -frontier portrait

Figure 7.10: Frontier portrait φ2 : z 7→ ρ(M−1
z )

Since 1 is triple and −2 simple in F (A,E) , it is difficult to capture the peak
corresponding to −2 in the 3D frontier portrait φ2 in finite precision.

4
Remark. When the rank of matrix E is greater than 2 , it becomes clear that the
spectral and frontier portraits are valuable tools to detect the partially observable
eigenvalues, the frontier points and the set Lim.

Example 7.2.5 Let us return to the Example 4.3.1 where for

A =




1 0 2 0 0 0
0 0 1 0 0 1
2 0 1 0 1 0
0 0 2 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0




and E =




0 4 1 2 0 0
−1 3 4 2 0 1
0 4 1 2 0 0
−1 4 3 3 0 1
0 0 0 0 0 0
0 1 −1 1 0 0




, we use (1.6.1)
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to get E = UV T with

U =




1 1 0
1 0 1
1 1 0
1 1 1
0 0 0
0 1 0




, and V =




0 0 −1
3 1 0
2 −1 2
1 1 1
0 0 0
0 0 1




.

Here, r = rank E = 3 , det (V T U) = −15 6= 0 and 0 ∈ σ(E) is semi-simple with
the geometric multiplicity g = 3 . Then

π(z) = z(z5 − 2z4 − 4z3 + 1), π̂(z) = −(15z3 + 8z2 − 8z + 1),

and

detQ(z) = −(15z3 + 8z2 − 8z + 1)(z5 − 2z4 − 4z3 + 1)2z2 = (π(z))2π̂(z).

Then F (A,E) = {−1.0828, 0.1568, 0.3926} has an empty intersection with
σ(A) = {−1.3293, 0, 0.5915, 3.2294, −0.2458± 0.5774i} .

In Figures 7.11, (a) , (b) , we use the 2D-frontier and the 3D-frontier portraits
respectively to illustrate that the frontier portrait has 3 peaks at the frontier points.
There is no well on φ2 , but we can see sinks at {0.5915, −0.2458±0.5774i} . There
are also 2 sinks around −1.3293 . See Figure 7.12 . Here

α(z) =
1

−z(z5 − 2z4 − 4z3 + 1)(15z3 + 8z2 − 8z + 1)
,

is not defined for λ ∈ σ(A) ∪ Ẑ , and

β(z) =
z(z5 − 2z4 − 4z3 + 1)

−(15z3 + 8z2 − 8z + 1)
,

is not defined for z ∈ Ẑ .

We have β(λ) = 0, ∀ λ ∈ σ(A) , that is ϑ(λ) does not exist. Therefore all 6
eigenvalues are partially observable. See the spectral portrait φ1 on Figure 7.13
with 6 peaks corresponding to λ ∈ σ(A) . There is also a sink at a real value
between 0.3926 ∈ F (A,E) and λ = 0.5915 ∈ σ(A) for φ1 . See Figure 7.14, (a)
and a zoom around the real sink in Figure 7.14, (b) .
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(a) 2D-frontier portrait (b) 3D-frontier portrait from above

Figure 7.11: Frontier portrait φ2 : z 7→ ρ(M−1
z )

Figure 7.12: Frontier portrait φ2 : z 7→ ρ(M−1
z ) from below

(a) 2D-spectral portrait (b) 3D-spectral portrait from above

Figure 7.13: Spectral portrait φ1 : z 7→ ρ(Mz)
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(a) From below (b) Zoom around z = 0.3926 and
λ = 0.5915

Figure 7.14: Spectral portrait φ1 : z 7→ ρ(Mz)

4

Example 7.2.6 Let

A =




1 0 −1 0 1 0
−1 0 0 0 0 0
1 1 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 1 0 0 0




and E =




0 2 1 2 0 0
−1 1 4 2 0 1
0 2 1 2 0 0
−1 2 3 3 0 1
0 0 0 0 0 0
0 1 −1 1 0 0




, we use

(1.6.1) to get E = UV T with

U =




1 1 0
1 0 1
1 1 0
1 1 1
0 0 0
0 1 0




, and V =




0 0 −1
1 1 0
2 −1 2
1 1 1
0 0 0
0 0 1




.

Here, r = rank E = 3 , det (V T U) = −9 6= 0 and 0 ∈ σ(E) is semi-simple with the
geometric multiplicity g = 3 . Then

π(z) = z3(z − 1)(z2 + 1), π̂(z) = −3z(3z2 − 1),

and

detQ(z) = (π(z))2π̂(z).

σ(A) ∩ Ẑ = {0} with m0 = 3 > m̂0 = 1 . Ẑ = F (A,E) ∪ {0} = {±0.5774, 0} .
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(a) θ = π/6
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(b) θ = π/4

Figure 7.15: t 7→ σ(A) for h = |t| ∈ [0, 300]

The Figures 7.15, (a) and (b) show that λ = 0 as a common root of π(z) and
π̂(z) belongs to Lim: one copy of the triple 0 ∈ σ(A) is invariant, or else 0 ∈ σi .

In Figures 7.16, (a) , (b) , we use the 2D-frontier and the 3D-frontier portraits
respectively to illustrate that the frontier portrait has 2 peaks at F (A,E) = Ẑ\{0} .
A zoom near ±i shows that φ2 has sinks near ±i . See Figures 7.17, (a) and (b) .

Now, after simplifications

α(z) =
1

−3z4(3z2 − 1)(z − 1)(z2 + 1)
, β(z) =

z2(z − 1)(z2 + 1)

−3(3z2 − 1)
.

β(λ) = 0 for λ ∈ σ(A)\{0} , that is ϑ(λ) is not defined: the 3 eigenvalues
{1, ±i} are partially observable. For λ = 0 , one has m0 = 3 > m̂0 = 1 : 0 is
also partially observable.

(a) 2D-frontier portrait (b) 3D-frontier portrait from above

Figure 7.16: Frontier portrait φ2 : z 7→ ρ(M−1
z )
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(a) 3D-frontier portrait from below (b) Zoom around λ = −i

Figure 7.17: Frontier portrait φ2 : z 7→ ρ(M−1
z ) from below

4

7.2.4 More numerical illustrations

Example 7.2.7 Let A, U, V be the matrices defined in Example 7.1.1 with r = 2 .
Then we consider B = A + e2e

T
2 which is a modification of A of rank 1, with

characteristic polynomial π(z) = z11 − z10 + 1 .

We consider Mz = V T (zI −B)−1U and

Q(z) = V T adj(zI −B)U =

( −z10 − 1 −z
−z10 − z8 + z7 + · · ·+ 1 −z9

)
,

detQ(z) = π(z)z(z + 1)(z2 + 1)(z4 + 1) , trQ(z) = −(z10 + z9 + 1) ,

π̂(z) = z(z + 1)(z2 + 1)(z4 + 1) ,

where σ(B) ∩ Ẑ = ∅ and F (B, E) = Ẑ .

One can see from the matrix polynomial Q(z) that limz→λ Mz = limz→λ
Q(z)
π(z)

does

not exist for any λ ∈ σ(B) . Therefore the eigenvalues of B are normwise observ-
able.

Figures 7.18, (a) , (b) and (c) display the spectral portrait φ1 : z 7→ ρ(Mz) for
(B, E) . It has 11 peaks at the eigenvalues of B which indicate that they are at
least partially observable. (See more in section 7.3 below).

The spectral portrait has 5 visible sinks: 2 near the roots of z2 +1 , 2 near the
two roots {−0.7071 ± 0.7071i} of z4 + 1 , and one near z = 0 . See Figure 7.18,
(a) .
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(a) 3D from below (b) 3D from above

(c) 2D -spectral portrait

Figure 7.18: The spectral portrait φ1 : z 7→ ρ(Mz)

Look at the Figures 7.19, (b) and (c) to see that the normwise portrait
φ0 : z 7→ ‖Mz‖ has 11 peaks at the eigenvalues of A . It has no sink. See Figures
7.19, (a) , and compare it with Figure 7.18, (a) .

The frontier portrait should display 8 peaks at the frontier points in
F (B, E) = Ẑ ∩ re(B) = Ẑ .

The values of α(z) = 1
π̂(z)

= β(z) are finite for the simple eigenvalues z = λ ∈ σ(B)
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(a) 3D from below (b) 3D from above

(c) 2D -normwise portrait

Figure 7.19: The normwise portrait φ0 : z 7→ ‖Mz‖

(with β(λ) = 0 , α(λ) 6= 0 ). Therefore λ is partially observable.

Figures 7.20, (a) , (b) and (c) display the frontier portrait φ2 : z 7→ ρ(M−1
z ) for

(B, E) . The 8 peaks at F (B, E) are visible on Figure 7.20, (a) . On Figure 7.20,
(b) , one can see the sinks near the eigenvalues of A .
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(a) View from above (b) View from below

(c) 2D -frontier portrait

Figure 7.20: The frontier portrait φ2 : z 7→ ρ(M−1
z )

4

Example 7.2.8 Let A be the matrix B defined in Example 7.2.7. Let E = UV T

with U = [e e2 e4] , V = [e11 e3 e6] of rank r = 3 , where e = [1, . . . , 1]T .
det (V T U) = 0 . Then we have

detQ(z) = z(z4 + z3 + z2 + z + 1)(z11 − z10 + 1)2 ,

π(z) = z11 − z10 + 1 ,

π̂(z) = z(z4 + z3 + z2 + z + 1) .

Therefore σ(A) ∩ Ẑ = ∅ for
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Ẑ = F (A,E) = {−0.8090± 0.5878i, 0, 0.3090± 0.9511i} .

Figures 7.21, (a) , (b) display the spectral portrait φ1 : z 7→ ρ(Mz) for (A,E) . It
has 11 peaks at the eigenvalues of A which indicates that they are at least partially
observable. There is no well on this portrait: C(A,E) = ∅ .

(a) 2D -spectral portrait (b) 3D -spectral portrait

Figure 7.21: The spectral portrait φ1 : z 7→ ρ(Mz)

Figures 7.22, (a) and (b) display the frontier portrait for (A,E) . There are 5
peaks corresponding to the 5 frontier points in F (A,E) : the peak at 0 is less
visible than the 4 others peaks.

(a) 2D -frontier portrait (b) 3D -frontier portrait

Figure 7.22: The frontier portrait φ2 : z 7→ ρ(M−1
z )

One sees local minima in finite precision between the peaks. See Figure 7.23 below.
The local minima can be in re(A) or at partially observable eigenvalues. A zoom
near each local minimum can provide numerical indication about the localization.
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(a) From below
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(b) Zoom around z = −0.8090 − 0.5878i ,
and z = 0.3090− 0.9511i

Figure 7.23: The frontier portrait φ2 : z 7→ ρ(M−1
z )

4

Example 7.2.9 Let A be the matrix B defined in Example 7.2.7. Let E = UV T

with U = [e e2 e4 e7] , V = [e11 e3 e6 e8] of rank r = 4 , where e = [1, . . . , 1]T and
det (V T U) = 0 . Then we have

det Q(z) = z(z2 + z + 1)(z11 − z10 + 1)3 ,

π(z) = z11 − z10 + 1 ,

π̂(z) = z(z2 + z + 1) .

Therefore σ(A)∩Ẑ = ∅ for Ẑ = F (A,E) = {−1
2
−
√

3
2

i, −1
2

+
√

3
2

i, 0} = {f1, f2, f3} .

Figures 7.24, (a) , (b) display the spectral portrait φ1 : z 7→ ρ(Mz) for (A,E) . It
has 11 peaks at the eigenvalues of A which indicates that they are at least partially
observable. There is not any visible well on this portrait. Computation of ρ(Mz) > 0
for z ∈ F (A,E) confirms that C(A,E) = ∅ : ρ(Mfk

) = 1.2660 for k = 1, 2 and
ρ(Mf3) = 1 . See Figure 7.24, (c) .

Figures 7.25, (a) , (b) and (c) display the frontier portrait for (A,E) . There are
3 peaks corresponding to the 3 frontier points in F (A,E) (the peak at 0 is hard
to see). There are sinks, some of them rather flat. See Figure 7.25, (c) .
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(a) 2D -spectral portrait (b) 3D -spectral portrait

(c) 3D -spectral portrait from below

Figure 7.24: The spectral portrait φ1 : z 7→ ρ(Mz)
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(a) 2D -frontier portrait (b) 3D -frontier portrait

(c) 3D -frontier portrait from below

Figure 7.25: The frontier portrait φ2 : z 7→ ρ(M−1
z )

4
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7.2.5 The intersection of spectral and frontier portraits

The line of balance

H =
{
z ∈ re(A) : ρ(Mz) = ρ(M−1

z )
} ⊂ re(A)

has been introduced and studied in [18]. It is the projection onto C of the 3D
curve H along which the spectral and frontier portraits intersect.

For any z ∈ H , the radii of convergence for R(t, z) around 0 and ∞ are equal.
For r = 1 , and z ∈ H , then |µz| = 1 .

Figure 7.26 displays, for the Example 7.2.2, the spectral and frontier portraits inter-
twined. They are plotted separately on Figure 7.27 and 7.28 respectively, together
with the intersection curve H .

Figure 7.26: Spectral and frontier portraits intertwined for Example 7.2.2
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Figure 7.27: The spectral portrait with intersection curve H

Figure 7.28: The frontier portrait with intersection curve H

7.3 The case r =rankE = 2

We study in detail the case r = 2 which can be treated explicitly.
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7.3.1 E has rank 2

When E has rank 2, the matrices Q(z) and Mz are of order 2 and their two
eigenvalues are easily related to tr Q(z) and detQ(z) : when z 6∈ σ(A) , we can use
the characteristic polynomial

d2(z) + trQ(z) + detQ(z), (7.3.1)

associated with Q(z) to obtain

µ±z =
1

2

[
trQ(z)

π(z)
± (

tr2Q(z)

π(z)2
− 4

π̂(z)

π(z)
)1/2

]
=

d±(z)

π(z)

=
1

2

trQ(z)

π(z)

[
1±

√
1− 4

detQ(z)

tr2Q(z)

]
=

1

2

trQ(z)

π(z)

[
1±

√
1− a(z)

]

for a(z) = 4detQ(z)
tr2Q(z)

. We assume that π̂(z) 6≡ 0 .

Lemma 7.3.1 [22] If tr Q(λ) 6= 0 , the frontier portrait has no well at λ which is
exactly partially observable. If λ ∈ Ẑ , then λ ∈ σ̄ and F (A,E) can be extended
into C at λ .

Proof. When tr Q(z) 6= 0 , then

|µ+
z | =

∣∣∣∣
1

2

trQ(z)

π(z)

[
1 +

√
1− a(z)

]∣∣∣∣ → ∞ as a(z) → a(λ) = 0.

On the other hand, we have

µ−z =
1

2

trQ(z)

π(z)

[
1−

√
1− a(z)

]
→ π̂(λ)

trQ(λ)
as z → λ

which is a finite limit.

If π̂(λ) = 0 , then λ ∈ Ẑ and µ−λ = 0 : λ ∈ σ̄ .
¤

Corollary 7.3.2 [22] For λ ∈ σ(A) such that tr Q(λ) 6= 0 , there is no well for φ2

and λ ∈ σ̄ if λ ∈ Ẑ .

For a λ ∈ σ(A) such that tr Q(λ) = 0 , it is possible that λ be σ− nonobservable,
or σ− observable.

Lemma 7.3.3 [22] When π̂(z) 6≡ 0 and λ is such that tr Q(λ) = 0 , there are 2
possibilities:

i) if m̂λ ≥ mλ ≥ 1 , then λ ∈ Ẑ is σ− nonobservable,
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ii) if m̂λ < mλ , then λ is σ− observable.

Corollary 7.3.4 [22] When m̂λ < mλ then φ2 has a well at λ . This happens for
λ simple 6∈ Ẑ .

We review the examples with r = 2 that have been proposed already.

1) In the Example 7.1.1, tr Q(−1) = 0 , and tr Q(λ) 6= 0 for λ ∈ σ(A)\{−1} .
Therefore all eigenvalues λ ∈ σ(A)\{−1} are partially observable.

−1 ∈ σ(A) is such that m̂−1 = m−1 = 1 , therefore it is σ− nonobservable.
This was already proved. See Figures 7.8 and 7.28 for the spectral portrait
and frontier portrait respectively.

2) In the Example 7.1.2, we have: tr Q(λ) 6= 0 for all λ ∈ σ(A) . Therefore
all eigenvalues are partially observable. See Figures 7.1 and 7.2. On Figures
7.29, (a) and (b) , one can see 2D and 3D frontier portraits respectively.
There are two sinks near λ = 1 and λ = 7 . Also there is one peak only at
the frontier point z = −1 ∈ F (A,E) = Ẑ = {−1} . Here m̂λ = 0 < mλ for
any λ ∈ σ(A) .

(a) 2D− frontier portrait (b) 3D− frontier portrait

Figure 7.29: Frontier portrait φ2 : z 7→ ρ(M−1
z )

3) Example 7.2.1, corresponds to the case π̂(z) ≡ 0 . Therefore det Q(z) ≡ 0 and
Z(detQ(z)) = Ẑ = C . F (A,E) = re(A) ⊂ Z(detQ(z)) and C(A, E) = {0} .

4) In the Example 7.2.7, we have tr Q(λ) 6= 0 for all λ ∈ σ(A) . Therefore all
eigenvalues are partially observable.
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We turn to two more examples with E = UV T of rank 2. A is the companion
matrix for π(z) = z11 + 1 in upper Hessenberg form, e = (1, . . . , 1)T ∈ C11 .
In all the computer plots of the spectral field t 7→ σ(A(t)) , t is taken as the complex
parameter t = |t|eiθ , where h = |t| ∈ [0, 300] and θ is specified for each Figure.
The eigenvalues of A appear as � , the limit points in Lim appear as � .

7.3.2 (Σ) is satisfied: G = V TU has rank 2

Example 7.3.1 E = UV T with U = [e, f ] , V = [e11, e3] , f =
∑4

1 ei , so that

V T U =

(
1 0
1 1

)
. 0 ∈ σ(E) is semi-simple with m = g = 9 . Then we have

Q(z) =

(
1 + z + · · ·+ z10 1 + z + z2 + z3

−(1 + z + · · ·+ z7) + z8 + z9 + z10 −1 + z8 + z9 + z10

)
,

trQ(z) = z(2z9 + 2z8 + 2z7 + z6 + · · ·+ 1) .

det Q(z) = z(z11 + 1)(z2 + z + 1)(z6 + z5 + · · ·+ 1) has degree 20 ,

π̂(z) = z(z2 + z + 1)(z6 + z5 + · · ·+ 1) has degree 9 .

F (A, E) = Zer(π̂(z))∩ re(A) = Ẑ consists of the 9 roots of π̂(z) which are 0 and
the roots of 1 of order 3 and 7 complex ones, different from 1 .

We know from theory that Lim = σ(Π) where Π is a matrix of order 9 . We
conclude readily that Lim = K(A,E) ⊂ re(A) . 9 eigenvalues (out of 11) converge
to the 9 kernel (or frontier) points.

Moreover, z = 0 in re(A) is a critical point since σ0 = limz→0 σ(Mz) = {0, 0} ,
and z1/2 is a factor of µz ∈ σ(Mz), z ∈ re(A). At z = 0 , R(t, 0) is a polynomial
in t of degree 2.

The spectral field is plotted for confirmation. See Figure 7.30, (a) ( θ = 0 ) and
Figure 7.30, (b) ( θ = π

24
) in which the escape of 2 eigenvalues to ∞ is visible.

Two observations are in order:

1. The slight change in θ from 0 to π
24
∼ 0.131 provokes a drastic change in

certain spectral maps t 7→ λ(t) . For example, for t positive, there is a spectral
ray connecting −1 to 0 . For t slightly complex, the ray originating at −1
converges to a root of 1 of order 7 , rather than to 0 .

2. The ambiguities which arise from the perfect symmetry of Figure 7.30, (a)
( θ = 0 ) are easily resolved by making θ 6= 0 , as shown by Figure 7.30, (b) .

On Figures 7.31 and 7.32, one can see the spectral and frontier portraits respectively.
Figures 7.31, (a) and (b) display 11 peaks corresponding to the eigenvalues of A
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(b) θ = π
24

Figure 7.30: The map t 7→ σ(A(t)) for h = |t| ∈ [0, 300]

and a well corresponding to the critical point z = 0 . Figures 7.32, (a) and (b)
display 9 peaks corresponding to the 9 points in Lim = F (A,E) . We observe that
tr Q(z) 6= 0 for λ ∈ σ(A) : all eigenvalues are partially observable.

(a) 2D -spectral portrait (b) 3D -spectral portrait

Figure 7.31: Spectral portrait φ1 : z 7→ ρ(Mz)
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(a) 2D -frontier portrait (b) 3D -frontier portrait

Figure 7.32: Frontier portrait φ2 : z 7→ ρ(M−1
z )

4

7.3.3 G = V HU has rank 1

Example 7.3.2 E = UV T with U = [e, g] , V = [e11, e3], g =
∑4

1 ei + e11 , so that

V T U =

(
1 1
1 1

)
. 0 ∈ σ(E) is defective with 1 Jordan block of size 2.

Q(z) =

(
1 + z + · · ·+ z10 1 + z + z2 + z3 + z10

−(1 + z + · · ·+ z7) + z8 + z9 + z10 −1− z7 + z8 + z9 + z10

)
,

trQ(z) = z(z2 + z + 1)(2z7 + z3 + 1) ,

det Q(z) = (z + 1)z(z11 + 1)(z2 − z + 1)(z2 + z + 1)2 is of degree 19 ,

π̂(z) = (z + 1)z(z2 − z + 1)(z2 + z + 1)2 has degree 8 .

We observe readily that, even though (z + 1)2 is a factor for det Q(z) , z + 1 is not
a factor for trQ(z) . Hence, the factor z + 1 does not cancel in the two eigenvalues
d(z) and in π(z) . However, one of the two eigenvalues of µz with minimum mod-
ulus is such that µ−1 = limz→−1 µz exists: λ = −1 is partially observable , but
not σ − observable . One of the 2 eigenvalues for Q(z) is

d(z) =
1

2

[
trQ(z)− [

tr2Q(z)− 4 detQ(z)
]1/2

] trQ(z) + [tr2Q(z)− 4 detQ(z)]
1/2

trQ(z) + [tr2Q(z)− 4 detQ(z)]
1/2

= −2
detQ(z)

trQ(z) + [tr2Q(z)− 4 detQ(z)]
1/2

For the corresponding µz , the factor z + 1 in det Q(z) cancels with the one in

π(z) . We conclude that limz→−1
d(z)
z+1

= 0 : −1 is partially observable, corresponding
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moreover to an eigenvalue µ−1 = 0 : −1 ∈ σf . It is interesting to see that
tr Q(−1) 6= 0 , which confirms Lemma 7.3.1.

F (A,E) = Zer(π̂(z)) ∩ re(A) contains the 7 roots of the polynomial z(z2 − z +
1)(z2 + z + 1)2 . By continuity, −1 ∈ σ(A) can be added to F (A,E) : F̄ (A,E) =
F (A,E) ∪ {−1} .

Because z(z2+z+1) is a common factor for trQ(z) and det Q(z) , we conclude that
0 and 1

2
(−1 ± i

√
3) are critical points in C(A,E) . Moreover, z1/2(z2 + z + 1)1/2

is a factor for µz ∈ σ(Mz), z ∈ re(A).
We do not readily know if (G) is satisfied for (02)1(01)8 . Lim can be inferred from
the computation of σ(A(t)) , with t = |t|eiθ , h = |t| ∈ [0, 300] .
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(a) θ = 0
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(b) θ = 0.01

Figure 7.33: The map t 7→ σ(A(t)) for h = |t| ∈ [0, 300]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7.34: The map t 7→ σ(A(t)) for h = |t| ∈ [0, 300] and θ = π
24
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We observe on Figures 7.33, (a) , (b) and Figure 7.34 that Lim contains 8 points:
the 7 frontier points plus the unobservable eigenvalue −1 ∈ σf . This is a strong in-
dication that (G) = (Li) is satisfied (l∗ = 8) : there coexist 7 eigenvalues converging
at rate 1 , and 1 converging at rate > 1 for E(s) .
This example has the following interesting features:

1. The two limit points 1
2
(−1 ± i

√
3) have multiplicity 2 : each of them is the

limit of two different spectral rays originating from different eigenvalues.

2. Figure 7.34 exhibits a loop beginning and ending at λ = −1 for θ = π/24 .
The same phenomenon occurs for values of θ (mod π) ranging approximately
between 0.04π and 0.85π . This is a rather rare event which is caused by the
specific data A, E .

On Figures 7.35 and 7.36, one can see the spectral portrait. Figures 7.35, (a) and
(b) show the peaks at the eigenvalues of the matrix A . On Figure 7.36, one can
see 3 wells at C(A,E) . On Figures 7.37, one can see the frontier portrait. Figures
7.37, (a) and (b) show 8 peaks at Lim = F (A, E) ∪ {−1} = F̄ (A,E) .

(a) 2D -spectral portrait (b) 3D -spectral portrait

Figure 7.35: Spectral portrait φ1 : z 7→ ρ(Mz)
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Figure 7.36: Spectral portrait φ1 : z 7→ ρ(Mz) from below

(a) 2D -frontier portrait (b) 3D -frontier portrait

Figure 7.37: Frontier portrait φ2 : z 7→ ρ(M−1
z )

4

7.4 π̂(z) ≡ 0

Under the condition (∆) , it is possible that π̂(z) ≡ 0 . In this case, Ẑ = C ,
F (A,E) = re(A) . For the critical set which can be discrete or continuous,
one has C(A,E) ⊆ F (A,E) = re(A) .

For any z ∈ re(A) , mini |µiz| = 0 . Therefore, by continuity, mini |µiλ| = 0 for
|µiλ| = limz→λ |µiz| . Hence F̄ (A,E) = C .

However, it is possible that, if computed directly, mini |µiλ| 6= 0 . Indeed

ϑ(z) = π̂(z)
π(z)

is ≡ 0 for z ∈ re(A) . But for λ ∈ σ(A) , ϑ(λ) = 0
0

is indeterminate,
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it can be 6= 0 [22].

When C(A,E) is discrete, then φ1 has wells if C̄(A,E) 6= ∅ .

When C(A,E) is continuous, then C(A,E) = re(A) , ρ(Mz) = 0 ∀ z ∈ re(A) .
And σ(A(t)) = σ(A) = Lim = σi . In this case, there is no intersection between the
2 planes defined by φ1 : z 7→ ρ(Mz) = 0 and by φ2 : z 7→ ρ(M−1

z ) = ∞ .

7.5 A summary of the homotopic graphical toolkit

and its use

We have defined two types of visualization tools:

1. in Chapter 6 , we described the spectral rays and orbits derived from the
spectral field t ∈ Ĉ 7→ σ(A(t)) ∈ Cn ,

2. in Chapter 7 , we described the three homotopic portraits associated with
z ∈ re(A) 7→ Mz ∈ Cr×r .

When π̂(z) 6≡ 0 , these two different kinds of tools enable us to localize the points
of interest in HD which are respectively:

i) the set Lim detected by the spectral rays and orbits,

ii) the ‖ ·‖− observable eigenvalues (peaks of φ0 ), the partially observable eigen-
values (peaks of φ1 ), the σ− observable eigenvalues (wells of φ2 ), and the
two sets F̄ (A,E) (peaks of φ2 ), and C̄(A,E) (wells of φ1 ).

7.6 Computation of Ẑ using MATLAB functions

It was mentioned in Chapter 3 that the transfer matrix

G(z) = C(zI − A)−1B + D, z 6∈ σ(A),

of the state-space equations

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

}

in continuous-time system and discrete-time system in Control Theory, has the
same structure as that of the matrix Mz in HD when D = 0 , C = V H , and
B = U . In Matlab, the function ss2tf (resp. tf2ss) calculates the transfer matrix
from state-space equations (resp. state-space equations from the transfer matrix).
This means that, for quick MATLAB experimentation in HD when det Q(z) 6≡ 0 , we
can calculate the matrix polynomial Q(z) by the function ss2tf. Then we can use
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the function polyeig in Matlab to compute the roots of det Q(z) and discard r − 1
copies of the roots of π(z) to get the set Ẑ . However, this indirect computational
route is not optimal. A more direct software approach, specific to HD, needs to be
developed.
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Chapter 8

Application of HD to Arnoldi’s
method

8.1 Introduction

Iterative processes are widely used in linear algebra for treating large sets of data.
It is becoming more and more common that one iterative solver has to be embedded
in an outer one: this is the case, for instance, for solving eigenproblems with inverse
iterations or with a Krylov method with invert. Each step of the eigensolver requires
the solution of a linear system which, if too large, must be solved in turn with an
iterative method (inner step). It is a fact of experience that Krylov methods display
an extreme robustness to large perturbations. No satisfactory explanation has been
given so far of this remarkable property [13, 36, 50, 14, 24, 25].

In this chapter, we study the basic Arnoldi algorithm in the light of Homotopic De-
viation theory in order to further our understanding of the nagging question : “why
do Krylov methods work so well in practice ?”.

8.2 Krylov subspace methods

Since their revival in the 70s and 80s, Krylov methods have been widely used world-
wide to solve large scale problems such as

Ax = b and Ax = λx, x 6= 0

which are the two basic problems associated with a large (often sparse) matrix A .

Their origin can be traced to C. Lanczos (hermitian and non hermitian tridi-
agonal form) and to W. E. Arnoldi (Hessenberg form). The notion of a subspace
generated by powers of A applied to a vector is due to Krylov.

The Krylov subspace methods form an important class of methods available for
computing eigenvalues and eigenvectors of large matrices. These techniques are
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based on projection methods, both orthogonal and oblique, onto Krylov subspaces,
i.e., subspaces spanned by the iterates of the simple power method [10]. What may
appear to be a trivial extension of a very slow algorithm turns out to be one of the
most successful methods for extracting eigenvalues of large matrices. A subspace of
the form

Kk(A, u0) = span{u0, Au0, . . . , A
k−1u0},

is referred to as a Krylov subspace with starting vector u0 .

In such methods, the dimension of the approximation subspace is increased by one
at each step of the approximation process. To keep the dimension manageable, one
can attempt to force the starting vector u0 to be more in the direction of the desired
eigenvector. Alternatively, one can start with a set (block) of vectors instead of a
single vector u0 and this leads to the so-called block variants of these subspace
methods. This gives rise to various iterative methods collectively referred to as
Krylov methods. They include:

1. The symmetric Lanczos algorithm,

2. Arnoldi’s method and its variations,

3. The nonsymmetric Lanczos algorithm.

In this chapter, we concentrate on the Arnoldi method. This method [9, 34, 49] is
an orthogonal projection method onto the Krylov subspace Kk(A, u0) of dimension
k ≤ n for general matrices. The procedure was introduced in 1951 as a means
of reducing a dense matrix into Hessenberg form. Arnoldi presented his method
in this manner but hinted that the eigenvalues of the Hessenberg matrix obtained
from a number k of steps smaller than n could provide accurate approximations
to some eigenvalues of the original matrix. It was later discovered by Y. Saad that
this strategy leads to an efficient technique for approximating eigenvalues of large
sparse matrices.

8.2.1 The basic Arnoldi algorithm for the Hessenberg de-
composition

The Arnoldi method is an orthogonal projection method onto a Krylov subspace. It
starts with the Arnoldi procedure as described in Algorithm 1. The procedure can
be understood as a modified Gram-Schmidt process for building an orthogonal basis
of the Krylov subspace Kk(A, v) .

The algorithm 1 will stop if the vector w computed in line ( 8 ) vanishes. The vectors
v1, v2, . . . , vk form an orthonormal system by construction and are called Arnoldi
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Algorithm 1 Arnoldi Procedure

1: v1 = v/‖v‖2 for the starting vector v
2: for j = 1, 2, . . . , k do
3: w := Avj

4: for i = 1, 2, . . . , j do
5: hij = w∗vi

6: w := w − hijvi

7: end for
8: hj+1,j = ‖w‖2

9: if hj+1,j = 0 , stop
10: vj+1 = w/hj+1,j

11: end for

vectors. It is shown that this system is a basis of the Krylov subspace Kk(A, v)
[49, 10].

Now, we consider a fundamental relation between quantities generated by the algo-
rithm 1. The following equality is readily derived:

Avj =

j+1∑
i=1

hijvi, j = 1, 2, . . . , k. (8.2.1)

If we denote by Vk the n× k matrix with column vectors v1, v2, . . . , vk and by Hk

the Hessenberg matrix whose nonzero entries hij are defined by the algorithm, then
the following relations hold:

AVk = VkHk + hk+1,kvk+1e
H
k , (8.2.2)

V H
k AVk = Hk. (8.2.3)

Relation (8.2.3) follows from (8.2.2) by multiplying both sides of (8.2.2) by V H
k

and making use of the orthonormality of {v1, v2, . . . , vk} .
As was noted earlier the algorithm breaks down when the norm of w computed

on line (8) vanishes at a certain step j . This happens if and only if the starting
vector v is a combination of eigenvectors (i.e., the minimal polynomial of v1 is of
degree j ). In addition, the subspace Kj is then invariant and the approximate
eigenvalues and eigenvectors (if computed in exact arithmetic) are exact [34, 49].

The approximate eigenvalues λ
(k)
i provided by the projection process onto Kk

are the eigenvalues of the Hessenberg matrix Hk of order k . These are known as Ritz
values. A Ritz approximate eigenvector associated with a Ritz value λ

(k)
i is defined

by u
(k)
i = Vky

(k)
i , where y

(k)
i is an eigenvector associated with the eigenvalue λ

(k)
i .

A number of the Ritz eigenvalues, typically a small fraction of k , may constitute
a good approximations for certain eigenvalues λi of A , and the quality of the
approximation improves as k increases.
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The original algorithm consists of increasing k until all desired eigenvalues of A
are found. In theory, k should be increased until the value n . For large matrices,
this becomes costly both in terms of computation and storage [10].

8.2.2 Implementation variants

The description of the Arnoldi procedure given earlier was based on the modified
Gram-Schmidt process. Other orthogonalization algorithms could be used as well.
One option is to reorthogonalize only when necessary. Whenever the final vector
obtained at the end of the second loop in the above algorithm has been computed,
a test is performed to compare its norm with the norm of the initial w (which is
‖Avj‖2 ). If the reduction falls below a certain threshold (an indication that severe
cancellation might have occurred), a second orthogonalization is made. It is known
from a result by Kahan that more than two orthogonalizations are superfluous [47].

One of the most reliable orthogonalization techniques, from the numerical point
of view, is the Householder algorithm [38]. This has been implemented for the
Arnoldi procedure by Walker [53]. The Householder algorithm is numerically more
reliable than the Gram-Schmidt or modified Gram-Schmidt versions, but it is also
more expensive, requiring roughly the same storage as modified Gram-Schmidt but
about twice as many operations. The Householder orthogonalization is a reasonable
choice when developing general purpose, reliable software packages where robustness
is a critical criterion.

8.2.3 Explicit Restarts

As was mentioned earlier, the standard implementations of the Arnoldi method are
limited by their high storage and computational requirements as k increases. We
suppose that we are interested in only one eigenvalue/eigenvector of A , namely,
the eigenvalue of largest real part of A . Then one way to circumvent the difficulty
is to restart the algorithm. After a run with k Arnoldi vectors, we compute the
approximate eigenvector and use it as an initial vector for the next run with the
Arnoldi method. This process, which is the simplest of this kind, is iterated to
convergence to compute one eigenpair, see Algorithm 2.

Obtaining the residual norm, for Ritz pair, as the algorithm progresses is fairly
inexpensive. Let y

(k)
i be an eigenvector of Hk associated with the eigenvalue λ

(k)
i ,

and let u
(k)
i be the Ritz approximate eigenvector u

(k)
i = Vky

(k)
i . We have the relation

(A− λ
(k)
i I)u

(k)
i = hk+1,k(e

T
k y

(k)
i )vk+1,

and therefore
‖(A− λ

(k)
i I)u

(k)
i ‖2 = hk+1,k|eT

k y
(k)
i |.

Thus the residual norm is equal to the absolute value of the last component of the
eigenvector y

(k)
i multiplied by hk+1,k . The residual norms are not always indicative
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of actual errors in λ
(k)
i , but can be helpful options in deriving stopping criterion

especially under their relative form.
For computing other eigenpairs, and for improving the efficiency of the process,

a number of strategies have been developed, which include deflation procedures and
the implicit restarting strategy [10, 44].

Algorithm 2 Explicity Restarted Arnoldi Method

1: Iterate: Perform k steps of Algorithm 1.
2: Restart: Compute the approximate eigenvector u

(k)
1 associated with the right-

most eigenvalue λ
(k)
1 .

3: If stopping criterion holds stop, else set v1 ≡ u
(k)
1 and goto 1 .

8.3 The incomplete Arnoldi decomposition

8.3.1 Definition

Let A ∈ Cn×n . For 1 < k < n , the incomplete (or inexact) Arnoldi decomposition
for A can be written as

(A− hU)V = V Hk,

where V = [v1, . . . , vk] ∈ Cn×k is the Krylov basis at step k , Hk ∈ Ck×k is in
Hessenberg form, U = vk+1v

H
k is nilpotent: vH

k vk+1 = 0 implies U2 = 0 . And h =
hk+1 k denotes the (k + 1, k) element in Hk+1 . We remark that h is real positive
with a (classical or modified) Gram-Schmidt orthogonalisation strategy. With a
Householder strategy, h can be complex. When k = n , the exact decomposition
( h = 0 ) is completed with AV = V Hn , V ∈ Cn×n , where Hn = V HAV is one
possible Hessenberg form for A .

8.3.2 Relation between σ(A) and σ(Hk) , 1 < k < n

The interpretation of the incomplete Arnoldi decomposition has been studied
by E. Traviesas (1999) in the HD framework. It is shown in [26, 28] and [51],
chapter 2 , p. 41− 42 that

1. σ(Hk) ⊂ σ(A− hU), 1 < k < n ,

2. |h| represents the homotopic distance between σ(A) and σ(Hk) ,

3. the n eigenvalues of A− hU lie on the homotopic 1
|h| -level curve Γ defined

by :

Γ = {z ∈ C− σ(A); ρ(U(A− zI)−1) =
1

|h|}.

As a consequence, |h| measures the backward error for the incomplete Arnoldi
decomposition, which consists in replacing A by Hk [33].
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8.3.3 Spectral consequences of A = V HnV
H (k = n )

In this paragraph, we summarize results given in [15, 28, 51]. Irreducible Hessen-
berg matrices are nonderogatory (one Jordan block per distinct eigenvalue) [34].
Therefore the Arnoldi decomposition on a derogatory matrix A yields a reduced
Hessenberg matrix Hn (in exact arithmetic). The algorithmic assumption that Hn

is irreducible implies that:

i) if Hn is simple, then A is simple with n distinct eigenvalues. Multiple
eigenvalues escape.

ii) if Hn is defective, then A is nonderogatory: multiple Jordan blocks for the
same eigenvalue are out of reach.

However, these limitations are only valid in exact arithmetic. They are bypassed by
finite precision as experience tells us. In algorithmic practice, the goal is to force
near reducibility to occur as soon as possible (that is for k small with respect to
n ). Understanding the process of numerical (or happy) breakdown (the finite pre-
cision counterpart of exact reducibility) is therefore crucial to the design of efficient
stopping criteria [15, 28].

8.3.4 The Arnoldi residual, 1 < k < n

Let (λ, y) denote an eigenpair for H = Hk , 1 < k < n and h = hk+1 k . This
yields

Hy = λy, y ∈ Ck,

and
(A− λI)V y = V (H − λI)y + hUV y, V y ∈ Cn.

The pair (λ, V y) is a pseudoeigenpair for A corresponding to the residual

r = (A− λI)V y = hUV y = hvk+1(e
H
k y). (8.3.1)

We set yk = eH
k y , the k th (and last) component for y . Equality (8.3.1) is valid

in exact arithmetic, but not always in finite precision. Therefore we introduce the
following distinction:

rD = (A− λI)V y is the direct residual for A,

rA = (hyk)vk+1 is the Arnoldi residual.

The backward error for A at (λ, V y) is

BE(λ, V y) =
‖rD‖
‖A‖‖y‖ =

|hyk|
‖A‖‖y‖ . (8.3.2)
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It is a fact of experience [23, 26], that the mathematical equality (8.3.2), which
derives from (8.3.1), may not hold for iterations which follow the one for which the
backward error reaches machine precision. Therefore the Arnoldi residual, of norm
|hyk| , is not a reliable indicator for convergence, once machine precision is reached

for |hyk|
‖A‖‖y‖ .

The fact that numerically subtle events take place in the vicinity of convergence
has been known for more than 2 decades [47, 23]. One remarks that the residual
in 8.3.1 has an absolute formulation, suitable for a mathematical forward analysis
of convergence. By comparison, the normalised residual in 8.3.2 is suited for a
backward analysis of algorithmic convergence in finite precision.

In next section, we present these observations in HD framework (introduced in [17])
to take a fresh look at the phenomenon of near reducibility.

8.4 Spectral structure of an irreducible Hessen-

berg matrix

8.4.1 An inductive analysis for 1 < k < n

H ∈ Ck×k is a Hessenberg matrix of order k assumed to be irreducible. We consider
the Hessenberg matrix of order k + 1 defined by

H+ =

[
H u
0 h a

]

where u ∈ Ck , h and a ∈ C . What can be said about the eigenstructure of H+ ?
We consider the eigenpair (µ, x) for H+ , with x = (yH , α)H ∈ Ck+1 . H+x = µx
implies

Hy + αu = µy,

hyk + aα = µα.

By assumption, H+ is irreducible for h 6= 0 , and x is the only eigendirection
associated with µ . The discussion of whether α = 0 or not in [17] shows that,

1. For α = 0 , the only possibility is that h = 0 : H+ is reducible.

2. For α = 1 , one has

(H − µIk)y = −u,

hyk = µ− a.

When nonzero, the quantity hyk measures the forward error for H+ on the
eigenvalue µ ∈ σ(H+) when it is approximated by a .
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When h 6= 0 , hyk = 0 implies yk = 0 . If the matrix A is assumed nonderogatory,
then Hk is irreducible for k = 2, . . . , n− 1 . Therefore H+ ( = Hk+1 ) is irreducible
and we only have to consider the case α = 1 . We conclude that when (µ, x) is an
exact eigenpair for H+ , then

(i) x = (yH , 1)H , where y corresponds to one step of inverse iteration on H with
µ ∈ σ(H+) as an approximate eigenvalue for H , and −u being the residual
(H − µIk)y , that is, y = −(H − µIk)

−1u ,

(ii) hyk equals the forward error µ−a . It can be zero either for yk = xk = eT
k x = 0

or for h = 0 ,

(iii) |hk+2k+1| = ‖(A−µI)V x‖ is the Arnoldi residual at step k +1 , since xk+1 =
eT

k+1x = 1 .

These observations show how the quantities h , a and u which represent new
information about A not present in H are processed algorithmically to update the
eigendecomposition of H into that of H+ , during the Arnoldi decomposition at
step k + 1 .

8.4.2 h as a homotopy parameter

Consider the matrix

B =

[
H u
0 a

]

of order k +1 , with spectrum σ(B) = σ(H)∪{a} , and 1 < k < n . The matrix

H+ =

[
H u
0 h a

]

can be written as H+ = B + hE = B(h) with E = ek+1e
T
k . Note that E2 = 0

because eT
k ek+1 = 0 : E is nilpotent. To study the dependence of the spectrum of

H+ on the parameter h , the framework of Homotopic Deviation (B, E) , where E
is rank one and nilpotent, is most natural [16, 27, 51]. The homotopy parameter h
will be considered complex. Of particular interest will be the limits of the eigenvalues
λ(h) as |h| → ∞ .

8.5 E = uvH , and vHu = 0 , u, v ∈ Cn

8.5.1 E = ene
T
n−1

For u, v ∈ Cn such that vHu = 0 , consider the unitary basis

Q =

[
X,

v

‖v‖ ,
u

‖u‖
]

in Cn,
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with XHX = In−2 , vHX = uHX = 0 . Set E = uvH with vHu = 0 . The matrix
A(t) = A + tE is unitarily equivalent to C(t) = C + tD , with

D = ‖u‖‖v‖eneT
n−1 = QHEQ.

We can therefore, without loss of generality in this section, restrict out attention
to the deviation E = ene

T
n−1 . From now on, in this Section, E is assumed to be

eneT
n−1 . E is nilpotent, with only eigenvalue 0 with multiplicity n and structure

(01)n−2(02) . The Jordan chain associated with 0 double defective is (en, en−1) :
Een = 0 and Een−1 = en .

8.5.2 The four sets of interest for (A,E) , E = ene
T
n−1

Let P
′

be the orthogonal projection on Wn−2 = lin(e1, . . . , en−2) which represents
the eigenspace for E associated with 0 of ascent 1 , multiplicity n− 2 .

An−2 = P
′
AP

′
represents the section (principal submatrix) of A of order n−2 .

We define the partitioning (n− 2, 2) of A as

[
An−2 R

S A2

]

with R,SH ∈ C(n−2)×2 and A2 of order 2 . We assume that σ(A)∩σ(An−2) = ∅ .
And we consider the family A(t) = A + tE , t ∈ C .

The overview presented above tells us that four sets in C are useful to study the
homotopic deviation process (A,E) , where r = 1 and E2 = 0 so that g = n− 1 ,
g
′
= n− 2 . These are

i) the set σ(A) of n eigenvalues for A ,

ii) the set Lim of limit points for σ(A(t)) which remain at finite distance when
|t| → ∞ such that σ∞(A,E) = lim|t|→∞σ(A(t)) = {∞, Lim} ,

iii) the set C(A,E) of critical points z which are such that µz = 0 , hence F 2
z = 0

(because r = 1 , C(A,E) = F (A,E) ),

iv) The set σ(An−2) . The general theory [18] applied to E nilpotent with r = 1
entails that generically Lim∩re(A) = C(A,E) = F (A,E) contains at most
n − 2 critical points. Nongenerically, it is possible that C(A,E) is the con-
tinuous set re(A) , and that σ(A) = σ∞(A,E) is invariant under t ∈ C . We
confirm some of these results by direct proof.

Proposition 8.5.1 [17, 22] Any point in Lim which is not an eigenvalue of A is
critical. If it is an eigenvalue of A , it is invariant.
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Proposition 8.5.2 [17] If A2 is not a lower triangle, exactly 2 eigenvalues of A(t)
escape to ∞ . The remaining n− 2 converge to Lim = σ(Ω) , where

Ω = An−2 − 1

an−1n

uvT ,

with u = (a1n, . . . , an−2n)T and vT = (an−11, . . . , an−1n−2) .

8.5.3 The structure of Fz , for z 6∈ σ(A)

Because −Fz = ene
T
n−1(A − zI)−1 , en is the eigenvector associated with µz =

−eT
n−1(A − zI)−1en , which is nonzero when z is not critical. In the generic case,

Fz is semi-simple: it has n independent eigenvectors.

When z = ξ 6∈ σ(A) is critical, however, the structure of Fz changes from semi-
simple ( z 6= ξ ) to defective and nilpotent: F 2

ξ = 0 : the eigenvector en is linked
with another vector α by the Jordan chain of length 2 : Fξα = en . This creates,
at the critical points, a computational dependency which is not present at a generic
z 6∈ σ(A) . This dependency is easy to explicit in the case corresponding to the
incomplete Arnoldi decomposition described in Section 8.4.2. This is the subject of
Section 8.6.

8.6 Application of HD to the Arnoldi method

8.6.1 Three successive Hessenberg matrices constructed by
the Arnoldi decomposition

In this section, we look at the convergence of Arnoldi algorithm from the point of
view of Homotopic Deviation theory for the matrix of order k +1 ( 3 ≤ k +1 ≤ n ),

B =

[
H u
0 a

]

where H is assumed to be an irreducible Hessenberg matrix. In this case,

(B − zIk+1)
−1 =

[
(H − zIk)

−1 wz

0 (a− z)−1

]

with

wz = − 1

a− z
(H − zIk)

−1u ∈ Ck.

We assume that a 6∈ σ(H) , that is B is nonderogatory. The matrix

Hk+1 = H+ =

[
Hk u

0 hk+1 k a

]
for Hk = H is the computed Hessenberg form of

order k+1 . The homotopy parameter is h = hk+1 k , and the deviation matrix
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is E = ek+1e
T
k : B(h) = B + hE = Hk+1 . E is nilpotent ( E2 = 0 ) with rank

r = 1 , and σ(E) = {(01)k−1, (02)} . This means that 0 ∈ σ(E) is defective and
using the notation of chapter 3 , we have q = 2 , nq = 2 with rq = 1 where the
multiplicities, m , g , and g

′
of 0 ∈ σ(E) satisfy g

′
= k − 1 < g = k < m = k + 1 .

Therefore g
′ ≥ 1 for k ≥ 2 and (G) = (Li).

For k fixed, 1 < k < n , we set H− = Hk−1 , H = Hk , H+ = Hk+1 : these are
the three successive Hessenberg matrices constructed by the Arnoldi decomposition,
of order k−1 , k and k+1 respectively. We define h− = hk k−1 and u = (ũH , uk)

H

where ũ ∈ Ck−1 consists of the first k− 1 entries of the vector u and uk = eT
k u is

the k th entry of u .

Since Hk = H is irreducible, therefore σ(H−) ∩ σ(H) = ∅ and hk k−1 6= 0 in
particular. Therefore σ(B) = σ(H) ∪ {a} . The eigenspace K

′
is K

′
=

lin(e1, . . . , ek−1) , and P
′

is the orthogonal projection on K
′
. Thus

Π
′
= Hk−1 = H− , and

Ω = H− − hk k−1

uk

ũeT
k−1 = H− − LΓ−1R, (8.6.1)

of order k−1 is defined for uk 6= 0 where L = ũ , Γ = (uk) and R = [0 . . . 0 h−] .
The matrix Mz reduces to the scalar µz = −eT

k (B − zIk+1)
−1ek+1 , for z 6∈ σ(B) .

8.6.2 The sets of interest for (B, E)

The section of B of order (k+1)−2 = k−1 is given by the irreducible Hessenberg
matrix H− . By assumption h− = hkk−1 6= 0 then σ(H−)∩σ(H) = ∅ . Furthermore
we assume that σ(B)∩ σ(H−) = ∅ , that is a 6∈ σ(H−) . The four sets of paragraph
8.5.2 become respectively:

1. σ(B) = σ(H) ∪ {a} , the spectrum of B ,

2. σ∞ = σ∞(B, E) = {∞, Lim} ,

3. C(B, E) , the set of critical points,

4. σ− = σ(H−) .

We write σ+ = σ(H+) for the spectrum of H+ = B + hE , for any h 6=
0, h ∈ C . We set βz = (B − zIk+1)

−1ek+1 which represents the last column of
(B − zIk+1)

−1 . µz = −eH
k βz represents the only possibly non zero eigenvalue of

Fz = −ek+1e
H
k (B − zIk+1)

−1 . Finally, because r = 1 , C(B, E) = F (B,E) in
re(B) .

Proposition 8.6.1 [17] If z ∈ σ(H+) = σ+ , the vector βz is an eigendirection for
H+ associated with the eigenvalue z , normalised such that −heH

k βz = hµz = 1 .
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We know from the general theory that z ∈ re(B) is an eigenvalue of H+ iff hµz = 1 .
Proposition 8.5.1 applies: if z ∈ Lim ∩ re(B) , then µz = 0 , that is z is critical:
it belongs to Lim∩re(B) = C(B, E) .

As a corollary of Proposition 8.5.2 for the generic case uk = hk,k+1 6= 0 , we get
the

Theorem 8.6.2 [17] If uk = eT
k Bek+1 6= 0 , exactly 2 eigenvalues λ(h) escape to

∞ . The k − 1 others converge to Lim = σ(Ω) , with

Ω = H− − h−

uk

ũeT
k−1,

such that

‖H− − Ω‖ = |h
−

uk

| ‖ũ‖.

We observe that for u 6= 0 , ‖ũ‖
|uk| = tanΨ , where is the acute angle between the

directions spanned by ũ and ek . The condition uk 6= 0 is equivalent to 0 ≤ Ψ <
π/2 , and ‖ũ‖ = 0 ⇐⇒ Ψ = 0 ⇐⇒ Ω = H− , since h− 6= 0 .

The computational significance of Theorem 8.6.2 should not be underestimated. It
shows that, from an algorithmic point of view, the spectral information about A
given by H− when |h| is large, can be as meaningful as the information given by
H+ for |h| small. The robustness of the Arnoldi decomposition to large deviations
stems from this powerful dual point of view.

Example 8.6.1 [17] This example illustrates the Homotopic Deviation H+ =
B(h) = B + hE of order k + 1 = 9 . The matrix H − I of order k = 8 is taken
to be Venice, the companion matrix defined in [27]. Its characteristic polynomial is
(x− 1)3(x− 3)4(x− 7) . Therefore the spectrum σ(H) = {2, 4, 8} has the structure
(23)(44)(81) .

Let E = e9e
T
8 , then B of order 9 is obtained by bordering H with a = 9 ,

u = (1, 2, 3, . . . , 7, 8)T . The spectrum of B is that of H plus 9 . The projection P
is on lin (e1, . . . , e7) , and

Π = PBP¹KerE = H− =




1 0

1
. . .
. . . . . .

0 1 1


 ,

a transposed Jordan block of order 7 .

For h ∈ C , the 9 maps h → λi(h) ∈ σ(H+) ( i = 1, . . . , 9 ) represent the spectral
rays for the spectral field associated with (B,E) . Figure 8.1 display the 9 spectral
rays (computed by QR) for θ = 0 , |t| = h ∈ [0, 7 × 106] ⊂ R+ . The eigenvalues
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of B corresponding to h = 0 are denoted by red � and the the elements of Lim =
σ(Ω) , when exist, are shown by � .

According to the Theorem 8.6.2, it is expected that exactly 2 spectral rays escape
to infinity (±∞ ) because u8 = 8 6= 0 . Indeed, this the case with two eigenvalues
diverging: the ray originating at 8 or 4 (resp. 9 ) escape to −∞ (resp. +∞ ).
The remaining 7 rays converge to Lim= σ(Ω) with Ω = H− − 1

8
ũeT

7 , for
ũ = [1, 2, . . . , 7]T .

−10 −5 0 5 10

−10

−5

0

5

10

Figure 8.1: 0 ≤ h ≤ 7× 106 , h ∈ R+ , and eT
8 u = 8 6= 0
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Figure 8.2: Zoom for 0 ≤ h ≤ 7× 106 , h ∈ R+ , and eT
8 u = 8 6= 0

4

8.6.3 The non generic case uk = 0

Let us consider

Π̃(z) =

[
uk 0 . . . 0 h−

ũ H− − zI

]
=

[
Γ R

L Π
′ − zIg

′

]
. (8.6.2)

Then using the formula (1.6.8), we have

q̃(z) = detΠ̃(z) = ukdet(H− − zIg
′ )− h−eT

k−1adj(zIg
′ −H−)ũ, (8.6.3)

which is a scalar polynomial in z of degree ≤ g
′
= k − 1 .

When uk = hk,k+1 = 0 , then Ω does not exist, but we can use the formula (8.6.2)
and the determinant q̃(z) in (8.6.3) as follows.

Proposition 8.6.3 We assume that q̃(z) defined in (8.6.3) is 6≡ 0 .

1. When hk,k+1 = uk = 0 and hk−1,k+1 6= 0 , exactly 3 eigenvalues of B(h) go
to ∞ as |t| → ∞ .

2. When hk,k+1 = uk = uk−1 = hk−1,k+1 = 0 and hk−2,k+1 6= 0 , exactly 4
eigenvalues of B(h) go to ∞ as |t| → ∞ .
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3. The same can be said when more and more successive values of hi,k+1 are zero
for i = k, . . . , 1 .

Proof. When uk = hk,k+1 = 0 , then an application of Laplace formula on the last
column of Π̃(z) , yields

q̃(z) = (−1)(k−1)+kuk−1pk−2(z) + (−1)(k−2)+kuk−2pk−3(z) + . . . (8.6.4)

+ · · ·+ (−1)2+ku2p1(z) + (−1)1+ku1p0(z).

where pj(z) is a polynomial in z of degree j for j = 0, . . . , k − 2 . Now, the
expansion (8.6.4) shows that

1. When hk,k+1 = uk = 0 and uk−1 = hk−1,k+1 6= 0 , then q̃(z) is a polynomial
in z of degree k − 2 , therefore exactly k − 2 eigenvalues of B(h) remain in
finite distance and 3 eigenvalues go to ∞ as |t| → ∞ .

2. When hk,k+1 = uk = uk−1 = hk−1,k+1 = 0 and hk−2,k+1 6= 0 , then q̃(z) is of
degree k−3 , thus exactly k−3 eigenvalues of B(h) remain in finite distance
and 4 eigenvalues go to ∞ as |t| → ∞ .

3. The same argument can be used when more and more successive values of
hi,k+1 are zero for i = k, . . . , 1 .

¤
Example 8.6.2 If we modify the last entry of the vector u in the example 8.6.1
to be u = (1, 2, 3, . . . , 6, 7, 0)T , then according to the proposition 8.6.3, we expect 3
escaping rays, because u8 = 0 . This is supported by the Figures 8.3 and 8.4.

−100 −50 0 50 100 150 200
−150

−100

−50

0

50

100

150

Figure 8.3: 0 ≤ h ≤ 7× 106 , h ∈ R+ , u8 = eT
8 u = 0 and u7 = eT

7 u = 7 6= 0

If we let h become extremely large until h = 10306 , we can still see 3 escaping rays.
See Figure 8.5.
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Figure 8.4: Zoom in [−2, 10]× [−6, 6] for 0 ≤ h ≤ 7×106 , h ∈ R+ , u8 = eT
8 u = 0

and u7 = eT
7 u = 7 6= 0
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Figure 8.5: 0 ≤ h ≤ 10306 , h ∈ R+ , u8 = eT
8 u = 0 and u7 = eT

7 u = 7 6= 0 with
the scale factor 10102

4

8.6.4 What happens when uk → 0 ?

Theory tell us that under the condition of the Theorem 8.6.2 where uk 6= 0 , exactly
two eigenvalues of H+ escape to ∞ as |h| → ∞ . Now, we are interested in the
case when uk = hk,k+1 is small and tends to 0 .

To this end, let us denote the k−1 remaining eigenvalues of H+ by {λ1, · · · , λk−1} .
Applying the Hadamard-Gershgorin’s theorem 1.3.2 to the matrix
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Ω = H− − h−

uk

eT
k−1 =




h11 h12 . . . . . . h1,k−2 (h1,k−1 − h−
uk

u1)

h21 h22 . . . . . . h2,k−2 (h2,k−1 − h−
uk

u2)

0
. . .

...
...

...
. . . . . . . . .

...
...

...
. . . . . . . . .

...

0 . . . . . . . . . hk−1,k−2 (hk−1,k−1 − h−
uk

uk−1)




,

we get that for i = 1, · · · , k − 2 ,

λi ∈ D1 = Disk[hi,i, (Σk−2
j=i−1|hi,j|) + |hi,k−1 − hk,k−1

hk,k+1

hi,k+1| ], (8.6.5)

and also for i = k − 1

λk−1 ∈ D2 = Disk[(hk−1,k−1 − hk,k−1

hk,k+1

hk−1,k+1), |hk−1,k−2|], (8.6.6)

where Disk[ce, ra] = {z ∈ C; |z − ce| ≤ ra} . For a fixed value of the radius
|hk−1,k−2| , the inclusion (8.6.6) shows how the position of λk−1 depends on (or is
sensitive to) the values of hk−1,k−1 , hk,k−1, hk−1,k+1 and especially to uk = hk,k+1 .

Example 8.6.3 Let us set u = (1, 2, . . . , 6, 7, uk)
T for uk = 10−5 in the example

8.6.1. In this case there still exist 2 escaping eigenvalues and 7 eigenvalues which
stay at finite distance as h → ∞ , but the magnitude of one of the finite limit
become very large. As we can see on the Figure 8.6 for uk = 10−5 , we must take
h ∈ [0, 7× 1019] to see that there are exactly 2 escaping rays. (hM ∼ 1020 ).

This is still true for smaller values such as uk = 10−15, uk = 10−20, . . . , uk =
10−30 : in each case the magnitude of one of the finite limits becomes very large and
one has to increase the value of hM in h ∈ [0, hM ] to see the convergence take
place. The values of uk with the corresponding hM are listed in the Table 8.1.
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Figure 8.6: 0 ≤ h ≤ 7×1019 , h ∈ R+ , uk = eT
8 u = 10−5 with the scale factor

106

uk 10−5 10−15 10−20 10−30

hM 1020 1050 1064 1095

Table 8.1: Correspondence uk 7→ hM , for θ = 0

4

8.7 What have we learnt about Arnoldi?

We have not really progressed in understanding why inherently algorithmic methods
such as Krylov behave in practice like direct methods.

The fact that Krylov-type methods are practically finite algorithms is well illus-
trated by their robustness to large perturbations. Such a robustness is not exhibited
by truly asymptotic methods such as Newton-type methods [24, 25]. As one pro-
ceeds towards convergence, the admissible perturbations must be of decreasing norm
in Newton-type methods.
By scrutinizing Arnoldi in the light of HD, we have added credit to the marvelous
experimental properties of Krylov. But we are still far from being able to prove
anything meaningful.



Conclusions and perspective

This is the end of our tour of Homotopic Deviation theory. What have we learnt
about the linear coupling A(t) = A + tE ? The essential lesson is that most of
the relevant algebraic information is given by the r × r matrix Mz defined for
z ∈ re(A) . The information related to R(t, z) = (A(t) − zI)−1 is readily derived
from the augmented matrix

Â(z) =

[
zI − A −U

V H 0

]

where U and V in Cn×r are given by the SVD of the deviation matrix E = UV H ,
r = rank E , 1 ≤ r ≤ n .

The information related to Lim⊆ lim|t|→∞ σ(A(t)) is more difficult to get for r < n .
This indicates a tight spectral coupling between E and A when E is singular.
This coupling depends heavily on the Jordan structure of 0 ∈ σ(E) when 0 is
defective. Because in HD the parameter t belongs to the completed complex plane
Ĉ = C ∪ {∞} , one can see HD as the completion of the perturbation theory
for algebraic singularities which started with Puiseux in 1850 [48] and was later
developed in the 20th Century by Baumgärtel [11], Chatelin [32], Kato [42], Lidskii
[45], and Wilkinson [55], to mention a few names.

Specific homotopic notions such as frontier, critical and limit points add new
flavours to the original notion of singularities in Matrix Algebra. At such points,
various radically different behaviours take place. And we have uncovered the un-
expected property that these behaviours are extremely robust to finite precision.
Computer simulations reproduce faithfully the mathematical reality in a variation
range for |t| which is many orders of magnitude larger than what we have been
accustomed to in classical Numerical Analysis.

Even though we do not fully comprehend to-day the role of these ideas to draw
a complete picture of Computation, we understand enough to have confidence that
such a role will be essential in furthering our computational understanding of non-
linearities.





Personal contributions

I have presented the first complete account of Homotopic Deviation theory which
is available in written form. The main sources of information for my research have
been the various technical reports, theses and papers published by members of the
Qualitative Computing group established at Cerfacs since its origin, 20 years ago.
The fundamental results were scattered in various places and supports. When I
arrived at Cerfacs in August 2003, I was assigned two goals for my thesis:

1. Write a coherent survey of the theory already available, and advance it when-
ever possible.

2. Develop computer simulations to study the effect of finite precision on the
convergence to limit points.

These two tasks have been fulfilled in the following way (after a 3 months “stage”
to learn French):

1. Part I of the thesis manuscript is a self-contained exposition of the theory. It
incorporates the following three personal major contributions:

a. Work with the rational form 1
π(z)

Q(z) for Mz .

b. Suggest the formula

detQ(z) = (π(z))r−1q(z),

where q(z) is a polynomial of degree ≤ n− r .

c. Use the concept of frontier points to analyze the structure of the matrix
pencil family z 7→ (A − zI) + tE , where z is a complex parameter.
This leads to a novel algorithm to compute the eigenvalues of the pencil,
based on the SVD of E , which is extremely cost effective when E has
low rank.

2. The numerical software developments in Chapters 6 and 7 of Part II of the
manuscript are entirely personal. They are my own contribution to the de-
velopment of efficient visualization tools for HD. In particular, I worked with
extremely large or small magnitude for the parameter t , to explore the limits
of robustness for homotopic computation.
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