
THÈSETHÈSE

En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Institut National Polytechnique de Toulouse (INP Toulouse)

Présentée et soutenue le 17/10/2014 par :

Youssef DIOUANE

Globally convergent evolution strategies with application to an Earth
imaging problem in geophysics

JURY

Henri Calandra Total, USA President of jury

Serge Gratton INPT, France PhD advisor

Luis Nunes Vicente University of Coimbra, Portugal PhD co-advisor

Stefano Lucidi University of Rome, Italy Referee

Thomas Baeck Leiden University, Netherlands Referee

Xavier Vasseur CERFACS, France Member of jury

École doctorale et spécialité :

MITT : Domaine Mathématiques : Mathématiques appliquées

Unité de Recherche :

Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)

Directeurs de Thèse :

Serge GRATTON et Luis Nunes VICENTE

Rapporteurs :

Thomas BAECK et Stefano LUCIDI





Résumé

Au cours des dernières années, s’est développé un intérêt tout particulier pour l’optimisa-

tion sans dérivée. Ce domaine de recherche se divise en deux catégories: une déterministe

et l’autre stochastique. Bien qu’il s’agisse du même domaine, peu de liens ont déjà été

établis entre ces deux branches. Cette thèse a pour objectif de combler cette lacune, en

montrant comment les techniques issues de l’optimisation déterministe peuvent améliorer

la performance des stratégies évolutionnaires, qui font partie des meilleures méthodes

en optimisation stochastique.

Sous certaines hypothèses, les modifications réalisées assurent une forme de conver-

gence globale, c’est-à-dire une convergence vers un point stationnaire de premier ordre

indépendamment du point de départ choisi. On propose ensuite d’adapter notre algo-

rithme afin qu’il puisse traiter des problèmes avec des contraintes générales. On montrera

également comment améliorer les performances numériques des stratégies évolutionnaires

en incorporant un pas de recherche au début de chaque itération, dans laquelle on con-

struira alors un modèle quadratique utilisant les points où la fonction coût a déjà été

évaluée.

Grâce aux récents progrès techniques dans le domaine du calcul parallèle, et à la nature

parallélisable des stratégies évolutionnaires, on propose d’appliquer notre algorithme

pour résoudre un problème inverse d’imagerie sismique. Les résultats obtenus ont permis

d’améliorer la résolution de ce problème.

Mots-clés: Optimisation numérique, stratégies évolutionnaires, convergence globale,

décroissance suffisante, problèmes inverses, imagerie du sous-sol, inversion des formes

d’ondes acoustiques, calcul parallèle (HPC).





Abstract

In recent years, there has been significant and growing interest in Derivative-Free Opti-

mization (DFO). This field can be divided into two categories: deterministic and stochas-

tic. Despite addressing the same problem domain, only few interactions between the two

DFO categories were established in the existing literature. In this thesis, we attempt to

bridge this gap by showing how ideas from deterministic DFO can improve the efficiency

and the rigorousness of one of the most successful class of stochastic algorithms, known

as Evolution Strategies (ES’s).

We propose to equip a class of ES’s with known techniques from deterministic DFO.

The modified ES’s achieve rigorously a form of global convergence under reasonable as-

sumptions. By global convergence, we mean convergence to first-order stationary points

independently of the starting point. The modified ES’s are extended to handle general

constrained optimization problems. Furthermore, we show how to significantly improve

the numerical performance of ES’s by incorporating a search step at the beginning of

each iteration. In this step, we build a quadratic model using the points where the

objective function has been previously evaluated.

Motivated by the recent growth of high performance computing resources and the parallel

nature of ES’s, an application of our modified ES’s to Earth imaging geophysics problem

is proposed. The obtained results provide a great improvement to known solutions of

this problem.

Keywords: Numerical optimization, evolution strategies, global convergence, sufficient

decrease,inverse problems, Earth imaging, acoustic full-waveform inversion, high perfor-

mance computing (HPC).





Acknowledgements

It is a pleasure to thank the many people who made this thesis possible. First and

foremost I want to thank my supervisors Serge Gratton and Luis Nunes Vicente.

They have taught me, both consciously and unconsciously, how good research is done. I

appreciate their availability for the fruitful discussions which make my PhD experience

productive and stimulating. The joy and enthusiasm they have for their research was

contagious and motivational for me, even during tough times in the PhD pursuit. I am

also thankful for the excellent example they have provided as successful researchers.

I am equally grateful to Henri Calandra and Total E&P for the funding on my

PhD, without which this great experience would have not been possible, and for the

very challenging geophysical application that they provided, which justifies all the effort

behind my studies. I would like to express my sincere thanks to Xavier Vasseur for

his daily guidance and advices from which I learned so much, not only for my thesis

development but also for my future career. I would like also to thank the referees,

Thomas Baeck and Stefano Lucidi, for their careful and enlightening comments on

my research.

I am also grateful to all of the ALGO team members at CERFACS for being with me

during the past three years. Special thanks in particular to Selime Gürol for her help,

advices, and encouragement. Many thanks also to Rafael Lago for his help during the

early stage of my PhD. CERFACS administration would not be that efficient without

Brigitte Yzel and Michèle Campassens. Thanks to them for their permanent sup-

port in administrative procedures. They were always available to solve my problems

with patience and smile.

My special thanks to my best friend Elhoucine Bergou, thanks for all these 6 years

spent together. My PhD would not have been the same without you my brother. Very

special thanks to Zineb Ghormi for her never-ending support, trust, encouragement

and understanding. My thanks go to my family and friends: my brothers Simohamed

and Ayoub, my sister Mariam, my uncles Omar and Brahim, Hamza, Abdelhadi,

Azhar, Nabil, Bassam, Naama, M’Barek, Daoud, Hassan, ...

Lastly, and most importantly, I wish to thank my parents, Aicha Ouaziz andHissoune

Diouane. They bore me, raised me, supported me, taught me, and loved me. To them

I dedicate this thesis.





Contents

1 Introduction 1

2 Deterministic Derivative-Free Optimization 6

2.1 Model based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Trust-region framework . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Polynomial interpolation and regression models . . . . . . . . . . . 9

2.1.2.1 Polynomial bases . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2.2 Polynomial interpolation . . . . . . . . . . . . . . . . . . 10

2.1.2.3 Under-determined interpolation models . . . . . . . . . . 11

2.1.2.4 Regression models . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 An interpolation based trust-region approach . . . . . . . . . . . . 14

2.1.3.1 The trust-region subproblem . . . . . . . . . . . . . . . . 16

2.1.3.2 Global convergence . . . . . . . . . . . . . . . . . . . . . 17

2.2 Direct-search methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1.1 Positive spanning sets and positive bases . . . . . . . . . 18

2.2.1.2 Gradient estimates . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Direct-search methods . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2.1 Coordinate-search method . . . . . . . . . . . . . . . . . 22

2.2.2.2 Direct-search framework . . . . . . . . . . . . . . . . . . . 25

2.2.3 Global convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3.1 Global convergence for smooth functions . . . . . . . . . 27

2.2.3.2 Global convergence for non-smooth functions . . . . . . . 28

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Stochastic Derivative-Free Optimization & Evolution Strategies 30

3.1 Evolution strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Notation and algorithm . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Recombination mechanism . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Selection mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 Mutation mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4.1 The concept . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4.2 Example in real-valued search spaces . . . . . . . . . . . 36

vii



Contents viii

3.2 A class of evolution strategies . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Concept and algorithm . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Some existing convergence results . . . . . . . . . . . . . . . . . . . 40

3.2.3 CMA-ES a state of the art for ES . . . . . . . . . . . . . . . . . . 42

3.2.3.1 The parent update . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3.2 Covariance matrix update . . . . . . . . . . . . . . . . . . 44

3.2.3.3 Step size update . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Local meta-models and ES’s . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4.1 Locally weighted regression . . . . . . . . . . . . . . . . . 46

3.2.4.2 Approximate ranking procedure . . . . . . . . . . . . . . 47

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Globally Convergent Evolution Strategies 49

4.1 A class of evolution strategies provably global convergent . . . . . . . . . 50

4.1.1 Globally convergent evolution strategies . . . . . . . . . . . . . . . 50

4.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2.1 The step size behavior . . . . . . . . . . . . . . . . . . . . 52

4.1.2.2 Global convergence . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 Convergence assumptions . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Algorithmic choices . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Test strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.5 Global optimization tests . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Extension to Constraints 72

5.1 A globally convergent ES for general constraints . . . . . . . . . . . . . . 74

5.1.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.2 Step size behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.3 Global convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 A particularization for only unrelaxable constraints . . . . . . . . . . . . . 87

5.2.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.3 Implementation choices . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Unrelaxable constraints . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1.1 Solvers tested . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1.2 Algorithmic choices . . . . . . . . . . . . . . . . . . . . . 95

5.3.1.3 Test problems . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1.4 Comparison results . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Relaxable and unrelaxable constraints . . . . . . . . . . . . . . . . 98

5.3.2.1 Test problems . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2.2 Test strategy . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Contents ix

6 Incorporating Local Models in a Globally Convergent ES 105

6.1 Incorporating local models in a globally convergent ES . . . . . . . . . . . 106

6.1.1 The general strategy of the search step . . . . . . . . . . . . . . . . 106

6.1.2 Trust-region subproblem in the search step . . . . . . . . . . . . . 107

6.1.3 Geometry control in the search step . . . . . . . . . . . . . . . . . 107

6.1.4 Constraints treatment in the search step . . . . . . . . . . . . . . . 108

6.1.5 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.1 Test strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2 Numerical results for unconstrained optimization . . . . . . . . . . 110

6.2.2.1 Search step impact . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2.2 Comparison with other solvers . . . . . . . . . . . . . . . 112

6.2.3 Numerical results for constrained optimization . . . . . . . . . . . 114

6.2.3.1 Search step impact . . . . . . . . . . . . . . . . . . . . . . 115

6.2.3.2 Comparison with other solvers . . . . . . . . . . . . . . . 116

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Towards an Application in Seismic Imaging 119

7.1 Full-waveform inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 Forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.2 FWI as a least-squares local optimization . . . . . . . . . . . . . . 123

7.2 ES for building an initial velocity model for FWI . . . . . . . . . . . . . . 125

7.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.2 SEG/EAGE salt dome velocity model . . . . . . . . . . . . . . . . 126

7.2.3 Search space reduction . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.3.1 One-dimensional approximation procedure . . . . . . . . 128

7.2.3.2 Three-dimensional approximation procedure . . . . . . . 131

7.2.4 A parallel ES for acoustic full waveform inversion . . . . . . . . . . 133

7.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Conclusions & Perspectives 142

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A Data & Performance Profiles Results 146

B Test Results 150

Bibliography 161



List of Figures

2.1 A graphical representation of the maximal positive basis D1 (left) and
the minimal positive basis D2 (right) for R2. . . . . . . . . . . . . . . . . . 19

2.2 For a given positive spanning set and a vector w = −∇f(x) (green), there
must exist at least one descent direction d (red) (i.e. w⊤d > 0). . . . . . 20

2.3 A positive spanning set with a very small cosine measure. . . . . . . . . . 20

2.4 In R2, for a given positive spanning set the cosine measure is defined by
cos(θ) where θ (blue) is the largest angle between two adjacent vectors. . 21

2.5 Six iterations of the coordinate-search method with opportunistic polling
(following the order East/West/North/South). The initial point is x0 =
[−3.5,−3.5], the starting step size is α0 = 3. For successful iterations, the
step size is kept unchanged, otherwise it is reduced by a factor β = 1/2.
The ellipses show the level sets of the objective function f(x) = (x1 +
x2 − 2)2 + (x1 − x2)

2. The optimum is located at the point [1, 1]. . . . . . 24

3.1 A scalar density function for a normal distribution . . . . . . . . . . . . . 37

3.2 A 2-D situation where non-isotropic mutations, parallel to the y-axis,
enhance the performance. The ellipses show the level sets of the objective
function f(x) = (x1 + x2 − 2)2 + (x1 − x2)

2. . . . . . . . . . . . . . . . . . 38

3.3 A 2-D situation where it is more efficient to have correlated Gaussian
mutations. The ellipses show the level sets of the objective function
f(x) = (x1 + x2 − 2)2 + (x1 − x2)

2. . . . . . . . . . . . . . . . . . . . . . . 39

3.4 A 2-D illustration of an evolution strategy. Generation after generation
the sampling distribution and the step size are getting adapted to the
landscape of the objective function. The ellipses show the level sets of
the objective function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 A graphical representation of a 2-dimensional run of CMA-ES where x0 =
[−4,−4], the initial step size σCMA-ES

0 = 1, and the covariance matrix is
isotropic (i.e. C0 = I2). The population size is λ = 10, the new parent is
chosen using the µ = 5 best individuals. The ellipses show the level sets
of the objective function f(x) = (x1+x2−2)2+(x1−x2)

2. The optimum
is located at the point [1, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 A 2-D illustration of three possible globally convergent evolution strate-
gies. The ellipses show the level sets of the objective function. . . . . . . . 51

4.2 Data profiles computed for the set of smooth problems, considering the
two levels of accuracy, 10−3 and 10−7 (for the three modified versions). . . 63

4.3 Performance profiles computed for the set of smooth problems with a
logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4

(for the three modified versions). . . . . . . . . . . . . . . . . . . . . . . . 64

x



List of Figures xi

4.4 Data profiles computed for the set of smooth problems, considering the
two levels of accuracy, 10−3 and 10−7. . . . . . . . . . . . . . . . . . . . . 65

4.5 Data profiles computed for the set of nonstochastic noisy problems, con-
sidering the two levels of accuracy, 10−3 and 10−7. . . . . . . . . . . . . . 65

4.6 Data profiles computed for the set of piecewise smooth problems, consid-
ering the two levels of accuracy, 10−3 and 10−7. . . . . . . . . . . . . . . . 66

4.7 Data profiles computed for the set of stochastic noisy problems, consid-
ering the two levels of accuracy, 10−3 and 10−7. . . . . . . . . . . . . . . . 66

4.8 Performance profiles computed for the set of smooth problems with a
logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4. . 67

4.9 Performance profiles computed for the set of nonstochastic noisy problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and
10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Performance profiles computed for the set of piecewise smooth problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and
10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Performance profiles computed for the set of stochastic noisy problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and
10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.12 Results for the mean/mean version, CMA-ES, and MADS on a set of
multi-modal functions of dimension 10 (using λ = 20). . . . . . . . . . . . 69

4.13 Results for the mean/mean version, CMA-ES, and MADS on a set of
multi-modal functions of dimension 20 (using λ = 40). . . . . . . . . . . . 69

4.14 Results for the mean/mean version, CMA-ES, and MADS on a set of
multi-modal functions of dimension 10 (using λ = 100). . . . . . . . . . . 70

4.15 Results for the mean/mean version, CMA-ES, and MADS on a set of
multi-modal functions of dimension 20 (using λ = 200). . . . . . . . . . . 70

5.1 A 2-D illustration of the barrier approach to handle linearly constrained
problems using a positive generators of the polar cone of the ǫ-active
constraints. Figure (5.1(a)) outlines the detection of an ǫ-active mean
parent point, while Figures (5.1(b)) and (5.1(c)) show the restoration
process to conform the offspring distribution to the local geometry. The
ellipses show the level sets of the objective function. . . . . . . . . . . . . 91

5.2 An illustration of the projection approach to handle linearly constrained
problems. The figure (5.2(a)) outlines the projection of the unfeasible
sample points. Figures (5.2(b)) and (5.2(c)) show the adaptation of the
distribution of the offspring candidate solution to the constraints local
geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Performance profiles for 114 bound constrained problems (average objec-
tive function values for 10 runs). . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Performance profiles for 107 general linearly constrained problems (aver-
age objective function values for 10 runs). . . . . . . . . . . . . . . . . . . 97

5.5 Data profiles for 114 bound constrained problems (average objective func-
tion values for 10 runs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Data profiles for 107 general linearly constrained problems (average ob-
jective function values for 10 runs). . . . . . . . . . . . . . . . . . . . . . . 98



List of Figures xii

6.1 Data profiles computed for the set of smooth problems to assess the im-
pact of incorporating local models, considering the two levels of accuracy,
10−3 and 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Data profiles computed for the set of nonstochastic noisy problems to
assess the impact of incorporating local models, considering the two levels
of accuracy, 10−3 and 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Data profiles computed for the set of piecewise smooth problems to assess
the impact of incorporating local models, considering the two levels of
accuracy, 10−3 and 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Data profiles computed for the set of stochastic noisy problems to assess
the impact of incorporating local models, considering the two levels of
accuracy, 10−3 and 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Comparison with SID-PSM and BCDFO methods on the set of smooth
problems using data profiles, considering the two levels of accuracy, 10−3

and 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6 Comparison with SID-PSM and BCDFO methods on the set of non-
stochastic noisy problems using data profiles, considering the two levels
of accuracy, 10−3 and 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7 Comparison with SID-PSM and BCDFO methods on the set of piece-
wise smooth problems using data profiles, considering the two levels of
accuracy, 10−3 and 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.8 Comparison with SID-PSM and BCDFO methods on the set of stochastic
noisy problems using data profiles, considering the two levels of accuracy,
10−3 and 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.9 Data profiles computed for 114 bound constrained problems to assess
the impact of incorporating local models, considering the two levels of
accuracy, 10−3 and 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.10 Data profiles computed for 107 general linearly constrained problems to
assess the impact of incorporating local models, considering the two levels
of accuracy, 10−3 and 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.11 Data profiles for 114 bound constrained problems using an accuracy level
of 10−3 (average objective function values for 10 runs). . . . . . . . . . . . 117

6.12 Data profiles for 114 bound constrained problems using an accuracy level
of 10−7 (average objective function values for 10 runs). . . . . . . . . . . . 117

7.1 A graphical representation of acoustic waves propagation by a source are
reflected by a reflective layer (in white) and are detected by the geophones.119

7.2 A graphical representation of acoustic wave propagation over a two-dimensional
velocity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Academic 3D SEG/EAGE salt dome velocity model using Paraview [88].
The geophysical domain size is of 20 × 20 × 5 km3 in which the minimal
velocity is of 1500 m/s. The velocity model is representing a dome of
salt in the subsurface of Earth, which abruptly increases the velocity of
propagation of the compressional waves. . . . . . . . . . . . . . . . . . . . 127

7.4 The reduction procedure over a one-dimensional case. . . . . . . . . . . . 129

7.5 The duplication procedure over a one-dimensional case. . . . . . . . . . . 130

7.6 An illustration for index subdivisions. . . . . . . . . . . . . . . . . . . . . 130



List of Figures xiii

7.7 A one-dimensional magnification procedure using DCT transform. Com-
pared to the duplicated vector, the magnification using DCT transform
represents better the true velocity vector. . . . . . . . . . . . . . . . . . . 132

7.8 A 3D duplicated and magnified models of SEG/EAGE salt dome velocity
model. The velocity models are built using n = 8 × 8 × 5 = 320, the
original size of the true velocity model is of N = 225× 225× 70 = 3543750.133

7.9 A parallel evolution strategy for full waveform inversion. . . . . . . . . . . 136

7.10 The starting velocity model for the parallel evolution strategy. . . . . . . 137

7.11 Inversion results for the Salt dome velocity model using n = 320 param-
eters. The working frequency is of 1Hz. . . . . . . . . . . . . . . . . . . . 138

7.12 Objective function evaluation at the best population point for the first
278 iterations of the parallel evolution strategy. . . . . . . . . . . . . . . . 139

7.13 Graphical representation of the salt dome of three velocity models: the
true velocity salt dome (Figure 7.13(a)), the approximated one using
320 parameters (Figure 7.13(b)), and the inverted velocity model (Fig-
ure 7.13(c)). Only the points of the models which have velocity equal or
larger than 3500 m/s are shown (to delineate the structure of the dome
of salt). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.14 Comparison of the inversion results for the Salt dome velocity model using
n = 320 parameters for different range of frequencies (1Hz, 2Hz and 3Hz).140

A.1 Data profiles computed for the set of nonstochastic noisy problems, con-
sidering the two levels of accuracy, 10−3 and 10−7 (for the three modified
versions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2 Data profiles computed for the set of piecewise smooth problems, consid-
ering the two levels of accuracy, 10−3 and 10−7 (for the three modified
versions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.3 Data profiles computed for the set of stochastic noisy problems, consid-
ering the two levels of accuracy, 10−3 and 10−7 (for the three modified
versions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.4 Performance profiles computed for the set of nonstochastic noisy problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and
10−4 (for the three modified versions). . . . . . . . . . . . . . . . . . . . . 148

A.5 Performance profiles computed for the set of piecewise smooth problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and
10−4 (for the three modified versions). . . . . . . . . . . . . . . . . . . . . 148

A.6 Performance profiles computed for the set of stochastic noisy problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and
10−4 (for the three modified versions). . . . . . . . . . . . . . . . . . . . . 149



List of Algorithms

2.1 A DFO trust-region algorithm. . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Coordinate-search method. . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 A direct-search method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 A general framework for (µ/ρ +, λ)–ES. . . . . . . . . . . . . . . . . . . 33

3.2 A general framework for (µ/µW , λ)–ES. . . . . . . . . . . . . . . . . . 41

3.3 Approximate ranking procedure. . . . . . . . . . . . . . . . . . . . . . 48

4.1 A class of globally convergent ES’s. . . . . . . . . . . . . . . . . . . . 53

5.1 A globally convergent ES for general constraints (Main). . . . . . 77

5.2 A globally convergent ES for general constraints (Restoration). . 78

5.3 A globally convergent ES for unrelaxable constraints. . . . . . . . . 88

5.4 Calculating the positive generators Dk. . . . . . . . . . . . . . . . . . 92

6.1 A globally convergent ES using a search step. . . . . . . . . . . . . . 109

7.1 A multi-scale algorithm for frequency-domain FWI. . . . . . . . . . 125

7.2 An adaptation of the ES algorithm to FWI setting. . . . . . . . . . 135

xiv



List of Tables

4.1 The distribution of np in the test set. . . . . . . . . . . . . . . . . . . . . . 60

4.2 Noiseless problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Noisy problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Comparison results for the extreme barrier approach using a maximal
budget of 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Comparison results for the extreme barrier approach using a maximal
budget of 20000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Comparison results for the merit approach and the progressive barrier one
using a maximal budget of 2000 . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Comparison results for the merit approach and the progressive barrier one
using a maximal budget of 20000 . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 The distribution of the clusters and the population size depending on the
working frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.1 Results from comparison of the solvers on bound-constraind problems
(average of 10 runs for stochastic solvers)- Part 1 . . . . . . . . . . . . . . 151

B.2 Results from comparison of the solvers on bound-constraind problems
(average of 10 runs for stochastic solvers)- Part 2 . . . . . . . . . . . . . . 152

B.3 Results from comparison of the solvers on bound-constraind problems
(average of 10 runs for stochastic solvers)- Part 3 . . . . . . . . . . . . . . 153

B.4 Results from comparison of the solvers on bound-constraind problems
(average of 10 runs for stochastic solvers)- Part 4 . . . . . . . . . . . . . . 154

B.5 Results from comparison of the solvers on bound-constraind problems
(average of 10 runs for stochastic solvers) - Part 5 . . . . . . . . . . . . . . 155

B.6 Results from comparison of the solvers on linear-constraind problems (av-
erage of 10 runs for stochastic solvers)- Part 1 . . . . . . . . . . . . . . . . 156

B.7 Results from comparison of the solvers on linear-constraind problems (av-
erage of 10 runs for stochastic solvers)- Part 2 . . . . . . . . . . . . . . . . 157

B.8 Results from comparison of the solvers on linear-constraind problems (av-
erage of 10 runs for stochastic solvers)- Part 3 . . . . . . . . . . . . . . . . 158

B.9 Results from comparison of the solvers on linear-constraind problems (av-
erage of 10 runs for stochastic solvers)- Part 4 . . . . . . . . . . . . . . . . 159

B.10 Results from comparison of the solvers on linear-constraind problems (av-
erage of 10 runs for stochastic solvers) - Part 5 . . . . . . . . . . . . . . . 160

xv



To my parents

xvi



Chapter 1

Introduction

Nowadays, many practical optimization problems have become often noisy, complex,

and not sufficiently explicitly defined to give reliable derivatives. In this thesis, we are

interested in optimization problems where derivative information is unavailable or hard

to obtain in practice. For instance, optimizing large and complex systems often requires

the tuning of many parameters. These parameters are typically set to values that may

have some mathematical meaning or that have been found to perform well. The choice

of parameters can be done automatically using training data of simulations. In such

case, not only it is hard to find the derivatives with respect to the parameters, but also

numerical noise and probably non-differentiability issues may appear. As consequence,

we have seen a resurgence of interest in Derivative-Free Optimization (DFO) [52].

Derivative-based methods are more adapted to solve large scale optimization problems,

typically around 106 unknowns or more. These methods can be very efficient when the

starting point is accurate enough, but otherwise they suffer from stalled convergence

to spurious local minima for non-convex optimization problems. Thus the holy grail of

these problems is to warmstart the local optimization procedures by efficiently finding a

good initial guess without the need of sophisticated a priori knowledge on the objective

function (such as the problem structure, its background, ...). When the number of

unknowns included in the optimization can be reduced, it is possible to use a type of

DFO methods that are known for their ability to handle hard problems and to find

a good initial guess (a starting point leading to a better minimum). Once a starting

point is found, derivative-based methods can be applied to refine the problem solution.

In the scope of this thesis, we deal with a very large scale seismic imaging inversion

problem [167] where we show that some DFO methods can improve the optimization

procedure by finding an accurate initial guess from which one can initiate derivative-

based methods [126], without any physical knowledge.

1



Chapter 1. Introduction 2

DFO methods do not use derivatives information of the objective function or constraints,

nor an approximation to the derivatives. Actually, derivatives approximation is often

very expensive and can produce misleading results due to the presence of noise. DFO

area can be divided into two categories, depending on the methods used to explore the

search space. The first category is deterministic DFO algorithms such as model-based

methods [49, 130] or direct-search methods [52, 108]. The major drawback of these

methods is that they can get easily stuck in a local optimum. The second category

is stochastic derivative-free optimization [122, 158], which has been employed to miti-

gate the defect of the local deterministic methods in the solution of difficult objective

functions (e.g. non-smooth and multi-modal). Stochastic derivative-free optimization

algorithms aim to be robust when dealing with multi-modal objective functions. Some

of these methods are generally inspired by nature, in the same way that random pro-

cesses are often associated with natural systems (e.g. mutations of genetic information,

annealing process of metal, molecular dynamics, or swarm behaviors of birds). Well-

known representatives of stochastic methods are simulated annealing [107], particle

swarm optimization [103] and evolutionary algorithms [26, 32, 91, 92, 142, 150].

Over the past, stochastic DFO was regarded by the deterministic DFO community as

another discipline, and only few interactions between the two DFO categories were

established. Meanwhile, stochastic optimization algorithms have been growing rapidly

in popularity thanks to some methods that became “industry standard” approaches

for solving challenging optimization problems. Such growth led the deterministic DFO

community to reconsider their position and it has started recently to include stochastic

frameworks in their research topics [27, 73, 115, 129].

Evolution strategies (ES’s) are one of these successful stochastic algorithms, seen as a

class of evolutionary algorithms that are naturally parallelizable, appropriate for con-

tinuous optimization, and that lead to interesting results [23, 37, 145]. Motivated by

the industrial demand, we propose in this thesis to equip a class of ES’s with known

techniques from the deterministic DFO community based on the step size control. The

incorporated techniques are inspired by the recent development in direct search meth-

ods [18, 52, 53, 74, 166]. Our modifications enhance the performance of the original

algorithm particularly for expensive objective function evaluation. The proposed ES’s

achieve rigorously a form of global convergence under reasonable assumptions. By global

convergence, we mean the ability of the algorithm to generate a sequence of points con-

verging to a stationary point regardless the starting point.



Chapter 1. Introduction 3

The problem under consideration, in this thesis, is of the form

min f(x)

s.t. x ∈ Ω,
(1.1)

where f is a real-value objective function assumed to be bounded by bellow. The fea-

sible region Ω ⊂ R
n of this problem can be defined by relaxable and/or non-relaxable

constraints. Relaxable constraints need only to be satisfied approximately or asymptot-

ically. No violation is allowed when the constraints are non-relaxable (typically, they

are bounds or linear constraints).

In Chapter 2, we give a short overview of existing deterministic derivative-free optimiza-

tion methods and their classification. We present the general framework of model-based

methods inside their derivative free context. We emphasize multivariate polynomial

interpolation techniques used to build different types of local polynomial interpolation

and regression models. We also address (directional) direct-search methods where the

sampling is guided by a set of directions with specific features. Key concepts particu-

larly related to the sampling set are also outlined (i.e. positive spanning set, a descent

direction and the cosine measure). We end up the chapter by reviewing some of the

existing global convergence results regarding the presented direct-search methods.

As our main motivation is to equip a class of ES’s with some direct search techniques,

Chapter 3 gives an overview of stochastic derivative-free optimization algorithms and

in particular ES’s, their appearance and history, their basic ideas and principles. We

present also some theoretical aspects of ES’s,in particular, the main existing global

convergence properties of ES algorithms. The chapter closes with a detailed description

of CMA-ES [85, 86] regarded as state of the art in stochastic derivative-free optimization.

In Chapter 4, we introduce our first contribution where we show how to modify a large

class of ES’s for unconstrained optimization in order to rigorously achieve global conver-

gence. The type of ES’s under consideration recombines the parent points by means of

a weighted sum, around which the offspring points are computed by random generation.

The modifications consist essentially in the reduction of the size of the steps whenever

a sufficient decrease condition on the function values is not verified. When the latter

condition is fulfilled, the step size can be reset to the one maintained by the ES’s them-

selves, as long as it is sufficiently large. We propose ways of imposing sufficient decrease

for which global convergence holds under reasonable assumptions (e.g. density of cer-

tain limit directions in the unit sphere). Given a limited budget of function evaluations,

our numerical experiments have shown that the modified CMA-ES is capable of further

progress in function values. Moreover, we have observed that such an improvement



Chapter 1. Introduction 4

in efficiency comes without significantly weakening the performance of the underlying

method in the presence of several local minimizers.

The modified ES is extended to handle general constrained optimization in Chapter 5.

Our methodology is built upon the globally convergent evolution strategies previously

introduced for unconstrained optimization. Two feasible approaches are encompassed

to handle the non-relaxable constraints. In the first approach, the objective function is

evaluated directly at the generated sampled points. The feasibility is enforced through an

extreme barrier function. The second approach projects the generated sampled points

onto the feasible domain before evaluating the objective function. The treatment of

relaxable constraints is inspired by the merit function approach [74], where one tries to

combine both the objective function and the constraints violation function. In the first

numerical experiments, where we consider only unrelaxable constraints, we show that our

proposed ES approaches (using the extreme barrier or projection) is competitive with the

state of the art solvers for derivative-free bound and linearly constrained optimization. In

the second part of our numerical experiments, we test our algorithms based on the merit

function approach under the presence of both relaxable and unrelaxable constraints. On

the chosen test problems, the merit approach shows promising results compared to the

progressive barrier one [19], in particular, for relatively small feasible regions.

The modified ES, proposed in Chapters 4 and 5, evaluates the objective function at a

significantly large number of points at each iteration. These evaluations can be used

in different ways to speed up the convergence and make ES algorithms more efficient

especially for small budgets. The possibility that we explore in Chapter 6 is to use the

previously evaluated points to construct surrogate quadratic models for the objective

function f . The surrogate models are computed using techniques inspired from model-

based methods for deterministic DFO. Our hybrid algorithm has been designed to satisfy

the convergence analysis of our globally convergent ES. As expected, our experiments

show that incorporating local models improves the performance of our ES in both un-

constrained and constrained optimization problems. Regression models are found to be

the most efficient quadratic ones within our ES algorithms.

Our target application is the solution of an Earth imaging problem in geophysics. In

Chapter 7, without any physical knowledge, we use our globally convergent ES’s to find

a starting point for an optimization procedure that attempts to drive high-resolution

quantitative models of the subsurface using the full information of acoustic waves, known

as acoustic full-waveform inversion [167]. The chapter starts with a detailed description

of the considered problem. We outline also one possible way to adapt our ES to the

acoustic full-waveform inversion problem setting. A subspace approach is used for the

parametrization of the problem. Motivated by the recent growth of high performance



Chapter 1. Introduction 5

computing resources, we propose a highly parallel implementation of our ES adapted to

the requirements of the problem. The initial results, obtained in this direction, show that

great improvement can be expected in the automation of the full-waveform inversion.

Finally, we draw some conclusions and outline perspectives in Chapter 8.



Chapter 2

Deterministic Derivative-Free

Optimization

Deterministic derivative-free optimization (DFO) methods either try to build models of

the objective function based on sample function values, i.e. model-based methods [49,

52], or directly exploit a sample set of function evaluations without building an explicit

model, i.e. direct-search methods [52, 108]. Motivated by the large number of DFO

applications, researchers and practitioners made a significant progress on algorithmic

and theoretical aspects of the DFO methods over the past two decades. The most

important progress concerns the recent algorithms and proofs of global convergence [17,

49, 52, 108, 149, 166]. By global convergence, we mean the ability of a method to

generate a sequence of points converging to a stationary point regardless the starting

point. A point is said to be stationary if it satisfies the first order necessary conditions,

in the sense that the gradient is equal to zero if the objective function is differentiable or,

in the non-smooth case, non-negativity following all directional derivatives of the Clarke

generalized derivatives [43]. The book by Conn, Scheinberg and Vicente [52] gives a good

review of the state of the art of deterministic DFO with a detailed description of the

theoretical background to ensure convergence. The main classes of globally convergent

algorithms for derivative-free optimization are:

1. Trust-region methods [49, 52, 130], where one minimizes accurate models in-

side a region of prespecified size. The models are for example built either using

interpolation and regression techniques [50] or radial-basis functions [168].

2. Directional direct-search methods [52, 108], where sampling is guided by sets

of directions with appropriate properties, i.e. sets of directions generating Rn

with non-negative coefficients. Popular algorithms under this class are coordinate

6



Chapter 2. Deterministic Derivative-Free Optimization 7

search, pattern search, generalized patern search (GPS) [17], generating set search

(GSS) [108], and mesh adaptive direct-search (MADS) [18]. We will often refer to

this class of methods simply as direct-search methods.

3. Simplicial direct-search methods [52, 128], where optimization is ensured

through simplex operations like reflection, expansion, or contraction. A popular

example is the Nelder-Mead method [128], which is regarded as the most popular

derivative-free method.

4. Line-search methods [52, 102], where one tries to optimize the objective function

using a simplex gradient. The latter is typically chosen as a gradient of linear

interpolation or regression polynomial model. A popular example is the implicit-

filtering method of Kelley et al [102].

Only trust-region methods and direct-search methods are going to be explored further

in this thesis. The remainder of this chapter is organized as follows: we begin by a short

overview about model-based methods, where we present the general framework of trust-

region methods including their relationship with regression and quadratic models. The

second section is devoted to direct-search methods where we present a class of globally

convergent directional direct-search methods. The convergence results on this chapter

are announced without proofs. For the proofs we refer the reader to [17, 49, 52, 108, 166]

and the references given there.

2.1 Model based methods

Model based methods can be seen as a combination of the trust-region framework with

interpolation models of the objective function. Basically in these methods, we construct

a local model of the objective function and estimate the new step by minimizing the

model inside a region. The model is constructed using points evaluated on a specific

point subset. Such point subset must verify some appropriate features so that the models

can be well-defined. In this section, we briefly describe the essence of this approach. For

more detailed analysis, the reader is referred to [49, 51, 52, 130].

2.1.1 Trust-region framework

The trust-region framework is usually used when derivative information of the objective

function is available or at least some estimates to the derivatives can be computed



Chapter 2. Deterministic Derivative-Free Optimization 8

accurately. A typical trust-region method is as follows: at the k-th iteration, given the

current iterate xk, a model of the form

mk(xk + s) = f(xk) + g⊤k s+
1

2
s⊤ Hk s (2.1)

(where gk and Hk correspond to estimates of the gradient and the Hessian, respectively)

is minimized in a neighborhood around the current iterate defined by the ball (or the

trust-region)

B(xk,∆k) = {x ∈ Rn|‖x− xk‖ ≤ ∆k}. (2.2)

centered on xk and with the radius ∆k; the norm ‖.‖ could be an iteration depen-

dent norm, but is usually fixed. Different norm choices can be used depending on the

minimization problem, for instance in the unconstrained case, the standard Euclidean

norm is more adapted [49, 52]. The infinity norm was shown to be more suited when

considering bound constraints [49, 72].

The minimization of the model inside the trust-region leads to a new trial point xk +

sk. To determine if the computed point is successful or not, we evaluate the objective

function at the new point xk + sk and compare the true reduction in the value of the

objective function with the predicted reduction by the model. If the ratio

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
(2.3)

is larger than a constant ν1 > 0, the step is then accepted, so the model is updated. The

trust-region radius is possibly increased if the success is really significant. When the

step is unsuccessful (meaning ρk ≤ ν1), the trial point is rejected and the trust-region

radius ∆k is reduced.

The approximation model (2.1) is generally constructed using second-order Taylor series

expansion. However, in the derivative-free context, one uses alternative approximation

techniques that are not based upon the derivatives of the objective function f . Quadratic

interpolation is one of these techniques that can be combined with the trust-region

algorithms. For guaranteeing convergence, one needs to impose on the approximation

model to be locally accurate enough. The interpolation set as well as the mechanism

of maintaining it good enough inside the trust-region are described in the next section.

The upcoming results are general interpolation and regression results that have been

proven useful while dealing model-based optimization. The subscript k is dropped in

the following description for clarity reasons; without loss of information since we make

a focus on a given iteration of the trust-region algorithm.



Chapter 2. Deterministic Derivative-Free Optimization 9

2.1.2 Polynomial interpolation and regression models

In this section, we consider the problem of interpolating known objective function values

at a given set Y of interpolation points, Y = {y1, y2, . . . , yp} ⊂ R
n. We aim to find a

model m for which the interpolation condition

m(yj) = f(yj) j = 1, . . . , p (2.4)

holds. We say that a set of points can be interpolated by a polynomial of a certain

degree, if for the function f there exists a polynomial m such that (2.4) holds for all the

points in the interpolation set Y .

2.1.2.1 Polynomial bases

Let Pd
n be the space of polynomials of degree ≤ d in Rn, and q the dimension of this

space. Let {φi}
q
i=1

be a given basis of Pd
n, which is a set of q polynomials of degree ≤ d.

Thus, any polynomial m ∈ Pd
n can be written uniquely as

m(x) =

q
∑

j=1

αjφj(x), (2.5)

where αφ = (α1, . . . , αq)
⊤ ∈ Rq. Different polynomial bases φ can be considered, the

simplest and the most used polynomial basis is the basis of monomials, known as the

natural basis φ̄. Such basis is defined using multi-indices in the following way [52]:

Let a vector αi = (αi
1
, . . . , αi

n) ∈ N
n be called a multi-index, and, for any x ∈ Rn, we

define xα
i

as

xα
i

=
n
∏

j=1

x
αi

j

j .

Let also

|αi| =
n
∑

j=1

αi
j and αi! =

n
∏

j=1

(αi
j !).

Then the elements of the natural basis are

φ̄i(x) =
1

(αi)!
xα

i

, i = 0, . . . , q, |αi| ≤ d.



Chapter 2. Deterministic Derivative-Free Optimization 10

The natural basis can then be written as follows:

φ̄ =

{

1, x1, x2, . . . , xn,
1

2
x21, x1x2, . . . ,

1

(d− 1)!
xd−1n−1xn,

1

d!
xdn

}

. (2.6)

Consequently, for uni-variate interpolation (i.e. d = 1) we have q = n + 1, and that

q = (n+1)(n+2)
2 for a full quadratic interpolation (i.e, d = 2).

2.1.2.2 Polynomial interpolation

Using (2.5) and (2.4), the coefficients αφ = (α1, . . . , αq)
⊤ can be found by solving the

following equation:

q
∑

j=1

αjφj(y
i) = f(yi) i = 1, . . . , p,

which can be written as a linear system of the form:

M(φ, Y )αφ = f(Y ), (2.7)

where the coefficient matrix M(φ, Y ) and right hand side f(Y ) of this system are















φ1(y
1) φ2(y

1) · · · φq(y
1)

φ1(y
2) φ2(y

2) · · · φq(y
2)

...
...

. . .
...

φ1(y
p) φ2(y

p) · · · φq(y
p)















and















f(y1)

f(y2)
...

f(yp)















, respectively.

If the coefficient matrix M(φ, Y ) is square and nonsingular, then the set of points Y is

poised with respect to the subspace spanned by φ. This means that Y can be interpolated

by a unique polynomial from this subspace. When the interpolation set remains poised

for small perturbations, the set is called well-poised. If the set Y is poised, then one

can solve the linear system and find an interpolation polynomial. However, numerically

the coefficient matrix M(φ, Y ) may be ill-conditioned depending on the basis choice

{φi}
q
i=1. Thus, in general, the condition number of the matrixM(φ, Y ) is a bad measure

of poisedness of Y . However, if one chooses the interpolation basis φ as the natural basis

of monomials φ̄ and Ŷ as a shifted and scaled version of Y such as Ŷ ⊂ B(0; 1), the

condition number ofM(φ̄, Ŷ ) can be used to monitor the poisedness of the points set [52,

Theorem 3.14].

To incorporate models in the trust-region framework, one has to adapt the model con-

struction to different degrees of freedom (which depend on both the cardinality of the

interpolation set and the variable size). For instance, during the first iterations one has



Chapter 2. Deterministic Derivative-Free Optimization 11

only few points and so can not always construct an interpolation model. When p = n+1

points are available, we can build a linear model which is known to be sufficient to make

some progress. As far as the number of function evaluations p exceeds n + 1 but not

more than 1
2(n+ 1)(n+ 2), the coefficient matrix M(φ, Y ) contains more columns than

rows, and thus the interpolation polynomials defined by (2.4) are no longer unique for

quadratic interpolation. To overcome this problem, one uses under-determined mod-

els which have been widely used in many practical DFO implementations (see Section

2.1.2.3). Complete quadratic model can be built once the number of function evaluations

is equal to 1
2(n + 1)(n + 2), such models being expected to lead to faster progress. As

far as the number of function evaluations p exceeds 1
2(n + 1)(n + 2), regression models

can be used (see Section 2.1.2.4). Regression models have been shown to be often better

than if we just select the ’best’ subset of 1
2(n+1)(n+2) points and use the chosen subset

to build complete quadratic models [50].

2.1.2.3 Under-determined interpolation models

The interpolation polynomials defined by (2.4) are not unique in this case; different

approaches can be used [50, 52]:

Sub-basis models: A simple way to impose the uniqueness of the interpolation poly-

nomials can be ensured by restricting the linear system (2.7) to have a unique solution

(by removing q − p columns of M(φ, Y ), their corresponding elements of the solution

αφ are set to zero). This approach is in general not very successful, except if we have a

priori knowledge on the sparsity structure of the gradient and the Hessian of the objec-

tive function. Such information can be exploited by deleting the corresponding columns

in the linear system (2.7). Choosing p columns in M(φ, Y ) corresponds to removing

polynomials from the basis φ to obtain a new one φ̃. As a consequence, the points set

Y has to be well poised with respect to the sub-space generated by φ̃.

Minimum norm models: The second approach to get a unique polynomial solution

for the under-determined system (2.7) is to compute the minimum using l2-norm of the

solution αφ. In this case, the problem to solve is defined as follows :

min
1

2
‖αφ‖

2
2

s.t. M(φ, Y )αφ = f(Y )

. (2.8)



Chapter 2. Deterministic Derivative-Free Optimization 12

Assuming that the coefficient matrix M(φ, Y ) has full row rank, the solution of the

problem (2.8) is given by

αφ = M(φ, Y )†f(Y ), (2.9)

where M(φ, Y )† denotes the Moore-Penrose pseudo-inverse of M(φ, Y ). The latter one

can be computed using a QR factorization or a singular value decomposition of the

coefficient matrix. The polynomial solution found in (2.9) depends on the choice of the

basis φ. In practice, it has been observed that it is worthy to consider the minimum

l2-norm when one is working with the natural polynomial basis φ̄ [52, Section 5.1].

Minimum Frobenius norm models: The error bounds on both the objective func-

tion and its gradient, for under-determined interpolation models, depend on the norm of

the Hessian of the model [52, Theorem 5.4]. Therefore, the motivation of this approach

is to build models with a minimum value of the norm of the model Hessian. In the

quadratic interpolation case, such minimization is equivalent to minimizing the coeffi-

cients αφ related to the quadratic monomials. By splitting the natural basis φ̄ into two

parts: a linear φ̄L = {1, x1, x2, . . . , xn} and a quadratic φ̄Q = {1
2
x2
1
, x1x2, . . . ,

1

2
x2n}, the

interpolation model can be written as follows:

m(x) = α⊤L φ̄L + α⊤Qφ̄Q,

where αL and αQ are the solution of the following optimization problem

min
1

2
‖αQ‖

2
2

s.t. M(φ̄L, Y )αL +M(φ̄Q, Y )αQ = f(Y )

. (2.10)

The corresponding solution αφ̄ = [αL, αQ] is called minimum Frobenius norm solution.

In fact, due to the choice of the natural basis, solving the problem (2.10) is equivalent

to minimizing the Frobenius norm1 of the Hessian of m(x). The solution of (2.10) exists

and is uniquely defined if the following matrix is nonsingular:

F (φ̄, Y ) =

(

M(φ̄Q, Y )M(φ̄Q, Y )⊤ M(φ̄L, Y )

M(φ̄L, Y )⊤ 0

)

.

The matrix F (φ̄, Y ) is nonsingular if and only if the coefficient matrixM(φ̄L, Y ) has full

column rank andM(φ̄Q, Y )M(φ̄Q, Y )⊤ is positive definite in the null space ofM(φ̄L, Y )

(the last condition can be ensured if the matrix M(φ̄L, Y ) has full row rank). In this

1The Frobenius matrix norm ‖.‖F is defined for a square matrix A by the

s

X

1≤i,j≤n

a
2

ij .



Chapter 2. Deterministic Derivative-Free Optimization 13

case, the sample set Y is called poised in the minimum Frobenius norm sense. The

coefficients αL and αQ are computed by solving first

F (φ̄, Y )

(

µ

αL

)

=

(

f(Y )

0

)

to find αL and µ the Lagrange multiplier of the problem (2.10), then by computing

αQ = M(φ̄L, Y )⊤µ we complete the model construction.

A variant of the Frobenius norm model is the least Frobenius norm updating of quadratic

models [137]. Instead of minimizing the Frobenius norm of the model Hessian, one tries

to optimize its change from the current iteration to the previously computed Hessian.

The new optimization problem can be formulated as follows:

min
1

2
‖αQ − αoldQ ‖22

s.t. M(φ̄L, Y )αL +M(φ̄Q, Y )αQ = f(Y )

. (2.11)

This optimization problem is solved through a shifted problem on αdif = αQ − αoldQ of

the type given in (2.10).

Minimum Frobenius norm models and its variant have shown to be the most efficient and

successful to build quadratic models and are implemented in many software implementa-

tions [52, 138]. The minimization of the change in the Hessian of the model from one iter-

ation to the next works very well in some cases, in particular, when p = 2n+1 [137, 138].

Sparse quadratic interpolation: When the structure of the Hessian is sparse, it is

possible by using the l1 norm to recover the sparsity of the constructed model in the

under-determined case [28]. In fact, instead of solving (2.10) we construct the following

optimization problem

min ‖αQ‖1

s.t. M(φ̄L, Y )αL +M(φ̄Q, Y )αQ = f(Y )
. (2.12)

where αQ, αL, φ̄L, and φ̄Q are defined as in (2.10). Solving (2.12) is doable, since it us a

linear program (LP). The sparse quadratic approach is shown to be more advantageous

when the Hessian of f has zero entries [28].



Chapter 2. Deterministic Derivative-Free Optimization 14

2.1.2.4 Regression models

This section is devoted to the case where the number of the points p is more than q,

meaning that in the quadratic interpolation case, p exceeds 1
2(n + 1)(n + 2). Under

such consideration, the linear system (2.7) is overdetermined and has in general no

solution. The regression models key idea is to find the best solution that minimizes the

gap between the M(φ, Y )αφ and f(Y ). In other words, the coefficients αφ will be the

solution of the following linear least-squares problem :

min
αφ

‖M(φ, Y )αφ − f(Y )‖22. (2.13)

When the coefficient matrix has full column rank, the minimization problem (2.13) above

has a unique solution given by solving the normal equations

M(φ, Y )⊤M(φ, Y )αφ = M(φ, Y )⊤f(Y ).

To solve this linear system, singular value decomposition or QR factorization of the co-

efficient matrix can be used. Regression models are very recommended to use, especially

when the objective function is noisy [50, 52].

2.1.3 An interpolation based trust-region approach

Different interpolation-based trust-region methods are available in the literature. The

existing methods can be divided into two categories, the first one being the methods that

work well for practical problems but are not supported by a convergence theory. The

second category includes the methods for which global convergence was shown, but that

are practically less competitive than the first category. The algorithm framework which

will be described in this section requires the usage of fully linear models, meaning models

with accuracy properties similar to those of first-order expansion Taylor model. A rig-

orous definition of a fully linear model can be found in [51, Definition 3.1] (see also [52,

Definition 10.3]). Algorithm 2.1 a derivative-free interpolation based trust-region algo-

rithm for which global convergence to first-order stationary points is proved [51, 52].

The algorithm as presented is simple, we check if the norm of the model gradient is

too small. If it is, we start the criticality step with the purpose of verifying if the

gradient of the objective function f is also small. At each iteration, many situations

can occur: an iteration is successful whenever ρk ≥ ν1; the trial point is then accepted

and the trust-region radius is increased by a factor γinc > 1 or kept the same. When



Chapter 2. Deterministic Derivative-Free Optimization 15

Algorithm 2.1: A DFO trust-region algorithm.

Initialization: Let an initial point x0 and the value f(x0) be given. Choose an initial
trust-region radius ∆0 > 0. Select an initial model m0. Set k = 0 and the
parameters ǫg > 0; 0 < γ < 1 < γinc, 0 < ν0 ≤ ν1 < 1, µ > β > 0.

1. Criticality step : Apply some procedure when ‖∇mk(xk)‖ ≤ ǫg to find a new
model mk and a new trust region radius ∆k such that ∆k ≤ µ‖∇mk(xk)‖ and mk

is fully linear on B(xk; ∆k), and such that, if ∆k is reduced, one has
β‖∇mk(xk)‖ ≤ ∆k.

2. Compute the step : Compute a step sk such as

sk = argmins∈B(0,∆k)
mk(xk + s). (2.14)

2. Accept the trial point :

Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ ν1 or if both ρk ≥ ν0 and the model is fully linear on B(xk; ∆k), then
xk+1 = xk + sk and the model is updated to take into consideration the new
iterate, resulting in a new model mk+1; otherwise mk+1 = mk and xk+1 = xk.

4. Improve the model :

If ρk < ν1 use a model-improvement algorithm to certify that the model mk is
fully linear on B(xk,∆k). Let mk+1 the new possibly improved model.

5. Update the trust-region radius: Set

∆k+1 =























[∆k,min{γinc∆k,∆max}] if ρk ≥ ν1,

γ∆k if ρk < ν1 and mk is fully linear,

∆k if ρk < ν1 and mk is not

certifiably fully linear.

Increment k by one and return to Step 1.

ν0 ≤ ρk < ν1 and the model is fully linear (see Algorithm 2.1), the trial point is again

accepted but the trust-region is decreased; such iteration is called acceptable. The third

situation occurs when ρk < ν1 and the model mk is not certifiably fully linear (see [51,

Definition 3.1]). In this case, the geometry should be improved; the trial point may be

included in the sample set but it will not accepted as the new iterate; such iteration is

calledmodel-improving. The last situation occurs when ρk < ν0 andmk is fully linear,

in this case only the trust-region radius is reduced, the other parameters (including

the current iterate) are kept the same; such iteration is declared unsuccessful. The

model-improvement cycle in Step 4 can be launched for an infinite number of iterations.



Chapter 2. Deterministic Derivative-Free Optimization 16

However, when the models are assumed to be fully linear and uniformly bounded, one

can ensure that only finite improvement steps will take place [52]. The criticality step is

not invoked in detail (see [51, 52] for more details), but mainly in such a step one keeps

reducing the trust-region radius ∆k and computes a fully linear model in B(xk; ∆k)

until ∆k ≤ µ‖∇mk(xk)‖ is obtained. At the exit of the criticality step one also has

∆k ≥ β‖∇mk(xk)‖ (with µ > β).

2.1.3.1 The trust-region subproblem

In Step 2 of Algorithm 2.1, one needs to approximate a minimizer sk of the following

optimization problem (called trust-region subproblem):

min
s∈B(0,∆k)

mk(xk + s), (2.15)

where mk is the model for the objective function and B(0,∆k) is the trust-region. The

computation of such step sk is crucial for the convergence theory of the trust-region

methods. In general, it is not necessary to find an exact minimizer of this optimization

problem as far as the computed step ensures some form of sufficient decrease condition,

meaning that the new step sk has to fulfill

mk(xk + sk) ≤ mk(xk)− ψk,

where ψk is a positive value satisfying suitable conditions [52]. The key point is to make

sure that the total decrease is at least a fraction of that obtained with the Cauchy step

sCk [52, Chapter 10], for all iterations k:

m(xk)−mk(xk + sk) ≥ κfcd[m(xk)−mk(xk + sCk )], (2.16)

where κfcd ∈ (0, 1]. The Cauchy step sCk can be computed by backtracking a line

search along the steepest descent direction given by the gradient of the model. As a

consequence, the Cauchy step is defined by

sCk = −tCk gk, (2.17)

where tCk is given by

tCk = argmin
t≥0:xk−tgk∈Bk(xk,∆k)

mk(xk − tgk).



Chapter 2. Deterministic Derivative-Free Optimization 17

The Cauchy step satisfies the condition:

mk(xk)−mk(xk + s
C
k ) ≥

1

2
‖gk‖min

{

‖gk‖

‖Hk‖
,∆k

}

. (2.18)

2.1.3.2 Global convergence

To prove global convergence to first-order critical points (convergence to a stationary

point regardless the starting point), it suffices to assume in addition to the assump-

tion (2.16), that the gradient of the objective function f is Lipschitz continuous. We

suppose also that the Hessian model is bounded (see [52] for a complete and detailed

convergence analysis).

Under such assumptions it is provable that the trust-region radius in Algorithm 2.1

converges to zero [52, Lemma 10.9]:

Lemma 2.1. Consider a sequence of iterations generated by Algorithm 2.1 without any

stopping criterion. Then under the above assumptions one has

lim
k→+∞

∆k = 0. (2.19)

When the sequence of iterates is bounded, one can also prove that all limit points of the

sequence of iterates are first-order stationary points. The global convergence result is

then derived as follows [52, Theorem 10.13]:

Theorem 2.2. Consider a sequence of iterations generated by Algorithm 2.1 without

any stopping criterion. Then under the above assumptions one has

lim
k→+∞

∇f(xk) = 0. (2.20)

2.2 Direct-search methods

Direct-search methods correspond to DFO algorithms where sampling, at each iteration,

is guided by a finite set of directions with some appropriate features. These methods do

not use any derivative approximation or model building. In this section, by direct-search

we mean the directional type; we refer the reader to [52, 102, 128] and references therein

for more details on the other types of direct-search methods. To describe direct-search

algorithms, we first present some related basic concepts.



Chapter 2. Deterministic Derivative-Free Optimization 18

2.2.1 Basic concepts

To guide the optimization process, the directions used in direct-search methods must

have some appropriate features. One essential property consists on ensuring that at

least one of the chosen directions is descent. A direction d is said to be descent at the

point x, if there exists a positive value ᾱ such that:

∀α ∈ (0, ᾱ] , f(x+ αd) < f(x). (2.21)

When f is continuously differentiable at x and ∇f(x) #= 0, all the descent directions d

fulfill −∇f(x)⊤d > 0. To ensure the existence of such directions, some notions related

to positive spanning sets and positive bases are needed [52, 56].

2.2.1.1 Positive spanning sets and positive bases

The positive span of a set (PSS) of vectors [v1, . . . , vr] in R
n is defined as the convex

cone which is positively generated by [v1, . . . , vr] (meaning the set {v ∈ R
n : v =

r
∑

i=1

αivi, αi ≥ 0, i = 1, . . . , r}) [52, 56].

Definition 2.3.

• A positive spanning set in Rn is a set of vectors whose positive span is Rn.

• The set [v1, . . . , vr] is said to be positively dependent, if one of the vectors is in the

convex cone positively spanned by the remaining vectors, i.e, if one of the vectors

is a positive combination of the others; otherwise, the set is positively independent.

• A positive basis in Rn is a positively independent set whose positive span is Rn.

Unlike Rn bases where one has exactly n vectors, the cardinality of a positive basis has

at least n+ 1 and at most 2n vectors [15, 56]. Positive bases with n+ 1 and 2n vectors

are referred to as the minimal and the maximal positive bases, respectively.

Example 2.1. Let B = [e1, e2, . . . , en] be the canonical basis of Rn, where ei denotes

the vector with a 1 in the ith coordinate and 0’s elsewhere, and let e =
n
∑

i=1

ei, then

• D⊕ = [B , −B] is a maximal positive basis of Rn, where −B = [−e1,−e2, . . . ,−en].

• [B , −e

‖e‖ ] is a minimal positive basis.



Chapter 2. Deterministic Derivative-Free Optimization 19

✻

✲✛

❄

D1 = D⊕ ✻

✲
$
$$✠

D2

Figure 2.1: A graphical representation of the maximal positive basis D1 (left) and
the minimal positive basis D2 (right) for R2.

In Figure 2.1, we depict two positive bases for R2 (maximal and minimal).

As stated in [52, Theorem 2.4], if [v1, . . . , vr] is a positive basis for Rn and W ∈ Rn×n

is a nonsingular matrix, then [Wv1, . . . ,Wvr] is also a positive basis for Rn. In other

words, having a positive basis in Rn, one can ensure the existence of infinitely many

different ones. Attractive properties of positive bases (explaining their use in direct-

search methods) are as follows:

Theorem 2.4. Let [v1, . . . , vr] be a positive basis for Rn and w ∈ Rn. then

[

∀i ∈ {1, . . . , r} v⊤i w ≥ 0

]

⇒

[

w = 0

]

. (2.22)

Proof. Since [v1, . . . , vr] spans R
n positively, the vector −w can be written as

−w =

r
∑

i=1

λivi,

where each λi ≥ 0 for all i = 1, . . . , r.

From (2.22) we have v⊤
i
w ≥ 0 for all i ∈ {1, . . . , r} and so

0 ≤

r
∑

i=1

λiv
⊤
i w = −w⊤w ≤ 0.

The only possibility is then w = 0.

Thus by choosing w = −∇f(x) in Theorem 2.4, positive bases can be used to check

either a point x ∈ Rn is a stationary point of the objective function or not.

Theorem 2.5. Let f be a continuously differentiable function with ∇f(x) )= 0 for some

x ∈ Rn. Let [v1, . . . , vr] be a positive basis for Rn, then there exists i in {1, . . . , r} such

as

−∇f(x)⊤vi > 0.



Chapter 2. Deterministic Derivative-Free Optimization 20

Proof. Let w = −∇f(x) where x ∈ Rn. one knows that w⊤w > 0 for all non-zero w and

since [v1, . . . , vr] spans R
n positively, one has

w =

r
∑

i=1

λivi,

where each λi ≥ 0 for all i = 1, . . . , r. Hence,

w⊤w =

r
∑

i=1

λiw
⊤vi > 0

from which we conclude that at least one of the scalars w⊤v1, . . . , w
⊤vr has to be positive.

In other words, Theorem 2.5 states that there must exist at least one descent direction

in a positive basis. In Figure 2.2, we identify the descent direction for the two positive

spanning sets D1 and D2 in R2.

✻
d
✲✛

❄

❇
❇
❇❇▼w D1

✲d

✻

&
&&✠

D2

(((()
w

Figure 2.2: For a given positive spanning set and a vector w = −∇f(x) (green), there
must exist at least one descent direction d (red) (i.e. w⊤d > 0).

2.2.1.2 Gradient estimates

By assuming that the set of search directions is a PSS, one is sure that for each iteration

a descent direction must exist in the PSS. However, in practice finding a good descent

direction may not be possible, see for instance Figure 2.3 where two vectors of the PSS

tend to be colinear opposite. A good descent direction can be defined as a direction

✛−∇f(x) ✲❈
❈
❈
❈❈❖

✄
✄
✄
✄✄✎

Dǫ

−ǫ

Figure 2.3: A positive spanning set with a very small cosine measure.

leading to a sufficient decrease of the objective function, which can be interpreted as:



Chapter 2. Deterministic Derivative-Free Optimization 21

the more acute the angle between the descent direction and the negative gradient of

the objective function, the better the direction. A PSS gives descent directions at each

iteration but may not be good enough (depending on the level of acuteness) to ensure

convergence; in this case the PSS is said to be degenerate. Thus, the question that arises

naturally is: how to measure and control any deterioration in the PSS property to avoid

its degeneracy ? For that sake, we review the notion of the cosine measure for positive

spanning sets [108].

Definition 2.6. The cosine measure of a positive spanning set (with nonzero vectors)

or of a positive basis D is defined by

cm(D) = min
0 =v∈Rn

max
d∈D

v⊤d

‖v‖‖d‖
.

In R2, the cosine measure of a positive spanning set is the cosine of the half of the largest

angle θ between two of its adjacent vectors (see Figure 2.4).

✻

✲
θ = π

2
✛

❄

D1

cm(D1) = cos(π
4
)

✲
$
$$✠

θ = 3π

4

✻ D2

cm(D2) = cos(3π
8

)

Figure 2.4: In R2, for a given positive spanning set the cosine measure is defined by
cos(θ) where θ (blue) is the largest angle between two adjacent vectors.

Remark 2.7. The cosine measure of a positive set is strictly positive.

In terms of descent, a key point of the cosine measure can be seen as follows: given a

nonzero vector w ∈ Rn, one has

cm(D) ≤ max
d∈D

w⊤d

‖w‖‖d‖
.

Thus there must exist a d ∈ D such that

cm(D) ≤
w⊤d

‖w‖‖d‖
.

In particular if one chooses w = −∇f(x), then

cm(D)‖∇f(x)‖‖d‖ ≤ −∇f(x)⊤d. (2.23)

A cosine measure close to zero indicates a deterioration of the PSS, meaning that the

PSS becomes degenerate. To see how the cosine measure can predict such deterioration,



Chapter 2. Deterministic Derivative-Free Optimization 22

we emphasize the following example. Suppose that one has the following PSS :

Dǫ =

{

(

1

0

)

,

(

−ǫ

−1

)

,

(

−ǫ

1

)

}

.

where ǫ > 0. The cosine measure of this set is ǫ√
1+ǫ2

, then as ǫ tends to zero the cosine

measure cm(Dǫ) goes to zero also. If ∇f(x) = (1 0)⊤, as shown in Figure 2.3, then

the quality of the descent directions in Dǫ is poor (for small values of ǫ) and the lower

bound of (2.23) is small compared to ‖∇f(x)‖.

To avoid such situations, the cosine measure must be uniformly away from zero; that is,

∃ξ > 0; ∀ǫ ∈ (0,+∞); cm(Dǫ) ≥ ξ (2.24)

Such an assumption limits the deterioration of the positive spanning set and will be also

important to the analysis of the global convergence of direct-search methods (described

in the next section). We provide in the following example some values of the cosine

measure for known positive bases.

Example 2.2.

• If D = D⊕, then cm(D) =
1√
n
.

• If D is a positive basis with n+ 1 elements uniformly distributed (the same angle

between any two adjacent vectors), then cm(D) = 1

n
.

Based on the values of the cosine measure given in Example 2.2, one can explain why

the performance of direct-search methods may deteriorate for large scale optimization

problems, since as far as n grows the cosine measure goes to zero, and so the assump-

tion (2.24) does not hold anymore.

2.2.2 Direct-search methods

Direct-search methods are derivative-free methods for which each iteration is based on

the evaluation of the objective function at a finite set of points obtained from moving

along a PSS [17, 52].

2.2.2.1 Coordinate-search method

Coordinate-search method is a direct-search method that uses the maximal positive basis

D⊕ as PSS. An iteration of the algorithm can be described as follows. Let xk be the



Chapter 2. Deterministic Derivative-Free Optimization 23

current iterate and αk the associate step size. One evaluates the objective function f at

the following points

Pk = {xk + αkd : d ∈ D⊕}

to find a point that decreases the objective function value. This step of evaluating the

objective function is called the polling step [36], the set Pk is known as the set of poll

points and D⊕ is the set of poll directions.

Figure 2.5 shows the polling process for a coordinate-search method. At each iteration

two situations are possible. The first is the successful iteration, meaning that a point

in the polling set Pk is found to be better than the current iterate xk. In this case, the

new iterate xk+1 = xk + αkdk ∈ Pk should achieve a simple decrease in the objective

function (i.e. f(xk+1) < f(xk)). The step size αk+1 of a successful iteration is either

left unchanged or increased by a factor γ ≥ 1. For instance, in Figure 2.5, the first four

iterations are all successful. The second possible situation occurs when no point, in the

polling set Pk, ensures a simple decrease in the objective function. In this case, the step

size αk is reduced by a factor β < 1 and the current iterate is kept unchanged. Such

iteration is declared unsuccessful, see for instance the fifth iteration in Figure 2.5. The

evaluation process of the objective function, can be done following different strategies,

opportunistically by moving towards the first evaluated point better than the current

iterate (see Figure 2.5), or in a complete way, by evaluating all the poll points and choose

the best point that improves the objective function.

Algorithm 2.2: Coordinate-search method.

Initialization: Let an initial point x0 and choose an initial step size α0 > 0. Set
k = 0 and the parameters 0 < β < 1 ≤ γ.

Until some stopping criterion is satisfied:

1. Poll step: Evaluate the objective function f at the polling set points Pk following
the chosen evaluation process (opportunistic or complete).

If a poll point xk + αkdk is found such that f(xk + αkdk) < f(xk), then set
xk+1 = xk + αkdk and declare the poll (and the iteration) as successful.

Otherwise, set xk+1 = xk and declare the poll (and the iteration) as unsuccessful.

2. Update the step size parameter: If the iteration is successful, then set
αk+1 = αk (or αk+1 = γαk). Otherwise, set αk+1 = βαk. Increment k by one and
return to Step 1.

The performance of Algorithm 2.2 can be significantly enhanced through an optional

step called a search step [36]. The latter one consists of using the previously evaluated

points to find a new point y such that f(y) < f(xk). If the search step is successful, the



Chapter 2. Deterministic Derivative-Free Optimization 24

x
0

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(a) Initial iteration.

x
0

x
1

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(b) Second iteration.

x
0

x
1

x
2

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(c) Third iteration.

x
0

x
1

x
2

x
3

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(d) Fourth iteration.

x
0

x
1

x
2

x
3
x
3
=x
4

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(e) Fifth iteration.

x
0

x
1

x
2

x
3
x
3
=x
4

x
5

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(f) Sixth iteration.

Figure 2.5: Six iterations of the coordinate-search method with opportunistic polling
(following the order East/West/North/South). The initial point is x0 = [−3.5,−3.5],
the starting step size is α0 = 3. For successful iterations, the step size is kept unchanged,
otherwise it is reduced by a factor β = 1/2. The ellipses show the level sets of the
objective function f(x) = (x1 + x2 − 2)2 + (x1 − x2)

2. The optimum is located at the
point [1, 1].

iteration is declared successful, the poll step is skipped and xk+1 = y. The use of the

search step is for practical reasons and has no interferences in the global convergence

property. The next section will describe a general framework for direct-search methods

including coordinate-search method.



Chapter 2. Deterministic Derivative-Free Optimization 25

2.2.2.2 Direct-search framework

In this section, we outline a general algorithmic description of direct-search methods,

such description includes the previous framework [18, 52] (based on integer lattice and

only simple decrease on the objective function value to compute the new iterate) as well

as direct-search methods based on randomly generated directions but with sufficient de-

crease condition to identify the new iterate [166]. To define the type of sufficient decrease

conditions we are using, we introduce the following notion of a forcing function [108]:

Definition 2.8. We call a non-decreasing continuous function ρ : R∗
+ → R

∗
+ a forcing

function if it satisfies

lim
t→0+

ρ(t)

t
= 0

One example of such forcing function is ρ(t) = t2.

To describe the algorithm in the most general way, we will use ρ̄(.). The latter one will be

equal to the forcing function ρ(.) when the directions are randomly generated, or equal to

the constant zero function when the directions rely on integer lattices (i.e, MADS [17]).

Algorithm 2.3 gives a complete description of a typical direct-search algorithm. Its

framework can be formulated in the same way as coordinate-search, where the basic

idea of the algorithm relies on a polling step, in which we evaluate a set of points in

order to improve sufficiently the current iterate. By sufficiently, we mean that the new

point will be accepted only if a sufficient decrease condition is fulfilled. In other words,

a new point xk+1 != xk is accepted only if

f(xk+1) < f(xk)− ρ̄(αk‖dk‖). (2.25)

The new iterate xk+1 is found by exploring a set of points defined by a positive spanning

directions set Dk and a step size parameter αk:

Pk = {xk + αkd : d ∈ Dk}, (2.26)

The poll step and the iteration are declared successful, if a new point satisfying the

condition (2.25) is found. In that case, the step size parameter is kept unchanged or

possibly increased. When the poll step fails to find a new point xk+1, the iteration is

regarded as unsuccessful, the current iterate is kept the same and the step size parameter

is reduced. Again, the search step [36] is optional and has no impact on the convergence

properties of the algorithm. It takes benefit from the previously evaluated points to speed

up convergence and make the algorithm more efficient. A new point y will be accepted

only if it decreases sufficiently the objective function (i.e. f(y) < f(xk)− ρ̄(αk‖dk‖)),



Chapter 2. Deterministic Derivative-Free Optimization 26

in such case the iteration is declared successful, xk+1 = y and the polling step is skipped.

Algorithm 2.3: A direct-search method.

Initialization: Let an initial point x0 and choose an initial step size α0 > 0. Set
k = 0 and the parameters 0 < β1 ≤ β2 < 1 ≤ γ.

Until some stopping criterion is satisfied:

1. Search step: Try to compute a point with f(y) < f(xk)− ρ̄(αk‖dk‖) by
evaluating the objective function f at a finite number of points. If such point is
found, then set xk+1 = y, declare the iteration and the search step successful,
and skip the poll step.

2. Poll step: Choose a set Dk of directions in R
n. Evaluate the objective function f

at the polling set points Pk following the chosen evaluation process
(opportunistic or complete).

If a poll point xk + αkdk is found such that f(xk + αkdk) < f(xk)− ρ̄(αk‖dk‖),
then set xk+1 = xk + αkdk and declare the poll (and the iteration) as successful.

Otherwise, set xk+1 = xk and declare the poll (and the iteration) as unsuccessful.

3. Update the step size parameter: If the iteration is successful, then set
αk+1 ∈ [αk, , γαk]. Otherwise, set αk+1 ∈ [β1αk, , β2αk]. Increment k by one and
return to Step 1.

2.2.3 Global convergence

The global convergence of direct-search methods, outlined by Algorithm 2.3, relies on

proving that the behavior of the step size parameter αk will approach zero as an indicator

of some form of stationarity. Such result can be established using two different strategies:

the first one requires the iterates to lie on integer lattices (known as pattern search) [52,

108, 163]. The second strategy consists in imposing a sufficient decrease condition on

the objective function values to accept or not the new iterate [52, 166]. In this thesis,

only the global convergence theory related to the second strategy is outlined. The reader

is referred to the references [17, 18, 52, 108, 163] for the convergence theory when one

is requiring the iterates to lie on integer lattices.

Direct-search methods are traditionally analyzed under the assumption that all the

iterates lie in a bounded set and that the objective function is bounded below.

Assumption 2.2.1. The level set L(x0) = {x ∈ R
n : f(x) ≤ f(x0)} is bounded. The

objective function is bounded below.

Moreover, the following assumption is also needed:



Chapter 2. Deterministic Derivative-Free Optimization 27

Assumption 2.2.2. The distance between xk and the point xk + αkdk tends to zero if

and only if αk does:

lim
k∈K

αk‖dk‖ = 0 ⇔ lim
k∈K

αk = 0,

for any infinite subsequence K.

Such assumption can be fulfilled, if one chooses to work with random directions generated

in the unit sphere (i.e. ‖dk‖ = 1).

By imposing the condition f(xk + αkdk) < f(xk) − ρ̄(αk‖dk‖), the former assumptions

lead the step size to converge to zero.

The sufficient decrease condition suffices to ensure that the step size parameter, as

defined by Algorithm 2.3, converges to zero [52, 108] as follows:

Theorem 2.9. Let Assumptions 2.2.1 and 2.2.2 hold. Consider Algorithm 2.3 when

ρ̄(.) = ρ(.). Then there exists a subsequence K of unsuccessful poll steps such that

lim
k∈K

αk = 0.

Since L(x0) is bounded (Assumption 2.2.1), there exist a point x∗ and a subsequence K

of unsuccessful iterations such that lim
k∈K

αk = 0 and lim
kinK

xk = x∗.

2.2.3.1 Global convergence for smooth functions

By imposing a sufficient decrease condition, one is able to derive stationarity results in

the continuously differentiable case. But, before, we need to assume first that the search

directions in the poll step has to positively span the whole space and that the cosine

measures of such set is bounded away from zero.

Assumption 2.2.3. For all k, the set Dk used for the polling has to be a positive spanning

set (PSS) and must satisfy cm(Dk) ≥ ξ with ξ > 0.

As observed originally in [108], global convergence can be derived as follows:

Theorem 2.10. Let Assumptions 2.2.1 and 2.2.2 hold. Consider Algorithm 2.3 under

Assumption 2.2.3. Assume also that f is continuously differentiable with Lipschitz con-

tinuous gradient on an open set containing L(x0). Then, there exists a subsequence K

of unsuccessful poll steps such that lim
k∈K

αk = 0. and

lim
k∈K

∇f(xk) = 0.

Since L(x0) is bounded (Assumption 2.2.1), there exists a point x∗ such that ∇f(x∗) = 0.



Chapter 2. Deterministic Derivative-Free Optimization 28

2.2.3.2 Global convergence for non-smooth functions

The only major difference compared to the smooth case is that the search directions in

the poll step do not need to positively span the whole space. We introduce first some

basic notions for non-smooth optimization to outline the global convergence properties

of direct-search methods based on the sufficient decrease strategy [166].

The first concept is related to the stationarity results performed at limit points of specific

subsequences known as refining subsequences [17]. More concepts will be outlined in

relation with the non-smooth calculus [43] used to analyze Algorithm 2.3. A refining

subsequence can be formalized as a sequence of unsuccessful iterates driving the step

size to zero [17]. Theorem 2.9 states that the convergence properties of direct-search

methods are derived only for refining subsequences.

Definition 2.11. A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll

steps is said to be a refining subsequence if limk∈K αk = 0.

The type of directions along which a directional derivative will be proved nonnegative

are the so-called refining directions [17].

Definition 2.12. Let x∗ be a limit point of a convergent refining subsequence K. If the

limk∈L dk/‖dk‖ exists, where L ⊂ K and dk ∈ Dk then this limit is said to be a refining

direction for x∗.

Assuming that the objective function f is Lipschitz continuous near x∗. The Clarke

generalized directional derivative [43] at x∗ along the direction d is defined by

f◦(x∗; d) = lim sup
x→x∗,t↓0

f(x+ td)− f(x)

t
.

The following results are showing that the Clarke generalized directional derivative is

Lipschitz continuous with respect to the second argument[43]:

Proposition 2.13. Let f be a Lipschitz continuous near x∗ with constant Lf . Then the

function d → f◦(x∗; d) is Lipschitz continuous in Rn with constant Lf .

The Clarke subdifferential is defined by

∂f(x∗) = {s ∈ Rn : f◦(x∗; d) ≥ 〈d, s〉, ∀d ∈ Rn}, (2.27)

where 〈., .〉 denotes the dot product of two vectors. When the function f is smooth,

a point x∗ is said to be stationary point if ∇f(x∗) = 0. In the non-smooth case, the

stationarity is defined as follows:



Chapter 2. Deterministic Derivative-Free Optimization 29

Definition 2.14. Let f be a Lipschitz continuous near x∗. A point x∗ is said to be

Clarke stationary if f◦(x∗; d) ≥ 0, ∀d ∈ Rn, or, in other words, 0 ∈ ∂f(x∗).

Definition 2.15. A function f is strictly differentiable at x∗ if f is Lipschitz continuous

near x∗ and for some ξ = ∇f(x∗), ∀d ∈ Rn, f◦(x∗; d) = 〈ξ, d〉.

If f is strictly differentiable function and x∗ is a Clarke stationary point, then ∇f(x∗) =

0. As consequence, the convergence results in the smooth case can be seen as a partic-

ularization of the ones obtained using the Clarke calculus in the non-smooth case.

Under appropriate assumptions, the Clarke generalized derivative can be proved to be

nonnegative along any refining direction for x∗. When the sequence of refining directions

for x∗ is dense in the unit sphere, one can conclude that x∗ is a Clarke stationary

point [52, 166].

Theorem 2.16. Let Assumptions 2.2.1 and 2.2.2 hold. Consider a refining subsequence

{xk}k∈K , generated by Algorithm 2.3 and converging to x∗. Assume that f is Lipschitz

continuous near x∗. Then,

f◦(x∗; d) ≥ 0

for all refining directions d for x∗.

If the set of refining directions for x∗ is dense in the unit sphere, then x∗ is a Clarke

stationary point of the objective function f .

2.3 Conclusion

In this chapter, we presented the main ideas, techniques, and algorithms used in deter-

ministic DFO methods. This overview is given in an attempt to prepare the reader to

what comes next. Chapter 3 will present stochastic DFO and more particularly evolution

strategies (ES’s), on which we will try to incorporate some of the techniques presented

in this chapter to ensure its global convergence and enhance the original performance

(see Chapter 4).

The model-based techniques presented in Section 2.1.2 will be used later to hybridize

them with evolution strategies. In fact, by incorporating a search step at the beginning

of each iteration, one expects to improve the algorithm efficiency and its convergence

speed (as in the search-poll framework of direct search, see Section 2.2.2). In such a

step, one can, for instance, build a quadratic model using all or some of the points where

the objective function has been previously evaluated and then minimize such a model

in a certain region.



Chapter 3

Stochastic Derivative-Free

Optimization & Evolution

Strategies

The early development of stochastic derivative free optimization methods was motivated

mainly by the need for methods that mitigate the defect of the deterministic ones for

hard optimization problems [122, 158]. The key idea of the introduction of randomness

can be implemented through two different approaches. The first one is known as localized

random search methods, where we construct an oriented path, starting from an arbitrary

point, and then apply some stochastic decisions to obtain the new point. The second

approach, known as volume oriented methods, contrary to the first one is based on the

fact that the whole search space must be sampled, consequently, this approach is been

seen as performing global search. In general, the main classes of stochastic optimization

methods are as follows:

1. Evolutionary Algorithms (EAs) [26], where the optimization process is in-

spired by biological evolution. Its basic idea is to evolve a population of candidate

solutions (individuals) using operators inspired by natural selection and genetic

variation. The selection process focuses the search to “better” zones (which im-

proves the objective function value) by encouraging individuals with a better func-

tion value to be a member of the next generation. Genetic variation is the second

operation that creates new individuals in the search space. During the second pro-

cess, one generally uses random changes of some particular points (mutation) and

mixing of information of individuals (recombination). The different mechanisms

used for natural selection and genetic variation give birth to many classes of EAs

such as :

30



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 31

• Genetic Algorithms (GAs) [91, 92] were initially designed by Holland to cope

with binary encoded individuals. In the continuous case, the variables are

generally mapped to binary strings which sometimes leads to weak perfor-

mance [89]. Some successful practical application of GAs are reported in [42].

• Evolution Strategies (ES’s) were originally developed in [142, 150] and have

been widely investigated and tested (see, e.g. [30, 32] and the references

therein). In a large class of ES a certain number λ of points (called off-

spring) are randomly generated in each iteration, among which µ ≤ λ of them

(called parents) are selected. ES’s have been growing rapidly in popularity

and start to be used for solving challenging optimization problems [21, 79].

One well known instance of ES’s is Covariance Matrix Adaptation ES (CMA-

ES) [85, 86]. More details about ES’s and CMA-ES will be provided later in

this Chapter.

• Evolutionary Programming (EP) [64, 65] is similar to ES’s and relies on

mutation as a variation operator. The selection operator is a mixture of

tournament selection and truncation selection. By tournament selection, we

mean that the individuals are randomly chosen from the population. The

truncation selection means that only a fraction of the best individuals is

chosen. A relevant instance of EP is meta-EP [65] where one use a self-

adaptation process to guide the population, similarly to the ES’s.

• Differential Evolution (DE) [159], Learning Classifier System (LCS) [39] and

Neuro-Evolution (NE) [76] algorithms are also considered as instances of EA’s.

2. Particle swarm optimization (PSO) [103] is inspired by the movement of

swarms of birds or insects searching for food or protection. The movement of each

particle depends on both its local best known position and also the best known

global position (found by other particles). Such process is expected to move the

swarm toward the best solutions. An instance of PSO is PSWARM [164, 165],

where one combines pattern search and particle swarm. Basically, it applies a

directional direct search in the poll step (coordinate search in the pure simple

bounds case) and particle swarm in the search step (see Section 2.2.2 for the

definition of the search and poll steps).

3. Simulated Annealing (SA) [107] is inspired by the physical behavior of material

during the annealing process. The latter is performed by controlling the material

cooling to obtain regular crystals and push the system to end up with a minimum of

energy. By analogy, this physical process is translated to the following algorithm:

given a candidate solution, a neighbor random solution can be accepted (to replace

the candidate solution) if the neighbor solution is better that the candidate one in



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 32

terms of the objective function or with a probability that depends on the change

of the corresponding objective function values and a control parameters, called

the temperature. When none of the above conditions are fulfilled, the current

solution is unchanged and the temperature parameter is gradually decreased to

zero. A relevant instance of AS is Adaptive Simulated Annealing (ASA) [94] where

one starts from a traditional simulated annealing in which a different probability

density function is used for each variable with separate temperature parameters.

Such process allows ASA to possibly escape local minima.

This chapter gives an overview of the ES algorithms, their origin and history, their

basic ideas and philosophy. It is organized as follows. The first section is intended to

provide deeper insight into the basic ideas and principles as well as the ingredients for

designing ES algorithms, such as mutation, recombination, and selection operators. The

second section is devoted to emphasize theoretical aspects of ES research. In particular,

the existing global convergence properties of ES algorithms. The chapter closes with a

detailed description of the CMA-ES method which is regarded as the state of the art in

stochastic derivative free optimization [145].

3.1 Evolution strategies

ES algorithms are firstly developed by Rechenberg and Schwefel [142, 150] in the early

1970s. From the beginning ES’s were designed to solve real and integer optimization

problems. The selection and the mutation mechanisms as well as the population concept

are all described by the conventional notation (µ/ρ +, λ)–ES [30, 32], such notation is

introduced within a general ES framework in the following section.

3.1.1 Notation and algorithm

Evolution strategies try to optimize an objective function f with respect to an n-

dimensional set of decision variables y ∈ Y, known in the ES’s community as the object

variables. The search space Y can be the n-dimensional real space Rn [32] or the integer

space Zn [25].

At the k-th generation, ES’s work with a population Bk of individuals a
l

k
. An individual

al
k
is represented by a decision variable yl

k
(its position), its objective function value

f l
k
= f(yl

k
) (known as the fitness), and possibly a set of endogenous parameters sl

k
. The

parameters sl
k
control the capacity of the strategy for adaptive evolution as one of the



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 33

particularities of the ES’s (i.e. evolvability).

a
l
k

def.
= (yl

k, s
l
k, f

l
k). (3.1)

A new population of λ individuals (called offspring), noted ãl
k, is generated from a set

of µ parent individuals al
k. The offspring population contains λ individuals, denoted

Bo
k, while the parent population, denoted B

p
k, contains µ individuals. To create a new

offspring population, one uses ρ parents, where ρ is the mixing number. When ρ = 1

(known as cloning), no recombination is used, this case is usually denoted by (µ, λ) or

(µ + λ) depending on the regarded selection strategy. The algorithmic description of

(µ/ρ +, λ)–ES is outlined in Algorithm 3.1. The symbol ’+, ’ outlines the type of the

selection used to create the new parent population. The different possible selection

schemes are emphasized later in Section 3.1.3.

Algorithm 3.1: A general framework for (µ/ρ +, λ)–ES.

Initialization: Choose positive integers λ, µ and ρ such that λ ≥ µ ≥ ρ. Initialize µ
individuals al

0 = (y
l
0, s

l
0, f

l
0) , l = 1, . . . , µ. Let B

p
0 := (a

1
0, . . . , a

µ
0 ). Set k = 0.

Until some stopping criterion is satisfied:

1. Offspring Generation:

m
l
k := marriage(Bp

k, ρ),

sl
k := s recombination(ml

k),

yl
k := y recombination(ml

k),

s̃l
k := s mutation(sl

k),

ỹl
k := y mutation(yl

k),

f̃ l
k := f(ỹl

k),

for all l = 1, . . . , λ. Let the new offspring population be

B
o
k := {(ỹl

k, s̃
l
k, f̃

l
k), l = 1, . . . , µ}.

2. Parent Selection:

If (the comma-selection type (µ, λ)) then

B
p
k+1 := selection(Bo

k, µ)

If (the plus-selection type (µ+ λ)) then

B
p
k+1 := selection(Bo

k,B
p
k, µ)

Increment k and return to Step 1.



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 34

Algorithm 3.1 can be described as follows: given a generation k, the parent popula-

tion Bp
k produces a new offspring population Bok. This production process begins with

the marriage step using ρ individuals , denoted mlk, which are randomly chosen from

the parent population of size µ. The choice of individuals for marriage is completely

randomized and independent of the objective function f . After the marriage, the recom-

bination process of individuals is launched (see Section 3.1.2). The offspring generation

is completed with the mutation operator (see Section 3.1.4). The parent selection is

then performed using the chosen selection mechanism (see Section 3.1.3).

3.1.2 Recombination mechanism

ES’s recombination is inspired by natural sexual reproduction in order to increase the

genetic diversity of the offspring. For (µ/ρ +, λ)–ES, the recombination operator uses

information only from ρ individuals (selected using the marriage operator) to produce

one offspring. Two recombination operators are possible depending on wether the search

space is continuous or discrete, known as intermediate recombination and discrete re-

combination, respectively.

Intermediate recombination deals with all ρ married parents by computing a weighted

mean of all of them. Let (am)1≤m≤ρ be the chosen ρ parent individuals. The new

recombinant offspring individual a is the computed as follows :

a =
1

ρ

ρ
∑

m=1

ωmam. (3.2)

The weights used to compute the means belong to a simplex set {(ω1, . . . , ωρ) ∈ R
ρ :

∑ρ
i=1w

i = 1, wi ≥ 0, i = 1, . . . , ρ}, and their values reflect the contribution of each of the

parents in the weighted mean. The way the weights are chosen has an important impact

on the efficiency of the algorithm [12]. The intermediate recombination procedure is well

defined for real-valued search space Rn, but in the discrete search space case, one may

need to round y given in (3.2) to map the discrete domain.

Discrete recombination combines randomly parameters value from ρmarried parents, the

ith component of the recombinant object y and s are set to the ith component randomly

(uniformly) selected from the parent individuals. This means that for i = 1, . . . , n:

(y)i = (ymi
)i and (s)i = (smi

)i, (3.3)

where mi is randomly chosen in {1, . . . , ρ}.



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 35

3.1.3 Selection mechanism

The main purpose of the selection operator is to guide the generations towards better

regions in terms of the objective function value. Thanks to the selection mechanism

an ES proceeds following a natural evolution. The selection process is inspired from

natural selection where some beings (animals and plants) have to be strong enough to

get a chance to survive. The selection operator tries to ensure such natural paradigm for

all the new parent population. In Algorithm 3.1, the new parent population for the next

generation is produced by ensuring that only the µ best individuals from the population,

at the k-th generation, will survive. This selection mechanism is known as a truncation

selection. The new parent population is then as follows:

B
p
k+1 := (a1:γk , . . . , a

µ:γ
k ), (3.4)

the notation am:γk means that one takes the mth best individual out of γ individuals [11,

32].

As mentioned in Section 3.1.1, two different selection operators are possible, depending

on whether or not the parent population, at the generation k, is included: the comma-

selection, denoted by (µ, λ), and the plus-selection, denoted by (µ + λ), respectively.

For comma-selection, the new parent population Bp
k+1 is chosen only from the offspring

individuals Bo
k. In this case, the selection is performed based on γ = λ individuals.

The plus-selection takes into account both the the new offspring population Bo
k and the

old parents population Bp
k. In contrast to the first selection type, the plus-selection is

performed using γ = µ + λ individuals. The comma-selection variant of the algorithm

can be good for dynamic problem instances given its capability for continued exploration

of the search space, whereas the plus-selection variation can be good for refinement and

convergence. In fact, the plus-section ensures that only the best individuals survive so

far, thus such selection can be seen as elitist. Elitism can be a sufficient condition to

ensure the global convergence of the ES’s.

3.1.4 Mutation mechanism

3.1.4.1 The concept

Beside the selection operator, the mutations are another important process for an ES.

The mutation process is at the origin of the genetic variations. If the selection mech-

anisms try to exploit the objective function information to guide the search into to

promising regions, the mutations try to use only the search space information from the



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 36

parent population (no information from objective function is exploited). Consequently,

no function based preference from the selection process is taken into consideration. The

mutations depend on the problem structure, therefore its difficult to establish a gen-

eral methodology. Meanwhile, Beyer [30] suggests some rules that may help during the

mutation design such as reachability, scalability, unbiasedness, and symmetry.

Reachability This rule ensures that any given parent individual state ap, can be

transformed into any other (finite) individual state ãp in a finite time. An ES needs to

fulfill the reachability requirement particularly for proving its global convergence.

Scalability The scalability for the mutations operator states that the search length

(strength mutation) should be tunable in order to adapt the evolution to the properties

of both the objective function and the search space, known as fitness landscape. The

secret behind the scalability is evolvability of the ES which favor improvement steps by

using a smooth evolutionary random path to adapt the fitness landscape towards the

optimum solution [8]. The scalability is defined as the capacity of a system for adaptive

evolution. Again, by evolvability we mean the ability of the ES to generate adapted

population, and thereby evolve through natural selection.

Unbiasedness The main condition is that the mutations should introduce no bias.

This assumption is shown to be equivalent to have a mutations operator following the

maximum entropy principle, meaning that the mutations distribution which best rep-

resents the current state of knowledge is the one with the largest entropy [99]. In the

real-valued search space Rn, the maximum entropy principle if the normal distribution

as mutation operator is chosen.

Symmetry This rule is strongly connected to the previous one, but not equivalent. It

means that the mean of the changes introduced by the mutation distribution should be

zero.

3.1.4.2 Example in real-valued search spaces

To explain more precisely the definition of the mutation operator, we consider the fol-

lowing example. The first requirement to fulfill is that the mutation distribution should

follow the maximum entropy principle. As mentioned earlier, in the real-value search

space, i.e, Y = R
n, such a requirement is shown to be equivalent to work with normal



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 37

distributions [99].

ỹ = y + σd (3.5)

with d is a random vector generated following multivariate normal distribution N (0, In)

of mean zero and identity matrix as covariance matrix. In this case, ỹ obeys the density

function

P(ỹ) =
1√
2πσ

n exp

(

− (ỹ − y)⊤(ỹ − y)

2σ2

)

. (3.6)

As the expected change is zero, such a distribution is symmetric and introduces no bias

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

z

Normal distribution density curve

σ=0.1

σ=0.2

σ=0.5

σ=1

Figure 3.1: A scalar density function for a normal distribution.

(see Figure (3.1)). Moreover, small perturbations around the point y are more likely

to take place when the mutation strength σ is small. Thus, the scalability requirement

can be fulfilled using a normal distribution. Based on the given mutations distribution,

we need only one scalar parameter σ as endogenous parameter to control and adapt the

evolution, such situation is known as isotropic mutations. Figure (3.2) depicts a 2-D

situation where the adaptation process using a non-isotropic mutations can speed up

the optimization process. It shows a simple case where axis-parallel mutations lead to

a better exploration of the search space.

The mutation distribution can be improved if one has a proper evolution parameter σi for

each component yi of y using non-isotropic Gaussian mutations. The set of endogenous

strategy parameters associated will be in this case an n-dimensional vector of standard

deviation parameters (σ1, . . . , σ2). In this situation, the mutation distribution will be of

the form

ỹ = y + Sd, (3.7)

where d is drawn from a normal distribution N (0, In) and S is a diagonal matrix.

The most general situation occurs when the mutation distribution can be also arbitrarily

rotated in the search space. Figure (3.3) outlines a situation where the rotation, see



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 38

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(a) Isotropic mutations.

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(b) Non-isotropic mutations parallel to the y-axis.

Figure 3.2: A 2-D situation where non-isotropic mutations, parallel to the y-axis,
enhance the performance. The ellipses show the level sets of the objective function

f(x) = (x1 + x2 − 2)
2 + (x1 − x2)

2.

Figure (3.3(d)), can lead to better performance compared to both the isotropic mutations

(Figure 3.3(a)) and non-isotropic (Figures (3.3(b)) and (3.3(c))). The rotation process

actually reflects the distribution correlation between the z components, contrary to the

assumption we made before where we assume that the components of the vector y are

independent.

Let R be a rotation matrix, the new mutation distribution is of the form

ỹ = y +RSd, (3.8)

Such equation is equivalent to assume that the mutated vector ỹ is drawn from a normal

distribution of mean y and covariance matrix C = RSS⊤R⊤. Thus, the new density

function of ỹ is as follows:

P(ỹ) =
1√
2π

n

1
√

det(C)
exp

(

−
1

2
(ỹ − y)⊤C−1(ỹ − y)

)

, (3.9)

where det(C) corresponds to the determinant of matrix C.

Matrix C is symmetric, therefore only n(n + 1)/2 endogenous strategy parameters are

needed to define properly the mutation operator. Such an adaptation process for the

mutation operator explains the success of the algorithm CMA-ES [86].



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 39

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(a) Isotropic mutations.

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(b) Non-isotropic mutations parallel to the y-axis.

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(c) Non-isotropic mutations parallel to the x-axis.

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(d) Rotated non-isotropic mutations.

Figure 3.3: A 2-D situation where it is more efficient to have correlated Gaussian
mutations. The ellipses show the level sets of the objective function f(x) = (x1 + x2 −

2)2 + (x1 − x2)
2.

3.2 A class of evolution strategies

This section focuses only on a subclass of (µ/ρ +, λ)–ES denoted by (µ/µW , λ)–ES in

preparation to what comes next. In fact, all the contributions of this thesis are related

to (µ/µW , λ)–ES.

3.2.1 Concept and algorithm

The (µ/µW , λ)–ES is a class of ES’s which evolves a single candidate solution. At the k-th

generation, the new offspring y1
k+1, . . . , y

λ

k+1 are generated around a weighted mean xk of

the previous parents (candidate solution). The symbol “/µW ” in (µ/µW , λ)–ES specifies

that µ parents are ‘recombined’ into a weighted mean. The parents are selected as the

µ best offspring of the previous iteration in terms of the objective function value. The

mutation operator of the new offspring points is done by yi
k+1 = xk+σES

k
di
k
, i = 1, . . . , λ,



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 40

where di
k is drawn from a certain distribution Ck and σESk is a chosen step size. The

weights used to compute the means belong to the simplex set S = {(ω1, . . . , ωµ) ∈ Rµ :
∑µ

i=1w
i = 1, wi ≥ 0, i = 1, . . . , µ}.

The (µ/µW , λ)–ES adapts the sampling distribution to the landscape of the objective

function. An adaptation mechanism for the step size parameter is also possible. The

latter one increases or decreases depending on the landscape of the objective function.

Figure 3.4 depicts a 2-dimensional illustration, where one starting from an isotropic

distribution is able to adapt its evolution to the landscape of the objective function.

(a) The first generation. (b) The second generation. (c) The third generation.

Figure 3.4: A 2-D illustration of an evolution strategy. Generation after generation
the sampling distribution and the step size are getting adapted to the landscape of the

objective function. The ellipses show the level sets of the objective function.

The algorithmic description of such class of ES then can be given as follows:

3.2.2 Some existing convergence results

For almost three decades, many theoretical works on evolution strategies have focused

on convergence toward optima but under very mild assumptions either on the objective

functions or on the endogenous strategy parameters [20, 24, 26, 30, 33, 75, 96, 97,

100, 151, 169]. For the objective functions, the sphere problem is among the most

frequently studied case [20, 30, 33, 100, 151, 169]. Such problem may seem simple, but

the convergence theory behind is rather not trivial [20, 33, 100].

In addition to the assumption on the objective function, most of the existing global

convergence results consider simple schemes of Algorithm 3.2. By global convergence, we

mean convergence to a stationary point, with a probability one, regardless the starting

point. The most theoretical studied algorithm is known as (1, λ)-ES where the new

parent is defined as the best offspring (see the reference [169] and the references therein).

The first convergence results were mainly obtained using martingale theory tools [30,

151].



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 41

Algorithm 3.2: A general framework for (µ/µW , λ)–ES.

Initialization: Choose positive integers λ and µ such that λ ≥ µ. Choose an initial
x0, an initial step length σ

ES
0 > 0, an initial distribution C0, and initial weights

(ω1
0, . . . , ω

µ
0 ) ∈ S. Set k = 0.

Until some stopping criterion is satisfied:

1. Offspring Generation: Compute new sample points Yk+1 = {y1k+1, . . . , y
λ
k+1}

such that
yi
k+1 = xk + σESk di

k,

where di
k is drawn from the distribution Ck, i = 1, . . . , λ.

2. Parent Selection: Evaluate f(yi
k+1), i = 1, . . . , λ, and reorder the offspring points

in Yk+1 = {ỹ1k+1, . . . , ỹ
λ
k+1} by increasing order: f(ỹ

1
k+1) ≤ · · · ≤ f(ỹλ

k+1).

Select the new parents as the best µ offspring sample points {ỹ1k+1, . . . , ỹ
µ
k+1},

and compute their weighted mean

xk+1 =

µ
∑

i=1

ωi
kỹ

i
k+1.

3. Updates: Update the step length σESk+1, the distribution Ck+1, and the weights
(ω1

k+1, . . . , ω
µ
k+1) ∈ S. Increment k and return to Step 1.

More recent convergence proofs are based on Markov chains theory, Bienvenüe and

François [33] and later Auger [20] proved convergence results for (1, λ)-SA-ES1 on the

sphere function. The first authors [33] showed that the convergence, or divergence, is

conditioned by the ability to prove some recurrence properties of a specific Markov chain.

Auger [20] proves sufficient conditions to ensure asymptotic log-linear convergence or

divergence of (1, λ)-SA-ES algorithm. By log-linear convergence, we mean convergence

of 1/k ln(‖xk‖), where xk is the parent at the generation k.

For non-convex objective functions and using measure theory, Greenwood and Zhu [75]

proposed a globally convergent version of (1, λ)-ES. A self-adaptation that uses 1/5-

success rule was incorporated in (1, λ)-ES, meaning that depending on the percentage

of success mutations Ps (i.e. individuals that have better objective function values

compared to their parent) recorded over a certain number of generations. The mutation

strength (i.e. the step size) is increased after a certain number of generations, if Ps > 1/5,

and decreased otherwise.

For spherical objective functions2, Jebalia and Auger [100] prove log-linear convergence

1SA stands for Self-Adaptive
2f is said to be a spherical function if there exists a strictly increasing function g such as ∀x ∈

R
nf(x) = g(‖x‖).



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 42

of Algorithm 3.2 in the isotropic case (using an isotropic mutation) and under a scale-

invariant adaptation rule (i.e. for a given generation k one has σESk = σ‖xk‖ where

σ > 0).

3.2.3 CMA-ES a state of the art for ES

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) [85, 86] is regarded

as one of the most relevant instances of (µ/µW , λ)–ES emphasized in Algorithm 3.2. The

success of such method has many reasons. In fact, CMA-ES adapts both the sampling

distribution as well as the step size parameter to the landscape of the objective function.

One decreases or increases the exploration depending on the landscape of the objective

function. CMA-ES is also known to be invariant upon monotonic transformations of the

objective function; these transformations are preserving the ranking of the solution (i.e.

selection mechanism) which is regarded as a robustness property of CMA-ES [69].

Figure 3.5 depicts the first six generations of CMA-ES on a convex problem. Starting

from an isotropic variance, the offspring population is getting adapted to the landscape

of the objective function. The secret behind such adaptation processes will be outlined

in the rest of Section 3.2.3. Starting from Algorithm 3.2 at a given generation k, we will

now describe how the distribution Ck as well as the step size σCMA-ES
k

are updated in

the CMA-ES framework.

3.2.3.1 The parent update

In Algorithm 3.2, the directions di
k
used for the offspring generation are generally drawn

from a given distribution Ck. In CMA-ES context, the distribution is chosen to be a

multivariate normal distribution of mean zero and covariance matrix Ck denoted by

N (0, Ck). Following such choice for the mutations distribution, one fulfilled all the

mutations requirements specified earlier in Section 3.1.4. The offspring generation is

then completed as follows:

yik+1 = xk + σCMA-ESk N (0, Ck) , for i = 1, . . . , λ

The covariance matrix Ck reflects the landscape of the objective function, and serves to

steer the exploration to better zones. The step size σES
k
is used as a global scaling factor

for the covariance matrix. More insights on both the covariance matrix and the step size

parameter will be outlined later in Sections 3.2.3.2 and 3.2.3.3. After the generation of

λ individuals, the mean parent is updated using the µ best individuals in terms of the



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 43

x
0

x

y

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(a) Initial generation.

x
1

x

y

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(b) Second generation.

x
2

x

y

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(c) Third generation.

x
3

x

y

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(d) Fourth generation.

x
4

x

y

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(e) Fifth generation.

x
5

x

y

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

(f) Sixth generation.

Figure 3.5: A graphical representation of a 2-dimensional run of CMA-ES where
x0 = [−4,−4], the initial step size σ

CMA-ES
0

= 1, and the covariance matrix is isotropic
(i.e. C0 = I2). The population size is λ = 10, the new parent is chosen using the
µ = 5 best individuals. The ellipses show the level sets of the objective function

f(x) = (x1 + x2 − 2)
2 + (x1 − x2)

2. The optimum is located at the point [1, 1].

objective function:

xk+1 =

µ
∑

i=1

ωi
kỹ

i
k+1 = xk + σCMA-ES

k

µ
∑

i=1

ωid̃
i
k+1,



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 44

where ỹi
k+1 (resp. d̃i

k+1) is the the ith best individual (resp. direction) out of the offspring

generation. The number µ is chosen to be equal to λ
2 and the weights (ωi)1≤i≤µ are

normalized, i.e. satisfying
∑µ

i=1 ωi = 1. The default weights are defined as follows:

ωi =
ln(µ+ 2)− ln(i)

µ ln(µ+ 2)− ln(µ!)
, for i = 1, . . . , µ.

3.2.3.2 Covariance matrix update

The adaptation of the covariance matrix targets to include second order information of

the underlying objective function (similarly to the inverse Hessian matrix approxima-

tion in the Quasi-Newton method in classical optimization) [130]. The update of the

covariance matrix is based on two update terms: the rank-one update term [85] and the

rank-µ update term [82]. The first one is computed using the so-called evolution path

pc
k ∈ Rn, updated iteratively as

pc
k+1 = (1− cc)p

c
k + [cc(2− cc)µf ]

1

2 (xk+1 − xk)/σ
CMA-ES
k ,

where cc ∈ (0, 1] is a positive constant depending on the problem dimension n, the

quantity µf = 1/
∑µ

i=1 ω
2
i is a measure characterizing the considered recombination,

and is known as the variance effective selection mass.

The evolution path reflects the steps followed by the mean parent, the rank-one update

consists in adding to the covariance matrix a term that geometrically deforms the density

in the direction pc
k+1 (the next generation is more likely sampled in the direction of pc

k+1,

such statement is equivalent to adding the term (pc
k+1)(p

c
k+1)

⊤ to the covariance ma-

trix). The rank-mu update term is composed of the rank-mu matrix
∑µ

i=1 ωi (d̃
i
k)(d̃

i
k)
⊤,

such update turns out to conduct a natural gradient3 update of the distribution param-

eters [13]. Thus, CMA-ES updates the covariance matrix of Ck as follows:

Ck+1 = (1− c1 − cµ)Ck + c1(p
c
k+1)(p

c
k+1)

⊤ + cµ

µ
∑

i=1

ωi (d̃
i
k)(d̃

i
k)
⊤.

The initial evolution path pc
0, cc, c1, and cµ are the algorithm parameters (see [78] for

the default values).

3The natural gradient is defined as the gradient of J(θ) the expected objective function under a
search distribution p(x/θ), namely J(θ) = E(f(x)/θ) =

R

f(x)p(x/θ).



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 45

3.2.3.3 Step size update

The CMA-ES’s step size is adapted iteratively according to:

σCMA-ESk+1 = σCMA-ESk exp

(

cσ
dσ

(

‖pσk+1‖

E‖N (0, I)‖ − 1
))

,

where E‖N (0, I)‖ =
√
2Γ(n+1

2
)/Γ(n

2
)4 is the expectation of the ℓ2 norm of an N (0, I)

distributed random vector, the constants cσ, dσ are positive constants, and p
σ
k+1 ∈ Rn is

the current state of the so-called conjugate evolution path [84]. The latter one is updated

using a rank-one update multiplied by the covariance matrix inverse square root of the

last generation, i.e. meaning [Ck]
−

1

2 (xk+1−xk)/σCMA-ESk . The complete update formula

is as follows:

pσk+1 = (1− cσ)p
σ
k +

√

cσ(2− cσ)µf [Ck]
−

1

2 (xk+1 − xk)/σ
CMA-ES
k ,

the constants pc0, cσ, and dσ are parameters of the algorithm (see [78] for the default

values).

3.2.4 Local meta-models and ES’s

The main difficulty for applying ES’s to real-world applications is that ES’s may need

a large number of objective function evaluations to converge. Moreover, the objective

function evaluations are not always cheap in terms of CPU cost in many real-world

applications. Either an explicit objective function may not be available, or its evaluation

can be computationally very expensive. In all cases, it is necessary to estimate the

objective function using model based techniques, known as fitness approximation in the

evolutionary computation community. For ES’s, various model based technics have been

proposed. Jin [101] presents a comprehensive survey of the most popular model based

technics currently used with evolutionary algorithms, in particular, evolution strategies.

(µ/µW , λ)–ES does not use explicitly information from the objective function except for

the ranking. Thus, a model that can preserve the ranking of the objective function would

be enough. On the light of such idea, Kern et al [105] proposed an algorithm where the

quality of a meta-model is measured using only the information coming from the change

in the exact ranking of the best individuals. The construction of the meta-model is based

on a locally weighted regression assisted by an approximate ranking procedure [147].

4Γ(.) denote the Gamma function, i.e. Γ(t) =
R

+∞

0
x
t−1

e
−xdx.



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 46

3.2.4.1 Locally weighted regression

Earlier in Section 2.1.2 of Chapter 2, we emphasized approximation model technics

based on a second-order Taylor series expansion. Basically, in a derivative-free context,

one uses quadratic interpolation to build the model. Based on the same idea, locally

weighted regression [14] attempts to build a model using an interpolation set (known as

training data in the evolutionary computing community). Thanks to a kernel weighting

procedure, the constructed models tend to be more adapted to the topography of the

objective function. An algorithmic description can be made as follows. Let x ∈ Rn be the

point to be evaluated with an approximate interpolation modelm. Let Y = {yi}1≤i≤p be

an interpolation set of p points near the query point x and {f(yi)}1≤i≤p the associated

objective function values. The local model for a given interpolation set at the point x

is of the form:

m(x, αφ) =

q
∑

j=1

αjφj(x),

where αφ = (α1, . . . , αq)
⊤ ∈ Rq and {φi}

q
i=1

be a given basis of Pdn, which is a set of q
polynomials of degree ≤ d (see Section 2.1.2 of Chapter 2 for more details).

Rather than minimizing directly the gap between the model values {m(yi, φ)}1≤i≤p and

the interpolation values {f(yi)}1≤i≤p to find the best coefficients αφ, locally weighted

regression minimizes the same gap but by mostly taking into account more the closest

points. The procedure is equivalent to minimizing a training criterion function C with

respect to the interpolation coefficients αφ of the local model m at the point x. The

criterion function has the following form:

C(x) =

p
∑

j=1

[

(m(yj , αφ)− yj)2K

(

d(yj , x)

h

)]

, (3.10)

where K(.) is a kernel weighting function, d(yj , x) is the distance between the inter-

polation point yj and x, and h is a bandwidth chosen as the distance of k-th near-

est neighbor interpolation point, in Y , to the point x. The distance used in [105]

for d(yj , x) is preconditioned with the covariance matrix C used in the CMA-ES, i.e.

d(yj , x) = ‖yj − x‖C =
√

(yj − x)⊤C−1(yj − x). The reason behind such a choice is

that the covariance matrix contains information on the local topography of the objec-

tive function that one is trying to exploit [105]. A bi-quadratic form is generally used

as a kernel function:

K(ξ) =







(1− ξ2)2 if ξ < 1,

0 otherwise.



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 47

Local regression models are shown to be not very dependent to the choice of the kernel

function [105], and are not used until sufficiently many objective function evaluations

have been stored.

The minimization of C turns to be equivalent to solve the following normal equations:

(

(WM(φ, Y ))⊤WM(φ, Y )

)

αφ = (WM(φ, Y ))⊤Wf(Y ), (3.11)

where M(φ, Y ) is the coefficient matrix, f(Y ) = (f(y1), f(y2), . . . , f(yp)⊤, and W =

diag
(
√

K(d(y1, x)/h),
√

K(d(y2, x)/h), . . . ,
√

K(d(yp, x)/h)
)

.

3.2.4.2 Approximate ranking procedure

Using the locally weighted regression a local model is built, to incorporate such model

in the ES an approximate ranking procedure is needed [147]. As our ES algorithm uses

only the ranking information from the objective function, the quality of the model will

be measured on how our built model is representing the true ranking. The ranking

procedure aims to tell if the model is good enough to exploit or new true objective

function evaluations should be performed. In the CMA-ES framework, the resulting

method is called the local-meta-model CMA-ES (lmm-CMA-ES) [105]. The choice of

the model is based on the idea that one adds to the interpolation set points until the rank

of the points remains unchanged for two consecutive iteration cycles. As the ranking

process for ES’s depends only on the µ best points, the ranking invariance is checked

only for the µ best individuals, this means that the predicted ranking in the µ first

position should not change for two consecutive iterations to accept the model. A detailed

description of the approximation ranking procedure is depicted in Algorithm 3.3.

For the first call to the approximate ranking procedure, the number ninit is initialized

with the value λ, and gets adapted afterward for the next calls. For each iteration of

the procedure, the objective function is evaluated on a batch number nb of points until

the evaluation rank of the µ best individuals, based on the model, is kept unchanged

for two consecutive iterations. The number nb is chosen to be equal to max(1, λ/10).

To construct a good model, the ranking procedure ends up with ninit + i ∗ nb individual

evaluations, where i ∈ {1, . . . , (λ−ninit)/nb} represents the number of iterations needed

to get the model accepted.



Chapter 3. Stochastic Derivative-Free Optimization & Evolution Strategies 48

Algorithm 3.3: Approximate ranking procedure.

1. Building a model: build of model m and evaluate the points m(yk), k = 1, . . . , λ
based on an interpolation set Y .

2. Ranking: rank individuals according to m, let Rµ
0 = {ỹ1, . . . , ỹµ} by increasing

order: m(ỹ1) ≤ · · · ≤ m(ỹλ).

3. Evaluating : Evaluate the individuals {ỹi}1≤i≤ninit
using the objective function,

and add their evaluations to the set Y .

4. For i ∈ {1, . . . , (λ− ninit)/nb} ,

• Build a model m based on the point set Y , and evaluate the points
m(yk), k = 1, . . . , λ.

• Rank individuals according to m, let Rµ
k = {ỹ1, . . . , ỹµ} by increasing order:

m(ỹ1) ≤ · · · ≤ m(ỹλ).

• If Rµ
k = Rµ

k−1, the model m is accepted and we exit from the loop.

• If Rµ
k '= Rµ

k−1, evaluate the best ninit (not yet evaluated) using the objective
function, and add their evaluations to the set Y .

5. If i > 2 then set ninit to min(ninit, λ− nb), otherwise if i < 2 then set ninit to
max(ninit − nb, nb).

3.3 Conclusion

In this chapter, we presented an overview of ES’s and explained their philosophy and

mechanisms, a detailed description can be found in [30, 32, 32, 142, 150]. We de-

scribe succinctly a class of ES’s, denoted by (µ/µW , λ)–ES, for which we cited some

theoretical aspects, in particular, the main existing global convergence properties of ES

algorithms [20, 24, 26, 30, 33, 75, 96, 97, 100, 151, 169]. We closed the chapter by first

given a detailed description of CMA-ES [85, 86], and then explaining how quadratic

models were used in a large class of ES’s.

This chapter was introduced in preparation to what comes next. The next chapter

will detail our first contribution of this thesis, where we show how to equip (µ/µW , λ)–

ES with some direct search techniques (introduced in Chapter 2) to rigorously achieve

a form of global convergence under reasonable assumptions. Later, we will explicit

another way to incorporate surrogate quadratic models in our proposed ES to enhance

the performance without deteriorating the global convergence properties of the proposed

algorithm.

In all our numerical experiments, we choose CMA-ES as our evolutionary strategy, on

top of which we tested all the proposed modifications.



Chapter 4

Globally Convergent Evolution

Strategies

In this chapter, we emphasize the first contribution of this thesis [58]. We show how to

modify (µ/µW , λ)–ES to rigorously achieve a form of global convergence under reason-

able assumptions.

As far as we know (see Section 3.2.2), most existing global convergence results focused

on specific objective functions where the most studied one is the sphere problem [20, 30,

33, 100, 151, 169]. Other existing global convergence results consider a weak framework

of (µ/µW , λ)–ES, particularly (1, λ)-ES [30, 75, 151, 169]. Previously mentioned works

do not take into account recombination (Section 3.1.2). Recent studies start to include

the recombination constraint for some specific problems and with strong assumptions.

For instance, asymptotic results for (µ/µW , λ)–ES are proved for spherical functions in

the isotropic case and under a scale-invariant adaptation rule for the step size [100].

In our framework, we consider the algorithm (µ/µW , λ)–ES as general as possible, in

the sense that no assumptions are made on the generation distribution. Meanwhile,

one needs to assume the density of certain limit directions in the unit sphere. The

modification of (µ/µW , λ)–ES consists essentially of the reduction of the size of the

steps whenever a sufficient decrease condition on the function values is not verified. By

a sufficient decrease condition we mean a decrease of the type f(xk+1) ≤ f(xk)− ρ(σk),

where σk stands for the step size parameter and ρ(·) obeys some properties, in particular

ρ(t)/t → 0 when t ↓ 0 (see Section 2.2.2). When such a condition is satisfied, the step

size can be reset to the one designed by the ES itself, as long as this latter one is

sufficiently large. We suggest three ways of imposing sufficient decrease for which global

convergence holds under reasonable assumptions.

49



Chapter 4. Globally Convergent Evolution Strategies 50

The technique that we use to proove the global convergence of a such ES resembles what

is done in direct search [18, 52, 166]. In particular, given the type of random sampling

used in these ES, our work is inspired by direct-search methods for nonsmooth functions

outlined in Section 2.2.2, where one must use a set of directions asymptotically dense in

the unit sphere and with a sufficient decrease condition to control the step size. One way

of imposing such condition in the type of ES under consideration is to apply it directly

to the sequence of weighted means. However, ES are population-based algorithms where

a sample set of the offspring is generated at every iteration. Other forms of imposing

this type of decrease which involve the maximum value of the best offspring are also

found globally convergent. In fact, requiring a sufficient decrease on the sequence of

maximum best offspring values renders a globally convergent algorithm. Furthermore,

we will show that demanding this maximum value to sufficiently decrease the weighted

mean leads also to global convergence.

The approach we have taken in our thesis is (i) to focus on deterministic objective func-

tions and (ii) to analyze each algorithm deterministically (considering a single realization

of a stochastic algorithm). In such a way, we were able to use the Clarke calculus and

avoided imposing additional assumptions on the objective function.

The chapter is organized as follows. In Section 4.1, we first describe how to modify

such algorithms to enable them for global convergence. The second part is devoted to

the analysis of global convergence of the modified ES versions. Our numerical experi-

ments comparing the different modified versions of CMA-ES are described in Section 4.2.

Finally, in Section 4.3, we draw some conclusions and perspectives.

4.1 A class of evolution strategies provably global conver-

gent

4.1.1 Globally convergent evolution strategies

The main question we address in this chapter is how to change (µ/µW , λ)–ES algorithm

(see Algorithm 3.2 in Chapter 3), in a minimal way, to make it enjoy some convergence

properties, while preserving as much as possible the original design and goals. We will

target at global convergence in the sense of nonlinear optimization, in other words we

would like to prove some limit form of stationarity for any output sequence of iterates

generated by the algorithm (i.e., for any realization of the algorithm), and we would like

to do this independently of the starting point.



Chapter 4. Globally Convergent Evolution Strategies 51

The modifications to the algorithm will be essentially two, and they have been widely

used in the field of nonlinear optimization, with and without derivatives. First we

need to control the size of the steps taken, and thus we will update separately a step size

parameter σk, letting it take the value of σ
ES
k whenever possible, where σESk is the original

step size of the considered evolution strategy. Controlling the step size is essential as we

know that most steps used in nonlinear optimization are too large away from stationarity

— an example is Newton’s method without a line search, which may take arbitrarily large

steps if not started sufficiently close to a problem solution. Secondly we need to impose

some form of sufficient decrease on the objective function values to be able to declare an

iteration successful and thus avoiding a step size reduction. These two techniques, step

size update and imposition of sufficient decrease on the objective function values, are

thus closely related since an iteration is declared unsuccessful and the step size reduced

when the sufficient decrease condition is not satisfied. This condition involves a function

ρ(σk) of the step size σk, where ρ(·) is a forcing function [108] (see Definition 2.8, one

can think for instance of ρ(t) = t2).

Since the (µ/µW , λ)–ES algorithm evaluates the objective function at the offspring sam-

ple points but then computes new points around a weighted sum of the parents selected,

it is not clear how this does impose sufficient decrease. In fact, there are several ways

of proceeding in the follwing. A first possibility (denoted by mean/mean) is to require

the weighted means to sufficiently decrease the objective function, see Figure (4.1(a))

below, which obviously requires an extra function evaluation per iteration.

(a) The mean/mean version. (b) The max/max version. (c) The max/mean version.

Figure 4.1: A 2-D illustration of three possible globally convergent evolution strate-
gies. The ellipses show the level sets of the objective function.

A second possibility to impose sufficient decrease (referred to as max/max), based en-

tirely on the objective function values already computed for the parent samples, is to

require the maximum of these values to be sufficiently decreasing, see Figure (4.1(b)).

Then, it would immediately occur to combine these first two possibilities, asking the

new maximum value to reduce sufficiently the value of the previous mean or, vice-versa,

requiring the value of the new mean to reduce sufficiently the previous maximum. The

lack of theoretical support of the latter possibility made us consider only the first one,



Chapter 4. Globally Convergent Evolution Strategies 52

called max/mean, see the Figure (4.1(c)). Algorithm 4.1 outlines the modified form of

the (µ/µW , λ)–ES.

The version mean/mean is clear in the sense that it imposes the sufficient decrease con-

dition directly on the function values computed at the sequence of minimizer candidates,

the weighted sums. It is also around these weighted sums that new points are randomly

generated. Versions max/max and mean/max, however, operate based or partially based

on the function values at the parents samples (on the maximum of those). Thus, in these

two versions, one needs to impose a condition of the form (4.1) below to balance the

function values at the parents samples and the function value at the weighted sum.

When the objective function is convex, condition (4.1) would be true for any weights

in S, but neither such a condition is realistic when optimizing without derivatives nor

would perhaps the type of techniques explored in this work be the most appropriate

under such a scenario. Note that one also imposes bounds on all directions dik used

by the algorithm. This modification is, however, very mild since the lower bound dmin

can be chosen very close to zero and the upper bound dmax set to a very large number.

Moreover, one can think of working always with normalized directions which removes

the need to impose such bounds.

4.1.2 Convergence

Under appropriate assumptions we will now prove global convergence of the modified

versions of the considered class of ES (again, by global convergence, we mean some form

of limit first-order stationary for arbitrary starting points). Our convergence analysis is

inspired by direct-search methods for nonsmooth functions outlined in Section 2.2. The

analysis of the algorithm is done deterministically, as if we were considering a single

realization of a stochastic algorithm.

4.1.2.1 The step size behavior

As we have seen before, an iteration is considered successful only if it produces a point

that has sufficiently decreased some value of f . Insisting on a sufficient decrease will

guarantee that a subsequence of step sizes will converge to zero. In fact, since ρ(σk)

is a monotonically nondecreasing function of the step size σk, we will see that such a

step size cannot be bounded away from zero since otherwise some value of f would tend

to −∞. Imposing sufficient decrease will make it harder to have a successful step and

therefore will generate more unsuccessful steps. We start thus by showing that there is

a subsequence of iterations for which the step size parameter σk tends to zero.



Chapter 4. Globally Convergent Evolution Strategies 53

Algorithm 4.1: A class of globally convergent ES’s.

Initialization: Use the same initialization of Algorithm 3.2. Choose constants
β1, β2, dmin, dmax such that 0 < β1 ≤ β2 < 1 and 0 < dmin < dmax. Select a forcing
function ρ(·). Set k = 0.

Until some stopping criterion is satisfied:

1. Offspring Generation: Compute new sample points Yk+1 = {y1k+1
, . . . , yλk+1

}
such that

yik+1 = xk + σkd
i
k,

where dik is drawn from the distribution Ck and obeys dmin ≤ ‖d
i
k‖ ≤ dmax,

i = 1, . . . , λ.

2. Parent Selection: Evaluate f(yik+1
), i = 1, . . . , λ, and reorder the offspring points

in Yk+1 = {ỹ
1
k+1

, . . . , ỹλk+1
} by increasing order: f(ỹ1k+1

) ≤ · · · ≤ f(ỹλk+1
).

Select the new parents as the best µ offspring sample points {ỹ1k+1
, . . . , ỹ

µ
k+1
},

and compute their weighted mean

xtrialk+1 =

µ
∑

i=1

ωi
kỹ

i
k+1.

Evaluate f(xtrialk+1
). In versions max/max and max/mean, update the weights, if

necessary, such that (ω1
k, . . . , ω

µ
k ) ∈ S and

f(xtrialk+1 ) = f

(

µ
∑

i=1

ωi
kỹ

i
k+1

)

≤

µ
∑

i=1

ωi
kf(ỹ

i
k+1). (4.1)

3. Imposing Sufficient Decrease:

If (version mean/mean)

f(xtrialk+1 ) ≤ f(xk)− ρ(σk), (4.2)

or (version max/max)
f(ỹµk+1

) ≤ f(xµk)− ρ(σk), (4.3)

or (version max/mean)

f(ỹµk+1
) ≤ f(xk)− ρ(σk), (4.4)

then consider the iteration successful, set xk+1 = xtrialk+1
, and σk+1 ≥ σk (for

example σk+1 = max{σk, σ
ES
k }). Set x

µ
k+1

= ỹ
µ
k+1

in version max/max.

Otherwise, consider the iteration unsuccessful, set xk+1 = xk (and x
µ
k+1

= x
µ
k for

max/max) and σk+1 = β̄kσk, with β̄k ∈ (β1, β2).

4. ES Updates: Update the ES step length σESk+1
, the distribution Ck, and the

weights (ω1
k+1

, . . . , ω
µ
k+1

) ∈ S. Increment k and return to Step 1.



Chapter 4. Globally Convergent Evolution Strategies 54

Lemma 4.1. Consider a sequence of iterations generated by Algorithm 4.1 without any

stopping criterion. Let f be bounded below. Then lim infk→+∞ σk = 0.

Proof. Suppose that there exists a σ > 0 such that σk > σ for all k. If there is an

infinite number of successful iterations, this leads to a contradiction to the fact that f is

bounded below. Since ρ is a nondecreasing, positive function, one has ρ(σk) ≥ ρ(σ) > 0.

Let us consider the three versions separately, as we shall see now.

In the version mean/mean, we obtain f(xk+1) ≤ f(xk)− ρ(σ) for all k, which obviously

contradicts the boundedness below of f . In the version max/max, we obtain f(xµk+1) ≤

f(xµk)− ρ(σ) for all k, which also trivially contradicts the boundedness below of f . For

the max/mean version, one has

f(ỹik+1) ≤ f(xµk+1) ≤ f(xk)− ρ(σk), i = 1, . . . , µ.

Thus, multiplying these inequalities by the weights ωi
k, i = 1, . . . , µ, and adding them

up, lead us to
µ
∑

i=1

ωi
kf(ỹ

i
k+1) ≤ f(xk)− ρ(σk),

and from condition (4.1) imposed on the weights in Step 2 of Algorithm 4.1, we obtain

f(xk+1) ≤ f(xk)− ρ(σk), and the contradiction is also easily reached.

The proof is thus completed if there is an infinite number of successful iterations. How-

ever, if no more successful iterations occur after a certain order, then this also leads to a

contradiction. The conclusion is that one must have a subsequence of iterations driving

σk to zero.

From the fact that σk is only reduced in unsuccessful iterations and by a factor not

approaching zero, one can then conclude the following.

Lemma 4.2. Consider a sequence of iterations generated by Algorithm 4.1 without any

stopping criterion. Let f be bounded below.

There exists a subsequence K of unsuccessful iterates for which limk∈K σk = 0.

If the sequence {xk} is bounded, then there exists an x∗ and a subsequence K of unsuc-

cessful iterates for which limk∈K σk = 0 and limk∈K xk = x∗.

Proof. From Lemma 4.1, there must exist an infinite subsequence K of unsuccessful

iterates for which σk+1 goes to zero. In a such case we have σk = (1/β̄k)σk+1, β̄k ∈

(β1, β2), and β1 > 0, and thus σk → 0, for k ∈ K, too.



Chapter 4. Globally Convergent Evolution Strategies 55

The second part of the lemma is also easily proved by extracting a convergent subse-

quence of the subsequence K of the first part for which xk converges to x∗.

The above lemma ensures under mild conditions the existence of convergent subse-

quences of unsuccessful iterations for which the step size tends to zero. Known as

refining subsequences (see Section 2.11).

4.1.2.2 Global convergence

The global convergence in our case is extracted from refining subsequences. One will

assume that the function f is Lipschitz continuous near the limit point x∗ of a refining

subsequence, so that the Clarke generalized derivative [43]

f◦(x∗; d) = lim sup
x→x∗,t↓0

f(x+ td)− f(x)

t

exists for all d ∈ Rn. The point x∗ is then Clarke stationary if f
◦(x∗; d) ≥ 0, ∀d ∈ Rn

(See Section 2.2.3.2 for more details on the non-smooth Clarke calculus).

Our first global convergence result concerns only the mean/mean version.

Theorem 4.3. Consider the version mean/mean and let ak =
∑µ

i=1 ω
i
kd

i
k. Assume that

the directions dik’s and the weights ω
i
k’s are such that ‖ak‖ is bounded away from zero

when σk → 0. Let x∗ be the limit point of a convergent subsequence of unsuccessful

iterates {xk}K for which limk∈K σk = 0. Assume that f is Lipschitz continuous near x∗

with constant ν > 0.

If d is a limit point of {ak/‖ak‖}K , then f◦(x∗; d) ≥ 0.

If the set of limit points {ak/‖ak‖}K is dense in the unit sphere, then x∗ is a Clarke

stationary point.

Proof. Let d be a limit point of {ak/‖ak‖}K . Then it must exist a subsequence of K
′ of

K such that ak/‖ak‖ → d on K ′. On the other hand, we have for all k that

xtrialk+1 =

µ
∑

i=1

ωikỹ
i
k+1 = xk + σk

µ
∑

i=1

ωikd
i
k = xk + σkak,

and, for k ∈ K,

f(xk + σkak) > f(xk)− ρ(σk).

Also, since the directions dik and the weights are bounded above for all k and i, ak is

bounded above for all k, and so σk‖ak‖ tends to zero when σk does.



Chapter 4. Globally Convergent Evolution Strategies 56

Thus, from the definition of the Clarke generalized derivative,

f◦(x∗; d) = lim sup
x→x∗,t↓0

f(x+ td)− f(x)

t

≥ lim sup
k∈K′

f(xk + σk‖ak‖(ak/‖ak‖))− f(xk)

σk‖ak‖
− rk,

where, from the Lipschitz continuity of f near x∗,

rk =
f(xk + σkak)− f(xk + σk‖ak‖d)

σk‖ak‖
≤ ν

∥

∥

∥

∥

ak
‖ak‖

− d

∥

∥

∥

∥

tends to zero on K ′. Finally, since ‖ak‖ is bounded away from zero in K ′,

f◦(x∗; d) ≥ lim sup
k∈K′

f(xk + σkak)− f(xk) + ρ(σk)

σk‖ak‖
−

ρ(σk)

σk‖ak‖
− rk

= lim sup
k∈K′

f(xk + σkak)− f(xk) + ρ(σk)

σk‖ak‖

≥ 0.

Since the Clarke generalized derivative f◦(x∗; ·) is continuous in its second argument [43],

it is then evident that if the set of limit points {ak/‖ak‖}K is dense in the unit sphere,

f◦(x∗; d) ≥ 0 for all d ∈ R
n.

Now we prove global convergence for the two other versions (max/max and max/mean).

Theorem 4.4. Consider the versions max/max and max/mean. Let x∗ be the limit point

of a convergent subsequence of unsuccessful iterates {xk}K for which limk∈K σk = 0.

Assume that f is Lipschitz continuous near x∗ with constant ν > 0.

If d is a limit point of {dikk /‖dikk ‖}K , where ik ∈ argmax1≤i≤µ f(y
i
k+1), then f◦(x∗; d) ≥ 0.

If, for each i ∈ {1, . . . , µ}, the set of limit points {dik/‖d
i
k‖}K is dense in the unit sphere,

then x∗ is a Clarke stationary point.

Proof. The proof follows the same lines of the proof of the mean/mean version. In the

max/max case, one departs from the inequality that is true when k ∈ K,

f(xµ
k+1) > f(xµ

k)− ρ(σk),

which implies for a certain ik

f(yikk+1) = f(xµ
k+1) > f(xµ

k)− ρ(σk).



Chapter 4. Globally Convergent Evolution Strategies 57

Now, notice that xµk+1 = x
µ
k = · · · = x

µ
k−pk

, where k − pk − 1 is the index of the last

successful iteration before k. Thus,

f(yikk+1) > f(xµk−pk)− ρ(σk) ≥ f(ỹik−pk)− ρ(σk), i = 1, . . . , µ.

Multiplying these inequalities by the weights ωik−pk−1, i = 1, . . . , µ, and adding them up

implies

f(yikk+1) >

µ
∑

i=1

ωik−pk−1f(ỹ
i
k−pk

)− ρ(σk),

Condition (4.1) imposed on the weights in Step 2 of Algorithm 4.1 with k replaced by

k − pk − 1 implies

f(yikk+1) > f

(

µ
∑

i=1

ωik−pk−1ỹ
i
k−pk

)

− ρ(σk).

Since
∑µ

i=1 ω
i
k−pk−1

ỹik−pk = xtrialk−pk
= xk−pk = xk (because k − pk − 1 is successful and

k − pk, . . . , k are unsuccessful) and y
ik
k+1 = xk + σkd

ik
k , we arrive at

f(xk + σkd
ik
k ) > f(xk)− ρ(σk). (4.5)

(If there is no successful iteration before the k-th one, then, since x0 = x
µ
0
, we will

directly obtain (4.5).)

Note that in the max/mean version we arrive directly at f(xk + σkd
ik
k ) > f(xk)− ρ(σk).

From this point, and for both cases (max/max and max/mean), the proof is nearly

identical to the proof of Theorem 4.3 (in particular note that dikk is forced to be bounded

away from zero by Algorithm 4.1).

When f is strict differentiable at x∗ (in the sense of Clarke, see Section 2.2.3.2, meaning

that there exists ∇f(x∗) such that f
◦(x∗; d) = 〈∇f(x∗), d〉 for all d), one can conclude

that ∇f(x∗) = 0.

4.1.3 Convergence assumptions

Global convergence in Theorems 4.3 and 4.4 is shown under several additional as-

sumptions. The first one is the bounds on the step length dmin ≤ ‖dik‖ ≤ dmax, such

assumption is quite irrelevant, as in practice for all the tested problems these step lengths

were never seen out of the bounds dmin and dmax. The boundedness of ‖ak‖ away from

zero is also not very hard to fulfill, as if one has ak =
∑µ

i=1 ω
i
kd

i
k = 0 it suffices to modify

the weights {ωik}1≤i≤µ so that ak *= 0.



Chapter 4. Globally Convergent Evolution Strategies 58

The assumption that any subsequence of normalized steps is dense on the unit sphere

is less trivial. In the sense that the assumption regarding the directions ak applies to

a given refining subsequence K and not to the whole sequence of iterates, but such a

strengthening of the requirements on the density of the directions seems necessary for

these type of directional methods (see [18, 166]).

Then, the question that arises concerns the density in general of the ak’s in the unit

sphere. For the purpose of this discussion, and to keep things simple, let us assume

that the weights are fixed for all k (which is a valid choice for Theorem 4.3 but not

for Theorem 4.4). Let us assume also that dik’s are drawn from a multivariate normal

distribution with mean 0 and covariance matrix C. The direction ak =
∑µ

i=1 ω
idik is

then a realization of a random vector A following a multivariate normal distribution with

mean 0 and covariance matrix
∑µ

i=1(ω
i)2C. Then, for any y ∈ Rn such that ‖y‖ = 1

and for any δ ∈ (0, 1), there exists a positive constant η such that

P (cos(A/‖A‖, y) ≥ 1− δ) ≥ η (4.6)

(see for instance the proof of Lemma B.2 in [73]), such property guarantees us the density

of the ak’s in the unit sphere.

Finally, under the random generation framework of the previous paragraph one can also

see that we could fix an M > 0 (preferably small) at the initialization of the algorithm

and then re-sample the dik’s again whenever ‖ak‖ < M . The density of the ak’s in the

unit sphere (with probability one) would then result from the fact that, for the same

reasons, for any y ∈ Rn such that ‖y‖ = 1 and for any δ ∈ (0, 1), there would still exist

a positive constant η such that P (cos(A/‖A‖, y) ≥ 1− δ, ‖A‖ ≥M) ≥ η.

4.2 Numerical experiments

We made a number of numerical experiments to try to measure the effect of our mod-

ifications of ES. We are mainly interested in observing the changes that occur in ES

in terms of an efficient and robust search of stationarity. We chose CMA-ES as our

evolutionary strategy, on top of which we tested our globally convergent modifications.

For CMA-ES details the reader is referred to Section 3.2.3.

For our numerical experiments, we first compare our modifications of CMA-ES among

each other and choose the best modified version. For the second part, we have compared

the chosen modified CMA-ES and the pure one with the direct search method MADS

for which we used the implementation given in the NOMAD package [3, 16, 116], ver-

sion 3.6.1 (C++ version linked to Matlab via a mex interface), where we enabled the



Chapter 4. Globally Convergent Evolution Strategies 59

option DISABLE MODELS, meaning that no modeling is used in MADS, both in the search

step and in the construction or order of usage of directions in the poll step.The mod-

els are disabled since our solvers at this stage are not using any modeling to speed

up the convergence. The reader is referred to Chapter 6 for model incorporation into

direct-search methods.

4.2.1 Algorithmic choices

A number of choices regarding parameters and updates of Algorithm 4.1 were made

before the tests were launched.

Regarding initializations, the values of λ and µ and of the initial weights followed the

choices in CMA-ES (see [78]):

λ = 4 + floor(3 log(n)),

µ = floor(λ/2),

ωi
0 = ai/(a1 + · · ·+ aµ), with ai = log(λ/2 + 1/2)− log(i), i = 1, . . . , µ,

where floor(·) rounds to the nearest integer. The values for c1, cµ, cC , cσ, and dσ are

chosen also as in the CMA-ES implementation (see [78]) as

c1 = 2/((n+ 1.3)2 + µf ),

cµ = min{1− c1, 2(µf − 2 + 1/µf )/((n+ 2)
2 + µf )},

cC = (4 + µf/n)/(n+ 4 + 2µf/n),

cσ = (µf + 2)/(n+ µf + 5),

dσ = 1 + 2max{0, [(µf − 1)/(n+ 1)]
1

2 − 1}+ cσ, with

µf = (ω10 + · · ·+ ωµ
0 )

2/((ω10)
2 + · · ·+ (ωµ

0 )
2).

The initial step length parameters were set to σ0 = σCMA-ES
0 = 1. The forcing function

selected was ρ(σ) = 10−4σ2.

To reduce the step length in unsuccessful iterations we used σk+1 = 0.5σk which

corresponds to setting β1 = β2 = 0.5. In successful iterations, we used σk+1 =

max{σk, σ
CMA-ES
k }, in attempt to reset the step length to the ES one whenever pos-

sible.

The directions di
k, i = 1, . . . , λ, were drawn from the multivariate normal distribution Ck

updated by CMA-ES, scaled if necessary to obey the safeguards dmin ≤ ‖di
k‖ ≤ dmax,

with dmin = 10
−10, dmax = 10

10. In the experiments reported, we have never seen a run

where there was a need to impose these safeguards.



Chapter 4. Globally Convergent Evolution Strategies 60

Updating the weights in Step 2 of Algorithm 4.1 to enforce (4.1) was not activated. On

the one hand, we wanted the least amount of changes in CMA-ES. On the other hand,

such an update of the weights in Step 2 did not seem to have a real impact on the results

for versions max/max and mean/max, perhaps due to the convexity near the solutions

present in many of the problems.

4.2.2 Test problems

Our test set P is the one suggested in [125] and comprises 22 nonlinear vector func-

tions from the CUTEr collection. The problems in P are then defined by a vector

(kp, np,mp, sp) of integers. The integer kp is a reference number for the underlying

CUTEr [71] vector function, np is the number of variables, mp is the number of compo-

nents F1, . . . , Fmp
of the corresponding vector function F . The objective function value

is then computed as the l2-norm of the vector function F .

The integer sp ∈ {0, 1} defines the starting point via x0 = 10spxs, where xs is the

standard CUTEr starting point for the corresponding function. According to [125], the

use of sp = 1 is helpful for testing solvers from a more remote starting point since the

standard starting point tends to be too close to a solution for many of the problems.

The test set P is then formed by 53 different problems. No problem is overrepresented

in P in the sense that no function kp appears more than six times. Moreover, no pair

(kp, np) appears more than twice. In all cases,

2 ≤ np ≤ 12, 2 ≤ mp ≤ 65, p = 1, . . . , 53,

with np ≤ mp. Table 4.1 contains the distribution of np across the problems. For other

details see [125].

np 2 3 4 5 6 7 8 9 10 11 12
Number of problems 5 6 5 4 4 5 6 5 4 4 5

Table 4.1: The distribution of np in the test set.

The test problems have been considered in four different types, each having 53 instances:

smooth (least squares problems obtained from applying the ℓ2 norm to the vector func-

tions); nonstochastic noisy (obtained by adding oscillatory noise to the smooth ones);

piecewise smooth (as in the smooth case but using the ℓ1 norm instead); stochastic noisy

(obtained by adding random noise to the smooth ones).



Chapter 4. Globally Convergent Evolution Strategies 61

4.2.3 Test strategies

For our numerical experiments, we chose to work with two types of profiles, data and

performance profiles.

Data profiles

Data profiles [125] were designed for derivative-free optimization and show how well

a solver performs, given some computational budget, when asked to reach a specific

reduction in the objective function value, measured by

f(x0)− f(x) ≥ (1− α)[f(x0)− fL],

where α ∈ (0, 1) is the level of accuracy, x0 is the initial iterate, and fL is the best

objective value found by all solvers tested for a specific problem within a given maxi-

mal computational budget. In derivative-free optimization, such budgets are typically

measured in terms of the number of objective function evaluations.

Data profiles plot the percentage of problems solved by the solvers under consideration

for different values of the computational budget. These budgets are expressed in number

of points (n + 1) required to form a simplex set, allowing the combination of problems

of different dimensions in the same profile. Note that a different function of n could

be chosen, but n+ 1 is natural in derivative-free optimization (since it is the minimum

number of points required to form a positive basis, a simplex gradient, or a model with

first-order accuracy).

We used in our experiments a maximal computational budget consisting of 50n function

evaluations, as we are primarily interested in the behavior of the algorithms for problems

where the evaluation of the objective function is expensive. As for the levels of accuracy,

we chose two values, α = 10−3 and α = 10−7. Since the best objective value fL is chosen

as the best value found by all solvers considered, but under a relatively low maximal

computational budget, it makes some sense to consider a high accuracy level (like 10−7

or less).

Performance profiles

Performance profiles [60] are defined in terms of a performance measure tp,s > 0 obtained

for each problem p ∈ P and solver s ∈ S. For example, this measure could be based on

the amount of computing time or the number of function evaluations required to satisfy



Chapter 4. Globally Convergent Evolution Strategies 62

a convergence test. Larger values of tp,s indicate worse performance. For any pair (p, s)

of problem p and solver s, the performance ratio is defined by

rp,s =
tp,s

min{tp,s : s ∈ S}
.

The performance profile of a solver s ∈ S is then defined as the fraction of problems

where the performance ratio is at most τ , that is,

ρs(τ) =
1

|P|
size{p ∈ P : rp,s ≤ τ},

where |P| denotes the cardinality of P . Performance profiles seek to capture how well

the solver s ∈ S performs relatively to the others in S for all the problems in P. Note,

in particular, that ρs(1) is the fraction of problems for which solver s ∈ S performs the

best (efficiency), and that for τ sufficiently large, ρs(τ) is the fraction of problems solved

by s ∈ S (robustness). In general, ρs(τ) is the fraction of problems with a performance

ratio rp,s bounded by τ , and thus solvers with higher values for ρs(τ) are preferable. In

this thesis, the performance profiles are plotted in a log2-scale to better visualize the

relative efficiencies of the solvers (τ = 1 will then correspond to τ = 0).

It was suggested in [61] to use the same (scale invariant) convergence test for all solvers

compared using performance profiles. The convergence test used in our experiments was

f(x)− f∗ ≤ α(|f∗|+ 1), (4.7)

where α is an accuracy level and f∗ is an approximation for the optimal value of the

problem being tested. The convention rp,s = +∞ is used when the solver s fails to satisfy

the convergence test on problem p. We computed f∗ as the best objective function value

found by the four CMA-ES solvers (our three modified versions and the pure one) using

an extremely large computational budget (a number of function evaluations equal to

500000). Thus, in this case, and as opposed to the data profiles case, it makes more

sense not to select the accuracy level too small, and our tests were performed with

α = 10−2, 10−4. The performance profiles were then computed for a maximum of 1500

function evaluations.

4.2.4 Numerical results

Comparison of the three modified versions of CMA-ES

The purpose of this section is to compare the three modified versions of CMA-ES

(mean/mean, max/max, and max/mean) to each other. Our experiments have shown



Chapter 4. Globally Convergent Evolution Strategies 63

that the mean/mean version emerges as the best one.

We report here only the results for the class of smooth problems of Section 4.2.2, since

the results of the other class problems followed a very similar trend (See Appendix A).

Figure 4.2 depicts the data profile using two levels of accuracy 10−3 and 10−7. The

data profiles are clearly favorable to the mean/mean version. For instance, with an

accuracy of 10−3 and within a unit budget of 40, i.e., 40(n+1) function evaluations,

the mean/mean version is able to solve about 70% of the problems when the max/max

version is solving around 35%. The max/mean version shows the worst profile by solving

no more than 20%. The advantage of the mean/mean version for higher accuracy, i.e.,

10−7, is more obvious.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for smooth problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

max/mean

max/max

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for smooth problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

max/mean

max/max

(b) Accuracy level of 10−7.

Figure 4.2: Data profiles computed for the set of smooth problems, considering the
two levels of accuracy, 10−3 and 10−7 (for the three modified versions).

Figure 4.3 depicts the performance profiles for smooth problems using two levels of

accuracy 10−2 and 10−4. Again, the mean/mean version emerges as the best one and

outperforms all the other versions in efficiency as well as in robustness. For instance,

with an accuracy 10−2 of the mean/mean version is able to solve, i.e, log2(τ) = 0,

more than 50% of the problems, the max/max version is solving around 20% of the

problems. The max/mean version is showing the worst profile by solving less then 5%

of the problems. The Robust behavior of the mean/mean version is clear as far as the

value of τ is getting higher, by attaining a robustness of about 75%.

Comparison with other solvers

The previous section showed that the mean/mean version is performing the best among

the three versions tested. Thus, in this section only the mean/mean version is used for



Chapter 4. Globally Convergent Evolution Strategies 64

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for smooth problems, α=0.01

mean/mean

max/mean

max/max

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for smooth problems, α=0.0001

mean/mean

max/mean

max/max

(b) Accuracy level of 10−4.

Figure 4.3: Performance profiles computed for the set of smooth problems with a
logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4 (for the three

modified versions).

the comparison with the pure CMA-ES and MADS solvers.

Figures 4.4–4.7 report the data profiles obtained by the mean/mean and pure versions

and by MADS, for the four types of problems, considering the two different levels of accu-

racy, α = 10−3 and α = 10−7 (Figure 4.4: smooth problems; Figure 4.5: nonstochastic

noisy problems; Figure 4.6: piecewise smooth problems; Figure 4.7: stochastic noisy

problems).

MADS exhibits a slightly better performance than the mean/mean version in the data

profiles (which test smaller budgets, i.e., up to 500 function evaluation). But compared

to the pure CMA-ES, the mean/mean version is performing significantly better. For

instance, by looking to the smooth problems (see Figure 4.4), for an accuracy level of

10−3 and for a unit budget of 25, CMA-ES is solving only 45% of the problems when

the mean/mean version and MADS are solving around 70% of the tested problems. For

high accuracy, CMA-ES shows a significant deterioration compared to the other solvers.

Figures 4.8–4.11 report performance profiles obtained by the mean/mean and pure ver-

sions and by MADS, for the four types of problems, considering the two different lev-

els of accuracy, α = 10−2 and α = 10−4 (Figure 4.8: smooth problems; Figure 4.9:

nonstochastic noisy problems; Figure 4.10: piecewise smooth problems; Figure 4.11:

stochastic noisy problems).

In terms of performance profiles, the mean/mean version performs roughly the same

as MADS in efficiency but better in robustness. For example in Figure 4.8 and for an

accuracy of 10−2, the mean/mean and MADS solvers are able to solve around 40% of



Chapter 4. Globally Convergent Evolution Strategies 65

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for smooth problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

cma−es

mean/mean

mads

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for smooth problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

cma−es

mean/mean

mads

(b) Accuracy level of 10−7.

Figure 4.4: Data profiles computed for the set of smooth problems, considering the
two levels of accuracy, 10−3 and 10−7.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for nonstochastic noisy problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

cma−es

mean/mean

mads

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for nonstochastic noisy problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

cma−es

mean/mean

mads

(b) Accuracy level of 10−7.

Figure 4.5: Data profiles computed for the set of nonstochastic noisy problems, con-
sidering the two levels of accuracy, 10−3 and 10−7.

smooth problems when CMA-ES is solving 10% of the same test problems. In terms of

Robustness, MADS show the worst performance over the other solvers. The advantage

of the mean/mean version over the pure CMA-ES is obvious, with the exception of

the piecewise problems where the pure CMA-ES overcomes in terms of robustness the

mean/mean version (see Figure 4.10).

4.2.5 Global optimization tests

In this section we are interested in assessing the impact of our modifications on the

ability of CMA-ES to identify the global minimum on problems with a high number of

different local minimizers.



Chapter 4. Globally Convergent Evolution Strategies 66

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for piecewise smooth problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

cma−es

mean/mean

mads

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for piecewise smooth problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

cma−es

mean/mean

mads

(b) Accuracy level of 10−7.

Figure 4.6: Data profiles computed for the set of piecewise smooth problems, consid-
ering the two levels of accuracy, 10−3 and 10−7.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for stochastic noisy problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

cma−es

mean/mean

mads

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for stochastic noisy problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

cma−es

mean/mean

mads

(b) Accuracy level of 10−7.

Figure 4.7: Data profiles computed for the set of stochastic noisy problems, consid-
ering the two levels of accuracy, 10−3 and 10−7.

We recall that the mean/mean version exhibited the best performance among the three

modified versions of CMA-ES on the test set mentioned in Section 4.2.2. Therefore in

this section we will report a comparison of CMA-ES only against this version.

The test set is now composed of the 19 highly multi-modal problems used in [80, 81],

where the last 9 are noisy (see Tables 4.2–4.3). We selected dimensions n = 10, 20, and,

for each dimension, population sizes of λ = 2n, 10n. For each case and using a large

maximal computational budget, we ran our mean/mean CMA-ES version and pure

CMA-ES, from 20 different starting points randomly chosen using the Matlab function

randn. We then computed the median of all the 20 ‘optimal’ values found for each

algorithm as well as the median of the respective number of function evaluations taken.

Each run was ended when the function value falls below a certain fitness value, chosen



Chapter 4. Globally Convergent Evolution Strategies 67

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for smooth problems, α=0.01

cma−es

mean/mean

mads

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for smooth problems, α=0.0001

cma−es

mean/mean

mads

(b) Accuracy level of 10−4.

Figure 4.8: Performance profiles computed for the set of smooth problems with a
logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for nonstochastic noisy problems, α=0.01

cma−es

mean/mean

mads

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)
Log

2
 scaled performance profiles for nonstochastic noisy problems, α=0.0001

cma−es

mean/mean

mads

(b) Accuracy level of 10−4.

Figure 4.9: Performance profiles computed for the set of nonstochastic noisy problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4.

Problem Number 1 2 3 4 5 6 7 8 9 10
Problem index in [81] f15 f16 f17 f18 f19 f20 f21 f22 f23 f24

Table 4.2: Noiseless problems.

Problem Number 11 12 13 14 15 16 17 18 19
Problem index in [80] f122 f123 f124 f125 f126 f127 f128 f129 f130

Table 4.3: Noisy problems.

as f∗ + 10−7, where f∗ is the optimal value of the corresponding problem, or when the

number of function evaluations reaches 250000. To avoid division by large numbers we

also stop a run once σk becomes smaller than 10−10. It must be made clear that this

last criterion makes our versions (in particular the mean/mean one) more parsimonious

in terms of function evaluations but it may also possibly restrict the search of the global



Chapter 4. Globally Convergent Evolution Strategies 68

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for piecewise smooth problems, α=0.01

cma−es

mean/mean

mads

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for piecewise smooth problems, α=0.0001

cma−es

mean/mean

mads

(b) Accuracy level of 10−4.

Figure 4.10: Performance profiles computed for the set of piecewise smooth problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for stochastic noisy problems, α=0.01

cma−es

mean/mean

mads

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)
Log

2
 scaled performance profiles for stochastic noisy problems, α=0.0001

cma−es

mean/mean

mads

(b) Accuracy level of 10−4.

Figure 4.11: Performance profiles computed for the set of stochastic noisy problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4.

minimum. Note also that the budget is therefore large and the tolerances small since

we are interested in observing the asymptotic ability to determine a global minimum

(such choices are not likely to be affordable in practical application problems where the

objective function is expensive to evaluate).

Figures 4.12(a), 4.13(a), 4.14(a), and 4.15(a) show the median best objective value ob-

tained by the mean/mean and the pure CMA-ES versions, as well as the global optimal

value, for all problem dimensions and population sizes and using a log10-scale. Fig-

ures 4.12(b), 4.13(b), 4.14(b), and 4.15(b) plot the corresponding median number of

objective function evaluations taken. One can see that the pure version of CMA-ES

behaves slightly better, when accurately searching for a global minimizer, in particular

if a larger population size is given. The two approaches, however, exhibit difficulties in



Chapter 4. Globally Convergent Evolution Strategies 69

0 2 4 6 8 10 12 14 16 18 20
−5

−4

−3

−2

−1

0

1

2

3

4

lo
g

1
0
(f

m
in

 −
f o

p
t)

Problem number

cma−es

mean/mean

(a) Best function values (median).

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

5

N
u
m

b
e
r 

o
f 

fu
n
c
ti
o
n
  

e
v
a
lu

a
ti
o
n
s

Problem number

cma−es

mean/mean

(b) Number of function evaluations taken (median).

Figure 4.12: Results for the mean/mean version, CMA-ES, and MADS on a set of
multi-modal functions of dimension 10 (using λ = 20).

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

lo
g

1
0
(f

m
in

 −
f o

p
t)

Problem number

cma−es

mean/mean

(a) Best function values (median).

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

5
N

u
m

b
e
r 

o
f 

fu
n
c
ti
o
n
  

e
v
a
lu

a
ti
o
n
s

Problem number

cma−es

mean/mean

(b) Number of function evaluations taken (median).

Figure 4.13: Results for the mean/mean version, CMA-ES, and MADS on a set of
multi-modal functions of dimension 20 (using λ = 40).

identifying a global minimizer in most of the problems within the given budget. The

difficulty of this test set in terms of global optimization calls perhaps for additional

algorithmic features such as a multistart technique.

The results showed that CMA-ES cannot handle successfully all problems with many

local minimizers and that our modifications (based on classical and rigorous non linear

programming globalization techniques) do not change much that state of affairs. A new

variant of CMA-ES has been proposed called IPOP-CMA-ES [22] to handle multimodal

test functions. IPOP-CMA-ES is based on a restart strategy of CMA-ES with increasing

the population size. The advantage of the new variant IPOP-CMA-ES is only effective

for relatively small dimensions (up to 50 variables) [22].



Chapter 4. Globally Convergent Evolution Strategies 70

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

lo
g

1
0
(f

m
in

 −
f o

p
t)

Problem number

cma−es

mean/mean

(a) Best function values (median).

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

5

N
u
m

b
e
r 

o
f 

fu
n
c
ti
o
n
  

e
v
a
lu

a
ti
o
n
s

Problem number

cma−es

mean/mean

(b) Number of function evaluations taken (median).

Figure 4.14: Results for the mean/mean version, CMA-ES, and MADS on a set of
multi-modal functions of dimension 10 (using λ = 100).

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

lo
g

1
0
(f

m
in

 −
f o

p
t)

Problem number

cma−es

mean/mean

(a) Best function values (median).

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
x 10

5

N
u
m

b
e
r 

o
f 

fu
n
c
ti
o
n
  

e
v
a
lu

a
ti
o
n
s

Problem number

cma−es

mean/mean

(b) Number of function evaluations taken (median).

Figure 4.15: Results for the mean/mean version, CMA-ES, and MADS on a set of
multi-modal functions of dimension 20 (using λ = 200).

4.3 Conclusions

The main contribution of this chapter is to show a possible way to modify a type of ES

algorithms, so that they converge to stationary points without any assumption on the

starting point. The modified versions of ES promote smaller steps when the larger steps

are uphill and thus lead to an improvement in the efficiency of the algorithms in the

search of a stationary point. The so-called mean/mean version, where the step is reduced

whenever the objective value of the weighted mean of the best trial offspring does not

sufficiently reduce the objective value at the current weighted mean, has emerged as the

best modified version in our numerical experiments. Apparently, the promotion of such

smaller steps has not changed too much the search for the global minimizer in problems

with several local minimizers (see Section 4.2.5).



Chapter 4. Globally Convergent Evolution Strategies 71

Our approach applies to all ES of the type (µ/µW , λ)–ES, although we only used CMA-

ES in our numerical tests. A number of issues regarding the interplay of our ES modifi-

cations (essentially the step size update based on different sufficient decrease conditions)

and the CMA scheme to update the covariance matrix and corresponding step size must

be better understood and investigated. In addition, we have not explored to our benefit

any hidden ability of the CMA scheme to approximate or predict first or second order

information (which might be used in the sufficient decrease conditions or to guide the

offspring generation).

It is possible to significantly improve the numerical performance of ES’s by incorporating

a search step at the beginning of each iteration (as in the search-poll framework of direct

search [36]). In such a step, one can, for instance, build a quadratic model using all or

some of the points where the objective function has been previously evaluated and then

minimize such a model in a certain region (see [53]). The application of such search

steps to ES’s as well as the extension to the constrained setting will be addressed in the

forthcoming chapters.



Chapter 5

Extension to Constraints

In this chapter, we propose a new approach to extend ES to handle general constrained

optimization. Under appropriate assumptions, the proposed ES is globally convergent re-

gardless of the starting points. In the general context of ES, various algorithms have been

proposed to handle constraints. Coello [44] and Kramer [112] provide a comprehensive

survey of the most popular constrained optimization methods currently used within ES.

Most approaches use penalty functions [144], where a term penalizing infeasibility is

added to the objective function. Other more sophisticated approaches are based on the

use of multiobjective optimization [66] or biologically inspired techniques [67, 143]. In

this chapter, recall the regarded optimization problem:

min f(x)

s.t. x ∈ Ω = Ωr ∩ Ωnr.
(5.1)

The feasible region Ω ∈ Rn of this problem is defined by relaxable and/or non-relaxable

constraints. In our notation Ωr is the set of relaxable constraints, which is assumed to

be of the form:

Ωr = {x ∈ Rn : ci(x) ≤ 0, ∀i ∈ I}.

No violation is allowed when the constraints are non-relaxable Ωnr, it needs to be satis-

fied for all the algorithm iterations. Typically, these constraints can be seen as bound or

linear constraints. However, the relaxable constraints allowed their violation, and gen-

erally need only to be satisfied approximately or asymptotically. The objective function

as well as the relaxable constraint function ci will be assumed to be locally Lipschitz

continuous, meaning that both functions are Lipschitz continuous near an accumulation

point produced by the algorithm. The proposed algorithm is mainly inspired by recent

72



Chapter 4. Extension to constraints 73

works to equip direct search methods with a general procedure to handle both relaxable

and unrelaxable constraints [19, 74]. Audet and Dennis [19] outlines a globally conver-

gent general approach based on a progressive barrier, it combines an extreme barrier

approach for unrelaxable constraints with non-dominance filters [63]. Vicente and Grat-

ton [74] proposed a second alternative where one handles relaxable constraints by means

of a merit function. The latter approach ensures convergence by imposing a sufficient

decrease on a merit function (combines information from both objective function and

the constraints violation).

For non-relaxable constraints, we address the case where Ωnr is defined by a finite

number of linear inequalities, but we will make it precise only later when needed since

our theory applies to nonlinear constraints as well. For that purpose, two different

feasible approaches are considered. A first one relies on techniques used in directional

direct-search methods [52, 108], where one uses an extreme barrier function to prevent

infeasible displacements together with the possible use of directions that conform to the

local geometry of the feasible region. The extreme barrier function is of the form

fΩnr(x) =

{

f(x) if x ∈ Ωnr,

+∞ otherwise.
(5.2)

(fΩnr(x) is known as the death penalty function in the terminology of evolutionary

algorithms.) We consider that ties of +∞ are broken arbitrarily in the ordering of the

offspring samples. The second approach is based first on enforcing all the generated

sample points to be feasible, by using a projection mapping of the form:

ΦΩnr : Rn → Ωnr, Φ2
Ωnr

= ΦΩnr . (5.3)

The projection is not necessarily the Euclidean one or defined using some other distance,

although in the case of bound constraints we will use the ℓ2-projection (as it is trivial to

evaluate) and in the case of general linear constraints we will use the ℓ1-projection (as

it reduces to the solution of an LP). Projection onto the feasible set is regarded as the

only alternative to extreme barrier. For general unrelaxable constraints, the projection

approach is known to be unpractical and expensive [120].

For relaxable constraints, an augmented Lagrangian approach can be used where one

adds a penalty term to the objective function [109, 118]. On the same direction, we

propose to adapt the merit function approach for direct-search methods [74] to the

evolutionary strategies setting.



Chapter 4. Extension to constraints 74

For such purpose, we consider the following constraint violation function

g(x) =
∑

i∈I

max(ci(x), 0) (5.4)

and the merit function

M(x; δ) = f(x) + δ · g(x), (5.5)

where δ is a positive penalty parameter. The new ES will rely on the merit function to

decide and control the distribution of the points. The selection will be based on the value

of the merit function at the given points. For relaxable constraints, our convergence

theory is globally inspired by [74]. However, the performance of the merit function

approach [74] compared to other existing direct search algorithms (e.g. the progressive

barrier approach [19]) was not investigated. Thus the contribution of our work compared

to [74] is the following: (a) we propose an adaptation of the merit function approach

algorithm and convergence theory to the ES setting, (b) we provide a detailed practical

implementation for both relaxable and non-relaxable constraints (special care is given

to bound and linear non-relaxable constraints), (c) our algorithm is compared to the

state of the art DFO algorithms (including global optimization solvers).

The chapter is organized as follows. We start by describing the algorithm as well as

the convergence theory behind in Section 5.1. Practical implementation choices are em-

phasized in Section 5.2. Our numerical experiments comparing the proposed algorithm

to other approaches are described in Section 5.3. Finally, in Section 5.4, we draw some

conclusions and perspectives.

5.1 A globally convergent ES for general constraints

5.1.1 Algorithm description

The main contribution of Chapter 4 was essentially the monitoring of the quality of the

sampling procedure by checking if the objective function has been sufficiently decreased.

When that is not the case the step size σk is reduced and the iteration becomes un-

successful. Otherwise, the iteration is successful and the step size σk might recover the

original ES value σESk if this latter one is sufficiently large. There were different ways to

impose sufficient decrease conditions in ES. We will adopt here the version that consists

of applying sufficient decrease directly to the weighted mean xtrial

k+1 of the new parents

(see Algorithm 4.1), which has been shown to yield global convergence for unconstrained



Chapter 4. Extension to constraints 75

optimization without any convexity like assumption and to numerically perform the best

among the different versions tested.

The extension of the globally convergent ES to the constrained setting follows a hy-

bridization of a feasible approach, where one uses the extreme barrier or the projection

approach for relaxable constraints, and of a merit function approach. The trial mean

parent xtrial

k+1
will be computed as the weighted mean of the µ best point not in terms

of the objective function but regarded to the merit function values of the offspring pop-

ulation. An iteration of the algorithm is considered successful in two situations. The

first one is where one has a sufficient decrease in the constraints violation function g,

i.e. g(xtrial

k+1
) < g(xk) − ρ(σk), and one is sufficiently away from the feasible region, i.e.

g(xtrial

k+1
) > Cρ(σk) for some constant C > 1.

The second successful situation is when the merit function is sufficiently decreased, i.e.

M(xtrial

k+1
, δk) < M(xk, δk) − ρ(σk) for a given choice of the penalty parameter δk. The

update of δk is done on the same manner as [74]

δk = max

{

δ̄,
f(xtrial

k+1
)− f(xk)

Cρ(σk)

}

,

where δ̄ > 0. Following the same notations used in [74], the trial mean parent will be

declared as a successful point if the following procedure is fulfilled:

Begin (successful point).

Given a parent xk and a step size σk, the trial parent xtrial

k+1
is successful if

g(xtrial

k+1 ) < g(xk)− ρ(σk) and g(xk) > Cρ(σk)

or, if that is false, if

M(xtrial

k+1 , δk) < M(xk, δk)− ρ(σk),

where

δk = max

{

δ̄,
f(xtrial

k+1
)− f(xk)

Cρ(σk)

}

(5.6)

where δ̄ > 0 is a sufficiently large penalty parameter.

End (successful point).

Before checking wether the trial point is successful or not, the algorithm will try first to

restore the feasibility or at least decrease the constraints violation. A restoration process

will be activated when the constraints violation is sufficiently decreasing at a trial point

sufficiently away from the feasible region and for which the the objective function has

increased. In other words, the restoration is entered if one has g(xtrial

k+1
) < g(xk)−ρ(σk),



Chapter 4. Extension to constraints 76

g(xk) > Cρ(σk), and M(xtrial
k+1

, δ̄) ≥ M(xk, δ̄).

Begin (Restoration identifier).

Given a parent xk and a step size σk, the trial parent xtrial
k+1

is a Restoration identifier if

g(xtrialk+1 ) < g(xk)− ρ(σk) and g(xk) > Cρ(σk)

and

M(xtrialk+1 , δ̄) ≥ M(xk, δ̄).

End (Restoration identifier).

Our globally convergent ES is described in details below, in Algorithm 5.1. Note that

directions used to compute the offspring are not necessarily the ES directions randomly

generated, in what can be seen as a modification made in preparation to what comes

next regarding the non-relaxable constraints. We will denote the directions used to

compute the offspring by d̃i
k
(see Section 5.3.1).

The restoration Algorithm tries to reduce the constraints violation. The selection pro-

cess is then based on the constraints violation function but not on the merit one as

in Algorithm 5.1. Restoration is left as far as one is not able anymore to reduce the

constraints violation and such as considerable increase in the objective function f is no

longer observed. The complete restoration procedure is outlined by Algorithm 5.2.

Under appropriate assumptions we will now prove global convergence of the proposed

extension to constraints for ES. Our convergence analysis is inspired by direct-search

methods for nonsmooth functions [74].

5.1.2 Step size behavior

Theorem 5.1. Consider a sequence of iterations generated by the Algorithm 5.1 without

any stopping criterion. Let f be bounded below and assuming that Restoration is not

entered after a certain order.

Then,

lim inf
k→+∞

σk = 0.

Proof. Suppose that there exists a k̄ > 0 and σ > 0 such that σk > σ and k is a Main

iteration k ≥ k̄. If there is an infinite sequence J1 of successful iterations after k̄, this

leads to a contradiction to the fact that g and f are bounded below.

In fact, since ρ is a nondecreasing, positive function, ρ(σk) ≥ ρ(σ) > 0. One has :



Chapter 4. Extension to constraints 77

Algorithm 5.1: A globally convergent ES for general constraints (Main).

Initialization: Choose positive integers λ and µ such that λ ≥ µ. Select an initial
x0 ∈ Ωnr and evaluate f(x0). Choose initial step lengths σ0, σ

ES
0 > 0 and initial

weights (ω1
0, . . . , ω

µ
0 ) ∈ S. Choose constants δ̄ > 0, C > 1, β1, β2, dmin, dmax such

that 0 < β1 ≤ β2 < 1 and 0 < dmin < dmax. Select a forcing function ρ(·). Set
k = 0.

Until some stopping criterion is satisfied:

1. Offspring Generation: Compute new sample points Yk+1 = {y1k+1, . . . , y
λ

k+1}
such that

yik+1 = xk + σkd̃
i

k, i = 1, . . . , λ,

where the directions d̃ik’s are computed from the original ES directions dik’s
(which in turn are drawn from a chosen ES distribution Ck and scaled if
necessary to satisfy dmin ≤ ‖dik‖ ≤ dmax).

2. Parent Selection: Evaluate M(yik+1, δ̄), i = 1, . . . , λ, and reorder the offspring

points in Yk+1 = {ỹ1k+1, . . . , ỹ
λ

k+1} by increasing order:

M(ỹ1k+1, δ̄) ≤ · · · ≤ M(ỹλk+1, δ̄).

Select the new parents as the best µ offspring sample points {ỹ1k+1, . . . , ỹ
µ
k+1},

and compute their weighted mean

xtrialk+1 =

µ
∑

i=1

ωi
kỹ

i

k+1.

3. Imposing the Merit Function Approach: If xtrialk+1 /∈ Ωnr the iteration is
declared unsuccessful, otherwise.

If xtrialk+1 is a Restoration identifier, then enter Restoration (with kr = k).

Otherwise, if xtrialk+1 is a successful point, then declare the iteration successful.
Otherwise, declare the iteration as unsuccessful.

4. Updates: If the iteration is successful then set xk+1 = xtrialk+1 , and σk+1 ≥ σk (for

example σk+1 = max{σk, σ
ES
k }). Otherwise set xk+1 = xk and σk+1 = βkσk, with

βk ∈ (β1, β2).

Update the ES step length σES
k+1, the distribution Ck, and the weights (ω

1
k+1,

. . . , ω
mµ

k+1) ∈ S. Increment k and return to Step 1.

If g(xk+1) ≤ g(xk)− ρ(σk) and g(xk+1) > Cρ(σk) for all k ∈ J1, then

g(xk+1) ≤ g(xk)− ρ(σ),

which obviously contradicts the boundedness below of g by 0.

Thus there must exists an infinite subsequence J2 ⊆ J1 of iterates for whichM(xk+1, δk) <

M(xk, δk)− ρ(σk). Here we consider two cases.



Chapter 4. Extension to constraints 78

Algorithm 5.2: A globally convergent ES for general constraints (Restora-
tion).

Initialization: Start from xkr ∈ Ωnr given from the Main algorithm and consider the
same parameter as in there.

For k = kr, kr + 1, kr + 2, . . .

1. Offspring Generation: Compute new sample points Yk+1 = {y1k+1, . . . , y
λ
k+1}

such that
yik+1 = xk + σkd̃

i
k, i = 1, . . . , λ,

where the directions d̃ik’s are computed from the original ES directions dik’s
(which in turn are drawn from a chosen ES distribution Ck and scaled if
necessary to satisfy dmin ≤ ‖dik‖ ≤ dmax).

2. Parent Selection: Evaluate g(yik+1), i = 1, . . . , λ, and reorder the offspring points

in Yk+1 = {ỹ1k+1, . . . , ỹ
λ
k+1} by increasing order: g(ỹ

1
k+1) ≤ · · · ≤ g(ỹλk+1).

Select the new parents as the best µ offspring sample points {ỹ1k+1, . . . , ỹ
µ
k+1},

and compute their weighted mean

xtrialk+1 =

µ
∑

i=1

ωi
kỹ

i
k+1.

3. Imposing Restoration Condition: If xtrialk+1 /∈ Ωnr the iteration is declared
unsuccessful, Otherwise.

Declare the iteration successful if one has

g(xtrialk+1 ) < g(xk)− ρ(σk) and g(xk) > Cρ(σk)

In such a case, set xk+1 = xtrialk+1 .

Otherwise, consider the iteration unsuccessful.

Leave Restoration and return to the Main algorithm (starting at a new (k+1)-th
iteration using xk+1 and σk+1) if the iteration is unsuccessful and
M(xtrialk+1 , δ̄) < M(xk, δ̄)

4. Updates: As in the Main algorithm.

In the first case, for k sufficiently large, all these iterates are such that δk = δ̄. In such

an occurrence one has that

M(xk+1, δ̄) < M(xk, δ̄)− ρ(σk) ≤ M(xk, δ̄)− ρ(σ) ∀k ∈ J2.

However, in the successful iterations where g(xk+1) < g(xk) − ρ(σk) and g(xk+1) >

Cρ(σk), since the restoration was not entered, one knows that M(xk+1, δ̄) < M(xk, δ̄).

Thus M(xk, δ̄) tends to −∞ which is a contradiction, since both f and g are bounded

below.



Chapter 4. Extension to constraints 79

The second case, there is an infinite number of iterations in J2 such that

δk =
f(xk+1)− f(xk)

Cρ(σk)
.

For these iterations, one has either g(xk+1) ≥ g(xk)−ρ(σk) or g(xk+1) ≤ Cρ(σk). Thus,

since C > 1, one has either

f(xk+1)− f(xk) = δkCρ(σk) ≥ δk[g(xk)− g(xk+1)]

or

f(xk+1)− f(xk) = δkCρ(σk) ≥ δkg(xk) ≥ δk[g(xk)− g(xk+1)],

both leading toM(xk+1, δk) ≥ M(xk, δ̄k) which contradictsM(xk+1, δk) < M(xk, δk)−

ρ(σk). The proof is thus completed if there is an infinite number of successful iterations.

However, if no more successful iterations occur after a certain order, then this also leads

to a contradiction. The conclusion is that one must have a subsequence of iterations

driving σk to zero.

Theorem 5.2. Consider a sequence of iterations generated by Algorithm 5.1 without

any stopping criterion. Let f be bounded below and assuming that Restoration is not

entered after a certain order.

There exists a subsequence K of unsuccessful iterates for which limk∈K σk = 0 (i.e.

refining subsequence).

And if the sequence {xk} is bounded, then there exists an x∗ and a refining subsequence

K such that limk∈K xk = x∗.

Proof. From Theorem 5.1, there must exist an infinite subsequence K of unsuccessful

iterates for which σk+1 goes to zero. In a such case we have σk = (1/βk)σk+1, βk ∈

(β1, β2), and β1 > 0, and thus σk → 0, for k ∈ K, too.

The second part of the Theorem is also easily proved by extracting a convergent subse-

quence of the subsequence K of the first part for which xk converges to x∗.

5.1.3 Global convergence

The global convergence is achieved by establishing that some type of directional deriva-

tives are nonnegative at limit points of refining subsequences along refining directions

(see Section 2.11). When h is Lipschitz continuous near x∗ ∈ Ωnr, one can make use of



Chapter 4. Extension to constraints 80

the Clarke-Jahn generalized derivative along a direction d

h◦(x∗; d) = lim sup

x→ x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

h(x+ td)− h(x)

t
.

(Such a derivative is essentially the Clarke generalized directional derivative [43], adapted

by Jahn [98] to the presence of constraints). However, for the proper definition of

h◦(x∗; d), one needs to guarantee that x + td ∈ Ωnr for x ∈ Ωnr arbitrarily close to x∗

which is assured if d is hypertangent to Ωnr at x∗. In the following, B(x; ∆) is the closed

ball formed by all points which dist no more than ∆ to x.

Definition 5.3. A vector d ∈ Rn is said to be a hypertangent vector to the set Ωnr ⊆ R
n

at the point x in Ωnr if there exists a scalar ǫ > 0 such that

y + tw ∈ Ωnr, ∀y ∈ Ωnr ∩B(x; ǫ), w ∈ B(d; ǫ), and 0 < t < ǫ.

The hypertangent cone to Ω at x, denoted by TH
Ωnr
(x), is then the set of all hypertangent

vectors to Ωnr at x. Then, the Clarke tangent cone to Ωnr at x (denoted by TCl
Ωnr
(x))

can be defined as the closure of the hypertangent cone TH
Ωnr
(x) (when the former is

nonempty, an assumption we need to make for global convergence anyway). The Clarke

tangent cone generalizes the notion of tangent cone in Nonlinear Programming [130],

and the original definition d ∈ TCl
Ωnr
(x) is given below.

Definition 5.4. A vector d ∈ R
n is said to be a Clarke tangent vector to the set

Ωnr ⊆ R
n at the point x in the closure of Ωnr if for every sequence {yk} of elements of

Ωnr that converges to x and for every sequence of positive real numbers {tk} converging

to zero, there exists a sequence of vectors {wk} converging to d such that yk+tkwk ∈ Ωnr.

Given a direction v in the tangent cone, possibly not in the hypertangent one, one can

consider the Clarke-Jahn generalized derivative to Ωnr at x∗ as the limit

h◦(x∗; v) = lim
d∈TH

Ωnr
(x∗),d→v

h◦(x∗; d)

(see [18]). A point x∗ ∈ Ωnr is considered Clarke stationary if h
◦(x∗; d) ≥ 0, ∀d ∈

TCl
Ωnr
(x∗).

Assuming restoration is never entered after a certain order

Theorem 5.5. Consider the algorithm 5.1 and let ak =
∑µ

i=1
ωikd̃

i
k. Assume that f is

bounded below. Assume that Restoration is not entered after a certain order.



Chapter 4. Extension to constraints 81

Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful of iterates

{xk}K for which limk∈K σk = 0. Assume that g is Lipschitz continuous near x∗ with

constant νg > 0.

If d ∈ TH
Ωnr
(x∗) is a refining direction associated with {ak/‖ak‖}K , then either g(x∗) = 0

(implying x∗ ∈ Ωr and thus x∗ ∈ Ω) or g
◦(x∗; d) ≥ 0.

Proof. Let d be a limit point of {ak/‖ak‖}K . Then it must exist a subsequence of K
′ of

K such that ak/‖ak‖ → d on K ′. On the other hand, we have for all k that

xtrialk+1 =

µ
∑

i=1

ωi
kỹ

i
k+1 = xk + σk

µ
∑

i=1

ωi
kd̃

i
k = xk + σkak.

Since the iteration k ∈ K ′ is unsuccessful, g(xtrialk+1
) ≥ g(xk)−ρ(σk) or g(x

trial

k+1
) ≤ Cρ(σk),

and then either there exists an infinite number of the first or the second. In the later

case, there exists a subsequence K1 ⊆ K ′ such that g(xtrialk+1
) ≤ Cρ(σk), it is trivial to

obtain g(x∗) = 0 using both the continuity of g and the fact that σk tends to zero in K1.

In the former case, there exists a subsequenceK2 ⊆ K ′ such that the sequence {
ak

‖ak‖
}k∈K2

converges to d ∈ TH
Ωnr
(x∗) in K2 and the sequence {‖ak‖σk}k∈K2

goes to zero in K2 (ak

is bounded above for all k, and so σk‖ak‖ tends to zero when σk does). Thus one must

have necessarily for k sufficiently large in K2, xk + σkak ∈ Ωnr such that

g(xk + σkak) ≥ g(xk)− ρ(σk).

Thus, from the definition of the Clarke-Jahn generalized derivative along the directions

d ∈ THΩnr(x∗),

g◦(x∗; d) = lim sup

x→ x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

g(x+ td)− g(x)

t

≥ lim sup
k∈K2

g(xk + σk‖ak‖d)− g(xk)

σk‖ak‖

≥ lim sup
k∈K2

g(xk + σk‖ak‖(ak/‖ak‖))− g(xk)

σk‖ak‖
− gk,

where,

gk =
g(xk + σkak)− g(xk + σk‖ak‖d)

σk‖ak‖
.



Chapter 4. Extension to constraints 82

From the Lipschitz continuity of g near x∗ one has

gk =
g(xk + σkak)− g(xk + σk‖ak‖d)

σk‖ak‖

≤ νg

∥

∥

∥

∥

ak

‖ak‖
− d

∥

∥

∥

∥

tends to zero on K2. Finally,

g◦(x∗; d) ≥ lim sup
k∈K2

g(xk + σkak)− g(xk) + ρ(σk)

σk‖ak‖
−

ρ(σk)

σk‖ak‖
− gk

= lim sup
k∈K2

g(xk + σkak)− g(xk) + ρ(σk)

σk‖ak‖
.

One then obtains g◦(x∗; d) ≥ 0.

When the refining directions are dense in TCl
Ωnr

(x∗)∩{d ∈ Rn : ‖d‖ = 1, }, the limit point

x∗ will be Clarke stationary for the constraint violation problem:

min g(x)

s.t. x ∈ Ωnr

. (5.7)

Theorem 5.6. Consider the algorithm 5.1 and let ak =
∑µ

i=1
ωi
kd̃

i
k. Assume that f is

bounded below. Assume that Restoration is not entered after a certain order.

Let x∗ ∈ Ω be the limit point of a convergent subsequence of unsuccessful iterates {xk}k∈K

for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗.

Assume that TCl
Ωnr

(x∗) has a non-empty interior.

Then either g(x∗) = 0 (implying x∗ ∈ Ω ) or if the set of refining directions associated

with K ′ ⊂ K and x∗ is dense in TCl
Ωnr

(x∗) ∩ {d ∈ Rn : ‖d‖ = 1, }, then g◦(x∗; v) ≥ 0 for

all v ∈ TCl
Ωnr

(x∗), and x∗ is a stationary point of the constraint violation problem (5.1).

Proof. As outlined in the proof of Theorem 5.5, if there exists an infinite number of

cases such that g(xtrialk+1
) ≤ Cρ(σk), it is trivial then to obtain g(x∗) = 0 using both the

continuity of g and the fact that σk tends to zero in K.

Let v ∈ TCl
Ωnr

(x∗) and ‖v‖ = 1, then v is the limit of a sequence D of refining directions

d with K ′ and x∗ such that d ∈ TH
Ωnr

. For each direction d one applies Theorem 5.5 to

obtain g◦(x∗; d) ≥ 0. Thus g◦(x∗; v) = limd∈TH
Ωnr

,d∈D g◦(x∗; d) ≥ 0. For non-normalized

v the result holds since TCl
Ωnr

(x∗) is a cone and the Clarke derivatives are homogeneous

in their second arguments.



Chapter 4. Extension to constraints 83

For an intermediate optimality result. One can notice that we do not use x∗ ∈ Ωr

explicitly in the proof, but one notes that g◦(x∗; d) ≤ 0 only describes the cone of first

order linearized directions under feasibility assumption x∗ ∈ Ωr.

Theorem 5.7. Consider the algorithm 5.1 and let ak =
∑mµ

i=1
ωi

k
d̃i
k
. Assume that f is

bounded below. Assume that Restoration is not entered after a certain order.

Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful of iterates

{xk}K for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗.

If d ∈ TH

Ωnr
(x∗) is a refining direction associated with {ak/‖ak‖}K such that g◦(x∗; d) ≤ 0.

Then f◦(x∗; d) ≥ 0.

Proof. By assumption there exists a subsequence K ′ ⊆ K such that the sequence

{ak/‖ak‖}k∈K′ converges to d ∈ TH

Ωnr
(x∗) in K2 and the sequence {‖ak‖σk}k∈K′ goes

to zero in K ′, Thus one must have necessarily for k sufficiently large in K2, x
trial

k+1
=

xk + σkak ∈ Ωnr. Since the iteration k ∈ K ′ is unsuccessful, one is sure that δk is

updated according to (5.6).

If δk = [f(xtrial
k+1

)− f(xk)]/[Cρ(σk)], then it is because [f(xtrial
k+1

)− f(xk)]/[Cρ(σk)] ≥ δ̄,

and thus

f(xk + σkak)− f(xk)

‖ak‖σk
≥ Cδ̄

ρ(σk)

σk‖ak‖
(5.8)

If not, δk = δ̄, then M(xtrial
k+1

, δ̄) ≥ M(xk, δ̄)− ρ(σk), and thus

f(xk + σkak)− f(xk)

‖ak‖σk
≥ −δ̄

g(xk + σkak)− g(xk)

‖ak‖σk
−

ρ(σk)

σk‖ak‖
(5.9)

On the other hand,

f◦(x∗; d) = lim sup

x→ x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

f(x+ td)− f(x)

t

≥ lim sup
k∈K′

f(xk + σk‖ak‖d)− f(xk)

σk‖ak‖

≥ lim sup
k∈K′

f(xk + σk‖ak‖(ak/‖ak‖))− f(xk)

σk‖ak‖
− fk,



Chapter 4. Extension to constraints 84

where,

fk =
f(xk + σkak)− f(xk + σk‖ak‖d)

σk‖ak‖
,

which then implies from (5.9)

f◦(x∗; d) ≥ lim sup
k∈K′

f(xk + σk‖ak‖(ak/‖ak‖))− f(xk)

σk‖ak‖
− fk,

≥ lim sup
k∈K′

−µ̄
g(xk + σkak)− g(xk)

‖ak‖σk
−

ρ(σk)

σk‖ak‖
− fk

≥ lim sup
k∈K′

−µ̄
g(xk + σk‖ak‖d)− g(xk)

σk‖ak‖
+ µ̄gk −

ρ(σk)

σk‖ak‖
− fk,

where

gk =
g(xk + σkak)− g(xk + σk‖ak‖d)

σk‖ak‖
.

From the assumption g◦(x∗; d) ≤ 0, one has

lim sup
k∈K′

g(xk + σk‖ak‖d)− g(xk)

σk‖ak‖
≤ lim sup

x→ x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

g(x+ td)− g(x)

t
≤ 0,

one obtains then

f◦(x∗; d) ≥ lim sup
k∈K′

µ̄gk −
ρ(σk)

σk‖ak‖
− fk. (5.10)

The Lipschitz continuity of both g and f near x∗ guaranties that the quantities fk and

gk tend to zero in K ′. The proof is completed since the right-hand-sides of (5.10) and

(5.8) tend to zero in K ′.

Theorem 5.8. Consider the algorithm 5.1 and let ak =
∑mµ

i=1
ωi

k
d̃i
k
. Assume that f is

bounded below. Assume that Restoration is not entered after a certain order.

Let x∗ ∈ Ω be the limit point of a convergent subsequence of unsuccessful iterates {xk}k∈K

for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗.

Assume that the set

T (x∗) = TH

Ωnr
∩ {d ∈ Rn : ‖d‖ = 1, g◦(x∗, d) ≤ 0} (5.11)



Chapter 4. Extension to constraints 85

has a non-empty interior.

Let the set of refining directions be dense in T (x∗). Then f◦(x∗, v) ≥ 0 for all v ∈

TClΩnr(x∗) such that g
◦(x∗, v) ≤ 0, and x∗ is a Clarke stationary point of (5.1).

Proof. Let v ∈ TClΩnr(x∗) such that g
◦(x∗, v) ≤ 0, and ‖v‖ = 1. Then v is the limit

of a sequence D of refining direction d such that d ∈ THΩnr and g◦(x∗, d) ≤ 0. For

each such d one can apply Theorem 5.7 and obtain f◦(x∗; d) ≥ 0. Thus, f◦(x∗; v) =

limd∈TH
Ωnr

,d∈D f
◦(x∗; d) ≥ 0. For non-normalized v the result holds since TClΩnr(x∗) is a

cone and the Clarke derivatives are homogeneous in their second arguments.

Assuming never leaving restoration

Theorem 5.9. Consider the algorithm 5.1 and let ak =
∑mµ

i=1 ω
i
kd̃
i
k. Assume that f is

bounded below. Assume that Restoration is entered and never left.

(i) Then there exists a refining subsequence.

(ii) Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful of iterates

{xk}K for which limk∈K σk = 0. Assume that g is Lipschitz continuous near x∗, and

let d ∈ THΩnr(x∗) a corresponding refining direction. Then either g(x∗) = 0 (implying

x∗ ∈ Ωr and thus x∗ ∈ Ω) or g
◦(x∗; d) ≥ 0.

(iii) Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful of

iterates {xk}K for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous

near x∗, and let d ∈ THΩnr(x∗) a corresponding refining direction such that g
◦(x∗; d) ≤ 0.

Then f◦(x∗; d) ≥ 0.

(iv) Assume that the interior of the set T (x∗) given in (5.11) is non-empty. Let the set

of refining directions be dense in T (x∗).Then f◦(x∗, v) ≥ 0 for all v ∈ TClΩnr(x∗) such

that g◦(x∗, v) ≤ 0, and x∗ is a Clarke stationary point.

Proof. (i) There must exist a refining subsequence K within this call of the restoration,

by applying the same argument of the case where one has g(xk+1) < g(xk)− ρ(σk) and

g(xk+1) > Cρ(σk) for an infinite subsequence of successful iterations (see the proof of

Theorem 5.1). By assumption there exists a subsequence K ′ ⊆ K such that the sequence

{ak/‖ak‖}k∈K′ converges to d ∈ THΩnr(x∗) in K
′ and the sequence {‖ak‖σk}k∈K′ goes to

zero in K ′. Thus one must have necessarily for k sufficiently large in K ′, xtrialk+1 =

xk + σkak ∈ Ωnr.



Chapter 4. Extension to constraints 86

(ii) Since the iteration k ∈ K ′ is unsuccessful in the Restoration,g(xk +σkak) ≥ g(xk)−

ρ(σk) or g(xk+1) ≤ Cρ(σk), and the proof follows an argument already seen (see the

proof of Theorem 5.5).

(iii) Since at the unsuccessful iteration k ∈ K ′, Restoration is never left, so one has

M(xk + σkak, δ̄) ≥ M(xk, δ̄), and the proof follows an argument already seen (see the

proof of Theorem 5.7).

(iv) The same proof as Theorem 5.8.

Assuming entering leaving restoration an infinite number of times

Theorem 5.10. Consider the algorithm 5.1 and assume that f is bounded below. As-

sume that Restoration is entered and left an infinite number of times.

(i) Then there exists a refining subsequence.

(ii) Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful of iterates

{xk}K for which limk∈K σk = 0. Assume that g is Lipschitz continuous near x∗, and

let d ∈ TH

Ωnr
(x∗) a corresponding refining direction. Then either g(x∗) = 0 (implying

x∗ ∈ Ωr and thus x∗ ∈ Ω) or g◦(x∗; d) ≥ 0.

(iii) Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful of

iterates {xk}K for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous

near x∗, and let d ∈ TH

Ωnr
(x∗) a corresponding refining direction such that g◦(x∗; d) ≤ 0.

Then f◦(x∗; d) ≥ 0.

(iv) Assume that the interior of the set T (x∗) given in (5.11) is non-empty. Let the set

of refining directions be dense in T (x∗).Then f◦(x∗, v) ≥ 0 for all v ∈ TCl
Ωnr

(x∗) such

that g◦(x∗, v) ≤ 0, and x∗ is a Clarke stationary point.

Proof. (i) Let K1 ⊆ K and K2 ⊆ K be two subsequences where Restoration is entered

and left respectively.

Since the iteration k ∈ K2 is unsuccessful in the Restoration, one knows that the step

size σk is reduced and never increased, one then obtains that σk tends to zero. By

assumption there exists a subsequence K ′ ⊆ K2 such that the sequence {ak/‖ak‖}k∈K′

converges to d ∈ TH

Ωnr
(x∗) in K2 and the sequence {‖ak‖σk}k∈K′ goes to zero in K ′.

(ii) For all k ∈ K ′, one has g(xk + σkak) ≥ g(xk) − ρ(σk) or g(xk+1) ≤ Cρ(σk), one

concludes that either g(x∗) = 0 or g◦(x∗; d) ≥ 0.



Chapter 4. Extension to constraints 87

(iii) For all k ∈ K ′, one has M(xk + σkak, δ̄) ≥ M(xk, δ̄), and from this we conclude

that f◦(x∗; d) ≥ 0 if g◦(x∗; d) ≤ 0.

(iv) The same proof as Theorem 5.8.

5.2 A particularization for only unrelaxable constraints

5.2.1 Algorithm description

In the case where Ωr = R
n,i.e. Ω = Ωnr, the proposed extension of the globally con-

vergent ES to the constrained setting, in Algorithm 5.1, can be simplify to follow a

pure feasible approach. In fact, no constraint violation is allowed , i.e. g(x) = 0 for all

x ∈ Ω, meaning that the restoration procedure is not worthy anymore. One has only

to start feasible and then prevent stepping outside the feasible region by means of an

extreme barrier approach. The sufficient decrease condition is applied not to f but to

the extreme barrier function fΩ defined by: These globally convergent ES are described

in detail below, in Algorithm 5.3.

5.2.2 Asymptotic results

The step size behavior in this case can be easily derived using the same proof for the

unconstrained case (see Lemme 4.1 in Chapter 4). In fact, due to the sufficient decrease

condition, one can guarantee that a subsequence of step sizes will converge to zero. From

this property and the fact that the step size is significantly reduced (at least by β2) in

unsuccessful iterations, one proves the existence of a refining subsequence.

Asymptotic results when derivatives are unknown

In this section we treat constraints as a pure black box in the sense that no information

is assumed known about the constrained set Ω, rather than a yes/no answer to the

question whether a given point is feasible. The following theorem is in the vein of those

in [18, 166].

Theorem 5.11. Let x∗ ∈ Ω be the limit point of a convergent subsequence of unsuccessful

of iterates {xk}K for which limk∈K σk = 0. Assume that f is Lipschitz continuous

near x∗ with constant ν > 0 and that TH

Ω (x) %= ∅.

Let ak =
∑µ

i=1
ωikd̃

i
k. Assume that the directions d̃

i
k’s and the weights ω

i
k’s are such that

(i) σk‖ak‖ tends to zero when σk does, and (ii) ρ(σk)/(σk‖ak‖) also tends to zero.



Chapter 4. Extension to constraints 88

Algorithm 5.3: A globally convergent ES for unrelaxable constraints.

Initialization: Choose positive integers λ and µ such that λ ≥ µ. Select an initial
x0 ∈ Ω and evaluate f(x0). Choose initial step lengths σ0, σ

ES
0 > 0 and initial

weights (ω1
0, . . . , ω

µ
0 ) ∈ S. Choose constants β1, β2, dmin, dmax such that

0 < β1 ≤ β2 < 1 and 0 < dmin < dmax. Select a forcing function ρ(·). Set k = 0.

Until some stopping criterion is satisfied:

1. Offspring Generation: Compute new sample points Yk+1 = {y1k+1, . . . , y
λ

k+1}
such that

yik+1 = xk + σkd̃
i

k, i = 1, . . . , λ, (5.12)

where the directions d̃i
k
’s are computed from the original ES directions di

k
’s

(which in turn are drawn from a chosen ES distribution Ck and scaled if
necessary to satisfy dmin ≤ ‖di

k
‖ ≤ dmax).

2. Parent Selection: Evaluate fΩ(y
i

k+1), i = 1, . . . , λ, and reorder the offspring

points in Yk+1 = {ỹ1
k+1, . . . , ỹ

λ

k+1} by increasing order: fΩ(ỹ
1
k+1) ≤ · · · ≤ fΩ(ỹ

λ

k+1).

Select the new parents as the best µ offspring sample points {ỹ1
k+1, . . . , ỹ

µ
k+1},

and compute their weighted mean

xtrialk+1 =

µ
∑

i=1

ωikỹ
i
k+1.

Evaluate f(xtrialk+1 ).

3. Imposing Sufficient Decrease:

If fΩ(x
trial
k+1 ) ≤ fΩ(xk)− ρ(σk), then consider the iteration successful, set

xk+1 = xtrialk+1 , and σk+1 ≥ σk (for example σk+1 = max{σk, σ
ES
k }).

Otherwise, consider the iteration unsuccessful, set xk+1 = xk and σk+1 = β̄kσk,
with β̄k ∈ (β1, β2).

4. ES Updates: Update the ES step length σES
k+1, the distribution Ck, and the

weights (ω1
k+1, . . . , ω

µ
k+1) ∈ S. Increment k and return to Step 1.

If d ∈ TH
Ω (x∗) is a refining direction associated with {ak/‖ak‖}K , then f◦(x∗; d) ≥ 0.

If the set of refining directions associated with {ak/‖ak‖}K is dense in the unit sphere,

then x∗ is a Clarke stationary point.

Proof. To prove the first part one can use the same proof as in Theorem 4.3.

For the second part, we first conclude from the density of the refining directions on

the unit sphere and the continuity of f◦(x∗; ·) in TH
Ω (x∗), that f

◦(x∗; d) ≥ 0 for all

d ∈ TH
Ω (x∗). Finally, we conclude that f

◦(x∗; v) = limd∈TH
Ω
(x∗),d→v f

◦(x∗; d) ≥ 0 for all

v ∈ TΩ(x∗).



Chapter 4. Extension to constraints 89

Asymptotic results when derivatives are known

Although the approach analyzed in Subsection 5.2.2 can in principle be applied to any

type of constraints, it is obviously more appropriate to the case where one cannot com-

pute the derivatives of the functions algebraically defining the constraints.

Now we consider the case where we can compute tangent cones at points on the boundary

of the feasible set Ω. This is the case whenever Ω is defined by {x ∈ Rn : ci(x) ≤ 0, i ∈

I} and the derivatives of the functions ci are known. Two particular cases that appear

frequently in practice are bound and linear constraints.

For theoretical purposes, let ǫ be a positive scalar and k0 a positive integer. Let us

also denote by TΩ,ǫ,k0 the union of all Clarke tangent cones TΩ(y) for all points y at the

boundary of Ω such that ‖y − xk‖ ≤ ǫ for all k ≥ k0.

Theorem 5.12. Let x∗ ∈ Ω be the limit point of a convergent subsequence of unsuccessful

of iterates {xk}K for which limk∈K σk = 0. Assume that f is Lipschitz continuous

near x∗ with constant ν > 0 and that TH
Ω
(x) (= ∅.

Let ak =
∑µ

i=1
ωikd̃

i
k. Assume that the directions d̃

i
k’s and the weights ω

i
k’s are such that

(i) σk‖ak‖ tends to zero when σk does, and (ii) ρ(σk)/(σk‖ak‖) also tends to zero.

If d ∈ TH
Ω
(x∗) is a refining direction associated with {ak/‖ak‖}K , then f◦(x∗; d) ≥ 0.

If the set of refining directions associated with {ak/‖ak‖}K is dense in the intersection

of TΩ,ǫ,k0 with the unit sphere (for some ǫ > 0 and positive integer k0), then x∗ is a

Clarke stationary point.

Proof. It has already been shown in Theorem 5.11 that if d ∈ TH
Ω
(x∗) is a refining

direction associated with {ak/‖ak‖}K , then f
◦(x∗; d) ≥ 0.

The rest of the proof results from the fact that the Clarke tangent cone TΩ(x∗) is

contained in TΩ,ǫ,k0 for any limit point x∗ of a subsequence of iterates (and in par-

ticular for the subsequence K in the statement of the theorem). Thus, f◦(x∗; v) =

limd∈TH
Ω
(x∗),d→v f

◦(x∗; d) ≥ 0 for all v ∈ TΩ(x∗).

5.2.3 Implementation choices

In this subsection, we address linearly unrelaxable constrained problems of the form (5.1)

where Ωnr is defined as {x ∈ Rn : Cx ≤ d}, C ∈ Rm×n, and d ∈ Rm, for some positive

integer m.



Chapter 4. Extension to constraints 90

Approach based on extreme barrier and the inclusion of positive generators

A known technique for handling unrelaxable constraints with known constrained deriva-

tive information is based on computing sets of positive generators for appropriate tangent

cones. By a set of positive generators of a convex cone, it is meant a set of vectors that

spans the cone with nonnegative coefficients. A difficulty when using integer/rational

lattices as a globalization strategy (for driving the step size parameter to zero) in the

nonlinear case is that the positive generators of the tangent cones in consideration would

lack of rationality. What makes it possible to derive a result like Theorem 5.12 valid

for nonlinear constraints is the combination of (i) a sufficient decrease condition for ac-

cepting new iterates (which took care of the need to drive the step size parameter to

zero) with (ii) the dense generation of the directions in tangent cones (which prevents

stagnation at boundary points). We note that there are a number of globally convergent

hybrid approaches using penalty or augmented Lagrangian functions (see [118]) or fil-

ter techniques (see [19]), but without attempting to compute positive generators of the

appropriated tangent cones related to the nonlinear part of the constraints.

In the literature of direct-search methods (of directional type) for constraints, one finds

approaches specifically developed for the bound or linear constrained cases (see [77, 108,

110, 117]), where positive generators of the appropriated tangent cones are computed

and used for what is called polling (i.e. for evaluating the objective function at points of

the form xk+σkd, where d is a positive generator). Although we also address constraints

of that type in this work, we do not want to resort our poll of directions completely to

such positive generators as that would not allow to take advantage of the ES random

mechanism (Theorem 5.12 would however provide a possible theoretical coverage for

such an approach). Instead, we propose to modify the set of directions generated by ES

to include positive generators of appropriate tangent cones. The details will be given in

the rest of the current section.

The point to make here is that the global convergence result of Theorem 5.11 remains

valid as long as the set {d̃ik, i = 1, . . . , λ} still verifies Assumptions (i) and (ii). Assump-

tion (i) is trivially satisfied as long as all the positive generators d̃ik are bounded above

in norm, which is explicit in the algorithm when d̃ik = dik is an ES randomly generated

direction (and can be trivially imposed if d̃ik is a positive generator). The satisfaction

of Assumption (ii) is met, for instance, if ak is bounded below in norm. That in turn

depends on the calculation of the all the d̃ik’s and on the choice of the weights ωi
k’s, but

can always be achieved in the limit case where one weight is set to one and the others

to zero.



Chapter 4. Extension to constraints 91

In this approach we form the set of directions {d̃i

k
} by first replacing some of the ES

randomly generated directions di

k
, whenever the current iterate is closer to the bound-

ary of the feasible region, by positive generators of an appropriated tangent cone (see

Figure 5.1).

(a) First step (b) Second step (c) Third step

Figure 5.1: A 2-D illustration of the barrier approach to handle linearly constrained
problems using a positive generators of the polar cone of the ǫ-active constraints. Figure
(5.1(a)) outlines the detection of an ǫ-active mean parent point, while Figures (5.1(b))
and (5.1(c)) show the restoration process to conform the offspring distribution to the

local geometry. The ellipses show the level sets of the objective function.

More specifically, at the current iterate xk, given ǫk > 0, we first identify the ǫk-active

constraints Ik = {i ∈ {1, . . . ,m} : cixk − di ≥ −ǫk}, where ci denotes the i-th line

of C, and then represent by Ck ∈ R
|Ik|×n the submatrix of C formed by the rows

associated with the ǫk-active constraints. The directions to be considered for inclusion

are the positive generators Dk of the tangent cone formed at a point where the active

constraints are those in Ik. We choose ǫk to be O(σk) as in [110] (to avoid considering all

positive generators for all tangent cones for all ǫ ∈ [0, ǫ∗] where ǫ∗ > 0 is independently

of the iteration counter as proposed in [117]). We then use the following algorithm

from [165] to compute the set Dk of positive generators for corresponding tangent cone

(in turn inspired by the work in [4, 117]). Basically, the idea of this algorithm is to

dynamically decrease ǫk in the search for a set of positive generators of a tangent cone

corresponding to a full row rank matrix Ck.

The final set of directions {d̃i
k
, i = 1, . . . , λ} is then formed by selecting among {di

k
, i =

1, . . . , λ}∪Dk those that lead to the best objective function value at the points xk+σkd

with d ∈ {di
k
, i = 1, . . . , λ} ∪Dk.

Approach based on projecting onto the feasible region

The second approach to deal with the unrelaxable constraints is based on projecting

onto the feasible domain all the generated sampled points xk + σkd
i

k
, and then taking

instead ΦΩ(xk + σkd
i

k
). We note that projecting onto the feasible region in the context

of derivative-free optimization has been already advocated in [120].



Chapter 4. Extension to constraints 92

Algorithm 5.4: Calculating the positive generators Dk.

Initialization: Choose ǫk = min(0.1, 10σk) and ǫlimit = min(0.1, ǫ
2

k).

While ǫ > ǫlimit

1. Construct the matrix Ck.

2. If 0 < dim(Ck) < n and Ck is full rank, then

a. Compute a QR factorization of the matrix C⊤k .

b. Let Zk = QR
−⊤, Yk = I − ZkCk, and stop with Dk = [Zk −Zk Yk

−Yk ].

3. If dim(Ck) = 0, then stop (and return Dk = [ ]), else ǫk = ǫk/2.

End While.

This procedure is however equivalent to consider

d̃ik =
ΦΩ(xk + σkd

i
k)− xk

σk

in the framework of Algorithm 5.3. By substituting all the infeasible generated sampled

points by their projections one also conforms the distribution of the offspring to the local

geometry of the constraints. Unlike in the first approach, one does need here to make use

of the extreme barrier function and thus its presence in Steps 2 and 3 of Algorithm 5.3

is innocuous.

Again, the global convergence results remains valid as long as the set {d̃ik, i = 1, . . . , λ}

still verifies Assumptions (i) and (ii). If we look at Assumption (i), one sees that

σk‖ak‖ =

∥

∥

∥

∥

∥

µ
∑

i=1

ωik[ΦΩ(xk + σkd
i
k)− xk]

∥

∥

∥

∥

∥

≤ σk

µ
∑

i=1

ωikLΦΩ‖d
i
k‖,

since xk = ΦΩ(xk), where we assumed that the projection mapping ΦΩ is Lipschitz

continuous with constant LΦΩ > 0. Since the d
i
k’s are bounded above in norm, one con-

cludes that σk‖ak‖ does indeed tend to zero. Note that the projection ΦΩ is Lipschitz

continuous when defined in the best approximation sense using some norm or distance

(being the constant LΦΩ equal to 1 in the Euclidean/ℓ2 case). The satisfaction of As-

sumption (ii) is achieved if ak is bounded below in norm and similar considerations as

in the previous approach apply here too.

For this approach based on projecting onto the feasible region one needs to define the

projection mapping ΦΩ. Given a norm ‖ · ‖ and a nonempty closed, convex set Ω, the



Chapter 4. Extension to constraints 93

mapping ΦΩ can be defined as:

ΦΩ(x) = argmin{‖z − x‖ : z ∈ Ω}. (5.13)

For purely bound constrained problems, when Ω = {x ∈ Rn : l ≤ x ≤ u}, we will use

the ℓ2-norm since it reduces to a trivial computation. In fact, in the Euclidean case, the

projection (5.13) is simply given by (for i = 1, . . . , n)

[ΦΩ(x)]i =















li if xi < li,

ui if xi > ui,

xi otherwise.

For general linearly constrained problems, the Euclidean/ℓ2 projection (5.13) reduces

to the solution of a QP problem with inequality constraints. We will rather use the

projection (5.13) when the norm is the ℓ1 one as its evaluation requires instead the

solution of an LP problem.

Another possibility would be to damp the step and allow the longest displacement along

each direction, in other words to compute for each direction d̃ik the largest αik ∈ (0, 1]

such that yik+1 = xk + αik(σkd̃
i

k) ∈ Ω. Although such a projection does not require the

solution of any auxiliary problem, it depends on the iteration counter and, furthermore,

it did not lead to better overall results when compared to the ℓ1 one. Figure 5.2 depicts

a 2D illustration of the projection approach.

(a) First step (b) Second step (c) Last step

Figure 5.2: An illustration of the projection approach to handle linearly constrained
problems. The figure (5.2(a)) outlines the projection of the unfeasible sample points.
Figures (5.2(b)) and (5.2(c)) show the adaptation of the distribution of the offspring

candidate solution to the constraints local geometry.



Chapter 4. Extension to constraints 94

5.3 Numerical experiments

5.3.1 Unrelaxable constraints

As a first test scenario, we have evaluated the performance of Algorithm 5.3 proposed

for only unrelaxable constraints and under the choices described in Section 5.2, using

different solvers, different comparison procedures, and a large collection of problems of

more than 200 bound and linearly constrained instances.

The solver related to the barrier approach will be called ES-LC-B standing for an

Evolution Strategy to handle Linear Constraints using a Barrier approach. The solver

related to the projection approach will be called ES-LC-P standing for an Evolution

Strategy to handle Linear Constraints using a Projection approach. We were mainly

interested in observing the efficiency and the robustness of our algorithms.

5.3.1.1 Solvers tested

The solvers used for our numerical comparisons were BCDFO, CMA-ES, MCS, and

PSWARM:

• BCDFO [72], Matlab version of Oct. 25, 2011. BCDFO is a local quadratic

interpolation-based trust-region algorithm for bound constrained problems.

• CMA-ES (Covariance Matrix Adaptation Evolution Strategy) for bound constrained

optimization, 3.61.beta Matlab version [78, 83]. This constrained version adds to

the objective function a penalization term measuring the distance between the

current point and its ℓ2-projection onto the feasible region.

• MCS [93] for bound constrained optimization, 2.0 Matlab version. MCS does a

multilevel coordinate search that balances global and local search (the latter using

quadratic interpolation).

• PSWARM, the same Matlab version used in [164, 165]. PSWARM implements a

polling type direct-search algorithm enhanced by a search step based on swarm

optimization for global search. Available for general linear constraints.

In the comparative study published in [145], MCS was among the best solvers in terms

of both efficiency and robustness. Among the stochastic solvers tested, CMA-ES and

PSWARM have appeared well ranked. BCDFO was developed after this study was

carried out but it was shown to perform very well [72].



Chapter 4. Extension to constraints 95

The default parameters of these four solvers were kept untouched, except the starting

point, the initial step size, and the maximal budget, which were chosen the same for all

of them including ours.

5.3.1.2 Algorithmic choices

The parameter choices of Algorithm 5.3 followed those in Chapter 4 for unconstrained

optimization. The values of λ and µ and of the initial weights are those of CMA-ES

for unconstrained optimization (see [78]): λ = 4+ floor(3 log(n)), µ = floor(λ/2), where

floor(·) rounds to the nearest integer, and ωi
0 = ai/(a1 + · · · + aµ), ai = log(λ/2 +

1/2)− log(i), i = 1, . . . , µ. The choices of the distribution Ck and of the update of σ
ES
k

also followed CMA-ES for unconstrained optimization (see [78]). The forcing function

selected was ρ(σ) = 10−4σ2. To reduce the step length in unsuccessful iterations we used

σk+1 = 0.9σk which corresponds to setting β1 = β2 = 0.9. In successful iterations we set

σk+1 = max{σk, σ
CMA-ES
k } (with σCMA-ES

k the CMA step size used in ES). The directions

di
k, i = 1, . . . , λ, were scaled if necessary to obey the safeguards dmin ≤ ‖d

i
k‖ ≤ dmax,

with dmin = 10
−10 and dmax = 10

10.

The initial step size is estimated using only the bound constraints, as in [165]: If there

is a pair of finite lower and upper bounds for a variable, then σ0 is set to half of the

minimum of such distances, otherwise σ0 = 20. The starting point is set to what is

suggested in the problem file (or to the origin when there is no suggestion), if such a

choice is feasible. When such a choice is not feasible (the majority of the cases), the

starting point is the center of the maximum volume ellipsoid inscribed in the feasible

region. As in [165], for computing such an ellipsoid we used the software implementation

in [170].

In Algorithm ES-LC-P, for bound constrained problems we will use the ℓ2-projection

(as it is trivial to evaluate) and in the case of general linear constraints we will use the

ℓ1-projection (as it reduces to the solution of an LP) where we use the Matlab linprog

routine.

5.3.1.3 Test problems

Our test problem set P is taken from the one used in [164, 165] to compare PSWARM

with other solvers and where the problems were collected from known non-linear pro-

gramming testing collections. The problems are coded in AMPL and divided into two

groups. The first group includes only pure bound constraints problems and it gathers

114 problems essentially from [7, 95, 119, 124]. The second group includes 107 general



Chapter 4. Extension to constraints 96

linear constrained problems, collected essentially from [1, 2]. All the solvers were thus

interfaced to AMPL. Relatively to the list of test problems reported in [164, 165] we

have excluded the bounded constrained problems lms1a, lms1b, lms2, lms3, lms5 due

to library linkage and the linearly constrained problems antenna2, powell20 for which

none of the solvers were able to find a feasible starting point. The problems and there

dimension distribution are listed in Appendix B.

5.3.1.4 Comparison results

For our numerical experiments, we used a maximal computational budget consisting

of 1500 function evaluations. Again as in the previous chapter, we choose to work

with data and performance profiles to assist the performance of the tested solvers (see

Section 4.2.3). When the solver is stochastic we plot the average profile over the number

of runs. The complete comparaison result is given in Appendix B.

The performance profiles are used to quantify the ability of the tested solvers to approach

the global minimum of a given problem. For the convergence test, we use the global

minimum when it is known, otherwise it is chosen as the best objective function value

found by all the tested solvers using an extremely large computational budget (a number

of function evaluations equal to 500000). Thus, in such a case it makes more sense not to

select the accuracy level too small, and our tests were performed with α = 10−2, 10−4.

The plots in Figure 5.3 and Figure 5.4 outline the performance profile results. The

left side of these Figures gives the percentage of the test problems, out of the problem

tested, for which an algorithm is more successful (efficiency). The right side represents

a measure of an algorithm’s robustness.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for bound constrained problems, α = 0.01

ES−LC−B

ES−LC−P

PSWARM

CMA−ES

MCS

BCDFO

(a) Accuracy level of 10−2.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for bound constrained problems, α = 0.0001

ES−LC−B

ES−LC−P

PSWARM

CMA−ES

MCS

BCDFO

(b) Accuracy level of 10−4.

Figure 5.3: Performance profiles for 114 bound constrained problems (average objec-
tive function values for 10 runs).



Chapter 4. Extension to constraints 97

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for linearly constrained problems, α = 0.01

ES−LC−B

ES−LC−P

PSWARM

(a) Accuracy level of 10−2.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for linearly constrained problems, α = 0.0001

ES−LC−B

ES−LC−P

PSWARM

(b) Accuracy level of 10−4.

Figure 5.4: Performance profiles for 107 general linearly constrained problems (aver-
age objective function values for 10 runs).

For bound constrained problems (Figure 5.3), one can see that BCDFO and MCS are

better than the other solvers in terms of efficiency. ES-LC-B appears to be the most

efficient stochastic solver. In terms of robustness, ES-LC-B, ES-LC-P, PSWARM and

MCS show very good performance. When it comes to BCDFO solver, it looses a lot

in terms of robustness. CMA-ES performs the worst in both efficiency and robustness.

The good efficiency performance of MCS and BCDFO is not surprising since they are

based on interpolation models and most of the objective functions tested are smooth.

Moreover, both solvers are specifically designed to solve bound constraints problems.

For general linear constrained problems (Figure 5.4), the projection approach (ES-LC-

P) performs, in both efficiency and robustness, better than PSWARM. However, the

barrier approach (ES-LC-B) showed the worst profile in terms of efficiency.

As a second scenario test, we are primarily interested in the behavior of the algorithms

for problems where the evaluation of the objective function is expensive using data

profiles. As for the levels of accuracy, we chose two values, α = 10−3 and α = 10−7.

Since the average of the best objective value fL is chosen as the average best value found

by all solvers considered, but under a relatively low maximal computational budget, it

makes no sense then to consider a high accuracy level (less than 10−7).

For bound constrained problems (Figure 5.5), the solvers ES-LC-P, ES-LC-B, PSWARM

and MCS perform well, with an advantage of MCS for small budget. BCDFO and

CMA-ES are less competitive compared to the other solvers. Regarding general linear

constraints (Figure 5.6), ES-LC-P and PSWARM perform in the same way. ES-LC-B

showed the worst performances for this class of problems.



Chapter 4. Extension to constraints 98

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for bound constrained problems, α = 0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B

ES−LC−P

PSWARM

CMA−ES

MCS

BCDFO

(a) Accuracy level of 10−3.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for bound constrained problems, α = 1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B

ES−LC−P

PSWARM

CMA−ES

MCS

BCDFO

(b) Accuracy level of 10−7.

Figure 5.5: Data profiles for 114 bound constrained problems (average objective
function values for 10 runs).

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for linearly constrained problems, α = 0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B

ES−LC−P

PSWARM

(a) Accuracy level of 10−3.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for linearly constrained problems, α = 1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B

ES−LC−P

PSWARM

(b) Accuracy level of 10−7.

Figure 5.6: Data profiles for 107 general linearly constrained problems (average ob-
jective function values for 10 runs).

5.3.2 Relaxable and unrelaxable constraints

The objective of this chapter is to propose a new approach handling both relaxable and

unrelaxable constraints. On the previous works, only the progressive barrier [19] is able

to handle both constraints. Thus, to quantify the efficency of the merit approach we

compare our solver with the direct search method MADS where the progressive barrier

approach is been implemented. We used the implementation given in the NOMAD

package [3, 16, 116], version 3.6.1 (C++ version linked to Matlab via a mex interface),

where we enabled the option DISABLE MODELS, meaning that no modeling is used in

MADS. The models are disabled since our solvers at this stage are not using any modeling

to speed up the convergence. The reader is referred to Chapter 6 for model incorporation

in direct-search methods.



Chapter 4. Extension to constraints 99

5.3.2.1 Test problems

Our test set is the one used in [87, 90, 111, 123] and comprises 13 well-known test

problems PrG1–PrG13. The problems PrG2,PrG3 and PrG8 are maximization problems,

so they will be solved by converting them to minimization problems. The characteris-

tics of those test problems are diverse and tend to cover many kind of difficulties that

constrained global optimization problems face. In addition to such problems, we add

three other engineering optimization problems [45, 87]: PrP the pressure vessel design

problem, PrT the tension-compression string problem, and PrW the welded beam design

problem. The following table contains the distribution of the dimension n, the number

of the constraints m (in addition to the bounds), and the best know optimal value fopt

for the chosen problems:

Name n m fopt

PrG1 13 9 −15

PrG2 20 2 −0.803619

PrG3
a 20 1 −1

PrG4 5 6 −30665.5

PrG5
a 4 5 5126.5

PrG6 2 2 −6961.81

PrG7 10 8 24.3062

PrG8 2 2 −0.095825

PrG9 7 4 680.63

PrG10 8 6 7049.33

PrG11
a 2 1 0.75

PrG12 3 1 −1

PrG13 5 3 0.0539498

PrP 4 3 5868.76

PrT 3 4 0.0126653

PrW
a 4 6 1.725

aProblems contain equality constraints. When a constraint is of the form c
e

i (x) = 0, we use the
following relaxed constraint instead ci(x) = |cei (x)| ≤ 10−4.

5.3.2.2 Test strategy

To investigate the advantages and drawbacks of the merit approach over the classical

extreme barrier approach. The initial step size is estimated using only the bound con-

straints: If there is a pair of finite lower and upper bounds for a variable, then σ0 is

set to the half of the minimum of such distances, otherwise σ0 = 1. The starting point



Chapter 4. Extension to constraints 100

is the same for all solvers and set to (LB + UB)/2 when the bounds LB and UB are

given, otherwise it is chosen randomly in the search space.

We first have made our test by considering that all the constraints as unrelaxable, thus

only the extreme barrier approach given by Algorithm 5.3. The solver related to the

barrier approach will be called ES-EB standing for an Evolution Strategy using the

Extreme Barrier approach. ES-EB will be compared to MADS where we disable the

progressive barrier and enable the extreme one, the related solver will be called MADS-

EB. However unlike the merit approach or the progressive barrier where starting from

an infeasible point is possible, the extreme barrier needs a feasible point. For infeasible

starting points, we use for ES-EB the same strategy implemented in MADS-EB [19]

where a two-phases extreme barrier approach is used as follows. During a first phase,

one neglects the objective function and tries to generate a feasible point (possibly with

a large objective function value). Finding a feasible point can be guarantied by finding

a global minimizer to the following optimization problem:

min g(x)

s.t. x ∈ Rn,
(5.14)

where g is the constraints violation function defined by (5.4). Once a feasible point

is found, a second phase is launched to find a better point in terms of the objective

function.

In the second test scenario, we consider that all the constraints are relaxable except

the bounds. In this case, the merit function (MF) and the progressive approaches

(PB) are respectively enabled, the related solvers will be called ES-MF and MADS-PB

respectively.

5.3.2.3 Numerical results

Tables 5.1 and 5.2, report results for both ES-EB and MADS-ES using a maximal budget

of 2000 and 20000, respectively. For each problem, we display the optimal objective value

found the tested solver. In order to show more details concerning the convergence cost,

the number of function evaluations consumed by the tested solved is also reported. To

be more precise, we display for the ES-EB the number of objective function evaluations

#f , used for in the second phase, as well as the number of the constraints violation

evaluation #g, used in the first phase. MADS-EB evaluates the whole problem (objective

function and constraints) on the same time as black box problem, thus we report a global

number of evaluations of the black box including both the objective constraints function

evaluations #(f, g).



Chapter 4. Extension to constraints 101

For a maximum number of function evaluations of 2000 (Table 5.1), both solvers have

no difficulty finding a feasible point when the starting point is infeasible. However, the

solvers are not able to find the global optimum of all the problems. For the ones that

converge (i.e. PrG3, PrG8,PrG11,PrG12 and PrT), ES-EB tends to converge to a better

solutions compared to MADS-EB for the problems PrG3 and PrT. MADS-EB and ES-EB

converge to the same optimum for PrG8, PrG11 and PrG12 with a slightly advantage to

the MADS-EB in terms of the convergence cost.

Name Best known ES-EB MADS-EB
fopt f(x∗) #f #g f(x∗) #(f, g)

PrG1 −15 −14.2698 2000 1027 −7.82754 2000
PrG2 −0.803619 −0.229242 2000 0 −0.206025 2000
PrG3 −1 −0.0383156 85 2000 −6.36481e− 233 1310
PrG4 −30665.5 −30498.1 2000 331 −30658.3 2000
PrG5 5126.5 5976.79 5 1648 5361.97 2000
PrG6 −6961.81 −6961.81 985 186 −6961.81 2000
PrG7 24.3062 37.1668 2000 841 27.9464 2000
PrG8 −0.095825 −0.095825 483 186 −0.095825 343
PrG9 680.63 682.643 2000 0 681.667 2000
PrG10 7049.33 16688.4 2000 885 7953.48 2000
PrG11 0.75 0.99998 197 0 0.9998 193
PrG12 −1 −1 248 0 −1 173
PrG13 0.0539498 2.7922 2 892 0.999626 2000
PrP 5868.76 7027.49 2000 253 5916.24 2000
PrT 0.0126653 0.0135759 667 477 0.0161624 936
PrW 1.725 2.41206 2000 487 4.63432 2000

Table 5.1: Comparison results for the extreme barrier approach using a maximal
budget of 2000 .

For a large maximal number of function evaluation of 20000 (Table 5.2), ES-EB and

MADS-EB achieve convergence to a stationary point for most of the problems, except for

MADS-EB which does not converge for the problems PrG10 and PrG13. The advantage

of ES-EB over MADS-EB is getting clearer in the large budget case. In fact, ES-EB

reaches a better solution (if not the global ones) than MADS-EB for 50% of the problems

(i.e. PrG1, PrG2, PrG3, PrG4, PrG7, PrG9 , PrT and PrW). Both solvers converge to the

same value for 25% of the problems (i.e. PrG6, PrG8 , PrG11 and PrG12). MADS-EB

is shown to be better on the 25% problems left. ES-EB is showing bad performance on

the problems PrG3, PrG5 and PrG13 since the constraints are mainly the equality ones.

Thus ES-EB has not a lot of freedom to sample point in the search space. In fact, after

generating a feasible point, ES-EB is not able to progress towards better region. As

far as the constraints violation will be allowed, we expect that our ES will be able to

improve the quality of the found solution.



Chapter 4. Extension to constraints 102

Name Best known ES-EB MADS-EB
fopt f(x∗) #f #g f(x∗) #(f, g)

PrG1 −15 −14.9999 17259 1027 −7.82761 10093
PrG2 −0.803619 −0.229242 3290 0 −0.206864 11027
PrG3 −1 −0.0383278 227 2584 −6.36481e− 233 1310
PrG4 −30665.5 −30665.4 5598 331 −30664.9 6666
PrG5 5126.5 5976.79 5 1648 5361.97 2166
PrG6 −6961.81 −6961.81 985 186 −6961.81 2027
PrG7 24.3062 24.4533 17491 841 27.8811 5010
PrG8 −0.095825 −0.095825 483 186 −0.095825 343
PrG9 680.63 680.63 18969 0 681.301 3443
PrG10 7049.33 16220.9 6987 885 7933.19 20000
PrG11 0.75 0.99998 197 0 0.9998 193
PrG12 −1 −1 248 0 −1 173
PrG13 0.0539498 2.7922 2 892 0.997151 20000
PrP 5868.76 6044.93 3764 253 5916.23 4219
PrT 0.0126653 0.0135759 667 477 0.0161624 936
PrW 1.725 2.21999 5159 487 4.49103 3248

Table 5.2: Comparison results for the extreme barrier approach using a maximal
budget of 20000 .

Tables 5.3 and 5.4, report results for both ES-MF and MADS-PB using a maximal

budget of 2000 and 20000, respectively. For each problem, we display the optimal

objective value found by the solver f(x∗), the associated constrained violation g(x∗),

and the number of objective function evaluations #f needed to reach x∗. When a solver

returns a flag error or encounters an internal problem, we display ’−’ instead of the

values of f(x∗) and g(x∗).

Table 5.3 gives the obtained results for a maximal budget of 2000 function evaluations.

Except four problems both solvers are not able to converge for the regarded budget.

Again, our solver ES-EM is shown to be more global than MADS-PB on the tested

problems.

For a large maximal number of function evaluation of 20000 (Table 5.4), ES-MF and

MADS-PB achieve convergence to a stationary point for most of the problems, except

two problems PrG10 and PrG13, where MADS-PB is requiring more function evaluations.

The advantage of ES-MF over MADS-PB is evident compared to the small budget case.

In fact, one can observe that ES-MF reaches better solutions (if not the global ones) than

MADS-EB for ten of the sixteen tested problems with a 10−5 as constraints violation

tolerance (i.e. PrG1, PrG2, PrG3, PrG5, PrG7, PrG9 ,PrG11 , PrG13, PrT and PrW). Both

solvers converge to the same value for two problems PrG8 and PrG12. MADS-EB is

shown to be better on the following four problems: PrG3, PrG4, PrG6 and PrG10.



Chapter 4. Extension to constraints 103

Name Best known ES-MF MADS-PB
fopt f(x∗) #f g(x∗) f(x∗) #f g(x∗)

PrG1 −15 −12.8618 2000 7.3e− 07 −8.99982 2000 0
PrG2 −0.803619 −0.27127 2000 0 −0.214849 2000 0
PrG3 −1 −0.00126411 2000 1.8e− 09 −3.69017e− 06 1310 0
PrG4 −30665.5 −31070.1 2000 0.29 −30665.4 2000 0
PrG5 5126.5 5628.47 2000 0.0029 5237.9 2000 0.26
PrG6 −6961.81 −7905.27 2000 0.48 −6961.81 2000 0
PrG7 24.3062 29.8256 2000 0 33.2519 2000 0
PrG8 −0.095825 −0.095825 274 0 −0.095825 343 0
PrG9 680.63 681.699 2000 0 680.904 2000 0
PrG10 7049.33 9647.75 2000 3 6198.97 2000 0.023
PrG11 0.75 0.74974 2000 2.6e− 08 0.9998 193 0
PrG12 −1 −1 241 0 −1 173 0
PrG13 0.0539498 1.30217 2000 0.051 0.998843 2000 0
PrP 5868.76 61515.5 2000 0.0013 7542.07 2000 0
PrT 0.0126653 0.0132653 1572 3.2e− 10 − 936 −
PrW 1.725 2.93783 2000 0 3.74259 2000 0

Table 5.3: Comparison results for the merit approach and the progressive barrier one
using a maximal budget of 2000 .

If one has a tolerance of 10−5 on the constraints violation, then both solvers are seen

to converge to an unfeasible solution for the problem PrG10. Under such tolerance,

MADS-PB is also converging to an unfeasible solution for the problem PrG5 for which

ES-MF was able to reach the global minimum.

Name Best known ES-MF MADS-PB
fopt f(x∗) #f g(x∗) f(x∗) #f g(x∗)

PrG1 −15 −14.954 11222 2.4e− 06 −8.99999 10093 0
PrG2 −0.803619 −0.27127 3550 0 −0.226599 11027 0
PrG3 −1 −0.826461 17735 1.8e− 05 −0.00413072 1310 0
PrG4 −30665.5 −29730.1 6810 0 −30665.4 6666 0
PrG5 5126.5 5126.5 3970 0 5240.95 2166 0.008
PrG6 −6961.81 −7020.87 3641 0.0084 −6961.81 2027 0
PrG7 24.3062 24.7564 11402 0 27.1991 5010 0
PrG8 −0.095825 −0.095825 274 0 −0.095825 343 0
PrG9 680.63 680.629 7563 4.2e− 07 680.799 3443 0
PrG10 7049.33 10126.8 8103 0.067 6192.82 20000 0.021
PrG11 0.75 0.749487 2807 1.7e− 07 0.9998 193 0
PrG12 −1 −1 241 0 −1 173 0
PrG13 0.0539498 0.45309 8944 4.5e− 09 0.996284 20000 0
PrP 5868.76 74239 5405 0 7542.07 4219 0
PrT 0.0126653 0.0132653 1572 3.2e− 10 − 936 −
PrW 1.725 2.22794 8686 0 3.7413 3248 0

Table 5.4: Comparison results for the merit approach and the progressive barrier one
using a maximal budget of 20000 .



Chapter 4. Extension to constraints 104

For problems with equality constraints the feasible region is very small, unlike the ES-EB

which was not able to make progress after finding a feasible point, the merit approach

ES-MF makes more progress by allowing the constraints violation. One can observe that

for the three problems with equality constraints (i.e. PrG3, PrG5 and PrG13), ES-EB

was able to explore only few feasible point contrary to ES-MF. Such freedom during

the exploration leads ES-MF to outperform all the other solvers ,i.e. meaning ES-EB,

MADS-EB and MADS-PB for the problems tested with equality constraints.

5.4 Conclusions

Motivated by the fact that the globally convergent ES’s proposed in Chapter 4 al-

ready yielded encouraging results for unconstrained optimization, we have introduced

a globalization procedure to include constraints. The latter ones are assumed in their

most general form, meaning that the constraints can be relaxable and/or unrelaxable

depending on the problem settings. The introduced procedure requires for relaxable

constraints a merit function approach where we combined both the objective function

and the constraints violation function. For the unrelaxable constraints two approaches

were encompassed. In the first one, the objective function was evaluated directly at the

generated sampled points, the feasibility was enforced using an extreme barrier func-

tion. The second approach projected the generated sampled points onto the feasible

domain before evaluating the objective function. When the unrelaxable constraints are

of the form of bounds on the variables or general linear inequality, we payed particular

attention to the need to adapt or conform the generation of the ES offspring to the local

geometry of the constraints, and tried to follow the globally convergent principles.

In the first part of our numerical experiments, we consider only unrelaxable constraints.

We showed that our proposed ES approaches (using the extreme barrier or projection)

can be competitive with state-of-the-art solvers for derivative-free bound and linearly

constrained optimization. In the second part of our numerical experiments, we test our

algorithms under the presence of both relaxable and unrelaxable constraints. On the

chosen test problems, the merit approach showed promising results compared to the

progressive barrier one [19], in particular, for relatively small feasible regions.



Chapter 6

Incorporating Local Models in a

Globally Convergent ES

In this chapter, we show a possible way to incorporate quadratic surrogate models in

our proposed ES to achieve a better performance. In general, various model techniques

have been proposed to use with ES’s. Jin [101] outlines a comprehensive survey of the

most popular model-based techniques currently used with evolutionary algorithms, in

particular, evolution strategies.

The modified ES algorithms, proposed in the previous chapters, evaluate the objective

function at a significantly large number of points at each iteration, independently of its

success or unsuccess. In a certain sense, they are even worse than opportunistic direct-

search methods were polling is declared successful once a new better point is found (see

Section 2.2). However, the previously evaluated points can be used in a number of ways

to speed up the convergence and make ES type algorithms more efficient. The possibility

that we will explore in this chapter is to use at the beginning of each iteration, a search

step as in the search-poll framework of direct search [36]. For that purpose, a surrogate

quadratic model of the objective function f can be minimized in a certain region using

previously evaluated points. The surrogate models will be computed using techniques

inspired from model-based methods for DFO (see Section 2.1). The latter methods have

been shown to be more efficient and accurate than direct-search methods on chosen

unconstrained test problems [125].

The proposed algorithm combines ES and model based techniques. Such a coupling has

been first achieved for direct-search methods in SID-PSM [53] and then extended to

MADS [48] with interesting results. The proposed hybrid algorithm has been designed

to satisfy the convergence analysis of our globally convergent ES. We use quadratic

interpolation to build our models. The minimization of the incorporated models is

105



Chapter 6. Incorporating Local Models in a Globally Convergent ES 106

expected to speed up the ES run. Our new hybrid algorithm follows the implementation

choices suggested in [53].

This chapter is organized in the following way. In Section 6.1, we show how to incor-

porate local models into our proposed globally convergent ES, practical implementation

issues are also emphasized. Section 6.2 reports our numerical experiments on both

unconstrained and constrained optimization problems. Final conclusions are given in

Section 6.3.

6.1 Incorporating local models in a globally convergent ES

In this work, we are interested in studying the impact of using quadratic models to

enhance ESs. The new proposed algorithm can be described as follows: at the beginning

of each iteration, a new search step will be taken where a quadratic model is minimized

in a certain region. If the trial point y resulting from this process reduces sufficiently

the objective function, meaning if f(y) ≤ f(xk) − ρ(σk), then the search step and the

current iteration are declared successful, the trial point is taken (xk+1 = y), the step

size is left unchanged (σk+1 = σk), and the ES main iteration step is skipped. If not, the

iteration proceeds as in Algorithm 4.1. Similar to direct-search methods, the search step

is optional and has no influence in the global convergence properties since (a) one can still

easily prove that there are subsequences of unsuccessful iterations driving the step size to

zero (refining subsequences), and (b) the analysis focuses then entirely on subsequences

of unsuccessful iterations and those are only attainable by the ES mechanism itself (the

poll step).

6.1.1 The general strategy of the search step

The search step is skipped if there are less than n+ 1 previously evaluated points. We

consider all the points previously evaluated and not only just those points that lead to a

decrease in the objective function. Such choice has been shown to be a good strategy as

it tries to capture as much information available as possible [53]. At the k-th iteration,

given the current iterate xk, the constructed quadratic model is minimized in a ball (or

trust region) B(xk; ∆k) = {x ∈ Rn : ‖x − xk‖ ≤ ∆k}, centered at xk with radius ∆k =

θσk (where θ takes the value 1 if the previous iteration was unsuccessful, or 2 otherwise).

If no constraints are regarded, we use the standard Euclidean norm [49, 52], otherwise

the infinity norm is used as a natural choice in the presence of bound constraints [49, 72].

The search step is enabled after a first quadratic model has been built, by minimizing

the model in B(xk; ∆k). If no new model is formed at the current mean parent xk,



Chapter 6. Incorporating Local Models in a Globally Convergent ES 107

then we use the last previously built model. The quadratic model can be built up to a

maximum number of points of (n + 1)(n + 2). If there are less points than needed for

complete quadratic interpolation (meaning less that (n + 1)(n + 2)/2, see Section 2.1),

one uses minimum Frobenius norm (MFN) models. MFN models consist on minimizing

the Frobenius norm subject to the interpolation condition (see Section 2.1.2.3). When

the number of points stored in the cache is in ((n + 1)(n + 2)/2, (n + 1)(n + 2)], two

variants have been considered. In the first variant, only (n + 1)(n + 2)/2 evaluated

points are used from the cache to compute a complete quadratic interpolation model

by selecting the (n + 1)(n + 2)/2 nearest points. Such choice is shown to numerically

perform better than if one selects 80% of the needed points as the nearest ones to the

mean point xk and the other 20% points are selected as the farther ones in an attempt

to diversify the information used in the model computation [53]. In the second variant,

we use all the evaluated points to build least-squares regression models.

6.1.2 Trust-region subproblem in the search step

The quadratic minimization problem corresponds to solve the following quadratic con-

strained optimization problem

min
s∈Rn

mk(xk + s) = f(xk) + g⊤k s+
1

2
s⊤Hks

s.t. ‖s‖ ≤ ∆k

. (6.1)

Such problem is solved using the optimality conditions. Thanks to the quadratic form of

the problem, one is able to characterize the global minimizer [49, 52]. Good algorithms

exist for solving problem (6.1); such algorithms typically involve the computation of a full

eigensystem and a Newton process applied to the secular equation [49]. The existing

algorithms provide an accurate solution to the problem (6.1). However, they require

several factorizations of Hk and thus for large-scale problems a different approach is

needed. Meanwhile, such dimension constraint is out of the DFO context where one deals

generally with comparatively small dimension problems. In our numerical experiments,

we use the MATLAB routine trust.m to compute the solution of the optimization

subproblem (6.1).

6.1.3 Geometry control in the search step

As emphasized in Section 2.1.2.2, one can use the condition number of the matrices

M(φ̄, Ŷ ) and F (φ̄, Ŷ ) (depending on the number of the evaluated points) to monitor the

poisedness (i.e, control the geometry of the sample set), where φ̄ is the natural basis of



Chapter 6. Incorporating Local Models in a Globally Convergent ES 108

monomials (2.6) and Ŷ is a shifted and scaled version of the points set used Y such as

Ŷ ⊂ B(0; 1).

In our setting, instead of controlling the condition number of M(φ̄, Ŷ ) or F (φ̄, Ŷ ), we

used a singular value decomposition of the matrix, and replace all the singular values

smaller than threshold ǫ by this threshold [53]. Such choice is motivated by the fact

that (a) the search step is optional and used only to explore the local information

independently of the quality of the constructed model, and (b) ignoring the geometry

control of the points set may not deteriorate the performance compare to if one uses a

geometry phase to monitor the poisedness of the points set [62].

6.1.4 Constraints treatment in the search step

The constraints are considered non-relaxable, meaning that Ω = Ωnr in the optimization

problem 5.1. Their treatment in the search step can be done following two different

approaches. The first one consists on using simply the barrier function fΩ instead of f

in the sufficient decrease condition to accept a new point y, meaning that the search step

is declared successful only if fΩ(y) ≤ f(xk) − ρ(σk). The second approach consists in

projecting into the feasible domain Ω the outcome of the minimization subproblem (6.1)

to yield the trial point y for the search step (and we will have fΩ(y) = f(y)). The

projection approach is expected to lead to more progress than the barrier appeared,

since all the successful search steps using the barrier variant are also successful for

the projection one. However, the projection variant is known to be unpractical and

expensive for general constraints [120], thus we propose to use the projection when it is

doable, otherwise we switch to the barrier approach. For instance, in the case of bound

constraints we will use the ℓ2-projection (as it is trivial to evaluate), and in the case of

general linear constraints we will use the ℓ1-projection (as it reduces the projection to

the solution of an LP).

6.1.5 Algorithm description

Algorithm 6.1 gives the complete description of the proposed strategy. The algorithm is

split into two steps; a search step where one minimize a surrogate model, and a polling

one where a main iteration of the globally convergent ES is performed. The poll step is

launched only if the the search step has been unsuccessful. The step size parameter is

updated only during the poll step, thus the convergence of the algorithm is exclusively

controlled by the ES. In Chapter 4, three different ways to impose sufficient decrease

conditions in ES are possible. We will adopt here only the mean/mean version that

consists of applying sufficient decrease directly to the weighted mean xtrial
k+1 of the new



Chapter 6. Incorporating Local Models in a Globally Convergent ES 109

parents, which has been shown to yield global convergence and to numerically perform

the best among the different versions tested.

Algorithm 6.1: A globally convergent ES using a search step.

Initialization: Choose positive integers mλ and mµ such that mλ ≥ mµ. A starting
point x0. Choose initial step lengths σ0, σ

ES
0 > 0, an initial distribution C0, and

initial weights (ω1
0, . . . , ω

mµ

0 ) ∈ S. Choose constants β1, β2, dmin, dmax such that
0 < β1 ≤ β2 < 1 and 0 < dmin < dmax. Select a forcing function ρ(·). Set k = 0.

Until some stopping criterion is satisfied:

1. Search Step:

Try to compute a point with fΩ(y) ≤ f(xk)− ρ(σk) by minimizing a surrogate
model. If such point is found, then set xk+1 = y, declare the search step
successful, and skip the poll step.

2. Poll Step:

2.1. Offspring generation: compute new sample points Yk+1 = {y
1
k+1, . . . , y

λ

k+1} such
that

yik+1 = xk + σkd̃
i

k, i = 1, . . . , λ,

where the directions d̃ik’s are computed from the original ES directions dik’s
(which in turn are drawn from a chosen ES distribution Ck and scaled if
necessary to satisfy dmin ≤ ‖d

i

k‖ ≤ dmax).

2.2. Parent selection: evaluate fΩ(y
i

k+1), i = 1, . . . , λ, and reorder the offspring points

in Yk+1 = {ỹ
1
k+1, . . . , ỹ

λ

k+1} by increasing order: fΩ(ỹ
1
k+1) ≤ · · · ≤ fΩ(ỹ

λ

k+1).

Select the new parents as the best µ offspring sample points {ỹ1k+1, . . . , ỹ
µ
k+1},

and compute their weighted mean

xtrialk+1 =

µ
∑

i=1

ωikỹ
i

k+1.

Evaluate f(xtrialk+1 ).

2.3. Imposing sufficient decrease: if fΩ(x
trial

k+1 ) ≤ fΩ(xk)− ρ(σk), then consider the

iteration successful, set xk+1 = xtrialk+1 , and σk+1 ≥ σk (for example

σk+1 = max{σk, σ
ES
k }).

Otherwise, consider the iteration unsuccessful, set xk+1 = xk and σk+1 = β̄kσk,
with β̄k ∈ (β1, β2).

2.4. ES updates: update the ES step length σESk+1, the distribution Ck, and the weights
(ω1k+1, . . . , ω

mµ

k+1) ∈ S. Increment k and return to Step 1.



Chapter 6. Incorporating Local Models in a Globally Convergent ES 110

6.2 Numerical experiments

6.2.1 Test strategy

We made a number of numerical experiments to measure the effect of incorporating local

models in our proposed algorithms. We are mainly interested in observing the changes

that occur in ES in terms of an efficient and robust search for stationarity.

The parameter choices are the same as in Section 5.3.1.2. We work with data profiles to

assess the performance of the tested solvers using a maximal computational budget con-

sisting of 1500 function evaluations as in [48, 53]. Data profiles are primarily interested

in the behavior of the algorithms for problems where the evaluation of the objective

function is expensive using data profiles. As for the levels of accuracy, we chose two

values, α = 10−3 and α = 10−7.

6.2.2 Numerical results for unconstrained optimization

For our numerical experiments, we first compare the mean/mean version with and with-

out the search step to confirm the expected advantage of incorporating local models. In

a second part, we have compared the proposed algorithm and two other solvers BCDFO

and SID-PSM. BCDFO [72] is a trust region interpolation-based code, this solver is

shown to perform very well for both unconstrained and bound constrained optimiza-

tion. SID-PSM [53, 54] is an implementation of a generalized pattern search method

combined with quadratic polynomials to enhance the search step and with the use of

simplex gradients to guide the function evaluations in the poll step. Our search step was

mainly inspired by the SID-PSM implementation, thus a comparison with such solver

seems natural to assess the impact of using local models.

Our test set P is the same as the one used in Chapter 4. The test problems have

been considered in four different types, each having 53 instances: smooth (least squares

problems obtained from applying the ℓ2 norm to the vector functions); nonstochastic

noisy (obtained by adding oscillatory noise to the smooth ones); piecewise smooth (as

in the smooth case but using the ℓ1 norm instead); stochastic noisy (obtained by adding

random noise to the smooth ones).

6.2.2.1 Search step impact

The purpose of this section is to quantify the impact of incorporating local model in

the mean/mean version proposed in Chapter 4. As expected, our experiments have



Chapter 6. Incorporating Local Models in a Globally Convergent ES 111

shown that incorporating local models (i.e search step) improves the performance of our

globally convergent ES.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for smooth problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (using complete quadratic interpolation)

mean/mean (using regression)

(a) Accuracy level of 10−3.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for smooth problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (using complete quadratic interpolation)

mean/mean (using regression)

(b) Accuracy level of 10−7.

Figure 6.1: Data profiles computed for the set of smooth problems to assess the
impact of incorporating local models, considering the two levels of accuracy, 10−3 and

10−7.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for nonstochastic noisy problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (using complete quadratic interpolation)

mean/mean (using regression)

(a) Accuracy level of 10−3.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for nonstochastic noisy problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (using complete quadratic interpolation)

mean/mean (using regression)

(b) Accuracy level of 10−7.

Figure 6.2: Data profiles computed for the set of nonstochastic noisy problems to
assess the impact of incorporating local models, considering the two levels of accuracy,

10−3 and 10−7.

Figures 6.1, 6.2, 6.3, and 6.4 depict data profiles using two levels of accuracy 10−3 and

10−7. The data profiles are clearly favorable to the incorporation of local models (i.e.

mean/mean with a search step). Regression models are shown to improve significantly

the performance of the mean/mean version for the tested problems. Complete quadratic

interpolation models are not leading to significant improvement compare to the regres-

sion one, thus only regression models are going to be used further in the comparison

with other solvers. For instance with an accuracy of 10−3 and when the problems are

smooth (see Figure 6.1), the mean/mean version using regression models is able to solve

about all the problems when the pure mean/mean version is solving around 80%. The



Chapter 6. Incorporating Local Models in a Globally Convergent ES 112

advantage of incorporating local models for higher accuracy, i.e. 10−7, is more obvious.

The results of the other class problems followed a very similar trend.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for piecewise smooth problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (using complete quadratic interpolation)

mean/mean (using regression)

(a) Accuracy level of 10−3.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for piecewise smooth problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (using complete quadratic interpolation)

mean/mean (using regression)

(b) Accuracy level of 10−7.

Figure 6.3: Data profiles computed for the set of piecewise smooth problems to assess
the impact of incorporating local models, considering the two levels of accuracy, 10−3

and 10−7.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for stochastic noisy problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (using complete quadratic interpolation)

mean/mean (using regression)

(a) Accuracy level of 10−3.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for stochastic noisy problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (using complete quadratic interpolation)

mean/mean (using regression)

(b) Accuracy level of 10−7.

Figure 6.4: Data profiles computed for the set of stochastic noisy problems to assess
the impact of incorporating local models, considering the two levels of accuracy, 10−3

and 10−7.

6.2.2.2 Comparison with other solvers

Figures 6.5, 6.6, 6.7, and 6.8 depict a comparison of our proposed algorithm with SID-

PSM and BCDFO using two levels of accuracy 10−3 and 10−7.

For smooth problems (see Figure 6.5), incorporating regression models leads to an im-

provement of the performance of the mean/mean version but not enough to outperform

BCDFO and SID-PSM. For instance with an accuracy of 10−3 and for a unit budget of



Chapter 6. Incorporating Local Models in a Globally Convergent ES 113

150 (i.e 150(n+1) function evaluations), BCDFO and SID-PSM are able to solve about

95% of the problems, the mean/mean version with regression models in the search step

is solving around 85%. The pure mean/mean version is performing the worst by solving

about 75% of the problems.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for smooth problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (regression)

BCDFO

SID−PSM

(a) Accuracy level of 10−3.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for smooth problems, α=1e−07

Units of budget
P

e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (regression)

BCDFO

SID−PSM

(b) Accuracy level of 10−7.

Figure 6.5: Comparison with SID-PSM and BCDFO methods on the set of smooth
problems using data profiles, considering the two levels of accuracy, 10−3 and 10−7.

When the optimization problems are noisy the mean/mean version (with regression

models) shows better performance. For nonstochastic noisy problems (see Figure 6.6) the

use of regression models leads the mean/mean version to perform better than BCDFO

and have the same profile as SID-PSM for large budgets.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for nonstochastic noisy problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (regression)

BCDFO

SID−PSM

(a) Accuracy level of 10−3.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for nonstochastic noisy problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (regression)

BCDFO

SID−PSM

(b) Accuracy level of 10−7.

Figure 6.6: Comparison with SID-PSM and BCDFO methods on the set of non-
stochastic noisy problems using data profiles, considering the two levels of accuracy,

10−3 and 10−7.

For piecewise smooth problem, see Figure 6.7, data profiles are clearly favorable to

the mean/mean version with and without regression models in the search step. The



Chapter 6. Incorporating Local Models in a Globally Convergent ES 114

incorporation of such models leads to a very good performance. The leadership of the

version mean/mean with regression models over all the tested solvers is confirmed for

stochastic noisy optimization problems (see Figure 6.8).

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for piecewise smooth problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (regression)

BCDFO

SID−PSM

(a) Accuracy level of 10−3.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for piecewise smooth problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (regression)

BCDFO

SID−PSM

(b) Accuracy level of 10−7.

Figure 6.7: Comparison with SID-PSM and BCDFO methods on the set of piecewise
smooth problems using data profiles, considering the two levels of accuracy, 10−3 and

10−7.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for stochastic noisy problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (regression)

BCDFO

SID−PSM

(a) Accuracy level of 10−3.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for stochastic noisy problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

mean/mean (regression)

BCDFO

SID−PSM

(b) Accuracy level of 10−7.

Figure 6.8: Comparison with SID-PSM and BCDFO methods on the set of stochastic
noisy problems using data profiles, considering the two levels of accuracy, 10−3 and

10−7.

6.2.3 Numerical results for constrained optimization

For our numerical experiments only unrelaxable constraints are treated. In this section

we are interested in measuring the impact of incorporating local models for constrained

optimization problems. The local models are tested on ES-LC-B and ES-LC-P proposed

in Chapter 5 to handle unrelaxable constraints. ES-LC-B is a solver handling general



Chapter 6. Incorporating Local Models in a Globally Convergent ES 115

linear constraints essentially via a barrier function, the ES-LC-P solver is based on

projection to enforce de feasibility.

We first compare ES-LC-B and ES-LC-P with and without the search step to confirm the

expected advantage of incorporating local models. In a second part, we have compared

the proposed algorithm and the same solvers used for the unrelaxable constraints com-

parison: PSWARM, MCS, CMA-ES, and BCDFO. The comparison with same solvers

seems natural to assess the positive impact of using local models.

Our test set P in the same as the one used in Chapter 5 for unrelaxable constraints

which is divided into two groups. The first group includes only pure bound constraints

problems and it gathers 114 problems. The second group includes 107 general linear

constrained problems.

6.2.3.1 Search step impact

The purpose of this section is to evaluate the impact of incorporating local model for

constrained optimization problems. As expected, our experiments have shown that

incorporating local models (i.e search step) improves the performance of our globally

convergent ES, particularly for bound constrained optimization problems.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for bound constrained problems, α = 0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B

ES−LC−B (using a search step)

ES−LC−P

ES−LC−P (using a search step)

(a) Accuracy level of 10−3.

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for bound constrained problems, α = 1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B

ES−LC−B (using a search step)

ES−LC−P

ES−LC−P (using a search step)

(b) Accuracy level of 10−7.

Figure 6.9: Data profiles computed for 114 bound constrained problems to assess the
impact of incorporating local models, considering the two levels of accuracy, 10−3 and

10−7.

Figures 6.9 and 6.10 depict data profiles using two levels of accuracy for bound and

linear constrained optimization problems. The data profiles are clearly favorable to

the incorporation of local models (i.e. mean/mean with a search step), in particular

for bound constraints. The improvement in the general linear constraints case is not

significant on the tested problems. For instance with an accuracy of 10−3 when the



Chapter 6. Incorporating Local Models in a Globally Convergent ES 116

0 50 100 150 200 250 300 350 400 450 500 550
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for linearly constrained problems, α = 0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B

ES−LC−B (using a search step)

ES−LC−P

ES−LC−P (using a search step)

(a) Accuracy level of 10−3.

0 50 100 150 200 250 300 350 400 450 500 550
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for linearly constrained problems, α = 1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B

ES−LC−B (using a search step)

ES−LC−P

ES−LC−P (using a search step)

(b) Accuracy level of 10−7.

Figure 6.10: Data profiles computed for 107 general linearly constrained problems to
assess the impact of incorporating local models, considering the two levels of accuracy,

10−3 and 10−7.

problems are bound constrained (see Figure 6.9), regression models in the search step

lead to an improvement of both solvers ES-LC-B and ES-LC-P. Both solvers using

regression models are able to solve about 90% when the search step is disabled the same

solvers are solving around 80%. The advantage of incorporating local models for higher

accuracy, i.e. 10−7, is more obvious. For general linear constraints (see Figure 6.10)

the use of the search step does not lead to any significant performance improvement.

Thus ES-LC-B and ES-LC-P are compared to other solvers only for bound constrained

problems in the next subsection.

6.2.3.2 Comparison with other solvers

Figures 6.11 and 6.12 report a comparison of our solvers ES-LC-B and ES-LC-P with

PSWARM, CMA-ES, MCS, and BCDFO using two levels of accuracy 10−3 and 10−7.

The purpose of this section is to outline to advantage of using local models to improve

the numerical results emphasized for unrelaxable constraints in Section 5.3.1.

For an accuracy level of 10−3 (see Figure 6.11), incorporating models leads to an im-

provement of the performance of our solvers ES-LC-B and ES-LC-P. Thanks to the

search step the ES-LC-B display the best performance of all the tested solvers for a

sufficiently large budget. For instance for a unit budget of 150 (i.e 150(n + 1) func-

tion evaluations), ES-LC-B is able to solve about 80% of the problems within a search

step, MCS is solving around 75%. PSWARM and ES-LC-P are solving around 70% of

the tested problems. CMA-ES and BCDFO are performing the worst by solving re-

spectively about 50% and 60% of the problems. The same trend is followed for higher



Chapter 6. Incorporating Local Models in a Globally Convergent ES 117

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for bound constrained problems, α = 0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B

ES−LC−P

PSWARM

CMA−ES

MCS

BCDFO

(a) The search step is disabled.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for bound constrained problems, α = 0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B (using a search step)

ES−LC−P (using a search step)

PSWARM

CMA−ES

MCS

BCDFO

(b) The search step is enabled.

Figure 6.11: Data profiles for 114 bound constrained problems using an accuracy
level of 10−3 (average objective function values for 10 runs).

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for bound constrained problems, α = 1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B

ES−LC−P

PSWARM

CMA−ES

MCS

BCDFO

(a) The search step is disabled.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for bound constrained problems, α = 1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

ES−LC−B (using a search step)

ES−LC−P (using a search step)

PSWARM

CMA−ES

MCS

BCDFO

(b) The search step is enabled.

Figure 6.12: Data profiles for 114 bound constrained problems using an accuracy
level of 10−7 (average objective function values for 10 runs).

accuracy where the advantage of incorporating local models is more obvious for both

solvers ES-LC-B and ES-LC-P(see Figure 6.12).

6.3 Conclusions

The main contribution of this chapter is to show that clear improvements due to the

introduction of local models into our proposed ES have been demonstrated by numerical

tests. First, on a set of unconstrained problems including smooth and noisy optimization

problems, and then on a set of bound constrained problems for which our proposed

globally convergent ES has shown very good performance and outperforms some of the

state of the art algorithms in DFO area. The regarded approach for incorporating local



Chapter 6. Incorporating Local Models in a Globally Convergent ES 118

models consisted of using the points generated by the ES itself (during the poll steps)

to build quadratic interpolation models. Regression local models were leading to better

results compared to the complete quadratic interpolation models.



Chapter 7

Towards an Application in

Seismic Imaging

Vibrations generated by earthquakes, explosions, or similar phenomena and propagated

within the Earth or along its surface can yield information about the Earth and its

subsurface structure. Such knowledge, called “Earth imaging”, is of major interest

for economy, environment and science. Geologists have developed several methods for

Earth imaging using seismic wave information. Acoustic full waveform inversion is one

of these procedures that attempts to derive high-resolution quantitative models of the

subsurface using the full information of acoustic waves [167]. A complete description

of the problem can be given as follows [161]. During the propagation, waves interfere

with the environment and the total wavefield is recorded through a certain number of

receivers (i.e. hydrophones or geophones). Since the waves are affected by the physical

properties of the subsurface, they are carrying information about the environment that

can be retrieved by an inversion process. The propagation waves are generated by

sources situated in the domain of study (see Figure 7.1).

�����������	
��

Figure 7.1: A graphical representation of acoustic waves propagated by a source
are reflected by a reflective layer (in white) and are detected by the geophones. The

reflective layer in this example represents a salt dome.

119



Chapter 7. Towards an Application in Seismic Imaging 120

Acoustic full waveform inversion has been almost exclusively used by academic re-

searchers but it is now adopted by practitioners. Nevertheless, the computational cost

is still expensive compared to other methods employed for seismic exploration. The at-

traction of the approach is the promise of deriving high-fidelity earth models for seismic

imaging from the recoder full waveforms. As our ability to understand and manage the

complex, non-linear inversions has been developed and the computer power available

has grown, full waveform inversion has become more and more practical.

Acoustic full waveform inversion (FWI), formulated as a non-linear optimization least-

squares minimization, can be efficient when the starting propagation velocity model

is accurate enough, but otherwise suffers from stalled convergence to spurious local

minima due to the oscillatory nature of the data [126]. The main step of FWI in seismic

imaging is to find a good starting point without the need for sophisticated a priori

knowledge on the velocity model. A good starting point has to explain the data within

a low frequency, meaning that a smooth version of the true velocity model can be seen

as a good starting velocity model [38, 167]. First-arrival travel-time tomography [131],

stereotomography [114] or recently Laplace domain inversion [152] are typically the most

used methods to generate an accurate initial propagation velocity model. Multi-scale

strategies are also used to mitigate the non-linearity and reduce the dependence on the

starting velocity model of FWI [139, 156].

In this thesis, we propose another alternative to find an initial velocity model for FWI

without any physical knowledge. Motivated by the recent growth of high performance

computing (HPC), we will tackle the high non-linearity of the problem to minimize and

find a good starting velocity model, using evolution strategies (ES’s) that are known to

be easy to parallelize. In general, global optimization methods have been already used

to solve such a problem. A first attempt was through simulated annealing to invert

the ocean bottom properties [47]. A second application came from Gerstoft [70], who

used genetic algorithms to invert seismoacoustic data. The main drawbacks of global

optimization methods were that they are very consuming in terms of the objective

function evaluations and very depending on the parametrization of the methods. In the

prespecified examples (genetic algorithms and simulated annealing), the methods were

based on a fast objective function evaluation as well as a very simple parametrization of

the model. Unlike the previous works, the objective function in this chapter is regarded

as a black box hiding the problem complexity.

The first contribution of this chapter is to adapt ES’s to the FWI setting. The velocity

model is represented as faithfully as possible, while limiting the number of parameters

needed, since each additional parameter is an additional dimension to explore. The



Chapter 7. Towards an Application in Seismic Imaging 121

second contribution is to propose a highly parallel ES adapted to the FWI setting. The

initial results, obtained in this direction, are emphasized in the numerical section.

7.1 Full-waveform inversion

Estimating the subsurface velocities from a seismic recording is the main aim of FWI.

One uses the recorded wavefield to guess the physical properties of the medium which

the wavefield have propagated through. The wave propagation depends on the medium

properties inside a bounded parallelepiped domain Ω ⊂ R
3. Two main approaches are

traditionally used for finding the solution for FWI, (a) to consider the problem in the

time-domain or (b) in the frequency-domain. Details on both approaches can be found

in [38, 167], the frequency-domain approach is more advantageous when solving the

full-waveform inversion, in this thesis we address this approach only [167].

7.1.1 Forward problem

Given the medium properties (e.g. the subsurface velocity), the forward problem consists

of modeling the full seismic wavefield at any time and location. The wave propagation

is controlled by a partial differential equation. The formulation of the equation depends

on the characteristics of the propagation model. In the acoustic case, the seismic wave-

field u(x) at the position x ∈ Ω in the frequency-domain is governed by the so-called

heterogeneous Helmholtz equation defined by:

−∆u(x)− k2(x)u(x) = s(x), (7.1)

where k(x) = 2πf/m(x) is known as the wavenumber, f ∈ R is the regarded frequency,

and m(x) is the propagation velocity model. ∆ denotes the Laplacian operator, and

s(x) is a source term.

The most popular direct method to discretize Equation 7.1, is the finite-difference

method, but finite-element or finite-volume approaches can be used too [38]. In this the-

sis, we use a uniform second-order accurate finite-difference technique with 7 points in

the Cartesian three-dimensional grid, which is known to be cheap to compute [133, 135].

Since the domain Ω is supposed to be bounded, one must add an absorbing boundary in

order to simulate properly the wave propagation phenomena. Perfectly Matched Layers

(PML) [29] is one of the most used boundary treatment. The wave equation can be then

reduced to a linear system of the form:

Au = s, (7.2)



Chapter 7. Towards an Application in Seismic Imaging 122

where u, s ∈ C
N represent respectively the vectorization of the seismic wavefield and

the source term using a lexicographical ordering. N is the dimension of the problem

(i.e. the number of points in the regarded domain Ω after discretization). A ∈ CN×N

(the impedance matrix) is a sparse matrix (with only seven diagonals of non-zeros) and

is neither symmetric nor Hermitian due to the absorbing boundary conditions [133].

The matrix A embeds the properties of the subsurface and depends on the propagation

velocity model m that we want to quantify. In the case of multi-sources (e.g. p source

terms) and for a given frequency f , we obtain a block linear system to solve of the form:

AU = S, (7.3)

where U, S ∈ C
N×p. In this thesis, we will not consider multiple frequencies simul-

taneously since the discritization step depends on the chosen frequency via a stability

condition [46] in the following way:

h ≤
m(x)

nλf
∀x ∈ Ω,

where nλ is the number of points per wavelength. Such number is generally chosen

sufficiently large to avoid dispersion errors in the solution. For instance, considering a

second-order 7 points discretization scheme, one chooses nλ ∈ [[10, 12]]. Using a higher

order discretization scheme, it is shown that one can use smaller nλ without a significant

dispersion error in the solution [133] (e.g. nλ = 4). The smaller nλ is, the larger the

discretization step h is, and the smaller is the problem size to solve.

Two main approaches are traditionally used for solving the linear system (7.3): direct

or iterative solvers. Direct solvers operate through a decomposition of the matrix A

as the product of a lower triangular matrix and an upper triangular matrix (LU). The

problem (7.3) can be then solved directly by forward and backward substitutions applied

separately to the source term. Direct solvers are known to be efficient for multiple sources

as the decomposition is performed only once for all the term sources. However, the LU

decomposition becomes very expensive in time and memory for large scale problems.

Such constraints prevent the use of direct solvers for large scale problems (e.g. a 3D

wave propagation problem at high frequency range) [133]. The other alternative is

guaranteed through iterative solvers. The latter ones are implemented generally using

preconditioned Krylov subspace methods [148]. The main advantage of the iterative

solvers is the low memory requirement, their main drawback results on the difficulty to

find an efficient preconditioner.

In this thesis, we use a direct solver at low frequencies (f ≤ 2Hz) and an iterative solver

as far as the frequency range gets higher (f > 2Hz). As a direct solver we use MUMPS



Chapter 7. Towards an Application in Seismic Imaging 123

(MUltifrontal Massively Parallel Sparse direct solver) [9, 10] which implements a direct

method based on a multi-frontal approach by performing an LU decomposition. For the

iterative solver, we use DMBR (Deflated Minimal Block Residual) [41, 113] a variant of

BGMRES (Block Generalized Minimal RESidual) [146] in which a deflation technique is

used to discard subspaces at the beginning of each iteration. As a preconditioner we use

a geometric two-level preconditioner adapted to the specificity of our problem [40, 135].

Figure 7.2 outlines a graphical representation of a 2D forward problem solution over

a slice of the velocity model. The wave propagation is affected by the velocity model

properties, it is carrying information about the subsurface : we remark in particular the

existence of a reflected layer which can correspond to a salt dome zone. On the border of

the domain Ω, one can observe properly the absorbing boundary condition on the waves

propagation using the PML. The interference of the waves with the reflected layer will

generate reflection waves. The later are recorded at different time steps using geophones

to generate the so-called seismograms, meaning the observed data for the associated

inverse problem (see Section 7.1.2).

(a) A 2D velocity model. (b) Wave propagation.

Figure 7.2: A graphical representation of acoustic wave propagation over a two-
dimensional velocity model.

7.1.2 FWI as a least-squares local optimization

In the frequency domain, FWI in its standard form (for a fixed frequency value f) tries

to minimize the least-squares misfit [161]:

C(m) =
1

2

p
∑

i=1

(∆di)
†
W i∆di, (7.4)

where † denotes the adjoint operator (transpose conjugate), and p is the number of

source terms. The weight matrices W i are in general used to include a priori data



Chapter 7. Towards an Application in Seismic Imaging 124

information. The misfit vector ∆di(m) = di(m)−di

obs for the i-th source of dimension n

is computed as the difference at the receiver positions between the recorded seismic data

di

obs (i.e. seismograms) and the modeled seismic one di(m). The latter is related to the

modeled seismic wavefield ui (computed as the i-th column of the U solution of (7.3))

projected using the operator Pdata, which extracts the values of the wavefield at the

receiver positions for each source; di(m) = Pdata(u
i). The projection operator makes

the FWI an ill-posed problem, meaning that an infinite different number of velocity

models matches the data, leading to the same objective function value. Therefore, an

additional regularization term is classically added to the inversion problem to make it

well posed [161]. In addition to the velocity model, the source excitation is generally

unknown and must be included as an unknown of the problem [140].

Around a starting velocity model m0, FWI minimization is solved by perturbing m0

with a perturbation model ∆m. Using a second-order Taylor-Lagrange expansion of

the misfit function C around m0, the minimum of the misfit near to m0 is given by the

following perturbation velocity model vector [167] (Newton update):

∆m = −

[

∂2C(m0)

∂m2

]−1
∂C(m0)

∂m
, (7.5)

for the expression of ∂2C(m0)
∂m2 and ∂C(m0)

∂m
the reader is referred to the normal equations

in [38, 167] and the references therein. Note that FWI is a non-linear optimization

problem, thus using the velocity update (7.5) one needs to iterate more than once until

a stopping convergence criteria is reached.

The term ∂2C(m0)
∂m2 is very expensive to compute, thus alternatively in practice the in-

verse of the Hessian in Equation 7.5 is replaced by a scalar α (i.e. a step size) leading

to the steepest-descent method. The step size is then estimated by backtracking a

line search along the steepest descent direction given by the gradient of the objective

function ∂C(m0)
∂m

[68, 161]. Using an adjoint-state method [130] applied to a Lagrangian

function corresponding to the misfit function C augmented with the forward problem

(Equation 7.3), the expression of the misfit function gradient at the point m0 can be

deduced in the following way [136]:

∂C(m0)

∂m
=

p
∑

i=1

R

[

(ui)⊤
[

∂A

∂m

]⊤

A−1P̃dataW
i∆di

]

, (7.6)

where P̃data is the operator that projects ∆di onto the forward problem space and R(·)

is the real part of the referred vector. The term A−1P̃dataW
i∆di corresponds to the

so-called backward problem, where we solve the same linear system as in the forward

problem (7.2) except that the source term s is replaced by P̃dataW
i∆di .



Chapter 7. Towards an Application in Seismic Imaging 125

Algorithm 7.1: A multi-scale algorithm for frequency-domain FWI.

Initialization: Let an initial velocity model m0 and choose an initial step size
α0 > 0. Set k = 0.

for frequency = f low to f high do

Until some stopping criterion is satisfied:

1. Solve the forward problem.

2. Solve the backward problem.

3. Compute the gradient of the objective function.

4. Estimate the step size αk.

5. Update the velocity model : mk+1 = mk + αk∆mk.

end for

The non-linearity and the ill-posedness of the FWI problem are in practice tackled

in the frequency domain using a multi-scale approach where one starts the inversion

within a low frequency range to mitigate the non-linearity of the inversion [155], and then

incorporate progressively higher frequencies in the inversion process (see Algorithm 7.1).

The frequency range used in FWI is from 1Hz to 15Hz.

7.2 ES for building an initial velocity model for FWI

7.2.1 Methodology

FWI as presented – a minimization of a least-squares local optimization problem – cru-

cially depends on the starting velocity model m0. In fact, the FWI is converging to

satisfactory results only when the starting velocity model is situated not far from the

global minimum [167]. Before applying FWI, a starting model is generally built. The

most used techniques are first-arrival travel-time tomography (FATT) [131], stereoto-

mography [114] or recently Laplace domain inversion [152]. FATT is a method that

for many years has proven to be stable in generating smooth velocity models of the

subsurface. Some examples of application of FWI to real data using a starting model

built by FATT are shown in [134, 141]. The stereotomography is regarded as one of the

most promising methods for building a smooth velocity model. It exploits the arrival

time of locally coherent events within an automatic procedures to select a seismogram

collection [114]. Some applications to synthetic and real data sets are shown in [34, 35].

The Laplace domain inversion can be viewed as a frequency domain inversion using a



Chapter 7. Towards an Application in Seismic Imaging 126

complex valued frequency where the real part is chosen as zero and imaginary part con-

trols the time damping of the seismic wavefield. Applications of Laplace domain FWI

to synthetic and real data are shown in [152–154].

Motivated by the recent growth of high performance computing (HPC), we will try to

find a good starting velocity model using ES’s that are known to be naturally paralleliz-

able. In our context, we work with CMA-ES, see Section 3.2.3, which is regarded as state

of the art algorithm for numerical blackbox optimization if we assume that a sufficient

budget is available (large number of objective function evaluations). The CMA-ES al-

gorithm has shown superior performance on difficult ill-conditioned, non-separable and

highly multi-modal problems [23, 145]. The main drawback of CMA-ES is its need for a

large budget to give outstanding results. The modifications we proposed in the previous

chapters lead to a significant reduction on the convergence cost (i.e. meaning the num-

ber of objective function evaluations needed to converge to a stationary point). Thus

in our proposed implementation, CMA-ES is hybrid with our proposed modifications to

speed up the algorithm.

ES’s can have great success on problems that are known to be computationally difficult,

good results have been found in terms of the quality of the minimum found. However,

most types of ES’s suffer from the curse of dimensionality, meaning that their perfor-

mance is good on low dimensional problems, but deteriorates as the dimensionality of

the search space increases [127]. For realistic simulations of FWI, the size of the velocity

models N in general exceeds 106, thus trying to solve directly the problem using CMA-

ES is out of the scope of the method. However, our purpose is not to solve FWI but

only to find a good starting velocity model which can be later improved using FWI pro-

cedure. The initial velocity model m0 is needed just to represent the general structure

of the true model, such representation is generally smooth and can be expressed using

only few parameters [167]. Once we find an efficient procedure to represent the velocity

model using minimum model parameters, the ES method will try to find the parameters

that lead to a smooth representation of the velocity model we are trying to invert.

7.2.2 SEG/EAGE salt dome velocity model

In this thesis, all our numerical experiments are performed using a 3D academic example

of a velocity model, known in the geophysics community by SEG1/EAGE2 salt dome

velocity model outlined in Figure 7.3. The velocity model is based on a typical US Golf

coast salt structure. Special care was taken to ensure that the model is geologically

feasible and would be an adequate testing mechanism for seismic imaging algorithms.

1The Society of Exploration Geophysicists.
2European Association of Geoscientists and Engineers.



Chapter 7. Towards an Application in Seismic Imaging 127

(a) The full velocity model. (b) A vertical section.

(c) An horizontal section. (d) The salt dome.

Figure 7.3: Academic 3D SEG/EAGE salt dome velocity model using Paraview [88].
The geophysical domain size is of 20 × 20 × 5 km3 in which the minimal velocity is of
1500 m/s. The velocity model is representing a dome of salt in the subsurface of Earth,

which abruptly increases the velocity of propagation of the compressional waves.

The seismic waves propagate in water and salt dome of the model at the minimal and

maximal velocities of 1500 m/s and 4418 m/s, respectively.

The geological domain size is of 20 × 20 × 5 km3, then if nλ = 10 (i.e. using 7 points

discretization scheme for the forward problem) and with a discretization step h = 1500
10f

(which respects the stability condition (7.4)), the size N of the forward problem will be

of 136f ∗ 136f ∗ 34f where f is the working frequency (i.e. N ≈ 106 ∗ f3).

On the SEG/EAGE salt dome velocity model, we will test our parametrization procedure

to deduce the appropriate basis leading to an accurate smooth representation using a

minimum number of parameters. On the reduced search space, the implemented ES will

try to find a smooth velocity model version of the SEG/EAGE salt dome model.



Chapter 7. Towards an Application in Seismic Imaging 128

7.2.3 Search space reduction

To reduce the search space we will try to investigate how to represent a realistic prop-

agation velocity model using a minimum of parameters. The search space reduction

has been investigated over the past using subspace approaches [104, 132, 157]. In a

subspace approach, one basically tries to restrict the search space for only some specific

directions. In FWI context, the velocity model perturbation ∆m ∈ R
N is restricted

to lie in an n-dimensional subspace of RN which is spanned by the vectors {vi}i=1,...,n

where n << N . The model perturbation can then be written as follows:

∆m =
n
∑

i=1

yivi = V y, (7.7)

where y ∈ R
n are the new parameters to invert, and V = [v1, . . . , vn] ∈ R

N×n is the

so-called reduction basis. Subspace approaches lead to an important simplification of

the problem [104], but they are very sensitive to the choice of the reduction basis. In

fact, by restricting the search space to specific directions, the neglected ones may be the

vectors which are important in finding the global minimum of the objective function C

(see Equation 7.4). Often researchers use sinusoidal basis as reduction basis and try to

find a vector parameter y which produces acceptable agreement to the observation [132].

Inspired by the technics used in image compressing, we propose in this thesis a new

procedure to construct this basis. We propose to use a sinusoidal and rectangular basis

functions, more specifically Discrete Cosine Transform (DCT) [6] and Haar wavelets [55].

The Haar wavelet transform is used to magnify the vector parameter y ∈ Rn to fit the

original space RN , but it leads to a pixelization effect. The DCT is applied to pro-

duce a smooth velocity model and reduce the pixelization effect introduced by the Haar

wavelets. For a reduced 3D velocity model of size n = nx × ny × nz, the magnification

procedure will be adapted to the 3D geometry of the velocity model. For ease of expo-

sition, we will first explain our chosen approach for the one-dimensional case, and then

give a generalization to cover the realistic 3D geometry.

7.2.3.1 One-dimensional approximation procedure

We suppose that one disposes of a vector m ∈ RN which we are willing to represent by

y ∈ Rn with n << N (i.e. reduction). Being able to construct the model parameters

m using only the y parameters is also our target (i.e. magnification). Actually for

the inverse problem, the reduction will not be used (i.e. meaning compute n from N

parameters) since one has no a priori knowledge on the real velocity model m, only the

parameters in y ∈ Rn are used to build the velocity vector m of size N . In our context,



Chapter 7. Towards an Application in Seismic Imaging 129

the reduction operation will be only used to estimate how efficient is our magnification

procedure.

The reduction procedure is inspired from the Haar wavelets procedure [55], mean-

ing that from a vector represented by N = 2q parameters with q ∈ N, we consider simply

to pair up the parameters and replace each pair by the average of the two parameters

in each pair. The computed vector will be of half size compared to the original vector

and will contain only the pair average of the initial vector. The procedure is repeated

until we get a number of n parameters. The Haar procedure assumes that both the

numbers of parameter N and n are of the form 2q for some q ∈ N, such assumption

in image processing context is not an obstacle as most images are a power of two. In

seismic imaging context, instead of an ordinary image one works with a velocity model

for which the number of parameters is far to be a power of two. To overcome such prob-

lem and given a vector m ∈ RN , we simply propose to decompose the velocity vector

m ∈ R to n subdivisions (see Figure 7.4(a)). Each subdivision will be represented by

one value computed as the average of all the parameters included in this subdivision

(see Figure 7.4(b)).

�

����

(a) The subdivision procedure.

�

����

(b) The reduced velocity vector.

Figure 7.4: The reduction procedure over a one-dimensional case.

The duplication procedure consists in building a vector m of size N using a small-

size vector y ∈ Rn with n << N . For this sake, we construct first an empty vector m

of size N with n subdivisions. Each subdivision contains around δ = [N
n
] parameters.

The n parameters of the velocity vector y are then distributed over the n subdivisions

(see Figure 7.5). The value associated to each subdivision is then duplicated all over

δ parameters assigned for that subdivision. The duplication procedure, as presented,

introduces a pixelization effect over the constructed vector m (see Figure 7.5(b)). A pos-

sible improvement on the quality of duplication can be made through a DCT transform

to improve the approximation procedure and omit the subdivision discontinuities.



Chapter 7. Towards an Application in Seismic Imaging 130

�

����

(a) The subdivision procedure.

�

����

(b) The duplicated velocity vector.

Figure 7.5: The duplication procedure over a one-dimensional case.

The magnification procedure aims in general at removing noise or producing a

less pixelated image. The most used smoothing algorithms are Gaussian smoothing [5],

bilateral filters [162] and sinusoidal based approaches [6]. As a smoothing procedure,

we choose to work with sinusoidal basis as one of the most techniques used on the

subspace approaches for FWI to generate a smooth approximation vector using few

coefficients [132]. We will smooth the pixelization effect in the magnified vector (see

Figure 7.5(b)) using a discrete cosine transform (DCT) [6]. Assuming that we have a

vector y of size n, we consider an n subdivision [xi, xi+1] of indices, see Figure 7.6.

�

�� �� ��
 �

����

� �� ����

Figure 7.6: An illustration for index subdivisions.

Inside each subdivision [xi, xi+1] all the points have the same value as y(i) (see Fig-

ure 7.5(b)). Such requirement will be imposed on the magnified velocity vector m as if

one has the same mean value as the original vector y, which can be explicitly expressed

by [121]:
1

xi − xi+1

∫ xi

xi+1

m(x)dx = y(i) i = 1, . . . , n. (7.8)

The vector m ∈ RN is expressed using a discrete cosine basis of Rn in the following way:

m(x) =

n
∑

j=1

aj cos

(

(j − 1)π

N
(x− 1)

)

, (7.9)

where a = (aj)1≤j≤n ∈ R
n. All the subdivisions are supposed to have the same length

δ = [N
n
], thus δ = xi+1 − xi and xi = (i − 1)δ + 1. By incorporating equation (7.9) in



Chapter 7. Towards an Application in Seismic Imaging 131

the condition (7.8), we obtain the vector a by solving a linear system of the form

Ca = y, (7.10)

where C ∈ Rn×n is a matrix such as

C(i, j) =











1 if j = 1,

2N
(j−1)πδ

cos

(

π

N
(j − 1)(i− 1

2)δ

)

sin

(

δπ
2N (j − 1)

)

otherwise.

The coefficient matrix C is of a small size and nonsingular [121], thus the inversion cost

is negligible. The one-dimensional smoothed vector m is then built by evaluating (7.9)

for all i ∈ {1, . . . , N}:

m(i) =

n
∑

j=1

aj cos

(

(j − 1)(i− 1)π

N

)

,

or equivalently

m = My, (7.11)

where M = KC−1 ∈ R
N×n and K ∈ R

N×n is a matrix defined such as K(i, j) =

cos( (j−1)(i−1)π
N

). The vector y ∈ R
n is the original vector before magnification (as

the magnification procedure leads to the vector m ∈ R
N ). Equation 7.11 shows that

the magnification procedure corresponds to a linear operator. Figure 7.7 outlines an

illustration of the proposed algorithm applied to a one-dimensional vector. Compared

to the duplicated velocity vector using the Haar transform, the smoothing effect of

DCT transform on improving the quality of approximation is clear and leads to a better

representation of the true velocity vector (see Figure 7.7(b)).

7.2.3.2 Three-dimensional approximation procedure

A multidimensional transform can be basically ensured using a composition of the one-

dimensional magnification procedure along each dimension [160]. Equation (7.11) can

be immediately extended to two-dimensional or three-dimensional velocity model. A

detailed description of the extension of Equation (7.11) to higher dimensions is given

in [160]. In the case of three-dimensional data, suppose that we have a small 3D velocity

model y of n = nx × ny × nz parameters, we ought to build a magnified 3D velocity

model m of size N = Nx × Ny × Nz >> n parameters. The magnification procedure

is obtained by applying Equation (7.11) consecutively to first the x axis, then y, and



Chapter 7. Towards an Application in Seismic Imaging 132

�

����

(a) Graphical comparison between the duplication
(solid line) and magnification (dashed line) proce-
dures.

�

����

(b) A comparison between the magnified velocity vec-
tor (dashed line) and the true velocity vector (solid
line).

Figure 7.7: A one-dimensional magnification procedure using DCT transform. Com-
pared to the duplicated vector, the magnification using DCT transform represents better

the true velocity vector.

finally z as follows:

T (:, :, k) = Mx[y(:, :, k)]M
⊤
y k = 1, . . . , nz

m(i, :, :) = T (i, :, :)M⊤
z i = 1, . . . , Nx

whereMx ∈ R
Nx×nx , My ∈ R

Ny×ny , andMz ∈ R
Nz×nz are the one-dimensional smooth-

ing matrices defined in Equation (7.11) along the axes x, y, and z, respectively.

To illustrate numerically the performance of the three-dimensional approximation pro-

cedure (i.e. smoothing and magnification), we used the SEG/EAGE salt dome velocity

model (see Figure 7.3). Our main motivation is to adapt a class of ES to FWI setting.

ES’s and all DFO algorithms are generally used only for relatively small problems (few

hundreds of parameters in the best case). Thus for our numerical illustrations, we will

try to represent the velocity model, as faithfully as possible, using the minimal number

of parameters. We found out that the tested velocity model can be approximated using

n = 8 × 8 × 5 = 320 parameters instead of N = 225 × 225 × 70 = 3543750. Using the

320 parameters, we are able to represent the velocity model and keep its main structure

(i.e. the salt dome). The 320 parameters are computed using the real velocity model

and the reduction procedure (see Figure 7.4). Figure 7.8 outlines an illustration of the

obtained results using 320 parameters. As expected the magnification procedure using

DCT transform (see Figures 7.8(g)- 7.8(i)), gives better results compared to the one

based on Haar wavelets (see Figures 7.8(d)-7.8(f)). Although we use only few param-

eters to build the velocity model, the smoothing preserves the main specificity of the

model, in particular the salt dome. Note that the 320 parameters, used to build the new

velocity models (Figures 7.8(d) - 7.8(i)), are computed from the SEG/EAGE salt dome

velocity model using the reduction procedure outlined in Figure 7.4.



Chapter 7. Towards an Application in Seismic Imaging 133

(a) True model. (b) A vertical slice. (c) An horizontal slice.

(d) Duplicated model. (e) A vertical slice. (f) An horizontal slice.

(g) Magnified model. (h) A vertical slice. (i) An horizontal slice.

Figure 7.8: A 3D duplicated and magnified models of SEG/EAGE salt dome velocity
model. The velocity models are built using n = 8× 8× 5 = 320, the original size of the

true velocity model is of N = 225× 225× 70 = 3543750.

7.2.4 A parallel ES for acoustic full waveform inversion

Algorithm 7.2 presents an adaptation to the FWI setting of the globally convergent ES

proposed in Algorithm 4.1. The monitoring of the quality of the sampling procedure is

ensured by checking if the objective function has been sufficiently decreased. In fact,

we proposed in Chapter 4 three different globally convergent ES versions: mean/mean,

max/max and max/mean. The mean/mean version performed numerically the best

among the other different versions. However, the incorporation of the mean/mean suf-

ficient decrease condition requires an extra objective function evaluation C(mtrial

k+1 ) at

each iteration, where mtrial

k+1 is the trial mean parent computed as the mean of the best µ

generated velocity models. The mean/mean version is therefore corrupting the parallel

nature of ES’s. In fact, if one supposes that the offspring evaluation is performed at

the same time using synchronized parallel clusters, the mean parent evaluation C(mtrial

k+1 )

will force all these clusters to wait for the end of such evaluation to be able to restart a



Chapter 7. Towards an Application in Seismic Imaging 134

new offspring generation. Therefore, the mean/mean version entails the parallel nature

of our proposed ES.

Alternatively, the max/max version showed good performance (not as good as the

mean/mean version) without the need of any extra objective function evaluation to

impose the associated sufficient decrease condition. Consequently, the max/max version

is more adapted to the parallel nature of ES than the mean/mean version. The updat-

ing of the weights (see Step 2 of Algorithm 4.1) to enforce the condition (4.1) was not

activated for the two fold reasons: we wanted the least amount of changes in ES and

since such an update of the weights did not seem to have a real impact on the results

for the max/max version (see Section 4.2).

The proposed ES implementation will be a synchronized parallel optimizer composed

of λ clusters (typically, the population size). Each cluster is composed of a group of

processors, which is designed to evaluate the objective function (7.4). At a given it-

eration k, the clusters are synchronized and not activated until the new mean parent

mk+1 is defined, depending on the iteration state (successful or not). The diagram in

Figure 7.9 reports in detail our proposed parallel implementation of Algorithm 7.2. The

implementation is as follows: A component [Update Param.] will be responsible for

updating all the ES parameters (e.g. the distribution, the step length ...). In addition,

it will launch asynchronously λ clusters represented in the diagram by the components

[Generate mi]. Each of these clusters generates a reduced velocity model based on the

ES parameters and strategies. Once the velocity model is generated, the related cluster

evokes the component [Propagate mi].

The wave propagation simulation on each velocity model deals with all the p shots (many

right-hand sides) at once. The [Propagate mi] component is in fact an MPI (Message

Passing Interface) process making use of processors and is responsible for discretizing

and building the linear system to be solved (i.e. the forward problem) and to provide the

information needed to evaluate the objective function C (7.4). The last component will

just return the value of the objective function to the master. Once the master receives

results from the λ clusters, it will choose the best results and return it to [Update

Param.] to update the ES parameters and repeat the loop until a convergence criterion

is achieved. At the end of each iteration, all the clusters send the simulated values to

the [Master] component to decide either the iteration is successful or not and update

the mean parent.

The propagation itself will behave as a black box process, hiding the complexity of the

discretization and the solution of its respective linear system from ES. Also, the flexibility



Chapter 7. Towards an Application in Seismic Imaging 135

Algorithm 7.2: An adaptation of the ES algorithm to FWI setting.

Initialization: Choose positive integers λ and µ such that λ ≥ µ. Select an initial
x0 ∈ R

n, generate a velocity model m0 ∈ R
N (using the magnification procedure)

and evaluate C(m0). Choose initial step lengths σ0, σ
ES
0 > 0 and initial weights

(ω1
0, . . . , ω

µ
0 ) ∈ S. Choose constants β1, β2, dmin, dmax such that 0 < β1 ≤ β2 < 1

and 0 < dmin < dmax. Select a forcing function ρ(·). Set k = 0.

Until some stopping criterion is satisfied:

1. Generation of velocity models: Generate λ velocity models
Mk+1 = {m

1
k+1, . . . ,m

λ

k+1} using the magnification procedure based on the

sample points Yk+1 = {y
1
k+1, . . . , y

λ

k+1} such that

yik+1 = xk + σkd
i

k,

where dik ∈ R
n is drawn from the distribution Ck and obeys dmin ≤ ‖d

i

k‖2 ≤ dmax,
i = 1, . . . , λ.

2. Parent Selection: Evaluate C(mi

k+1), i = 1, . . . , λ, and reorder the offspring

points in Yk+1 = {ỹ
1
k+1, . . . , ỹ

λ

k+1} by increasing order: C(m̃
1
k+1) ≤ · · · ≤ C(m̃

λ

k+1).

Select the new parents as the best µ offspring sample points {ỹ1k+1, . . . , ỹ
µ
k+1},

and compute their weighted mean

xtrialk+1 =

µ
∑

i=1

ωi
kỹ

i

k+1.

Magnify xtrialk+1 to obtain the velocity model m
trial
k+1 .

3. Imposing Sufficient Decrease:

If C(m̃µ
k+1) ≤ C(mµ

k)− ρ(σk), then consider the iteration successful, set

xk+1 = xtrialk+1 , mk+1 = mtrial
k+1 , and σk+1 ≥ σk (for example σk+1 = max{σk, σ

ES
k }).

Set also mµ
k+1 = m̃

µ
k+1.

Otherwise, consider the iteration unsuccessful, set xk+1 = xk, mk+1 = mk and
σk+1 = β̄kσk, with β̄k ∈ (β1, β2). Set m

µ
k+1 = m

µ
k .

4. ES Updates: Update the ES step length σESk+1, the distribution Ck, and the
weights (ω1

k+1, . . . , ω
µ
k+1) ∈ S. Increment k and return to Step 1.

and the modularity of the propagator component is a key property, such that changing

the chosen solver and/or the discretization nuances will not incur in any rewriting of ES

implementation. MPI-2 has been used with the MPI COMM SPAWN interface that allows

an MPI process to spawn a number of clusters. Each newly spawned cluster has a

new MPI COMM WORLD intracommunicator that allows to launch easily the propagation

simulations. The proposed ES implementation is portable and the propagator itself

can be a standalone server. When the available cluster number is less than λ, one

can launch many propagation simulations on the same cluster until we get the needed



Chapter 7. Towards an Application in Seismic Imaging 136

Figure 7.9: A parallel evolution strategy for full waveform inversion.

function evaluations.

7.3 Numerical experiments

7.3.1 Implementation details

We proposed an implementation of our parallel ES (see Figure 7.9) using FORTRAN03.

FORTRAN03 is a FORTRAN compiler published in 2004, it is developed, for instance,

in ifort (Intel FORTRAN Compiler), gfortran (GNU FORTRAN compiler) and other

compilers. Using FORTRAN03, allawed us to implement an object oriented prototype

code similar to the one proposed by [113] to solve the forward problem using the iter-

ative solver proposed in [41]. Such choice was motivated by the fact that compared to

FORTRAN90, the object oriented prototype in FORTRAN03 did not bring any slow

down to the performance of the code and showed a speed up of 1% to 3.5% (see [113]).



Chapter 7. Towards an Application in Seismic Imaging 137

For the propagation simulation, we use a simple scenario whereby the source excitation

s(x) is supposed to be known (a Dirac function) and the observed data di

obs (i.e. seis-

mograms) are generated from the propagating velocity model we are trying to invert

(see Section 7.2.2). Only 16 sources are considered for our numerical simulation, the

sources are uniformly distributed in a survey plan fixed at 500 meters of depth (10% of

the exploration depth). Figure 7.10 reports the velocity model used as our initial point

for the parallel evolution strategy in all our numerical simulations. The initial velocity

model is built using the magnification procedure of two known velocity values, the first

one is the velocity value on the bottom which is estimated as 3000 m/s and the second

one is the value on the top estimated as 1500 m/s.

(a) The full model. (b) A vertical slice. (c) An horizontal slice.

Figure 7.10: The starting velocity model for the parallel evolution strategy.

In all the experiments we consider frequencies of 1Hz, 2Hz, and 3Hz. With 320 velocity

model parameters, we were able to represent the general aspects of the true velocity

model (see Section 7.2.3). 320 unknown parameters for the ES is an acceptable number

to explore, thus in all our experiments the search space of the implemented ES is of

dimension n = 8× 8× 5 = 320. Our tests were performed on 2048 cores, the number of

the cluster and the population size λ are adapted to the working frequency. For instance,

for the 1Hz case we used 256 clusters of 16 cores each. The population size λ was set

to 512 meaning that each cluster ensures two objective function evaluations. Table 7.1

reports the distribution of the cluster number as well as the population size λ depending

on the working frequency. One can notice that as far as the frequency range is increasing

the number of cores dedicated to the objective function evaluation gets larger. In fact,

the forward problem gets more complicated to solve as far as the working frequency f

increases. When the number of the available clusters is less than the population size λ,

we launch a fixed number of evaluations on the same cluster until we evaluate all the

offspring population.

The other parameters are those of CMA-ES for unconstrained optimization (see [78]):

µ = floor(λ/2), where floor(·) rounds to the nearest integer, and ωi
0 = ai/(a1+ · · ·+ aµ)

and ai = log(λ/2 + 1/2)− log(i), i = 1, . . . , µ. The choices of the distribution Ck and of



Chapter 7. Towards an Application in Seismic Imaging 138

Frequency Problem size N Number of clusters Population size λ

1Hz 136× 136× 34 256 (16 cores/cluster) 512 (2 evaluations/cluster)
2Hz 272× 272× 68 64 (32 cores/cluster) 320 (5 evaluations/cluster)
3Hz 408× 408× 102 32 (64 cores/cluster) 320 (10 evaluations/cluster)

Table 7.1: The distribution of the clusters and the population size depending on the
working frequency.

the update of σES
k

also followed CMA-ES for unconstrained optimization (see [78]). The

forcing function selected was ρ(σ) = 10−4σ2. To reduce the step length in unsuccessful

iterations we used σk+1 = 0.5σk which corresponds to setting β1 = β2 = 0.5. The

initial step size σ0 is estimated to half of the difference between the velocity value on

the bottom which is estimated as 3000m/s and the second one is the value on the top

estimated as 1500m/s.

7.3.2 Numerical Results

All our numerical experiments are tested on a 2048 CPU Sandy Bridge machine. We

had no maximal computational budget concerning the function evaluations as far as the

computation elapsed time does not exceed 1 day. Thus, a run can not exceed 24 hours

otherwise the inversion procedure will be stopped.

Figure 7.11 reports a graphical representation of the inverted velocity model considering

a frequency of 1Hz. The obtained results in this case can be seen as good, since it

represents a smooth version of the true velocity model we are looking for. For the

1Hz case, we are able to invert the general structure of the regarded velocity model, in

particular the salt dome structure.

(a) The inverted model. (b) A vertical slice of the inverted model. (c) An horizontal slice.

Figure 7.11: Inversion results for the Salt dome velocity model using n = 320 param-
eters. The working frequency is of 1Hz.

After 278 iterations, the inversion procedure is stopped due to the maximal time on the

machine (24 hours). Figure 7.12 outlines the objective function evaluation at the best



Chapter 7. Towards an Application in Seismic Imaging 139

population point of each generation. The variation of the objective function is more sig-

nificant only in the early stages. Such behavior is due to the sufficient decrease condition

which monitors the quality of the sampling procedure and ensures the convergence to a

stationary point (see Section 4.1.2).

0 50 100 150 200 250 300
400

600

800

1000

1200

1400

1600

1800

2000

2200

Iterations

O
b
je

c
ti
v
e
 f

u
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

Figure 7.12: Objective function evaluation at the best population point for the first
278 iterations of the parallel evolution strategy.

The parallel ES leads to a new velocity model that approximates the general structure of

the true velocity model. Figure 7.13 reports a graphical representation of the interior of

three velocity models: (a) the true velocity model (Figure 7.13(a)), (b) its approximation

using 320 parameters (Figure 7.13(b)), (c) and the inversion results using n = 320

unknowns (Figure 7.13(c)). The approximation (built using 320 parameters selected

from the true velocity model) can be seen as the velocity model we target to obtain

using our inversion procedure and with n = 320 unknowns. The inverted velocity model

is similar to the approximation we are looking for, in particular the salt dome.

(a) The slat dome of the true velocity
model.

(b) The targeted salt dome using n =
320 parameters.

(c) The obtained salt dome using n =
320 parameters.

Figure 7.13: Graphical representation of the salt dome of three velocity models: the
true velocity salt dome (Figure 7.13(a)), the approximated one using 320 parameters
(Figure 7.13(b)), and the inverted velocity model (Figure 7.13(c)). Only the points of
the models which have velocity equal or larger than 3500 m/s are shown (to delineate

the structure of the dome of salt).

Figure 7.14 reports inverted velocity models for different frequency range using n = 8×

8×5 = 320 parameters. As far as the working frequency f increases (from 1Hz to 3Hz),



Chapter 7. Towards an Application in Seismic Imaging 140

the inversion result is getting less accurate and far from being a good approximation

of the targeted velocity model (see Figure 7.13(b)). The explanation of such results is

two fold: (a) the objective function becomes more and more noisy and multi-modal as

far as the frequency increases [155], (b) the computational cost of the objective function

increases and demands more computational resources to be evaluated. In fact unlike

1Hz frequency case where 278 iterations were performed, only 50 iterations (resp. 22

iterations) are performed in the 2Hz (resp. 3Hz) frequency experiments. The small

number of iterations explains the inversion results obtained of such range of frequencies.

For the moment, we are working on adapting the implemented code to include a restart

option, such option will unable the computational cost in CPU to exceed 24 hours.

Consequently, we will be able to get asymptotic inversion results for high frequencies.

(a) The inverted model
using a frequency of 1Hz.

(b) A vertical slice. (c) An horizontal slice.

(d) The inverted model
using a frequency of 2Hz.

(e) A vertical slice. (f) An horizontal slice.

(g) The inverted model
using a frequency of 3Hz.

(h) A vertical slice. (i) An horizontal slice.

Figure 7.14: Comparison of the inversion results for the Salt dome velocity model
using n = 320 parameters for different range of frequencies (1Hz, 2Hz and 3Hz).



Chapter 7. Towards an Application in Seismic Imaging 141

7.4 Conclusions

The main contribution of this chapter was to show a possible way to adapt ES’s to the

FWI setting. For that purpose, we proposed a new parametrization of the regarded

problem, by being able to represent the velocity model as faithfully as possible, while

limiting the number of parameters needed, since each additional parameter is an addi-

tional dimension to explore. A highly parallel ES adapted to FWI setting was proposed

and validated.

We showed on an academic velocity model the efficiency of the new proposed parametriza-

tion. In fact, we were able to reconstruct a good approximation of this velocity model

using only few parameters. The proposed parallel implementation was tested and vali-

dated using the new parametrization of the regarded problem, the initial obtained results

showed that great improvement can be expected in the automation of the FWI proce-

dure.



Chapter 8

Conclusions & Perspectives

8.1 Conclusions

This thesis has contributed to the research area of Evolution Strategies (ES’s) by ad-

dressing the following challenges:

(i) Modifying a class of ES’s, for unconstrained optimization, to rigorously achieve a

form of global convergence under reasonable assumptions.

(ii) Proposing a new approach to extend a class of ES’s to handle general constrained

optimization problems. The proposed algorithm is designed to be globally conver-

gent regardless of the starting points.

(iii) Showing a new possible way to incorporate surrogate quadratic models in the

proposed ES to achieve a better performance.

(iv) Proposing an adaptation of our proposed ES to the acoustic full-waveform inversion

related to Earth imaging problem.

The challenge (i) was addressed in Chapter 4 by showing how to modify a large class of

ES’s so that they converge to stationary points without any assumption on the starting

point [58]. We proposed different ways of imposing sufficient decrease for which global

convergence holds under reasonable assumptions. The so-called mean/mean version,

where the step size is reduced whenever the objective function value of the weighted

mean of the best trial offspring does not sufficiently reduce the objective value at the

current weighted mean, has emerged as the best modified version in our numerical exper-

iments. Moreover, we have shown that such an improvement in efficiency came without

142



Chapter 8. Conclusions & Perspectives 143

weakening significantly the performance of the underlying method in the presence of

several local minimizers.

The challenge (ii) was addressed in Chapter 5 by extending our proposed ES to handle

general constrained optimization [59]. For non-relaxable constraints, we proposed two

feasible approaches. In a first approach, feasibility is first enforced by a barrier function

and the objective function is then evaluated directly at the feasible generated points. A

second approach projects first all the generated points onto the feasible domain before

evaluating the objective function. The relaxable constraints were handled using a merit

function approach. Compare to existing algorithms, the obtained numerical results

were interesting for both relaxable and unrelaxable constraints and they confirm the

competitiveness of our solver.

The challenge (iii) was addressed in Chapter 6 where at the beginning of each iteration

of our proposed ES, a search step was token. For that purpose, a surrogate quadratic

model of the objective function f was minimized in a certain region using previously

evaluated points. Our hybrid algorithm was designed to satisfy the convergence analysis

of our globally convergent ES. The numerical experiments have shown that incorporating

local models improved the performance of our ES in both unconstrained and constrained

optimization problems.

Finally, the challenge (iv) was addressed in Chapter 6 by using the proposed ES to find a

starting velocity model for the acoustic full-waveform inversion [57]. We adapted our ES

to the problem settings. A subspace approach was used for the parametrization of the

considered problem. A highly parallel implementation of our modified ES was proposed.

The obtained results provide a great improvement to known solutions of this problem.

8.2 Perspectives

Several extensions for the present research can be mentioned. In the proposed theoretical

analysis, we assumed the absence of noise on the objective function. However, in practice

ES’s are more designed to solve simulation optimization problems where one has a

wide range of uncertainty. An example of such problems occurs, for instance, when

the objective function involves inaccurate solutions of a PDE as in the acoustic full-

waveform inversion case (e.g. with a truncated iterative solvers, with a discretization

size, ...). Inspired by recent works [31, 106, 115], a generalization of our theoretical

analysis to include uncertainty on the objective function is of interest for future work.

The theoretical analysis in Chapters 4 and 5 would be done deterministically, as if we

were considering a single realization of a stochastic algorithm. Most likely, in our case



Chapter 8. Conclusions & Perspectives 144

one could also analyze ES’s when the sampling points are regarded as random variables,

and to investigate such a framework towards almost-sure global convergence properties.

A possible way to tackle this approach is by using techniques similar to trust-region

methods based on probabilistic models developed recently [27] (also used in direct search

for probabilistic descent [73]).

For the modified ES proposed in Chapter 4, the version mean/mean, consisting of ap-

plying sufficient decrease directly to the weighted mean of the new parents, has been

shown to yield global convergence without any convexity like assumption and to numer-

ically perform the best among the tested versions. However, the incorporation of such

sufficient decrease condition entails the parallel nature of ES’s since an extra objective

function evaluation at the trial mean parent is needed at each iteration. A possible way

to overcome such inconvenient is by not using the sufficient decrease condition in all

iterations, but only at a certain probability. Such modification as well as its theoretical

impact are to be investigated in future work.

The performance of the proposed algorithm, for relaxable constrained optimization prob-

lems (see Section 5.3.2), was validated only by looking at individual results obtained for

each test problem. Adapting data and performance profile test strategies to relaxable

constraints would be more suitable to quantify the performance of our proposed algo-

rithm compared to other existing ones. The use of these profiles require, in turn, an

adaptation of the convergence test to take into account a fixed tolerance on the con-

straints violation (see Section 4.2.3). Future investigations on the optimal way to adapt

data and performance profiles, in particular efficient convergence tests, are needed to

quantify the performance of the algorithm for relaxable constrained optimization prob-

lems.

For general linear constraints, the incorporation of the quadratic models in the search

step of the proposed algorithm did not lead to any significant performance improve-

ment. Therefore, it would be also interesting to further explore an efficient search step

procedure for such constrained setting.

The purpose of the incorporation of ES’s in the inversion procedure of full-waveform

inversion was to find a good starting point without the need for sophisticated a priori

knowledge on the background velocity model. The validation of such statement is not

entirely addressed in Chapter 7, in the sense that we did not test the full-waveform

inversion using the velocity model obtained by the proposed ES. The next step will be

to validate the obtained results using a gradient-based method.

Moreover, for the acoustic full-waveform inversion problem, the proposed parallel im-

plementation was tested using a simple scenario whereby the source excitations were



Chapter 8. Conclusions & Perspectives 145

supposed to be known and the observed data (i.e. seismograms) was generated using

the propagating velocity model which we are trying to invert. Such assumptions are not

realistic for the following reasons: (a) the source excitation is generally unknown and

it must be included as an unknown of the problem, (b) the observed data is generally

given by geophones situated on the surface of the exploration domain. A more realistic

test is to be investigated in future work.

In this thesis, we tackled large scale inverse problems by stochastic optimization via

model reduction techniques. Under appropriate assumptions, the model reduction pro-

cedure, proposed in this thesis, can be generalized to cover other geoscience applications.

The developed methods can be applied to other geoscience optimization problems (e.g.

well placement, formation-evaluation inversion, ...), since we believe that many geo-

science problems could be successfully handled with the algorithms proposed in this

work.



Appendix A

Data & Performance Profiles

Results

Figures A.1 to A.6 outline a comparison between the three modified versions of CMA-ES

(mean/mean, max/max, and max/mean) using data and performance profiles. In Sec-

tion 4.2.4, we reported only comparison results for the class of smooth problems. The

following appendix report the remaining comparison results for the other class of prob-

lems (meaning nonstochastic noisy, piecewise smooth, and stochastic noisy problems).

The obtained results followed a very similar trend in the sense that the mean/mean

version emerges as the best one for all the problem tested.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for nonstochastic noisy problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

max/mean

max/max

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for nonstochastic noisy problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

max/mean

max/max

(b) Accuracy level of 10−7.

Figure A.1: Data profiles computed for the set of nonstochastic noisy problems,
considering the two levels of accuracy, 10−3 and 10−7 (for the three modified versions).

146



Appendix A. Data & Performance Profiles Results 147

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for piecewise smooth problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

max/mean

max/max

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for piecewise smooth problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

max/mean

max/max

(b) Accuracy level of 10−7.

Figure A.2: Data profiles computed for the set of piecewise smooth problems, con-
sidering the two levels of accuracy, 10−3 and 10−7 (for the three modified versions).

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for stochastic noisy problems, α=0.001

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

max/mean

max/max

(a) Accuracy level of 10−3.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles for stochastic noisy problems, α=1e−07

Units of budget

P
e
rc

e
n
ta

g
e
 o

f 
p
ro

b
le

m
s
 s

o
lv

e
d

mean/mean

max/mean

max/max

(b) Accuracy level of 10−7.

Figure A.3: Data profiles computed for the set of stochastic noisy problems, consid-
ering the two levels of accuracy, 10−3 and 10−7 (for the three modified versions).



Appendix A. Data & Performance Profiles Results 148

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for nonstochastic noisy problems, α=0.01

mean/mean

max/mean

max/max

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for nonstochastic noisy problems, α=0.0001

mean/mean

max/mean

max/max

(b) Accuracy level of 10−4.

Figure A.4: Performance profiles computed for the set of nonstochastic noisy problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4 (for the

three modified versions).

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for piecewise smooth problems, α=0.01

mean/mean

max/mean

max/max

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for piecewise smooth problems, α=0.0001

mean/mean

max/mean

max/max

(b) Accuracy level of 10−4.

Figure A.5: Performance profiles computed for the set of piecewise smooth problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4 (for the

three modified versions).



Appendix A. Data & Performance Profiles Results 149

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

Log
2
 scaled performance profiles for stochastic noisy problems, α=0.01

mean/mean

max/mean

max/max

(a) Accuracy level of 10−2.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)
Log

2
 scaled performance profiles for stochastic noisy problems, α=0.0001

mean/mean

max/mean

max/max

(b) Accuracy level of 10−4.

Figure A.6: Performance profiles computed for the set of stochastic noisy problems
with a logarithmic scale, considering the two levels of accuracy, 10−2 and 10−4 (for the

three modified versions).



Appendix B

Test Results

The results of bound-constrained and linear-constrained testing are depicted in the tables

below. The first three columns of all the tables describe the test problems used from [164,

165] (the problem name, the dimension n and the objective function value at the global

minimum f∗), the other columns explicit the optimal objective function values found by

each solver. We ran the numerical experiments using a maximal budget of 1500 function

evaluation.

150



A
p
p
en
d
ix
B
.
T
e
s
t
R
e
s
u
lts

151

Name n f∗ ES-LC-B ES-LC-P PSWARM CMA-ES MCS BC-DFO

ack 10 −4.44089e− 16 −4.44089e− 16 −4.44089e− 16 0.628445 0.582773 0.499069 0.125355
ap 2 −0.35239 −0.352386 −0.352386 −0.352386 −0.332411 −0.352386 −0.352386
bf1 2 −5.55112e− 17 −5.55112e− 17 −5.55112e− 17 −5.55112e− 17 −5.55112e− 17 −5.55112e− 17 −5.55112e− 17
bf2 2 0 0 0 0 0 0 0
bhs 2 −3.4285 −3.42849 −3.42849 −3.42849 −2.60574 −3.42849 −2.21048
bl 2 0 2.23592e− 11 5.10822e− 14 4.24679e− 11 6.20803e− 14 0 3.79442e− 28
bp 2 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887
cb3 2 0 0 0 0 0 0 0
cb6 2 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
cm2 2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2
cm4 4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4
da 2 −24777 −24776.5 −24776.5 −24776.5 −14865.9 −24776.5 0
em 10 10 −8.40797 −6.23631 −5.85721 −6.42058 −5.29973 −6.68539 −8.27162
em 5 5 −4.6877 −4.4935 −3.69458 −3.5116 −3.48061 −3.61152 −4.49589
ep 2 −1 −1 −1 −1 −0.700024 −1 −1
exp 10 −1 −1 −1 −1 −1 −1 −1
fls 2 −2.02181 −2.02181 −2.02181 −2.02181 −2.02181 −2.02181 −0.994945
fr 2 0 3.70128e− 09 5.8461e− 15 19.7028 65.6759 65.6762 65.6759
fx 10 10 −10.2088 −1.14662 −1.47569 −1.13584 −1.09341 −1.47976 −3.27511
fx 5 5 −10.4056 −3.47742 −1.83376 −1.97401 −2.36457 −2.70097 −1.57965
gp 2 3 3 3 3 13.8 3 3
grp 3 0 1.4757e− 15 1.72892e− 11 1.42888e− 11 4.3576e− 15 1.72346e− 08 3.15544e− 26
gw 10 0 0 0 0 0 0 0
h3 3 −3.8628 −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 −3.08976

Table B.1: Results from comparison of the solvers on bound-constraind problems (average of 10 runs for stochastic solvers)- Part 1 .



A
p
p
en
d
ix
B
.
T
e
s
t
R
e
s
u
lts

152

Name n f∗ ES-LC-B ES-LC-P PSWARM CMA-ES MCS BC-DFO

h6 6 −3.3224 −3.32237 −3.20312 −3.2984 −3.30961 −3.32237 −3.20316
hm 2 0 4.67413e− 08 4.65101e− 08 4.68394e− 08 4.65101e− 08 4.65101e− 08 1.03163
hm1 1 0 2.17195e− 10 2.1719e− 10 1.7862e− 11 1.26249e− 13 1.97215e− 31 0
hm2 1 −4.81447 −4.81447 −4.81447 −4.81447 −0.96288 −4.81446 0
hm3 1 −2.27 −2.26754 −2.26754 −2.26754 −2.1406 −2.26754 0
hm4 2 0 1.23885e− 10 1.45797e− 13 1.55818 2.56643e− 15 6.7576e− 20 15.5818
hm5 3 0 0 0 0 0 0 0
hsk 2 −2.34581 −2.34581 −2.34581 −2.34581 −1.74583 −2.34581 −1.12779
hv 3 1.4201e− 40 2.00938e− 10 2.19337e− 09 4.91066e− 05 3.50567e− 14 1.4201e− 40 25.9911
ir1 3 0 0 0 0 0 0 0
ir2 2 0 3.06391e− 10 1.03849e− 13 0.00157914 9.19098e− 15 2.64977e− 20 8.24757e− 22
ir4 30 0 0.0519641 0.0519641 0.0519641 0.0519641 0.0519641 0.0519641
ir5 2 0.001996 0.00199969 0.0019995 0.0019985 0.00199969 0.00199969 0.00199969
kl 4 0.000307486 0.00030758 0.000307486 0.000330504 0.000307487 0.000307486 0.000307486
ks 1 0 0 0 0 0 0 0
lj1 38 114 3114.51 2.33302e+ 06 241023 15289.4 38347.4 1e+ 09 1e+ 09
lj1 75 225 523060 3.19296e+ 08 6.2303e+ 06 1.33632e+ 06 4.58214e+ 06 1e+ 09 1e+ 09
lj1 98 294 1.83581e+ 06 2.53341e+ 09 2.55844e+ 07 1.10237e+ 07 5.41124e+ 07 1e+ 09 1e+ 09
lj2 38 114 4227.85 2.33312e+ 06 241271 15879.6 43409.7 1e+ 09 1e+ 09
lj2 75 225 604764 3.19297e+ 08 6.23102e+ 06 1.09771e+ 06 5.01557e+ 06 1e+ 09 1e+ 09
lj2 98 294 2.25008e+ 06 2.53341e+ 09 2.55858e+ 07 8.61482e+ 06 6.27853e+ 07 1e+ 09 1e+ 09
lj3 38 114 51079.6 1.22305e+ 09 2.19352e+ 06 766845 5.03627e+ 06 1e+ 09 1e+ 09
lj3 75 225 8.00081e+ 07 3.65358e+ 12 1.01587e+ 10 6.03574e+ 08 9.9765e+ 08 1e+ 09 1e+ 09
lj3 98 294 1e+ 09 6.98651e+ 13 5.10457e+ 10 8.07316e+ 09 1e+ 09 1e+ 09 1e+ 09

Table B.2: Results from comparison of the solvers on bound-constraind problems (average of 10 runs for stochastic solvers)- Part 2 .



A
p
p
en
d
ix
B
.
T
e
s
t
R
e
s
u
lts

153

Name n f∗ ES-LC-B ES-LC-P PSWARM CMA-ES MCS BC-DFO

lm1 3 0 1.10763e− 09 5.57824e− 11 6.28474e− 07 2.58288e− 14 1.57851e− 31 2.37534e− 13
lm2 10 10 0 0.0876906 0.0161266 0.00354416 0.0417907 1.34969e− 31 0.0110986
lm2 5 5 0 0.0444938 0.06549 1.34969e− 31 0.00853277 1.34969e− 31 0.297625
lv8 3 0 3.76424e− 11 7.13608e− 13 4.89571e− 10 2.20881e− 14 1.49966e− 32 2.3585e− 26
mc 2 −1.91322 −1.91322 −1.91322 −1.91322 −1.91322 −1.91322 −1.91322
mcp 4 0 8.3558e− 10 2.48537e− 09 2.76852e− 14 8.46032e− 14 7.52392e− 17 6.92197e− 13
mgp 2 −1.297 −1.29695 −1.29695 −1.29695 −1.28138 −1.29695 −1.29695
mgw 10 10 0 0 0 0 0 0 0
mgw 2 2 0 0 0 0 0 0 0
mgw 20 20 −3.55271e− 15 −3.55271e− 15 −3.55271e− 15 −3.55271e− 15 −3.55271e− 15 −3.55271e− 15 −3.55271e− 15
ml 10 10 −0.965 −5.03947e− 321 −1.2838e− 111 −0.0896697 −2.1722e− 27 −2.35441e− 23 −9.29196e− 298
ml 5 5 −0.965 −4.61423e− 50 −3.3648e− 56 −0.3179 −6.71071e− 112 −0.806 −3.57988e− 185
mr 3 4e− 05 0.0019131 0.00190027 0.00634313 0.00609367 0.0596046 0.120085
mrp 2 0 0.00741539 0.00741539 2.30571e− 09 0.00519077 5.85521e− 22 6.18487e− 19
ms1 20 5.58379 8.54762 8.22735 9.04108 9.42908 118.737 1e+ 09
ms2 20 13.935 14.0129 15.1745 15.7835 19.0253 285.894 1e+ 09
nf2 4 0 0.0121389 0.184693 0.0872574 0.0130726 1.43243e− 06 7.45769e− 05
nf3 10 10 −210 −209.478 −209.731 −203.417 −209.326 −210 −210
nf3 15 15 −665 −445.603 −378.426 −489.492 −482.99 −665 −665
nf3 20 20 −1520 −295.177 −222.102 −875 −382.666 −897.54 −1520
nf3 25 25 −2900 −243.857 −237.519 −1358.91 −163.263 −1203.05 −2900
nf3 30 30 −4930 −47.9737 −39.6664 −1921.88 −100.547 −1166.35 −4930
osp 10 10 −1.1438 −1.8452e− 07 −1.7843e− 07 −1.10174e− 05 −0.030832 −4.89477e− 31 −1.46314e− 11
osp 20 20 −1.1438 −9.69548e− 12 −6.49482e− 13 −1.53037e− 12 −7.33036e− 05 −3.06537e− 50 −2.53022e− 16

Table B.3: Results from comparison of the solvers on bound-constraind problems (average of 10 runs for stochastic solvers)- Part 3 .



A
p
p
en
d
ix
B
.
T
e
s
t
R
e
s
u
lts

154

Name n f∗ ES-LC-B ES-LC-P PSWARM CMA-ES MCS BC-DFO

plj 38 114 4286.56 2.33307e+ 06 242398 14740.9 48377.6 1e+ 09 1e+ 09
plj 75 225 471921 3.19296e+ 08 6.23112e+ 06 1.33326e+ 06 6.24924e+ 06 1e+ 09 1e+ 09
plj 98 294 3.35843e+ 06 2.53341e+ 09 2.55862e+ 07 5.31535e+ 06 6.08277e+ 07 1e+ 09 1e+ 09
prd 2 0.9 0.9 0.9 0.9 0.9 0.9 0.9
ptm 9 0 191.592 221.599 129.871 196.47 106.427 167.199
pwq 4 0 0 0 0 0 0 0
rb 10 0 8.60723 8.16482 7.77405 7.92561 2.34966 0.699086
rg 10 10 0 0 0 0 0 0 0
rg 2 2 0 0 0 0 0 0 0
s10 4 −10.5364 −3.83543 −2.42734 −7.5744 −5.12848 −10.5364 −5.12848
s5 4 −10.1532 −10.1532 −5.0552 −5.09827 −5.0552 −10.1532 −5.0552
s7 4 −10.4029 −3.7243 −5.08767 −8.11007 −5.08767 −10.4029 −5.08767
sal 10 10 0 0 0 1.23612 0.201177 7.63753e− 05 0.0998733
sal 5 5 0 0 0 0.399955 0.131529 1.35237e− 06 0.0998733
sbt 2 −186.731 −186.731 −186.731 −186.731 −140.879 −186.731 −186.731
sf1 2 0 0 0 0.00874432 0.00766049 0.0372241 0
sf2 2 0 2.45961e− 09 2.45961e− 09 0.124129 0.102956 0.312435 1.0127
shv1 1 −1 −1 −1 −1 −0.553195 −0.999996 0.841471
shv2 2 0 0 0 0 0 0 0
sin 10 10 −3.5 −0.997113 −0.999626 −3.27758 −0.999481 −3.5 −0.500032
sin 20 20 −3.5 −1.50398e− 05 −0.949737 −1.80165 −0.416575 −1.00196 −0.11457
stg 1 0 0 0 0 0 0 0
st 17 17 0 1.33425e+ 07 2.72246e+ 06 156317 1.1722e+ 06 612661 35070.1
st 9 9 0 17.6671 41.6756 155.064 144.136 2.8266 39.1974

Table B.4: Results from comparison of the solvers on bound-constraind problems (average of 10 runs for stochastic solvers)- Part 4 .



A
p
p
en
d
ix
B
.
T
e
s
t
R
e
s
u
lts

155

Name n f∗ ES-LC-B ES-LC-P PSWARM CMA-ES MCS BC-DFO

swf 10 −4189.83 −1899.25 −1543.19 −3655.89 −39.4503 −4071.39 1e+ 09
sz 1 −12.0312 −12.0312 −12.0312 −12.0312 −9.13785 −12.0312 −3.60801
szzs 1 −1.60131 −1.60131 −1.60131 −1.60131 −0.798275 −1.60131 −1.60131
wf 4 0 0.24724 5.12165 0.756791 0.923078 3.83443e− 19 4.15548e− 26
xor 9 0.867827 0.882538 0.880822 0.872623 0.875512 0.880278 0.879814
zkv 10 10 0 0 0 0 0 26.0722 0
zkv 2 2 0 0 0 0 0 1.21861e− 43 0
zkv 20 20 0 0 0 0 0 320.055 0
zkv 5 5 0 0 0 0 0 3.7638e− 28 0
zlk1 1 −1.91 −1.21598 −1.21598 −1.90596 −1.21136 −1.90596 −1.21598
zlk2a 1 −1.125 −1.125 −1.11725 −1.125 −0.747352 −1.125 −1.125
zlk2b 1 −1.125 −1.125 −1.125 −1.11258 −1.02635 −1.125 −1.125
zlk3a 1 −1 −0.999999 −1 −1 0 −1 0
zlk3b 1 −1 −1 −1 −1 0 −1 0
zlk3c 1 −1 −1 −1 −1 −0.3 −1 0
zlk4 2 0.397888 0.397888 0.397888 0.397888 0.397888 0.397888 0.397888
zlk5 3 −3.86278 −3.86278 −3.86278 −3.86278 −3.78548 −3.86278 −3.08976
zzs 1 −0.824239 −0.824239 −0.824239 −0.824239 −0.659392 −0.824235 −0.824239

Table B.5: Results from comparison of the solvers on bound-constraind problems (average of 10 runs for stochastic solvers) - Part 5 .



A
p
p
en
d
ix
B
.
T
e
s
t
R
e
s
u
lts

156

Name n m f∗ ES-LC-B ES-LC-P PSWARM

oet1 3 402 0.538232 0.538239 0.538433 0.550358
oet3 4 402 0.00450873 0.00814026 0.996249 0.784257
avgasa 6 18 −4.1687 −4.16857 −4.1687 −4.1687
avgasb 6 18 −4.13282 −4.13274 −4.13267 −4.13282
bc4 127 254 12.9296 386.172 14.5377 396.077
biggsc4 4 21 −24.5 −24.4999 −24.4995 −24.5
bunnag1 3 7 0.111111 0.111113 0.111111 0.111112
bunnag2 4 10 −6.40521 −6.40496 −6.40521 −6.40521
bunnag3 5 11 −16.3693 −16.3632 −16.3693 −16.3681
bunnag4 6 13 −213.047 −212.433 −213.047 −213.047
bunnag5 6 16 −11.005 −10.3921 −10.9994 −11
bunnag6 10 31 −268.014 −254.582 −266.245 −247.188
bunnag7 10 25 −39 −28.8473 −32.4634 −27.6222
bunnag8 20 50 −394.751 −104.073 −79.1346 −220.173
bunnag9 20 50 −884.751 −600.765 −524.419 −664.959
bunnag10 20 50 −8695.01 −2418.84 −2000.21 −4265.74
bunnag11 20 50 −754.751 −558.936 −584.181 −611.203
bunnag12 20 50 −4105.28 −1212.8 −1412.35 −2686.53
bunnag13 20 50 49318 192764 547663 150752
ex2 1 1 5 11 −17 −17 −17 −17
ex2 1 10 20 30 57637.5 196582 210572 112476
ex2 1 2 6 13 −213 −213 −213 −213
ex2 1 3 13 29 −15 −15 −15 −15
ex2 1 4 6 14 −11 −11 −11 −11

Table B.6: Results from comparison of the solvers on linear-constraind problems (average of 10 runs for stochastic solvers)- Part 1 .



A
p
p
en
d
ix
B
.
T
e
s
t
R
e
s
u
lts

1
5
7

Name n m f∗ ES-LC-B ES-LC-P PSWARM

ex2 1 5 10 31 −268.014 −252.519 −265.283 −254.306
ex2 1 6 10 25 −39 −39 −39 −39
ex2 1 7 20 30 −4049 −1207.99 −3447.36 −3668.73
expfita 5 21 0.00150644 0.497078 0.00150644 0.0176753
expfitb 5 101 0.00560556 0.00560556 0.545945 1.08841
expfitc 5 501 0.0414654 5.0458 0.0414654 3.89498
fir linear 11 78 14.1549 80.6529 78.2801 36.393
g01 13 32 −15 0 −14.9655 −15
genocop07 6 14 −213 −212.545 −213 −210.727
genocop09 3 11 −2.47143 −2.4714 −2.47143 −2.47142
genocop10 4 10 −4.52837 −4.52833 −4.52835 −4.52837
genocop11 6 17 −11 −10.3567 −10.9952 −11
goffin 51 50 0 0 0 71.287
gtm 59 115 636.321 769.851 751.711 662.786
hatfldh 4 21 −24.5 −24.4998 −24.4997 −24.5
himmelbi 100 112 7.25949e + 23 8.78169e + 50 2.65669e + 50 2.05289e + 42
hs021 2 5 −99.96 −99.96 −99.96 −99.96
hs024 2 4 −1 −0.999991 −1 −0.999996
hs035 3 4 0.111111 0.111114 0.111112 0.111112
hs036 3 7 −3456 −3300 −3300 −3300
hs037 3 7 −3456 −3456 −3456 −3456
hs044 4 10 −15 −12.9986 −15 −13.8
hs076 4 7 −4.68182 −4.6817 −4.68182 −4.68181
hs086 5 11 −32.3487 −32.3275 −32.3482 −32.3486

Table B.7: Results from comparison of the solvers on linear-constraind problems (average of 10 runs for stochastic solvers)- Part 2 .



A
p
p
en
d
ix
B
.
T
e
s
t
R
e
s
u
lts

158

Name n m f∗ ES-LC-B ES-LC-P PSWARM

hs118 15 59 664.82 686.615 688.243 668.125
hs21mod 7 9 −95.96 −95.96 −95.9597 −95.96
hs268 5 5 0.173975 0.444779 0.173975 3.03662
hs35mod 2 3 0.25 0.25 0.25 0.25
hs44new 4 9 −15 −12.9996 −15 −14
hubfit 2 2 0.0168935 0.0168935 0.0168935 0.0168939
Ji1 3 7 −4.0907 −4.0907 −4.0907 −4.0907
Ji2 3 5 −3.00292 −3.00246 −3.00292 −3.00292
Ji3 2 3 −5.99989 −5.99201 −5.99966 −5.99663
ksip 20 201 0.829106 0.937146 1.04348 1.34824
liswet1 202 200 50.9896 50.9896 50.9896 50.9896
liswet10 202 200 51.3597 51.3597 51.3597 51.3597
liswet11 202 200 51.3321 51.3321 51.3321 51.3321
liswet12 202 200 −51.3321 −51.3321 −51.3321 −51.3321
liswet2 202 200 34.2425 34.2425 34.2425 34.2425
liswet3 202 200 20.8438 20.8438 20.8438 20.8438
liswet4 202 200 15.1018 15.1018 15.1018 15.1018
liswet5 202 200 323.711 323.711 323.711 323.711
liswet6 202 200 44.3262 44.3262 44.3262 44.3262
liswet7 202 200 50.7545 50.7545 50.7545 50.7545
liswet8 202 200 50.7572 50.7572 50.7572 50.7572
liswet9 202 200 50.7571 50.7571 50.7571 50.7571
lowpass 31 95 22.0009 71.7826 89.6168 41.3995
lsqfit 2 2 0.033787 0.033787 0.033787 0.0337877

Table B.8: Results from comparison of the solvers on linear-constraind problems (average of 10 runs for stochastic solvers)- Part 3 .



A
p
p
en
d
ix
B
.
T
e
s
t
R
e
s
u
lts

159

Name n m f∗ ES-LC-B ES-LC-P PSWARM

makela4 21 40 0 0 0 73.0866
Michalewicz1 2 5 −1 −1 −1 −1
nuffield continuum 2 5 −2.54941 −2.54941 −2.54941 −2.54941
pentagon 6 15 0.000136526 0.000151809 0.000138316 0.000141417
pt 2 201 0.178391 0.178392 0.178391 0.179065
s224 2 6 −304 −304 −304 −304
s231 2 2 7.36579e− 14 1.17588e− 09 1.94008e− 12 0.0244195
s232 2 4 −1 −0.99998 −1 −0.999998
s250 3 7 −3300 −3300 −3300 −3300
s251 3 7 −3456 −3455.99 −3456 −3456
s253 3 4 69.282 69.282 69.282 69.282
s268 5 5 0.173975 0.444779 0.173975 3.04786
s277 4 8 5.07621 5.08267 5.07833 5.08355
s278 6 12 7.84 8.6138 7.85363 7.96406
s279 8 16 10.619 18.0295 10.6574 10.7567
s280 10 20 13.386 48.2646 15.1412 13.7558
s331 2 4 4.25838 4.25838 4.25838 4.25838
s340 3 2 −1.57675e+ 66 −1.57675e+ 66 −4.79231e+ 64 −2.79811e+ 15
s354 4 5 0.113784 0.114795 0.113796 0.114502
s359 5 14 −5.4702e+ 06 −4.5406e+ 06 −5.26799e+ 06 −5.44339e+ 06
s392 30 70 −1.01391e+ 06 −214991 0 −927519
simpllpa 2 4 1 1.00001 1.00285 1
simpllpb 2 5 1.1 1.10001 1.10091 1.1
sipow1 2 200 −1 −1 −1 −1

Table B.9: Results from comparison of the solvers on linear-constraind problems (average of 10 runs for stochastic solvers)- Part 4 .



A
p
p
en
d
ix
B
.
T
e
s
t
R
e
s
u
lts

160

Name n m f∗ ES-LC-B ES-LC-P PSWARM

sipow1m 2 200 −1.00012 −1.00012 −1.00012 −1.00012
sipow2 2 101 −1 −0.999999 −1 −1
sipow2m 2 101 −1.00049 −1.00049 −1.00049 −1.00049
sipow3 4 199 0.523141 0.523166 0.523141 0.878149
sipow4 4 200 0.267056 0.267059 0.283533 0.286185
stancmin 3 5 4.25 4.25006 4.25 4.25002
structure2 176 1920 −5.04468 −1.91619 −2.66601 −3.93316
tfi2 3 201 0.649039 0.649051 0.64941 0.661233
weapons 65 77 −1709.63 −1689.01 −1690.43 −1694.94
yao 200 201 27.7202 27.7202 27.7202 27.7202
zecevic2 2 6 −4.125 −4.125 −4.125 −4.125

Table B.10: Results from comparison of the solvers on linear-constraind problems (average of 10 runs for stochastic solvers) - Part 5 .



Bibliography

[1] Benchmarks for nonlinear optimization. http://www.princeton.edu/~rvdb/bench.html.

[2] GLOBAL Library. http://www.gamsworld.org/global/globallib.htm.

[3] M. A. Abramson, C. Audet, G. Couture, J. E. Dennis Jr., S. Le Digabel, and C. Tribes.

The NOMAD project. Software available at http://www.gerad.ca/nomad.

[4] M. A. Abramson, O. A. Brezhneva, J. E. Dennis Jr., and R. L. Pingel. Pattern search in

the presence of degenerate linear constraints. Optim. Methods Softw., 23:297–319, 2008.

[5] G. Aditya, B. Akhilesh, and C. Kuntal. A comprehensive review of image smoothing

techniques. Inter. J. of Advanced Research in Computer Engineering & Technology, June

2012.

[6] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transfom. IEEE Trans. Comput.,

23(1):90–93, Jan. 1974.

[7] M. M. Ali, C. Khompatraporn, and Z. B. Zabinsky. A numerical evaluation of several

stochastic algorithms on selected continuous global optimization test problems. J. Global

Optim., 31:635–672, 2005.

[8] L. Altenberg. Advances in genetic programming. chapter The Evolution of Evolvability in

Genetic Programming, pages 47–74. MIT Press, Cambridge, MA, USA, 1994.

[9] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multi-

frontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1):15–

41, 2001.

[10] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for

the parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

[11] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A first course in order statistics

(classics in applied mathematics). SIAM, 2008.

[12] D. V. Arnold. Optimal weighted recombination. In A. H. Wright, M. D. Vose, K. A. De

Jong, and L. M. Schmitt, editors, Foundations of Genetic Algorithms 8, volume 3469 of

Lecture Notes in Computer Science, pages 215–237. Springer-Verlag, Berlin Heidelberg,

2005.

161



Bibliography 162

[13] L. Arnold, A. Auger, N. Hansen, and Y. Ollivier. Information-geometric optimization

algorithms: A unifying picture via invariance principles. June, 2013.

[14] C. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning. Artif. Intell. Rev.,

11(1-5):11–73, Feb. 1997.

[15] C. Audet. A short proof on the cardinality of maximal positive bases. Opti. Lett., (5):191–

194, 2011.

[16] C. Audet, S. Le Digabel, and C. Tribes. NOMAD user guide. Technical Report G-2009-37,

Les cahiers du GERAD, 2009.

[17] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM J. Optim.,

13:889–903, 2002.

[18] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained

optimization. SIAM J. Optim., 17:188–217, 2006.

[19] C. Audet and J. E. Dennis Jr. A progressive barrier for derivative-free nonlinear program-

ming. SIAM J. Optim., 20(1):445–472, 2009.

[20] A. Auger. Convergence results for the (1,λ)-SA-ES using the theory of φ-irreducible Markov

chains. Theor. Comput. Sci., 334:35–69, 2005.

[21] A. Auger, D. Brockhoff, and N. Hansen. Benchmarking the local metamodel CMA-ES on

the noiseless BBOB’2013 test bed. In Proceedings of the 15th Annual Conference Compan-

ion on Genetic and Evolutionary Computation, GECCO ’13 Companion, pages 1225–1232,

New York, NY, USA, 2013. ACM.

[22] A. Auger and N. Hansen. A restart cma evolution strategy with increasing population

size. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 2, pages

1769–1776, 2005.

[23] A. Auger, N. Hansen, Z. J. Perez, R. Ros, and M. Schoenauer. Experimental comparisons of

derivative free optimization algorithms. In 8th International Symposium on Experimental

Algorithms, number 5526, pages 3–15. Springer Verlag, 2009.

[24] T. Bäck. Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary

programming, genetic algorithms. Oxford University Press, Oxford, UK, 1996.

[25] T. Bäck and M. Schütz. Evolution strategies for mixed–integer optimization of opti-

cal multilayer systems. In EVOLUTIONARY PROGRAMMING IV – PROC. FOURTH

ANNUAL CONF. EVOLUTIONARY PROGRAMMING (EP-95, pages 33–51. The MIT

Press, 1995.

[26] T. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms for parameter opti-

mization. Evol. Comput., 1(1):1–23, Mar. 1993.

[27] A. S. Bandeira, K. Scheinbeerg, and L. N. Vicente. Convergence of trust-region methods

based on probabilistic models. Technical report, University of Coimbra, 2013.



Bibliography 163

[28] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Computation of sparse low degree

interpolating polynomials and their application to derivative-free optimization. Math.

Program., 134(1):223–257, 2012.

[29] J.-P. Bérenger. A perfectly matched layer for the absorption of electromagnetic waves.

Journal of Computational Physics, 114(2):185–200, 1994.

[30] H.-G. Beyer. The Theory of Evolution Strategies. Springer, 1998.

[31] H.-G. Beyer. Evolutionary algorithms in noisy environments: Theoretical issues and guide-

lines for practice. In Computer Methods in Applied Mechanics and Engineering, pages

239–267, 2000.

[32] H.-G. Beyer and H.-P. Schwefel. Evolution strategies: A comprehensive introduction.

Natural Computing, 1:3–52, 2002.

[33] A. Bienvenüe and O. François. Global convergence for evolution strategies in spherical

problems: Some simple proofs and difficulties. Theor. Comput. Sci., 306(1-3):269–289,

Sept. 2003.

[34] F. Billette, S. L. Bégat, P. Podvin, and G. Lambaré. Practical aspects and applications of

2d stereotomography. Geophysics, 68(3):1008–1021, 2003.

[35] F. Billette and G. Lambaré. Velocity macro-model estimation from seismic reflection data

by stereotomography. Geophys. J. Inter., 135(2):671–690, 1998.

[36] A. J. Booker, J. E. Dennis Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset.

A rigorous framework for optimization of expensive functions by surrogates. Structural

and Multidisciplinary Optimization, 17:1–13, 1998.

[37] Z. Bouzarkouna. Well placement optimization. PhD thesis, University Paris-Sud - Labo-

ratoire de Recherche en Informatique, 2012.

[38] R. Brossier. Imagerie sismique à deux dimensions des milieux visco-élastiques par inversion

des formes d’ondes : développements méthodologiques et applications. PhD thesis, Geoazur,

Sophia Antipolis - UFR Sciences, 2009.

[39] L. Bull. Learning classifier systems: A brief introduction. In In Bull, L (Ed.): Applications

of Learning Classifier Systems. Berlin u.a, page 14. Springer, 2004.

[40] H. Calandra, S. Gratton, R. Lago, X. Pinel, and X. Vasseur. Two-level preconditioned

krylov subspace methods for the solution of three-dimensional heterogeneous helmholtz

problems in seismics. Numerical Analysis and Applications, 5(2):175–191, mai 2012.

[41] L. M. Carvalho, S. Gratton, R. Lago, and X. Vasseur. A flexible generalized conjugate

residual method with inner orthogonalization and deflated restarting. SIAM J. Matrix

Anal. Appl., 32(4):1212–1235, Nov. 2011.

[42] R. Chiong, T. Weise, and Z. Michalewicz, editors. Variants of evolutionary algorithms for

real-world applications. Springer-Verlag: Berlin/Heidelberg, 2011.



Bibliography 164

[43] F. H. Clarke. Optimization and nonsmooth analysis. John Wiley & Sons, New York, 1983.

Reissued by SIAM, Philadelphia, 1990.

[44] C. A. C. Coello. Theoretical and numerical constraint-handling techniques used with

evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied

Mechanics and Engineering, 191:1245–1287, 2002.

[45] C. A. C. Coello and E. M. Montes. Constraint-handling in genetic algorithms through the

use of dominance-based tournament selection. Advanced Engineering Informatics, 16:193–

203, 2002.

[46] G. Cohen. Higher-order numerical methods for transient wave equations. Springer-Verlag,

Berlin, Germany, 2002.

[47] M. D. Collins and W. A. Kuperman. Nonlinear inversion for ocean bottom properties. The

Journal of the Acoustical Society of America, (92):2770–2782, 1992.

[48] A. R. Conn and S. L. Digabel. Use of quadratic models with mesh-adaptive direct search

for constrained black box optimization. Optim. Methods Softw., 28(1):139–158, 2013.

[49] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-region Methods. MPS-SIAM Series

on Optimization. SIAM, Philadelphia, PA, USA, 2000.

[50] A. R. Conn, K. Scheinberg, and L. N. Vicente. Geometry of sample sets in derivative-free

optimization: polynomial regression and underdetermined interpolation. Math. Program.,

28(4):721–748, 2008.

[51] A. R. Conn, K. Scheinberg, and L. N. Vicente. Global convergence of general derivative-

free trust-region algorithms to first and second order critical points. SIAM J. Optim.,

20:387–415, 2009.

[52] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to derivative-free optimization.

MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[53] A. L. Custódio, H. Rocha, and L. N. Vicente. Incorporating minimum Frobenius norm

models in direct search. Comput. Optim. Appl., 46:265–278, 2010.

[54] A. L. Custódio and L. N. Vicente. Using sampling and simplex derivatives in pattern

search methods. SIAM J. Optim., 18(2):537–555, 2007.

[55] I. Daubechies. Ten lectures on wavelets. MPS-SIAM. SIAM, Philadelphia PA, 1992.

[56] C. Davis. Theory of positive linear dependence. Amer. J. Math., 76(4):733–746, 1954.

[57] Y. Diouane, H. Calandra, S. Gratton, and X. Vasseur. A parallel evolution strategy

for acoustic full-waveform inversion: Extended abstract. In EAGE High Performance

Computing for Upstream Workshop in Chania, Crete, Greece, 2014.

[58] Y. Diouane, S. Gratton, and L. N. Vicente. Globally convergente evolution strategies.

Math. Program., to appear. doi: 10.1007/s10107-014-0793-x.



Bibliography 165

[59] Y. Diouane, S. Gratton, and L. N. Vicente. Globally convergent evolution strategies for

constrained optimization. Technical report, CERFACS, Toulouse, France, TR-PA-14-50.

[60] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.

Math. Program., 91:201–213, 2002.

[61] E. D. Dolan, J. J. Moré, and T. S. Munson. Optimality measures for performance profiles.

SIAM J. Optim., 16:891–909, 2006.

[62] G. Fasano, J. L. Morales, and J. Nocedal. On the geometry phase in model-based algo-

rithms for derivative-free optimization. Optim. Methods Softw., 24(1):145–154, 2009.

[63] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Math.

Program., 91:239–269, 2002.

[64] D. B. Fogel. System identification through simulated evolution: A machine learning ap-

proach to modeling. Ginn Press, 1991.

[65] D. B. Fogel. Evolving artificial intelligence. PhD thesis, La Jolla, CA, USA, 1992.

[66] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in multiobjective

optimization. Evolutionary Computation, 3:1–16, 1995.

[67] S. Forrest and A. S. Perelson. Genetic algorithms and the immune system. In H.-P.

Schwefel and R. Männer, editors, Parallel Problem Solving from Nature, volume 496 of

Lecture Notes in Computer Science, pages 319–325. Springer, 1991.

[68] O. Gauthier, J. Virieux, and A. Tarantola. Two dimensional nonlinear inversion of seismic

waveforms: Numerical results. Geophysics, 51(7):1387–1403, July 1986.

[69] S. Gelly, S. Ruette, and O. Teytaud. Comparison-based algorithms are robust and ran-

domized algorithms are anytime. Evol. Comput., 15(4):411–434, Dec. 2007.

[70] P. Gerstoft. Nonlinear inversion for ocean bottom properties. The Journal of the Acoustical

Society of America, 95(2):770–782, 1994.

[71] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr, a Constrained and Unconstrained

Testing Environment, revisited. ACM Trans. Math. Software, 29:373–394, 2003.

[72] S. Gratton, Ph. L. Toint, and A. Tröltzsch. An active-set trust-region method for

derivative-free nonlinear bound-constrained optimization. Optim. Methods Softw., 26:873–

894, 2011.

[73] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic

descent. Technical report, University of Coimbra, 2014.

[74] S. Gratton and L. N. Vicente. A merit function approach for direct search. Technical

report, 2014.

[75] G. W. Greenwood and Q. J. Zhu. Convergence in evolutionary programs with self-

adaptation. Evolutionary Computation, 9:57–147, 2001.



Bibliography 166

[76] B. Greer. Numerical optimization with neuroevolution. In In Proceedings of the 2002

Congress on Evolutionary Computation (CEC2002, 2002.

[77] J. D. Griffin, T. G. Kolda, and R. M. Lewis. Asynchronous parallel generating set search

for linearly-constrained optimization. SIAM J. Sci. Comput., 30:1892–1924, 2008.

[78] N. Hansen. The CMA Evolution Strategy: A tutorial. June 28, 2011.

[79] N. Hansen, A. Auger, R. R. Raymond, S. Finck, and P. Poš́ık. Comparing results of

31 algorithms from the black-box optimization benchmarking bbob-2009. In Proceedings

of the 12th Annual Conference Companion on Genetic and Evolutionary Computation,

GECCO ’10, pages 1689–1696, New York, NY, USA, 2010. ACM.

[80] N. Hansen, S. Fincky, R. Rosz, and A. Auger. Real-parameter black-box optimization

benchmarking 2010: Noisy functions definitions. Technical report, March 22, 2010.

[81] N. Hansen, S. Fincky, R. Rosz, and A. Auger. Real-parameter black-box optimization

benchmarking 2010: Noiseless functions definitions. Technical report, September 28, 2010.

[82] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of the de-

randomized evolution strategy with covariance matrix adaptation (cma-es). Evol. Comput.,

11(1):1–18, Mar. 2003.

[83] N. Hansen, A. S. P. Niederberger, L. Guzzella, and P. Koumoutsakos. A method for

handling uncertainty in evolutionary optimization with an application to feedback control

of combustion. IEEE Trans. Evolutionary Computation, 13:180–197, 2009.

[84] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evo-

lution strategies: The covariance matrix adaptation. In Proceedings of the 1996 IEEE

International Conference on Evolutionary Computation, pages 312–317, 1996.

[85] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution

strategies. Evol. Comput., 9(2):159–195, June 2001.

[86] N. Hansen, A. Ostermeier, and A. Gawelczyk. On the adaptation of arbitrary normal

mutation distributions in evolution strategies: The generating set adaptation. In L. Es-

helman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms,

Pittsburgh, pages 57–64, 1995.

[87] A. Hedar and M. Fukushima. Derivative-free filter simulated annealing method for con-

strained continuous global optimization. J. Global Optim., 35:2006, 2004.

[88] A. Henderson. ParaView Guide. A Parallel Visualization Application. Kitware Inc, 2007.

[89] F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algorithms: Op-

erators and tools for behavioural analysis. Artif. Intell. Rev., 12(4):265–319, Aug. 1998.

[90] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1981.



Bibliography 167

[91] J. H. Holland. Adaptation in natural and artificial systems. University of Michigan Press,

Ann Arbor, MI, 1975.

[92] J. H. Holland. Adaptation in natural and artificial systems: An introductory analysis with

applications to biology, control and artificial intelligence. MIT Press, Cambridge, MA,

USA, 1992.

[93] W. Huyer and A. Neumaier. Global optimization by multilevel coordinate search. J. Global

Optim., 14:331–355, 1999.

[94] L. Ingber. Adaptive simulated annealing (ASA). Global Optimization C-code, 1993.

[95] L. Ingber and B. Rosen. Genetic algorithms and very fast simulated reannealing: A

comparison. Math. Comput. Modelling, 16:87–100, 1992.

[96] J. Jägersküpper. How the (1+1)-ES using isotropic mutations minimizes positive definite

quadratic forms. Theor. Comput. Sci., 361:38–56, 2006.

[97] J. Jägersküpper. Probabilistic runtime analysis of (1+1)-ES using isotropic mutations.

In Proceedings of the 8th annual conference on Genetic and evolutionary computation,

GECCO ’06, pages 461–468, New York, NY, USA, 2006. ACM.

[98] J. Jahn. Introduction to the Theory of Nonlinear Optimization. Springer-Verlag, Berlin,

1996.

[99] E. T. Jaynes. Where do we stand on maximum entropy? In Maximum Entropy Formalism

Conference. Massachusetts Institute of Technology, Apr. 1978.

[100] M. Jebalia and A. Auger. Log-linear convergence of the scale-invariant (µ/µw,λ)-ES and

optimal µ for intermediate recombination for large population sizes. In PPSN (1), pages

52–62, 2010.

[101] Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation.

Soft. Comput., 9(1):3–12, Jan. 2005.

[102] C. T. Kelley. Implicit filtering. Number 23 in Software Environments and Tools. SIAM,

Philadelphia, PA, USA, 2011.

[103] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of the IEEE

International Conference on Neural Networks, pages 1942–1948, 1995.

[104] B. L. Kennett, M. S. Sambridge, and P. R. Williamson. Subspace methods for large inverse

problems with multiple parameter classes. Geophys. J. Int., 94:237–247, 1988.

[105] S. Kern, N. Hansen, and P. Koumoutsakos. Local meta-models for optimization using

evolution strategies. In Parallel Problem Solving from Nature - PPSN IX, pages 939–948.

Springer, 2006.

[106] S. Kim and D. Zhang. Convergence properties of direct search methods for stochastic

optimization. In Winter Simulation Conference, pages 1003–1011. WSC, 2010.



Bibliography 168

[107] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220:671–680, 1983.

[108] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspec-

tives on some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[109] T. G. Kolda, R. M. Lewis, and V. Torczon. A generating set direct search augmented

lagrangian algorithm for optimization with a combination of general and linear constraints.

Technical report, Sandia National Laboratories, USA, 2006.

[110] T. G. Kolda, R. M. Lewis, and V. Torczon. Stationarity results for generating set search

for linearly constrained optimization. SIAM J. Optim., 17:943–968, 2006.

[111] S. Koziel and Z. Michalewicz. Evolutionary algorithms, homomorphous mappings, and

constrained parameter optimization. Evol. Comput., 7(1):19–44, Mar. 1999.

[112] O. Kramer. A review of constraint-handling techniques for evolution strategies. Applied

Computational Intelligence and Soft Computing, 2010:1–11, 2010.

[113] R. Lago. A study on block flexible iterative solvers with application to Earth imaging

problem in geophysics. PhD thesis, Institut National Polytechnique de Toulouse, 2013.

[114] G. Lambaré. Stereotomography. Geophysics, 73(5):VE25–VE34, 2008.

[115] J. Larson and S. C. Billups. Stochastic derivative-free optimization using a trust region

framework. Technical report, 2014.

[116] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algo-

rithm. toms, 37:1–15, 2011.

[117] R. M. Lewis and V. Torczon. Pattern search methods for linearly constrained minimization.

SIAM J. Optim., 10:917–941, 2000.

[118] R. M. Lewis and V. Torczon. A globally convergent augmented lagrangian pattern search

algorithm for optimization with general constraints and simple bounds. SIAM J. Optim.,

12(4):1075–1089, 2002.

[119] M. Locatelli. A note on the Griewank test function. J. Global Optim., 25:169–174, 2003.

[120] S. Lucidi, M. Sciandrone, and P. Tseng. Objective-derivative-free methods for constrained

optimization. Math. Program., 92:37–59, 1999.

[121] J. Mathorel. Implémentation d’un algorithme sans gradient de résolution du problème

inverse en sismique: Master thesis. Technical report, 2013.

[122] J. Matyas. Random optimization. Automation and remote control, 26:244–251, 1965.

[123] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter

optimization problems. Evol. Comput., 4:1–32, 1996.



Bibliography 169

[124] M. Mongeau, H. Karsenty, V. Rouzé, and J.-B. Hiriart-Urruty. Comparison of public-

domain software for black box global optimization. Optim. Methods Softw., 13:203–226,

2000.

[125] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM

J. Optim., 20:172–191, 2009.

[126] W. A. Mulder and R. E. Plessix. Exploring some issues in acoustic full waveform inversion.

Geophysical Prospecting, 56(6):827–841, Nov. 2008.

[127] O. M. Nabi and L. Xiaodong. A comparative study of CMA-ES on large scale global

optimisation. In J. Li, editor, Australasian Conference on Artificial Intelligence, volume

6464 of Lecture Notes in Computer Science, pages 303–312. Springer, 2010.

[128] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer

Journal, 7:308–313, 1965.

[129] Y. Nesterov. Random gradient-free minimization of convex functions. Technical report,

Feb. 2011.

[130] J. Nocedal and S. J. Wright. Numerical optimization. Springer series in operations research

and financial engineering. Springer, New York, NY, 2. ed. edition, 2006.

[131] G. Nolet. Seismic Tomography: With Applications in Global Seismology and Exploration

Geophysics. D. Reidel publishing Company, 1987.

[132] D. W. Oldenburg, P. R. McGillivray, and R. G. Ellis. Generalized subspace methods for

large-scale inverse problems. Geophys. J. Int., 114:12–20, 1993.

[133] S. Operto, J. Virieux, P. Amestoy, J.-Y. L’Excellent, L. Giraud, and H. Ben-Hadj-Ali.

3d finite-difference frequency-domain modeling of visco-acoustic wave propagation using

a massively parallel direct solver: A feasibility study. Geophysics, 72(5):SM195–SM211,

Sept. 2007.

[134] S. Operto, J. Virieux, J. X. Dessa, and G. Pascal. Crustal seismic imaging from mul-

tifold ocean bottom seismometer data by frequency domain full waveform tomography:

Application to the eastern nankai trough. J. Geophys. Res., 159(3):1032–1056, 2006.

[135] X. Pinel. A perturbed two-level preconditioner for the solution of three-dimensional hetero-

geneous Helmholtz problems with applications to Geophysics. PhD thesis, CERFACS and

INPT, 2010.

[136] R. E. Plessix. A review of the adjoint-state method for computing the gradient of a

functional with geophysical applications. Geophys. J. Inter., 167(2):495–503, Nov. 2006.

[137] M. J. D. Powell. Least Frobenius norm updating of quadratic models that satisfy interpo-

lation conditions. Math. Program., 100(1):183–215, 2004.

[138] M. J. D. Powell. The newuoa software for unconstrained optimization with derivatives.

Technical report, University of Cambridge, UK, 2004.



Bibliography 170

[139] G. R. Pratt and M. H. Worthington. Inverse theory applied to multi-Source cross-hole

tomography. Part 1: acoustic wave-equation method. Geophysical Prospecting, 38(3):287–

310, Apr. 1990.

[140] R. G. Pratt. Seismic waveform inversion in the frequency domain, part 1: Theory and

verification in a physical scale model. Geophysics, 64:888–901, 1999.

[141] C. Ravaut, S. Operto, L. Improta, J. Virieux, A. Herrero, and P. Dell’Aversana. Multiscale

imaging of complex structures from multifold wide-aperture seismic data by frequency-

domain full-waveform tomography: application to a thrust belt. Geophys. J. Inter.,

159(3):1032–1056, 2004.

[142] I. Rechenberg. Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der

biologischen evolution. Frommann-Holzboog, 1973.

[143] R. G. Reynolds, Z. Michalewicz, and M. J. Cavaretta. Using cultural algorithms for

constraint handling in GENOCOP. In Evolutionary Programming, pages 289–305, 1995.

[144] J. T. Richardson, M. R. Palmer, G. E. Liepins, and M. Hilliard. Some guidelines for genetic

algorithms with penalty functions. In Proceedings of the third international conference on

Genetic algorithms, pages 191–197, San Francisco, CA, USA, 1989. Morgan Kaufmann

Publishers Inc.

[145] L. Rios and N. Sahinidis. Derivative-free optimization: A review of algorithms and com-

pariason of software implementations. J. Global Optim., 56:1247–1293, 2013.

[146] M. Robbé and M. Sadkane. Exact and inexact breakdowns in the block gmres method.

Linear Algebra and its Applications, 419(1):265–285, 2006.

[147] T. P. Runarsson. Constrained evolutionary optimization by approximate ranking and

surrogate models. In X. Yao, E. K. Burke, J. A. Lozano, J. Smith, J. J. M. Guervós, J. A.

Bullinaria, J. E. Rowe, P. Tino, A. Kabán, and H.-P. Schwefel, editors, PPSN, volume

3242 of Lecture Notes in Computer Science, pages 401–410. Springer, 2004.

[148] Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. Society for Indus-

trial and Applied Mathematics, 2 edition, Apr. 2003.

[149] K. Scheinberg and Ph. L. Toint. Self-correcting geometry in model-based algorithms for

derivative-free unconstrained optimization. SIAM J. Optim., 20(6):3512–3532, 2010.

[150] H.-P. Schwefel. Evolutionsstrategie und numerische optimierung. PhD thesis, 1975.

[151] H. P. Schwefel. Evolution and optimum seeking: The sixth generation. John Wiley & Sons,

Inc., New York, NY, USA, 1993.

[152] C. Shin and Y. H. Cha. Waveform inversion in the Laplace domain. Geophys. J. Inter.,

173:922–931, 2008.

[153] C. Shin and W. Ha. A comparison between the behavior of objective functions for waveform

inversion in the frequency and Laplace domains. Geophysics, 73(5):VE119–VE133, 2008.



Bibliography 171

[154] C. Shin and W. Ha. Laplace-domain full-waveform inversion of seismic data lacking low-

frequency information. Geophysics, 77(5):R199–R206, 2012.

[155] L. Sirgue. The importance of low frequency and large offset in waveform inversion. In

Extended Abstracts, 68th Confererence & Technical Exhibition. EAGE, 2006.

[156] L. Sirgue and R. G. Pratt. Efficient waveform inversion and imaging : A strategy for

selecting temporal frequencies. Geophysics, 69.

[157] J. Skilling and R. K. Bryan. Maximum entropy image reconstruction - general algorithm.

Monthly Notices of the Royal Astronomical Society, 211(1):111–124, 1984.

[158] J. C. Spall. Introduction to stochastic search and optimization: Estimation, simulation,

and control. John Wiley and Sons, 2003.

[159] R. Storn and K. Price. Differential evolution &ndash; a simple and efficient heuristic for

global optimization over continuous spaces. J. of Global Optimization, 11(4):341–359, Dec.

1997.

[160] G. Strang. The discrete cosine transform. SIAM Review, 41:135–147, 1999.

[161] A. Tarantola. Inverse problem theory and methods for model parameter estimation. Siam,

2005.

[162] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceedings

of the Sixth International Conference on Computer Vision.

[163] V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim., 7(1):1–25,

Jan. 1997.

[164] A. I. F. Vaz and L. N. Vicente. A particle swarm pattern search method for bound

constrained global optimization. J. Global Optim., 39:197–219, 2007.

[165] A. I. F. Vaz and L. N. Vicente. Pswarm: A hybrid solver for linearly constrained global

derivative-free optimization. Optim. Methods Softw., 24:669–685, 2009.

[166] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions.

Math. Program., 133:299–325, 2012.

[167] J. Virieux and S. Operto. An overview of full-waveform inversion in exploration geophysics.

74(6):WCC1–WCC26, Nov. 2009.

[168] S. M. Wild and C. A. Shoemaker. Global convergence of radial basis function trust-region

algorithms for derivative-free optimization. SIAM Review, 55(2):349–371, 2013.

[169] G. Yin, G. Rudolph, and H. P. Schwefel. Analyzing the (1, λ) evolution strategy via

stochastic approximation methods. Evol. Comput., 3(4):473–489, Dec. 1995.

[170] Y. Zhang and L. Gao. On numerical solution of the maximum volume ellipsoid problem.

SIAM J. Optim., 14:53–76, 2003.


