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R�esolution de syst�emes lin�eaires creux par des m�ethodes it�eratives par
blocs dans des environnements distribu�es h�et�erog�enes

R�esum�e
Nous �etudions l�implantation de m�ethodes it�eratives par blocs� dans des environnements mul�
tiprocesseur �a m�emoire distribu�ee� pour la r�esolution de syst�emes lin�eaires quelconques� Dans
un premier temps� nous nous int�eressons �a l��etude du potentiel de la m�ethode du gradient con�
jugu�e classique en environnement parall�ele� Dans un deuxi�eme temps� nous �etudions une autre
m�ethode it�erative de la m�eme famille que celle du gradient conjugu�e� qui a �et�e con�cue pour
r�esoudre simultan�ement des syst�emes lin�eaires avec de multiples seconds membres� et commun�e�
ment r�ef�erenc�ee sous le nom de gradient conjugu�e par blocs�
La complexit�e algorithmique de la m�ethode du gradient conjugu�e par blocs est sup�erieure �a celle
de la m�ethode du gradient conjugu�e classique� car elle demande plus de calculs par it�eration�
et n�ecessite en outre plus de m�emoire� Malgr�e cela� la m�ethode du gradient conjugu�e par blocs
appara��t comme �etant mieux adapt�ee aux environnements vectoriels et parall�eles�
Nous avons �etudi�e trois variantes du gradient conjugu�e par blocs bas�ees sur di	�erents mod�eles de
programmation parall�ele et leur e
cacit�e a �et�e compar�ee sur divers environnements distribu�es�
Pour la r�esolution des syst�emes lin�eaires non sym�etriques� nous consid�erons l�utilisation de m�e�
thodes it�eratives de projection par lignes� acc�el�er�ees par la m�ethode du gradient conjugu�e par
blocs� Les di	�erentes versions de gradient conjugu�e par blocs pr�ec�edemment �etudi�ees sont util�
is�ees en vue de cette acc�el�eration� En particulier� nous �etudions l�implantation dans des environ�
nements distribu�es de la m�ethode de Cimmino par blocs acc�el�er�ee par la m�ethode du gradient
conjugu�e par blocs� La combinaison de ces deux techniques pr�esente en e	et un bon potentiel
de parall�elisme�
Pour une bonne performance de l�implantation de cette derni�ere m�ethode dans des environ�
nements distribu�es h�et�erog�enes� nous avons �etudi�e di	�erentes strat�egies de r�epartition des t�aches
aux divers processeurs� et nous comparons deux s�equencements statiques r�ealisant cette r�epar�
tition� Le premier a pour objectif de maintenir l��equilibre des charges et le second a pour
but de r�eduire en premier les communications entre les di	�erents processeurs tout en essayant
d��equilibrer aux mieux la charge des processeurs�
Finalement� nous �etudions des strat�egies de pr�etraitement des syst�emes lin�eaires pour am�eliorer
la performance de la m�ethode it�erative bas�ee sur la m�ethode de Cimmino�

Mots clefs�
La m�ethode de Cimmino� gradient conjugu�e� calcul distribu�e� calcul h�et�erog�ene� m�ethodes it�era�
tives� calcul parall�ele� pr�etraitement des syst�emes lin�eaires� s�equencement� syst�emes lin�eaires
creux et sym�etriques� matrices creuses� syst�emes lin�eaires creux non sym�etriques�
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Solution of general linear systems of equations using block Krylov based
iterative methods on distributed computing environments

Abstract
We study the implementation of block Krylov based iterative methods on distributed computing
environments for the solution of general linear systems of equations� First� we study potential
implementation of the classical conjugate gradient �CG� method on parallel environments� From
the family of conjugate direction methods� we study the Block Conjugate Gradient �Block�CG�
method which is based on the classical CG method� The Block�CG works on a block of s right�
hand side vectors instead of a single one as is the case of the Classical CG� and we study the
implementation of the Block�CG on distributed environments�
The complexity of the Block�CG method is higher than the complexity of the classical CG in
terms of computations and memory requirements� We show that the fact that an iteration of the
Block�CG requires more computations than the classical CG makes the Block�CG more suitable
for vector and parallel environments� Additionally� the increase in memory requirements is only
a multiple of s which generally is much smaller than the size of the linear system being solved�
We present three models of distributed implementations of the Block�CG and discuss the ad�
vantages and disadvantages from each of these model implementations�
The Classical CG and Block�CG are suitable for the solution of symmetric and positive denite
systems of equations� Furthermore� both methods guarantee� in exact arithmetic� to nd a so�
lution to positive denite systems in a nite number of iterations�
For non symmetric linear systems� we study block row projection iterative methods for solving
general linear systems of equations� and we are particularly interested in showing that the rate
of convergence of some row projection methods can be accelerated with the Block�CG method�
We review two block projection methods� the block Cimmino and the block Kaczmarz method�
Afterwards� we study the implementation of an iterative procedure based on the block Cimmino
method using the Block�CG method to accelerate its rate of convergence on distributed com�
puting environments� The complexity of the new iterative procedure is higher than the one of
the Block�CG method in terms of computations and memory requirements� In this case� the
main advantage is the extension of the application of the CG based methods to general linear
systems of equations� We present a parallel implementation of the block Cimmino method with
Block�CG acceleration that performs well on distributed computing environments�
This last parallel implementation opens a study of potential scheduling strategies for distribut�
ing tasks to a set of computing elements� We present a scheduler for heterogeneous computing
environments which is currently implemented inside the block Cimmino based solver and can
be reused inside parallel implementations of several other iterative methods�
Lastly� we combine all of the above e	orts for parallelizing iterative methods with preprocessing
strategies to improve the numerical behavior of the block Cimmino based iterative solver�

Keywords�

Cimmino method� conjugate gradient� distributed computing� heterogeneous computing� iter�
ative methods� parallel computing� preprocessing linear systems� scheduling� symmetric sparse
linear systems� sparse matrices� unsymmetric sparse linear systems�
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Introduction

The class of iterative methods comprises a wide range of procedures for solving various types
of linear systems� Iterative procedures use successive approximations to the solution of a linear
system of equations� A few references to general overviews of iterative methods are Hageman
and Young ������� Barrett� Berry� Chan et al� ������� van der Vorst ������ and Stoer and
Bulirsch �������
The class of iterative methods is subdivided into stationary and nonstationary iterative methods�
The former methods are easier to implement and understand but they are less e
cient� in terms
of convergence� than the latter ones� An iterative method is stationary if it can be expressed in
the form

x�j� � Bx�j��� � c

where B and c are independent of the iteration count j� Examples of these methods are the
Jacobi method� the Gauss�Seidel method� the Successive Over Relaxations method �SOR�� Sym�
metric SOR method �SSOR�� the Cimmino method� and the Kaczmarz method�
On the contrary� the computations in a nonstationary iterative methods involve information that
changes at each iteration� Examples of these methods are the Krylov projection methods� Clas�
sical CG� Chebyshev iteration� Minimal Residual �MINRES�� and Generalized Minimal Residual
�GMRES��
In general� the Krylov projection methods nd a sequence of approximations to the solution of
a linear system by constructing an orthogonal basis for the Krylov subspaces� Because these
Krylov subspaces are nite� an adequate approximation to the solution is found in a nite num�
ber of steps in absence of roundo	 errors�
The nite termination property makes the Krylov projection methods very attractive� even when
used with stationary methods to accelerate their rate of convergence�

The Block Conjugate Gradient algorithm �Block�CG� also belongs to the Krylov projection
methods and is based on the Classical Conjugate Gradient method �CG�� Class of Block�CG
can be used in the solution of linear systems with multiple right�hand sides� In this case� the
Block�CG algorithm is used to concurrently solve linear systems of equations with s right�hand
sides instead of solving the linear systems using s applications of the classical CG algorithm�
We propose developing a parallel iterative solver for distributed environments based on a station�
ary method� the block Cimmino method� that uses a nonstationary method� the block conjugate
gradient� to accelerate its rate of convergence� During the development of the parallel iterative

�
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solver� we have built a set of modules that can be reused in other parallel iterative procedures�
and have focused on answers to the following statements�

E���� Are there advantages in implementing the classical CG method and Block�CG method on
distributed computing environments� without perturbing the robustness of these methods�

E���� Can the e	orts of parallelizing the Classical CG and Block�CG be reused inside other
iterative procedures� For instance� in the parallel implementation of an iterative solver
based on the block Cimmino method with Block�CG acceleration�

E���� What are the parameters that in�uence the parallel performance of the block Cimmino
based solver�

E���� Is there a need to design a scheduler to evenly distribute the workload from iterations of
the block Cimmino based solver� If the need is a
rmed� can the scheduler be reused in
the parallel implementation of other iterative procedures�

E���� Preprocessing a linear system can reduce the number of iterations� but is there also an
in�uence on the parallel performance of the block Cimmino based solver�

In Chapter �� we study the formulations of the Classical CG method� We review the e	orts of
several authors that have studied the implementation of the Classical CG on distributed envi�
ronments� From the Classical CG formulations� a stabilized Block�CG algorithm can be derived�
The algorithm is described as stable because it corrects some instability problems during the
Block�CG computations that are due to solution vectors that converge at di	erent rates and
ill�conditioning that may appear inside the residual matrix R�j��
The order of complexity of the Block�CG algorithm is higher than Classical CG in terms of
computations and memory requirements� However� in the absence of roundo	 errors� Block�CG
promises a faster rate of convergence than Classical CG� and the matrix�matrix computations
inside a Block�CG iteration can benet from faster numerical kernels that improve data locality
and increase the M�op rate� These are desirable features from an algorithm to be implemented
in vector and parallel environments� Chapter � is devoted to an analysis of the potential paral�
lelization of the Classical CG and Block�CG algorithms to answer statement E�����
The parallelization of the Block�CG algorithm opens more questions about which sections of the
algorithm should be parallelized� and which parallel programming model should be used� Three
parallel implementations of the stabilized Block�CG algorithm are presented in Chapter ��
When parallelizing many sequential algorithms� there is a tendency to identify the sections of
the algorithm with heavy computations and only parallelize these sections� In the Classical CG
and Block�CG the heavy computational sections have been identied by other authors as the
matrix�vector products Ax�j� in the Classical CG� or the matrix�matrix products AP �j� in the
Block�CG� The results from our analysis of the Block�CG in Section ��� prove that parallelizing
the AP �j� is not always e
cient nor su
cient� Furthermore� we demonstrate this e	ect with a
parallel Block�CG implementation described in Section ������
In contrast� if the whole Classical CG algorithm or Block�CG algorithms is parallelized� then
the parallel e
ciency is proportional to the rates of computation speed to communication speed�
Parallelizing the whole Block�CG algorithm leads to a decision of which programming model
should be used� In Section ����� we propose a Master � Slave programming model for par�
allelizing the whole Block�CG algorithm� And in Section ����� a di	erent programming model
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is used in which the master role is removed and all the parallel processes work at the same
level� Results from comparisons of the three parallel Block�CG implementations are presented
in Chapter ��
The Block�CG algorithm only guarantees convergence when the system is symmetric positive
denite� although� with the use of a preconditioner� the algorithm can be extended to solve gen�
eral unsymmetric systems� Block�CG can be used as an acceleration procedure inside another
basic iterative method�
In Chapter �� we study the block Cimmino and block Kaczmarz methods that are regarded as
iterative row projection methods for solving general systems of equations� In the same chapter�
we review an example of the Block�CG acceleration inside the block Cimmino method�
To answer statement E����� an iterative procedure of the block Cimmino method accelerated
with the stabilized Block�CG Algorithm is presented in Section ���� And the parallel implemen�
tation of this procedure is discussed in Section ��� and Section ����
In Section ���� we identify that there is a need for a task scheduler that distributes the work�
load among the di	erent computing elements �CE� in the system� therefore� we study di	erent
scheduling strategies in Chapter ��

One of the advantages of working in heterogeneous computing environments is the ability to
provide certain level of computing performance proportional to the resources available in the
system and their di	erent computing capabilities� A scheduler is regarded as a strategy or pol�
icy to e
ciently manage the use of these resources� In parallel distributed environments with
homogeneous resources� the level of performance is commensurate with the number of resources
present in the system�
A scheduler for parallel iterative methods in heterogeneous computing environments is presented
in Chapter �� The scheduler responds to statement E����� Design issues from the scheduler are
discussed in Chapter �� where we see that the scheduler can easily be modied to suit other
parallel iterative procedures�
In heterogeneous computing environments� the scheduler not only considers information from
the tasks to be executed in parallel but must also consider information about the capabilities of
the CE�s� In Section ���� a syntax for specifying heterogeneous environments is dened�

The e	ects of using Block�CG acceleration inside the parallel block Cimmino solver and the ef�
fects from di	erent scheduling strategies are separately studied in Chapters � and �� In Chapter
�� the e	ects of the scheduler on the performance of the parallel block Cimmino solver are stud�
ied� And in Chapter �� the e	ects of the Block�CG acceleration on the parallel block Cimmino
solver are studied� together with an analysis of the parallel performance of the block Cimmino
solver�
Also� from the results obtained in Chapters � and �� we identify a need for studying natural
preprocessing and partitioning strategies of the linear system of equations�
Preprocessing a linear system of equations improves the performance of most linear solvers and
in some cases a more accurate approximation to the real solution is found� For instance� nu�
merical instabilities are encountered in the solution of some linear systems and it is necessary to
scale the systems before they are solved� These instabilities occur even when the most robust
computer implementations of direct or iterative solvers are used�
Also� performing some permutations of the elements of the original system can substantially
reduce the required computing time for the solution of large sparse linear systems by improving
the rate of convergence of some iterative methods �e�g�� SOR� and Kaczmarz methods��
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Preprocessing and partitioning strategies are studied in Chapter ��� The e	ects of the prepro�
cessing and partitioning strategies on the parallel block Cimmino solver are studied in Chapter
��� and this chapter closes with remarks that answer statement E�����
Lastly� general conclusions and future related work are proposed in Chapter ���
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Block conjugate gradient

The Block Conjugate Gradient algorithm �Block�CG� belongs to a family of conjugate direction
methods and the study of these methods is appealing because they guarantee convergence in a
nite number of steps in the absence of round o	 errors� The Block�CG is based on the classical
Conjugate Gradient method �CG� for solving linear systems of equations� The Block�CG can be
used in the solution of linear systems with multiple right�hand sides� In this case� the Block�CG
algorithm is used to concurrently solve the linear system of equations with s right�hand sides
instead of solving the linear systems using s applications of the classical CG algorithm� In addi�
tion� the Block�CG algorithm is expected to converge faster than classical CG for linear system
of equations with clusters of eigenvalues that are separated� In this chapter� we will present
some examples of this e	ect�
First� we study some relevant properties of the classical CG method and review some of the
main issues involved in parallelizing di	erent versions of the CG algorithm� Then� we describe
a stabilized Block�CG algorithm and compare it with classical CG�

��� Conjugate gradient algorithm

Given the linear system of equations

Ax � b �������

where A is an n�n symmetric matrix� we write the following Richardson iteration after splitting
the matrix A as I � �I �A��

�I � �I �A��x � b

x�j��� � b� �I � A�x�j�

x�j��� � r�j� � x�j� �������

If we multiple by �A and add b to ��������

b�Ax�j��� � �Ar�j� � b�Ax�j�

�
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r�j��� � r�j� �Ar�j�

� �I �A�r�j�

� �I �A��j���r���

� P�j����A�r���

where P�j��� is a polynomial of degree j � � with P�j������ � ��

Using this polynomial we can rewrite ������� in the following way�

x�j��� � r��� � r��� � � � �� r�j� � x���

�
jX

k��

�I � A�kr��� � x��� �������

Without loss of generality� we will assume x��� � �� and if x��� �� � then a linear transformation
of the form z � x� x��� can be considered� and the system of equations will look like�

Az � b� Ax���

� �b�

where z��� � ��
Removing x��� from ������� we get�

x�j��� �
jX

k��

�I � A�kr��� �������

From �������� it is inferred that the new x�j��� is in the subspace fr���� Ar���� � � � � Ajr���g which
is the Krylov subspace Kj���A� r�����
If x� is the exact solution to �������� then we build an iterative procedure that nds at each
iteration an approximation x�j� to x� that satises�

min kx� � x�j�k�

for x�j� � Kj�A� r���� and a given norm� Furthermore� if the matrix A is symmetric positive
denite �SPD�� then we can use the following proper inner product�

�x� y�A � �y� x�A � �x�Ay�� �������

�x� x�A � �� x � �

For instance� if x��� � Spanfr���g then x��� � �r����

min kx� � x���k�A �
�
x� � �r���� x� � �r���

�
A
�
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and has a minimum with respect to � at

� �
�r���� x��A
�r���� r����A

�
�r���� Ax��

�r���� Ar����
�

In general� we want to nd min kx� � x�j�kA for x�j� � Kj�A� r����

� x� � x�j� �A K
j�A� r����

� r�j� � Kj�A� r�����

If we repeat the search for an approximation j times� we build a set of orthogonal residual vectors
fr���� r���� � � � � r�j�g that is an orthogonal basis for the Krylov subspace Kj�A� r����� Further�

Kj�A� r���� � Span
n
r���� Ar���� � � � � Ajr���

o
� �������

We continue to generate orthogonal residual vectors until a full basis for the subspace Kj�A� r����
is found� Beyond this point� we cannot generate more orthogonal vectors and have a solution
to ��������

Inside the iterative procedure� a new x�j� is computed after projecting the residual r�j� onto the
Krylov subspace Kj�A� r���� with respect to A�

Theorem ��� The orthogonal basis satis�es the following ��term recurrence

��j���r�j��� � Ar�j� � ��j�r�j� � ��j�r�j��� �������

Proof The proof is by induction� We start with

r��� � Spanfr���� Ar���g�

����r��� � Ar��� � ����r���

and

r��� � Spanfr���� Ar���� A�r���g

� Spanfr���� r���� Ar���g

����r��� � Ar��� � ����r��� � ����r����

By induction�

r�j��� � Kj�A� r����� r�j� � Kj���A� r�����

where

K�j����A� r���� � Spanfr���� r���� � � �r�j�g�

Thus�
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��j�r�j� � Ar�j��� �
j��X
i��

��i�r�i�� �������

Since r�j� must be orthogonal to fr���� r���� � � � � r�j���g� we must nd the values of ��i� that satisfy
this condition� In other words�

�r�j�� r�i�� � ��

Taking the inner product of ������� with r�i� yields

�Ar�j���� r�i��� ��i��r�i�� r�i�� � ��

Using the property of inner products ������� gives us

�r�j���� r�i��A � ��i��r�i�� r�i�� � � and

�r�j���� Ar�i��� ��i��r�i�� r�i�� � ��

Using the induction argument for r�j���

�
r�j���� ��i���r�i��� � ��i�r�i� � ��i�r�i���

�
�
r�i�� r�i�

� � ��i�

������
j��

i��

�

were ��i� � � for i � �� � � � � j � �� ������� is reduced to

��j�r�j� � Ar�j��� � �j��r�j��� � �j��r�j���

or

��j���r�j��� � Ar�j� � ��j�r�j� � ��j�r�j����

This completes the proof of ��������

The ��term recurrence relation ������� can be rearranged as

Ar�j� � ��j���r�j��� � ��j�r�j� � ��j�r�j���� �������

Let fr���� r���� � � � � r�j���g be the columns of a matrix R�j�� From ������� we get

AR�j� � R�j�

�
�����������

� � �
� � �

� � �
� � � ��j�

� � � ��j�
� � �

��j���
� � �

� � �
� � �

� � �

�
										

� ��j�

�
�� �� � � � � r�j�

�
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or

AR�j� � R�j�T �j� � ��j�r�j�eT� ��������

where T �j� is an j � j tridiagonal matrix� and e� is a canonical vector� We can write the new
approximation as a linear combination of R�j�� namely�

x�j� � R�j�y� ��������

The x�j� that minimizes

min kx� � x�j�k�A

is derived from

R�j�T �Ax�j� � b� � �

R�j�TAx�j� � R�j�T b

R�j�TAR�j�y � R�j�T b

From ���������

R�j�T �R�j�T �j� � ��j�r�j�eT� �y � R�j�T b�

Since r�j� is orthogonal with respect to the columns of R�j�� we have

R�j�TR�j�T �j�y � kr���k��e��

where

R�j�TR�j� �

�
���
kr���k��

� � �

kr�j���k��

�
		
 �

Thus�

T �j�y � e� � y � T �j���e�� ��������

If A is an SPD matrix� then in the relation

R�j�TAR�j� � R�j�TR�j�T �j��

from ������� T �j� can be transformed into an SPD matrix �e�g�� using some row�scaling� and LU
decomposed without any pivoting

T �j� � L�j�U �j��

then� from �������� and ��������� we have
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x�j� � R�j�y

� R�j�T �j���e�

� �R�j�U �j�����L�j�
��
e��

Labeling the terms in parenthesis

P �j� � R�j�U �j��� and Q�j� � L�j�
��
e��

after algebraic manipulation� we obtain an equation for the new approximation of

x�j� � x�j��� � q�j���p�j����

The columns of the matrix P areA�conjugate hence the name of the Conjugate Gradient method�
Algorithm ����� is a version of the classical CG algorithm from Hestenes and Stiefel ������� On
the other hand� if we do not assume the positive denitiveness of A in �������� we can only
hope that T �j� is not singular and the procedure is known as the Lanczos method for symmetric
systems �see Lanczos ��������

Algorithm ����� �Conjugate Gradient�

��� x��� is arbitrary and r��� � b�Ax���

��� p��� � �� ����� � �� ����� � �

��� For j � �� �� � � �� until convergence do�

����� p�j� � r�j� � ��j���p�j���

����� q�j� � Ap�j�

����� � � �p�j�� q�j��

����� x�j� � x�j��� � �����p�j���

����� ��j� � ��j�

�

����� r�j��� � r�j� � ��j�q�j�

����� ��j��� � �r�j���� r�j����

����� If �r�j���� is small enough� then

������� x�j��� � x�j� � ��j�p�j�

������� stop

����� ��j� � ��j���

��j�

��� Stop
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From Algorithm ����� we see that the CG algorithm requires special consideration for its par�
allelization� We notice that the computational weight of the algorithm is on step ������ Apart
from this computation� as shown in Demmel� Heath� and van der Vorst ������� there are � arrays
that need to be loaded in cache memory �or memory registers� at each iteration to perform only
�� �oating point operations on these arrays which results in poor data locality� Independent of
the computer architecture� poor data locality always implies a high number of data transfers
which happens between di	erent memory hierarchies� or in the worst case between processors�
Another bottleneck in the algorithm is the computation of the steps ����� and ������ In the
parallel version of the algorithm� the inner products performed in these two steps require that
the di	erent processors exchange local data to complete them� Clearly� these two steps are the
synchronization points in the algorithm� Moreover� steps ������ ������ and ����� depend on the
results from step ������ Similarly� step ����� depends on the results from step ������ These data
dependencies prevent us from overlapping communication with useful computations�
In order to reduce the number of synchronization points we review a few proposed algorithms�
Saad suggested removing one synchronization point at the expense of numerical instabilities
�see Saad ������� Saad �������� Meurant ������ proposed a version of the CG algorithm that
eliminates one synchronization point in Algorithm ����� and increases the data locality factor
to �� However� the cost of his improvement reduces the numerical stability of the algorithm and
adds one inner product� Chronopoulos proposed a di	erent version of the CG algorithm named
the s�step conjugate gradient algorithm �see Chronopoulos and Gear ��������
The s�step conjugate gradient is based on the idea of generating s orthogonal vectors in one
iteration step by rst building r�j�� Ar�j�� � � � � A�s���r�j� and orthogonalize and update the cur�
rent approximation to the solution in the resulting subspace� The s�step improves the data
locality and the parallelism from the classical CG algorithm since the arrays are loaded only
once per iteration� Also� in the s�step the number of synchronization points is reduced to one
�see Chronopoulos �������� The s�step performs � � n more �oating point operations per itera�
tion than the classical CG� which is not critical for large values of s because a large value of s
not only increase the granularity of parallel subtasks but may also reduce the number of iter�
ation steps before reaching convergence� However� the s�step introduces numerical instabilities
by explicitly computing A�s���� Also� depending on the spectrum of the matrix A the set of
vectors r�j�� Ar�j�� � � � � A�s���r�j� may convergence to a vector in the direction of the dominant
eigenvectors and not converge to the solution of the linear system� The weaknesses of the s�step
algorithm are further reviewed in Saad �������
D�Azevedo� Eijkhout� and Romine ������ introduced two new stable variants to the CG algo�
rithm� In these versions� the authors substitute the second inner product by equivalent algebraic
expressions� They have shown that these version of the algorithm are stable and claim an im�
provement on the performance of the classical CG algorithm of � to �� � A di	erent approach
was presented by Demmel� Heath� and van der Vorst ������ in which one overlaps communica�
tion with useful computations� Their original approach was proposed for preconditioned CG�
For the non�preconditioned CG one has to split the computation ����� into two phases to overlap
communication with useful computations� And in general� the improvement from overlapping
communication with useful computation will be determined by the speed of the communication
network� the computing processors� and the size of the system to be solved�
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��� A stable Block�CG algorithm

In the previous section� the matrix A is assumed to be SPD� The fact that A is positive denite
guarantees the termination of the algorithm in absence of round o	 errors� However� Algorithm
����� may still work� without guarantee� for non positive�denite matrices�
Some algorithms based on the CG methods have been designed for solving symmetric indenite
linear systems� A few examples of these algorithms are CGI �see Modersitzki �������� MINRES
and SYMMLQ �see Paige and Saunders �������� And in some cases� one can use a precondi�
tioner matrix H which is a good approximation to A�� and SPD�
Here we consider a Block�CG algorithm for SPD matrices and later in Chapter � we will study
the Block�CG method for accelerating the rate of convergence of a another basic block row
projection method�
In the Block�CG algorithm the term �block� refers to multiple solution vectors� and the number
of these solutions denes the block size� Let s be the block size for the system of linear equations

HX � K� �������

Here� the vectors x and b from ������� are replaced by the X and K matrices respectively� and
both matrices are of order n� s� Now we write the block form for Algorithm ������

Algorithm ����� �Block Conjugate Gradient�

��� X��� is arbitrary� P ��� � R��� � K �HX���

��� For j � �� �� � � �� until convergence do�

����� X�j��� � X�j� � P �j�
�
P �j�THP �j�

���
R�j�TR�j�

����� R�j��� � R�j� �HP �j�
�
P �j�THP �j�

���
R�j�TR�j�

����� P �j��� � R�j��� � P �j�
�
R�j�TR�j�

���
R�j���TR�j���

��� Stop

However� there is a change from the Krylov space considerations used while building Algorithm
������ Equation ������� is rewritten here as

K�j�
�
H �R���

�
� Span

n
R���� HR���� � � � � H�j�R���

o
�������

With ������� a space of size j is generated� and with ����� inside the Block�CG algorithm a space
of size s � j is generated� Furthermore� the columns in the R�j� matrix may become almost
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linearly dependent when convergence is about to be reached� A solution to this problem is the
orthonormalization of the P and R matrices� As is given by Ruiz ������� the stabilized Block�
CG algorithm is depicted in Algorithm �����

Algorithm ����� �Stabilized Block Conjugate Gradient�

��� X��� is arbitrary� R��� � K �HX���

��� R
���
� R������� such that

�
R
���T

R
���
� I

�

��� P
���
� R

���
���� such that

�
P
���T

HP
���
� I

�

��� For j � �� �� � � �� until convergence do�

����� �j � ��Tj

����� X�j��� � X�j� � P
�j�
P
�j�T

R�j� where R�j� � K �HX�j�

����� R
�j���

�
�
R
�j�
�HP

�j�
�j
�
���j�� such that

�
R
�j���T

R
�j���

� I

�

����� �j � �j�
T
j��

����� P
�j���

�
�
R
�j���

� P
�j�
�j
�
���j�� such that

�
P
�j���T

HP
�j���

� I

�

��� Stop

In step ����� of Algorithm ������ we do not explicitly compute R�j� � K �HX�j� because this
computation involves the HX�j� matrix�matrix product and this product is very expensive when
computed in parallel �e�g�� processors need to exchange data� which implies more communication
and synchronization points�� From steps ��� and ����� in Algorithm ������ it can be shown by
recurrence that the residuals are given by

R�j� � R
�j�


� �Y
i�j

�i

�
A �

Therefore� the update of the X�j��� solution in step ����� can be rewritten as

X�j��� � X�j� � P
�j�
P
�j�T

R
�j�


� �Y
i�j

�i

�
A � �������

In general� it can be proved that for the Block�CG algorithm the H�norm of the error at each
iteration is bounded by its reduced condition number � � �n��s� where the �j �s are the eigen�
values of the H matrix �sorted in increasing order�� and s is the block size �see O�Leary ��������
This observation represents an advantage of the Block�CG over its non�block counterparts where
the error at each iteration is bounded by its condition number �� � �j����
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��� Performance of Block�CG vs Classical CG

We rst start by comparing the complexity of the Classical CG Algorithm ������ and the Sta�
bilized Block�CG Algorithm ������ We focus on the number of �oating point operations �FLOP
count� per iteration as depicted in Table ���� In Chapter �� we present results from sequential
runs of computer implementations of both algorithms to compare their convergence rates�
In Table ���� the matrix A is SPD of dimension n� The sparsity pattern of A is used through
all of the computations� thus the FLOP count in a matrix�vector operation is a function of the
sparsity pattern of the matrix A dened by

	�A� � �op count�A� b��

for any vector b � 	n� In the Block�CG algorithm� s is the block size and usually s
 n�
The FLOP count from one iteration of the Block�CG is greater than s�times the FLOP count
from one iteration of the Classical CG� Because of the stability issues discussed in Section ���� a

few FLOPs more are performed in the orthonormalization of the matrices R
�j�
�steps �� and ���

of Algorithm ������� P
�j�
� and HP

�j�
�steps �� and ��� of Algorithm ������ � Also the FLOP count

increases with the use of Cholesky factorizations to compute ����j� �steps �� and ��� of Algorithm

������ and ����j� �steps �� and ��� of Algorithm ������� Both ��j� and ��j� have dimensions s�s� and

we use the routine DPOTRF from the LAPACK library �Anderson� Bai� Bischof et al� �������
to perform the Cholesky factorizations� The increase in the FLOP count from the Cholesky
factorizations becomes signicant for large values of s�
From Table ���� the FLOP count per iteration of the Classical�CG Algorithm ����� is

FLOP count � 	�A� � ��n� �� �������

and for one iteration of the Block�CG Algorithm �����

FLOP count � �s � 	�A�� � ���n � s�� � ��n � s� �
��s�

�
� s� �

s

�
� �������

As summarized in ������� and �������� the FLOP count from one iteration of Block�CG is much
greater than the FLOP count from one iteration of Classical CG for large values of s� Therefore�
a large value of s deteriorates the performance of a sequential Block�CG implementation� On
the other hand� a large value of s increases the granularity of the associated parallel subtasks�
and improves the performance of a parallel Block�CG implementation� Also� in the absence of
roundo	 errors� the number of synchronization points is implicitly reduced with a large value of
s because the number of iterations required to reach convergence is also reduced�
The value of s should be a compromise between the FLOP count� the acceleration in the con�
vergence rate of the Block�CG due to a greater value of s� and resources available in the system�
Nikishin and Yeremin ������ have proposed a Variable Block Preconditioned Conjugate Gra�
dient �VBPCG� algorithm that provides a possibility for adjusting the block size during the
preconditioned Block�CG iterations� The goal of varying the block size is to nd a compromise
between the block size� the convergence rate� the FLOP count and the degree of parallelism�
While they have shown that VBPCG algorithm reduces the total FLOP count from the Block
preconditioned CG� they have also concluded that performance of the VBPCG algorithm de�
pends on the spectral properties of the preconditioned matrix�
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In Chapter �� we study a compromise between the factors that in�uence the performance of
di	erent parallel implementations of the Block�CG Algorithm ����� in distributed memory en�
vironments�

��� Stopping criteria

The results from experiments to be presented in next chapter come from sequential runs of
computer implementations of the Classical CG and Block�CG algorithms� Furthermore� the
stopping criterion used in this implementations is based on the theory of Oettli and Prager �see
Oettli and Prager ������� for backward error analysis�
Let x�j� � Rn� A � Rn�n and b � Rn� and dene r�x�j�� � b�Ax�j�� For any matrix E� E � ��
and a vector f� f � �� dene


 � max
i

j r�x�j��i j�
E j x�j� j �f

�
i

� �������

with


 �
�

�
� �� and 
 �

�

�
���

If 
 ���� there exists a matrix �A and a vector �b with

j �A j 
E and j �b j 
f�

such that�

�A� �A�x�j� � b� �b

and 
 is the smallest number for which such �A and �b exist� Therefore� we have the solution
to a nearby problem when we compute a small 
 for a given E and f�
At the end of each iteration we compute an 
 that satises ������� and we stop the iterations
when either 
 is reduced to a given threshold value or 
 cannot be reduced anymore�
There are di	erent ways of choosing E and f �see for instance Arioli� Demmel� and Du	 �������
and Arioli� Du	� and Ruiz �������� Here we have used

E � kAk�ee
T and f � kbk�e�

where e is a column vector of all ��s� This choice of E and f corresponds to the normwise
backward error dened by


 �
kr�x�j��k�

kAk�kx�j�k� � kbk�
� �������

and we stop iterations after 
  c� where c is the threshold value that determines the ter�
mination� A comparison between the normwise backward error and other stopping criteria is
presented by �Arioli� Du	� and Ruiz �������� and the authors have empirically shown that in
some cases it is possible to drive 
 to near the machine precision� Furthermore� the authors
consider 
 as a useful stopping criterion for iterative methods because the spectral properties
of the matrices are implicitly considered in 
� 
 uses the norms of the matrices to estimate the
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Classical CG Block�CG
Algorithm ����� Algorithm �����

Phase Step FLOP count Step FLOP count

��� 	�A� � n ��� �s � 	�A�� � �n � s�

��� ��n � s�� �
s�

�
�
s�

�
�
s

�

Startup ��� �s � 	�A�� � ��n � s���

s�

�
�
s�

�
�
s

�

Total� n � 	�A� Total� ��s � 	�A�� � ��n � s���

�n � s� �
�s�

�
� s� �

s

�

����� �n ����� ��n � s�� � �s�

����� 	�A� ����� ��n � s�� � ��n � s��

s�

�
�
s�

�
�
s

�

����� �n ����� s�

Iteration
����� �n ����� �s � 	�A�� � ��n � s���

cycle ��n � s� �
s�

�
�
s�

�
�
s

�

����� �

����� �n

����� �n

������� �n

����� �

Total� 	�A� � ��n� � Total� �s � 	�A�� � ���n � s���

��n � s� �
��s�

�
� s� �

s

�

Table ���� Complexity of the Classical CG and the Block�CG algorithms� The FLOP
count in the Block�CG step ����� comes from ��������
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error� Consequently� 
� as many iterative methods� is sensitive to scalings of the matrices�

In many applications� people use a di	erent error estimation that uses less information than the
normwise backward error� For instance� computing an error estimate using the residual norms�
In this case one sets

E � � and f � kr�x����k�

thus the backward error at each iteration is estimated with�


� �
kr�x�j��k

kr�x����k
� �������

and the iteration process stops when 
�  c� Quite often� one looks for only a few correct
digits in the approximation to the solution of a linear system of equations� In these cases 
� is
commonly used�
Furthermore� the threshold value c can be related to the truncation error that comes from
the discretization of the original problem� Thus� the maximum number of correct digits in an
approximation depends on the truncation error �or discretization error� from discretizing the
original continuous problem and writing out the system of linear equations�
We also present in Chapter � some results from runs of the Classical CG and Block�CG using a
stopping criterion based on 
��
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Chapter �

Sequential Block�CG experiments

The purpose of the following experiments is to examine the behavior of the Classical CG and
the Block�CG algorithms described in the previous chapter and conclude with some incentives
for the parallelization of the Block�CG Algorithm�
As illustrated in �O�Leary �������� Block�CG is expected to converge faster than Classical CG
for linear systems of equations with clusters of eigenvalues that are separated� In addition�
Block�CG can simultaneously solve a linear system of equations with multiple right�hand sides�
Some advantages from using Level � BLAS routines inside the Block�CG iteration are shown
in this chapter� Furthermore� the granularity of Block�CG is greater than the granularity of
Classical CG and we anticipate to gain more from implementing the Block�CG algorithm in
vector and parallel computer systems�
In the rst three sections� we use two test problems that were previously used for testing a
Lanczos algorithm with partial reorthogonalizations �Simon �������� This version of the Lanczos
algorithm is named LANPRO from LANczos with Partial ReOrthogonalization� The matrices
used in the tests of the LANPRO algorithm are available in the Harwell�Boeing sparse matrix
collection �Du	� Grimes� and Lewis ��������
In the Harwell�Boeing collection these seven matrices are labeled NOS� to NOS�� Here we
used the problems LANPRO �NOS�� and LANPRO �NOS��� These problems are particularly
interesting because Simon ������ compares the LANPRO algorithm with Classical CG and
presents results from the solution of the problem LANPRO �NOS�� in which Classical CG
poorly converges after more than n iterations�
The LANPRO test problems come from nite element approximations to problems in structural
engineering� LANPRO �NOS�� results from a discretization using a biharmonic operator on a
beam� In this case� the beam has one end xed and one end free �see Figure ��� �a��� The
corresponding sti	ness matrix was computed using a nite element approximation program
named FEAP for Finite Element Analysis Program �see Zienkiewikz and Taylor ��������
The biharmonic equation of a plate �exure is given by

��w

�x�
�

��w

�x�y�
�
��w

�y�
� q
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�
�� v�

�
Et�
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where w is the displacement� In this problem� w is the result of applying a unit load at about
the middle of the beam and there is no displacement at the xed end of the beam� Thus� the
boundary conditions at the xed end are

�w

�x
�
�w

�y
� w � �� �������
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Figure ���� �a� A beam with one end �xed and the other end free� A unit load at about the middle of the

beam� The sti�ness matrix corresponds to the LANPRO �NOS�� problem� �b� A plate with one end �xed and

the other free� A unit load is applied to one of the free corners of the plate� The sti�ness matrix corresponds

to the LANPRO �NOS�� problem�
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Figure ���� Sparsity pattern of LANPRO �NOS�� matrix from

the Harwell�Boeing Sparse Matrix Collection�



��

In the LANPRO �NOS�� problem� ��� elements were used in the nite element approximation
with � degrees of freedom in each element� Figures ��� illustrates the sparsity pattern of the
test problem� The sti	ness matrix is SPD of order ��� with ���� nonzero elements� Figure ���
illustrates the eigenspectrum of this matrix�

0 2 4 6 8 10 12 14 16

x 10
10

Eigenspectrum of matrix: LANPRO (NOS2)
Condition Number : 5.100e+09 

Figure ���� Eigenspectrum of LANPRO �NOS�� matrix�
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 Plotted interval from: 3.084e+01 to: 2.946e+06
Total number of eigenvalues in interval: 420

Figure ���� Eigenvalues at lower end of the eigenspectrum� Notice

that there are �	 eigenvalues around �
�	�

LANPRO �NOS�� comes from applying a biharmonic operator on a rectangular plate� In this
problem the plate has one side xed and the others free �see Figure ��� �b��� The problem is
discretized using the biharmonic operator ������� with the boundary conditions ������� at the
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Figure ���� Eigenvalues at the center of the eigenspectrum�
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Figure ���� Sparsity pattern of LANPRO �NOS���

The sti	ness matrix was also computed using FEAP� The sti	ness matrix is SPD of order ���
with ���� nonzero elements� The sparsity pattern of this matrix is shown in Figure ���� and
Figure ��� illustrates the eigenspectrum of the LANPRO �NOS�� matrix�
As shown in Figure ���� the test problem LANPRO �NOS�� has two large clusters of eigenvalues
to the extremes of the spectrum� and a large condition number of ���� ��	� As can be seen in
Figure ���� the LANPRO �NOS�� problem has several clusters of eigenvalues and these clusters
are not as separated as in LANPRO �NOS��� Also the condition number of LANPRO �NOS���
������ ���� is relatively small compared to the one of the LANPRO �NOS���

In Section ���� we use a problem arising from oil reservoir modeling� This problem is included
in the Harwell�Boeing sparse matrix collection under the name of SHERMAN�� The problem
comes from a three dimensional simulation model on a �� � �� � � grid� The problem has
been discretized using a seven�point nite�di	erence approximation with one equation and one
unknown at each grid point�
The results in this chapter are from sequential runs of implementations of the Classical CG
Algorithm ����� and the Block�CG Algorithm ������ Results from parallel runs of both algorithms
will be presented in the next chapter� The runs reported in this chapter were performed on an
IBM RS���� system ��� with theoretical peak performance of ���� M�ops� The M�ops term is
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the computational rate measured in millions of �oating�point operations computed in a second
and is di	erent from a FLOP count that represents the number of �oating�point operations�
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Eigenspectrum of matrix: LANPRO (NOS3)
Condition Number : 3.772e+04 

Figure ���� Eigenspectrum of LANPRO �NOS�� matrix�
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Figure ���� Distribution of Eigenvalues for LANPRO �NOS���
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��� Solving the LANPRO �NOS�� problem

Block Iteration Equivalent Normwise Backward
size count iterations error �
�

� ����� ����� ����� ���


� ���� ����� ����� �����

�� ��� ����� ����� �����

�� ��� ���� ����� �����

�� ��� ���� ����� �����

Table ���� Sequential runs of CG and Block�CG programs� Stop

iterations after � � ��
� �
���� LANPRO �NOS�� problem�

In this rst experiment� we use the LANPRO �NOS�� problem� and we randomly choose the
block sizes of �� ��� �� and ��� to examine some e	ects of the block size on the performance of
Block�CG� In this case� we stop iterations when 
  ���� ����� �
 is the normwise backward
error from ���������
Figure ���� shows the convergence curves of Classical CG� labeled Block�CG���� and four in�
stances of Block�CG� In this gure� the number of iterations represents the iteration count of
the Classical CG and the Block�CG algorithms�
In Figure ����� only ���� iterations of Classical CG have been reported although in this exper�
iment Classical CG cannot reduce 
 below ��������
 even after ����� iterations� In the same
gure� the iteration count for reducing 
 to ���� ����� decreases as the block size is increased�
On the other hand� Block�CG computes s orthogonal vectors at each iteration� while Classical
CG computes only one� Therefore� the iteration count has to be multiplied by the block size to
re�ect the number of equivalent or normalized iterations�
Figure ���� shows the convergence curves using equivalent iterations� The results from this ex�
periment are summarized in Table ���� Table ��� summarizes the results from the similar runs
as in Table ��� after computing only n orthogonal vectors�

The solution of a linear system is in the eigenspace of the matrix A and any iterative method
that successively multiplies the matrix A times a vector� or another matrix as in Block�CG� will
include information from eigenvalues at the upper end of the eigenspectrum into the solution
during the rst iterations� Information from eigenvalues at the lower end of the eigenspectrum
is likely to be included only during the last iterations of the method�
In nite arithmetic� information from the smallest eigenvalues is di
cult to include in the so�
lution when the matrices have a high condition number and there are clusters of eigenvalues at
the lower end of the spectrum� For instance� two very small eigenvalues will converge to the
same value after a few multiplications of the matrix A in nite arithmetic� Similar convergence
behavior has been observed in our experiments solving the LANPRO �NOS��� and this explains
the slow convergence rate of both Classical CG and Block�CG�
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Block Iteration Equivalent Normwise Backward Execution
size count iterations error �
� Time �secs� M�ops

� ��� ��� ����� ���
 ���� ���

� ��� ��� ����� ���� ���� ����

�� �� ��� ����� ���� ���� ����

�� �� ��� ����� ���� ����� ����

�� �� ��� ����� ���� ����� ����

Table ���� Sequential runs of Classical CG and Block�CG programs with a �xed number of

equivalent iterations� LANPRO �NOS�� problem�

In Classical CG� the computational weight is in the Ap�j� product� thus 	�A� has a great in�uence
in the total execution time� As shown in Tables ��� and ���� the execution time of Block�CG
with block sizes �� and �� is signicantly greater than the execution time of Block�CG with
smaller block sizes� This e	ect means that FLOP count in Block�CG can be greatly in�uenced
by large values of s�
The size of the matrix A� and its sparsity pattern are constant through the Block�CG iterations�
thus the ratio of 	�A� � s over the total FLOP count decreases as the block size is increased�
Clearly� increasing the block size will cause the FLOP count from operations that involve the
s�s matrices to increase� For instance� in the Block�CG Algorithm ����� the factorization of the
��j� and ��j� matrices becomes more expensive as s is increased and this can be easily veried in
�������� Table ��� shows the in�uence of 	�A� � s on the total FLOP count for the runs shown
in Table ����

	�A� � ����

Block size � � �� �� ��

 Total of
FLOP count

���� ��� ��� ��� ���

Table ���� Percentage of Total FLOP count gener�

ated by ��A�� LANPRO �NOS�� problem�

The results shown in Tables ��� and ��� are veried using a di	erent stopping criterion based
on �������� stopping iterations when 
�  �� � ���� The results are shown in Table ���� and
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as shown in Simon ������� the convergence rate of Classical CG solving the LANPRO �NOS��
problem is very slow� In Table ���� the behavior of Block�CG is the similar to the one observed
with a di	erent stopping criterion �Tables ��� and �����

Stopping criterion� 
�  ���� ���

Block Iteration Equivalent Execution
size count iterations Time �secs�

� ��� ��� ����

� ��� ��� ����

�� ��� ���� �����

�� �� ���� �����

�� �� ���� �����

Table ���� Sequential runs of Classical CG and Block�

CG programs� Using �� � ��
� �
�� as stopping crite�

rion� LANPRO �NOS�� problem�

Empirically� it has been observed that Block�CG has better chances to include information from
the smallest eigenvalues into the solution with a block size close to the size of the cluster of eigen�
values at the lower end of the spectrum� One reason is that more information from spectrum is
gathered at each iteration� In innite precision� this implies that fewer matrix multiplications
are performed to obtain the relevant information from the entire spectrum and include it in the
solution� And in nite arithmetic� the reduction in the number of matrix multiplications will
also reduce the perturbation in the solution due to roundo	 errors from implicitly computing
A�J��
Therefore� in some cases a large block size is recommended for Block�CG�

��� Solving again the LANPRO �NOS�� problem

Block Iteration Equivalent Normwise Backward Execution
size count iterations error �
� Time �secs� M�ops

� ��� ��� ����� ���
 ���� ���

��� � ��� ����� ���	 ����� ����

Table ���� Sequential runs of CG and Block�CG programs� LANPRO �NOS�� problem�
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Figure ����� �a� Convergence curves of Block�CG with di�erent block sizes� �b�
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Again� we use the LANPRO �NOS�� problem� Figures ���� ���� and ��� show the distribution of
eigenvalues at the lower end� the center� and the upper end of the eigenspectrum respectively�
In these gures� The eigenvalues are sorted in ascending order�
There are ��� eigenvalues in the cluster of eigenvalues at the lower end of the eigenspectrum of
LANPRO �NOS�� �see Figure ����� In this cluster� the eigenvalues lie between ���� ��� and
���� ���� After a few runs of Block�CG varying the block sizes around ���� we have chosen
to report the results with block size of ��� because Block�CG with block sizes between ��� and
��� have exhibited the same behavior during the experiments� and ��� is the smallest value�
Table ��� shows the results from sequential runs of Classical CG and Block�CG with block
size ���� Again� the execution time of Block�CG has drastically increased with a block size of
��� when compared to the execution time of Classical CG� This increase is due to Block�CG
operations that involve ��� � ��� matrices� When solving the LANPRO �NOS�� using a block
size of ���� the 	�A� parameter is only ��� of the total FLOP count�
In Table ���� the stopping criterion is based on �������� and iterations are stopped after reducing
the residual norm below ��� � ���� In this case� Classical CG is stopped earlier than in the
experiment reported in Table ����

Stopping criterion� 
�  ���� ��
�

Block Iteration Equivalent Execution
size count iterations Time �secs�

� ��� ��� ����

��� � ��� �����

Table ���� Sequential runs of Classical CG and Block�

CG with block size ���� Using �� � ��
� �
�� as stop�

ping criterion� LANPRO �NOS�� problem�

In the computational results in Sections ��� and ���� it is observed that the M�op rate increases
as the block size is increased� This e	ect is due to the use of Level � BLAS routines in Block�CG
instead of the Level � BLAS routines that are used in Classical CG� Mainly� the use of Level �
BLAS routines improves the ratio of FLOPs per memory reference�

��� Solving the LANPRO �NOS�� problem

In this experiment� we use the test problem LANPRO �NOS�� and we choose the four block
sizes �� �� ��� and �� for Block�CG� The clusters of eigenvalues in this test problem are not very
distant one from the other as shown in Figure ���� The condition number is smaller than the
one from LANPRO �NOS��� Therefore� all the eigenvalues are easily approximated even when
using small block sizes�
The convergence curves for this experiment are shown in Figures ���� and ����� Figure ����
plots the convergence curves using 
� the normwise backward error� versus the iteration count�
and in Figure ���� the convergence curves were plotted using 
 versus the equivalent itera�
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Block Iteration Equivalent Normwise Backward Execution
size count iterations error �
� Time �secs� M�ops

� ��� ��� ����� ����� ���� ���

� ��� ��� ����� ����� ���� ����

� �� ��� ����� ����� ���� ����

�� �� ��� ����� ����� ���� ����

�� �� ���� ����� ����� ����� ����

Table ���� Sequential runs of CG and Block�CG programs� LANPRO �NOS�� problem�

Block Iteration Equivalent Normwise Backward Execution
size count iterations error �
� Time �secs� M�ops

� ��� ��� ����� ����� ���� ���

� �� ��� ����� ��� ���� ����

� �� ��� ����� ��� ���� ����

�� �� ��� ����� ��� ���� ����

�� �� ��� ����� ���� ���� ����

Table ���� Sequential runs of Classical CG and Block�CG programs with a �xed number of

equivalent iterations� LANPRO �NOS�� problem�
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tions� Considering the iteration count in Figure ����� Block�CG converges faster as the block
size is increased� However in Figure ����� the computational work necessary to reduce 
 below
��������� increases as we increase the block size� and Classical CG converges faster� in terms
of equivalent iterations� than all of the four Block�CG instances�
The size of LANPRO �NOS�� is ��� and Block�CG with block sizes of �� and �� compute more
than ��� orthogonal vectors� thus Block�CG may have converged to a erroneous solution in both
cases�
Table ��� summarizes the convergence information from Figures ���� and �����
Classical CG takes ��� iterations to converge and in Table ��� the number of equivalent iteration
has been xed around ��� to compare the computational work between Classical CG and the
di	erent instances of Block�CG� At this point in the computations� Classical CG has performed
better in approximating the solution to LANPRO �NOS�� than Block�CG instances�

Stopping criterion� 
�  ���� ��
�

Block Iteration Equivalent Execution
size count iterations Time �secs� M�ops

� ��� ��� ���� ���

� �� ��� ���� ����

� �� ��� ���� ����

�� �� ��� ���� ����

�� �� ��� ���� ����

Table ���� Sequential runs of CG and Block�CG programs� Solv�

ing the LANPRO �NOS�� problem�

Table ��� summarizes the results from solving the LANPRO �NOS�� problem with the same
block sizes� Comparing the results from Table ��� and Table ���� it is evident the advantage
of using the stopping criterion based on �������� because even with block �� there are only ���
orthogonal vectors computed before reaching the threshold value� Whereas using ������� as the
stopping criterion� �see Table ����� more equivalent iterations are performed for the block sizes
of �� and ���

Table ���� shows the percentage of the total FLOP count generated by 	�A�� Notice� that the
percentages have increased compared to those shown in Table ��� for the LANPRO �NOS��
problem� One of the reasons is that the LANPRO �NOS�� sti	ness matrix is more dense than
the one of the LANPRO �NOS�� problem� As a result of increasing percentages� in Tables ����
��� and ���� it can be seen that the di	erences between the execution times are smaller than the
ones reported in the tables for the LANPRO �NOS�� problem after varying the block sizes�
Again in this experiment� the Level � BLAS e	ect improves the M�op rate as the block size is
also increased�
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	�A� � �����

Block size � � � �� ��

 Total of
FLOP count

���� ���� ���� ���� ���

Table ����� Percentage of Total FLOP count generated

by ��A�� LANPRO �NOS�� problem�

��� Solving the SHERMAN� problem

As mentioned earlier� the SHERMAN� matrix comes from an oil reservoir model� The SHER�
MAN� matrix has only a symmetric pattern but is not SPD� In this experiments we solve instead
ATA� where A is the SHERMAN� matrix� because ATA is SPD� The clusters of eigenvalues in
ATA are more separated than in the original SHERMAN� matrix� The spectrum of the original
SHERMAN� matrix is shown in Figure ���� and the eigenspectrum of ATA from the SHER�
MAN� matrix is shown in Figure ����� Given distribution of eigenvalues in ATA� we anticipate
that Block�CG will convergence faster than Classical CG�
The original SHERMAN� problem will be solved in Chapter �� using a block row projection
method that is accelerated with Block�CG�
The sparsity pattern of ATA from SHERMAN� is shown in Figure ����� The matrix has �����
nonzero entries and a condition number of ����� ����
The block sizes �� �� �� ��� ��� and �� were chosen for this experiment� In the results presented
in Table ����� the stopping criterion was 
�  ���e � �� where 
� is the residual norm from
��������

In Table ����� it can be seen that for this case Block�CG performs better than Classical CG�
The table shows that Block�CG with block sizes of � and � have computed with almost the same
accuracy the solution in fewer iterations than Classical CG� With the block sizes of �� and �� a
more accurate solution is computed in fewer equivalent iterations�
Although� in this case� the execution of Block�CG with block sizes ��� ��� and �� took more time
than Classical CG� it is expected that Block�CG will perform better in parallel environments
because of the M�op rates shown in Table �����

Now� we repeat the same experiment using w  ���� ������ normalized backward error� as the
stopping criterion� The threshold value has been chosen using information that was obtained
during the runs from the rst experiments reported in Table �����

Figures ���� and ���� show convergence curves using the iteration count and equivalent iter�
ations� respectively� Tables ���� and ���� summarize the results from the convergence curves�
Table ���� supports the results from Table ����� and again Block�CG runs faster than Classical
CG for the block sizes of � and �� In addition� Table ���� shows that the block sizes of �� and
�� have computed a solution with the requested accuracy after ��� equivalent iterations while
Classical CG has not�
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Block Iteration Equivalent Normwise Backward Execution
size count iterations error �
�� Time �secs�
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� ��� ��� ����� ��� ����

�� �� ��� ����� ���� ����

�� �� ��� ����� ���� ����

�� �� ��� ����� ��� �����
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Table ����� Sequential runs of CG and Block�CG programs� SHERMAN� problem�



�� CHAPTER �� SEQUENTIAL BLOCK�CG EXPERIMENTS

Block Iteration Equivalent Normwise Backward Execution
size count iterations error �
� Time �secs� M�ops

� ��� ��� ����� ���
 ���� ���

� ��� ��� ����� ���� ���� ����
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Table ����� Sequential runs of CG and Block�CG programs with �xed number of iterations�
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	�A� � �����

Block size � � � �� �� ��

 Total of
FLOP count

���� ���� ���� ��� ��� ���

Table ����� Percentage of Total FLOP count generated by

��A�� SHERMAN� problem�

As shown in Table ����� the percentage of the total FLOP count generated by 	�A� decreases
as the block size is increased� Furthermore� these percentages are signicantly decreased for
the block sizes of ��� ��� and ��� and it implies that in these cases the total FLOP count� and
execution time are dominated by the block size�
As in the previous experiments� the Level � BLAS e	ect increases the M�op rate as the block
size is increased�
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Eigenspectrum of matrix: SHERMAN4
Condition Number : 2.179e+03 

Figure ����� Eigenspectrum of SHERMAN� matrix�
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Figure ����� Eigenspectrum of AT
A from SHERMAN� matrix�
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��� Remarks

LANPRO �NOS�� LANPRO �NOS�� SHERMAN� �ATA�

Exec� Time Exec� Time Exec� Time

block Classc Block Perf Classc Block Perf Classc Block Perf
size CG CG ratio CG CG ratio CG CG ratio

� � � � ���� ���� ��� ����� ���� ���

� ����� ���� ��� ���� ���� ��� ����� ���� ���

�� ����� ����� ��� ����� ���� ��� ����� ���� ����

�� ����� ����� ��� ����� ���� ��� ������ ���� ����

�� ����� ����� ��� � � � ������ ����� ����

��� ������ ����� ��� � � � � � �

Table ����� Summary of results from previous experiments� Comparison between Block�CG and

solving the linear system s times with Classical CG� The performance ratio is the execution time of

Classical CG divided by Block�CG� Execution time is in seconds� For each problem only a selected

number of block sizes were reported in the previous sections of this chapter� Therefore there are

some empty entries in the table�

In some cases� it is not trivial to choose a suitable block size for the Block�CG algorithm without
additional information from the problem to be solved� For instance� a linear system of equations
with a high condition number may require a prior analysis of the eigenspectrum� and computing
the eigenspectrum is more expensive than solving the linear system of equations�
From Block�CG results presented in this chapter� the M�op rate increases as the block size is
increased� The M�op rates reported in Tables ���� ���� ���� ���� ���� and ���� show that as the
granularity is increased the M�op rate is increased� Furthermore� the increasing M�op rate in
Block�CG can produce computational gains on vector and parallel computers even for linear
systems in which Classical CG converges a few iterations faster than Block�CG�
In a parallel distributed environment� the number of synchronization points of Classical CG are
implicitly reduced in Block�CG� In Block�CG the information that needs to be communicated
in one iteration equals the information that need to be communicated in s iterations of Clas�
sical CG� Thus� the number of synchronization points while computing the orthogonal vectors
is reduced as the block size of Block�CG is increased� In this case� Block�CG is preferred over
Classical CG even if Block�CG communicates longer messages than Classical CG� Indeed� the
possible bottlenecks in the communication are associated with the volume of messages being
exchanged and the expensive start�up or latency time�
When solving a linear system of equations with multiple right�hand sides� Block�CG will perform
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better than Classical CG since the s solutions are computed simultaneously�
Table ���� compares the performance of Block�CG and Classical CG for solving a linear system
of equations with s right�hand sides� The information in Table ���� has been extracted from
results presented in previous sections� The execution times of Classical CG presented in previous
tables have been multiplied by the block size to estimate the execution time of Classical CG for
solving the linear system of equations s times�
In all of the results presented in this chapter� using Block�CG has been faster than s applications
of Classical CG� On the other hand� this means that in none of the cases has Block�CG cost
more than s times Block�CG although at each Block�CG iteration the FLOP count is increased
by a factor of s when compared with a Classical CG iteration�
Increasing the block size in Block�CG will also increase the granularity of problem to be solved
and this e	ect makes Block�CG more suitable for parallelization� In Chapter � we study the
parallelization of the Block�CG Algorithm ����� for distributed computing environments� And
in Chapter ��� we present results from parallel experiments that support our expectation that
Block�CG is suitable for parallel environments�



Chapter �

Parallel Block�CG implementation

In this chapter� we present three di	erent parallel versions of the Block�CG Algorithm �����
for distributed memory architectures �see also Drummond� Du	� and Ruiz �������� First� we
present partitioning and scheduling strategies used in the three implementations� Then we dis�
cuss and compare the three parallel distributed implementations�

��� Partitioning and scheduling strategies

At this point� we look for a problem partitioning strategy to manage the creation of subproblems
that can be solved in parallel� and a strategy to distribute these tasks among the processing
elements� Here we recall that the problem in hand is to nd a solution X to the linear system
of equations�

HX � K �������

where H is a n�n symmetric positive denite matrix �SPD�� X and K are n� s matrices� and
s is the number of solution vectors in the system or block size for Block�CG�
The stabilized Block�CG� Algorithm ������ introduced in Chapter � will be used in the solution
of ��������

����� Partitioning strategy

First� a column partition of the matrix H into l submatrices is performed �l � � in Figure �����
A column partition has been preferred over a row partition for the following reasons�

� There is no need to send the full X and K matrices to every computing element �CE�
during the task distribution� Rather� each CE receives one or more parts of these matrices
�e�g�� in Figure ���� X�� X�� X�� X�� K�� K�� K�� and K���

� The number of messages that need to be sent is independent of a column or row partition�

However� When computing the HX��� or the HP
�J�
products in parallel� shorter messages

are sent with a column partitioning strategy than with a row one� In the latter� it may be
required to send the X and P matrices in full to perform the parallel products�

� In the FORTRAN language� it is easier and faster to access sequential elements in a matrix
column�wise than row�wise�

��
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Figure ���� Column�partition strategy of the linear system of equations H X � K

�initial de�nition of tasks��

In the partitioning strategy� the parameter k is dened as the number of columns to be included
in every submatrix� If k does not divide n exactly the last submatrix will have less than k
columns� These submatrices are labeled H�� H�� ��� Hl�
A second step is to identify row boundaries for every submatrix Hi� The row boundaries for a
submatrix Hi are dened by the rst and last rows in Hi with nonzero entries� As a result� every
submatrix Hi can be considered as a rectangular matrix of dimension ni � ki� where ni is the
number of rows between the row boundaries for Hi� and ki is equal to k except that probably
kl may be smaller� The partition of the X and K matrices is performed after completing the
partition of the H matrix�
Partitioning the X and K matrices result in submatrices X�� X�� � � � � Xl and K�� K�� � � � � Kl

respectively� The Xi submatrices need to be product compatible with the Hi submatrices�
The matrix K is partitioned into submatrices of k�rows each �again� except the last submatrix
that may have less than k rows�� Figure ��� shows a ��column partition for a system of linear
equations with a block size for Block�CG equal to three� For now on� we dene a task as a
triplet of matrices  Hi� Xi� Ki �� The resulting tasks from the partition will be performed in
parallel under di	erent programming models to be introduced in Section ����
In parallel processing� a reduce operation gathers partial results from parallel computations and
merges these partial results to obtain a global one� In Algorithm ������ the operations

R��� � K �HX��� in step ���� �������

and
R
�j���

� R
�j�
�HP �j� in step ������ �������

involve the products HiX
���
i and HiP

�j�
i respectively� When these products are computed in

parallel� one of the CEs performs a reduce operation to obtain the global result for the matrix�
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Figure ���� Example of a reduce operation� The HX
���
i matrices are the partial results

from the HiXi products� The global HX
��� is obtained after merging the partial results

and adding the rows of the partial products that overlap�

matrix product� The partial results� HX
���
i and HP

�j�
i � have dimensions ni � s and if the Hi

submatrices correspond to the blocks on the diagonal of the matrix H � then
lX

i��

ni � n and the

global result from the product is obtained by simply merging the partial results�

On the other hand� if there are row overlaps between the Hi submatrices� then
lX

i��

ni � n� and

the global result from the product is obtained by merging the partial results and adding the rows
from the partial results that overlap� Figure ��� shows an example of row overlaps between the

submatrices HX
���
� � HX

���
� � HX

���
� � and HX

���
� for the ��column partitioning strategy illustrated

in Figure ���� Whether these partial products are computed in a single processor or in a cluster
of processors� the information overlaps require data manipulation to obtain a correct answer to
the matrix�matrix product� For instance� in Figure ���� the second piece of the HX��� matrix

is obtained after the addition of the rows that overlap the three partial matrices HX
���
� � HX

���
� �

and HX
���
� �

In a parallel distributed environment� this reduce operation can be centralized in one CE or
distributed among all the CEs� In the former� each CE sends back its partial result from
the product to the CE performing the reduce operation� In the distributed reduce� every CE
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Figure ���� Centralized reduce operation� CEX is the computing element

responsible for gathering partial results merging them and broadcasting back

parts of the global results to other CEs�

has information of the neighboring CEs with which it needs to exchange data� and the reduce
operation is also perform in parallel� Figure ��� illustrates a centralized reduce operation� and
Figure ��� illustrates a distributed reduce operation�
After the completion of the reduce operation in the HX��� product� each CE gets back an

updated HX
���
i which is a copy of ni rows of the global HX��� matrix� If the centralized re�

duce is used then the CE performing the reduce operation sends back these updated matrices to
the other CEs� However� the update of these matrices is done implicitly in the distributed reduce�

In the parallel computations of the ith task triplet� the operations in ������� and ������� become

R
���
i � Ki �HX

���
i

and

R
�j���
i � R

�j�
i �HP

�j�
i �

Since the dimensions of the Ki matrix are ki�s� a strategy must be dened to select ki rows from
the ni rows available in HX���� Otherwise� if all of the ni rows are used in the computations�
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Figure ���� Distributed reduce operation� Data exchanges are performed in

parallel between the CEs� At the end each CE has a part of the global result�

there will be duplicated data in one or more CEs� The duplicated data will perturb the Block�
CG computations when not handled properly� Moreover� the selected ki rows for the i

th task
triplet must not overlap with the kj rows selected for the jth task triplet �i �� j�� This strategy
is depicted in Figure ����
In Figure ���� GMat can be any global matrix that result from a parallel distributed operation�
The Mati matrices are in the local memory of a CE� The shaded areas in the Mati matrices
represent the ki rows that are used in the computations associated with i

th task triplet�
The strategy is based on the following assumptions�

� The matrix H is SPD� thus it has a full diagonal

� ki is the number of columns in Hi� and
lX

i��

ki � n

� The matrix GMat has n rows

The expression in ������� nds the rst of the ki rows in Mati� where Fci is the column number
in H of the rst column in Hi� and Fri is the row number in H of the rst row in Hi� Then

FirstRow�Mati� � jFci � Frij� � �������

� j�j represents absolute value��
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Figure ���� Distribution of a global result matrix GMat� The Mati matrices represent

either the R���
i  R

�j���
i  P

�j���
i  or HP

�j���
i matrices used in the parallel computations of the

Block�CG algorithm�

����� Scheduling strategy

Among of the factors that determine the quality of a parallel implementation are�

� The design of the parallel algorithm

� The size of problems to be solved

� The computing environment

� The number of CEs used

� The e
cient use of each CE

A parallel scheduler can be seen as a tool for tuning the last factor given the other four�
In this section� we introduce a static scheduler that is used in Section ��� inside the parallel
implementations of the Block�CG Algorithm ������ This static scheduler tries to evenly distribute
the total workload among the CEs� A balanced distribution of the workload is important to use
all of the CEs e
ciently in a parallel run�
This static scheduler considers two parameters for distributing the workload among the CEs�
The rst parameter is the size of each subproblem that results from the problem partition �e�i��
number of rows times number of columns� and the second is the number of overlapping rows
between di	erent subproblems� Therefore� this scheduler is designed for homogeneous computing
environments� In Chapter �� we present a more general scheduler for heterogeneous computing
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environments�
First of all� the static scheduler used in the parallel Block�CG implementations calls a function
that computes a weight factor per task triplet Ti� For each task Ti there is a 	��Ti� that is
the number of nonzeros in Hi� Also� there is a 	��Ti� that is the total number of row overlaps
between the submatrix Hi and all of the other submatrices�
The function that assigns a weight factor to each task is dened by�

W�Ti� � 	��Ti� � 	��Ti�� �������

The 	��Ti� determines the FLOP count associated with Ti� and can thus be used as an estimate
of the computational work associated with the task� One the other hand� 	��Ti� is used to
estimate the communication associated with Ti�
Once the weight factors are computed� the scheduler sorts the tasks in descending order by their
weight factors in a work� list� The scheduler then dispatches these tasks to the available CEs
in the order they appear in the work � list�
To maintain workload balance among the CEs� the scheduler keeps track of the workload already
assigned to each CE� and assigns the next task in the work � list to one of the CEs with the
lowest workload factor� This scheduling strategy can be seen as a solution to a binpacking prob�
lem �see for instance Dror ������� Mizuike� Ito� Kennedy� and Nguyen ������� and Mayr ��������

��� Implementations of Block�CG

We present three di	erent parallel implementations of the Block�CG Algorithm ������ First�
we develop an All�to�All parallel version in which we parallelize the entire Block�CG algorithm�
The other two implementations are based on a master�slave computing model� with di	erent
approaches to determine which sections of the algorithm are performed in parallel and which
ones are performed sequentially�
We have used the P� library of parallel routines �Butler and Lusk ������� to manage the parallel
environments on di	erent machines �also we have developed versions using the PVM library of
routines �Beguelin� Dongarra� Geist et al� ������� and Geist� Baguelin� Dongarra et al� ���������
The computing elements �CEs� can all be physically part of the same computer� or a network of
heterogeneous distributed processors� For the remainder of this chapter� we focus our discussion
on the processes and the tasks they perform in each implementation� rather than on the CEs
because processes are the active entities in the execution of a program and in some computer
platforms the user does not have direct control over the CEs�

����� All�to�All implementation

In this implementation� we perform a full parallel implementation of the Block�CG algorithm
at the expense of redundant computations that are carried out in parallel by di	erent processes
referred to here as the worker processes� At rst there is an initiator process which creates
the other worker processes and generates the task triplets  Hi� Xi� Ki �� Later� the initiator
process becomes one of the workers and works on some of the generated tasks�
One or more tasks can be assigned to a worker process� After a worker process receives one or
more tasks it builds a set of matrices �one set per task� that corresponds to the set of matrices
used in Algorithm ������ Figure ��� illustrates an example of a task triplet and the set of locally
generated matrices associated with the task� During an iteration a worker process communicates
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to its neighbors the results from its computations of HiPi� Each worker needs to communicate
only to neighbors with tasks that have information that overlap its tasks� Then� each worker
broadcasts the RT

i Ri and the P
T
i HPi matrices to all the other workers�
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Figure ���� Block�CG matrices kept locally by each process�

There is a set of matrices per task assigned to a process�

Every worker performs an iteration of the Block�CG� and tests whether the stopping criterion
has been met� If the stopping criterion has not been met� the worker processes start a new
iteration� At the end� when the stopping criterion is satised� each worker process reports its
part of the solution to the initiator process which assembles the solution of the whole system�
Figure ��� captures the interactions between processes in the All� to� All implementation�
Clearly� the communication between processes has an impact on the performance of the three
parallel Block�CG implementations that are presented in this chapter� Thus� we study the
number of messages sent at each iteration for all of the three parallel Block�CG implementations�
Let mk be the number of neighboring workers with which workerk will exchange partial results�
and p be the total number of workers�

For every product HiX
���
i and HiPi �

M �
pX

k��

mk messages�

and the length of these messages varies according to the number of rows workerk needs to ex�
change with each of its neighboring workers�

For every product RTR �all to all��

p � �p� �� messages of length s � s

For every product PTHP �all to all��

p � �p� �� messages of length s � s
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Leading to � �p�p� ���M messages of lengths varying from s � s to max�ni� � s� where ni is the
number of rows in Hi�
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Figure ���� Scheme of the All� to�All parallel
Block�CG implementation�

����� Master�Slave� distributed Block�CG implementation

In this implementation� we use a master � slave programming model in which the master
process monitors the program execution� while the Block�CG algorithm is run at the slave
processes� level� Initially a master process is created which in turn creates the slave processes
and generates the tasks � Hi� Xi� Ki ��� The master calls the static scheduler to distribute
the tasks� After scheduling the tasks and dispatching them to the slave processes� the master
process performs three reduce operations at each iteration�
In the rst reduce� the master collects from slave processes their results from computing the
products RT

i Ri� The master then combines these partial results to build the full RTR� The
resulting matrix is referenced as � in the Block�CG Algorithm ������ This matrix is later
factorized by the master and broadcasted back to the slave processes� During this reduce
operation� only the master is active while the slave processes wait for the answer �this problem
was previously identied as synchronization point in Chapter � for the CG algorithm��
In the second reduce� the master collects the partial products PT

i HPi from the slave processes�
This time the matrix corresponds to the � matrix in the Block�CG Algorithm ������ The master
also factorizes and broadcasts back the results from � to the slave processes� In the third
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reduce operation� the master runs the test for termination� To the test for convergence� the

master gathers information that is local to the slave processes �local residuals� and kX
�j�
i k���

and when the stopping criterion is met� the master process signals termination to the slave
processes� Otherwise� the master process signals continuation to the slave processes and the
slaves start a new parallel iteration�
The slave processes initially receive from the master process at least one task to execute� Then�
the slave processes build locally their partial matrices and these matrices are kept in memory
until the master process signals termination� In Figure ���� the partial matrices �i� and �i are
computed locally by each slave process� The rst and second reduce operations transform these
partial matrices into global �� and � respectively�
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local  Blk-CG

no

parallel

sequential

Figure ���� Scheme of the Master � Slave� dis�

tributed parallel Block�CG implementation�

As mentioned before� there may exist row overlaps between two or more tasks while computing
the HiXi and HiPi products� A process working on a task with row overlaps has to communicate
with its neighbors to complete its part of the global product� In addition� one or more tasks
with rows that overlap may be scheduled to the same slave process and in this case the overlap
is handled locally�
To study the average number of messages sent at every iteration step we use the same set of
assumptions made for the All� to� All implementation �Section �������
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For every product HiPi �

M �
pX

k��

mk messages�

The length of these messages varies according to the number of rows slavek will exchange with
each of its neighbor slaves�

For every product RT
i �Ri �one message in every direction between the master and slavek��

� � �p� �� messages of length s � s

For every product PT
i �HPi �one message in every direction between the master and slavek��

� � �p� �� messages of length s � s

Which results in � ��p� �� �M messages of lengths varying from s � s to max�ni� � s� where ni
is the number of rows in Hi�
Figure ��� captures the interaction between the master process and the slave processes under
this parallel implementation�

����� Master�Slave� centralized Block�CG implementation

Lastly� we present an implementation based on a master�slave programming model that di	ers
from the previous one in the roles of themaster and the slave processes� In the following parallel

implementation only the HP
�j�
product is parallelized�

The master process generates the tasks by dividing the matrix H from ����� into submatrices
Hi� Here the initial tasks are no longer the task triplets  Hi� Xi� Ki �� but  Hi� Xi � for
the rst iteration� and  Hi� Pi � for the main iteration �see Figure ����� The master process
spawns a group of slave processes� and then distributes the Hi submatrices among the slave
processes� The master process executes all the steps from the Block�CG algorithm except for
the products HP which are performed in parallel by the slave processes� Therefore� the master
process partitions and distributes the matrix P in a way that will be product�compatible with
the already distributed Hi�s� In the reduce operation� the slave processes send their partial

HP
�j�
i to the master process and the master assembles the global HP

�j�
matrix�

Figure ���� shows the interaction between the master and the slave processes in this parallel
implementation� At the end of an iteration� themaster process performs the test for termination
and signals termination or continuation to the slave processes�
We conduct the same study as before to calculate the number of messages sent at each iteration�
For every product HiPi �

� � �p� �� messages of length ni � s

�p � �� in every direction between the master process and the slave processes� Resulting in
�p� � messages being sent at each iteration step�
Table ��� summarizes the number of messages that are sent at each iteration of the Block�
CG Algorithm ����� under each of the parallel implementations presented here� The third
implementation� master� slave� centralized Block�CG� involves fewer messages than the other
two implementations� However� the messages sent in the master� slave� centralized Block�CG
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Figure ���� Scheme of the Master � Slave� cen�

tralized parallel Block�CG implementation�

implementation are longer than the messages sent in any of the other two implementations�

In this implementation the master process sends at each iteration the P
�j�
i submatrices to

each slave process� while in the other two implementations this information is kept locally and

processes only exchange parts of the HP
�j�
i and small s � s matrices�

Implementation Number of Messages

All�to�all �p�p� �� �
pX

k��

mk

Master�Slave� distributed Block�CG ��p� �� �
pX

k��

mk

Master�Slave� centralized Block�CG �p� �

Table ���� Messages being sent per parallel Block�CG implementation�



Chapter �

Parallel Block�CG experiments

The purpose of this chapter is to compare the performance of the three parallel Block�CG im�
plementations described in Chapter �� and to show advantages from the parallelization of the
Block�CG algorithm�
In this chapter� we assume through all the experiments that a parallel run of Block�CG with
block size of one is numerically equivalent to a run of Classical CG as can be veried from
Algorithms ����� and ������ Thus� the results from runs of Classical CG are presented under the
columns labeled Block�CG with block size of one in all of the tables in this chapter�
In the three parallel Block�CG implementations� a run with only one CE involves extra overhead
that is not present in a sequential run of the Block�CG implementation� In the All � to � All
implementation� the overhead is very small and is due to data manipulation provided for han�
dling the parallelism� In the other two implementations� the overhead comes from creation of
one slave process� and this overhead is more signicant than the one in the All � to � All im�
plementation�

The matrix that results from squaring the SHERMAN� matrix �see Section ����� is used in
the rst parallel experiment� Next� the LANPRO �NOS�� and LANPRO �NOS�� problems are
solved in parallel� For these two problems� the block sizes have been chosen based on the results
and remarks from Chapter ��

In Section ��� a di	erent problem is used� It comes from a nite di	erence model of Laplace�s
equation �see for example Strang �������

��u

�x�
�
��u

�y�
� �� �������

When the right�hand side of ����� is di	erent from �� the equation is Poisson�s equation�
Applying a central di	erence approximation to the second derivates

��u

�x�
�
u�x� h�� �u�x� h� � u�x� h�

h�
�������

and

��u

�y�
�
u�y � h�� �u�y � h� � u�y � h�

h�
� �������

��
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The right�hand side approaches the left�hand side as h goes to zero�

The di	erential equations
��u

�x�
� f and

��u

�y�
� f are replaced by a nite di	erences approxima�

tion of the values of u at the meshpoints x � h� �h� ���� Nh�
Figure ��� �a� shows a ��point molecule resulting from the combination of ����� and ������ The
boundary conditions at the edge of the grid are u � �� The points in the grid are labeled from � to
n� �n � N��� and there is one linear equation per grid point� The resulting matrix A is depicted
in Figure ��� �b�� The matrix is SPD with ���s along the main diagonal and ���s in the other
diagonals� Because of the boundary conditions� some ���s are removed from the other diagonals�

A problem based on the Poisson�s equation is solved in Section ���� The grid size is ��� thus the
matrix A is of order ����� with ����� nonzero elements�

A =

1 n

1

n

4
4

4

-1
-1

-1

-1
-1

-1

N1

1

N

-1

-1 4

-1

-1

(a)

N Nn= x (b)

N

N

Figure ���� ��point discretization of Laplace�s equation using �nite di�erences� �a� ��point ap�

proximation� �b� Structure of matrix A that results from discretization�

In this chapter� the performance of the parallel implementations is measured in terms of two
parameters� the speedup and the e
ciency� The speedup is dened by�

speedup �
Execution time from best sequential run

Execution time from parallel run using p CEs

and the e
ciency by�
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E �
speedup

p
�

A speedup is a factor of the reduction in the execution time when moving from a sequential
implementation to a parallel implementation and ideally a speedup equals the number of CEs
that are used during a parallel run� In some less favorable cases� the parallel implementation
requires more time than the sequential implementation� thus �  speedup  �� The e
ciency
gives an estimation of the contribution of the p processors to the speedup and ideally it is equal
to one�
The following parallel experiments were run on three di	erent parallel computer systems� The
rst platform is a Thin node SP� with �� RS�������� processors� Each node has a theoretical
peak performance of ��� M�ops� The nodes are connected through a high performance switch
with latency time of �� microseconds and a bandwidth of �� to �� Mbytes per second�
The second platform is a BBN TC���� computer system installed at Argonne National Labo�
ratory� The TC���� system is a virtual shared memory computer� and peak performance of ��
MFlops per node� The nodes are interconnected through a multistage network processor called
the Butter�y switch�
The last computing platform is a network of SUN Sparc �� workstations� Each workstation
has a peak performance of �� MFlops� and they are connected through ETHERNET� The peak
performance of the ETHERNET network is ��� Mbytes per second�

��� Parallel solution of the SHERMAN� problem

Some advantages of using Block�CG over Classical CG were presented in Section ��� with the
results from sequentials runs of Block�CG in the solution of the ATA from SHERMAN� prob�
lem� In this section� the results from parallel runs of Block�CG on the ATA SHERMAN� are
presented� The block sizes of �� �� �� and �� are used in these experiments� Tables ��� to ���
summarize the results from the three di	erent parallel Block�CG implementations�
The results from parallel runs of the Block�CG All�to�All implementation are shown in Tables
��� and ���� The runs were performed on a SP� computer� The bottlenecks from parallelizing
Block�CG are shown in these tables by the low speedups obtained� Increasing the block size gives
better speedups� However� the e
ciency factors decrease as the number of CEs is increased�
The execution time of a sequential run of Block�CG solving the ATA SHERMAN� problem and
using block size of � is almost the same as the execution time of a sequential run of Classical CG
on the same problem� As shown in Section ���� the block size of � converges in fewer equivalent
iterations than the Classical�CG� and after parallelizing the Block�CG algorithm the execution
time for solution of the ATA SHERMAN� problem is reduced by almost �� with a block size
of � and computing on � CEs�

In Tables ��� and ��� the results from parallel runs of the Block�CGMaster�Slave � distributed
implementation are presented� The runs were performed on a SP� computer system�
The parallel Classical CG implementation using the Master � Slave � distributed scheme also
reports low speedups� but they are better than the speedups obtained with the All � to � All

implementation and this is due to the number of messages being exchanged in each implemen�
tation at both synchronization points�
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In the All�to�All implementation� the execution of the synchronization points takes more time
than in the Master � Slave � distributed implementation because of the number of messages
being exchanged� And in both implementations only a scalar is exchanged in a message which
does not compensate for the expense of the communication over the computations�
Increasing the block size improves the performance of the Master � Slave �distributed imple�
mentation� In Table ���� the execution time from the solution of the ATA SHERMAN� problem
using � CEs and a block size of � is reduced by almost �� from the sequential version� In
Table ���� the performance is improved even more when increasing the block size to �� because
a reduction on the execution time of almost �� from the sequential implementation is obtained�
In this case� the execution time is reduced by almost �� from the execution of the sequential
Classical�CG�
Even though in some cases Block�CG takes a few more iterations to converge than Classical
CG� with the Master�Slave � distributed implementation is possible to present an example in
which the performance of Block�CG is improved with the parallel implementation�
According to the results reported in Table ����� Block�CG with a block size of �� is computa�
tionally more expensive than Classical CG� However the performance of Block�CG with a block
size of �� is also improved with the results presented in Table ����

Execution times of Block�CG sequential version�
block size � � ��� secs
block size � � ��� secs
block size � � ��� secs

Number block size � block size � block size �

of CEs Time speedup E Time speedup E Time speedup E

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

Table ���� Results from the All � to� All parallel implementation of Block�CG on the solution of

the AT
A SHERMAN � problem� The times shown in the table are in seconds�

In Tables ��� and ���� the results from theMaster�Slave � centralized parallel Block�CG imple�
mentation are presented� This parallel implementation of Classical CG and Block�CG performs
very poorly� and the reason is the granularity of the work being performed in parallel that is
very small compared to the granularity of the problem performed sequentially�
Increasing the granularity of the HiPi products may improve the behavior of this implementa�
tion� Thus� increasing the computational weight of the parallel products compensates for the
expensive cost of distributing the Pi matrices at each iteration�
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Execution times of Block�CG sequential version�
block size �� � ��� secs
block size �� � ���� secs

Number block size �� block size ��

of CEs Time speedup E Time speedup E

� ��� ��� ���� ���� ��� ����

� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ����

Table ���� Results from the All � to � All parallel implementation of

Block�CG on the solution of the AT
A SHERMAN� problem� The times

shown in the table are in seconds�

Execution times of Block�CG sequential version�
block size � � ��� secs
block size � � ��� secs
block size � � ��� secs

Number block size � block size � block size �

of CEs Time speedup E Time speedup E Time speedup E

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

Table ���� Results from the Master � Slave� distributed parallel implementation of Block�CG on

the solution of the AT
A SHERMAN � problem� The times shown in the table are in seconds�
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Execution times of Block�CG sequential version�
block size �� � ��� secs
block size �� � ���� secs

Number block size �� block size ��

of CEs Time speedup E Time speedup E

� ��� ��� ���� ���� ��� ����

� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ����

Table ���� Results from theMaster�Slave � distributed parallel imple�

mentation of Block�CG on the solution of the AT
A SHERMAN� problem�

The times shown in the table are in seconds�

Execution times of Block�CG sequential version�
block size � � ��� secs
block size � � ��� secs
block size � � ��� secs

Number block size � block size � block size �

of CEs Time speedup E Time speedup E Time speedup E

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ���� ��� ���� ��� ��� ����

� ���� ��� ���� ���� ��� ���� ��� ��� ����

Table ���� Results from the Master � Slave � centralized parallel implementation of Block�CG on

the solution of the AT
A SHERMAN � problem� The times shown in the table are in seconds�



���� PARALLEL SOLUTION OF THE LANPRO �NOS�� PROBLEM ��

Execution times of Block�CG sequential version�
block size �� � ��� secs
block size �� � ���� secs

Number block size �� block size ��

of CEs Time speedup E Time speedup E

� ��� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ����

Table ���� Results from the Master�Slave � centralized parallel imple�

mentation of Block�CG on the solution of the AT
A SHERMAN� problem�

The times shown in the table are in seconds�

Also� in a shared memory parallel environment this implementation may perform better� because
the communications are avoided and the access to shared memory can be easily synchronized in
a less expensive way than exchanging messages� In the next sections we perform a more detailed
analysis of this implementation when solving the LANPRO NOS� and NOS� problems�

��� Parallel solution of the LANPRO �NOS�� problem

The purpose of this experiment is to compare the performance of the sequential and parallel
implementations of the Classical�CG Algorithm ����� and the Block�CG Algorithm ����� using
a large block size for Block�CG�
In this experiment� the LANPRO �NOS�� problem is solved in parallel in the SP� computer�
The block sizes of � and ��� are chosen for the experiment based on the sequential Block�CG
experiments presented in Chapter ��
To be able to compare the sequential and parallel implementations on the SP� computer� a
selection of the sequential experiments from Chapter � are repeated in this section� Table ���
summarizes the results from sequential runs on the SP��
The results from the solution of the LANPRO �NOS�� problem using the All� to�All parallel
Block�CG implementation are presented in Table ���� Although� the computations of Block�CG
with block size ��� continue to be more expensive than with Classical CG� a parallel run of
Block�CG on � CEs has reduced the execution time of the sequential Block�CG run by almost
�� �
The parallel All� to�All implementation performs very poorly for Classical CG� An analysis of
the run from the All� to�All implementation has shown that the communication time between
CEs is a dominant factor in the total execution time� This is due to the small granularity of the
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LANPRO Block Normwise Backward Execution
problem size error 
 time

NOS� � ����� ���
 ���

NOS� ��� ����� ���	 ����

Table ���� Sequential runs of Classical CG and Block�CG im�

plementations for solving the LANPRO �NOS�� problem on a SP�

computer system� The times shown in this table are in seconds

parallel Classical CG operations� Basically� in Classical CG� all of the BLAS � operations from
Block�CG are replaced by BLAS � and BLAS � operations in the Classical CG�
In these experiments� the highest speedup reported for the All � to � All parallel Block�CG
implementation is attained with � CEs� The e
ciency suggests that �� of the total computa�
tional power of the � nodes has been used�

Execution times of Block�CG sequential version�
block size � � ��� secs
block size ��� � ���� secs

Number block size � block size ���

of CEs Time speedup E Time speedup E

� ��� ��� ���� ���� ��� ����

� ��� ��� ���� ���� ��� ����

� ��� ��� ���� ���� ��� ����

�� ���� ��� ���� ���� ��� ����

Table ���� Results from the All � to � All parallel implementation of

Block�CG on the solution of the LANPRO �NOS�� problem� The times

shown in the table are in seconds�

Table ��� shows the results from the solution of the LANPRO �NOS�� problem using the
Master � Slave� distributed parallel Block�CG implementation� The execution time from the
sequential Block�CG is reduced by almost �� with the parallel Block�CG using �� CEs� The
highest speedup is attained with �� processors� but the e
ciency is reduced as we increased the
number of processors�
Lastly� Table ���� summarizes results from runs of the Master � Slave � centralized parallel
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Execution times of Block�CG sequential version�
block size � � ��� secs
block size ��� � ���� secs

Number block size � block size ���

of CEs Time speedup E Time speedup E

� ��� ��� ���� ���� ��� ����

� ��� ��� ���� ���� ��� ����

� ��� ��� ���� ���� ��� ����

�� ��� ��� ���� ���� ��� ����

Table ���� Results from the Master�Slave� distributed parallel imple�

mentation of Block�CG on the solution of the LANPRO �NOS�� problem�

The times shown in the table are in seconds�

Block�CG implementation when solving the LANPRO �NOS�� problem� The Amdahl�s law
�Amdahl ������� helps to explain to the poor performance of this implementation� A parallel
implementation may have sequential and parallel sections� The sequential sections are sometimes
called synchronization points� Moreover� if � is the ratio of computations performed in sequence�
then ��� is the ratio of computations perform in parallel� The Amdahl�s law� denes an upper
bound� S� for the speedup

S � lim
p��

�

� �
�� �

p

�
�

�
�

In the Master� Slave � centralized Block�CG implementation only the part of the total FLOP
count that is related to 	�A� is performed in parallel� Table ��� shows the percentages of the
total Block�CG FLOP count that comes from 	�A� for the problem LANPRO �NOS�� problem�
A ���� of the total FLOP count comes from 	�A� using a block size of �� and this factor is
reduced to ��� with a block size of ����
In these cases� � is equal to ����� when the block size is � and equal to ����� when the block
size is ���� Thus� S is equal to ��� and ��� for the block sizes of � and ���� respectively� The
lack of speedups in the results shown in Table ���� are explained by the small values of S� This
is not the case for the other two implementations that have higher ratios between the parallel
and sequential sections�
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Execution times of Block�CG sequential version�
block size � � ��� secs
block size ��� � ���� secs

Number block size � block size ���

of CEs Time speedup E Time speedup E

� ��� ��� ���� ���� ��� ����

� ��� ��� ���� ���� ��� ����

� ��� ��� ���� ���� ��� ����

�� ��� ��� ���� ����� ��� ����

Table ����� Results from theMaster�Slave� centralized parallel imple�

mentation of Block�CG on the solution of the LANPRO �NOS�� problem�

The times shown in the table are in seconds�

��� Parallel solution of the LANPRO �NOS�� problem

The LANPRO �NOS�� problem introduced in Chapter � is solved in these experiments� Table
���� summarizes the results from sequential runs of Block�CG on the SP� computer� Based on
the results presented in Section ���� the block sizes of �� �� and � were chosen�

LANPRO Block Normwise Backward Execution
problem size error 
 time

NOS� � ����� ����� ���

NOS� � ����� ����� ���

NOS� � ����� ����� ���

Table ����� Sequential runs of Classical CG and Block�CG im�

plementations for solving the LANPRO �NOS�� problem on a SP�

computer system� The times shown in this table are in seconds

Table ���� presents results from runs of the All� to�All parallel implementation of Block�CG
on the solution of the LANPRO �NOS�� problem� For all of the block sizes used in this case�
the granularity is smaller than the granularity of the block size of ��� on the LANPRO �NOS��
problem� thus the speedups have decreased compared to the speedups shown in Table ����
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In this case� the maximum speedups are attained using � CEs with the block sizes of � and
�� The parallel performance of Block�CG with block size of � is very poor in this case because
of the required synchronizations discussed in Section ���� and the low granularity of Classical CG�

Execution times of Block�CG sequential version�
block size � � ��� secs
block size � � ��� secs
block size � � ��� secs

Number block size � block size � block size �

of CEs Time speedup E Time speedup E Time speedup E

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

�� ���� ��� ���� ���� ��� ���� ���� ��� ����

Table ����� Results from the All � to�All parallel implementation of Block�CG on the solution of

the LANPRO �NOS�� problem� The times shown in the table are in seconds�

Table ���� shows the results of runs of the Master � Slave� distributed Block�CG implemen�
tation� As in the case of the All � to � All Block�CG implementation the speedups have also
decreased when compared to the speedups reported in Table ���� The maximum speedup with
a block size of � is attained with � CEs� and with a block size of � is attained with �� CEs�
The execution times for Block�CG are shorter than the execution times of the sequential and
parallel Classical CG implementations� The e
ciency of � CEs in the case of block size of � is
higher than the e
ciency attained with the same � CEs in the case of block size of � and this
is due to and increase in the granularity after increasing the block size from � to ��

The results of the Master � Slave� centralized implementation are presented in Table �����
Again� the implementation reported poor speedups� From information in Table ����� and the
Amdahl�s law� it can be deduced that the upper bounds of the speedups in this experiments
are ��� for block size �� ��� for block size �� and ��� for block size of �� However� the maximum
speedup reported from these experiments for block size of one is ���� and ��� for the block sizes
of � and �� The poor performance of the parallel Classical CG is due to a straight parallel
implementation of Classical CG without the considerations discussed in Section ����

Lastly� Table ���� shows comparative results from di	erent runs of sequential Classical CG and
parallel version of Block�CG� The purpose of this table is to illustrate the advantages of the
parallel Block�CG over a sequential Classical CG even for those cases presented in Chapter �
where Block�CG was a few equivalent iterations more expensive than Classical CG�
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Execution times of Block�CG sequential version�
block size � � ��� secs
block size � � ��� secs
block size � � ��� secs

Number block size � block size � block size �

of CEs Time speedup E Time speedup E Time speedup E

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

�� ��� ��� ���� ��� ��� ���� ��� ��� ����

Table ����� Results from the Master � Slave� distributed parallel implementation of Block�CG on

the solution of the LANPRO �NOS�� problem� The times shown in the table are in seconds�

Execution times of Block�CG sequential version�
block size � � ��� secs
block size � � ��� secs
block size � � ��� secs

Number block size � block size � block size �

of CEs Time speedup E Time speedup E Time speedup E

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

�� ��� ��� ���� ��� ��� ���� ��� ��� ����

Table ����� Results from the Master � Slave� centralized parallel implementation of Block�CG on

the solution of the LANPRO �NOS�� problem� The times shown in the table are in seconds�
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Sequential Parallel Block�CG
Classical Master�Slave� Master�Slave�
CG All�to�All Distributed Centralized

LANPRO exec� time Block N Time N Time N Time
problem �secs� size CEs �secs� CEs �secs� CEs �secs�

NOS� ��� � � ��� � � ��� � � ���

NOS� ��� ��� � ���� �� ���� � ����

NOS� ��� � � ��� � � ��� � � ���

NOS� ��� � � ��� � � ��� � � ���

NOS� ��� � � ��� � �� ��� � � ���

Table ����� Time comparison between runs of sequential Classical CG and parallel Block�CG

implementations� The � is used for the cases where the a parallel Block�CG implementation has

performed better than sequential implementation of Classical CG�

For each of the LANPRO problems there is one or more entries in Table ����� Each entry in
the table compares runs from sequential Classical CG versus the best time obtained in the so�
lution of the same problem with each parallel Block�CG implementation� Along with an entry
for a parallel implementations� there is a column that identies the number of CEs used in the
solution of the problem� and another entry that identies the block size�
Entries in Table ���� that are marked with a � are the favorable cases in which a parallel
Block�CG implementation has performed better than the sequential Classical CG implementa�
tion� Therefore� the execution time in those cases has been reduced by the e	ects of parallelism
despite the extra FLOP count generated by Block�CG� In the Master � Slave� centralized
Block�CG implementation none of the best times improves the performance of the sequential
Classical CG� In the other two implementations almost of all of the cases are favorable� except
in the solution of the LANPRO �NOS�� problem with a block size of ����
In the sequential Block�CG implementation� the solution of LANPRO �NOS�� with the large
block size required far more FLOPs than Classical CG� In theMaster�Slave�distributed Block�
CG implementation� the large block size enlarges the sequential sections where the master per�
forms the centralized reduce operations and factorizes the ��j� and ��j� matrices� In addition�
the length of the messages exchanged between the master and slave processes is drastically
increased �see Table �����
In the All � to � All Block�CG implementation� the FLOP count from redundant operations
is drastically increased with the large block size and as in the Master � Slave� distributed
implementation the length of the messages is also increased� Furthermore� in the All� to�All
implementation� the long messages are more expensive because they are broadcast to all the
workers�
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��� Fixing the number of equivalent iterations

In the parallel Classical CG and Block�CG implementations it has been observed that there
are numerical and computational issues that in�uence the performance of a parallel Block�CG
implementation� These issues can be summarized by

� The structure of the iteration matrix �e�g�� size� sparsity pattern� etc���

� The block size used in Block�CG

� The number of equivalent iterations

� The stopping criterion

� The computing platform

� The number of CEs used in a computer run

� The computational scheme of the parallel implementation

The rst four issues are related to the numerics of the problem being solved� The in�uence of
the computing platform and the number of CEs is studied in Sections ��� and ����
So far when comparing the parallel Block�CG implementations� the results have been in�uenced
mainly by some of the numerical issues� For instance� the Block�CG iterations are stopped after
reducing the normwise backward error� or the residual error below a threshold value� Therefore�
the iteration count has varied as the block size was also varied� and the execution time of a par�
allel Block�CG run depended not only on the parallel implementation but also on the iteration
count�
In this section� the purpose of the experiments is to study the in�uence of each parallel im�
plementation on the performance of Block�CG� The number of equivalent iterations is xed to
isolate some of the issues related with the computational scheme from the ones related to the
stopping criterion�
To preserve the numerical meaning in the following experiments� Table ���� shows the quality of
the solution after k iterations of Classical CG and Block�CG when solving the LANPRO �NOS��
problems� The block sizes of � and � are used in the parallel Block�CG�

LANPRO Block Orthogonal vectors Normwise Backward
problem size computed error 


NOS� � ��� ����� ����

NOS� � ��� ����� ���

NOS� � ��� ����� ���

Table ����� Work done after k equivalent iterations of Classical CG and

Block�CG�
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In Tables ����� ����� and ����� the Block�CG iterations are xed at ���� When the execution
time of the parallel Block�CG is less than the execution time of the parallel Classical CG� a �
is placed next to the execution time to represent the reduction in the execution time� In these
cases� the e	ect of increasing the block size speeds the execution of a parallel Block�CG imple�
mentation� On the other hand� a � is placed next to the entries in the table when the execution
time from the parallel Block�CG is more than the execution time of the parallel Classical CG�
Entries without a � or a � sign are assumed that take almost the same time for both Block�CG
and Classical CG�
Table ���� shows the results from this experiment with the All� to�All Block�CG implemen�
tation� As observed earlier� the parallel Classical CG using an All � to � All scheme simply
increases the execution time as the number of CEs is increased because the cost of the oper�
ations performed in parallel is smaller than the cost of the communications� In this case the
communication time has a great in�uence on the overall execution time� and in distributed com�
puting environments this communication becomes bottleneck of parallelizing the Classical CG
Algorithm�
In the parallel Block�CG with block sizes of � and �� it is observed that the execution time is
reduced as the number of CEs is increased� Increasing the block size also speeds the execution
time� and in Table ���� this e	ect is seen when moving from block size of � to � on � CEs�

Parallel Parallel Block�CG
Number Classical Block size
of CEs CG � �

� ��� ��� � ��� �

� ��� ��� � ��� �

� ��� ��� � ��� �

�� ���� ��� � ��� �

Table ����� Execution times from runs of the All�

to � All parallel Block�CG implementation� Times

are in seconds�

Table ���� shows the results from repeating the same experiment with the Master � Slave
distributed Block�CG implementation� This implementation presents a better compromise be�
tween the communication that is overlapped with useful computations� and this e	ect is also
present in the parallel Classical CG where the execution time is reduced as the number of CEs
is increased�
In the same table� it is observed that the execution times of the parallel Block�CG do not changed
much when changing the block size from � to �� With a block size of � the iteration count is ��
and with a block size of � is ��� Thus� with the block size of � the number of communications
is reduced by half� and this compensates for the increase in the FLOP count as the block size is
increased�
In almost all of the cases reported in Table ����� the execution time of the parallel Block�CG is
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Parallel Parallel Block�CG
Number Classical Block size
of CEs CG � �

� � ��� � ��� �

� ��� ��� � ��� �

� ��� ��� � ��� �

�� ��� ��� � ��� �

Table ����� Execution times from runs of the

Master � Slave� distributed parallel Block�CG im�

plementation� Time are in seconds�

less than the execution time of Classical CG�
Table ���� shows the results from running this experiment with theMaster�Slave� centralized
implementation� Contrary to the other two implementations� the granularity of the problem does
not compensate for the cost of communication� Thus� increasing the block size also increases
the size of the sequential section and the length of the messages being sent� while decreasing the
percentage of the total FLOP count that is performed in parallel�

Parallel Parallel Block�CG
Number Classical Block size
of CEs CG � �

� ��� ��� � ���

� ��� ��� ��� �

� ��� ��� � ��� �

�� ��� ��� � ��� �

Table ����� Execution times from runs of the

Master � Slave� centralized parallel Block�CG im�

plementation� Times are in seconds�



���� COMPARING DIFFERENT COMPUTING PLATFORMS ��

��� Comparing di	erent computing platforms

The computing platform has an in�uence in the performance of a parallel implementation� The
three parallel Block�CG implementations were designed for general parallel distributed comput�
ing systems� and do not include specically tunned algorithms to enhance the performance on
any specic computer system� Nevertheless� the relation between the speed of the processors
and the speed of the communication network can enhance the performance of a parallel imple�
mentation� and in the case of Block�CG can even favor one implementation over another�
The purpose of this section is to perform parallel runs of the Block�CG implementations on
three di	erent computing platforms� In each computing platform� a di	erent library subroutine
was used to compute the execution times� and for some platforms the execution times are more
accurate than others� Thus� we do not attempt to compare the computational performance of
one computer system against another�
In Table ����� the results of solving the LANPRO �NOS�� problem on the SP� computer are
presented� In this case� the block size has been xed at �� We observe that the Master�Slave
distributed Block�CG implementation reports the best speedups compared to the other two im�
plementations� However� the maximum speedup in this case is obtained with � CEs with an
e
ciency factor of only �����
In the same table� it is observed that the All� to�All implementation provides the maximum
e
ciency factor with one or more CEs� When using one CE� this implementation generates less
overhead than the other two� and the execution time may be in some cases slightly longer than
the execution time of the sequential Block�CG implementation�
The maximum e
ciency attained with more than one CE is attained by the All � to � All
Block�CG implementation using � CEs� In the All � to � All implementation� distributed re�
duce operations are used� In a computing platform with a fast communication network� the use
of distributed reduce operations is more favorable than the use of centralized ones� However�
increasing the number of CEs in a parallel implementation that uses distributed reduce oper�
ations will have a greater impact on the speedups and e
ciency than increasing the number
of CEs in a parallel implementation that uses centralized reduce operations� This e	ect is also
observed in Table ����� when increasing the number of CEs from � to ��� With � and �� CEs�
the All� to� All implementation has the lowest e
ciency of the three implementations�

The results in Table ���� come from runs on the BBN TC���� computer� The problem LAN�
PRO �NOS�� is solved with a block size of �� The processors in the BBN TC���� are slower
than the processors in the SP�� The BBN TC���� has also a fast network switch and the com�
bination of relatively slow processors and a relatively fast network reduces the overall expense
of communication over useful computations�
This last e	ect is re�ected in the speedups shown in Table ���� that have increased� for the
All� to�All and Master � Slave� distributed Block�CG implementations� from the speedups
reported with the SP� computer� As remarked earlier� in the Master � Slave� centralized
implementation the speedup is less a	ected by the the speed of the network and the speed of
the processors� and the S upper bounds for this implementation when solving the LANPRO
�NOS�� problem was also shown in Section ���� The S upper bounds computed in Section ���
are consistent with the results in Tables ����� ����� and �����

Lastly� the results from runs on the network of SUN Sparc �� stations are shown in Table �����
Here the network is very slow compared with the networks in the other two computing platforms�
As a result� the e
ciency rates reported in the three implementations are smaller than those
reported in the two previous tables�
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Execution time of Block�CG sequential version � ��� secs

Master�Slave� Master�Slave�
Number All�to�All Distributed Centralized

CE Time speedup E Time speedup E Time speedup E

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

� ��� ��� ���� ��� ��� ���� ��� ��� ����

�� ���� ��� ���� ��� ��� ���� ��� ��� ����

Table ����� Performance of parallel Block�CG implementations while solving LANPRO �NOS�� prob�

lem� Times in table are in seconds� The parallel runs were performed in a SP� computer�

Block�CG Sequential Time � ���� millisecs

Master�Slave� Master�Slave�
Number All�to�All Distributed Centralized

CE Time speedup E Time speedup E Time speedup E

� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ����

�� ���� ��� ���� ���� ��� ���� ���� ��� ����

�� ���� ��� ���� ���� ��� ���� ���� ��� ����

Table ����� Performance of parallel Block�CG implementations while solving LANPRO �NOS�� prob�

lem� Times in table are in seconds� The parallel runs were performed in a BBN TC�


 computer�
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In this case� the use of centralized reduce operations in the Master � Slave� distributed imple�
mentation becomes very expensive as the number of CEs is increased� This is e	ect comes from
the serial delivery of messages through a slow network� As shown in Table ����� the problem is
solved faster with the All� to�All implementation than with the other two implementations�

Execution time of Block�CG sequential version� ���� secs

Master�Slave� Master�Slave�
Number All�to�All Distributed Centralized

CE Time speedup E Time speedup E Time speedup E

� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ��� ��� ���� ���� ��� ���� ���� ��� ����

Table ����� Performance of parallel Block�CG implementations while solving LANPRO �NOS�� prob�

lem� Times in table are in seconds� The parallel runs were performed in a network of Sparc �


workstations�

��
 Parallel solution of POISSON problem

The purpose of this section is to compare runs of the three parallel Block�CG implementations as
in Section ��� after increasing the granularity of the problem to be solved� In these experiments
the problem to be solved comes from the discretization of Poisson�s equation� A block size of �
is used in all the experiments in this section�
Table ���� presents the results from parallel runs on the SP� computer� In the All� to�All and
Master� Slave�distributed implementations the increase in the granularity has improved their
performance� This is not the case for the Master � Slave centralized implementation in which
the increase in the granularity has also increased the computational weight of the sequential
sections�
In the All � to � All implementation� the e
ciency with � CEs is higher than the e
ciency
obtained in the LANPRO �NOS�� problem� and in this case the Master � Slave� distribute
also exhibits the same e
ciency with � CEs� In the All� to�All implementation� the e
ciency
decreases at faster rate than in the Master � Slave � distributed implementation� For these
two implementations� the speedups and e
ciency rates are again increased when repeating this
experiment on the BBN TC���� computer�

Table ���� shows the results from runs of this experiment on a BBN TC���� computer� The
Master � Slave� distributed implementation shows a slow decrease in the e
ciency rates that
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Execution time of Block�CG sequential version � ���� secs

Master�Slave� Master�Slave�
Number All�to�All Distributed Centralized

CE Time speedup E Time speedup E Time speedup E

� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ��� ��� ���� ��� ��� ���� ���� ��� ����

� ��� ��� ���� ��� ��� ���� ���� ��� ����

� ��� ��� ���� ��� ��� ���� ���� ��� ����

�� ��� ��� ���� ��� ��� ���� ���� ��� ����

�� ���� ��� ���� ��� ��� ���� ���� ��� ����

Table ����� Performance of parallel Block�CG implementations solving a Poisson�s equation problem�

Times in table are in seconds� The parallel runs were performed on a SP� computer�

results in a very high speedup of �� on �� CEs�

The results from the same runs on the network of SUN Sparc �� workstations are presented
in Table ����� The times obtained when solving the LANPRO �NOS�� problem on the SUN
Sparc workstation are reconrmed with the results in Table ����� The All� to�All Block�CG
implementation has performed better than the other two implementations on the network of
workstations� and in the All� to � All and Master � Slave� distributed implementations the
speedups and e
ciency have increased as the granularity has also been increased�

��� Remarks

In this chapter we have shown the advantages of parallelizing the Block�CG Algorithm� In some
cases it has been shown that the parallel Block�CG will perform better than the sequential
Classical CG even when a few more FLOPs are computed with the Block�CG implementation�
In distributed computing environments� the poor performance of theMaster�Slave� centralized
Block�CG implementation proves that only parallelizing the HP products does not compensate
for the use of more than one CE given the small ratios between the parallel and sequential
computations� However� this implementation may perform better in the event that the matrix
H comes from a preconditioner that needs to be recomputed at each iteration�
Additionally� the Master � Slave� centralized Block�CG implementation is more trivial to im�
plement than the other two parallel Block�CG implementations presented in this chapter� and
has fewer critical sections �i�e�� sections of a parallel code where only one CE is allow to update
the date at a time� than its counterparts in shared memory environments because these critical
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Block�CG Sequential Time � ����� millisecs

Master�Slave� Master�Slave�
Number All�to�All Distributed Centralized

CE Time speedup E Time speedup E Time speedup E
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Table ����� Performance of parallel Block�CG implementations solving a Poisson�s equation problem�

Times in table are in seconds� The parallel runs were performed on a BBN TC�


 computer�

Execution time of Block�CG sequential version � ���� secs

Master�Slave� Master�Slave�
Number All�to�All Distributed Centralized

CE Time speedup E Time speedup E Time speedup E

� ���� ��� ���� ���� ��� ���� ����� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ����
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� ���� ��� ���� ���� ��� ���� ���� ��� ����

Table ����� Performance of parallel Block�CG implementations solving a Poisson�s equation problem�

Times in table are in seconds� The parallel runs were performed on a network of SUN Sparc �


workstations�
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sections appear every time a reduce operation is performed�
The granularity of the problem� the number of CEs used in a run and the characteristics of the
network have a greater impact on the performance of the All � to � All implementation than
in the other two implementations� Therefore� the All � to � All implementation will perform
better than its counterparts in some cases when a fair compromise is found between the number
of CEs and the granularity of the subproblems being solved�
A fair compromise can only be found after a few runs of the All� to�All parallel Block�CG im�
plementation using a di	erent number of CEs at each run� Clearly� tuning the parallel e
ciency
is only worthwhile when the linear system of equations is solved more than once with di	erent
values for the coe
cients of the equations each solution �these types of systems usually appear in
many application elds like structural engineering� climate modeling� operations research� etc��
From experiments reported in this chapter� it known that when a fair comprise is found the
All� to� All implementation performs better than the other two implementations in terms of
the parallel e
ciency �see for instance Table ������ On the other hand this fair compromise also
depends on the computing platform being used and when running in time�sharing mode the fair
compromise will also depend on the computational load of the computer system� Alternatively�
the Master � Slave� distributed implementation has exhibit a more consistent performance
even when moving from one computing platform to the other� and when solving linear systems
of di	erent sizes�
The Master � Slave� distributed implementation has exhibited linear speedups because of its
balance between communication and computations� Moreover� the speedups are increased as
the granularity of the problem is increased� Chapter �� we use the Master� Slave� distributed
Block�CG implementation inside a block Cimmino iteration to accelerate its convergence rate�
The resulting implementation is extended to general unsymmetric sparse systems� Furthermore�
inside a block Cimmino iteration the synchronization points are overlapped with useful compu�
tations�
In general� the Master � slave� distributed implementation suits distributed computing envi�
ronments better�



Chapter �

Solving general systems using

Block�CG

The Block�CG algorithm only guarantees convergence in the solution of symmetric positive def�
inite systems� With the use of a preconditioner the algorithm can be extended to the solution
of general unsymmetric systems� As this can be done by using Block�CG as an acceleration
procedure inside another basic iterative method� In this chapter� we study two iterative row
projection methods for solving general systems of equations� and use the Block�CG algorithm
to accelerate the rate of convergence of a row projection method�
An overview of the block Cimmino method is presented in Section ���� and the block Kaczmarz
method is brie�y introduced in Section ���� An implementation of the block Cimmino method
accelerated with the stabilized Block�CG Algorithm is presented in Section ����
General issues from a computer implementation of the block Cimmino method accelerated with
the Block�CG algorithm are discussed in Section ���� and the corresponding parallel implemen�
tation is presented in Section ����


�� The block Cimmino method

The block Cimmino method is a generalization of the Cimmino method �see Cimmino ��������
Basically� the linear system of equations

Ax � b� �������

where A is a m� n matrix� is partitioned into l subsystems� with l  m� such that


BBBB�

A�

A�
���
Al

�
CCCCAx �


BBBB�

b�
b�
���
bl

�
CCCCA � �������
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Notice� that the term !block" in block Cimmino refers to the matrix blocks that result from
������� and not to the number of right�hand side as in Block�CG�
Figure ��� illustrates a geometric interpretation of the block Cimmino method in a planar case�
The block method computes a set of l row projections� and a combination of these projections
is used to build the next approximation to the solution�
Algorithm ����� describes the block Cimmino iteration� the matrix A�

i is the Moore�Penrose
pseudoinverse of the submatrix Ai dened by

A�
i � AT

i

�
AiA

T
i

���
�

and PR�AT
i
� is a projector onto the range of A

T
i given by

PR�AT
i �
� A�

i Ai�

Algorithm 	���� �Block Cimmino�

��� x��� is arbitrary

��� For j � �� �� � � �� until convergence do�

����� For i � �� �� � � �l do�

������� �
�j�
i � A�

i bi � PR�AT
i
�x

�j�

����� x�j��� � x�j� � �
Pl

i�� �
�j�
i

��� Stop

One of the advantages of the block Cimmino method is the natural parallelism in Step ������ and
for this reason its parallel implementation for distributed computing environments is studied in
Section ����
In Algorithm ������ the Moore�Penrose pseudoinverse A�

i is used� However� the block Cimmino
method will converge for any other pseudoinverse of Ai �Campbell and Meyer �������� Thus�
we use the generalized pseudo�inverse

AG�� � G��AT
i

�
AiG

��AT
i

���
�

where G is an ellipsoidal norm matrix�
When solving for the �i�s in Algorithm ������ the augmented systems approach �Bartels� Golub�
and Saunders ������ and Hachtel ������� is used because it is computationally more reliable



	��� THE BLOCK CIMMINO METHOD ��
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Figure ���� Block Cimmino geometric interpretation� In this case a two block row
partition is depicted�

and less expensive than the normal equations� Here� the augmented system equations for Ai�s
are written as

�
G AT

i

Ai �

� �
ui
vi

�
�

�
�

bi � Aix

�

with solution

vi � �
�
AiG

��AT
i

���
ri

ui � AiG���bi � Aix� �������

� �i�

In Step ����� of Algorithm ������ the choice of the relaxation parameter � has an impact on the
convergence of the algorithm�
It can be veried that the block Jacobi iteration matrix applied to the system

�
AAT y � b

x � ATy�
�������

�see Hageman and Young ������� is similar to the iteration matrix of the block Cimmino method
�see for instance Ruiz �������� For this reason in a study of row projection methods� Elfving
refers to the block Cimmino method as the !Block�row Jacobi" method �Elfving �������� In
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Elfving�s paper� he shows that the convergence of the block row method depends on the relax�
ation parameter � and the spectral radius of the matrix dened by

M �
lX

i��

PR�AT
i
� �

lX
i��

AT
i

�
AiA

T
i

���
Ai� �������

If b � R�A� and x��� � R�AT �� then the block�row converges towards the minimum norm if and
only if

�  �  min

�
��

�
�

��M�

��
�

The value of � giving the optimal asymptotic rate of convergence is

� �
�

�max � �min

�

where �max and �min are the largest and smallest nonzero eigenvalues of the matrix M �


�� The block Kaczmarz method

The block Kaczmarz is another row projection method and is a generalization of the Kaczmarz
method �Kaczmarz �������� As in the block Cimmino method� the block structure from the
original matrix is obtained by partitioning ������� as �������� And a block Kaczmarz algorithm
can be dened as in Algorithm ������ Figure ��� illustrates a geometric interpretation of the
Block Kaczmarz algorithm�

Algorithm 	���� �Block Kaczmarz�

��� x��� is arbitrary

��� For j � �� �� � � �� until convergence do�

����� z��� � x�j�

����� For i � �� �� � � �l do�

������� z�i��� �
�
I � �PR�AT

i
�

�
z�i� � �A�

i b
i

� z�i� � �A�
i

�
bi � Aiz

�i�
�

����� x�j��� � z�l���

��� Stop
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Figure ���� Block Kaczmarz geometric interpretation� In this case a two block row
partition is depicted�

Contrary to the block Cimmino algorithm� block Kaczmarz is sequential in nature� The Kacz�
marz projections are computed one at a time in Step ������ This is also illustrated in Figure
��� in the planar case� The current iteration is projected onto the di	erent subspaces using the
updated value from one subspace to compute the next one� If � is greater than one� then an
overprojection is performed otherwise an underprojection is performed� After computing all the
projections over each subspace the new iterate is obtained �Step �������
The Kaczmarz method has also been studied by Elfving ������� and he shows that the method is
equivalent to the block SOR applied to the system �������� Thus Elfving refers to the Kaczmarz
method as the block�row SOR�
The relaxation parameter � in the block Kaczmarz method does not depend on the spectral
radius of the matrix as the block Cimmino method� Furthermore� the block Kaczmarz con�
verges towards the minimum norm solution when b � R�A� and x��� � R�AT �� The di	erences
between the convergence of the block Cimmino and the block Kaczmarz methods are similar
to those between the Jacobi and SOR methods for solving symmetric positive denitive linear
systems �see Hageman and Young ��������

The iteration matrix of the block Kaczmarz method�

lY
i��

�I � �P
R�AiT �

��

is not symmetric� and in general its eigenvalues are not real but complex� As for the symmetric
SOR� or SSOR method� a symmetric version of the block Kaczmarz method can be derived�
thus the Kaczmarz method is also referred as the block SSOR method� The symmetric block
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Kaczmarz method has a symmetric matrix with real eigenvalues� and with these properties it
can be accelerated with the Block�CG Algorithm� Kamath and Sameh ������ presents a study
on the robustness of the conjugate gradient acceleration for block row projection methods as
the block SSOR�

One of the advantages of the block Kaczmarz method over the block Cimmino method is that
the relaxation parameter is independent of the spectral radius of the matrix� On the other
hand� one can improve the solution time of a system of equations by exploiting the natural
parallelism of the block Cimmino method� whereas the symmetric block Kaczmarz method can
only be parallelized for some matrices with a special structure in which a block partitioning will
allow the computations of two or more subspaces independently and in parallel �see Arioli� Du	�
Noailles� and Ruiz �������� Comparisons between the block Cimmino method and block SSOR
method can be found in the works of Bramley ������� Bramley and Sameh ������� and Arioli�
Du	� Noailles� and Ruiz �������

The Block�CG acceleration for basic stationary iterative methods does not require that the basic
iterative method is convergent� In the block Cimmino method� the rate of convergence can still
be slow even with the optimal �� and this motivates the study of a procedure to accelerate its
convergence rate in the next section� A similar procedure can be derived for the symmetric
block Kaczmarz method �see Ruiz ��������


�� Block Cimmino accelerated by Block�CG

The block Cimmino method is a linear stationary iterative method� with a symmetrizable itera�
tion matrix �for a denition of symmetrizable iterative method see Hageman and Young �������
page ���� The use of ellipsoidal norms ensures the conditions that make the block Cimmino
iteration matrix SPD�
Any basic iterative method for the solution of

Ax � b

may be expressed as

x�j��� � Qx�j� � k� �������

where Q is the iteration matrix� The block Cimmino iteration matrix is �I� �M�� From �������
and Step ������� in Algorithm ������ the expression in ������� becomes

x�j��� � �I � �M�x�j� � k �������

� �I � �M�x�j� � �
lX

i��

A�
i bi�

Let D be the block diagonal matrix with diagonal blocks AiA
T
i � thus the matrix M can be

rewritten as
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Figure ���� The block Cimmino method accelerated with
the stabilized Block�CG algorithm�

M � ATD��A �������

From �������� the matrixM is SPD if A is square and has full rank� The �I � �M� is symmetric
semidenite for � � � and SPD if A is square and has full rank� Using the generalized pseudo
inverse in �������

x�j��� �
�
I � �M �G�

�
x�j� � �

lX
i��

AiG��bi
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with M �G� dened as

M �G� �
lX

i��

AiG��Ai�

A SPD block Cimmino iteration matrix can be used as a sort of preconditioning matrix for the
Block�CG method� We recall that Block�CG will simultaneously search the next approximation
to the system�s solution in s�Krylov subspaces and in the absence of roundo	 errors will converge
to the system�s solution in a nite number of steps� Figure ��� depicts the Block�CG acceleration
described in Algorithm ������ And in Algorithm ����� it can be seen that the convergence of the
algorithm is independent of the relaxation parameter ��

Algorithm 	���� �Block�CG acceleration for block Cimmino�

��� X��� is arbitrary� P ��� � R���

��� For j � �� �� � � �� until convergence do�

����� R�j� is the pseudo residual vector�

R�j� � �

�
lX

i��

AiG��Bi �M �G�X�j�

�

����� X�j��� � X�j� � �j

����� P �j��� � P �j��� � �jPj

����� �j � R�j�TGR�j�
�
P �j�TGM �G�P �j��

���

����� �j � R�j���TGR�j���
�
R�j�TGR�j�

���
��� Stop


�� Computer implementation issues

At rst� the matrix A is partitioned row�wise into l blocks according to �������� And inside a
block� the columns with only zero elements are not explicitly stored�
In Figure ����a�� the linear system is partitioned into three blocks of rows� In Figure ����b�� the
blocks are illustrated after discarding the columns with only zero elements� A section of columns
is dened as the group of contiguous columns with nonzero elements� and all the columns in
one section appeared exactly in the same blocks� In Figure ����c�� there are seven sections of
columns� S� is the section of contiguous columns with nonzero elements that appeared A� only�
S� is the section of contiguous columns with nonzeros that appeared in A� and A

�
�� S� is the

section of contiguous columns with nonzeros that are in A�� A��� and A�� and so forth�
The number of sections of columns depends on the sparsity pattern of the columns of the matrix
A� and this number can be very large� If the iterative scheme is designed to manipulate the
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blocks by sections of columns� as is the case of this implementation� then a large number of
sections of columns may prevent us from solving the system of equation in a reasonable amount
of time� Therefore� an amalgamation parameter is used to scan groups of columns instead of a
single column at time�
The purpose of removing the columns with only zero elements from the blocks� and clustering
the columns in sections of columns is to avoid performing unnecessary operations on operands
with zero value� In addition� storage space is saved because the zero elements are not explicitly
stored�
After analysing the structure of the blocks� the data structures for handling the augmented sys�
tems are generated� Figure ��� illustrates the augmented systems from the block row partition
in Figures ����a�c��
After building the l augmented systems� ������� is solved using the sparse symmetric linear solver
MA�� from the Harwell Subroutine Library �Du	 and Reid ������ and AEA Technology ��������
The MA�� solver is a frontal method which computes the LDLT decomposition� The MA��
solver has three main phases� Analyse� Factorize� and Solve�
During the MA�� Analyse phase� the minimum degree criterion is used to choose the pivots
from the diagonal� The order of eliminations is represented in a elimination tree that is parsed
using a depth�rst search� In the MA�� Factorize phase� the matrix is decomposed using the
assembling and elimination ordering from the MA�� Analyse phase� The MA�� Solve phase
uses the factors generated in the previous phase to solve the system of equations�

With the generation of the augmented systems the size of the subproblems in ������� is increased�
and using the sparsity pattern of the augmented systems will minimize the storage space re�
quired to store the augmented subsystems�
In general� the ellipsoidal norms matrices� Gi�s� are diagonal matrices� The nonzero elements

in a Gi are stored in an one dimension array of length less than or equal c
�G�
i m� where c

�G�
i is

maximum number of nonzeros in a row of Gi and c
�G�
i 
 m� For Ai and A

T
i � only Ai needs to

be stored since AT
i can be implicitly obtained from Ai� The Ai matrices are stored in a general

sparse matrix format�
The zero blocks in the lower right corner of each augmented system are not explicitly stored in
memory� Thus� the only increment in the storage space requirement comes from the nonzero
elements in the ellipsoidal norm matrices�

The solve phase of the Block�CG acceleration is depicted in Figure ��� and this is an imple�
mentation of Algorithm ������ At each iteration� the augmented systems are solved to obtain
the �i�s� The sum of the �i�s is used as the residual vector in the Block�CG iteration and this
procedure is repeated until convergence is reached�


�� Parallel implementation

This section deals with the parallel distributed implementation of the block Cimmino method
with a Block�CG acceleratioin studied in Section ���� The parallel implementation of Block�CG
acceleration is designed for general distributed computing environments including heterogeneous
computing environments�
The Master � Slave� distributed parallel Block�CG implementation presented in Section �����
is used inside the parallel Block�CG acceleration� A few additions are made to the parallel
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Block�CG implementation to accommodate the used of the Cimmino iteration matrix�
Figure ��� illustrates the computational �ow of the parallel implementation of the block Cimmino
method accelerated with the Block�CG algorithm�

Pre-Factorize

Pre-Analyse

Pre-Solve

Factorize

Analyse

Block-CG

Flow control

Communication

In Parallel

Sequential

Master Slave

Figure ���� Scheme of the parallel Block�CG acceleration for the block Cimmino method�

In the Pre�Analyse phase� the master process is responsible for partitioning the system of equa�
tions� and identifying the sections of columns� These partitions are specied by the user as an
input parameter�
With the sections of columns� the master is able to identify data overlaps between the di	erent
blocks� This information is later transmitted to the slave processes� and with this information
the slave processes build their local information about their computational neighborhood �e�g��
identication of neighbor slave processes� and data it needs to communicate to each neighbor
slave process��
Before the master process sends informtion to the slave processes� the master process calls a
scheduler to evenly distribute the workload among the slave processes� and this distribution is
based on the partitioning of the system and data overlappings between the sections of columns�
After scheduling the solution of the di	erent subsystems� the master process dispatches to each
slave information from one or more subsystems� During this rst dispatch� the master process
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sends to the slave processes the sparsity pattern of each augmented system� and the description
of the corresponding sections of columns�
In the MA�� Analyse phase only the structure of the matrix is used� Later� the numerical values
are used in the MA�� Factorize phase� For this reason during the rst dispatch the master pro�
cess sends only the structure of the augmented systems to the slave processes� and each slave
process calls the routine that implements the MA�� Analyse phase on one or more augmented
systems� While the slave processes call the routine that performs the MA�� Analyse� the master
prepares the data messages for the parallel numerical factorization of the subsystems�
Once the messages are prepared� the master process sends to each slave process the numerical
data that corresponds to each augmented system� In this way the second dispatch of informa�
tion is expected to overlap with the parallel computations of the MA�� Analyse phase that is
performed in parallel by the slave processes�
With the numerical information� the slave processes call the routine that performs the MA��
Factorize phase� and at the same time the master process prepares the messages with the right�
hand side values and sends them to the slave processes�
Lastly� the master and slave processes take their roles in the Block�CG computations as de�
scribed in the Master � Slave� distributed parallel Block�CG implementation �from Section
������� However� some procedures need to be modied to accommodate the use of the block
Cimmino iteration matrix in Block�CG�
Basically� there are two main di	erences between the data manipulation in the parallel Block�
CG and the one in the parallel Block�CG acceleration� As discussed in Section ����� the system
of equations is partitioned column�wise in Block�CG and it is partitioned row�wise in the block
Cimmino method� and to overcome this di	erence the blocks of rows are manipulated in sections
of columns �see Figure �����
Secondly in the Master � Slave � distributed Block�CG implementation� there is a distributed
reduce operation in which the slave processes exchange the results from partial products and
each slave builds locally a part of the global product� Furthermore� the use of ������� helps to
identify the contributions of each slave process to the global solution� In the Block�CG acceler�
ation� ������� cannot be used because the matrix A may not have a full diagonal�
Two solutions to this problem are considered� The rst one distributes section ownership roles
between the slave processes� Thus� a slave process monitors a reduce operation on one or more
sections of columns� In other words� the distributed reduced operation becomes a centralized
reduced operation� and the slave process that owns a section of columns is responsible for col�
lecting local results from neighbors and broadcasting back the global results�
The number of sections of columns varies with the sparsity pattern of the matrix A and the
amalgamation parameter discussed in Section ���� A large number of sections of columns will
congest the networks and degrade the overall performance of the parallel implementation�
The assignment of the section ownership roles is not trivial because the parameters that deter�
mine the computational weight involved in a centralized reduce operation are only known after
a few iterations of the Solve phase� Calibrating the workload after a few iterations of the Solve
phase is computationally expensive in the case of the Block�CG acceleration because of all the
local data structures that have already been generated by a slave process�
Alternatively� a distributed reduce operation can be used at the expense of redundant computa�
tions that are performed locally by two or more slave processes� In this case� each slave process
manipulates the data it receives from its neighbor processes and eliminates the redundant data
while building a part of the global solution�
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In comparison with the parallel Block�CG implementations �see Chapter ��� the granularity of
the parallel Block�CG has been increased with the use of the block Cimmino iteration matrix�
The increase on the granularity� and the e	ects of the overlaps between sections require a better
scheduling strategy than the scheduling strategy presented in Chapter � to overcome the com�
munication bottlenecks and benet from the parallel scheme that overlaps communications with
useful computations�



Chapter �

A scheduler for heterogeneous

environments

One of the advantages of working in heterogeneous computing environments is the ability to pro�
vide certain level of computing performance proportional to the number of resources available in
the system and their di	erent computing capabilities� A scheduler is regarded as a strategy or
policy to e
ciently manage the use of these resources� In parallel distributed environments with
homogeneous resources� the level of performance is commensurate with the number of resources
present in the system�
A scheduler for parallel iterative methods in heterogeneous computing environments is presented
in this chapter� An overview of some scheduling techniques is introduced in Section ���� In Sec�
tion ��� we present a static scheduler for heterogeneous environments and justify its application
in parallel Block�CG like iterative methods� The di	erent modules of the scheduler can be reused
for other parallel iterative� direct or semi�direct methods�
In heterogeneous computing environments� the scheduler not only considers information from
the tasks to be executed in parallel but it must also consider information about the capabilities
of the CEs� In Section ���� a syntax for specifying heterogeneous environments is dened�
Finally� in Section ��� an example of an application of the scheduler is presented� In the example�
the scheduler distributes a set of tasks arising from the parallel Block�CG acceleration of the
block Cimmino method presented in Chapter ��

��� Taxonomy of scheduling techniques

There is a great variety of procedures for solving the problem of distributing a set of resources to
a group of consumers in an optimal manner� and this problem is known to be NP�complete �see
Garey and Johnson �������� In general� all these procedures receive di	erent names depending on
the discipline in which they are used� In the context used here� the scheduler can be characterized
by a mapping function that assigns work to a set of CEs� thus in some literature the problem
has been referred as the mapping problem �see for instance Heddaya and Park ������� Talbi and
Muntean ��������
Several authors have classied the di	erent scheduling strategies in a taxonomy� A taxonomy of
di	erent scheduling strategies is presented in Figure ���� which is an extension of the taxonomies
presented by Casavant and Kuhl ������� Talbi and Muntean ������� In this chapter� a static
greedy scheduling strategy is used and a short overview of all of the strategies in Figure ��� will

��
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Figure ���� Taxonomy of some scheduling strategies

help to understand our choice for a static greedy scheduling strategy�

The rst classication in the taxonomy illustrated in Figure ��� is related to the time the
scheduling strategy is applied� In a pure static strategy� the scheduling decision is made before
the parallel processing starts� In a dynamic strategy� decisions for the distribution of tasks are
constantly made throughout the parallel processing� Therefore� a dynamic strategy is preferred
when dynamic creation of tasks or allocation of processors is allowed�
In a dynamic scheduling strategy very little information is known about the needs of the tasks
and characteristics of the computing resources� Dynamic strategies can be performed distributed
when many processors can run the scheduling strategy �see Gao� Liu� and Railey �������� or
non�distributed in which the dynamic scheduling strategy is centralized in a single processor
�see Stone ��������
The classication of cooperative or non�cooperative relates to whether or not the di	erent pro�
cessors consult one another while distributely performing a dynamic scheduling strategy� In
the cooperative case a global optimal scheduling solution can be sought� In some cases� the
high cost of computing an optimal scheduling solution can be reduced by accepting a relatively
good scheduling solution� and in this case a sub�optimal scheduling strategy is used� The same
scheduling strategies under the static sub�optimal classication can be used for the dynamic
sub�optimal one�
Here� a static scheduling strategy is considered because in iterative methods generally it is pos�
sible to collect a priori information from the parallel tasks before the parallel processing phase
begins� Also� data locality is an important issue for several iterative methods and moving data
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around will only increase the communication cost that represents already a bottleneck in the
performance of some parallel iterative methods�
In a static optimal scheduling strategy the assignment of tasks is based on an optimal criterion
function which may involve the minimization of the total execution time� or maximization of
the usage of available resources in the system �see for instance� Bokhari �����b�� Gabrielian
and Tyler ������� Shen and Tsai �������� The size of the search space in this problem grows
exponentially with the number of resources and tasks involved in a parallel run� Furthermore�
the problem has been proven to be NP�complete when the number of processors goes to innity
�see Chretienne ��������
Our e	orts are now reduced to sub�optimal scheduling strategies because of the exponential cost
of optimal scheduling strategies� A sub�optimal strategy can be based on a search for a good
approximation to the solution inside a given search space� Several search algorithms have been
developed under this principle and some of these algorithms are used in static optimal scheduling
strategies� These strategies are not studied in more detail here and the reader is referred to the
following studies of static approximate strategies

� Mathematical�Programming �Bokhari �����b�� Gabrielian and Tyler ������� Ma� Lee� and
Tsuchiya �������

� Queuing�Theory �Kleinrock ������� Kleinrock and Nilsson �������

� Graph�Theory �Bokhari ������� Shen and Tsai �������

� Enumerate �Shen and Tsai ��������

Static heuristic scheduling strategies make the most realistic assumptions about a priori knowl�
edge concerning the tasks� and individual performance of each processor �see for instance
Efe �������� and for this reason they are preferred in this work over static approximate strate�
gies�
In a static greedy scheduling strategy� part of a scheduling solution is given and this solution
is expanded until a complete schedule of tasks is obtained� Only one task assignment is made
at each expansion� On the other hand� iterative based scheduling strategies are initialized by a
complete schedule of tasks and this schedule is improved through iterations� At the end of each
iteration the schedule is evaluated using a function� and the output of this function is tested
against a stopping criterion �e�g�� minimum execution time� maximum utilization of allocated
processors��
Depending on the function that evaluates the current schedule� an iterative strategy can be
based on some well known general purpose strategies or specic scheduling solutions that have
been proposed for certain problems and in Figure ��� the instances of Specic scheduling strate�
gies are Process Clustering �Lo �������� and Routing limitation �Bokhari �����a�� which are not
further discussed here� Some examples of General Purpose strategies are Genetic Algorithms�
Hill Climbing� and Simulated Annealing�
Genetic algorithms are stochastic search techniques introduced by Holland ������� and they are
regarded as optimization algorithms based on a space search in which each point is represented
by a string of symbols� Each string combination is assigned a value based on a tness function�
The algorithm starts with a basic set of initial points in the space called the basic population�
a new set of points is generated at each iteration� The process is called reproduction because
the new generated points are combinations of the current population� Then� some of these new
generated points are discarded using the tness function for the elimination criteria� From the
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points that survive� the algorithms generate a new sequence and this iteration is repeated for a
given number of generations�
Hill�Climbing algorithms �Johnson� Papadimitriou� and Yannakakis ������� nd a global mini�
mum only in convex search spaces� It starts with a complete schedule� and tries to improve it
by local transformations� At the end of each iteration the new schedule is evaluated and if the
cost of the move from the old schedule to the knew one is positive the move is accepted� This
process is repeated until there are no more possible changes to the scheduling solution that will
further reduce the cost of the function� Thus� a local minimum is found rather than a global
minimum�
Simulated annealing algorithms scan a search space using Markov chains to apply a sequence of
random local transformations to a system that has been submitted to a high temperature� These
transformations a	ect the temperature in the system until a state of equilibrium is reached� Sim�
ulated annealing algorithms �Kirkpatrick� Gelatt� and Vecchi ������� are sequential in nature
and di
cult to parallelize �Greening �������� and scheduling strategies based on these algorithms
are more costly than the two previous iterative strategies �Talbi and Muntean ��������

��� A static scheduler for block iterative methods

In this section� we propose a scheduler for synchronous block iterative methods� The proposed
scheduler has a number of parameters that are tuned to suit the particular scheduling needs from
a block iterative method� In the taxonomy illustrated in Figure ���� the proposed scheduler is
classied as a static greedy scheduling strategy�
A static greedy strategy is preferred for the following reasons�

� In many synchronous block iterative methods� a task is associated to a partition of the
system of equations and these partitions are preserved through the iterations� Thus� no
dynamic tasks are generated and there is no advantage of using a dynamic scheduling
strategy over a static one�

� Finding an optimal distribution of the workload is ideal but is not a necessary condition
for parallel block iterative methods� Furthermore� optimal strategies are more expensive
to implement and compute than the sub�optimal ones�

� As discussed earlier� heuristic strategies are preferred over approximate ones because
heuristic strategies make the most realistic assumptions about a priori knowledge con�
cerning the tasks� and the CEs�

� A greedy strategy is preferred over the iterative ones because iteratives scheduling strate�
gies are generally more expensive to compute than greedy� and it is not always possible to
nd a tness function� or a good criterion to stop iterations�

In general� the scheduling problem for block iterative methods on heterogeneous computing
environments is rst approached by a symbolic description of the partition of problem to be
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solved �system of equations� and the heterogeneous computing environment�
Without loss of generality� the linear system of equations

Ax � b �������

can be divided into l subsystems of equations� and the resulting subsystems are not necessarily
mutually exclusive �e�g�� some equations can be repeated in more than one subsystem��
In general� ������� can be replaced by a di	erent expression when solving a di	erent type of
problem with a block iterative method�
The division of the system ������� into the l subsystem can be represented by an undirected
graph of subsystems given by

Gs � �Vs� Es�� �������

where Vs is a set of the vertices fVsi � i � �� �� � � �lg� and there is a vertex per subsystem of
equations� Es is the set of edges that represent a row or column overlap between subsystems� If
any two subsystems have rows or columns that overlap� then there is an edge between them and
depending on the number of rows or columns an integer value is associated with each edge to
represent the potential communication between the two subsystems� The value associated with
an edge is greater than zero� and edges with a zero value are reserved for subproblems that are
mutually exclusive� thus the edges are not explicitly included in the graph�
In the other hand� the heterogeneous computing environment is described as a metacomputer
with p CEs� CEs are identied by some computing characteristics that di	erentiate one from
the other �e�g�� computer name� computing speed� number of processors� architecture� etc���
Similarly to the graph of subsystems� a graph of CEs is dened by

Gce � �Vce� Ece�� �������

where Vce is the set of vertices fVcei � i � �� �� � � �pg� and each vertex represents a CE in the
metacomputer� Moreover� there are three di	erent types of vertices� VceR is identied as the
root vertex for monitoring the parallel processing in the metacomputer� Usually� the parallel
environment is generated from the CE represented by root vertex�
A vertex in Gce can also be a single processor or a cluster of processors� For the latter case�
the cluster is represented by a undirect subgraph of CEs� Gcei � �Vcei � Ecei�� that expresses
the interconnection between the CEs inside a cluster� A cluster can be shared or distributed
memory�
In ������ Ece is the set of edges in the metacomputer�s graph� and each edge represent the
interconnection network between the di	erent CEs� Figure ��� depicts an example of a CE
graph� In Figure ���� Gce� is a distributed cluster and Vce� to Vce� are the CEs inside this
cluster� Gce	 is a shared memory cluster� and in this case is represented by a graph with no
edges since the CEs are connected by a pool of memory rather than a physical communication
network�

The scheduling strategy can be dened as a mapping function

f � Vs �� Vce �������

such that

f�vsi� � vcei � i � �� �� � � �l� and

j � �� �� � � �p�
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Figure ���� An example of a graph of CEs�

Some authors have studied ������� as continuous function �for instance Prasanna and Musi�
cus ������� with an innite number of CEs� and any fraction� between � and �� of a CE can be
used to solve a subsystem� However� in practice ������� is taken to be a discrete function and a
subsystem can only by assigned to one CE�
To balance the workload distribution each vsi is assigned a computational weight using a discrete
function dened as

W � Vs �� N

N is the set of natural numbers� Then

W �vsj� �
rX

i��

�ji	ji � �������

where �ji � R are scalars and 	ji are parameters relevant to the subproblem �e�g�� number of
nonzeros� size of the subproblem� etc��� The �ji scalars control the signicance of the 	ji param�
eters� Similarly� a function to measure di	erent computational aspects from the CEs is dened�
The function outputs a number that is used as a priority for assigning work to the CEs� such
that a CE with a highest priority will be assigned tasks before a CE with a lower priority�

P � Vce �� N �������

P �vcej � �
rX

i��

�jipji �
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the �ji � R are scalars that control the signicance of the pji parameters or specications from
each CE�
Additionally� a workload function is dened as

# � Vce �� N �������

such that

#�vcej � �

ljX
i��

W �vsji �

n
vsji

olj
i��
is the set of subsystems assigned to vcej �

A static greedy scheduling strategy is described in Algorithm ����� for distributing tasks to a
group of heterogeneous CEs�

Algorithm 
���� �A Static Scheduling Algorithm�

��� Sort in descending order the vsj according to W �vsj ��
l � number of vsj �s

��� p � number of CEs in the metamachine�
if �l  p� then p � l

��� Sort in descending order the vcej according to P �cej�

��� for each vcej � Vce do�

����� Assign vsj to vcej � and update #�vcej�

��� for each vsi � Vs not yet assigned do�

����� Find best vcej � Vce to work on vsi
considering Es and #�vcej�

��� Stop

The purpose of considering Es in Step ����� of Algorithm ����� is to minimize the communication
between the CEs and the purpose of considering #�vcej� in the same step is to keep the workload
distribution balanced� However� the order in which these two parameters are considered leads
to two di	erent scheduling strategies�
If the set of edges is considered rst� then the priority is to reduce the communication between
the CEs� In this case� an attempt is made to assign to the same CE two or more subsystems that
potentially will communicate a lot� the #�vcej� parameter is also used here to avoid overloading
a CE�
If the #�vcej � are considered rst� then the priority is to balance workload among the CEs� For
each task in the not�yet�assigned list of tasks� the processor with the lowest #�vcej � is sought�
and the set of edges is used to resolve con�icts between two or more CEs with the same compu�
tational weights�
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��� Heterogeneous environment speci�cation

The heterogeneous environment is described in an input le or hesfile �for heterogeneous
environment specication le�� A hesle contains a line per CE in the metamachine� Each
line specication contains a list of keywords and values from the following syntax�

hostname $ ct or CT � DISTRIB� SHARED� SINGLE %
$ nm or NM� hostname�� $hostname�� ��%%
$ np or NP � integer number %
$ sp or SP � integer number %

the keywords and corresponding values between squared brackets �e�g�� $ %�� are optional� The
hostname is mandatory and if none of the other keywords are specied the default values are
used�
CT species the cluster type� and the default value for this keyword is SINGLE for a single
processor� The SINGLE value is provided for declaration of workstations�
If the cluster type is set to DISTRIB �e�g�� ct � DISTRIB�� then the hostname is a distributed
memory cluster� A distributed memory cluster is used for specifying a distributed memory
machine� a virtual shared memory machine� or a subset of a network of workstations that are
connected through a special communication network�
In the last case of the distributed cluster� the CEs are addressed independently� thus the keyword
NM is used for declaring a list of machines names in the distributed cluster�
The number of CEs in a cluster is specied with the keyword NP� and the default is one�
The keyword SP is used for specifying the speed of a CE or an output value from ������

��� A scheduler for a parallel block Cimmino solver

Basically� the di	erent phases of the parallel Block�CG acceleration are depicted in Figure ����
The basic iteration matrix in this case is the block Cimmino iteration matrix� thus the subprob�
lems are obtained after l row partitions of the system of equations �������� and the computational
weight factors are computed as follows�

W �vsi� � ��	i� � ��	i� � ��	i


	i� � size of the subsystem of equations

	i� � number of nonzeros

	i
 � number of edges

The scalars ��� ��� and �� determine the relevance of one parameters against the others�
The values associated to the edges in Gs are the number of columns that overlap between pairs
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of subsystems�
The parallel implementation of the Block�CG acceleration is based on the Master � Slave

distributed Block�CG implementation� thus the CEs communicates through messages� The
PVM ��� system library has been used for handling the message passing� Thus� the syntax
of the hesle accepts all the PVM ��� keywords dened for a hostle specication �see Geist�
Baguelin� Dongarra et al� ��������
PVM ��� provides standard information from each CE in a data structure called pvmhostinfo�
and this information can be modied through the PVM keywords� From the information in
the hesle and the information supplied by the pvmhostinfo� the nodes of the Gce graph are
generated� Figure ��� depicts a node from the Gce graph�

B C D E F G H I J KA

B: host_id

D: status

E: C.P.U. speed

cluster typeA: 

C: priority

pvm_tid

time_ref1G: 

F: 

time_ref 2H: 

number of descendents

pointer to first descendentJ:

I: 

K: next sibling

Figure ���� Structure of a node in the Gce graph�

The elds host id and pvm tid are included to interface the solver with the PVM system� The
cluster type is provided by the user in the hesle� The elds number of descendents� the pointer
to rst descendent� and next sibling are provided for traversing the Gce graph�
The elds status� time ref� and time ref� are used for monitoring the execution of a CE� The
priority eld is set after computing �������� The speed eld is taken from the PVM system by
default� however the user can specify it directly with keywords from the hesle or PVM hostle�
Algorithm ����� is used to schedule the solution of the subsystems on one of the CEs� The prior�
ity is given to the communication because of the synchronization points of the Block�CG method�

The partitions of the system of equations ������� can be uniform or nonuniform� If the system
of equations is uniformly partitioned� then each subsystem will have the same number of rows�
and the computational weights will not vary much from one subsystem to the other� In this case
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an approximate average workload per processor is dened by

w �

lX
i��

W �vsi�

pX
i��

Nprocs�vcei�

�������

Nprocs is a function that returns the number of processors specied in the declaration of each
CE�
On the other hand� if the system is nonuniformly partitioned� then the sizes and computational
weights from one subsystem to another may vary a lot� In this case� an upper�bound for the
computational workload is dened by

$�w � l� � �w � ��%�Nprocs�vcei� �������

with � � R� and �  �  ��
Other authors have suggested tuning the workload distribution by minimizing the workload
imbalanced after each assignment of a subsystem �see for instance Talbi and Muntean ��������
However� in the parallel block Cimmino accelerated with the Block�CG algorithm� the priority
for assigning subsystems to the CEs is on the values associated with the edges in Gs� thus we
suggest using ������ or ������ to keep the workload balanced�



Chapter �

Scheduler experiments

The purpose of this chapter is to validate the use of the static greedy scheduler proposed in
Section ��� �also in Arioli� Drummond� Du	� and Ruiz �������� The following experiments were
run on a network of SUN SPARC �� and IBM RS���� workstations as shown in Table ����

Computing Number of
ID Element Processors

A Cluster IBM RS����
With FDDI Network �

B IBM RS���� ��� �

C IBM RS���� ���H �

D � H SUN SPARC �� �

Table ���� List of available computing ele�
ments�

An unsymmetric non�diagonally dominant matrix that comes from a nite volume discretization
of the Navier Stokes equation coupled with chemistry is used in the numerical experiments� The
discretization is performed using a curvilinear mesh of �� by �� points on ve variables� and
this leads to a matrix of order �� � �� � � � ������ The original system is partitioned into ��
blocks� For the rst experiment� the system of equations is partitioned as described in Table ���
and in the second experiment the partition of the system of equations is shown in Table ���� The
resulting Gs for the rst and second partition are depicted in Figures ��� and ���� respectively�

Each subsystem will become a task to be performed by one of the computing elements in the
metacomputer� Three di	erent scheduling strategies are compared in the following sections to
analyse the in�uence of the scheduling strategy on the overall execution time of the parallel
block Cimmino solver accelerated with the Block�CG algorithm�
The rst strategy is a sequential distribution of subsystems to CEs� in which subsystems are
distributed one by one to the next CE in a circular queue of CEs� In this case neither commu�
nication nor workload balancing issues are considered�
The second strategy uses Algorithm ����� and in Step � the focus is to balance the workload
among the CEs� In this strategy� the CE with the lowest workload value is the candidate for

��
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solving the subsystem in turn� If there is more than one candidate the subsystem is scheduled
to the CE that has been previously assigned a set of subsystems with the highest potential of
communication with the subsystem in turn�
The purpose of the third strategy is to reduce the communication cost per iteration by schedul�
ing two or more subsystems with a high potential of communication to the same CE� Using �����
to nd upper bounds for the workload per CE� The third strategy also uses Algorithm ����� and
in Step ��� the emphasis is to minimize the communication�

Subsystem Number of Size of Number of
Number Rows Augmented System Nonzeros

�� �� ���� ���� � ���� �����

�� �� �� �� �� �� ��
�� ��� ��� ��� ���

��� ��� ��� ��� ��� �� ���� ���� � ���� �����

Table ���� Partition I of system equations into subsystems�

�� Scheduling subsystems with a nearly uniform workload

As show in Table ���� the subsystems have almost the same weight factor� and the purpose
of this experiment is to test the performance of the parallel Cimmino implementation under
di	erent distribution strategies�
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Subsystem Number of Size of Number of
Number Rows Augmented System Nonzeros

� ��� ���� � ���� �����

�� �� �� �� ��
��� ��� ��� �� ���� ���� � ���� �����

�� �� �� �� ��
��� ��� ��� �� ��� ���� � ���� �����

�� ���� ���� � ���� �����

Table ���� Partition II of system equations into subsystems�

scheduling Computing Elements
ID strategy A B C D E F G H

In Sequence � � � � � � � � � ��
STG� �Random� �� �� �� �� �� �� �� �� �� ��

First Consider � � � � � � � � �� ��
STG� Weight Factor �� �� �� �� �� �� �� �� � ��

First Consider � � � � � �� �� �� �� ��
STG� Communication � � � � �� �� �� �� �� ��

Table ���� Distributions of subsystems under three scheduling strate�
gies� Each subsystem is identied in the table by the number of its
corresponding subsystem�

ID Computing Elements Execution
Strategy A B C D E F G H Time �Secs�

STG� � � � � � � � � ����

STG� � � � � � � � � ����

STG� � � � � � � � � ����

Table ���� Number of neighbors per computing element un�
der three strategies
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The results from the rst experiments are shown in Tables ��� and ���� Each CE has to com�
municate with two neighbors� The rst strategy has performed better than the second strategy
because the weight of the subsystems is already balanced by the rst partition� and the attempt
to balance the workload using Step ��� only generates more communication�
In the third strategy the number of neighbors is reduced by one� and in this case the third
strategy reduces the execution time by saving communication�

�� Scheduling subsystems with non�uniform workload

scheduling Computing Elements
ID strategy A B C D E F G H

In Sequence � � � � � � � � � ��
STG� �Random� �� �� �� �� �� �� �� �� �� ��

First Consider � � � �� �� �� �� �� � ��
STG� Weight Factor � � � �� �� �� �� �� � �

First Consider � � � � �� �� �� �� �� ��
STG� Communication � � � � � �� �� �� �� ��

Table ���� Distributions of subsystems under three scheduling strate�
gies� Each subsystem is identied in the table by the number of its
corresponding subsystem�

ID Computing Elements Execution
Strategy A B C D E F G H Time �Secs�

STG� � � � � � � � � ����

STG� � � � � � � � � ����

STG� � � � � � � � � ����

Table ���� Number of neighbors per computing element un�
der three strategies

In this experiment� the subsystems have di	erent sizes� and some require more communication
than others� Thus� the performance of the three scheduling strategies is studied to conclude
with a strategy that best suits the parallel Cimmino implementation�
The results from the second experiments are summarized in Tables ��� and ���� Table ��� de�
picts the distribution of subsystems and Table ��� presents the number of neighbors per CE
and the total execution time� Clearly� the third strategy reduces the execution time because the
number of communications are also reduced and the communication is a bottleneck in parallel
implementations of conjugate gradient based methods�
The second strategy has performed better than the rst one because it balanced the workload
among the CEs and as a result CEs had to wait less at the synchronization points� In the rst
experiment� this e	ect did not appear because the subsystems were of almost the same size�
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however� in the second problem� these subsystem vary in size and number of neighbors�

�� Remarks

The parallel performance of the block Cimmino solver depends a great deal on the distribution
of tasks among the CEs� The rst scheduling strategy should be reserved for cases in which the
linear system is evenly partitioned into blocks of rows� the number of neighbors per CE is the
same� and the CEs have the same computing capabilities� In practice� these trivial partitionings
are not performed and we dedicate Chapters �� and �� to study the e	ects of the partitioning
on the behavior of the block Cimmino solver and its parallel implementation�
The second scheduling strategy should be preferred when the sizes of the blocks vary more than
the variations in the number of neighbors between blocks� The rst and second scheduling
strategies are more trivial and less costly to implement than the third strategy�
The third scheduling strategy performs better than its counterparts� and in the previous two
experiments� the third strategy has improved the performance of the parallel Cimmino imple�
mentation� Thus� this strategy is used in the experiments presented in Chapter � and it is
compared against the second scheduling strategy in Chapter ���
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Chapter 	

Block Cimmino experiments

In this chapter� we present runs of the parallel Cimmino with Block�CG acceleration� In these
experiments� trivial block row partitionings are performed on the linear system ������� to obtain
�������� Later in Chapter ��� we study partitioning strategies that may improve the overall
performance of the iterative solver in terms of its convergence rate and accuracy approximating
the real solution of the system of equations�
The GRE ���� problem is used in the rst experiment� This problem comes from the Harwell�
Boeing matrix collection �see Du	� Grimes� and Lewis �������� The unsymmetric matrix arises
in the simulation of computer systems� The sparsity pattern of GRE ���� is shown in Figure
���� The matrix is very ill�conditioned� and Arioli� Demmel� and Du	 ������ have shown that
its classical condition number in the innity norm �kAk�kA��k�� is equal to ���e���
In the second experiment� we use the FRCOL problem that comes from a two dimensional model
developed by Perrel for studying the e	ects of a body entering the atmosphere at a high mach
number� The problem is discretized using a nite volume discretization of the Navier Stokes
equations coupled with chemistry� There are two velocities and one energy at each grid point�
From the chemistry� there are two species which leads to two density variables per mesh point�
Thus� there is a total of ve variables per mesh point�
The discretization is performed in a curvilinear mesh of �� � �� points� leading to block tridi�
agonal matrices of order ��� ��� � � ������
In Section ���� we solve the GRENOBLE ���� problem using the block Cimmino accelerated
with the Block�CG� and study the impact of di	erent block sizes on the performance of the par�
allel solver� In these experiments� the block size for the Block�CG acceleration and the number
of CEs in the system are varied�
Afterwards� in Section ��� we solve the FRCOL problem� and x the block size to isolate the
e	ects of the block size on the rate of convergence that may speedup the parallel execution of
the iterative solver from the speedups arising from the parallelism� Thus� in the experiments of
Section ���� only the number of CEs in the system is varied�

��� Solving the GRENOBLE ���� problem

The GRE ���� matrix is partitioned into seven subsystems� The rst six subsystems have ���
rows each �three blocks of �� rows� ��� � � ���� � and the last subsystem has ��� rows �three
blocks of �� rows� ���� � ����� The experiments are run on the �� Thin node SP� computer at
CNUSC� The maximum number of CEs to be used in these experiments is seven because there

���
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GRENOBLE ����

NZ � ���

Figure ���� Sparsity pattern of GRE ��
� matrix�
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Figure ���� Convergence curves with equivalent iterations �the itera�

tion count is multiplied by the block�size�� Test problem� GRE ��
��

are seven subsystems�
Figures ��� and ��� show the convergence curves corresponding to these experiments� the block
sizes of �� ��� and �� converge in fewer iterations than the Classical CG acceleration�

In Tables ��� to ���� the execution time of the Solve phase has been separated from the other
two phases because� in some cases� the output of the Analyse and Factorize phases can be reused
to solve the same linear system of equations with a di	erent set of right hand sides� Thus� only
the Solve phase is rerun in these cases� For these experiments� we rst focus our attention on
the total run time� and then the run time of the Solve phase by itself�
A close look at the times shown in Tables ��� to ��� reveals that most of the computational
weight is in the Solve phase� And thus the Block�CG implementation has a great impact on the
performance of this parallel block Cimmino implementation�
As shown in Figure ���� the Block�CG acceleration with a block size of four is as fast� in terms
of equivalent iterations� as the CG acceleration �reported in gure with a block size of one��
However in Table ���� it is shown that using the Block�CG with a block size of four is faster
than using Classical CG�
In all cases� the speedups increase as we increase the number of CEs� And the e
ciencies ob�
tained in these experiments are higher than the ones obtained with the parallel Block�CG �see
Chapter ��� This is due to an increase in the granularity of the tasks performed in parallel� And
in this implementation of the Block�CG acceleration� the increase in the granularity comes from
the computations of the orthogonal projections from the block Cimmino method�
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Sequential times�
Block size �� total run � ���� secs� Solve phase� ���� secs
Block size �� total run � ���� secs� Solve phase� ���� secs

N Block size � Block size �

of Total run Solve phase Total run Solve phase

CEs Time Spdup E Time Spdup E Time Spdup E Time Spdup E

� ���� ��� ���� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ���� ���� ��� ����

Table ���� Results from the parallel Block Cimmino with Block�CG acceleration� On the solution of the

GRE ��
� problem� Times in this table are in seconds�

Sequential times�
Block size �� total run � ���� secs� Solve phase� ���� secs
Block size ��� total run � ���� secs� Solve phase� ���� secs

N Block size � Block size ��

of Total run Solve phase Total run Solve phase

CEs Time Spdup E Time Spdup E Time Spdup E Time Spdup E

� ���� ��� ���� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ���� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ��� ��� ���� ���� ��� ���� ��� ��� ����

Table ���� Results from the parallel Block Cimmino with Block�CG acceleration� On the solution of the

GRE ��
� problem� Times in this table are in seconds�
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Sequential times�
Block size ��� total run � ���� secs

Solve phase� ���� secs

N Block size ��

of Total run Solve phase

CEs Time Spdup E Time Spdup E

� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ����

Table ���� Results from the parallel Block Cimmino with

Block�CG acceleration� On the solution of the GRE ��
�

problem� Times in this table are in seconds�

��� Solving the FRCOL problem

Here� the FRCOL problem is solved using the parallel implementation of block Cimmino method
accelerated with the Block�CG stabilized algorithm� In this experiment� the size of the block for
the Block�CG acceleration is xed to � to isolate the performance of the parallel implementation
from that related to the block size� The linear system is partitioned into �� blocks of rows of
���� rows each� Therefore� a maximum of �� CEs are used in the parallel execution�
The FRCOL problem is larger than the GRENOBLE ���� problem� Thus� the grain size of
the parallel task has been increased� As shown in Table ���� this increase has favored the per�
formance of the parallel Cimmino implementation� and the e
ciencies obtained are above ����
when considering the total run time and above ���� when only considering the execution time of
the Solve phase� Thus� most of the computational resources are being used during the parallel
executions�

The e
ciency in the Solve phase increases as the number of CEs is increased� while the e
ciency
of the total run starts to decrease after ve CEs� This is due to the communication in the rst
two phases and� as shown in Table ���� the percentage of the total run time consumed in the
Solve phase decreases as the number of CEs is increased� whereas the percentage of the total
run time consumed by the master to slave communication in the Analyse and Factorize phases
increases as the number of CEs is increased� Therefore� the e
ciency of the total run time
decreases despite the reduction in the total run time due to an increase on the number of CEs�
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Sequential times�
Block size �� total run � ����� secs

Solve phase� ����� secs

N Block size �

of Total run Solve phase

CEs Time Spdup E Time Spdup E

� ����� ��� ���� ����� ��� ����

� ����� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ����

� ���� ��� ���� ���� ��� ����

�� ���� ��� ���� ���� ��� ����

Table ���� Results from the parallel Cimmino with Block�

CG acceleration� On the solution of the FR COL problem�

Times in this table are in seconds�

Number of CEs
Consumption of
run time in � � � � ��

Communication from
rst two phases ��� ��� ��� ���� ����

Solve Phase ���� ���� ���� ���� ����

Table ���� Percentages of the total run time consumed in the Com�

munication of the Analyse and Factorized phases and the execution of

the Solve phase�
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��� Remarks

The block Cimmino with Block�CG acceleration appears to be a reliable solver which suits well
the solution of some practical problems �for instance Benzi� Sgallari� and Spaletta ������� and
O�Leary �������� The solver can be easily tuned to reduce the number of iterations and improve
the performance of a parallel run�
In some cases� the e
ciency of the parallel runs of block Cimmino increases as the number of
CEs is increased� And the maximum number of the CEs to be used in a run is limited by the
number of blocks of rows from partitions of the linear system�
The partition of a linear system should be driven by the nature of the problem being solve�
In the next chapter� we study natural partitioning and preprocessing strategies to improve the
performance of the block Cimmino method�
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Chapter �


Partitioning strategies

Preprocessing a linear system of equations improves the performance of most linear solvers and
in some cases a more accurate approximation to the real solution is found� For instance� nu�
merical instabilities are encountered in the solution of some linear systems and it is necessary to
scale the systems before they are solved� These instabilities occur even when the most robust
computer implementations of direct or iterative solvers are used�
Also� performing some permutations of the elements of the original system can substantially
reduce the required computing time for the solution of large sparse linear systems by improving
the rate of convergence of some iterative methods �e�g�� SOR� and Kaczmarz methods�� and
reducing ll�in in direct methods�
The aim of this chapter is to study preprocessing strategies to derive natural block partitionings
of the form ������� from general linear systems of equations� We study two di	erent preprocess�
ing strategies to be applied to the original matrix A� These preprocessing strategies are based on
permutations that transform the matrix AAT into a matrix with a block tridiagonal structure�
Transforming the matrix AAT into a block tridiagonal matrix provides a natural partitioning of
the linear system for row projection methods because these methods use the normal equations
to compute their projections� Therefore� the resulting natural block partitioning should improve
the rate of convergence of block row projection methods as block Cimmino �Section ����� and
block Kaczmarz �Section �����

���� Ill conditioning in and across blocks

An ill�conditioned matrix A has some linear combinations of rows that are almost equal to zero�
and� as mentioned by Bramley and Sameh ������� these linear combinations may occur inside
blocks or across blocks after row partitionings of the form �������� If the method used for solving
the subproblems is sensitive to ill�conditioning within the blocks� then the method may converge
to the wrong solution�
Assuming that the projections in the block Cimmino are computed on the subspaces exactly�
then the rate of convergence of the block Cimmino method depends only on the conditioning
across the blocks� Therefore� a combination of a robust method for computing the projections
and a partitioning strategy that minimizes the ill�conditioning across the blocks is sought�

To study the ill�conditioning across the blocks� we consider the linear system of equations re�
sulting from the partitioning �������� and the QR decomposition of the submatrices AT

i � Then�

���
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AT
i � QiRi� i � �� � � � � l where Ai is an mi � n matrix of full row rank�

Qi n �mi� QT
i Qi � Imi�mi

Ri mi �mi� Ri is a nonsingular upper triangular matrix�

Writing again the sum of projections of the block Cimmino method in matrix form �from Section
����� we have

M �
lX

i��

AT
i

�
AiA

T
i

���
Ai� ��������

and� replacing the Ai�s by the QR factors�

M �
lX

i��

QiRi

�
RT
i Q

T
i QiRi

���
RT
i Q

T
i

�
lX

i��

QiRi

�
RT
i Ri

���
RT
i Q

T
i

�
lX

i��

QiQ
T
i

� �Q� � � �Ql��Q� � � �Ql�
T ��������

Using the theory of the singular value decomposition �see Golub and Kahan ������� Golub and
Van Loan �������� it can be seen that the nonzero eigenvalues of �Q� � � �Ql��Q� � � �Ql�

T are also
the nonzero eigenvalues of �Q� � � �Ql�

T �Q� � � �Ql�� Therefore� the spectrum of the matrix M
from �������� is the same as the spectrum of the matrix


BBBBBBBBBBB�

Im��m� QT
�Q� � � � � � � QT

�Ql

QT
�Q� Im��m� QT

�Q� � � � QT
�Ql

���
� � �

���

QT
l Q� � � � � � � Iml�ml

�
CCCCCCCCCCCA

��������

where the QT
i Qj are the matrices whose singular values represent the cosines of the principal

angles between the subspaces R�AT
i � and R�A

T
j � �see Bj&orck and Golub �������� These principal

angles are recursively dened by
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cos�'�i�j�k� � max
u�i�j��R�A

T
i �

�
max

v�i�j��R�A
T
j �

�
uT�i�j�v�i�j�

ku�i�j�k kv�i�j�k

��
��������

�
uT�i�j�kv�i�j�k

ku�i�j�kk kv�i�j�kk

subject to

uT�i�j�u�i�j�p � � for p � �� � � � � l� �� and

vT�i�j�v�i�j�p � � for p � �� � � � � l� ��

l varying from � tomij � min
h
dim�R�AT

i ��� dim�R�A
T
j ��

i
� The set of vectors

n
u�i�j�� � � � � � u�i�j�mij

o
and

n
v�i�j�� � � � � � v�i�j�mij

o
are called the principal vectors between the subspaces R�AT

i � and

R�AT
j ��

Notice� the principal angles satisfy

�  '�i�j��  � � �  '�i�j�mij

�

�
�

and if all of the mij principal angles are equal to
�

�
� it means that R�AT

i � is orthogonal to

R�AT
j �� and the wider the principal angles are the closer the block Cimmino iteration matrix is

to the identity matrix� Furthermore� the closer the iteration matrix is to the identity� the faster
the convergence of the Block�CG acceleration should be�
The principal angles by themselves do not provide information regarding the spectrum and
ill�conditioning of the resulting iteration matrix� therefore it is necessary to study partitioning
strategies for which there exists a strong relation between these principal angles and the spec�
trum of the iteration matrix�

Without loss of generality� assume that the matrix A is partitioned in two blocks

�
A�

A�

�
� ��������

where A� and A� have m� and m� rows respectively� and further assume that m� � m��
With ��������� the block Cimmino iteration matrix is dened as C � I � ��P� � P��� where
P� � PR�AT

� �
and P� � PR�AT

� �
� From ��������� M � P� � P�� and from �������� it can be re�

duced to �Q�Q���Q�Q��
T � Therefore from ��������� the spectrum of the block Cimmino iteration

matrix for the �������� partition is given by


� ��� ��Im��m� ��QT

�Q�

��QT
�Q� ��� ��Im��m�

�
A
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As mentioned in Section ���� the block Cimmino with the Block�CG acceleration is independent
of the relaxation parameter �� Thus� if � � � then


� �m��m� �QT

�Q�

�QT
�Q� �m��m�

�
A ��������

The following observations follow from ��������

� Since m�  m�� the rank of the rectangular matrices QT
�Q�� and QT

�Q� is not greater than
m�� Thus� there are at most �m� nonzero eigenvalues�

� The use of the Block�CG acceleration guarantees the nite termination of the block Cim�
mino method in exact arithmetic� In this particular case� it should not take more than �m�

steps to reach convergence� Therefore� block Cimmino with the Block�CG acceleration will
work better for small values of m��

� The singular values of the matrix QT
�Q� and the eigenvalues of the matrix �������� are

strongly related� Indeed� a singular value decomposition of the matrix QT
�Q� �following

Golub and Van Loan ������� is given by

QT
�Q� � U(V T �

with U and V orthogonal matrices with dimensions m� �m� and m� � m� respectively�
( is a rectangular matrix with dimensions m� �m�� and ( � diag���� ��� � � � � �m��� The
matrix �������� is equal to

�
U �
� V

��
� �(

�(T �

��
UT �
� V T

�

And has the same eigenvalues as the matrix�

�
� �(

�(T �

�
�

The eigenvalues of matrix �������� are f��i� i � �� � � � � m�g and correspond to the cosines
of the principal angles between the two subspaces R�AT

� � and R�A
T
� ��

���� Two�block partitioning

In the following sections� we will study two preprocessing strategies to permute the rows of
the matrix A based on permutations that transform the AAT matrix into a block tridiagonal
matrix� Matrices with block tridiagonal structures are commonly found in discretization of
partial di	erential equations and in practice these systems are solved using di	erent iterative
schemes� Coe
cient matrices from other general systems of equations can also be permuted to
block tridiagonal matrices using matrix reordering techniques �see for example Du	� Erisman�
and Reid ��������
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Two�block partitioning refers to a partitioning strategy in which the columns inside a block of
rows intersect the columns of at most two other blocks� A two�block partitioning can be applied
to matrices with a block diagonal structure and in some cases this will speed the convergence of
the linear solver�
For instance� let the matrix A with blocks of size b� b be partitioned into ve blocks of rows as
illustrated here
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where each Ai has ki� b� and each ki � �� for i � �� �� � � � � �� Further� for i � �� �� �� we observe
that the pair of subspaces R�AT

i � and R�A
T
i��� are orthogonal� and the sum of these orthogonal

projections onto these two subspaces correspond to the orthogonal projection onto the direct
sum of these orthogonal subspaces� viz�

PR�AT
i
� � PR�AT

i
� � PR�AT

i
��R�AT

i���
�

Therefore� the partitioning dened in �������� is numerically equivalent to partitioning in two
blocks� B� and B� as in ���������
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where
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B� �

��
i

Ai�i is odd

�
� B� �

��
i

Ai�i is even

�

From Section ����� the number of nonzero eigenvalues in the iteration matrix is at most � �
min�m�� m�� when using a two�block partition� In ��������� m� and m� are the number of rows
in B� and B� respectively� Therefore� varying the number of rows in B�� and B� will also vary
the number of nonzero eigenvalues of the iteration matrix�
Without loss of generality� we go back to one of the assumptions made in Section �����m� � m��
the size of the interface block B� can at least be of size � �b� which is the minimum required
for making the Ai�s in B� orthogonal�
In the parallel implementation of the block Cimmino method accelerated with Block�CG� the
compromise is to nd a matrix partitioning that reduces the size of the interface block B� which
implicitly improves the rate of convergence of Block�CG acceleration� and at the same time
enables a fair distribution of the workload�

���� Preprocessing Strategies

Given the general linear system of equations

Ax � b� ��������

with the matrix A of dimensions m�n� The rst preprocessing strategy nds a permutation of
the normal equations

B � PAATPT ��������

such that the matrix B has a block tridiagonal structure� An implementation of the Cuthill�
McKee Algorithm �see for instance Cuthill and McKee ������� George ������� Du	� Erisman�
and Reid ������� for ordering symmetric matrices is used� Afterwards� the system of equations

�Ax � �b ��������

is solved� with �A � PA� and �b � Pb� From the block tridiagonal structure of the matrix B�
the block row partition ������� is dened by partitioning the blocks of rows in �A with respect
to the diagonal block in the block tridiagonal structure of B� Doing this� the row partitioning
preserves the advantages of the two�block partitioning described in Section ����� Figure ����
illustrates the row partitioning of �A from the diagonal block structure of B�

In the second preprocessing strategy� the matrix AAT is rst normalized

B � AAT

D � diag�B�

B � D�
�
�BD�

�
�

Afterwards� remove all the nonzero elements in B which are value under a tolerance value � in
absolute� viz
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Figure ����� Row partitioning of �A from block tridiag�

onal structure of B�

B � remove�B� ���

permute B using the Cuthill�McKee Algorithm

�B � PBPT ��������

and solve ��������� In this case the row partitioning for �A is dened by the block tridiagonal
structure of �B�

The rst preprocessing strategy always delivers a matrix A with a two�block partitioning� The
partitioning obtained with the second strategy is close to a two�block partitioning� and this will
become clearer with the partitioning experiments in the next chapter�
Additionally� since some nonzero elements under a tolerance value are removed from B in the sec�
ond preprocessing strategy� the matrix �B has a smaller bandwidth than the matrix B� Therefore�
�B has more blocks on the diagonal than B and consequently the matrix �A can be partitioned
into more blocks of rows�
Clearly� the second preprocessing strategy is a more �exible partitioning strategy�

We perform a last step after using either preprocessing strategy� In this last step the columns
that belong to the same subset of blocks are grouped to expedite the identication of sections of
columns in the block Cimmino solver �see Section ����� The need for this last step will become
more evident in the experiments in the next chapter �particularly compare Figure ���� with
Figure ���� and Figure �����a with Figure �����b��
In the last preprocessing step� the sparsity pattern of �A is stored in a sparse matrix C� such
that the matrix C has a � in all places that the matrix �A has a nonzero element�
Then the block row partitioning from the matrix �A is applied to the matrix C� such that� Ci is
the i�th block of the matrix C� If l is the number of blocks of rows in the matrices �A and C�
then we use a matrix D� of dimension l � n� to store the sparsity pattern of each block in C�
As depicted in Figure ����� if there is at least one � in the j�th column of the block matrix Ci�
then D�i� j� � ��

After scanning the sparsity pattern of the blocks in �A� an integer label is computed for each
column of the matrix �A in the following manner
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of rows�
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��p���D�p� j� for j � �� � � �n ��������

After computing the labels� they are sorted in ascending order and the results from the sort
dene a column permutation to be applied to the matrix �A�
Notice that these column permutations will group all the columns that belong to the same subset
of blocks� and the resulting matrix will have sections of columns inside the blocks of rows and
these sections of columns are the ones used in the parallel Cimmino implementation described
in Section ����



Chapter ��

Partitioning Experiments

Now� we perform some more runs of the parallel block Cimmino implementation using the Block�
CG acceleration� and focus on the e	ects of the preprocessing strategy on the performance of the
method� In the experiments reported in Chapters �� �� and �� we have used trivial partitionings
based on the size of the linear systems and the number of available CEs in the computational
platform� In this chapter� all of the previous e	orts invested in the parallelism are combined
with the preprocessing strategies for solving the linear system of equations and the advantages
of using the output from a preprocessing phase are emphasized�
The experiments in this chapter were run on a SP� Thin node�
In Section ����� the parallel block Cimmino implementation is used for solving the SHERMAN�
linear system from the Harwell�Boeing matrix collection �Du	� Grimes� and Lewis �������� The
symmetric matrix SHERMAN� comes from the discretization of partial di	erential equations
extracted from an oil reservoir modeling program� The matrix arises from a three dimensional
simulation model on a ��� ��� � grid using a seven�point nite di	erence approximation with
one equation and one unknown per grid block �Simon ��������
Section ���� contains the results from experiments of runs of the parallel block Cimmino imple�
mentation solving the GRENOBLE ���� problem introduced in Chapter ��

���� Solving the SHERMAN� problem

The matrix SHERMAN� is a symmetric matrix of order ����� The spectrum of the matrix was
shown earlier in Chapter �� Figure ����� The experiments reported in this section were selected
from a large set of experiments varying the block size for the Block�CG acceleration� To focus
on the e	ects from the preprocessing strategies� the block size in the Block�CG has been xed
at �� In these experiments� we have used 
 as a stopping criterion �see Section ���� for the block
Cimmino iterations� and the error is reduced below ���� ������
The original pattern of the matrix SHERMAN� is shown in Figure ���� and the results from
parallel runs of the block Cimmino implementation solving the original system �i�e�� without any
data preprocessing� are reported in Table ���� under the column labeled Original matrix A�
The parallel block Cimmino program can be invoked from the command line with several pa�
rameters to specify the computing environment� the problem to be solved� and other values that
are meaningful to the parallel solver �for instance the block size for the Block�CG acceleration�
the threshold value for the stopping criterion� the block partitioning strategy� the size of the
integer and double working arrays� etc���

���
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SHERMAN��

The following is an example of a call to the block Cimmino solver from the UNIX command line
�note that the only purpose for including this type of example in this chapter is to summarize
the di	erent parameters of the parallel solver that were used in a given set of runs� Further� the
examples should not be confused with a user guide to the parallel block Cimmino solver��

command���� blkcimmino �hesfile sp�env �datafile sherman��rua �

�partitions �	 ��	 ��	 ��	 ��	 ��	 ��	 ��	 ��	 ��	 ��� �

�blocksize � �threshold ��	D��� �scheduling 


As mentioned in Section ���� the computational environment is specied in a HESle� and in
the above example the HESle is the sp�env� The linear system is stored in the Harwell�Boeing
sparse matrix format in the sherman��rua le� In the rst experiment� a trivial row block
partition of the linear system is performed�
The rst argument following the �partitions keyword is the number of blocks of rows in the
linear system of the form �������� In these experiments� the blocks have almost the same number
of rows ����� only the last block has ��� rows�� the �blocksize keyword is used for the block
size of the Block�CG acceleration�
The value of the �threshold keyword is used for the stopping criteria� As mentioned in Chapter
�� we have implemented three scheduling strategies for the block Cimmino solver� In the results
reported in Table ����� only the second and third scheduling strategies are used because the
rst scheduling strategy is a random scheduling distribution� And from experiments presented
in Chapter �� there are no signicant advantages for using the rst scheduling strategy over the
other two�
Recall that the goal in the second scheduling strategy is to balance the workload� while in the
third scheduling strategy is to minimize rst the communication cost and preserve� as much as
possible� the balanced workload�
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For the second set of experiments� a trivial column permutation of the original matrix A is
performed� The goal of the column permutation is to group the columns that belong to the
same blocks� The column labeling �������� is used to nd these column permutation�
Figure ���� shows the matrix SHERMAN� after permuting its columns� The results from these
experiments are presented in Table ���� under the column labeled After column permutation�
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Figure ����� Sparsity pattern of the SHERMAN� matrix before and after column permutation using the column

labeling ��
������ The matrix SHERMAN� has been partitioned into blocks of rows�

Recall that block Cimmino is numerically insensitive to column permutations� Thus� the re�
duction in the number of overlaps between the blocks of rows may only improve the parallel
execution of the block Cimmino method because the communication is implicitly reduced�
In the third round of experiments� the rst preprocessing strategy from Section ���� is used�
Figure ���� shows the matrix SHERMAN� after the rst preprocessing strategy� From the block
tridiagonal structure of the normal equations from SHERMAN�� the matrix is partitioned into
blocks of rows� Later� the columns of the resulting matrix are permuted using the column
labeling ��������� The sparsity pattern of the matrix SHERMAN� after the rst preprocessing
strategy and column permutations is shown in Figures �����a� and Figures �����b�
Figure �����a is the result of applying the column permutations to the matrix SHERMAN� after
the Reverse Cuthill McKee algorithm is used inside the rst preprocessing strategy� and Figure
�����b is the result of using the Cuthill McKee algorithm instead in this preprocessing phase�
The partitionings shown in both gures are two�block partitionings� Here� we prefer Figure
�����b because there are ve blocks that are independent from the rest while in Figure �����a
we have obtained only four� In both cases� a great improvement in the parallel execution is
expected because there are independent blocks of rows�
The following is an example of the command line and parameters for running the parallel block
Cimmino experiments on the matrix SHERMAN� after using the rst preprocessing strategy
with the column permutations

command���� blkcimmino �hesfile sp�env �datafile sherman��stg��rua�
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�partitions �	 ��	 ��	 ��	 ��	 ��	 �	� ��
 ��� �	
 ����

�threshold ��	D��� �scheduling 


Again� the blocks of rows have nearly the same size� however the number of column overlaps
between the blocks of rows varies from � to �� and this implies nonuniform communication be�
tween the CEs during a parallel block Cimmino run� Results from the parallel block Cimmino
runs are presented in Table ���� under the column labeled Preprocessing strategy I�
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Figure ����� Matrix SHERMAN� after apply�

ing the preprocessing strategy I�

In the last experiments of this section� the second preprocessing strategy is applied to the matrix
SHERMAN�� Figure ���� shows the sparsity pattern of the normal equations from SHERMAN�
after symmetric permutation� Figure �����a shows the results of using the Reverse Cuthill�Mckee
algorithm and Figure �����b shows the results of using the Cuthill�McKee algorithm� The nor�
malized nonzero entries of AAT are plotted in Figure �����
The tolerance value is chosen to be ��� and the nonzero entries less than the tolerance value are
removed from the matrix AAT � The rows and columns of the new matrix AAT are permuted
using the Reverse Cuthill�McKee algorithm or the Cuthill�McKee algorithm� Figure ���� shows
the result of permuting the matrix using the Reverse Cuthill�McKee algorithm�

The sparsity pattern of the SHERMAN� matrix after completion of the second preprocessing
strategy is shown in Figure ����� This matrix is obtained after permuting the rows of the orig�
inal SHERMAN� matrix using either the Reverse Cuthill�McKee algorithm �Figure �����a� or
the Cuthill�McKee algorithm �Figure �����b� inside the second preprocessing strategy with the
column permutations based on the column labeling ���������

The following is an example of the command line and parameters for running the parallel block
Cimmino experiments on the matrix SHERMAN� after using the second preprocessing strategy
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Figure ����� Matrix SHERMAN� after applying the preprocessing strategy I and permuting the columns using

the column labeling ��
������ In �a� the Reverse Cuthill�McKee algorithm is used inside the preprocessing phase

and in �b� the Cuthill�McKee algorithm is used�
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Figure ����� Block tridiagonal structures of the normal Equations from SHERMAN� using the Reverse Cuthill�

Mckee algorithm in �a� and the Cuthill McKee algorithm in �b��
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Figure ����� Matrix SHERMAN� after applying the preprocessing strategy II and permuting the columns using

the column labeling ��
������ In �a� the Reverse Cuthill�McKee algorithm is used inside the preprocessing phase

and in �b� the Cuthill�McKee algorithm is used�

and performing the column permutations

command���� blkcimmino �hesfile sp�env �datafile sherman��stg��rua �

�partitions �	 ��	 ��	 ��	 ��	 ��	 ��� ��� ��� �� ��

�threshold ��	D��� �scheduling 


As shown in Figure ����� this partitioning does not lead to a two�block partitioning but numer�
ically it is not that di	erent because we have kept the largest entries from AAT �
After the second preprocessing strategy� there is more freedom in the way the permuted matrix is
partitioned into blocks of rows since the Cuthill McKee ordering �or the Reverse Cuthill McKee
ordering� is applied to a sparser matrix than the original AAT � In this section� we have chosen
only �� blocks to fairly compare with the results from the other three preprocessing strategies�
However� in the next section we present another example in which more blocks are obtained
using the second preprocessing strategy�

In the SHERMAN� problem� the performance of the Cimmino solver is substantially improved
by the preprocessing strategies I and II� First of all� the number of iterations has been reduced
from �� to �� with the rst preprocessing strategy� and from �� to �� with the second� This
proves that the second preprocessing strategy does not di	er too far numerically from a two�block
partitioning� Furthermore� when either preprocessing strategy has been used� the independent
blocks of rows reduce the communication required by the original linear system�
Using a trivial partitioning of the SHERMAN� matrix without preprocessing will lead to nearly
uniform tasks and this is the reason for the comparable results using the scheduling strategy �
with that using the scheduling strategy � with nearly uniform tasks� However� this is not the
case when any of the preprocessing strategies are used�
When the preprocessing strategies have been used� the resulting blocks do not only di	er in size
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Comp Original After column Preprocessing Preprocessing
env� matrix A permutation strategy I strategy II

Seq�
run ���� secs ���� secs ��� secs ��� secs

Time Spdup E Time Spdup E Time Spdup E Time Spdup E

stg� ���� ��� ���� ���� � ���� ��� ��� ���� ��� ��� ����

� CEs

stg� ���� ��� ���� ���� ��� ���� ��� ��� ���� ��� ��� ����

stg� ��� ��� ���� ��� ��� ���� ��� ��� ���� ��� ��� ����

� CEs

stg� ��� ��� ���� ��� ��� ���� ��� ��� ���� ��� ��� ����

stg� ��� ��� ���� ��� ��� ���� ��� ��� ���� ��� ��� ����

� CEs

stg� ��� ��� ���� ��� ��� ���� ��� ��� ���� ��� ��� ����

stg� ��� ��� ���� ��� ��� ���� ��� ��� ���� ��� ��� ����

�� CEs

stg� ��� ��� ���� ��� ��� ���� ��� ��� ���� ��� ��� ����

Table ����� Results from the parallel Block Cimmino implementation with Block�CG acceleration using four di�erent

preprocessing strategies in the solution of the SHERMAN� problem� Times in this table are in seconds� stg� and stg�

correspond to the scheduling strategies STG� and STG� respectively from Chapter 	�
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but also in the number of column intersections between blocks of rows� Therefore� the scheduling
strategy � distributes the tasks in a less favorable manner than the scheduling strategy ��
The minimum execution time reported in Table ���� is ��� secs� for a speedup of ��� on ��
processors using the partitioning strategy I and the scheduling strategy �� The execution time
in this case represents an improvement of ���� of the execution time from a sequential block
Cimmino run solving the original matrix SHERMAN��

���� Solving the GRENOBLE ���� problem

Now we perform similar experiments as in the previous section with the GRENOBLE ����
problem� We try to study the e	ects of varying the tolerance value in the second strategy� and
also the number of block partitions�
In Table ����� the results from runs of the parallel block Cimmino implementation are presented�
The results in the column labeled Original matrix A come from experiments using the block
row partitioning shown in Figure �����a� and the results in the second column labeled After
column permutation are from experiments using the block partitioning shown in Figure �����
b�
The following is an example of the call to the block Cimmino solver that was used in the set of
experiments that generated the rst two columns of Table �����

command���� blkcimmino �hesfile sp�env �datafile gre���	��rua �

�partitions � ��� ��� ��� ��� ��� ��� ��
�

�blocksize  �threshold ��	D�	 �scheduling 


Applying the rst preprocessing strategy to the GRENOBLE ���� problem leads to a matrix
with the sparsity pattern shown in Figure ������a� later the columns of this matrix are permuted
using the column labeling ��������� And as expected� the output of the rst preprocessing strat�
egy leads to a two�block partitioning� illustrated in Figure ������b�

In this case� an example of a call to the block Cimmino solver is

command���� blkcimmino �hesfile sp�env �datafile gre���	��stg��rua �

�partitions � �	� � �
	 ��	 ��	 ��� ��
 �blocksize  �

�threshold ��	D��� �scheduling 


Results from these experiments are reported in Table ���� under the column labeled Prepro�
cessing strategy I�

In the rst and second preprocessing strategies� the normal equations from GRENOBLE ����
are computed� and the sparsity pattern of the matrix AAT is shown in Figures ������a and
������b� The normalized nonzero entries are plotted in Figure ������

Two tolerance values are selected for testing the second preprocessing strategy� First� ��� is used
and about half of the nonzero entries are removed from AAT � The resulting matrix is reordered
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Figure ����� �a� GRENOBLE ��
� original sparsity pattern and �b� after grouping the columns according to

the block partitions�
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Figure ������ �a� GRENOBLE ��
� sparsity pattern after the �rst preprocessing strategy using Cuthill�McKee

for reordering the normal equations and �b� the same preprocessed matrix after column permutations�
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Figure ������ Sparsity pattern of the normal equations from GRENOBLE ��
�� In �a� the Reverse Cuthill�

McKee ordering is used and in �b� the Cuthill�McKee ordering is used�
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with the Cuthill McKee algorithm�
Figure ������a� shows the sparsity pattern of AAT after removing the nonzero entries less than
���� and permuting the matrix to a block tridiagonal form� Figure ������b shows the results
of using the second preprocessing strategy� The truncated matrix AAT in Figure ������a has a
smaller bandwidth than the normal equations from the original linear system� shown in Figure
������ and the blocks of rows in Figure ������b have fewer column overlappings than those in
Figure �����a and Figure �����b�
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Figure ������ �a� GRENOBLE ��
� sparsity pattern after the second preprocessing strategy using Cuthill�

McKee for reordering the normal equations and a tolerance value of 
��� And �b� the same preprocessed matrix

after column permutations�

Choosing a higher tolerance value� for instance ���� will lead to an almost diagonal matrix �Fig�
ure ������a�� and the output matrix from the second preprocessing strategy �Figure ������b� is
almost the same matrix as that shown in Figure �����b� Therefore� removing a large number of
nonzero entries from the AAT matrix will reduce the e	ects of the second preprocessing strategy�
In Table ����� the experiments with the tolerance value of ��� are presented under the column
labeled Preprocessing Strategy II � 
 blocks� The following is an example of the call to the
block Cimmino solver for these experiments

command���� blkcimmino �hesfile sp�env �datafile gre���	��stg��rua �

�partitions � ��� ��� ��� ��� ��� ��� ��� �blocksize  �

�threshold ��	D�	 �scheduling 


One of the advantages of using the second preprocessing strategy over the rst one is the free�
dom for partitioning the blocks of rows� Thus� we repeat the last experiments using the second
preprocessing strategy with a tolerance value of ���� with the system partitioned in �� blocks of
rows� Figure ����� illustrates the sparsity pattern of the resulting matrix� An example of the
calls to the block Cimmino solver used in these experiments is
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Figure ������ �a� GRENOBLE ��
� sparsity pattern after second preprocessing strategy using Cuthill�McKee

for reordering the normal equations and a tolerance value of 
��� And �b� the same preprocessed matrix after

column permutations�

command���� blkcimmino �hesfile sp�env �datafile gre���	��stg�b�rua �

�partitions �� 
� �� �
 �� �	� ��� ��� ��� ��
 ��� �� � �

�blocksize  �threshold ��	D��� �scheduling 


There is a reduction in the number of column overlaps between the blocks of rows in Figure
������ and those in Figure ������ Furthermore� the number of rows in each block is non�uniform
as in the trivial partitionings shown in Figures �����a and �����b�

The GRENOBLE ���� problem is interesting because the preprocessing strategy does not
change the behavior of the block Cimmino solver� That is to say� the distribution of eigenval�
ues inside the blocks of rows does not change after applying any of the preprocessing strategies�
Thus� the algorithm takes exactly the same number of steps to converge in all of the experiments
�i�e�� ��� iterations��
The results in Tables ���� and ���� show that using the second preprocessing strategy with a few
more blocks will improve the parallel performance of the solver because the number of column
overlaps between the blocks is reduced� and with more blocks more tasks can be generated and
more CEs can be used�
The maximum speedups in these cases are obtained with the preprocessing strategy I on � CEs
������ and preprocessing strategy II on �� CEs ����� using the third scheduling strategy� The
runs with the rst preprocessing strategy reported almost the same parallel behavior� in terms
of e
ciencies� as the second preprocessing strategy with �� blocks� Thus� the use of the second
preprocessing strategy is sensitive to the number of block partitions�
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Comp Original After column Preprocessing
env� matrix A permutation strategy I

Seq� run ���� secs ���� secs ���� secs

Time Spdup E Time Spdup E Time Spdup E

stg� ���� ��� ���� ���� ��� ���� ���� ��� ����

� CEs

stg� ���� ��� ���� ���� ��� ���� ���� ��� ����

stg� ���� ��� ���� ���� ��� ���� ���� ��� ����

� CEs

stg� ���� ��� ���� ���� ��� ���� ���� ��� ����

stg� ���� ��� ���� ��� ��� ���� ���� ��� ����

� CEs

stg� ��� ��� ���� ��� ��� ���� ��� ��� ����

Table ����� Results from the parallel Block Cimmino with Block�CG acceleration using three

di�erent preprocessing strategies on the solution of the GRENOBLE ��
� problem� Times

in this table are in seconds� stg� and stg� correspond to the scheduling strategies STG� and

STG� respectively from Chapter 	�
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to the scheduling strategies STG� and STG� respectively from

Chapter 	�
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���� Remarks

From experiments in Ruiz ������� the use of the augmented system approach is not very e
cient
when the blocks have a small number of rows compared to their number of columns� Thus� the
rst preprocessing strategy is preferred because it delivers a two�block partitioning with less
computational e	ort than the second preprocessing strategy�
Alternatively� if� for some linear systems� partitionings with small blocks must be preferred� then
the normal equations approach of Bramley ������� and Bramley and Sameh ������ should be
used inside the block Cimmino solver because it performs better in terms of e
ciency� And in
these cases� the solver should be combined with the second preprocessing strategy to have more
�exibility in the number and sizes of the blocks of rows�
The above experiments suggest that preprocessing strategies can greatly improve the perfor�
mance of the parallel Cimmino solver� Furthermore� the advantages of using either preprocessing
strategy will depend on the problem being solved� and the computing environment�
If a large number of CEs is available� and they are connected through a fast interconnection
network� then the second preprocessing strategy can be used to generate as many blocks of rows
as the number of CEs in the system� Nevertheless� a compromise must be found between the
size of tasks that are generated from the block row partitions� the e
ciency of the CEs� and the
method used for computing the normal equations inside the block Cimmino iterations�
On the other hand� if the computational system has only a few CEs� or there are possible
bottlenecks in the communication between the CEs �for instance� the bus in an ETHERNET
network�� then the rst preprocessing strategy should be used because it produces a two�block
partitioning of the original system which implicitly reduces the communication cost� and delivers
bigger blocks of rows�
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Conclusions

Currently� there is much active work in developing Krylov based iterative methods for the so�
lution of linear systems and eigenvalue problems� At the same time� there is a great demand
for accelerating the performance of these methods on the solution of large systems of equations
using e
ciently the computational resources�
Various authors have studied di	erent techniques to improve the performance of parallel im�
plementations of conjugate gradient�type methods� Parallel implementations of Classical CG
have attempted to reduce the number of synchronization points embedded in the Classical CG
algorithm and in this way minimize its execution time� However� these e	orts have led to either
break the robustness of Classical CG or increase its complexity� and in less favorable implemen�
tations both drawbacks are found�
In general� increasing the complexity of any algorithm pays o	 when the more complex algorithm
either extends the usefulness of the original or improves its computational rate� In both cases�
the robustness and correctness of the original algorithm must be preserved� Furthermore� for
computational purposes� if there is an increase in the storage requirements� then it should be
linear in the size of the system of equations�

We have studied a stabilized version of the Block�CG algorithm ����� which is a generalization
of the CG method� In exact arithmetic� Block�CG reduces the number of iterations of Classical
CG by a factor of its block size s� In practice� this block size is chosen to be much smaller than
the size of the linear system� In the stabilized Block�CG Algorithm ������ there is an increase in
the storage requirements from the Classical CG Algorithm ������ This increase is only a factor
of the block size times the size of the linear system�
The computational rate of the stabilized Block�CG implementation is increased as the block size
is increased and we show this e	ect in Chapter �� Some results from experiments are shown in
Figure ����� In the gure� results from runs of Classical CG are reported with a block size of
one� The increase in the complexity of the algorithm is caused by the use of rectangular matrices
of size n� s instead of vectors of size n� and extra orthonormalizations to preserve the stability
of the algorithm�
Additionally� in the Block�CG algorithm the matrix�vector operations from Classical CG are
replaced by matrix�matrix operations� Thus� Level � BLAS routines are used in Block�CG im�
plementations instead of Level � BLAS routines that are used by Classical CG� The use of the
Level � BLAS routines causes an increase in M�op rates as shown in Figure ����� due to better
data locality�
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Several authors have studied the parallelization of the Classical CG� Block�CG� and precondi�
tioned versions of these algorithms� We have shown� in Chapter �� that the Block�CG is more
suitable for parallel computing environments than the Classical CG because of its granularity
and the implicit reduction in the number of synchronizations� From the results of the three
parallel implementations of the Block�CG� we have concluded that the trivial parallelization of
the HP products is not as e
cient as parallelizing the entire algorithm�
Basically� the computational weight of the HP products decreases as the block size is increased�
This e	ect� summarized in Figure ����� motivates our development of the other two parallel
implementations of the Block�CG in which most of the Block�CG operations are performed in
parallel�

The Block�CG works well as an acceleration technique inside basic iterative methods for the
solution of general linear systems� We have studied a reliable implementation of the block Cim�
mino iteration with Block�CG acceleration� In this case� we have increased the complexity of
the stabilized Block�CG algorithm to be able to solve a larger set of linear systems and have
improved its overall solution time using a parallel implementation�
The performance of the parallel implementation of the block Cimmino method with Block�CG
acceleration is more sensitive to the strategy used for partitioning the system into blocks of rows
and the computational environment than the Block�CG algorithm is to column partitioning�
We have presented two examples of preprocessing strategies to nd natural partitionings of the
linear system of equations�
The rst preprocessing strategy provides a two�block partitioning of the original system of equa�
tions� A two�block partitioning of the linear system improves the performance of the parallel
implementation by reducing the communication between blocks of rows� Additionally� a two�
block partitioning� as presented in Section ����� can accelerate the rate of convergence of block
Cimmino�
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However� a two�block partitioning may deliver blocks of rows with extremely non�uniform work�
load that may lead to unbalanced workload distributions� and thus a	ects the e
ciency of the
parallel implementation�
The second preprocessing strategy can be used to derive a more �exible partitioning than the
two�block one� Generally� this strategy delivers more blocks than the rst preprocessing strat�
egy� Thus� more CEs can be used during a parallel run of the block Cimmino implementation�
The second preprocessing strategy may yield very small blocks of rows� and as stated in Chapter
��� The augmented system approach on small blocks with fewer rows than columns is not very
e
cient� Therefore� it is recommended to regroup contiguous blocks of rows into bigger blocks�
Inside the block Cimmino implementation we have used theMaster�Slave� distributed imple�
mentation of the Block�CG� In this case� the granularity of the tasks generated by the Block�CG
iteration has increased and the performance of the parallel block Cimmino algorithm is sensitive
to the distribution of tasks among available CEs�
We have studied di	erent scheduling strategies to distribute tasks among heterogeneous CEs�
Basically� in many iterative methods� the number and sizes of the tasks remain almost constant
from one iteration to the other� Furthermore� in several implementations� these tasks create
data structures that are local to one CE and expensive to move around� For these reasons we
have preferred a static scheduler over a dynamic one�
Although we have designed a scheduler for heterogeneous environments� the homogeneous cases
can be regarded as instances of these� In heterogeneous environments� for each CE� its theo�
retical speed and the number of available processors are used as parameters to the scheduler�
After partitioning the system of equations into block of rows� heuristics about the computational
e	ort required on a block of rows can be derived� In our implementation� we use for each block
of rows the number of column overlaps with other blocks� the size of the augmented system and
the number of nonzero elements as parameters to the scheduler�
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Both sets of heuristics� from each CE and each block of row� have lead us to implement a static
scheduler of the greedy subclass� And after isolating some numerical issues that accelerate the
rate of convergence of the block Cimmino solver� we have shown an improvement in the perfor�
mance of the parallel block Cimmino solver due to a proper selection of the parameters passed
to scheduler� and the scheduling strategy used�
For instance� Figure ���� illustrates an e
ciency surface obtained with various runs of the block
Cimmino with Block�CG acceleration in which the block size and the number of processors are
varied while the number of equivalent iterations is kept constant� In the experiments of Figure
����� the rst preprocessing strategy and third scheduling strategy were used� Using a di	erent
scheduling or preprocessing strategy lead to totally di	erent e
ciency results� In Figure �����
the experiments in which a block size of one was used in the Block�CG acceleration reported the
lowest e
ciencies� In these cases the e
ciency decreases as the number of CEs is increased� For
larger block sizes� the e
ciency surface is smoother even when the number of CEs is increased�
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The parallel strategies developed in the implementation of the block Cimmino with Block�CG
acceleration can be easily accommodated to implementations of other iterative schemes� The
static greedy based scheduler can be tuned to accept other input parameters from the computa�
tional environment and the linear system being solved� The strategies used in the manipulation
of distributed operations like the reduce are fully reusable in other parallel programs�

The modular structure of the parallel block Cimmino solver allows reusability of some of the
modules inside other iterative schemes� For instance� the module with Block�CG acceleration
can be reused inside the block Kaczmarz iteration with a new module for computing the Kacz�
marz projections� Furthermore� an iterative scheme has been proposed recently by Arioli and
Ruiz ������ which the authors call BlockCGSI� The BlockCGSI algorithm combines the sta�
bilized Block�CG with the theory of subspace iteration to overcome some of the breakdowns



���

of the Block�CG due to ill�conditioned systems and roundo	 errors� BlockCGSI increases the
complexity of the original Block�CG algorithm in order to extend the applicability to general
linear system of equations�
Moreover� any of the parallel Block�CG implementations presented in Chapter � can be reused
in an implementation of the new iterative scheme� Based on experiments reported in Chapter ��
theMaster�Slave� distributed or the All� to�All implementations should be just as e
cient
for the new iterative scheme�
The static scheduler from Chapter � can also be reused for distributing the tasks among the
CEs� Similarly� the software modules used in the block Cimmino and Block�CG implementations
to perform the reduce operations� to gather information from the computational neighborhoods
and to handle scattered data structures in parallel distributed environments can also be reused
in a parallel implementation of BlockCGSI�
Henceforth� we fully expect that BlockCGSI� as well as other block iterative schemes� can show
superior performance when implemented using the parallel concepts introduced in this work�
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