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Résumé

La résolution de trés grands systémes linéaires creux estomposante de base algorithmique
fondamentale dans de nombreuses applications scientfigjuealcul intensif. La résolution per-
formante de ces systemes passe par la conception, le dpeeiept et I'utilisation d’algorithmes
paralleles performants. Dans nos travaux, nous nous gs@ne au développement et I'évaluation
d'une méthode hybride (directe/itérative) basée sur ddmtques de décomposition de domaine
sans recouvrement. La stratégie de développement est axdatdisation des machines mas-
sivement paralléles a plusieurs milliers de processeuitude systématique de I'extensibilité et
I'efficacité parallele de différents préconditionneurgédriques est réalisée aussi bien d’'un point
de vue informatique que numérique. Nous avons compareé feufermances sur des systemes de
plusieurs millions ou dizaines de millions d’'inconnues poes problémes réelsD3

Mots-clés: Décomposition de domaines, Méthodes itératives, Méthditestes, Méthodes hy-
brides, Complément de Schur, Systémes linéaires densesuet d1éthodes de Krylov, GMRES,
Flexible GMRES, CG, Calcul haute performace, Deux niveagppdrallélisme, Calcul paralléle
distribué, Calcul sientifiqgue, Simulation numériques dangle taille, Techniques de précondition-
nement, Préconditionneur de type Schwarz additive.

Abstract

Large-scale scientific applications and industrial sirtiofes are nowadays fully integrated in many
engineering areas. They involve the solution of large sphingar systems. The use of large high
performance computers is mandatory to solve these problEngsmain topic of this research work
was the study of a numerical technique that had attractaifes for an efficient solution of large
scale linear systems on large massively parallel platforiiiee goal is to develop a high perfor-
mance hybrid direct/iterative approach for solving lardg® (goblems. We focus specifically on
the associated domain decomposition techniques for thal@lasolution of large linear systems.
We have investigated several algebraic preconditioningriigues, discussed their numerical be-
haviours, their parallel implementations and scalab#itiWe have compared their performances on
a set of 3D grand challenge problems.

Keywords: Domain decomposition, Iterative methods, Direct methétidyrid methods, Schur
complements Linear systems, Krylov methods, GMRES, fleXt®MRES, CG, High performance
computing, Two levels of parallelism, Distributed compgti Scientific computing, Large scale nu-
merical simulations, Preconditioning techniques, Adeitschwarz preconditioner.
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Introduction

La résolution de trés grands systemes linéaires creux estamposante de base algorithmique fon-
damentale dans de nombreuses applications scientifiquedale intensif. Il s’agit souvent I'étape

la plus consommatrice aussi bien en temps CPU qu’en espaueineé La taille des systemes util-
isés pour les grandes simulations complexes fait que lellcaltautes performances est aujourd’hui
incontournable (on doit résoudre aujourd’hui des systéhegsusieurs millions ou dizaines de mil-
lions d’'inconnues pour des problémes réels 3D). La résmiyierformante de ces systémes passe
par la conception, le développement et I'utilisation dalthmes paralléles performants qui posse-
dent des propriétés d’extensibilité pour permettre le ggess I'échelle et une exploitation efficace
de plateformes de calcul avec un grand nombre de processeurs

Dans nos travaux, nous nous intéressons au développeni&vadtiation d’'une méthode hy-
bride (directe/itérative) basée sur des techniques dentigasition de domaine sans recouvrement.
Il s'agit d'une méthodologie générale qui permet en paligcule résoudre des systémes linéaires
issus de la discrétisation d’équations aux dérivées [lagid_a stratégie de développement est axée
sur l'utilisation des machines massivement paralléledulsigurs milliers de processeurs.

De ces travaux se dégagent trois contributions principgléstructurent le manuscrit de thése ;
celui-ci comporte :

e Laformulation et I'analyse de différents préconditionrsade type Schwarz additif algébrique
pour des problémes 3D (Chapitre 2-3). Afin de réduire leszt®Anformatiques de leurs
mises en ceuvre nous proposons des variantes qui explogsrdlgorithmes en précision
mixte (32-bits et 64-bits) ainsi que des approximationsises. Pour des implantations sur
trés grand nombre de processeurs nous considérons soimestions par un précondition-
nement de deuxiéme niveau (correction grille grossierg)d&s mises en ceuvre algorith-
miques exploitant deux niveaux de parallélisme. Le Chapitest dédié a la description de
'implantation paralléle de ces approches.

e L'étude systématique de I'extensibilité et I'efficacitérpitele de ces préconditionneurs est
réalisée aussi bien d'un point de vue informatique que niguér Dans, ce contexte des
probléemes modeles académiques de type équations de aliffusD (Chapitre 5) ou de
convection-diffusion (Chapitre 6) sont considérés. Ldetest menée sur des machines jusqu’a
2048 processeurs pour résoudre des problénizsx plus de 50 millions d’inconnues. Ces
études ont été menées sur des machines telles que le SyseMixgohia Tech ou I''BM
Blue-Gene du CERFACS.

e La validation de notre approche sur des cas réels est enfiség€aur des problémes de mé-
canique des structures en maillages non-structurés (ochtion avec la société SAMTECH-
Chapitre 7) et enimagerie sismique (en collaboration aveohsortium SEISCOPE - Chapitre 8).
Dans ce dernier cas, on s'intéresse a la résolution desiégsiate Helmholtz en régime
fréquentiel. Plusieurs simulations sur des cas ré@se? 3D ont été réalisés. Dans ces
chapitres, nous présentons notamment les détails desparioes paralleles de notre ap-
proche exploitant deux nivaux de parallélisme.

Ce manuscrit débute par un exposé du cadre mathématiqudrdethude et se termine par un
bilan de cette étude, ainsi qu’'une discussion sur quelgisésspde travaux futurs avec des appli-
cations possibles sur les équations de Maxwell en réginmadr@gue (collaboration avec I'équipe
NACHOS, INRIA-Sophia-Antipolis).



Part I: résumé

Les méthodes de décomposition de domaines ont été dévemppér résoudre des problemes
complexes ou de grande taille, et plus récemment pourrtdgtemaillages non conformes, ou cou-
pler différents modéles. Nous introduisons dans ce clelgtr bases mathématiques des méthodes
de décomposition de domaines avec et sans recouvremeitjleggd a la résolution de grands sys-
temes linéairesAx=b. Les avantages de telles méthodes hybrides directetlig&rgu’elles sont
des approches:

e plus robustes que les méthodes itératives classiques eismolteuses en mémoire et en
calcul que les méthodes directes;

e bien adaptées aux calculateurs paralléles;

e qui permettent la réutilisation de codes séquentielsaxisiau niveau des calculs locaux. Ces
techniques constituent une approche modulaire du pasatiél

Méthodes de décomposition de domaines avec recouvrement

Elles consistent & découper le domaine de calcul en sousidesqui se recouvrent comme le
montre la Figurel. Elles permettent une actualisation simple des solutiocalés sur la base de
conditions aux limites de type Dirichlet ou Neumann ou unelimaison des deux aux frontiéres
artificielles introduites par la décomposition.

Figure 1: Décomposition de domain avec recouvrement.

Dans une classe d’approches basées sur cette approctsaligioh du systéme linéairdx="b
se fait par une méthode itérative appliquée en combinaigann préconditionneur. Cette méthode
se caractérise par une complexité arithmétique accrueitddefda replication des degrés de liberté
(ddls) dans les roues du recouvrement. Leur inconvéniamtipal est donc de compliquer quelque
peu la mise en ceuvre numérique, surtout lors de la résoldégroblémes 3D sur des géométries
complexes.

Méthodes de décomposition de domaines sans recouvrement

Elles consistent a découper le domaine de calcul en sousidemsans recouvrement comme
le montre la Figure; et a reformuler le probleme en un probléme équivalentesgta I'interface



uniqguement. Une classe de ces méthodes de décompositi@m@rdenes sans recouvrement ou
méthodes du complément de Schur s’apparentent aux méttdiesination de Gauss par blocs.
Elles consistent a ramener la résolution d’'un problemedalpbsé sur I'ensemble des degrés de
liberté issus de la discrétisation du domaine de calculr@éslalution d’'un probléme de taille moindre
posé sur les nceuds situés sur les interfaces entre les sowsres voisins dans la partition du
domaine de calcul.

,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2: Décomposition de domain sans recouvrement, rdéttio complément du Schur.

Soit A la matrice associée a la discrétisation du dom&neSoit I I'ensemble des indices des
nceuds appartenant a I'interface entre les sous-domairsessiaGroupant les indices correspondant
a ' et ceux correspondant aux intérieurs des sous-domainggstéme linéairel| s'écrit sous la
forme @). En appliquant une élimination de Gauss par bloc on abautilystéme 3). I'opérateur
associé au probléme d'interface et résultant du processlimuhation de Gauss par bloc est appelé
complément de Schus . Du point de vue du probléme continu, cela revient a la déimid’un
nouvel opérateur, I'opérateur de Steklov-Poincaré, qiiisag les variables d'interface et dont la
discrétisation donne le complément du Schur de 'opérateyorobléme global;

P x = b, (1)
A11 0 A1r X1 b1
0 Az Aar X |=b], ()
Ary Arp Arr Xr br
11 0 agr X1 V]
0 42 Aor X | = , by )
0 0 s Xr br_i;ﬂ”“qiﬁl bi

Ainsi résoudre le systeme linéaifex= b revient a résoudre le systéeme reduit ou le complément
du Schursxr = f ensuite résoudre simultanement les problemes intérigyxs= by — 4 rxr .
Soit sk le complément de Schur local en mémoire distribuée, dorst aige matrice pleine obtenue
en éliminant les degrés de liberté internes au sous-doniaindlors I'operateurs s’obtient en
sommant les contributions des différents sous-domaine®@it dans le cas géneral sous la forme
suivante:

N .
5 =3 &els Ve, @)



Le probleme d’interface ainsi posé est alors résolu par ustbode itérative adaptée, la plupart
des fois une méthode de Krylov. Généralement, ces méthodesmployées en combiniaison avec
un préconditionnement. Ainsi, nous introduisons notre@néitionneur paralléle qui est nommeé
Schwarz additif algébrique.

Pour étre réellement efficaces, non seulement il faut avwerhonne vitesse de convergence
mais, de plus, il faut que la méthode choisie soit utilisaffecacement sur des calculateurs paral-
léles massivement paralléles. Nous illustrons une étudesméthodes de Krylov et leur paralléli-
sation. Il existe plusieurs approches basées sur les espa&aylov. Une premiére classe composée
des méthodes de résidu minimal. Elles minimisent le résidd b— Axc , ce qui conduit a résoudre
un probléme de moindre carrés de petite taille. Des exendglegs méthodes sont MINRES pour
les matrices symétriques indéfinies et GMRES pour les nestaelconques. Une deuxiéme classe
est basée sur des principes d’orthogonalisation dansd#ésgwn impose que les résidus soient or-
thogonaux a I'espace de Krylov. Un exemple de ces méthodé&smgthode du Gradient Conjugué
pour les matrices symétriques définies positives. Dans bpifile 2, nous décrivons trois de ces
méthodes; GMRES, flexible GMRES et CG qui sont les plus égks

Préconditionneur Schwarz additif algébrique

Dans la littérature, il existe différents types de préctiodneurs associés a la méthode de com-
plément de Schur dont par exemple le préconditionneur de tigls BPS, Neumann-Dirichlet ou
encore Neumann-Neumann. On définit notre préconditiorsetype Schwarz additif pour le com-
plément de Schur de maniéere algébrique, ce qui le rend adages situations souvent rencontrer
en industrie ot le maillage est non-structuré. Pour chagug-domaineQy , on appelles le com-
plément de Schur local assemblé. Ce complément de Schumlgigsest formé par la somme des
contributions des compléments de Schur des sous-domaiiséiss/au sous-domairle. Autrement
dit, les blocs diagonaux dgx seront augmentés par les contributions du bloc diagonatspon-
dant de chacun du Schur des sous-domaines voisins au sozneX .

En écriture matricielle, le complement de Schur glohal@our une décomposition en tranches
s’écrit sous la forme suivante:

B Skk  Ske 5
S = Sk S Sem ) ()
Sme Smm Smn

Snm  Snn

On définit le préconditionneur Schwarz additif algébrigadadfacon suivantesj qui n’est autre que
la somme des inverses du complément de Schur local asseombigecle montre I'équatiorvy

-1

Skk Ske
Sk [ Sev [ Sem | 71 ' 6)
Sme | Smm | Smn
Snm  Snn

N _.
My_64= .;RFT(SU)){KE- 7)

On note que dans le cas des problemBs, s matrices locales du complément de Schur devi-
ennent trés grandes et leur utilisation comme précondiganlocal devient colteuse aussi bien en
calcul qu’en stockage. Il est donc nécessaire de consunedorme allégée du préconditionneur,
ce qui nous a amené a considérer:



e le préconditionneur Schwarz additif algébrique crédy, 64,
e le préconditionneur Schwarz additif algébrique en préaisnixte Mg_mix ,

e OuU encore une combinaison des deux, c.a.d. préconditioralgébrique additif Schwarz
creux en precision mMixtdsp—mix -

Deux niveaux de parallélisme

Le but de cette section est d’expliquer comment exploitGcafement le parallélisme pour
l'implémentation d’applications massivement parallélés plupart des algorithmes et des codes
existant sont implémentés avec un seul niveau de paralel{s-level). Cependant suivant notre
expérience surtout dans les domaines applicatifs on fesiurcompte que parfois un seul niveau
de parallélisme n’est pas suffisant et qu’on pourrait amélila robustesse et I'efficacité de la méth-
ode hybride par I'utilisation d’'un deuxiéme niveau de pléteme @-levels). On cite deux de
ces motivations de base qui sont a I'origine du développéunfien algorithme a deux niveaux de
parallélisme :

e Dans plusieurs applications industrielles, augmenteroebre de sous-domaines fait ac-
croitre le nombre d'itérations nécessaire au processtaiftfour converger; cela notam-
ment dans des applications de mécanique de structuresiféhgpet dans des applications
séismique (Chapitre 8). Pour cela nous avons proposédatidn de deux niveaux de paral-
Iélisme comme une amélioration du comportement numérigua théthode. Autrement dit,
au lieu d’augmenter le nombre de sous-domaines, on allasiepirs processeurs par sous-
domaine et on garde petit le nombre de sous-domaines, @cfaetin on garde les propriétés
numériques du systeme et on réalise une simulation plusefinent.

e Les grandes simulations industrielles nécessitent urgnasd espace de stockage par sous-
domaine. La plupart des fois cet espace n'est pas disposilen processeur. Alors sur
des machines paralléles de type SMP, les codes starfdéadd]) utilisent un seul processeur
du nceud de la machine laissant les autres processeurs duemoétiat “inactif” exécutant
une simulation avec un pourcentage inacceptable de lagnasscréte du nceud. L'idée ici
est de ne pas perdre I'efficacité de ces processeurs “ihatiifexploiter cette ressource de
calcul en les allouant au sous-domaine correspondanteiglbitation de deux niveaux de
parallélisme est vu comme une amélioration de la perforepacallele d'un algorithme.

L'exploitation de deux niveaux de parallélisme est illéstpar des exemples pratiques dans les
Chapitre 7 et 8.
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Chapter 1

Introduction

The solution of many large sparse linear systems dependseosimplicity, flexibility and avail-
ability of appropriate solvers. The goal of this thesis isd&velop a high performance hybrid
direct/iterative approach for solving largeD3problems. We focus specifically on the associated
domain decomposition techniques for the parallel solutibfarge linear systems. We consider a
standard finite element discretization of Partial Différ@rEquations (PDE’s) that are used to model
the behaviour of some physical phenomena. The use of laghelerformance computers is manda-
tory to solve these problems. In order to solve large spamsad systems either direct or iterative
solvers can be solved.

Direct methods, are widely used and are the solvers of chiniogany applications especially
when robustness is the primary concern. It is now possibkobee D problems with a couple
of million equations in a robust way with the direct solveuiyf exploiting the parallel algorithmic
of blockwise solvers optimized for modern parallel superpaters. Unfortunately, solving large
sparse linear systems by these methods has often been gsétistactory, especially when dealing
with practical “industrial” problems (I3 problems can lead to systems with millions or hundreds
of millions of unknowns). They scale poorly with the problsine in terms of computing times and
memory requirements, especially on problems arising flwediscretization of large PDE’s in three
dimensions of space.

On the other hand, iterative solvers are commonly used iryreagineering applications. They
require less storage and often require fewer operations divact methods, especially when an
approximate solution of relatively low accuracy is soudbhfortunately, the performance of these
latter techniques depends strongly on the spectral piep@tthe linear system. Both the efficiency
and the robustness can be improved by using an efficient pdéamer. It is widely recognized that
preconditioning is the most critical ingredient in the deypenent of efficient solvers for challenging
problems in scientific computation.

The preconditioner is an operator that transforms the maidinear system into another one hav-
ing the same solution but better properties with respedteéacbnvergence features of the iterative
solver used. Generally speaking, the preconditioner giteno improve the spectral properties of
the matrix associated with the linear system. For symmputrisitive definite problems (SPD), an up-
per bound of the rate of convergence of the conjugate gradiethod, depends on the distribution
of the eigenvalues (in other terms of the condition numbehefsystem). Hopefully, the precon-
ditioned system will have a smaller condition number. Fasyummetric problems the situation is
more complicated, we do not have any convergence bound loastite distribution of the eigen-
values for iterative solvers like GMRES, but some argumexitst for diagonalizable matrice89).
Nevertheless, a clustered spectrum away from zero ofteiftsas faster convergence.

In general, a good preconditioner must satisfy many coimsgrat must be inexpensive to com-
pute and to apply in terms of both computational time and nmgratmrage. Since we are interested
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in parallel applications, the construction and applicatibthe preconditioner of the system should
also be parallelizable and scalable. That is the precamdid iterations should converge rapidly, and
the performance should not be degraded when the numberaégsors increases. Notice that these
two requirements are often in competition with each othds hecessary to strike a compromise
between the two needs.

There are two classes of preconditioners, one is to desipiajzed algorithms that are close to
optimal for a narrow type of problems, whereas the secondysn&ral-purpose algebraic method.
The formers can be very successful, but require a complawliedge of the problem which may
not always be feasible. Furthermore, these problem spegificoaches are generally very sensitive
to the details of the problem, and even small changes in thielgym parameters can penalize the
efficiency of the solver. On the other hand, the algebraidwous use only information contained in
the coefficient of the matrices. Though these techniquesa@reptimal for any particular problem,
they achieve reasonable efficiency on a wide range of prablemgeneral, they are easy to compute
and to apply and are well suited for irregular problems. frenmore, one important aspect of such
approaches is that they can be adapted and tuned to ex@oifis@pplications.

Thus one of the interesting and powerful framework that cedithe complexity of the solvers
for solving large ® linear system in a massively parallel environment is to ydwill approaches
that combine iterative and direct methods. The focus ofttf@sis is on developing effective parallel
algebraic preconditioners, that are suitable and scafablbigh performance computation. They
are based on the substructuring domain decomposition aplpréurthermore, we investigate work
on multi-level parallel approaches to be able to explogéanumber of processors with reasonable
efficiency.

This manuscript is organized as follows.

Chapter 2 outlines the basic ingredients that are involved in the toMovear solvers. The main
developments in the area of domain decomposition methodgeetonditioning techniques from
a historical perspective are presented. Furthermoree timeshods are most often used to acceler-
ate Krylov subspace methods. In that respect, we brieflyeptebe Krylov subspace solvers we
have considered for our numerical experiments. Finallyjmmduce some basic concepts of the
backward error analysis that enables us to make fair cosmagibetween the various considered
techniques.

The availability of preconditioners is essential for a ®ssful use of iterative methods; conse-
quently the research on preconditioners has moved to cstaige in the recent yearShapter 3 is
mainly devoted to addressing the properties of the algeladditive Schwarz preconditioners stud-
ied in this thesis. SectioB.2is dedicated to the algebraic description of the additiMewez pre-
conditioner. The main lines of the Schur complement apgraae presented, and the main aspects
of parallel preconditioning are introduced. We propose stndy variants of the preconditioner. In
Section3.3we intend to reduce the storage and the computational cassibg sparse approxima-
tion. We propose mixed precision computation to enhancpeance, by using a combination
of 32-bit and 64-bit arithmetics. Thus, we present in Sec8al a mixed precision variant of the
additive Schwarz preconditioner and we motivate this idg¢hk fact that many recent processors
exhibit 32-bit precision computing performance that imgfigantly higher than 64-bit calculation.
Moreover, we study in SectioB.5 a two-level preconditioner based on algebraic constrostiaf
the coarse space component. This coarse space ingrediehibicapturing the global coupling
amongst the subdomains.

In Chapter 4, we discuss the parallel implementations of these teclesiqu distributed parallel
machines. Another line of research that we propose, is teldp\a2-level parallelalgorithm that
attempt to express parallelism between the subproblemalsmin the treatment of each subprob-
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lem. Using this latter method, we introduce a new level df tasd data parallelism that allows us to
achieve high performance and to provide an efficient pdrali@rithm for massively parallel plat-
forms. An efficient implementation in this framework regesra careful analysis of all steps of the
hybrid method. A distributed data structure, capable ofdtiag in a efficient way the main opera-
tions required by the method, is defined. Furthermore, séiraplementations issues are addressed,
ranging from the way to implement parallel local solverdie tlata exchange within the multi-level
parallel iterative kernels.

The parallel performance and the numerical scalabilittheffiroposed preconditioners are pre-
sented on a set of (B academic model problems. This study is divided into two téap

Chapter 5 focuses on the symmetric positive definite systems arisimm fliffusion equations.
We analyze in SectioB.3 the numerical behaviours of the sparsified and the mixeldraétic vari-
ants and we compare them with the classical additive Schpraconditioner. Then in Sectidn4,
the numerical scalability and the parallel efficiency oh¢ai on massively distributed memory su-
percomputers using MPI as message library illustrate thkabiity of the proposed preconditioners.

Chapter 6 is devoted to the convection-diffusion equations that$gadinsymmetric problems.
We quantify the numerical behaviours of the proposed vesiahthe additive Schwarz precondi-
tioner in Sectior6.3. A crucial characteristic of a preconditioner is the wayrésponse to distur-
bance changes when the system parameters change. Foréhatend to evaluate the sensitivity
of the preconditioners to heterogeneous discontinuitiés ev without anisotropies in the diffusion
coefficients, and to the convection dominated term. Resultsarallel performance and numerical
scalability on massively parallel platforms are preseimesection6.4.

Large-scale scientific applications and industrial nugssimulations are nowadays fully inte-
grated in many engineering areas such as aeronautical mgd&ructural mechanics, geophysics,
seismic imaging, electrical simulation and so on. Hence itriportant to study the suitability and
the performance of the proposed methods for such real @piplicproblems. In that respect, we
investigate these aspects in two different applicatioagpesented in two chapters.

In Chapter 7 we focus on a specific engineering area, structural mechanitere large prob-
lems have to be solved. Our purpose it to evaluate the robsstand possibly the performance
of our preconditioner for the solution of the challengingglar systems that are often solved using
direct solvers. We consider two different classes of pnoisleThe first one is related to the solution
of the linear elasticity equations. The second class oflprob, probably more realistic in term of
engineering applications, is still related to linear etitst with constraints such as rigid bodies and
cyclic conditions. We report on the numerical study and el performance analysis using our
favorite preconditioners. Moreover, we discuss how thalpelrefficiency can be improved by using
the2-level parallelapproach. Analysis and experiments show that when &siegelsof parallelism
the algorithm runs close to the aggregate performance aividable computing resources.

In Chapter 8, we investigate work in seismic modeling based on the fraquelomain full-
waveform tomography approaches. We analyze the accurabg dfybrid approach by comparing
the results to those obtained from an analytical solutioherilra parallel performance study for
respectively large @ and 3 models arising in geophysical applications are reporteidally,
we evaluate the parallel performance of théevel parallelalgorithm. A preliminary investigation
carried out on a set of numerical experiments confirm thaRthesel parallelmethod allows us to
attain a high level of performance and parallel efficiency.

The development of efficient and reliable preconditionelortd/solvers is the key for successful
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solution of many large-scale problems. We have attemptddgiolight some of the studies and
developments that have taken place in the course of the ylei@s of the thesis. There are many
furtherimportant problems and ideas that we have not begreased. We discuss a few perspectives
in a Conclusionpart at the end of this manuscript.



Chapter 2

Some basics on hybrid linear solvers

In this chapter we briefly describe the basic ingredientsahainvolved in the hybrid linear solvers
considered in this manuscript. The approach describedisnatbrk borrows some ideas to some
classical domain decomposition techniques that are pregém Sectior2.1 In this section some
popular and well-known domain decomposition precondéisnare described from an algebraic
perspective. Numerical techniques that rely on decomipasitith overlap are described in Sec-
tion 2.1.2and some approaches with non-overlapping domains aressisdun Sectio2.1.3 Fur-
thermore, these methods are most often used to accelesdtwIsubspace methods. In that respect,
we briefly present the Krylov subspace solvers we have cerssidfor our numerical experiments.
Both symmetric positive definite (SPD) problems and unsytmmproblems are encountered that
are solved using the conjugate gradient mett@fj, [described in Sectio.2.3 or variants of the
GMRES techniqued4, 87], described in Sectio@.2.2 Because we investigate various variants of
the preconditioners and intend to compare their numerighhbiours a particular attention should
be paid to the stopping criterion. It should be independemhfthe preconditioner while ensuring
that the computed solutions have similar quality in somerimetConsequently, in Sectiob.2.4
we introduce some basic concepts of the backward error sindlyat enables us to make this fair
comparison.

2.1 Some roots in domain decomposition methods

2.1.1 Introduction

As pointed in p3], the termdomain decompositiocovers a fairly large range of computing tech-
nigues for the numerical solution of partial differentiglations (PDE’s) in time and space. Gener-
ally speaking, it refers to the splitting of the computatibtdlomain into subdomains with or without
overlap. The splitting strategy is generally governed hyouss constraints/objectives. It might be
related to

e some PDE features to, for instance, couple different mosleth as the Euler and Navier-
Stokes equations in computational fluid dynamics;

e some mesh generator/CAD constraints to, for instance, ereeggt of grids meshed indepen-
dently (using possible different mesh generators) into @maplex mesh covering an entire
simulation domain;

e some parallel computing objective where the overall mesplisinto sub-meshes of approx-
imately equal size to comply with load balancing constmaint
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Figure 2.1: Partition of the domain based on a element isgitShared vertices are indicated by a
circle.

In this chapter we consider this latter situation and fo@ecHically on the associated domain de-
composition techniques for the parallel solution of laigedr systemsAx= b, arising from PDE
discretizations. Some of the presented techniques candukassstationary iterative schemes that
converge to the linear system solution by properly tunirgrtjoverning parameters to ensure that
the spectral radius of the iteration matrix is less than étevever, domain decomposition schemes
are most effective and require less tuning when they are@raglas a preconditioner to accelerate
the convergence of a Krylov subspace methss) 86].

In the next sections an overview of some popular domain deosition preconditioners is given
from an algebraic perspective. We mainly focus on the padirde element practice of only par-
tially assembling matrices on the interfaces. That is, imaealel computing environment, each
processor is restricted so that it assembles matrix caiwiis coming only from finite elements
owned by the processor. In this case, the domain decompogiithniques correspond to a splitting
of the underlying mesh as opposed to splitting the matrix.

Consider a finite element mesh covering the computationalaito Q . For simplicity assume
that piecewise linear element are used such that solution unknowns are associated with mes
vertices. Further, define an associated connectivity gr@ph= (Wq,Eq) . The graph vertices
Wo ={1,...,ne} correspond to elements in the finite element mesh. The gégeseorrespond to
element pairs that share at least one mesh vertex. Thagis; {(i, j) st. FNFj # 0} . Assume that
the connectivity graph has been partitioned resultinyimon-overlapping subsel@i0 whose union
is Wn . These subsets are referred to as subdomains and are &isoeftirred to as substructures.
The Q° can be generalized to overlapping subsets of graph vertiogsarticular, construcQ}!,
the one-overlap decomposition 6f, by taking Q° and including all graph vertices corresponding
to immediate neighbours of the verticesﬁl? . By recursively applying this definition, th@-layer
overlap of Wq, is constructed and the subdomains are den6gd

Corresponding to each subdoma@f we define a rectangular extension matv'QPT whose
action extends by zero a vector of values definedeshvertices associated with the finite elements
contained inQY . The entries ofﬂqOT are zeros and ones. For simplicity, we omit Gr&uperscripts
and definer; = 9({-0 and Q; = Qio . Notice that the columns of a giveRk are orthogonal, but that
between the differeng; 's some columns are no longer orthogonal. This is due to ittdliat some
mesh vertices overlap even though the graph vertices delfiped; are non-overlapping (shared
mesh vertices see Figugel). Let I'; be the set of all mesh vertices belonging to the interface of
Q; ; thatis mesh vertices lying 08Q;\0Q . Similarly, let 1; be the set of all remaining mesh vertices
within the subdomairQ; (i.e. interior vertices). Considering only the discretettixacontributions
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arising from finite elements if; gives rise to the following local discretization matrix :

L Ann Anr
ai = ( Ari Arr >, (2.1)

where interior vertices have been ordered first. The matrixcorresponds to the discretization of
the PDE onQ; with Neumann boundary condition diy and the one-one block ;,; corresponds
to the discretization with homogeneous Dirichlet conditicon I'; . The completely assembled
discretization matrix is obtained by summing the contiilng over the substructures/subdomains :

A= _iﬁfﬂm. (2.2)

In a parallel distributed environment each subdomain iggass to one processor and typically
processori stores 4;. A matrix-vector product is performed in two steps. Firsbadl matrix-
vector product involvinga; is performed followed by a communication step to assemlgedhults
along the interfacd’; .

For the & -overlap partition we can define a corresponding restncmiperatorﬁﬁ which maps
mesh vertices irQ to the subset of mesh vertices associated with finite elesreamttained inQ? .
Corresponding definitions dTi5 and 1i5 follow naturally as the boundary and interior mesh vertices
associated with finite elements @°. The discretization matrix o2® has a similar structure to
the one given byZ.1) and is written as

A A
ﬂia< 1fr® TPrd ) (2.3)

Arop Arprs

2.1.2 Abrief overview on domain decomposition techniques ih overlapping
domains

The domain decomposition methods based on overlappingsudids are most often referred to as
Schwarz methods due to the pioneering work of Schwarz in 180]0 This work was not intended
as a numerical algorithm but was instead developed to shevexistence of the elliptic problem
solution on a complex geometry formed by overlapping twopsargeometries where solutions
are known. With the advent of parallel computing this basithhique, known as the alternating
Schwarz method, has motivated considerable researchityctivthis section, we do not intend to
give an exhaustive presentation of all work devoted to Schweethods. Only additive variants that
are well-suited to straightforward parallel implemerdgatare considered. Within additive variants,
computations on all subdomains are performed simultahgadsle multiplicative variants require
some subdomain calculations to wait for results from othbdesmains. The multiplicative versions
often have connections to block Gauss-Seidel methods wWigladditive variants correspond more
closely to block Jacobi methods. We do not further pursugdbicription but refer the interested
reader to 94].

2.1.2.1 Additive Schwarz preconditioners
With these notations the additive Schwarz preconditiomigiien by
2R = i(&-“)T (23,) 2> (2.4)
i<

Here thed-overlap is defined in terms of finite element decompositidine preconditioner and the
9({-5’1 operators, however, act on mesh vertices correspondihg teub-meshes associated with the
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finite element decomposition. The preconditioner is symimébr symmetric positive definite) if
the original systemA , is symmetric (or symmetric positive definite).

Parallel implementation of this preconditioner requirefaetorization of a Dirichlet problem
on each processor in the setup phase. Each invocation ofréicerglitioner requires two neigh-
bour to neighbour communications. The first correspondstaining values within overlapping
regions associated with the restriction operator. Therstcorresponds to summing the results of
the backward/forward substitution via the extension ojpera

In general, larger overlap usually leads to faster convergep to a certain point where increas-
ing the overlap does not further improve the convergenee tanfortunately, larger overlap implies
greater communication and computation requirements.

2.1.2.2 Restricted additive Schwarz preconditioner

A variant of the classical additive Schwarz method is intreetl in R3] which avoids one commu-
nication step when applying the preconditioner. This varia referred to as Restricted Additive
Schwarz (RAS). This variant does not have a natural couateipa mesh partitioning framework
that by construction has overlapping sets of vertices. €guesntly, the closest mesh partitioning
counterpart solves a Dirichlet problem on a large subdoiairtonsiders the solution only within
the substructure. That is,

Miias= ifﬁf (23,) & (2.5)

Surprisingly, 3,5 often converges faster tham 25 and only requires half the communication
making it frequently superior on parallel distributed cartgrs. Of course it might not be suitable
for symmetric positive definite problems as it requires a-spmmetric Krylov solver.

All of the above techniques make use of a matrix inverse @.elirect solver or an exact fac-
torization) of a local Dirichlet matrix. In practice, it ifmmon to replace this with an incomplete
factorization B6, 85] or an approximate inversd B, 14, 28, 57, 63]. This is particularly impor-
tant for three-dimensional problems where exact facttidna are often expensive in terms of both
memory and floating-point operations. While this usualigtgly deteriorates the convergence rate,
it can lead to a faster method due to the fact that each iberagiless expensive. Finally, we men-
tion that these techniques based on Schwarz variants dtatdedn several large parallel software
libraries see for instancd ), 58, 59, 68, 99].

2.1.3 Abrief overview on domain decomposition techniquesih non-overlapping
domains

In this section, methods based on non-overlapping regimsl@scribed. Such domain decompo-
sition algorithms are often referred to as sub-structusicigemes. This terminology comes from
the structural mechanics discipline where non-overlagmeas were first developed. In this early
work the primary focus was on direct solvers. Associating fsontal matrix with each subdomain
allows for coarse grain multiple front direct solve8$]. Motivated by parallel distributed comput-
ing and the potential for coarse grain parallelism, consible research activity developed around
iterative domain decomposition schemes. A very large nurobmethods have been proposed and
we cannot cover all of them. Therefore, the main highligitssairveyed.

The governing idea behind sub-structuring or Schur comeigrmethods is to split the un-
knowns in two subsets. This induces the following block deoed linear system :

(a2 )G )=(a ) @9)

where xr contains all unknowns associated with subdomain intesfacel x;, contains the remain-
ing unknowns associated with subdomain interiors. Theimaty, is block diagonal where each
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block corresponds to a subdomain interior. Eliminatixgfrom the second block row of equa-
tion (2.6) leads to the reduced system

SXr =br —ar 4, b, wheres = arr — aria; tar (2.7)

and s is referred to as th8chur complement matrixX his reformulation leads to a general strategy
for solving 2.6). Specifically, an iterative method can be applied2@); Once xr is determined,

X can be computed with one additional solve on the subdomaémians. Further, whena is
symmetric positive definite (SPD), the matrix inherits this property and so a conjugate gradient
method can be employed.

Not surprisingly, the structural analysis finite elementoaunity has been heavily involved
with these techniques. Not only is their definition fairlytuial in a finite element framework but
their implementation can preserve data structures ancepemalready present in large engineering
software packages.

Let ' denote the entire interface defined by= U T; where I'; = 0Q;\0Q. As interior
unknowns are no longer considered, new restriction operatwst be defined as follows. Let
Rr; : T — I'i be the canonical point-wise restriction which maps fulltees defined onl" into
vectors defined o . Analogousto2.2), the Schur complement matri.{¢) can be written as the
sum of elementary matrices

N
S = _Zxrfmari, (2.8)

where
-1

Si=Arr — Arig A AnRr (2.9)

is a local Schur complement and is defined in terms of subiceatfrom the local Neumann matrix
4; given by @.1). Notice that this form of the Schur complement has only @yel of interface
unknowns between subdomains and allows for a straighteahwarallel implementation.

While the Schur complement system is significantly betterd@toned than the original matrix
A, it is important to consider further preconditioning whengoying a Krylov method. It is well-
known, for example, thak(A) = o(h~?) when A corresponds to a standard discretization (e.g.
piecewise linear finite elements) of the Laplace operatoa anesh with spacindh between the
grid points. Using two non-overlapping subdomains efiestyi reduces the condition number of the
Schur complement matrix t&(S) = o(h~!). While improved, preconditioning can significantly
lower this condition number further.

2.1.3.1 The Neumann-Dirichlet preconditioner

When a symmetric constant coefficient problem is sub-divigéo two non-overlapping domains
such that the subdomains are exact mirror images, it foltbassthe Schur complement contribution
from both the left and right domains is identical. That ig,= $2. Consequently, the inverse of
either s1 or S, are ideal preconditioners as the preconditioned lineaesyss well-conditioned,
e.g. 55{1 = 2I . A factorization can be applied to the local Neumann proh{2ri) on Q; :

qq = Id[l 0 A[]_I]_ 0 Id[]_ AI]_[]_Arlll
! A, AL Idr, 0 5 0 Idr,

1111

to obtain
_ _ 0
spt=(0 ldr, ) (1) l( Idr, )

In general, most problems will not have mirror image subdosand sos; # 52 . However, if the
underlying system within the two subdomains is similar,itiverse of s1 should make an excellent
preconditioner. The corresponding linear system is

(I +5{152) Xr, = (51)7lbr1



20 Some basics on hybrid linear solvers

so that each Krylov iteration solves a Dirichlet problem @a (to apply s2) followed by a Neu-
mann problem orQ; to invert s; . The Neumann-Dirichlet preconditioner was introducedLi.[

Generalization of the Neumann-Dirichlet preconditiomemultiple domains can be done easily
when a red-black coloring of subdomains is possible sudrstitadomains of the same color do not
share an interface. In this case, the preconditioner isthigssum of the inverses corresponding to
the black subdomains:

S= EBRJ, (si) " ta&r, (2.10)

where B corresponds to the set of all black subdomains.

2.1.3.2 The Neumann-Neumann preconditioner

Similar to the Neumann-Dirichlet method, the Neumann-Naampreconditioner implicitly relies
on the similarity of the Schur complement contribution frdifierent subdomains. In the Neumann-
Neumann approach the preconditioner is simply the weigbtead of the inverse of the; . In the
two mirror image subdomains case,

1
31:5(5{%52*1).

This motivates using the following preconditioner with ttipile subdomains :
N
MnN = ZIRrTiDiﬁleiﬂ(ri (2.11)
i=
where theD; are diagonal weighting matrices corresponding to a pantitif unity. That is,

N
T
Kri D'iRj‘i = |dr.
2,70

The simplest choice foD; is the diagonal matrix with entries equal to the inverse efriimber

of subdomains to which an unknown belongs. The Neumann-ldaamreconditioner was first dis-
cussed in19 and further studied ingg] where different choices for weight matrices are discussed
It should be noted that the matricas can be singular for internal subdomains because they corre-
spond to pure Neumann problems. The Moore-Penrose psaveise is often used for the inverse
local Schur complements i2 (1) but other choices are possible such as inverting- €l where €

is a small shift.

The Neumann-Neumann preconditioner is very attractivefaca parallel implementation point
of view. In particular, all interface unknowns are treat@dikrly and no distinction is required
to differentiate between unknowns on faces, edges, or gaisss as it might be the case in other
approaches.

2.2 Some background on Krylov subspace methods

2.2.1 Introduction

Among the possible iterative techniques for solving a linegstem of equations the approaches
based on Krylov subspaces are very efficient and widely usstdA be a square nonsingularx n
matrix, andb be a vector of lengtm, defining the linear system

Ax=b (2.12)
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to be solved. Letxg € C" be an initial guess for this linear system ang= b — Axy be its corre-
sponding residual.

The Krylov subspace linear solvers construct an approximatf the solution in the affine space
Xo+ Km, Where X, is the Krylov space of dimensiom defined by

Km = span{ro,Arg,...,A" g}

The various Krylov solvers differ in the constraints or opdlity conditions associated with the
computed solution. In the sequel, we describe in some de@iGMRES methodd7] where the
solution selected in the Krylov space corresponds to theovélecat minimizes the Euclidean norm
of the residual. This method is well-suited for unsymmepricblems. We also briefly present the
oldest Krylov techniques that is the Conjugate Gradienthwetwhere the solution in the Krylov
space is chosen so that the associated residual is ortHdgdhe space.

Many other techniques exist that we will not describe in #astion; we rather refer the reader
to the books%$5, 86).

In many cases, such methods converge slowly, or even diverge convergence of iterative
methods may be improved by transforming the syst2rhid into another system which is easier
to solve. A preconditioner is a matrix that realizes suchaagformation. IfM is a non-singular
matrix which approximate&~1, then the transformed linear system:

MAx = Mb, (2.13)

might be solved faster. The systet13 is preconditioned from the left, but one can also precondi-
tion from the right:
AMt = b. (2.14)

Once the solutiort is obtained, the solution of the systeth12) is recovered byx = Mt .

2.2.2 The unsymmetric problems

The Generalized Minimum RESidual (GMRES) method was pregdsy Saad and Schultz in
1986 B7] for the solution of large non hermitian linear systems.

For the sake of generality, we describe this method for tisgatems whose entries are complex,
everything also extends to real arithmetic.

Let Xp € C" be an initial guess for the linear systet¥2 and ro = b—Axy be its corresponding
residual. At stepk, the GMRES algorithm builds an approximation of the solutd (2.12 under
the form

X = X0 + VicYks (2.15)

where yy € Ck and V= [v1,---,Vg is an orthonormal basis for the Krylov space of dimenskon
defined by

% (Aro,K) = span{ro,Aro, . ,Akflro}.

The vectoryy is determined so that the 2—norm of the residuak b — Ax is minimized over
X0+ K (Aro,K) . The basisVi for the Krylov subspacex (A,ro,k) is obtained via the well-known
Arnoldi processT]. The orthogonal projection oA onto % (A,ro,k) results in an upper Hessen-
berg matrixHyx = VkHAVk of order k. The Arnoldi process satisfies the relationship

AVk = ViHi + N 1.k 165 (2.16)
where g is the K" canonical basis vector. Equatich {6 can be rewritten in a matrix form as

AV = Vi 1Hxk,
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where

H f—
K [0~ -0 hk+1,k:|

is an (k+ 1) x k matrix.

Let vi =ro/B where = ||rol|2. The residualry associated with the approximate solutigp
defined by 2.19 satisfies

rk = b—Ax=b—A(Xo+Vkyk)
= ro— AVkyk = o — Vi 1Hkyk

Bv1 — Vi 1Hiyk

Vicr1(Ber — Hiyk).-

BecauseVi.1 is a matrix with orthonormal columns, the residual nofim||2 = ||Ber — Hkyk||2 is
minimized whenyy solves the linear least-squares problem

min || Ber — Hyyl|2. (2.17)
yeCk

We denote byyx the solution of 2.17). Therefore,xx = Xo + Vkyk IS an approximate solution
of (2.12 for which the residual is minimized oveg + % (A, ro,k) . The GMRES method owes its
name to this minimization property that is its key featuret@nsures the decrease of the residual
norm associated with the sequence of iterates.

In exact arithmetic, GMRES converges in at maststeps. However, in practica) can be
very large and the storage of the orthonormal bagismay become prohibitive. On top of that,
the orthogonalization ofs with respect to the previous vectors, --- ,vx_1 requires 4k flops,
for large k, the computational cost of the orthogonalization schemg be@ome very expensive.
The restarted GMRES method is designed to cope with thesdravabacks. Given a fixedh, the
restarted GMRES method computes a sequence of approxiotat®ss x, until xi is acceptable
or k=m. If the solution was not found, then a new starting vectorhigsen on which GMRES
is applied again. Often, GMRES is restarted from the lastmaed approximation, i.eXxo = Xm
to comply with the monotonicity property of the norm deceeasen when restarting. The process
is iterated until a good enough approximation is found. Weote by GMRES) the restarted
GMRES algorithm for a projection size of at most. A detailed description of the restarted GM-
RES with right preconditioner and modified Gram-Schmidbalthm as orthogonalization scheme
is given in Algorithm1.

We now briefly describe GMRES with right preconditioner aisdlexible variant that should be
preferred when the preconditioner varies from on step totheé. Let M be a square nonsingular
nx n complex matrix, we define the right preconditioned lineateyn

AMt = b, (2.18)

where x = Mt is the solution of the unpreconditioned linear system. figet C" be an initial guess
for this linear system andp = b — AMty be its corresponding residual.
The GMRES algorithm builds an approximation of the solutib(2.18 of the form

tx = to+ ViYk (2.19)

where the columns of/x form an orthonormal basis for the Krylov space of dimensiordefined
by
Ky = span{ro,AMro, o (AM)kflro} ,

and whereyy belongs toCX. The vectoryy is determined so that the 2-norm of the residual
r, = b— AMt is minimal over K .
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The basisVk for the Krylov subspacexy is obtained via the well-known Arnoldi process. The
orthogonal projection ofA onto % results in an upper Hessenberg matkx = V' A of order
k. The Arnoldi process satisfies the relationship

AMvy, -+, MVy] = AMVi = ViHi + hig 1 vk 1€ (2.20)
where g is the k" canonical basis vector. Equatich20) can be rewritten as
AMVi = Vi, 1Hi

where
— Hk
Hy =
k [0- -0 hk+1,k:|
is an (k+ 1) x k matrix.

Let vi =ro/B where B = [[ro||,. The residualry associated with the approximate solution
defined by Equation(19 verifies
r« = b—AMt=b-— AM(to—l—kak)

= To— AMWyi = ro — Vi 1HkYk

= Bvi—Vkr1Hkyk

= Vita(Ber — Hiyi). (2.21)
Since Vi1 is a matrix with orthonormal columns, the residual nofim||, = ||Ber — Hiyk||, is
minimal whenyy solves the linear least-squares probl@nip. We will denote byyy the solution
of (2.17). Therefore,tx = to + Vkyk is an approximate solution oR2(18 for which the residual

is minimal over i . We depict in Algorithml the sketch of the Modified Gram-Schmidt (MGS)
variant of the GMRES method with right preconditioner.

Algorithm 1 Right preconditioned GMRES

1: Choose a convergence thresheald
2: Choose an initial guesty
3 ro=b—AMtg=Db; B=|ro|
V1 = ro/||rol
. for k=1,2,... do
w =AMV ;
for i=1to k do
hi,k = VPW
W=W-— hi,kVi
10:  end for
11: hk+1,k = HWH
120 Ve =W/ heak -
13:  Solve the least-squares problem rifse; — Hyy|| for y
14:  Exitif convergence is detected
15: end for
16: Set xm = M(to + Viny)

© N

If the preconditioner involved at step 6 in Algorithbnaries at each step, we can still write an
equality similar to .20 as:

A[MlVL Ty, Mka] = A[ZL ce 7Zk]

= ViHk+ hig1 Vi 1€
= WH,
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which enables us to get a relation similar 2021). Using xx = Xo + Zkyk we have
re = b—Axk:b—A(xo+Zk3/k)
= To—AZyk = ro— Vit1Hiyk
= Bvi—VkiaHiyk
Vicr 1(Ber — Heyk),

where yi is the solution of a least-squares problem similarxd 7). Because this GMRES variant
allows for flexible preconditioners it is referred to as g GMRES. From an implementation
point of view the main difference between right precondiid GMRES and FGMRES is the mem-
ory requirement. In that latter algorithm, botfy and Zx need to be stored. We remind that only
happy breakdowns might occurin GMRES (i.e., at step 11 obAtgm1if hy,1x is zero, the algo-
rithm would breakdown but it does not care because it alsosat it has found the solutio8T]).
This is no longer true for FGMRES that can break at step 12rbéfbas computed the solution. We
describe the MGS variant of this method in Algorit2and refer to 84] for a complete description
of the convergence theory.

Algorithm 2 Flexible GMRES
1: Choose a convergence thresheald
2: Choose an initial guessg
3 ro=b—Ax=Db; B=|[ro]
4: v =ro/||rol
5: for k=1,2,... do

6:  zx = MgV ; % M is the preconditioner used at sté&p
7 w=A%;

8. fori=1to kdo

9: hi,k = Vr'W

10: W =w— hj kVi

11:  end for

12: hk+1k = ||WH

130 Vip1 =W/hipak _

14:  Solve the least-squares problem nffBe; — Hyy|| for y
15:  Exitif convergence is detected

16: end for

17: SetXm = Xo+ Zmy

There are numerical situations where the preconditioneesdrom one step to the next of
the construction of the space. In that framework, the FGMRESxible Generalized Minimum
Residual) methodd4] is among the most widely used Krylov solvers for the iteratsolution of
general large linear systems when variable preconditgisiconsidered.

Implementations of the GMRES and FGMRES algorithms for egal complex, single and
double precision arithmetics suitable for serial, sharednory and distributed memory computers
is available from the Web at the following URL:

http://www.cerfacs.fr/algor/Softs/
The implementation is based on the reverse communicati@hamésm for the matrix-vector prod-
uct, the preconditioning and the dot product computatidfis.used these packages in our experi-
ments.

2.2.3 The symmetric positive definite problems

The Conjugate Gradient method was proposed in differerdimes in the early 50s in separate
contributions by Lanczos$p] and Hestenes and Stiefé(]. It becomes the method of choice for
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the solution of large sparse hermitian positive definitedinsystem and is the starting point of the
extensive work on the Krylov method89).

Let A= A" (where A" denotes the conjugate transposefof be a square nonsingularx n
complex hermitian positive definite matrix, arid be a complex vector of length, defining the
linear system

Ax=b (2.22)

to be solved.

Let xp € C" be an initial guess for this linear system,= b— Axy be its corresponding residual
and M~ be the preconditioner. The preconditioned conjugate gradilgorithm is classically
described as depicted in Algorithgn

Algorithm 3 Preconditioned Conjugate Gradient

1. k=0

2. ro=b—-Ax

3: for k=0,1,2,... do

4:  Solve Mz = rg

5. if k=1 then

6: P1=2

7. else

8: Brk-1= Z(FL,l)rkfl/Z:lszfz
9: Pk = Z-1+Brk-1Pk-1
10: endif
11: k=AM
122 ok=2 jrea/pllax
13: Xk = Xk—1 + Ok Pk
14 I =Tk—1— OkOk

15:  Exitif convergence is detected
16: end for

The conjugate gradient algorithm constructs the soluti@ makes its associated residual or-
thogonal to the Krylov space. A consequence of this geomgtoperty is that it is also the minimum
error solution in A-norm over the Krylov spacgy = span{ro,Aro, ... ,Akflro} . It exists arich lit-
erature dedicated to this method: for more details we, ndrauastively, refer to9, 54, 72, 86] and
the references therein.

We simply mention that the preconditioned conjugate gradieethod can be written as depicted
in Algorithm 3 that enables us to still have short recurrence on the unpdétoaned solution.

2.2.4 Stopping criterion: a central component

The backward error analysis, introduced by Givens and Wl [LO1], is a powerful concept for
analyzing the quality of an approximate solution:

1. it is independent of the details of round-off propagatitime errors introduced during the
computation are interpreted in terms of perturbations efittitial data, and the computed
solution is considered as exact for the perturbed problem;

2. because round-off errors are seen as data perturbatiegssan be compared with errors due
to numerical approximations (consistency of numericagsebs) or to physical measurements
(uncertainties on data coming from experiments for insinc

The backward error defined bg2.23 measures the distance between the data of the initial gamobl
and those of a perturbed problem. Dealing with such a dist&ioth requires to choose the data
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that are perturbed and a norm to quantify the perturbatidiws. the first choice, the matrix and
the right-hand side of the linear systems are natural catelid In the context of linear systems,
classical choices are the normwise and the componentwisaripations 7, 61]. These choices
lead to explicit formulas for the backward error (often amalized residual) which is then easily
evaluated. For iterative methods, it is generally admitited the normwise model of perturbation is
appropriate11].

Let xc be an approximation to the solution= A~'b. The quantity

Nab(d) = min {v>0:|AA| <T/A]. [[ab] < t[b
and(A+ AA)X = b+ Ab}
[[A%— D]
= X (2.23)
A1l + 1B

is called thenormwise backward erroassociated withx, . It measures the norm of the smallest
perturbationsAA on A and Ab on b such thatx, is the exact solution of A+ AA)xc = b+ Ab.
The best one can require from an algorithm is a backward eftbe order of the machine precision.
In practice, the approximation of the solution is acce@atthen its backward error is lower than the
uncertainty of the data. Therefore, there is no gain in tilegeafter the backward error has reached
machine precision (or data accuracy).

In many situations it might be difficult to compute (even appmatively) ||A|| . Consequently,
another backward error criterion can be considered thatripler to evaluate and implement in
practice. It is defined by

No(X) = rRLn{T>O:||AbH§tHbH andAxc = b+ Ab}

A —b]]

0] (2.24)

This latter criterion measures the norm of the smallestupleationsAb on b (assuming that they
are no perturbations 0A) such thatxk is the exact solution oAx = b+ Ab. Clearly we have
Nab(X) < Nb(X) . It has been showrBf, 77] that GMRES with robust orthogonalization schemes
is backward stable with respect to a backward error similgR 23 with a different choice for the
norms.

We mention thatna, and np are recommended irl ] when the concern related to the stop-
ping criterion is discussed; the stopping criteria of thglkv solvers we used for our numerical
experiments are based on them.

For preconditioned GMRES, these criteria read differedéigending on the location of the pre-
conditioners. In that context, using a preconditioner rsganning GMRES on the linear systems:

1. MAx= Mb for left preconditioning,
2. AMy= b for right preconditioning,
3. M2AM1y = Mab for split preconditioning.

Consequently, the backward stability property holds fosthpreconditioned systems where the cor-
responding stopping criteria are depicted in Tahlke In particular, it can be seen that for all but
the right preconditioning andyv , , the backward error depends on the preconditioner. Fot righ
preconditioning, the backward erray, is the same for the preconditioned and unpreconditioned
system becausgAMt — b|| = ||Ax—b]| . This is the main reason why for all our numerical experi-
ments with GMRES we selected right preconditioning. A stogpriterion based om, enables a
fair comparison among the tested approaches as the itesatie stopped once the approximations
have all the same quality with respect to this backward emiterion.
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Left precond.| Right precond.| Split precond.
[MAX—MDb] [AME—D] [M2AMyt—M,b]
MMADb | TMATT - [MB] [AMIIX] -+ /bl MaAM [[t[[+[[Mob]
[MAX—Mb]| [AMt—b]| [M2AM;t—Mab]
fMp [MB] ] [i2]

Table 2.1: Backward error associated with preconditioimeghr system in GMRES.
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Chapter 3

An additive Schwarz preconditioner
for Schur complement

3.1 Introduction

The design of preconditioners is essential for the sucaksgsé of iterative methods. Consequently
research on preconditioners has moved to center stageantrgears. Preconditioning is a way of
transforming the original linear system into another onartathe same solution but better condi-
tioning and thus easier to solve.

This chapter is mainly devoted to addressing the presentafithe algebraic additive Schwarz
preconditioners studied in this thesis. In Sect®8 we present the algebraic description of the
additive Schwarz preconditioner. The main lines of the $dmmplement are presented, and the
main aspects of parallel preconditioning are introduced.pfdpose and study different variants of
the preconditioner, based on either sparse techniquestio88.3, or mixed precision arithmetic in
Section3.4 We consider in SectioB.5, two-level preconditioner based on an algebraic constmct
of a coarse space component. Finally, we describe in SeBtta diagonal scaling technique that
is suitable for a parallel implementation.

3.2 Algebraic description

In this section we introduce the general form of the precioiér considered in this work. We use
the notation introduced in Secti@l For the sake of simplicity, we describe the basis of ourlloca
preconditioner in two dimensions as its generalizatiorhted dimensions is straightforward. In
Figure3.1, we depict an internal subdomai®; with its edge interface&n, Eg, Ex, and E, that
definel; =0Qi\0Q . Let ®r, : " — i be the canonical pointwise restriction that maps full vesto
defined onl into vectors defined o', and let KrTi :Ti — I be its transpose. For a stiffness
matrix 4 arising from a finite element discretization, the Schur clemgnt matrix 2.6) can also
be written

S = iiKrTi.SiKrp

where
-1
Ii Ij

Si = A — A A AT (3.1)
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Eq
Exk 0 i

Figure 3.1: An internal subdomain.

is referred to as the local Schur complement associatedtdétsubdomairQ; . The matrix s;
involves submatrices from the local stiffness matrx, defined by

A Anr
ai = H n . 3.2
I ( Arili Ariri ) (3:2)

The matrix 4; corresponds to the discretization of the PDE on the subdofaiwith Neumann
boundary condition or"; and 4, corresponds to the discretization on the subdon@inwith
homogeneous Dirichlet boundary conditionsion The local Schur complement matrix, associated
with the subdomairQ; depicted in Figur@.1, is dense and has the following<# block structure:

.5r§r||2‘n Smg  Smk  Smv
(i)
Sgm  Sgg 5%|§ Sqr (3.3)
i ) :
Skm Skg Skk Sk[

Sim  Seg Sk 5}})

Si =

where each block accounts for the interactions betweendbeeds of freedom of the edges of the
interfacedQ; .

The preconditioner presented below was originally progas¢25] in two dimensions and suc-
cessfully applied to large two dimensional semiconducevick modeling in$2]. To describe this
preconditioner we define the local assembled Schur compieme= &, Sﬂ(rTl , that corresponds to
the restriction of the Schur complement to the interfage This local assembled preconditioner can
be built from the local Schur complements by assembling their diagonal blocks thanks to a few
neighbour to neighbour communications. For instance, ibgathal blocks of the complete matrix
S associated with the edge interfaég , depicted in Figur&.1, is Sk = Sé;() +5|£,J() . Assembling
each diagonal block of the local Schur complement matrizespbtain the local assembled Schur
complement, that is:

Smm Smg  Smk  Smv
Sgm  Sgg Sgk Syt
Skm  Skg  Skk  Ske
Sm Sig Sk Sw

Si =

With these notations the preconditioner reads

N
Mg = Ts R (3.4)
d i;%—l i

If we considered the unit square partitioned into horizbstidps (1D decomposition), the re-
sulting Schur complement matrix has a block tridiagonaldtire as depicted irB(5). For that
particular structure ofs the submatrices in boxes correspond to e Such diagonal blocks, that
overlap, are similar to the classical block overlap of thBvrz method when writing in a matrix
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form for 1D decomposition. Similar ideas have been develdpea pure algebraic context in earlier
papers 22, 81] for the solution of general sparse linear systems. Becafifi@s link, the precon-
ditioner defined by 3.4) is referred to as algebraic additive Schwarz for the Sclomnpiement,

Sk Sk
S = S«+1,k S«+1,k+1 Sk+1,k+2 . (3.5)
S«+1,k+2 S«+2,k+2

One advantage of using the assembled local Schur complsinstgad of the local Schur com-
plements (like in the Neumann-Neumari®[29] introduced in Sectior2.1.3.3 is that in the SPD
case the assembled Schur complements cannot be singulariéasot singular).

3.3 Sparse algebraic Additive Schwarz preconditioner

The construction of the proposed local preconditionerdesromputationally expensive because the
dense matrices; should be factorized. We intend to reduce the storage ancbtih@utational cost

to form and apply the preconditioner by using sparse appration of theMy obtained by dropping
the smallest entries. In three dimensional problems theafizhe dense local Schur matrices can
be large. Consequently it is computationally expensiveatidrize and solve linear systems with
them. One possible alternative to get a cheaper preconditie to consider a sparse approximation
for si in (3.4), which may result in a saving of memory to store the predimmir and saving of
computation to factorize and apply it. This approximatlg)ncan be constructed by dropping the
elements ofS;, that are smaller than a given threshold. More preciselyfatewing symmetric
dropping formula can be applied:

o _ 0 i syl < &(ISeel +Sj50),
i { Sij, otherwise, ) (3.6)

where s;j denotes the entries Q?. .
The resulting preconditioner based on these sparse appatigns reads

N
Msp= S &7 § '&r,.
sp i; S

We notice that such a dropping strategy is suited for syniowtatrices. In particular it is shown
in [25] that the resulting preconditioner is SPD for some clasgawatrices. For unsymmetric
problems, unsymmetric dropping policies could be considerSuch a study is beyond the work
presented in this manuscript where only the symmetric drapgefined by 8.6) is considered in
the numerical experiments.

To illustrate the time saving in the set-up of the precoondi in its sparse version versus its
dense counterpart, we display in Fig®82 the computing time for various values of the dropping
threshold when the size of the local Schur is varied. Forithistration we consider a SPD case,
where the Cholesky factorization is performed using ta@Ack [4] kernel DpoTRFfor the dense
part and the sparse direct solvetuMPs [2, 3] for the sparse counterpart. We mention that similar
behaviour and time saving can be observed on unsymmetriacesat
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Figure 3.2: Performance comparison of dense v.s. spardeskydactorization.

3.4 Mixed precision Additive Schwarz preconditioner

Motivated by accuracy reasons, many large-scale scieafifdications and industrial numerical
simulation codes are fully implemented in 64-bit floatingjfd arithmetic. On the other hand, many
recent processor architectures exhibit 32-bit computatipower that is significantly higher than
that for 64-bit. One recent and significant example is the IBELL multiprocessor that is projected
to have a peak performance near 256 GFlops in 32-bit and *@6l¥sFlops in 64-bit computation.
More extreme and common examples are the processors ttsatgsas SSE (streaming SIMD exten-
sion) execution unit can perform either two 64-bit instroies or four 32-bit instructions in the same
time. This class of chip includes for instance the IBM Pov(F5, the AMD Opteron and the Intel
Pentium. For illustration purpose, are displayed belowtithe and the ratio of the time to perform
a 32-bit operation over the time to perform the correspam@#bit one on some of the basic dense
kernels involved in our hybrid solver implementation. Irblea3.4 are displayed the performance
of BLAS-2 (_GEMV) and B.As-3 (_GEMM) routines for various problems sizes. The congaari
of the main LAPACK routines for the factorization and solution of dense protdes reported in
Table3.4and Table3.4

It can be seen that 32-bit calculation generally outperfoédbit. For a more exhaustive set of
experiments on various computing platforms, we refe2t 0, 64, 66]. The source of time reduc-
tion is not only the processing units that perform more ofi@na per clock-cycle, but also a better
usage of the complex memory hierarchy that provides uftsd4fnemory transactions by reducing
the stream of data block traffic across the internal bus aimgjimg larger blocks of computing data
into the cache. This provides a speedup of two in 32-bit cartbp 64-bit computation for Bas-

3 operations in most APACK routines. It can be shown that this strategy can be very taféeon
various, but not all architectures. Benefits are not obskovethe Blue Gene/L machine.

For the sake of readibility, the results reported in thedalare also plotted in graphs. In Fig-
ure3.3 the graphs show the performance in GFlops/s of these \skiennels. As mentioned above,
the figures show that 32-bit performs twice as fast as 64-bit.

We might legitimately ask whether all the calculation slibloé performed in 64-bit or if some
pieces could be carried out in 32-bit. This leads to the aesfgnixed-precision algorithms. Par-
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CRAY X1 AMD Opteron processa2.4 GHz ACML

n DGEMM SGEMM Ratio DGEMV SGEMV Ratio
1000 0.49 0.25 1.95 0.003 0.001 2.27
2000 3.76 1.94 1.94 0.010 0.005 2.09
3000 12.55 6.42 1.96 0.023 0.010 2.21
4000 29.65 15.02 1.97 0.040 0.019 2.05
5000 57.99 29.47 1.97 0.064 0.030 2.09
6000 99.65 50.67 1.97 0.089 0.044 2.03
7000 157.55 79.72 1.98 0.118 0.056 211

IBM Power PC & processorR.3 GHz VecLib

n DGEMM SGEMM Ratio DGEMV SGEMV Ratio
1000 0.22 0.12 1.76 0.005 0.002 2.53
2000 1.53 0.81 1.88 0.018 0.007 2.80
3000 4.89 2.71 1.80 0.043 0.020 2.15
4000 11.20 5.86 1.91 0.117 0.029 4.00
5000 21.64 11.52 1.88 0.114 0.052 221
6000 36.53 19.50 1.87 0.162 0.068 2.39
7000 58.09 31.04 1.87 0.225 0.102 2.20

BlueGengL PowerPCl40 processoi700MHz ESSL

n DGEMM SGEMM Ratio DGEMV SGEMV Ratio
1000 0.87 0.78 111 0.005 0.003 1.71
2000 6.59 6.04 1.09 0.017 0.011 1.46
3000 21.85 20.05 1.09 0.036 0.025 1.43
4000 52.09 47.74 1.09 0.061 0.045 1.36
5000 100.59 92.91 1.08 0.099 0.069 1.43

Table 3.1: Elapsed time (sec) to performA%-2 routines on various platforms when the sizeof
the matrices is varied.

ticular care is necessary when choosing the part to be cadpnt32-bit arithmetic so that the
introduced rounding error or the accumulation of these dingerrors does not produce a meaning-
less solution.

For the solution of linear systems, mixed-precision aldponis (single/double, double/quadruple)
have been studied in dense and sparse linear algebra maith iframework of direct methods
(see B1, 30, 64, 66]). For such approaches, the factorization is performean precision, and,
for not too ill-conditioned matrices, a few steps of itevatrefinement in high precision arithmetic
is enough to recover a solution to full 64-bit accura8@][ For nonlinear systems, though, mixed-
precision arithmetic is the essence of algorithms sucheasaitt Newton.

For linear iterative methods, we might wonder if such miyedeision algorithms can be de-
signed. We propose to take advantage of the 32-bit speed ambng benefit and build some part
of the code in 32-bit arithmetic. Our goal is to use costlyldarithmetic only where necessary
to preserve accuracy. A first possible idea, in Krylov subspaethods, is to perform all the steps
except the preconditioning in 64-bit. Although this ideaghtiappear natural at a first glance, the
backward error stability result on GMRES34, 77] indicates that such a variant would not enable
achieve an accuracy below the 32-bit accuracy. For unsynmpebblems, different alternative can
be considered. The first one is to use GMRES preconditiongdan82-bit preconditioner to solve
the residual equation within an iterative refinement schefés would correspond to a variant of
the GMRESE, ) described in47]. The resulting algorithm ressembles very much to the aks
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CRAY X[ AMD Opteron processa?2.4 GHz ACML

n DPOTRF SPOTRF Ratio DPOTRS SPOTRS Ratio
1000 0.10 0.07 1.39 0.003 0.001 2.36
2000 0.78 0.46 1.69 0.010 0.005 2.06
3000 2.59 1.43 1.80 0.021 0.010 2.07
4000 5.70 3.22 1.77 0.038 0.019 2.00
5000 10.95 6.10 1.79 0.060 0.029 2.07
6000 18.67 10.29 1.82 0.086 0.042 2.04
7000 29.44 16.07 1.83 0.116 0.057 2.04

IBM Power PC & processorR.3 GHz VecLib

n DPOTRF SPOTRF Ratio DPOTRS SPOTRS Ratio
1000 0.10 0.07 1.43 0.007 0.005 1.38
2000 0.46 0.27 1.69 0.025 0.018 1.33
3000 1.33 0.73 1.83 0.057 0.041 141
4000 2.56 1.47 1.74 0.095 0.083 1.15
5000 4.74 2.73 1.74 0.147 0.126 1.17
6000 7.75 4.62 1.68 0.223 0.190 1.17
7000 12.12 6.82 1.78 0.279 0.264 1.05

BlueGengL PowerPQl40 processoi700MHz ESSL

n DPOTRF SPOTRF Ratio DPOTRS SPOTRS Ratio
1000 0.24 0.21 1.17 0.006 0.003 1.87
2000 1.81 151 1.20 0.016 0.011 1.40
3000 5.88 4.94 1.19 0.034 0.024 1.42
4000 13.70 11.54 1.19 0.059 0.042 1.40
5000 26.43 22.31 1.18 0.092 0.064 1.42

Table 3.2: Elapsed time (sec) to performRrack routines for SPD matrices on various platforms
when the sizen of the matrices is varied.

right preconditioned GMRES, except that at restart the residual is computed using the current

approximation ofx and not fromt = Mx as in the classical approach. Another alternative, would
be to follow ideas in %, 6, 24] and to use a 32-bit preconditioner for a FGMRES runs in 84-bi

arithmetic. The 32-bit calculation is viewed as a varialdleb® preconditioner for FGMRES.

For symmetric positive definite case, no backward stahiéisult exists for the preconditioned
conjugate gradient method. In that context, and withoutrtgcal explanation, we simply consider
32-bit preconditioner in a PCG where all the other compatetiare performed in 64-bit arithmetic.

In these variants, the Gaussian eliminatié#, [66] (factorization) of the local assembled Schur
complement (used as preconditioner), and the forward amdaickward substitutions to compute
the preconditioned residual, are performed in 32-bit wtiikerest of the algorithm is implemented
in 64-bit.

Since the local assembled Schur complement is dense,gthgrsize of this matrix in half has
a considerable effect in terms of memory space. Anotherfliésén the total amount of commu-
nication that is required to assemble the preconditioner.fok the memory required to store the
preconditioner, the size of the exchanged messages is alsthht for 64-bit. Consequently, if
the network latency is neglected, the overall time to buile preconditioner for the 32-bit imple-
mentation should be half that for the 64-bit implementatibhese improvements are illustrated by
detailed numerical experiments with the mixed-precisioplementation reported in Part I1.

Finally, we mention that the ideas of sparsification and whigeecision arithmetic can be com-
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CRAY X AMD Opteron processa?2.4 GHz ACML

n DGETRF SGETRF Ratio DGETRS SGETRS Ratio
1000 0.18 0.12 1.48 0.003 0.001 2.25
2000 1.36 0.81 1.68 0.010 0.004 2.24
3000 4.47 2.55 1.75 0.021 0.009 2.27
4000 10.47 5.83 1.80 0.039 0.017 2.30
5000 20.17 11.16 1.81 0.057 0.029 1.99
6000 34.88 19.02 1.83 0.080 0.042 1.91
7000 55.19 29.84 1.85 0.120 0.055 2.18

IBM Power PC & processorR.3 GHz VecLib

n DGETRF SGETRF Ratio DGETRS SGETRS Ratio
1000 0.13 0.07 1.85 0.007 0.005 1.29
2000 0.69 0.39 1.76 0.026 0.019 1.40
3000 2.00 1.17 1.72 0.067 0.045 1.47
4000 4.41 2.50 1.76 0.106 0.105 1.01
5000 8.33 4.75 1.75 0.179 0.167 1.07
6000 14.42 7.77 1.86 0.245 0.240 1.02
7000 21.35 12.16 1.76 0.355 0.352 1.01

BlueGen¢L PowerPQl40 processoi700MHz ESSL

n DGETRF SGETRF Ratio DGETRS SGETRS Ratio
1000 0.42 0.35 1.20 0.006 0.003 1.85
2000 3.18 2.57 1.24 0.017 0.012 1.43
3000 9.83 8.32 1.18 0.037 0.025 1.45
4000 24.04 19.74 1.22 0.061 0.045 1.37
5000 43.65 37.82 1.15 0.095 0.068 1.40

Table 3.3: Elapsed time (sec) to performmHACK routines for general matrices on various platforms
when the sizen of the matrices is varied.

bined; that is, dropping the smallest entries of 32:itto produce preconditioner cheap to compute
and to store. In Chapté&; we report some experiments combining the two strategies.

3.5 Two-level preconditioner with a coarse space correctio

The solution of elliptic problems is challenging on pariatlestributed memory computers as their
Green'’s functions are global. Consequently the solutiozaah point depends upon the data at all
other points. Therefore, for solving the systems arisignfthe discretization of these equations,
we have to provide a mechanism that captures the globalicaupthaviour.

Various domain decomposition techniques, from the eigtdied nineties, have suggested dif-
ferent global coupling mechanisms, referred to as the ecgyace components, and various com-
binations between them and the local preconditioners. & bas be based on geometric ideas (e.qg.
linear interpolation), finite element ideas (e.g. finitenedmt basis functions corresponding to a
coarse mesh), or algebraic ideas (e.g. using the matrificieats to define basis functions with
minimal A-norm in the SPD case). Again, there are trade-offs in théreht approaches. Geo-
metric schemes are somewhat complicated to implement anaftan tied to the resulting applica-
tion code. Applications with complex geometric features lbe particularly challenging to develop.
Additionally, they may have robustness issues for probleitishighly heterogeneous behaviour as
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the interpolation and restriction do not use material, P@Hliscretization properties. While finite
element approaches are more closely tied to the discretiensythey require a more explicit notion
of a coarse mesh which makes sense in a finite element coatgxg{l coarse elements are convex).
This can be particularly difficult when irregular boundarée present. Algebraic methods have an
advantage in that they do not require an explicit mesh andsimgua matrix they havendirect ac-
cess to material, PDE, and discretization properties. timfately, it is not always computationally
easy to deduce basic properties of an operator based onhatixmoefficients. In the framework
of non-overlapping domain decomposition techniques, er fer instance to algebraic two-level
preconditioner for the Schur complemefb] 26], BPS (Bramble, Pasciak and Schat2]]| Ver-
tex Space 35, 93], and to some extended Balancing Neumann-Neum@nng9, 70|, as well as
FETI [41, 71], for the presentation of major two-level preconditioners

Although the local preconditioner proposed in Sec@oaintroduces some exchanges of infor-
mation, these exchanges remain local to neighbouring snhihs and introduce no global coupling
mechanism. This mechanism is necessary for elliptic probl® prevent an increase in the number
of iterations when the number of subdomains is increaseé lif#tature on generating coarse spaces
is quite extensive. Here, we simply mention one possibletaijc technique that has been applied
successfully on several problems and that is relativefygitit-forward to implement in paralle2].

It also has an advantage in that it does not require any geigritgormation.

The preconditioners presented now are closely relatedat®BS preconditioner, although we
consider different coarse spaces to construct their caansgponents. The class of two-level pre-
conditioner that we define now can be described in a genercasdahe sum of a local and global
component:

M = Maas+ Mo,
where :

Maas is one of the variants of the additive Schwarz preconditigiescribed in the previous sec-
tion,

Mo is a low rank correction computed by solving a coarse system.

For practical implementation purposes within a genergbpse computer code, we do not want
to refer explicitly to an underlying coarse grid, or to urlgigrg basis functions, since these notions
are always hard to identify in practice when using generalsgrfinite elements or mixed finite
elements.

The coarse component can be described as follows. LULdbe the algebraic space of nodal
vectors where the Schur complement matrix is defined@dgdbe a q-dimensional subspace &f .
Elements ofUg are characterized by the set of nodal values that they caewva&chThis subspace
will be called coarse space.

Let Ry: U — Ug be a restriction operator which maps full vectorsWfinto vectors inUg,
and let Rg :Uo — U be the transpose dRp , an extension operator which extends vectors from the
coarse spacé)g to full vectors in the fine spac¥ .

The Galerkin coarse space operator

So=RosRY, (3.7)

in some way, represents the Schur complement on the coase dp.

The global coupling mechanism is introduced by the coarsepoment of the preconditioner
which can thus be defined ado = R} s, *Ro.

Based on this algebraic construction various coarse-gpacenditioners can be considered that
only differ in the choice of the coarse spatly and the interpolation operatd?g . For conver-
gence reasons, and similarly to the Neumann-Neumann ath&ab Neumann-Neumann precon-
ditioner [67, 69), R} must be a partition of the unity i) in the sense that

Ri1=1, (3.8)
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where the symbal denotes the vectors of all 1's that have different size inritplet and left-hand
side of 3.9).

In this work we consider a coarse space where we associateoange point with each subdo-
main. Let B be the set of unknowns belonging to the interfacdetween subdomains. L&y be
a subdomain an@Qy its boundary. Then

YKZGQkQB

is the set of indices we associate with the dom@Qin. Figure3.4 shows the elements of a certain
set Iy.

Let zx be avector defined of and z(i) its i -th component. The support of the basis vectors
zk has inspired the name of the coarse spaces. Then, the suipdoasad coarse spat& can be
defined as

1, ifierand
0, otherwise

)

Uo =sparnzgx:k=1,...,N], where z(i) = {

Figure 3.4:Support of one basis vector of the “subdomain” coarse space.

Notice that for the example depicted in Fig®d, [zy] is rank deficient. Indeed, if we consider
V= zi'\':laizi where theq; are, in a checker-board pattern, equakt@ and +1, it is easy to see
thatv=0.

Nevertheless, this rank deficiency can be easily removeddopauiing one of the vectors diy] .

In this particular situation, the set of vectoss= {21, z2,...,zn_1} forms a basis for the subspace
Uo.

The considered restriction operatBg returns for each subdomai(®; )i—1n-1 the weighted sum
of the values at all the nodes on the boundary of that subdonTdie weights are determined by
the inverse of the number of subdomains(i;)i—1n-1 each node belongs to. For all the nodes
but the ones or@Qy (in our particular example) this weight is:/2 for the points on an edge and
1/4 for the cross points. These weights can be replaced &by operator dependent weights
Ro(i,k) = & /(a +aj) on the edge separatin@; from Q; , but this choice has not been tested
numerically in the present work.

REMARK 3.5.1 Although used in a completely different context, this ceagace is similar to the
one used in the Balancing Neumann-Neumann preconditiondtdisson-type problem$$]. We
use one basis vector for each subdomain, whereas in Balgh@nmann-Neumann the basis vectors
are only defined for interior subdomains for solving the Btifiet problem, that are the subdomains
where the local Neumann problems are singular.

To conclude, although we have also consider the solutiomgymmetric problem in this work,
we have not investigated coarse space correction basedronfalerkin approaches that are some-
times used in multigird.
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3.6 Scaling the Schur complement

In some simulations the dynamic of the computed quantisdsgh and leads to variations in the
coefficients of the linear systems. Consequently thesatianis also appear in the associated Schur
complement systems. Therefore, we investigate a scalatmigue that has been implemented and
evaluated. For most of the linear systems the largest erdrie located on the diagonal. In that
context, a diagonal scaling was the best trade-off betweemamerical efficiency and the parallel
implementation efficiency. This technique is relativelysydo implement for scaling the Schur
complement system when the local Schur complement aredxglicitly.
We consider the solution of
su=f, (3.9

and denote by(sj) the entries ofs . The diagonal scaling oB(9) consists in solving

DsDv=Df, u=Df, (3.10)

where D = diag((1/[si|) %) .

REMARK 3.6.1 When the original matrixs is symmetric, by construction, the diagonal scaling
preserves this property as well as the positive definiteriessiis.

Let s denote the Schur complement matrix associated with theénatignatrix 2 . Instead
of scaling the Schur complement system, it is also possibteale the original matrixa before
computing the local Schur complement matrices. We conglidediagonal scaling for meaning
that the systemax = b, is replaced by the byDaDy = Db, x = Dy where D is the scaling
matrix computed from the diagonal entries af by dij = (1/]a;i|)~*. If we order first the internal
unknowns and then the ones on the interface we obtain

( A A > (3.11)

Aary Arr

Reordering in a consistent manner the diagonal scalingxria#ads to

D O ay  Air Di 0 \_( DiayDy  DyairDr (3.12)
0 Dr ar  Arr 0 Dr DrarDy DrarrDr /- '
Eliminating the internal scaled equations we obtain

Sscaled= DrarrDr — Drar Dy (D4 D) 1Dy 4,rDr = DrSDr

where s is the Schur system associated with the unscaled matrixThis observation is also true
for the row, the column scalings that are not considered irstudy. This indicates that scaling the
original matrix leads to scale the Schur complementising entries ofz .
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Chapter 4

Design of parallel distributed
Implementation

4.1 Introduction

Massively parallel computers promise unique power fordaggineering and scientific simulations.
The development of efficient parallel algorithms and megibat fully exploit this power is a grand
challenge for computational researchers. Large parakehimes are likely to be the most widely
used machines in the future, involving an important corsitiien in parallel methods and algorithm
designs.

Domain decomposition is a natural approach to split thelpratinto subproblems that are allo-
cated to the different processors in a parallel algorithivis Bpproach is referred to as the classical
parallel domain decomposition method. 2Alevel parallelalgorithm (9] will attempt to express
parallelism between the subproblems but also in the tregtofeeach subproblem. Since each sub-
domain will be handled by more than one processor, commtioicstrategies, data structures and
algorithms need to be rewritten to reflect the distributibthe work across multiple processors.

In this chapter, the classical parallel domain decompmsitnplementation (refer to dslevel
parallel) is described. It is followed by a discussion of @wevel paralleimethod, program design
and performance considerations. We describe the implatienof the2-level paralleimethod, that
allows us to provide an efficient, parallel algorithm forestific applications possessing multi-level
of tasks and data parallelism. Achieving high performascat ithe top level on our list of priority.
In this context, we strive to center tielevel parallelimplementation around an efficient use of
the available parallel numerical linear algebra kernethsas ScakPAck, PBLAS, BLAS [18] and
MumpPs |2, 3] on top of MPI [56]. For the Krylov subspace solvers, we consider the packsgeed
for parallel distributed computinglp, 43, 44].

4.2 Classical parallel implementations of domain decompason
method

4.2.1 Introduction

In the Schur substructuring method, the underlying meshulislisided into blocks (submeshes).
The idea is to map the blocks to processors. Then, for eadk hiloe internal degree of freedoms
are eliminated, using a direct method, leading to a redugsis of equations that involve only
the interface degrees of freedoms. The internal eliminasocarried out independently on each
processor and requires no communication. The remainingllpaproblem, the reduced system,
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is then solved using an appropriate preconditioned Kryldyspace solver such as CG, GMRES,
MINRES, BiCGSTAB, etc... 86]. lterative solver is used because it exhibits better perémce
and it is easier to implement on large parallel machines tharsparse direct solvers. Once the
iterative process has converged to the desired accuracgolhtion of the reduced system is used
simultaneously by the direct solver to perform the solufmrthe interior degree of freedoms. Thus
the hybrid approach can be decomposed into three main phases

e the first phasghaselconsists into the local factorization and the computatibthe local
Schur complements,

e the setup of the preconditioneph@se?,
o the iterative phasephase3.

We describe below the main algorithmic and software toolfiaxe used for our parallel implemen-
tation. In Sectio.2.2 we present briefly the multifrontal method and the direétveare MumpPSs
which is a parallel package for distributed platforms. Irct8m 4.2.3 we discuss the efficient
implementation of both localNlg_e4, Md—mix and Msp_s4) and global components of the precon-
ditioner. Finally in Sectio.2.4 we describe the parallel implementation of the main keroéthe
iterative solvers.

4.2.2 Local solvers

Many parallel sparse direct algorithms have been develspedas multifrontal approaches| 3§,
supernodal approache3Z and Fan-both algorithms8]. Our work is based on the multifrontal
approach. This method is used to computelthe or LDLT factorizations of general sparse matrix.
Among the few available parallel distributed direct sotyevlumps offers a unique feature, which
is the possibility to compute the Schur complements defindgthuation 4.1) using efficient sparse
calculation techniques,
Si=Arr — Ar At Ann (4.1)

This calculation is performed very efficiently asuMps implements a multifrontal approacB7]
where local Schur complements are computed at each ste elithination tree process (during
the factorization of each frontal matrix) and is based oell@/BLAS routines. Basically, the Schur
complement feature of MMPS can be viewed as an partial factorization, where the fazaticn of
the root, associated with the indices af,r, , is disabled. Consequently this feature fully benefits
from the general overall efficiency of the multifrontal apach implemented by MvpPs. From a
software point of view, the user must specify the list of oedi associated wittar,r, . The code
then provides a factorization of the; ; matrix and the explicit Schur complement matrix. The
Schur complement matrix is returned as a dense matrix. The&lptactorization that builds the
Schur complement matrix can also be used to solve lineagmspsassociated with the matrix;, ;, .

The MUMPS software

The software Mumps (MUItifrontal Massively Parallel Solver) is an implemetitan of the mul-
tifrontal techniques for parallel platforms. It is writtém Fortran 90 and use new functionalities of
this language (modularity, dynamic memory allocation). p¥esent here the main features of this
package.

¢ Factorization: of sparse symmetric positive definite matricéD(" factorization), general
symmetric matrices and general unsymmetric matric¢és$ factorization).

e Entry format for the matrices: The matrix can be given in different formats. The three
formats that can be used are:

— the centralized format where the matrix is stored in coatéirformat on the root pro-
cessor,
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— the distributed format where each processor own a subséeahttrix described in a
coordinate format, defined in global ordering,

— the elemental format where the matrix is described as a sutartfe elementary matri-
ces.

e Ordering and scaling: the code implements different orderings such as AMD QAMD,
PORD B9, METIS [62] nested dissection, AMF, and user defined orderings.

e Distributed or centralized Schur complement:the software enables us to compute the Schur
complement in a explicit way. The Schur complement matrineiarned as a dense matrix. It
can be returned as a centralized matrix on the root processasra distributed 2D block-cyclic
matrix.

4.2.3 Local preconditioner and coarse grid implementatios

In this subsection we discuss both the local and the glolbalrée grid correction) component of the
preconditioner considered in our work.

Local preconditioner:
This phase depends on the variant of the preconditioner. #smddense preconditioner it consists
in assembling the local Schur complement computed by tleedsolver, and then to factorize them
concurrently using BPACK kernels. For mixed arithmetic preconditioner, it consistassembling
the local Schur complement in 32-bit arithmetic, and thefatborize them concurrently usingak
PACK kernels. For the sparse preconditioner, it consists innalstieg the local Schur complement,
to sparsify them concurrently, then to factorize them udivegsparse direct solver 8pPs. The as-
sembly phase consists in exchanging part of the local Scltartzbtween neighbouring subdomains.
This step can be briefly described by Algoritidm

Algorithm 4 Assembling the local Schur complement
1. 85 =38 or Sj=sngl(si) for My_mix
2: for k= 1,nbneighbourdo
3:  Bufferize SEND part ofs; to neighbour k;
4: end for
s: for k= 1,nbneighbourdo
6: Receive RECV part ofs; from neighbour k:buf fetemp«— RECV()
7. Updates; < Sj+buf fetemp.
8: end for

Construction of the coarse part:
The coarse matrix is computed once as described in AlgoBthBecause the matrix associated with
the coarse space is small, we decide to redundantly buildi@ne this matrix on all the processors.
By this way we expect that applying the coarse correctioraahestep of the iterative process only
implies one global communication for the right-hand sidestauction P6]. The coarse solution is
then performed simultaneously by all processors. So atlidjet £ost of storing the coarse matrix,
we can cheaply apply this component of the preconditioner.

4.2.4 Parallelizing iterative solvers

The efficient implementation of a Krylov method strongly deds on the implementation of three
computational kernels, that is the matrix-vector prodapplying the preconditioner to a vector, and
the dot product calculation.
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Algorithm 5 Construction of the coarse component

1
2
3
4
5

: Each processor calls GEMM to computempS— s Rg

: Each processor calls GEMM to compugloc < RoptempS
: Each processor reordesy < Sloc in subdomains order
- Assemblesp in all processors

. Factorizeso simultaneously in all processors

matrix-vector product: y; = S$iX;

It can be performed in two ways, explicitly using BLAS-2 rimet or implicitly using sparse matrix-

ve

ctor calculations. The explicit computation is desatibg Algorithm®6, whereas the implicit one

is given by Algorithm?.

Algorithm 6 Explicit matrix-vector product

1:

© X NOA AW

Completely parallel and does not need any communicatiomd®sst processors.
Each processor call to DGEMV compuye«— SiXi

. Update data: it needs some exchange of informations betagighbouring subdomains.
nbneighbour

Each processor assemblgs— Z Rr,Yi
i=

: for k= 1,nbneighbourdo

Bufferize SEND part ofy; to neighbour k;

: end for

: for k= 1,nbneighbourdo

Receive RECV part of; from neighbour K:ytemp <« RECV()
Updatey; < Vi + Ytemp-

. end for

Algorithm 7 Implicit matrix-vector product

1:

Each processor compute a sparse matrix vector proguet.a ;r, i

We use a special subroutine for sparse matrix vector product

: Concurrently, each processor calluMpPs to perform a forward/backward substitution «—
ﬂ;}iyi using the computed factors cf;, ;

: Then also in parallel, each processor computes the spatsig4vector product
yi — f‘lririxi - f‘lri riYi

. Last step (update data): it needs some exchange of infarnsabietween neighbouring subdo-

mains.
nbneighbour

Each processor assemblgs— Z Rr}Yi
i=

Applying the preconditioner: y; = M, x;

This step described in Algorithi@ can be performed using eithemback kernels for the dense
preconditioner or a forward/backward substitution using $parse solver MMPs for the sparse
preconditioner.

The dot product: y; = y/

The dot product calculation is simply a local dot-produahpuited by each processor followed by a
global reduction to assemble the complete result as destiibAlgorithm9.
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Algorithm 8 Applying the preconditioner

1: In parallel each processor performs the triangular sgjve- Mflxi

2: Update data: exchange of informations between the neigiripsubdomains.
nbneighbour

Each processor assembje— Z RriYi »
i=

Algorithm 9 Parallel dot product

1: In parallel each processor performs the local dot proguet v/ x;
2: Global reduction across all the processors: MPI_ALLREDWGE

4.3 Two-level parallelization strategy

4.3.1 Motivations for multi-level parallelism

Initially this work was motivated by the fact that, many deabe real simulations scale well in

parallel, but execute at an unsatisfying percentage of ¢élad performance. The main goal of the

development of th@-levelsof parallelism approach is the investigation of numericetimods for
the efficient use of parallel modern machines. Classicallghimplementationsi(-level parallel)

of domain decomposition techniques assign one subdomajrpeessor. We believe that applying
only this paradigm to very large applications has some daakdand limitations:

e For many applications, increasing the number of subdomafiles leads to increasing the

number of iterations to converge. If no efficient numericalamanism, such as coarse space
correction for elliptic problemsl7, 94], is available the solution of very large problems might

become ineffective. To avoid this, one can instead of irgingathe number of subdomains,
keep it small while handling each subdomain by more than ooegssor introducing-levels
of parallelism. This latter benefit is what we calledé numerical improvemenuf the 2-level
parallel method. The description of this idea is illustrated in Feyirl

e Large D systems often require a huge amount of data storage so thate¢mory required
to handle each subdomain is not available for each indivigrgcessor. On SMP (Symmet-
ric Multi-Processors) node this constraint can be relaxeda might only use a subset of
the available processors to allow the exploited processaascess more memory. Although

such a solution enables simulations to be performed, soowepsors are “wasted"”, as they

are “idle" during the computation. In that context, the diation executes at an unsatisfying
percentage of per-node peak floating-point operation.rdtes “idle” processors might con-

tribute to the treatment of the data stored into the memoth@hode. This takes advantage

of the “idle" processors and runs closer to the peak of pdermerformance as described
in Figure4.2 We call this ‘the parallel performance improveméndf the 2-level parallel
method.

e \ery large simulations might require substantially largemputational resources than avail-
able on a node of the target machine. The memory requireddilysédomain computation
is larger than the memory available on each node, thus thé@obf the sparse linear system

cannot be performed usiriglevelof parallelism. Such a situation can also be addressed us-

ing our2-level parallelimplementation as described in Figute for the case of a cluster of
SMP target computer. This idea is also calléuE*parallel performance improvemérwif the
2-level parallelmethod.
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Figure 4.1: Comparison betwedrlevel paralleland2-level parallelmethod on 1000 processors,
when instead of having 1000 subdomains, we decrease theemwhisubdomains to 125 while
running each one onto 4 processors.
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(a) 1 processor working, 3 processoisié". (b) 4 processors working, 0 processatié".
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Figure 4.2: Comparison betwegrevel paralleland2-level parallelmethod on 4 SMP-node quadri-
processors, when each subdomain require the overall meshargiode.
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3
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Figure 4.3:2-level parallelmethod, when each subdomain require more than the mematgtdea
on an SMP-node.

4.3.2 ParallelIBLACS environments

We describe in this section, the basics of theaBs environment used as a communication layer for
both RBBLAS and ScalaPAack libraries. Before calling the parallel linear algebra inas for each
subdomain, we need to define a grid of processors on whiclinbarlalgebra routines will operate
in parallel. A set of parallel processors (group/commutaidavith k processors is often thought of
as a one dimensional array of processes labeled 0,1,..&rJpefformance reasons, it is sometimes
better to map this one dimensional array into a logical twoethsional rectangular grid, which is
also referred to as process grid of processors. The processan havep processor rows and
processor columns, wherpx q= k. A processor can now be indexed by row and column. This
logical rectangular grid may not necessarily be reflectethbyunderlying hardware. The user must
define the number of processors row and processors columgraf,avhich is nothing else than the
number of processors of the group/communicator. Indlevel parallelimplementation the code
initializes several grid of processors, as many as the nuofl®ibdomains.

4.3.3 Multi-level of task and data parallelism

In this subsection, we present the basic concepts of datédison over the processor grid. When
each subdomain is handled by a group of processors (gridhelinear algebra objects (vector
and matrices) should be distributed across the procestthe grid. So, each subdomain data are
mapped to the memory of the grid processors assuming speatficistributions. The local data on
each processor of the grid is referred to as the local aragllel linear algebra routines assume that
data has been distributed to the processors with one-diove&ior two-dimensional block-cyclic
data scheme. This distribution is a natural expressionebtbck partitioning algorithms available
in ScalAPACK. On the left-hand side of Figuke4we depict the one-dimensional block-cyclic data
distribution over a grid of k 4 =4 processors. On the right-hand side of Figdréwe display
the two-dimensional block-cyclic data distribution ovegrad of 2x 2 =4 processors. We refer the
reader to the ScalPACK user guide 18] for more details.

As consequence, in the context of our hybrid domain decoftiposnethod, the first distribution
of data is performed naturally by the domain decompositantitooning of the physical problem into
N subdomains. The second data distribution is done withih eabdomain on the local associated
grid of processors (group) and according to th2 2lock-cyclic distribution as shown in Figude5
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Figure 4.4: One dimensional (left) and two dimensionalitjdplock cyclic data distribution.

Physical domain

Domain decomposition
partitioning

2D block-cyclic
distribution over a
grid of 4 processors

Figure 4.5: Multi-level of data and task distribution.
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4.3.4 Mixing 2-levels of parallelism and domain decomposition techniques

We focus here on the description of tRdevel parallelmethod in the context of domain decompo-
sition algorithms. The-level parallelimplementation will be effective for our hybrid solver isit
main three phases can be efficiently performed in parallet us quickly recall the main numerical
kernels of our algorithm and for each of them describe thallgistrategy.

Initialization phasel
The idea of the2-level parallelmethod is to handle each subdomain using several procesEmrs
allow multi-processing per subdomain, the algorithm stiadntrol several groups of processors,
each of them working on different tasks associated with titelemains. We define as many groups
as subdomains and associate one MPIl-communicator with &atttem. As result, we perform
simultaneously each local factorization in parallel takine advantage of the sparse direct solver in
a grid of processors (group). The computed Schur matrioigdtover the grid processors according
to the D block-cyclic data distribution.

Preconditioner setupphase2
The local Schur complements are dense and distributed begurocessor grid. This means that
each processor stores blocks of rows and columns of thel"I&chur complement. Because pro-
cessors must exchange data during the assembly step, tit# ttas latter must be considered. This
step does not depend on the number of processors and dedgrhdhe number of neighbouring
subdomains. We notice that, for the large simulations, dleallSchur matrices are large. For the
standardl-level parallelalgorithm, only one processor has to communicate with itghimuring
subdomain/processor in order to assemble the local Schuwixmén a multi-level parallel frame-
work, we have to pay attention to perform this phase effigjerior this purpose, each processor
that stores part of the “local" Schur knows the identity @& irocessors handling the corresponding
part of the neighbouring “local" Schur complements to hdfieient point-to-point communication.
This enables parallel communication and assembling of thegmditioner.

Iterative loop phase3
This phase involves three numerical kernels that are: thedxmaector product, the preconditioner
application and finally the global reduction step. The Idgehur matrices are distributed over the
local grid of processors so that botBIRS and ScaAPACK can be used easily.

For the matrix-vector product, the implementation is perfed using the PBLAS routines to
multiply the dense distributed local Schur complement waiéo the distributed vecton. The
resulting distributed vector is updated directly betweeighbouring subdomains as each processor
associated with one subdomains knows its neighbours agsdavith neighbouring subdomains.

The preconditioner application relies either oniSgack kernels for the dens#ly_g4 precon-
ditioner or MumPs for the sparseMsp_64 preconditioner. Similarly to the matrix-vector product,
the resulting distributed vector is updated.

For the dot product calculation, each processor owning itelalited vectors performs its local
dot product then the results are summed using a simple gletattion.

Because each step can be parallelized, the iterative Idoplation greatly benefits from the
2-level parallelimplementation.

We summarize in Algorithnd0, the main algorithmic steps of our 2-level parallel implerae
tion. The complexity of the actual code is of course by no rseaflected by these few lines of
algorithmic description.
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Algorithm 10 2-level parallelmethod implementation
1: Define a set of groups of processors.

2: Define communicators for groups, masters of groups.

3: Initialize BLACS environments

4: if (I am Master of groupdhen

5:  Partition problem intoN subdomains (or generaté subdomains)

6: end if

7: Define new data-structure and new sub-indexing of variables

8: Simultaneously initialize parallel instance (over thedgifocessors) of direct solver
9: Perform on each subdomain parallel factorization and cdatjon of the Schur complement.
10: Assemble local Schur complemenb 2lock-cyclic data distribution

11: Setup the preconditioner locally in parallel

12: if (I am Master of groupdhen

13:  Distribute the RHS over the column grid of processors

14: end if

15: Perform the iterative loop

16: for k=1, convergencelo

17:  Perform matrix-vector product in parallel over the grid ggesorsy; < SiXx;

nbneighbour
18:  Column processors communicate the value of the resuit Z Rr;Yi

19:  Perform preconditioner applications
nbneighbour

20:  Column processors communicate the value of the resuh Z Rr;Yi

21:  Perform dot product by the column processor.

22: end for

23: if (I am column processor or Master of grotlpgn

24:  Scatter the interface solution

25: end if

26: All processors of a group perform simultaneously the iotesblution
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Part Il: résumé

Dans ces deux chapitres, nous allons illustrer le compamémumeérique et les performances
paralléles de notre approche par une série exhaustiveétiexgges paralléles numériques dans un
contexte académique. Cette étude exhaustive de I'exibigséi 'efficacité parallele de notre pré-
conditionneur et de sa mise en oeuvre est réalisée sur delees modeles de type équations de
diffusions D au Chapitre 5 et déquations de convection-diffusi@n &1 Chapitre 6. Pour chacun
de ces modeéles types, on considere différents problemessamf varier la difficulté du systéeme a
résoudre. Pour les problémes elliptiques, des situatiees de fortes discontinuités et anisotropie
sont considérées. Pour les problémes de convection-diffusn sintéresse en particulier a I'effet
du nombre de Péclet sur la robustesse du préconditionnetie €ude est menée sur des machines
jusqua 2048 processeurs pour résoudre des probleldes [Bus de 50 millions d'inconnues. Ces
études ont été menées sur des machines telles que le Syse&eviiegidia Tech ou I''BM Blue-Gene
du CERFACS.

Une étude sur l'influence de la sparsification a illustré lenportement du préconditionneur
creux en le comparant au dense. La Figdré@ montre que le préconditionneur creux peut-étre
considérré comme robuste et efficace. Autrement dit poutrdegetites valeurs du paramétre de
seuil, 20% des entrées du complément du Schur sont reteriDass ce contexte, on observe un
gain en mémoire et en calcul considérable alors que les pdé&@nneurs denses et creux ont des
convergences trés similaires (courbe en rouge). Pour desrsaoptimales du parameétre de seull,
on observe un gain énorme aussi bien en mémoire qu’en calecglgrde moins que 5% des entrées
avec un gain d’'un facteur 3 en temps). Ici le préconditiommeeux nécessite quelques itérations
de plus pour converger mais chaque itération est signifeaient plus rapide (courbe en vert). Par
contre pour des valeurs trés grandes du paramétre de seuwtis ol seulement 1% des entrées
du complément de Schur sont conservées, la convergencdéé&@depour un gain en temps de
calcul qui n’est pas trés significatif. Donc un choix optirdal parameétre de seuil doit assurer un
bon compromis entre le colt de construction et d’applicadio préconditionneur tout en assurant
une bonne convergence.

:
Dense calculation |1

[Ir 1N

- - - Sparse with £=10"
- = = Sparse with E:IO’A,

Sparse with E:ll)’3
- = = Sparse with E:ll)’2 H

.
100
#iter

L L L L
120 140 160 180 200

[Ir  JVIH

T T
Dense calculation | 10°

- = - Sparse with
~ = - Sparse with

Sparse with
- - - Sparse with

£=107°
£=107||
&=107
£=1072||

40 60 80
Time(sec)

Figure 4.6: Comportement numérique de la variante creuse.

Suivant la méme méthodologie, une étude sur I'effet de leigigh mixte a été menée. La Figut&
illustre une comparaison avec les préconditionneurs neixt®uble précision. On peut tout d’abord
observer que le préconditionneur en précision mixte atieiméme niveau de convergence que celui
en double précision sans trop pénaliser la convergencelu3esp regardant le temps de calcul, on
observe un gain acceptable. On note que ce gain varie d’atef@ime a une autre. Par exemple sur
des machines IBM SP4 on observe un facteur de 1.8 entre url saiple et double précision tandis
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que ce facteur n’est pas observé sur une machine BlueGelsgsetle les deux arithmétiques sont
traitées a la méme vitesse. On note que seul le préconditiorest calculé en simple précision.
Donc un calcul en précision mixte nous apporte un gain d’otefa 2 au niveau de stockage ainsi
gu’un gain en temps de calcul dépendant de la machine dd.calcu
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— 64-bit calculation H
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[Ir VI
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Figure 4.7: Comportement numérique de la variante précisixte.

Dans une seconde étape, nous nous intéressons a lévélatigsi d'un point de vue numérique que
d’un point de vue performance parallele des préconditiormeDifférentes analyses peuvent étre
réalisées pour étudier les performances paralléles d’ppeoahe lorsqu’on augmente le nombre
de processeurs. Dans notre cas, nous avons considéré deedétliévolutivité ou I'on fait varier
linéairement la taille du probléme traité en fonction du hoende processeurs utilisés (scaled scal-
abilty en anglais). Pour un algorithme idéal d’'un point de de son comportement numérique et
de sa mise en oeuvre parallele, le temps de restitution cestgtant et indépendant du nombre de
processeurs utilisés.

Dans ce contexte expérimental, nous illustrons dans la&#8a gauche le nombre d’itérations
nécessaires lorsqu’on augmente le nombre de processedis ¢@a droite, on représente le temps
de calcul nécessaire pour réaliser la simulation. Dun mlEnvtue convergence, on peut observer que
lorsqu’on augmente le nombre de processeurs de 27 a 172@nlera d'itérations n’augmente que
de 23 a 60 ; autrement dit lorsqu’on augmente la taille dulgrob 64 fois le nombre d'itérations
n'augmente que de 3 fois. Par contre d’'un point de vue tempsatbeil, on peut observer que
lorsqu’on augmente la taille du probléme 64 fois le temps aleut n'est multiplié que par un
facteur inférieur a 1.3 ce qui est proche de la situationledéan effet, la partie incompressible et
commune a chacune de ses experimentations de factoridagroblémes locaux et d'initialisation
du préconditionneur constitue une part significative dewdatomplet ; ceci masque partiellement
'augmentation du nombre d’itérations. Donc on peut corelgue cette méthode présente une
évolutivité paralléle intéressante au niveau numérigosi gju’au niveau performance.
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Chapter 5

Numerical investigations on diffusion
equations

5.1 Introduction

In this chapter, we first describe in Sect®2the computational framework and detail the academic
model problems considered for our parallel numerical erpemts. We investigate in Sectidn3

the numerical behaviours of the sparsified and mixed arititraariants that are compared with the
classical dense 64-bit additive Schwarz preconditionecti8n5.4is the core of the parallel study
where we first illustrate through classical speedup expanisithe advantage of increasing the num-
ber of processors for solving a problem of a prescribed #iwey we study the numerical scalability
and the parallel performance of the preconditioners by aoimg) scaled speedup experiments where
the problem size is increased linearly with the number ofpssors31]. Finally we end this section
by considering the effect of a two-level preconditioner.

5.2 Experimental environment

Although many runs have been performed on various pardd#opms, we only report in this chap-
ter on experiments performed on the System X computer ladtak Virginia Tech. This parallel
distributed computer is a 1100 dual node Apple Xserve GRetusachine based on 2.3 GHz Pow-
erPC 970FX processors with a 12.25 TFlops peak performanbis computer has a distributed
memory architecture, where each node has 4 GBytes ECC DD{DEBR00) of RAM. Thus, data
sharing among processors is performed using the messagiagébrary MVAPICH. The inter-
connection networks between processors are 10 Ghps Infidi®éh 66 SilverStorms 9xx0 family
switches and Gigabit Ethernet with 6 Cisco Systems 24045116 switches.

To investigate the robustness and the scalability of theqm@itioners we consider various aca-
demic 3D model problems by considering the diffusion cogffitmatrix K in Equation 6.1) as
diagonal with piecewise constant function entries defimeitié unit cube as depicted in Figlel
The diagonal entries(x,y,z) , b(x,y,z), c(x,y,z) of K are bounded positive functions dd en-
abling us to define heterogeneous and/or anisotropic prahle

{—div(K.Du) = f in Q (5.1)

u = 0 on 0Q.
To vary the difficulties we consider both discontinuous and@tropic PDE’s where constant

diffusion coefficients are defined either along verticalhedPattern 1 type problems) or horizontal
beams (Pattern 2 type problems). This latter pattern qooreds to MOSFET problems arising in
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device modeling simulation. For the sake of completenesala® consider the classical Poisson
problem where all the coefficient functiorss, b and c are identically one. More precisely we
define the following set of problems:

Problem 1Poisson wherea(-) =b(-) =c(-) =1.
Problem 2heterogeneous diffusion problem based on Pattern 1;

1 in QluQUQS,
a('):b(')zc(’):{ 108 in Q2UQ*UQS.

Problem 3heterogeneous and anisotropic diffusion problem basedtiarR 1;a(-) =1 and

1 in QtuQ3UQd,
b()=c()=1 1® in a2ua*uq®

Problem 4heterogeneous and anisotropic diffusion problem basedtiarR 2;a(-) =1 and

1 in Qb
b(:)=c(-)=¢ 10° in Q2
10° in Q3UQUQSUQS.

(a) Pattern 1. (b) Pattern 2.

Figure 5.1: variable coefficient domains.

5.3 Numerical performance behaviour

In this section we investigate the numerical behaviour efgparsified and mixed arithmetic pre-
conditioners and compare them to the classibil 4. For that purpose, the performance and
robustness of the preconditioners are evaluated for tliereift PDE problems using a prescribed
mesh size with 43 millions unknowns solved using 1000 premesgsubdomains. To this end we

consider the convergence history of the normwise backwaca ﬁ“% along the iterations, where
f denotes the right-hand side of the Schur complement systém $olved andy the true residual
at the ki iteration (i.e.,r, = f — sul®).
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5.3.1 Influence of the sparsification threshold

The attractive feature oMsp_g4 compared toMg_g4 is that it enables us to reduce both the mem-
ory requirement to store the preconditioner and the contipui@ cost to construct it (dense versus
sparse factorization). However, the counterpart of thimgating resource saving could be a deterio-
ration of the preconditioner quality that would slow dowe tonvergence of PCG. In order to study
the effect of the sparsification of the preconditioner ondtwevergence rate we display in Figlr@
and5.3 the convergence history for various choices of the dropp@@meter involved in the
definition of Msp_g4 in Equation 8.6). On the left-hand side we display the convergence history
as a function of the iterations. On the right-hand side, thhevergence is given as a function of the
computing time. In these latter graphs, the initial plateeorrespond to the setup time of the pre-
conditioner. It can be observed that, even though they requore iterations, the sparsified variants
converge faster as the time per iteration is smaller andatugpf the preconditioner is cheaper.
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Figure 5.2: Convergence history for a 35@50x 350 mesh mapped onto 1000 processors for
various dropping thresholds (Left: scaled residual veitrations, Right: scaled residual versus
time).

The trends that can be observed on these particular choige®lolems (underlying PDE’s:
Poisson, Problem 2, Problem 3 and Problem 4; domain parti8®0x 350x 350 mesh partitioned
into 1000 subdomains) have been observed on many other ée@ripat is, for small values of the
dropping parameter the convergence is marginally affestate the memory saving is already sig-
nificant; for larger values of the dropping parameter a laegburces are saved in the construction of
the preconditioner but the convergence becomes very po@agonable trade-off between comput-
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Figure 5.3: Convergence history for a 35@50x 350 mesh mapped onto 1000 processors for
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ing resource savings and convergence rate is generallydiooiae of the dropping parameter equal
to 104 that enables us to retain around 2% of the entries of the Bclalr complements. This
value for the dropping threshold is used in the rest of thigptér to defineMsp g4 and Msp_mix -

For the various choices of this parameter the memory spacgesred by the preconditioners on
each processor are given in Tabld

| 1S || 0 | 10°° | 10% | 103 | 102 |
Memory 367vB 29.3uB 7.3vB 1.4uB 0.4y
Percentage 100% 8% 2% 0.4% 0.1%

Table 5.1: Amount of memory itMsp_s4 V.S. Mg_g4 for various choices of the dropping parameter.

5.3.2 Influence of the mixed arithmetic

A distinctive framework feature of this work is the use of exiprecision preconditionersin domain
decomposition§0], where the 32-bit calculations are expected to signifiganeiduce not only the
elapsed time of a simulation but also the memory requirethfdément the preconditioner. In that
respect all but the preconditioning step are implementddgh precision. In our implementation
all the PCG variables are 64-bit variables but the precandit and the preconditioned residual
(denoted byz in Algorithm 3) are 32-bit variables. As in the previous section, the petémce and
robustness of the preconditioners are evaluated for tliereift PDE problems using a prescribed
mesh size with 43 millions unknowns solved using 1000 premesssubdomains.

In order to compare the convergence rate of a fully 32-bitillg 64-bit, and a mixed-precision
implementation, we depict in Figuie4 and5.5 the convergence history for the three implemen-
tations. We display in Figurb.4 (a) the convergence history as a function of the iterationgtfe
Poisson problem, while Figui®4 (c) and Figureb.5 (a) and (c) corresponds respectively to Prob-
lem 2, Problem 3 and Problem 4.

It can be observed that for these not too ill-conditionedbpems, the 32-bit calculation of the
preconditioning step does not delay too much the convermgeh®CG. Down to the accuracy of
about 32-bit machine precision, the three curves have vieryas paths. As it could have been
expected, the 32-bitimplementation of CG reaches a ligigiocuracy at the level of the single pre-
cision machine epsilon, while the full 64-bit and the mixeithemetic implementations both attained
an accuracy at the level of 64-bit machine precision. On ifjet+hand side of these figures we
display the convergence history as a function of time. Agla@initial plateaus correspond to the
setup of the preconditioner. As could have been expected) tlothe single precision machine pre-
cision, the 32-bit calculation is the fastest, then dowmtaecuracy (that is problem dependent), the
mixed precision approach is the fastest. Finally, at evghdri accuracy the 64-bit implementation
outperforms the mixed one; the time saving per iteratioruisveighed by the few extra iterations
performed by the mixed approach. We should point out thatiihed strategy can only be con-
sidered for problems where the preconditioner is not toadhditioned (respectively, the initial
problem is not too ill-conditioned) so that it is not singuila 32-bit arithmetic. Finally, we point
out the current lack of theoretical results to explain thegssing numerical behaviour of the mixed
arithmetic PCG.
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Figure 5.4: convergence history for a 35@50x 350 mesh mapped onto 1000 processors (Left:
scaled residual versus iterations, Right: scaled resicralis time).
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Figure 5.5: convergence history for a 35@50x 350 mesh mapped onto 1000 processors (Left:
scaled residual versus iterations, Right: scaled resigaralis time).
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5.4 Parallel numerical scalability

For all the experiments reported in the this parallel sdbtalstudy the stopping criterion for the
linear solver is based on the normwise backward error onighe-hand side. It is defined by
[l

k —8
—- <10
Il

)

where ry is the residual computed by PCG (i.e., given by the recugpaod f the right-hand
side of the Schur complement system; the initial guess iaydwhe zero vector. We first consider
experiments where the size of the initial linear system,(neesh size) is kept constant when the
number of processors is varied. Such iso-problem size arpats mainly emphasize the interest of
parallel computation in reducing the elapsed time to solgeohlem of a prescribed size. We then
perform scaled experiments where the problem size is vaniedrly with the number of processors.
Such iso-granularity experiments illustrate the abilifyparallel computation in performing large
simulations (fully exploiting the local memory of the disuted platform) in ideally a constant
elapsed time. For all these experiments, each subdomdinéatzd to one processor.

5.4.1 Parallel speedup experiments

In these experiments we consider both the Poisson probldma heterogeneous anisotropic problem
(Problem 4) discretized on a 2%1211x 211 grid. The number of processors is varied from 216
to 1000 and Tabl&.2 displays the corresponding parallel elapsed time, meneayirements, and
number of iterations. The number of iterations carried swiven in the row headed “# iter". The
size of each of the local Schur complement matrices is givéfytes in the row entitled “Memory".
We also display the wall-clock time taken in carrying out ¢ieenputation of the Schur complement,
the construction and the factorization of the precondéidtiSetup"), and the time taken by one CG
iteration (“Timel/iter"). The total time to solve the probids given by “Total". Finally we give the
speedup computed using the elapsed time on 216 processefei@nce. We note that, for a fixed

# subdomains: # processors
216 | 343 | 512 | 729 | 1000
Poisson problem
Memory (MB) per processor 413 223 126 77 54
# iter 33 35 37 40 43
Timeliter 0.86 0.48 0.29 0.21 0.13
Setup 67.13 26.68 12.90 6.85 4.42
Total 95.45 43.63 23.84 15.47 10.15
speedup 1 2.18 4.00 6.17 9.40
Problem 4
Memory (MB) per processor 413 223 126 77 54
# iter 155 184 210 237 246
Timeliter 0.88 0.51 0.28 0.18 0.13
Setup 68.73 26.60 12.81 6.80 4.58
Total 205.40 121.72 72.15 51.22 38.45
speedup 1 1.69 2.84 4.01 5.34

Table 5.2: Classical speedups - Performance on on ax2lifl x 211 mesh when the number of
processors is varied usingy_g4 for both Poisson and Problem 4.

size problem, increasing the number of processors meamea$#eg the local sub-problem size.
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This leads to smaller local Schur complements but the gI8bhur system becomes larger, which
contributes to an increase in the number of iterations. Véeke that the growth in the number of
iterations is not significant while the reduction in the dstiarage is very important. The amount
of data managed by each processor is smaller, providingedspefor the BLAS-2 operations and
BLAS-3 operations in the direct solvers. The size of the Igeablems becomes smaller and the
sparse direct solver, the dense direct solver, used on buomains, to factorize the local problem
and the assembled Schur respectively, becomes much fakteiproduces a significant drop in the
setup time and in the time per iteration. Thus one can eagilglade that the growth in the number
of iterations was offset by decreasing the direct solvecetien time and by reducing the amount
of data. We notice that superlinear speedups (i.e., speledger than the increase in processor
number) are observed for all these experiments. This islgndire to the fact that when the number
of processors is increased the size of the local subdomaneases; because the complexity of the
direct solvers is superlinear the saving of time is also Hingsr.

5.4.2 Numerical scalability study on massively parallel @tforms

In this section we study the numerical efficiency of the prefitoners. We perform scaled experi-
ments where either

e the size of the subdomains is kept constant (i%.ponstant whereH is the diameter of the
subdomains andh the mesh size) when the number of subdomains is increased;

e orthe number of processors is kept fixed while increasingitteeof the underlying subdomain

mesh (i.e.,} varies).

5.4.2.1 Effect of the sparsification dropping threshold onltte performance

In this section, we illustrate the effect of the sparsifizatstrategy both on the convergence rate
and the computation cost (memory and computing time). Aigihomany experiments have been
performed, we only report here numerical results obtaine@mblem 2; similar behaviours have
been observed on the other model problems. The size of trdomadins is equal to about 27,000
degrees of freedom and we vary the number of subdomains fibap2o 1000 (i.e., varying the
decomposition of the cube fromx33 x 3 up to 10x 10x 10). In Table5.3we display the number

# subdomains:= # processors

27 | 64 [ 125 | 216 | 343 | 512 | 729 | 1000

£-0 # iterations 24 34 35 46 49 61 65 71
o elapsedtime || 39.2 | 469 | 478 | 56.2 | 589 | 688 | 725 | 79.4

£-10° # iterations 25 34 38 48 50 64 69 76
elapsedtime || 26.3 | 30.1 | 320 | 36,5 | 37.3 | 43.7 | 458 | 50.2

£—10* # iterations 27 37 41 53 57 74 77 85
elapsedtime | 24.6 | 28.7 | 30.7 | 36.0 | 37.7 | 454 | 46.6 | 51.7

£-1072 # iterations 35 49 56 74 78 100 108 122
elapsedtime || 26.9 | 32.7 | 36.0 | 439 | 456 | 556 | 58.9 | 67.3

£-10°2 # iterations 44 64 69 95 100 127 133 152
elapsedtime || 30.2 | 38.4 | 41.0 | 524 | 545 | 66.8 | 69.3 | 80.3

Table 5.3: Number of preconditioned conjugate gradienaitens and corresponding elapsed time
on Problem 2 when the number of subdomains and the droppnagyeteré is varied.

of iterations and the corresponding computing time to st¢ihveeassociated linear system. It can
be seen than smaller the dropping thresh®ldaster is the convergencé < 0 reduces to dense
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calculation). Allowing more entries by decreasing drogparameter close to zero generally helps
the convergence. On the other hand, larger the droppingrfessbne PCG iteration as the cost of
the preconditioner is smaller. The best trade-off, betwaemory saving to store the preconditioner
and its ability to reduce the solution time is f§e= 10~ . For this choice of the dropping parameter
we only retain around 1% 5% of the entries of the dense preconditioning matrix.

5.4.2.2 Effect of the mixed arithmetic on the performance

In order to illustrate the effect on the convergence raterepert in the tables below (Tabl&s4-5.5)

the number of PCG iterations for the four considered preitimmers on various model problems and
various local problem sizes. Recall that the threshold tisenstruct the sparse preconditioners
Msp-64 and Mgsp_mix is 104, which enables us to retain around 2% of the entries of tred Bchur
complements. In these tables reading across a row showeltaibur with fixed subdomain size
when the number of the processors goes from 27 up to 1000 thieileverall problem size increases;
for every column the number of processors (subdomains)gs denstant while refining the mesh
size within each subdomain. In optimal situations, nunagcalability would mean that the conver-
gence rate would not depend on the number of subdomainsythikl lead to constant computing
time when the overall size of the problem and the number afgssors increase proportionally.

# subdomains:s # processors

| subdomaingridsize || 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1000

Mg o4 16 | 23 | 25 | 29 | 32 | 35 | 39 42
Mamx || 28 | 24 | 26 | 31 | 34 | 38 | 41 46

20x 20 2
0x20x20 Mspes || 16 | 23 | 26 | 31 | 34 | 39 | 43 46
Mspmx || 18 | 25 | 27 | 34 | 37 | 41 | 45 49
M o4 17 | 24 | 26 | 31 | 33 | 37 | 40 43
Mamx || 29 | 26 | 28 | 33 | 36 | 40 | 44 47
25x25x25 Mspos || 17 | 25 | 28 | 34 | 37 | 42 | 45 49
Mspm || 19 | 26 | 29 | 36 | 41 | 44 | 48 53
Ma o4 18] 25 | 27 | 32 | 34 | 39 | 42 25
Mamx || 20 | 27 | 290 | 34 | 38 | 41 | 48 49
80x30x30 |y e | 18 | 26 | 20 | 36 | 40 | 44 | 48 | 52
Mspmx || 19 | 28 | 31 | 39 | 42 | 46 | 52 57
Ma_oa 19 ] 26 | 30 | 33 | 35 | 40 | 44 47
Mamx || 20 | 20 | 30 | 35 | 39 | 42 | 46 50
353535 Mspos | 19 | 28 | 30 | 38 | 46 | 46 | 50 56
Mspmx || 21 | 30 | 33 | 41 | 44 | 49 | 54 59

Table 5.4: Number of preconditioned conjugate gradiem&itens for the Poisson problem when
the number of subdomains and the subdomain mesh size islvarie

Table5.4is devoted to experiments on the Poisson problem, Tali¢o Problem 2, and Ta-
bles5.7, 5.5reports respectively results on the heterogeneous anoteopic Problem 3, Problem 4.
We can first observe that the problems with both heterogeaei anisotropy are the most difficult
to solve and that the Poisson problem is the easiest.

For all the problems, the dependency of the convergenceratiee mesh size can be observed
although it is moderated. This behaviour is similar for tharfpreconditioners. When we go from
subdomains with about 8,000 degrees of freedom (dof) to@mlaéhs with about 43,000 dof, the
number of iterations can increase by over 25%. Notice thtt stich an increase in the subdomain
size, the overall system size is multiplied by more than fore; 1000 processors the global system
size varies from eight million dof up to about 43 million dof.
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# subdomains # processors

subdomain grid size 27 64 125 216 343 512 729 1000
Md-64 49 69 81 110 127 152 156 174
Mg mix 51 71 85 116 132 158 160 179
Msp-64 50 69 84 111 131 154 159 177
Msp_mix 52 72 87 116 | 132 | 157 | 163 181

Maes || 52 | 72 | 85 | 114 | 129 | 154 | 162 | 178
Momx || 55 | 76 | 89 | 119 | 134 | 162 | 171 | 183

25x 25 2

PX29%25 | e || 53 | 74 | 8o | 116 | 136 | 158 | 168 | 184

Mspmix | 56 | 77 | 92 | 121 | 138 | 166 | 174 | 188

Maes || 54 | 75 | 88 | 118 | 132 | 158 | 167 | 180

Momx || 56 | 79 | 91 | 122 | 140 | 163 | 175 | 186
80x30x30 |y e || s5 | 77 | 92 | 121 | 146 | 164 | 173 | 189
Mspmx | 58 | 81 | 96 | 125 | 143 | 172 | 180 | 194

Maos || 55 | 77 | 89 | 120 | 133 | 158 | 169 | 183

Mamx || 57 | 80 | 92 | 126 | 141 | 166 | 178 | 188
35x35x35 | \Moes || 58 | 81 | 96 | 124 | 148 | 167 | 177 | 195
Mspmx || 60 | 84 | 99 | 129 | 147 | 175 | 187 | 200

20x20x 20

Table 5.5: Number of preconditioned conjugate gradienaitens for the heterogeneous and
anisotropic Problem 4 when the number of subdomains anditt@osnain mesh size is varied.

# subdomains:= # processors

| subdomaingridsize || 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1000
M 64 22 | 32 | 34 | 41 | 45 | 55 | 60 67
M- mix 23 | 33| 37 | 44 | 48 | 58 | 63 70

20 20 20
S Msp_64 23 | 34| 39 | 47 | 49 | 62 | 70 76
Mspmx | 24 | 35| 40 | 48 | 52 | 64 | 70 79
Ma_os 23 | 33 | 36 | 44 | 47 | 58 | 64 69
M- mix 24 | 34| 39 | 45 | 50 | 60 | 67 72

25x 25x 25
S Msp_64 25 | 34| 41 | 50 | 53 | 67 | 74 82
Mspmx | 26 | 36 | 43 | 51 | 57 | 69 | 78 84
Md_64 24 | 34 | 35 | 46 | 49 | 61 | 65 71
M- mix 25 | 35 | 38 | 47 | 52 | 64 | 69 74
303030 Msp_64 27 | 37| 41| 53 | 57 | 74 | 77 85
Md_64 25 | 35 | 40 | 47 | 50 | 61 | 67 73
M- mix 25 | 37 | 42 | 49 | 54 | 65 | 70 77

35x 35 35
Shate Mspos || 28 | 41 | 45 | 56 | 60 | 74 | 84 | 90

Msp—mix 29 43 49 59 64 80 88 96

Table 5.6: Number of preconditioned conjugate gradienaftens for Problem 2 when the number
of subdomains and the subdomain mesh size is varied.

None of the preconditioners implements any coarse spaceation to account for the global
coupling of the elliptic PDE’s, hence they do not scale petfewhen the number of subdomains
is increased. However, the numerical scalability is not e and clearly much better than that
observed on two dimensional exampl25][ The number of iterations is multiplied by about two to
3.5 when going from 27 to 1000 processors (i.e., multiplyagg@bout 40 the number of processors).
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# subdomains:s # processors
| subdomaingridsize || 27 [ 64 | 125 | 216 | 343 | 512 [ 729 [ 1000

Md_64 39 56 67 87 90 104 123 132
Md—mix 45 58 69 91 94 108 126 135

20% 20 2
0x20x20 |y s || 30 | 57 | 69 | 90 | 92 | 106 | 126 | 134
Mspmx || 42 | 59 | 71 | 93 | 96 | 111 | 129 | 139
Maes || 43 | 57 | 70 | 91 | 93 | 106 | 125 | 138
o5 o505 | Mamx | 48 | 61 | 73 | 94 | 97 | 111 | 131 | 142

Msp-64 44 60 73 94 97 112 131 143
Msp-mix 45 63 76 98 101 116 135 148

Maos || 44 | 60 | 71 | 93 | 95 | 100 | 129 | 138

Mamx || 50 | 63 | 74 | 96 | 99 | 114 | 136 | 143
80%30x30 |y e | 45 | 63 | 75 | 99 | 100 | 118 | 139 | 145
Mspmx | 47 | 65 | 78 | 103 | 104 | 121 | 140 | 151

Moos | 44 | 62 | 72 | 94 | 96 | 111 | 131 | 137

Momx || 52 | 65 | 76 | 97 | 101 | 115 | 136 | 142
85x35x35 | Ve || 46 | 66 | 77 | 102 | 105 | 120 | 141 | 149
Mspmx || 49 | 69 | 80 | 106 | 108 | 126 | 145 | 155

Table 5.7: Number of preconditioned conjugate gradientitens for the heterogeneous and
anisotropic Problem 3 when the number of subdomains anditiéosnain mesh size is varied.

The trend of the growth is similar for all the problems andasnparable for all the variants of the
preconditioners on a given problem.

5.4.3 Parallel performance scalability on massively par&tl platforms

In the sequel, we mainly report experiments with fixed subaionsize of about 43,000 degrees
of freedom while increasing the number of processors fro t621000. We look at the scaled
experiments from a parallel elapsed time perspective derisig the overall elapsed time to solve
the problems as well as the elapsed times for each indivistegl of the solution process. These
steps are initialization, preconditioner setup, and taeative loop.

e The initialization phase, referred to as initializatios shared by all the implementations. It
corresponds to the time for factorizing the matrix asseciatith the local Dirichlet problem
and constructing the local Schur complement using the MUMB&age. This phase also
includes the final solution for the internal dof, once theeifdace problem has been solved
(i.e., solution of the local Dirichlet problem). The comatibnal cost of this initialization
phase is displayed in Tabf¥e8for various subdomain sizes.

e The preconditioner setup time is the time required to buik preconditioner, which is the
time for assembling the local assembled Schur matrix, us@ghbour to neighbour commu-
nication, and factorizing this local assembled Schur matsing LAPACK for My_g4 and
Mg_mix , Or first sparsifying and then factorizing using MUMPS fidtsy 64 and Mgp_mix -
The elapsed time for various problems sizes are reportedbie’.9.

e The iterative loop is the PCG iterations.

The initialization times, displayed in Tab%8, are independent of the number of subdomains and
only depend on their size. We can again observe the nonloosaof the direct solver with respect to
the problem size. This nonlinear behaviour was the mainrafthe superlinear speedups observed



5.4 Parallel numerical scalability 71

in the iso-problem size experiments in Sect®A.1 The setup time to build the preconditioner is
reported in Tablé.9. We should mention that the assembly time does not depenti wuche
number of processors (because the maximum communicatiperisrmed among 26 neighbours
for the internal subdomains), but rather on whether 64-bB2bit calculation is used. Using a
mixed approach enables a reduction by a factor around 1.théodense variants and 1.3 for the
sparse ones. Larger savings are observed when dense ase gaaants are compared, the latter
being about three times faster.

In Table5.10we illustrate the elapsed time scalability of the paralléGiteration. In that table
we only give times for 43,000 dof subdomains. The first obestion is that the parallel implementa-
tion of the preconditioned conjugate gradient method scalmost perfectly as the time per iteration
is nearly constant and does not depend much on the numbesedgsors (i.e, 0.76 seconds on 125
processors and 0.82 on 1000 processorsM@rg4). The main reason for this scalable behaviour
is the efficiency of the global reduction involved in the dadghuct calculation that does not depend
much on the number of processors; all the other communitatoe neighbour to neighbour and
their costs do not depend on the number of processors. Fomine, the relative cost of the reduction
is negligible compared to the other steps of the algorithroah be observed that 32-bit arithmetic
does not reduce much the time per iteration for bbt_mix and Msp_mix in comparison with the
64-bit onesMq_s4 and Msp_64, respectively. This is due to the fact that the ratio of thebfi4o
the 32-bit forward/backward substitution time is only ab#il3 (compared to almost two for the
factorization involved in the setup of the preconditionkage). This reduces the impact of the 32-
bit calculation in the preconditioning step and makes tiretper iteration for both full 64-bit and
mixed arithmetic very similar. Finally, it is clear that tBparsified variants are of great interest as
they cut in half the time per iteration compared to their @ecsunterparts. Applying the sparsified
preconditioners is almost twice faster than using the denss.

A comparison of the overall solution times is given in Tabl&lfor the standard Poisson prob-
lem, in Table5.12for Problem 2, and in Table.13and Table5.14for the two heterogeneous and
anisotropic problems. The block row “Total” is the paradi&dpsed time for the complete solution of
the linear system. It corresponds to the sum of the timedlfftdrasteps of the algorithm, which are

Subdomain grid size | 20x20x 20 25x25x%x 25 30x30x 30 35x35%x 35
Time 1.3 4.2 11.2 26.8
Table 5.8: Initialization time (sec).
|  Subdomaingridsize || Mges | Miamx | Mspes |  Mspmix |
20x 20x 20 0.93 0.56 0.50 0.23
25x25x%x 25 3.05 1.85 1.64 1.15
30x 30x 30 8.73 4.82 3.51 3.01
35x35x 35 21.39 12.36 6.22 4.92
Table 5.9: Preconditioner setup time (sec).
| #processors || 125 | 216 | 343 | 512 | 729 | 1000 |
Md—_64 0.76 0.76 0.77 0.78 0.79 0.82
Md—mix 0.73 0.75 0.75 0.76 0.77 0.80
Msp_64 0.40 0.41 0.41 0.42 0.42 0.44
Msp-—mix 0.39 0.39 0.40 0.41 0.42 0.43

Table 5.10: Parallel elapsed time for one iteration of trexpnditioned conjugate gradient (sec).
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the initialization, the setup of the preconditioner, aneliterative loop. We notice that the row “To-
tal” permits us to evaluate the parallel scalability of thenplete methods (i.e., combined numerical
and parallel behaviour); the time should remain constanpéofectly scalable algorithms. It can be
seen that the growth in the solution time is rather modervelen the number of processors grows
from 125 (about 5.3 million unknowns) to 1000 (about 43 rmaillunknowns). Although the methods
do not scale well numerically, their parallel elapsed tireef@rmances scale reasonably well. The
ratio of the total elapsed time for running on 1000 procestmthe time on 125 processors is about
1.22 for My_e4 and around 1.28 for the other three variants for the Poissololgm. These ratios
are larger for the more difficult problems as the number oéttens grows more.

For the Poisson problem represented in Tdblel, we observe that the most expensive kernels
are the initialization and the preconditioner setup. Tharstlie two mixed arithmetic algorithms
Mg-mix and Msp_mix the slight increase in the number of iterations that intaeia slight increase
in the elapsed time for the iterative loop is swiftly covebgdhe vast reduction in the preconditioner
setup time, especially for the dense mixed preconditidvigrmix . Therefore, the mixed arithmetic
algorithms outperform the 64-bit ones in terms of overathpaiting time. By looking at the sparsi-
fied variants we observe a considerable reduction in the pienéteration and in the preconditioner
setup time induced by the use of the sparse alternativese 8iie use of these variants only intro-
duces a few extra iterations compared to their dense cquanrtsy this time reduction per iteration is
directly reflected in a significant reduction of the totaléim

Total solution time
| # processors 1250 | 216 | 343 | 512 | 729 | 1000
Mg—sa 71.0 73.3 75.1 79.4 83.0 86.7
M mix 61.1 65.4 68.4 71.1 74.6 79.2
Msp-64 45.0 48.6 51.9 52.3 54.0 57.7
Msp-mix 44.6 47.7 49.3 51.8 54.4 57.1
Time in the iterative loop
| # processors 1250 | 216 | 343 | 512 | 729 | 1000
Mq o4 22.8 251 26.9 31.2 34.8 385
Md—mix 21.9 26.2 29.2 31.9 35.4 40.0
Msp-64 12.0 15.6 18.9 19.3 21.0 24.6
Msp-mix 12.9 16.0 17.6 20.1 22.7 25.4
# iteration
| # processors 1250 | 216 | 343 | 512 | 729 | 1000
Md-64 30 33 35 40 44 47
Md—mix 30 35 39 42 46 50
Msp-64 30 38 46 46 50 56
Mep_mix 33 41 44 49 54 59

Table 5.11: Parallel elapsed time for the solution of thes§ai problem (sec).

The performances on Problem 2 are displayed in Taldl2 The results show that the most time
consuming part is the iterative loop. We see that the timedav the preconditioner setup by the
use of mixed-precision arithmetic still compensates fdighsincrease in the number of iterations.
Consequently on the heterogeneous diffusion problem tixedwprecision algorithm outperforms
the 64-bit one. If we now look at the sparsified variant, tr@mendous reductions in both the
time per iteration (two times faster than the dense one) hadteconditioner setup time (three
times faster than the dense one) offset the gap in the nuniiterations. Consequently, the sparse
alternatives clearly outperform the dense ones. Similaments can be made for the performances
on Problems 3 and Problems 4 as shown in T&bl8and Table5.14 In all the experiments the
sparsified versions outperform their dense counterpadshanmixed sparse variant often gives the
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fastest scheme.

Total solution time
| # processors 125 | 216 | 343 | 512 | 729 | 1000
Md-_64 78.6 83.9 86.7 95.8 101.1 108.0
Md—mix 69.8 75.9 79.7 88.6 93.1 100.8
Msp_64 51.0 56.0 57.6 64.1 68.3 72.6
Msp-mix 50.8 54.7 57.3 64.5 68.7 73.0
Time in the iterative loop
| #processors 125 | 216 | 343 | 512 | 729 | 1000
Mg_64 304 35.7 38.5 47.6 52.9 59.9
Mg mix 30.7 36.8 40.5 49.4 53.9 61.6
Msp_64 18.0 23.0 24.6 31.1 35.3 39.6
Msp-mix 19.1 23.0 25.6 32.8 37.0 41.3
# iteration
| #processors 125 | 216 | 343 | 512 | 729 | 1000
Mg_64 40 47 50 61 67 73
Md—mix 42 49 54 65 70 77
Msp-64 45 56 60 74 84 90
Msp-mix 49 59 64 80 88 96

Table 5.12: Parallel elapsed time for the solution of Pnob2e(sec).

Total solution time
| # processors 125 | 216 | 343 | 512 | 729 | 1000
Ma o2 102.9 119.6 122.1 134.8 151.7 160.5
Md-—mix 94.6 111.9 114.9 126.6 143.9 152.8
Msp-64 63.8 74.8 76.1 83.4 92.2 98.6
Msp-mix 62.9 73.1 74.9 83.4 92.6 98.4
Time in the iterative loop
| # processors 125 | 216 | 343 | 512 | 729 | 1000
Md-64 54.7 71.4 73.9 86.6 103.5 112.3
Md—mix 55.5 72.8 75.8 87.4 104.7 113.6
Msp-64 30.8 41.8 43.0 50.4 59.2 65.6
Map_mix 31.2 41.3 43.2 51.7 60.9 66.7
# iteration
| #processors 125 | 216 | 343 | 512 | 729 | 1000
Mg 64 72 94 96 111 131 137
Md-—mix 76 97 101 115 136 142
Msp-64 77 102 105 120 141 149
Msp-mix 80 106 108 126 145 155

Table 5.13: Parallel elapsed time to solve the heterogeseodi anisotropic Problem 3 (sec).
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Total solution time
| #processors 1258 | 216 | 343 | 512 | 729 | 1000
Md-64 115.8 139.4 150.6 171.4 181.7 198.2
Md—mix 106.3 133.7 144.9 165.3 176.2 189.6
Msp-64 71.4 83.9 93.7 103.2 107.4 118.8
Msp-mix 70.3 82.0 90.5 103.5 110.3 117.7
Time in the iterative loop
| # processors 125 | 216 | 343 | 512 | 729 | 1000
Md-64 67.6 91.2 102.4 123.2 133.5 150.1
Mg mix 67.2 94.5 105.8 126.2 137.1 150.4
Msp-64 38.4 50.8 60.7 70.1 74.3 85.8
Msp_mix 38.6 50.3 58.8 71.8 78.5 86.0
# iteration
| # processors 125 | 216 | 343 | 512 | 729 1000
Md—64 89 120 133 158 169 183
Mg—mix 92 126 141 166 178 188
Msp-64 96 124 148 167 177 195
Msp-—mix 99 129 147 175 187 200

Table 5.14: Parallel elapsed time to solve the heterogenaod anisotropic Problem 4 (sec).

| Subdomaingridsize|| Mges | Mimix | Msp-64 | Msp-mix |
20x 20x 20 35-8MB 17-9MB 1-8MB ( 50/0) O-9MB ( 50/0)
25x 25x 25 91-2MB 45-6MB 2-7MB ( 3%) 1-3MB ( 3%)
30x 30x 30 19445 97.2us 38us (2%) 1.6ws (2%)
35x 35x 35 367-2MB 1836MB 7-3MB ( 2%) 3-6MB ( 2%)

Table 5.15: Local data storage for the four preconditioners

We now examine the four variants from a memory requiremersigeetive. For that, we depict
in Table5.15the maximal amount of memory required on each processoegidhallel platform.
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We report in each column of Tabfel5the size in megabytes for a preconditioner when the size
of the subdomainsis varied. For the sparse variants, wergpa&renthesis the percentage of retained
entries. These figures indicate that both the mixed arititragproach and the sparse variant reduce
significantly the memory usage. A feature of the sparse ntwiss that they reduce the memory
usage dramatically. The mixed precision strategy cut ifi thal required data storage, which has
a considerable effect in terms of computing system operatial execution time, and also cut in
half the time for assembling the local Schur matrix, due twihg the total neighbour to neighbour
subdomain communication.

5.4.4 Influence of the coarse component correction

Although these preconditioners are local, consequentlpmmerically scalable, they exhibit a fairly
good parallel time scalability as the relative cost of thieigeartially hides the moderate increase
in the number of iterations. A possible remedy to overconeeldttk of numerical scalability is to
introduce a coarse grid component. To illustrate the gtofibur preconditioners to act efficiently as
the local component of a two-level scheme, we consider alsimp-level preconditioner obtained
by adding an additional term to them. For our experimenesctiarse space component extracts one
degree of freedom per subdomain as described in Se8tij26]. We start briefly by some exper-
iments for D problems and show the effect of the coarse grid correction.these experiments,
we consider two model problems:

e the Poisson Problem 1,

e the discontinuous Problem 2 described in SecEdwhere the jump between coefficient is
in the xy plan.

Total solution time
| #processors | 256 | 400 | 676 | 1024 | 1296 | 1600 | 1764 | 2025
Mg_64 27.8 30.2 335 37.5 41.1 43.6 45.6 54.5
Mg_gstcoarse | 24.5 24.9 25.1 25.4 25.8 26.0 26.4 27.2
Time for coarse setup
| #processors | 256 | 400 | 676 | 1024 | 1296 | 1600 | 1764 | 2025
Md-64 - - - - - - - -
Mqy_ggt+coarse | 0.44 0.45 0.52 0.57 0.68 0.80 0.89 1.05
Time in the iterative loop

| #processors | 256 | 400 [ 676 | 1024 | 1296 | 1600 | 1764 | 2025
Mg—64 8.7 11.0 14.4 18.3 22.0 24.4 26.5 35.4
Mq_ggt+coarse 4.9 5.3 55 5.7 6.0 6.0 6.3 7.0
# iterations
| #processors | 256 | 400 [ 676 | 1024 | 1296 | 1600 | 1764 | 2025
Md-64 79 96 123 150 173 185 199 262
Mg_gatcoarse 41 43 43 43 43 42 43 46
Time per iteration
| #processors | 256 | 400 | 676 | 1024 | 1296 | 1600 | 1764 | 2025

My-64 0.110 | 0.115 | 0.117 | 0.122 | 0.127 | 0.132 | 0.133 | 0.135
Mg_estcoarse | 0.120 | 0.124 | 0.127 | 0.132 | 0.140 | 0.144 | 0.147 | 0.152

Table 5.16: Performance of a parallel two-level precondir on Problem 2 using a 660600
subdomain mesh.
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Figure 5.6: The number of PCG iterations (left) and the catinguime (right) for a 600< 600 grid
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when varying the number of subdomains from 256 to 2025.
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In Figure5.6, we report on the number of preconditioned conjugate gradierations (left)
and the computing time (right) for each model problem. Itsilied performance on Problem 2 is
displayed in Tablé.16 For these tests, we vary the number of subdomains whileikgepnstant
their sizes (i.e.H variable with % constant). In these experiments each subdomain is ax GO0
grid and the number of subdomains goes from 256 up to 202% @shox decomposition; that is
16x 16 decomposition up to 45645 decomposition. Notice that with the increase in the nurobe
subdomains, the overall system size is multiplied by abighitethat is the global system size varies
from 92 million dof on 256 processors up to about 729 milliaf dn 2025 processors. The left
graphs show the growth of the number of iterations of thellpoaconditioner without any coarse
grid correction (the blue line with triangular). Ultimagebne wants to compare the green line with
x with the blue line with triangle. One can see that the penfomce of the two-level preconditioner
(green line with x) comes close to the ideal numerical sélityabThat is, the number of iterations
stagnates close to 33 for Poisson problem and to 43 for discmus Problem 2, whereas for the
standalone local preconditioner (the blue line with trialag) the growth in the number of iterations
is notable. The graphs on the right gives the global computiine to solve the linear system. The
scalability is also observed when the coarse componentrizdinced, the computing time remains
constant when varying the number of subdomains from 256 820 he solution of the coarse
problem is negligible compared to the solution of the localdblet problems. Finally for the
case the method scale well, when the number of processons drom 256 (to solve a problem
with 79 million unknowns) up to 2025 (to solve a problem wi287million unknowns). The ratios
between the total elapsed time expended for running on 20@%®@ 256 processors is 1.09.

The behaviour is slightly different in 3. We consider two similar model problems as for the
2D case. Furthermore, we illustrate the effect of the coaraeesporrection in combination with
the sparse preconditiondflsp_64. In Figure5.7, we report the number of preconditioned conju-
gate gradient iterations (left) and the computing timehtidor each model problem. Its detailed
performance on Problem 2 is displayed in Tabl&é7 for the combination with the denskly_g4
preconditioner, and in Tab.18for the combination with the sparddsp 64 preconditioner. For
these tests, we vary the number of subdomains while keepingtant their sizes (i.eH variable
with % constant). In these experiments each subdomain is a 3bx 35 grid and the number
of subdomains goes from 27 up to 1728. We can notice that tip $iene for the coarse space
componentis larger in 3 compared to B for comparable number of subdomains. This is mainly
due to the fact that the local Schur matrices are largerDn add the number of coarse degree of
freedoms that touch a subdomain is also higher; requiringemmatrix-vector product to compute
So . We recall that the overall system size varies from 1.1 orillilof on 27 processors up to about
75 million dof on 1728 processors. The left graphs show tlevtir of the number of iterations of
the local preconditioner without any coarse grid corret{ite blue and the red line with triangu-
lar). We observe that the coarse grid correction signiflgaaiteviates the growth in the number of
iterations when the number of subdomains is increased (#engnd the magenta line with x). On
1728 processors, almost half the number of iterations aredsa he numbers of iterations with the
two-level preconditioner tends to be asymptotic stabletiese problems. The coarse component
gives rise to preconditioners that are independent of, @klyedependent on, the number of sub-
domains. We note that for theD3 case the convergence of all the local preconditioners dipen
slightly on the number of subdomains. In other term the gajinénnumber of iterations between
the local preconditioner and the two-level one is less irsgike on the B problems in comparison
with the 2D problems for similar number of subdomains. Furthermomestving of iterations does
not directly translate into time savings (the right graphaje observe that each iteration becomes
marginally more expensive, but the dominating part is ¢yespent in the setup.
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Total solution time

| # processors 125 | 216 | 343 | 512 | 729 | 1000 | 1331 | 1728
Md—64 78.6 83.9 86.7 95.8 101.1 108.0 112.0 | 123.9
Mg_gst+coarse | 80.2 87.2 86.0 91.5 94.2 97.9 100.8 103.5
Time for coarse setup
| # processors 125 | 216 | 343 | 512 | 729 | 1000 1331 | 1728
My-64 - - - - - - - -
My_sstcoarse | 2.04 2.05 2.20 2.38 2.76 3.68 4.12 4.89
Time in the iterative loop
| #processors | 125 | 216 | 343 | 512 | 729 | 1000 1331 | 1728
My-64 30.4 35.7 38.5 47.6 52.9 59.9 63.8 75.7
Mq_ggt+coarse 29.9 37.0 35.6 41.0 43.2 46.1 48.5 50.4
# iterations
| #processors | 125 | 216 | 343 | 512 | 729 | 1000 1331 | 1728
My-64 40 47 50 61 67 73 76 87
Mg_ga*+coarse 34 42 40 45 47 48 48 48
Time per iteration
| #processors | 125 | 216 [ 343 | 512 [ 729 | 1000 1331 | 1728
My-64 0.76 0.76 0.77 0.78 0.79 0.82 0.84 0.87
Mg_gst+coarse | 0.88 0.88 0.89 0.91 0.92 0.96 1.01 1.05

Table 5.17: Performance of a parallel two-level precond#r on Problem 2 using a 3535 x 35
subdomain mesh for the dense preconditioner.

Total solution time

| #processors 125 | 216 | 343 | 512 | 729 | 1000 | 1331 | 1728
Msp-64 51.0 56.0 57.6 64.1 68.3 72.6 77.2 88.1

Msp sstcoarse | 49.8 54.9 55.9 58.4 59.2 61.6 64.7 67.6

Time for coarse setup

| #processors 125 | 216 | 343 | 512 [ 729 | 1000 | 1331 | 1728
Msm64 - - - - - - - -

Msp sstcoarse | 2.04 2.05 2.20 2.38 2.76 3.68 4.12 4.89

Time in the iterative loop
| # processors 125 | 216 | 343 | 512 [ 729 | 1000 | 1331 | 1728
Msp-64 18.0 23.0 24.6 31.1 35.3 39.6 44.2 55.1
Msp-s4tcoarse 14.7 19.8 20.7 22.9 23.4 24.9 27.5 29.7
# iterations
| # processors 125 | 216 | 343 | 512 [ 729 | 1000 | 1331 | 1728
Msp-64 45 56 60 74 84 90 94 108
Msp_s4+coarse 35 46 47 51 52 53 54 54
Time per iteration

| #processors 125 | 216 | 343 | 512 | 729 | 1000 | 1331 | 1728
Msp-64 0.40 0.41 0.41 0.42 0.42 0.44 0.47 0.51
Msp_ss+coarse | 0.42 0.43 0.44 0.45 0.45 0.47 0.51 0.55

Table 5.18: Performance of a parallel two-level precond#r on Problem 2 using a 3535 x 35
subdomain mesh for the sparse preconditioner.
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5.5 Concluding remarks

In this chapter, we have studied the numerical and impleatiemt scalability of variants of the ad-
ditive Schwarz preconditioner in non overlapping domaicateposition techniques for the solution
of large 3D academic elliptic problems. The numerical ekpents show that the sparse variant
enables us to get reasonable numerical behaviour and gefhmaisaving of a significant amount of
memory. Although we have not yet any theoretical argumentstablish the backward stability
of the mixed precision approach, this technique appeayspremising in the context of multi-core
heterogeneous massively parallel computers, where sowieedgsuch a the graphic cards) only
operate in 32-bit arithmetic. Some works deserve to be uaklen to validate the approach in this
computing context as well as theoretical developmentsgessstheir numerical validity.

Although these preconditioners are local, consequentiynaomerically scalable, they exhibit
a fairly good parallel time scalability as the relative cobthe setup partially hides the moderate
increase in the number of iterations. In order to compensatdack of numerical scalability we
investigated their numerical behaviour when the local congmts are used in conjunction with a
simple coarse grid correction. This latter component esstd recover the numerical scalability
while not penalizing much the time per iteration. In the eatrexperiments, the coarse problems
are solved redundantly on each processor. On large massioeiputers with tens of thousands
processors, the size of the coarse problems might requicertsider parallel solution. Different
variants can be foreseen. The most promising would be tccdtda subset of processors to the
solution of this additive component while the others coreghe local parts. Special attention would
have to be paid to ensure a good work balance among the vamiocsssors that no longer work in
a SPMD mode.



Chapter 6

Numerical investigations on
convection-diffusion equations

6.1 Introduction

In the previous chapter, we study the numerical and parsdialability of the algebraic additive
Schwarz preconditioners for the solution of symmetric fiesidefinite systems arising from the
discretization of self-adjoint elliptic equations. Thisapter is devoted to a similar study foD3
convection-diffusion problemélp] of the form given by Equationg( 1)

—ediv(K.Ou)4+vOu = f in Q
{ u = 0 on 0Q. (6.1)

Such problems appear in many mathematical modeling of veidge of scientific and technical
phenomena such as heat and mass-transfer, flow and traimsporbus media related to petroleum
and ground water applications, etc. The matrices resuftmy the discretization of these prob-
lems are unsymmetric, even if the original elliptic operat@s self adjoint due to the convection
component.

In this chapter, we consider academic problems associaiédtime discretization of Equa-
tion (6.1) in the unit cube for various diffusion and convection teimerder to study the robustness
of the preconditioners.

6.2 Experimental environment

We investigate the parallel scalability of the proposedlementation of the preconditioners. The
studies were carried out using the local parallel computiniity at CERFACS. The target computer
is the revolutionary IBM eServer Blue Gene/L supercomputiue Gene/L already represents
a phenomenal leap in the supercomputer race, with a pea@rpefice of 5.7 TFlops. From a
practical point of view, Blue Gene/L is built starting withial CPU (processor) chips placed in pairs
on a compute card together withx512MBytes of RAM (512MB for each dual core chip). Blue
Gene/L consists of 1024 chips, where each chip has two mddiasverPC 440s running at 700
MHz and each CPU can perform four floating-point operations pelecgiving a theoretical peak
performance of 2.8 GFlops/chip. The CPU used here has a mudr tlock frequency than other
players in the field such as AMD Opteron, IBM POWER, and Intehfifum 4. Also, it has not
been designed to run server OS’s like LINUX or AIX. Thus, tippléications that can be run on this
supercomputer are of a very specific scientific and techmiatlre. These chips are connected by
three networks:
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e 3D torus: bandwidth of 2 GBytegs, offered latency between 4 and 10s, dedicated to
one to one MPI communications.

e Tree: offers a bandwidth of 700MByteg's and a latency of 5us for I/0. The collective
network connects all the compute nodes in the shape of agmgenode can be the tree root
(originating point). MPI implementation will use that neti each time it happens to be more
efficient than the torus network for collective communioati

e The barrier (global interrupt) network: as the number oksagrows, a simple (software)
barrier in MPI costs more and more. On a very large number dégpan efficient barrier
becomes mandatory. The barrier (global interrupt) netwsitke third dedicated hardware
network Blue Gene/L provides for efficient MPI communicatigith a latency of 1.3us.

Allinteractions between the Blue Gene/L computing nodestha outside world are carried through
the 1/0 nodes under the control of the service node. Therd@modes dedicated to 1/0 and two
networks connecting the service node to the 1/0 nodes (éiigatwork and a service network).
This platform is equipped by different software and sci@nlibraries such as:

e |IBM compilers: XL Fortran and XL C/C++ for Linux Blue Gene/lexsions.
e |IBM Engineering and Scientific Subroutine Libraries (ESSL)

e MPI library (MPICH2) V0.971.

e Mathematical Acceleration Subsystem (MASS) libraries.

e GNU Tool-chain (glibc, gcc, binutils, gdb).

Java Runtime JRE 1.4.1.

IBM LoadLeveler.

e IBM General Parallel File System (GPFS).

We briefly recall the different problems investigated in firevious chapter to define the diffusion
term in Equation§.1). We then introduce two fields to define the convection terorsiered in
our numerical simulations. A scalar term is used in fronhefdiffusion term that enables us to vary
the Péclet number so that the robustness with respect tpdhisneter can be investigated. These
various choices of B model problems are though to be difficult enough and reptatea for a
large class of applications.

We consider for the diffusion coefficient as in the previobamter, the matrixK in (6.1) as
diagonal with piecewise constant function entries defimeitié unit cube as depicted in Figugel
The diagonal entries(x,y,2), b(x,y,z), c(x,y,z) of K are bounded positive functions of2
enabling us to define heterogeneous and/or anisotropidgmasb

To vary the difficulties we consider both discontinuous an@ropic PDE’s where constant
diffusion coefficients are defined along vertical beams ating to Figure6.1 pattern. For the
sake of completeness we also consider the simple homoggdétision where all the coefficient
functionsa, b and c are identically one. More precisely we define the followiegaf problems:

Problem 1Poisson wherea(-) =b(-) =c(-) =1.
Problem 2heterogeneous diffusion problem based on Pattern 1;

o) = 1 in QtuQ3uQs,
— 1 108 in QZuQtuQs.
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Figure 6.1: Pattern for heterogeneous diffusion: variablkfficient domains.

Problem 3eterogeneous and anisotropic diffusion problem basedtiarh 1;a(-) =1 and

1 in QluQ3uQd,
b()=c()=1 10* in Q2uQ*u0s

For each of the diffusion problems described above we definenaection term for all the
directions. We choose two types of convection problems:

e Convection 1models a circular flow in they direction while a sinusoidal flow in thedirec-
tion. Figure6.2shows the streamlines of the convection field. This conwadteld is:

w() = (x=¥)(2y-1),
w() = (y-y)(x-1),

vz() = sin(tz).
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e Convection 2is an example of a four area sinusoidal flow depicted in Figuselt is specified
by the convection field:

V() = dsin(y)*e ¥« (cogX) — 2xsin(x)),
Y« (cosy) — 2ysin(y)),

w(-) = 4sin(x)xe X~
)
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(a) xy plane. (b) surface of the velocity field.

Figure 6.3: four area sinusoidal convection flow.

Each problem is discretized on the unit cube using stanagahsl order finite difference discretiza-
tion with a seven point stencil.

6.3 Numerical performance behaviour

The discretization of the problems that we consider here gse to linear systems that are unsym-
metric, and we therefore have to replace the conjugategmuadolver by a suited Krylov subspace
solver. Because of the theoretical results available forRE8 B4] in finite precision calculation
we consider this solver and its closely related variantd(RE&S) for our numerical investigations.
Furthermore, GMRES in practice has proved quite powerfuafarge class of unsymmetric prob-
lems. In this section we present the convergence resultharmbmputing time of the sparsified and
mixed arithmetic preconditioners. We also compare therhéatassicalMy_g4 . Furthermore, we
intend to evaluate the sensitivity of the preconditionerthe convection term. For that we analyze
the effect of the Péclet number on the convergence rate. Alseiprevious chapter we consider
the convergence history of the normwise backward error erritht-hand side that is defined by

H along the iterations. In that expressidn denotes the right-hand side of the Schur comple-

ment system to be solved ang the true residual at th&" iteration (i.e., rg = f fjx(rk) ). We
remind that only right preconditioner is considered so thatbackward error is independent from
the preconditioner which enables us to make fair compatigtween the various variants.

6.3.1 Influence of the sparsification threshold

The sparse feature of the preconditioner was originallyetiged for SPD matrices, for which prop-
erties of the resulting preconditioner such as SPD can bespri@5]. However this strategy has been
successfully applied in much more general situations asitsgmmetric case here. We presented
here several test problems that can help us to determinestie/lour of the sparse preconditioner.
For these tests, the size of the system is a decompositiol®@k 300x 300 mesh mapped onto
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1728 processors. That is, each subdomain has a size of aé0001dof. We will briefly compare
and show the effect of the sparsification parameter for tfierdnt problems mentioned above. We
display in Figures.4the convergence history for different choices of the dropgiarameteg, de-
fined in Equation3.6) and compare them with the dense one. The left graphs of &&drshow
the convergence history as a function of the iterations,redeethe right graphs gives the conver-
gence as a function of the computing time. The shape of thegshg is typical: ag, is increased
the amount of kept entries is decreased, the setup time girdwnditioner (initial plateaus of the
graphs) becomes faster but the convergence is deteriofaded large sparsification threshold (ma-
genta line), there are not enough nonzero entries in theopdidoner to allow for a convergence
behaviour similar to the dense variant. For a small spaasifin threshold (red line), the numerical
performance of the sparse preconditioner is closer to theelene and the convergence behaviours
are similar. Similarly to what we observed for pure diffusiproblem, a nice trade-off between
memory and elapsed time is obtained for a sparsificatiorsiiole & = 10~* (the green line). Even
though the sparse variants require more iterations, wiheet to time they converge faster as the
preconditioner setup is more than twice cheaper and theggén#eration is also smaller. This trend
was already observed for the symmetric case in Cha&pter

6.3.2 Influence of the mixed arithmetic

In this section we consider the mixed precision appro&ch [In this framework, only the precon-
ditioning step is performed in 32-bit arithmetic; the reftim calculation is carried out in 64-bit. In
the right preconditioned GMRES context, the backward Btalsesult indicates that it is hopeless
to expect convergence at a backward error level smallertti@B2-bit accuracy. To overcome this
limitation the preconditioner can be considered as vagiahbng the iterations. At each step the
32-bit preconditioner can be viewed as variable perturlfedi6preconditioner. In this context, our
choice is to use the flexible GMRES method instead of GMRES.

We focus in this section, in the numerical behaviour of theadiapproach and compare it with
a fully 64-bit approach. For this purpose we consider theesarample as the previous section,
and also the same decomposition. The left graphs of Fi§isehow the numerical performance
comparison between the mixed precision algorithm, and4hkitalgorithm for a decomposition of
300x 300x 300 mesh mapped onto 1728 processors. These results shdhetinaixed arithmetic
implementation compares favorably with the 64-bit one. \Weenve for this algorithm, that the
number of iterations slightly increases. We notice thatinlceease induced by the mixed arithmetic
is smaller than the one encountered in the previous secti@m\a sparsification is used. Attractive
enough, the attainable accuracy of the mixed algorithm @egvery closely to the 64-bit one. This
feature is illustrated in the graphs of Fig@&where is plotted the backward error associated with
the two algorithms. We can clearly see that the mixed algoriteaches the same accuracy level
as the 64-bit algorithm. We also display in the right graghs, backward error as a function of
the elapsed time in sec. Because the computing platformfosdldese experiments does not allow
higher processing rate in 32-bit compared to 64-bit thergpiri computing time is less distinctive,
than those presented in the Sectt.20f the previous chapter. Larger computing time gains can
be achieved by using another platform, such as the onesloledan Sectiorb.2 To summarize, we
can omit the effect of the computing gain because it is rdlédethe machine architecture. There
are some limitations to the success of this approach, suethes the conditioning of the problem
exceeds the reciprocal of the accuracy of the single paet=dmputations.

Furthermore, the gain in memory space due to the 32-bitgtarithe preconditioner is partially
consummated by the extra storage of théasis required by the flexible variant of GMRES.
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Figure 6.5: Convergence history for a 30@00x 300 mesh mapped onto 1728 processors for
various dropping thresholds (Left: scaled residual veitrations, Right: scaled residual versus
time). The convection term is defined by Convection 1 and léal€& number ¢ =1).
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6.3.3 Effect of the Péclet number

A crucial characteristic of a preconditioner is the way @sponse to disturbances changes when the

system parameters change. For that, we intend to evaluagetisitivity of the preconditioners to
discontinuity with or without anisotropy in the diffusiomefficients, and to convection dominated
problem. The convection dominated case which is most diffiousolve is particularly interesting,
and can occur in many practical problems. Thus, the diffusimefficient of Equation@.1) is sup-
posed to be very small @ € < 1 compared to the norm of the velocity fieldwhich governs the
convection. As a consequence, the solutiorof Equation 6.1) frequently contains many scales
composed of a complex collection of exponential (or regolaparabolic) boundary layers. We
should mention that for very small value ef(£ = 10~° or £ = 10-8), standard numerical methods
such as the finite element method (FEM) or the difference atktisually fail since they introduce
nonphysical oscillations. One possible remedy involvetitamhal stabilization. The most success-
ful approaches are the streamline upwind Petrov Galerkihodg SUPG), also known as streamline
diffusion finite element method (SDFEM), the Galerkin lesgtiares approximation (GLS), and the
Douglas-Wang method. We are not concerned in this thesiségtabilization techniques, we can
refer the reader to a extensive literature work4$§,[75, 83, 91, 97].
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Figure 6.6: Convergence history for a 30@00x 300 mesh mapped onto 1728 processors for

various convection trend.

In this context, we present here experiments for differafite of €, from the easiest example
with low Péclet numberg = 1) to the hardest dominated convectian= 10~°). These examples
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allow us to highlight the numerical effect caused by largeveation. For these experiments, the
mesh size of 308 300x 300 is mapped onto 1728 processors. We present the coneeristory
plot as a function of the number of iterations, to reduce neise backward error on the right-hand
side below 108. Notice that the discontinuity and the anisotropy in thefficients are consid-
ered. We will briefly present here graphs for the dense 6g+bitonditioner and show the effect of
the convection parameter for the different problems meetibabove. More detailed experiments
results for all variants of the preconditioner and for théfedent € will be presented in the next
two sections. In Figuré.6, we present results for Problem 1 applying either Convadi¢see Fig-
ure6.6(a)) or Convection 2 (see Figuteg(b)). We then display in Figuré.6(c) the heterogeneous
diffusion Problem 2 with the Convection 1, and the heteregeis anisotropic Problem 3 applied
with Convection 1 is displayed in Figufe6(d).

The following examples presented here, underline and corifie theoretical predictions, that
is, increasing the convection term make harder the probtesolve. These results show that the
number of iterations required by the GMRES grows with largevection term. This grow in the
number of iterations remains reasonable, it depends Blighthe strength of the convection . More
precisely, the mesh Péclet number should not exceed arceetie of the finest grid. This upper
bound for the Péclet number coincides with the applicabditthe central differencing scheme in
the discretization. It was found that the case- 10~ represents the rigorous test, while larger
choice of ¢ exhibits faster convergence. For stronger convectien10~°, the convergence does
not hold. This case confirms the sensitivity to the nonplalgiscillations and dissipation schema,
we omit the study of this case in this work and we propose tailsta the discretization method and
to control the dissipation in stretched regions of the mashfuture work.

To summarize, the additive Schwarz preconditioner was dotanbe robust with respect to
convection-diffusion equation, the results presentedatisfactory. The experiments with the differ-
ent alternatives of the dense 64-bit additive Schwarz praitoner have showed similar behaviour.

6.4 Parallel numerical scalability

The studies in this section present a more detailed look d@imeance from the point of view of
the numerical and parallel scalability and their depengamcthe different convection trends. We
perform scaled experiments where the global problem sizaiigd linearly with the number of
processors. Such experiments illustrate the ability o&lelrcomputation to perform large simu-
lations (fully exploiting the local memory of the distritmd platform) in ideally a constant elapsed
time. In the numerical experiments of the following subgeg, the iterative method used to solve
these problems is the right preconditioned GMRES for allargs and flexible GMRES for the
mixed algorithm. We choose the ICGS (lIterative Classican®iSchmidt orthogonalization) strat-
egy which is suitable for parallel implementation. Theat@ns began with a zero initial guess and
were stopped when the normwise backward error becomesesrttadin 108 or when 1000 steps
are taken.

6.4.1 Numerical scalability on massively parallel platfoms

We intend to present, evaluate and analyze the effect orotheogence rate of the different precon-
ditioners considered on various model problems and vagounsection trends. Various results are
presented in Tabled 1and6.2 We divide the discussion into two steps:

e we illustrate the numerical scalability of the Krylov sotwghen the number of subdomains
increases,

e we present performance based on the increase of the camvéstin.
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Experiments when increasing the size of the subdomain hese performed, we observe that
the subdomain size has only a slight effect on the convemyeste. For the sake of readability,
we omit to present these results and only report on expetsngith 25x 25x 25 subdomain
size. The preconditioners tested are the 64-bit denseiag@ithwarz preconditioneMqy_g4, the
mixed variantMg_mix and the sparse alternative oMyp_e4. We first comment on the numerical
scalability of the preconditioners when the number of subaios is varied while the Péclet number
is constant. This behaviour can be observed in the ressidagied in Table§.1and6.2by reading
these tables by row. By looking at the number of iterationsmine number of subdomains increases
from 27 to 1728, that is, when increasing the overall probgre from 0.4 million dof up to
27 million dof. It can be seen that the increase in the numbéerations is moderate. When
we multiply the number of subdomains by 64, the number oattens increases between 3 to 4
times. For the characteristics of the problems and the &gsdcdifficulties, we can say that, the
preconditioner which exploits the local information aaéile on each subdomain, performs quite
well. For example let us look at the Talel, for the heterogeneous diffusion Problem 2 combined
with the Convection 1. Foe =103, when we increase the number of subdomains from 27 to 1728,
we see that, the number of iterationsMf_gs4 increases from 26 to 90; that is, a 300% increase of
iterations for a problem size that is multiplied by 64.

Moreover, we study the effect of changing the dropping tho&sfor the sparse variant of the
preconditioner. As explained in Secti@n3.1, as this threshold increases, the sparsity of the pre-
conditioner increases, and the preconditioner behavedypd&r example in Tablé.1, when the
diffusion term associated with Problem 2 is considered. W&eove that gap betweevy g4 and
Msp-64 With & = 1073 is significant; more than 60 iterations (66%) on 1728 subdosna

Furthermore, we see that, when we increase the number obsuids, the sparser the precondi-
tioner, the larger the number of iterations is. The gap gdawhen the Péclet number is increased.
Similarly to the pure diffusion case presented in Chaptérappears that the choide= 10~ pro-
vides us with the best trade-off between memory and soldtive saving. Finally, we see that the
mixed preconditioneMy_mix performs very similarly to the 64-bit one.

Regarding the behaviour of the preconditioners for conwaaiominated problems, although
those problems are more difficult to solve the preconditisaee still effective. We recall that the
preconditioners do not exploit any specific information aththe problem (e.g., direction of flow).
From a numerical point of view, if we read the tables coluniseywe can observe the effect of the
increase of the Péclet number on the difficulties for theaifee scheme to solve the resulting linear
systems. The good news, is that, even with this increaseyrémonditioners perform reasonably
well. This robustness is illustrated by the fact that thauoh is tractable even for large Péclet
numbers.

6.4.2 Parallel performance scalability on massively par&tl platforms

In this subsection, we attempt to analyze the features optéeonditioners from a computational
point of view. In that respect, we look at the main three stapscompose the solver. As described
in the Sectiorb.4.30f Chaptel5, the main parts of the method are:

e the initialization phase which is the same for all the vasaof the preconditioners (mainly
factorization of the local Dirichlet problems and calcidatof the local Schur complements);

e the preconditioner setup phase which differs from one wat@another;
o the iterative loop which is related to convergence rate.

In this chapter the parallel computer is different from tme @onsidered in Chaptér conse-
qguently the elapsed times of the initialization phase afferdint even though the size of the local
subdomains are the same. In Tale3are depicted the elapsed time to factorize the local Dieichl
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# subdomains:= # processors

| subdomain grid size

27 ] 64 | 125 216 | 343 | 512 | 729 | 1000 | 1331 [ 1728

Homogeneous diffusion term

Md-64 18] 25 [ 27 [ 31 [ 35 | 40 | 44 | 47 50 54

e 1 Mg mix 19| 26 | 29 | 33 | 37 | 42 | 46 | 50 53 57

Msp6a (§=10"%) | 19| 26 | 30 | 35 | 40 | 44 | 49 | 54 58 62

Msp 64 (§=103) || 22| 30 | 37 | 43 | 48 | 55 | 61 | 67 72 78

Md-64 23] 35 [ 39 ] 49 [ 5460 67 ] 74 82 91

e 10-3 Md-—mix 24| 38 | 41 | 51 | 59 | 66 | 76 | 85 95 | 106
Msp6a (§=10"%) || 24| 37 | 41 | 55 | 61 | 74 | 84 | 96 | 106 | 118

Msp 64 (§=10"3) || 31| 49 | 56 | 74 | 84 | 100 | 114 | 130 | 143 | 159

Md_64 741100 111 ] 139 ] 154 [ 182 | 195] 219 | 238 | 260

c— 104 Mg mix 84 | 120 | 137 | 173 | 194 | 225 | 247 | 273 | 297 | 322
Msp-6a (§=10"%) || 74 | 100 | 113 | 140 | 157 | 183 | 198 | 223 | 243 | 264

Msp 64 (§=10"3) || 76 | 101 | 117 | 147 | 162 | 195 | 213 | 243 | 265 | 289

Diffusion term defined by Problem 2

Md_64 23 32 [ 36 [ 43 ] 45 55| 61 ] 67 69 78

e 1 Md-—mix 24 | 34 | 38 | 45 | 47 | 58 | 64 | 70 72 82

Msp6a (§=10"%) || 25| 34 | 39 | 49 | 52 | 64 | 71 | 77 79 92
Msp 64 (§=103) | 33| 44 | 50 | 66 | 68 | 86 | 97 | 104 | 104 | 125

Md-64 26 36 | 41 [ 47 [ 53] 63| 70 | 77 83 90

e 10-3 Mg mix 27| 37 | 43 | 49 | 56 | 65 | 72 | 80 86 93
Msp6a (=104 || 29| 39 | 46 | 56 | 63 | 74 | 83 | 91 98 | 109
Msp 64 (§=103) | 38| 50 | 58 | 77 | 82 | 103 | 116 | 126 | 130 | 153

Md-64 32 41 ] 49 [ 52 [ 63 ] 69 76 | 84 94 97
e 10-4 Md-—mix 33| 43 | 50 | 54 | 65 | 72 | 78 | 86 96 | 100
Msp6a (§=10"%) | 36 | 45 | 54 | 62 | 72 | 82 | 92 | 100 | 111 | 118
Msp 64 (§=102%) || 43| 58 | 68 | 83 | 92 | 111 | 124 | 137 | 142 | 162

Diffusion term defined by Problem 3

Md-64 33] 46 [ 54 [ 71 [ 71 [ 81 ] 91 97 | 101 | 124
e 1 Md-—mix 33| 47 | 55 | 73 | 74 | 84 | 94 | 100 | 105 | 128
Msp6a (§=10"%) | 33| 47 | 55 | 73 | 74 | 84 | 93 | 102 | 105 | 127
Msp 64 (§=10"2%) || 38| 54 | 61 | 83 | 82 | 97 | 107 | 116 | 116 | 142
Md_64 38 48 [ 58 [ 75 [ 79 | 91 [ 107] 108 | 114 | 135
e 10-3 Md-—mix 39| 50 | 60 | 78 | 82 | 94 | 110 | 112 | 117 | 139
Msp6a (§=10"%) | 39| 50 | 61 | 79 | 83 | 97 | 112 | 116 | 121 | 141
Msp 64 (§=103) || 42| 58 | 70 | 90 | 96 | 114 | 127 | 138 | 141 | 164
Mq_64 461 61 | 76 | 93 [ 110 [ 129 152 168 | 190 | 216
c— 104 Mg mix 48 | 62 | 78 | 96 | 112 | 132 | 156 | 173 | 195 | 222
Msp-ga (§=10"%) | 47 | 65 | 82 | 102 | 117 | 140 | 167 | 185 | 206 | 237
Msp 64 (§=103) || 57 | 82 | 99 | 129 | 145 | 176 | 214 | 235 | 256 | 303

Table 6.1: Number of preconditioned GMRES iterations fatauas diffusion terms combined with
Convection 1 when the number of subdomains and the Pécldiereme varied.
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# subdomains:= # processors
| subdomain grid size 27 | 64 | 125 216 ] 343 | 512 [ 729 | 1000 | 1331 ] 1728
Homogeneous diffusion term
My-64 21 | 27 | 29 | 34 | 39 | 44 | 48 52 57 61
e—1 M- mix 22 | 28| 32 | 36 | 41 | 46 | 51 55 60 64
Msp-64 (£ = 1074 22 | 28 | 33 | 40 | 45 | 49 | 55 61 65 70
Msp-64 (§ = 1079) 26 | 34 | 41 | 49 | 56 | 63 | 70 77 81 88
Md—64 32 | 28| 29 | 58 | 38 | 46 | 76 54 62 90
e_10-3 Mg mix 34 | 29 | 29 | 61 | 40 | 48 | 79 56 64 93
Msp-64 (§ = 107%) 33 | 28| 30 | 61 | 43 | 51 | 81 63 72 98
Msp64 (§ = 1079) 35 | 34| 36 | 73 | 57 | 68 | 106 | 83 96 127
My-64 263 | 435 | 403 | 96 | 69 | 71 | 107 | 69 73 133
c— 104 Mg mix 375| 0 0 | 101] 70 | 72 | 110 | 70 74 136
Msp6a (§=10"%) | 271 | 451 | 381 | 95 | 71 | 73 | 110 | 73 81 138
Msp 64 (§=103) || 283 | 494 | 363 | 95 | 73 | 79 | 132 | 88 99 167
Diffusion term defined by Problem 2
Md_64 23 | 32 | 36 | 43 | 46 | 56 | 62 68 69 79
e_1 Md—mix 24 | 34 | 38 | 45 | 49 | 58 | 64 70 73 82
Msp64 (§ =104 26 | 34 | 39 | 49 | 53 | 64 | 71 77 80 92
Msp-64 (§ = 1079) 35 | 46 | 51 | 67 | 70 | 87 | 98 | 105 | 106 | 127
My-64 27 | 37 | 43 | 49 | 56 | 66 | 72 79 87 93
£—10-2 M- mix 27 | 39 | 45 | 51 | 59 | 69 | 75 83 90 96
Msp6a (§=10"%) || 29 | 40 | 48 | 58 | 66 | 77 | 85 | 94 | 101 | 111
Msp-64 (§ = 1079) 38 | 54 | 60 | 79 | 85 | 106 | 118 | 127 | 131 | 154
Md—64 28 | 62 | 56 | 60 | 71 | 80 | 86 98 112 | 116
e 104 M- mix 28 | 65 | 57 | 62 | 73 | 82 | 88 | 100 | 115 | 118
Msp-64 (§ = 107%) 29 | 62 | 60 | 67 | 81 | 92 | 102 | 114 | 130 | 139
Msp-64 (§ = 10*3) 38 70 74 87 100 | 121 | 134 | 148 167 183
Diffusion term defined by Problem 3
My_sa 36 [ 45 [ 54 [ 71 ] 72 ] 81| 95 [ 97 101 | 124
e—1 M- mix 38 | 47 | 55 | 74 | 74 | 8 | 97 100 | 105 | 128
Msp-64 (§ = 10*4) 37 47 55 73 74 84 96 102 105 127
Msp-64 (§ = 1079) 42 | 54 | 61 | 84 | 82 | 97 | 107 | 116 | 116 | 143
Mg_64 44 56 75 | 100 | 114 | 132 | 169 | 181 196 235
e 10-3 Md—mix 45 | 58 | 78 | 104 | 118 | 136 | 175 | 186 | 203 | 242
Msp64 (§ = 1074 47 | 59 | 79 | 108 | 123 | 144 | 180 | 197 | 211 | 251
Msp64 (§ = 1079) 50 | 75 | 95 | 135 | 152 | 183 | 218 | 248 | 257 | 308
My-64 203 | 222 | 281 | 147 | 107 | 128 | 158 | 179 | 213 | 230
£ — 104 M- mix 221 | 237 | 308 | 170 | 110 | 131 | 162 | 182 | 218 | 236
Msp 64 (§=10"%) || 206 | 231 | 288 | 168 | 120 | 147 | 175 | 204 | 234 | 255
Msp 64 (§ =103 || 221 | 277 | 331 | 205 | 164 | 200 | 227 | 275 | 322 | 343

Table 6.2: Number of preconditioned GMRES iterations fatouas diffusion terms combined with

Convection 2 when the number of subdomains and the Péclebgrane varied.

Subdomain grid size

20x20x 20

25x25x 25

30x 30x 30

Time

53

20.27

37.7

Table 6.3: Initialization time (sec).
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problem of the matrix associated with each subdomain, armbnstruct the local Schur comple-
ment using the MMPs package, and that for different problem sizes. The rediuiate again the
nonlinear cost of the direct solver with respect to the probsize.

Regarding the computational time to build the precondérowhich is the second step of the
method. This cost includes the time to assemble the localrSaimplement, and to factorize the
assembled dense local Schur f9ly_g4 and My_mix , Or to sparsify and then to factorize the re-
sulting sparse assembled local Schur ktg, 64 . The elapsed time of this step is independent from
the number of subdomains, and depends only on two factorsy @re, first, the size of the local
problem (the leading size of the interface of this subdoaind second the number of neighbour
subdomains (which is equal to 26 for an internal domain). ¥yert in Tables.4the setup time for

| Subdomain grid size]| Mg_64 | Md-mix | MspeaWith & =10"* | Mgp gaWith& =103 |

20x20x 20 4.1 3.4 2.4 1.2
25x25x 25 17.5 14.1 6.4 3.5
30x 30x 30 40.1 33.0 10.5 4.2

Table 6.4: Preconditioner setup time (sec).

the different variants of the preconditioner and for difiet sizes of the subdomains. Referring to
Table6.4, one can observe that the performance of the sparse préicoedicompared to the dense
one, is more than 3 time faster. In the case of the mixed aeititcralgorithm, and as it could have
been expected on that platform, no significant computatigpeedup can be observed because the
64-bit calculation is as fast as the 32-bit one. The smalfrgwgment can be due to higher cache hit
in 32-bit since the algorithm still only uses half of the megnspace.

In order to study the performance of the iterative loop, vwerein Table6.5the average time per
iteration. In contrast with the CG situation, the time peration in GMRES/FGMRES does depend
on the iteration number as a crucial step is the orthogaat#diz of the Krylov basis. We present in
Table6.5, the average time per iteration of the iterative loop for adixumber of iterations equal
to 300, for a fixed problem size, when increasing the numbeubfiomains. Thus, we give the
average time of one iteration for subdomains of sizex2% x 25 (15,625 dof). It can be seen that

| #processors || 125 [ 216 | 343 | 512 | 729 | 1000 | 1331 | 1728 |
My_64 0.200 | 0.205 | 0.211 | 0.216 | 0.235 | 0.235 | 0.236 | 0.245
Mg mix 0.189 | 0.191 | 0.198 | 0.217 | 0.216 | 0.216 | 0.220 | 0.225

Msp 64 (E=10"%) | 0.176 | 0.177 | 0.177 | 0.191 | 0.195 | 0.197 | 0.198 | 0.209
Msp 64 (E=1073) || 0.169 | 0.170 | 0.174 | 0.187 | 0.194 | 0.195 | 0.196 | 0.205

Table 6.5: Parallel average elapsed time for one iteratitheo-GMRES/FGMRES (sec).

the average elapsed time per iteration is nearly constahnd@aes not depend much on the number of
processors. For example increasing the number of proceson 125 to 1728, the time goes from
0.2 seconds up to 0.24 seconds tg_g4, Which gives rise to a efficient parallel implementation
of the iterative solver. This very nice scalability is maidlue to the network available on the Blue
Gene computer dedicated to the reductions. The secondvaliseris that the sparse alternative
Msp-64 leads to a smaller average time per iteration in comparistmthe dense one. This is due
to the fact that the the time to apply the preconditioner isentban twice faster.

In the sequel, we consider the overall computing time with aim of analyzing the parallel
scalability of the complete algorithms. We display in thi ¢gaphs of Figure$.7-6.9the number
of iterations required to solve the linear systems. On thletigraphs we display the corresponding
elapsed time of the overall solution. For each of these tegtsrecall that the subdomains are
25x 25x 25 grid mesh with 15,625 dof. As expected, even if the numbé#erations to converge
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Figure 6.7: Parallel scalability of the three test problemisen varying the number of processors
from 27 up to 1728. The convection term is defined by Convadtiand low Péclet numbee=1).
(Left: number of iterations, Right: overall computing tirfoe the solution).
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Figure 6.8: Parallel scalability of the three test problemisen varying the number of processors
from 27 up to 1728. The convection term is defined by Conva&iand low Péclet numbee=1).
(Left: number of iterations, Right: overall computing tirfoe the solution).
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increases as the number of subdomains increases, the grotlvehsolution time is rather moderate
for all variants. The growth in the number of iterations as tlumber of subdomains increases is
rather pronounced, whereas it is rather moderate for tHeagimlution time as the initialization step
represents a significant part of the overall calculation.

Similarly, to what we observed in the previous chapter, therse preconditioneiMsp g4 per-
forms at its best when the dropping parameter 10~* . With this variant, the reduction in the setup
of the preconditioner is significant; this gain is large egioto compensate for the few additional
iterations required to converge. Dropping more entriessigai€ = 102 often lead to an increase
of the elapsed time as the number of iterations grows sigmifig.

6.5 Concluding remarks

In this chapter, we have studied the numerical and paratedbbility of various variants of our
preconditioner for the solution of unsymmetric problenisiag from the discretization of academic
3D convection diffusion problems. Similarly to what was eb&d for symmetric positive definite
problems in the previous chapter, the variants based osepaproximations of the assembled local
Schur complement exhibit attractive features both in teffoomputation (memory and CPU saving)
but also numerically in term of convergence rate compargddo dense counterparts. On all our
experiments they are the most efficient and reduce the eoltithe and the memory space. For
those problems, the behaviour with respect to the droppireshold is quite smooth.

For unsymmetric problems, the use of mixed arithmetic prdd@ners requires to use the flex-
ible variant of GMRES if a high accuracy is expected. In thattext, the theoretical backward
stability result of GMRES indicates that the backward ecanmnot be lower than the 32-bit machine
precision; this limitation does not seem to exist for FGMR&8n though no theoretical result ex-
ists yet. Such a theoretical study would deserve to be ualdentpossibly following the pioneer
work [6]. Because of the parallel platform used for the experimkasssimilar computing speed in
32 and 64-bit, the potential benefit in time has not beentitdsd. Nevertheless it would have been
observed on computers as the System-X or on the Cray coadidethe previous chapter.

For those problems with dominated convection it is knowi the numerical scalability cannot
be recovered thanks to the use of a coarse grid mechanisnaltenetive to avoid losing computing
power (due to the increase of the number of iterations) whemtimber of processors is increased
would be to dedicate more than one processor per subdomhis pdssibility was not considered
on those problems but will be investigated in the next twoptdiss related to real life applications.
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Part Il

Study of parallel scalability on large
real application problems






Part Ill: résumé

La validation de notre approche sur des cas réels est enfiné&aur des problemes de mé-
canique des structures en maillages non-structurés (¢gbochtion avec la société SAMTECH-
Chapitre 7) et en imagerie sismique (en collaboration az@ohsortium SEISCOPE - Chapitre 8).
Dans ce dernier cas, on s'intéresse a la résolution desiégside Helmholtz en régime fréquentiel.
Plusieurs simulations sur des cas réels 2D et 3D ont étéééali’objectif est d’évaluer la robustesse
et la performance de notre méthode hybride pour la solutisnceés problémes “grands challenge”
qui sont classiqguement résolus par des méthodes directes.

Pour ces applications, la décomposition (partitioning eqlais) jour un rAtle central. C’est un su-
jet important pour les simulations concernant les appboatréelles et industrielles. Nous illustrons
l'influence des stratégies de décompositions sur la pedoo@ de I'algorithme de résolution dans

le Chapitre 7.
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Figure 6.10: Comportement numérique de la variante creuse.
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Figure 6.11: Comportement numérique de la variante pcisiixte.

Une étude similaire aux chapitres précédents, sur l'infleatfe la sparsification (Figufe10 et de

la précision mixte (Figur€.11) a été effectuée. Les résultats observés sont promettears.des
valeurs optimales du paramétre de seuil, on observe un gaiificatif en mémoire et en temps de
calcul ce qui rend la variante creuse du préconditionnésiifitéressante. De méme pour la variante
mixte, surtout que ces applications nécessitent un espastodkage énorme ; dans ce contexte
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économiser la moitié de cet espace de stockage ainsi quinregaemps de calcul est aussi tres
appréciable.
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Figure 6.12: scalabilité numérique et paralléle perforoean

Ensuite des études de performances numériques et paaléieté effectuées. Par exemple
pour un probléme de mécanique des structures, la Fg2lustre a gauche le nombre d’itérations
lorsqu’on augmente le nombre de processeurs, tandis gleedeetiroite illustre le temps de calcul
correspondant. On remarque I'avantage de la méthode ylmidimulation peut étre réalisée deux
fois plus vite qu’une approche directe. Ainsi on peut aussiarquer I'amélioration de la variante
creuse du préconditionneur.

Pour des problémes en imagerie séismique, on note que |lbsdestdirectes ne peuvent pas étre
utilisées pour réaliser des grands simulatiom® &cause du stockage mémoire qui est prohibitif ;
I'approche hybride offre une alternative prometteuse.

L'augmentation en nombre d'itérations et la taille mémaiéeessaire pour ces applications nous
a incité a développer une approche exploitant deux niveauxadallélisme. Nous présentons les
détails des performances paralléles de notre approcheigyldeux nivaux de parallélisme.

La Figure6.13montre une comparaison entre un algorithme paralléleiglas€L-level) et un
algorithme utilisant le deux niveaux de parallélisrRddvels). On note I'amélioration de la perfor-
mance paralléle ; dans cette configuration I'algorithme ixdeveaux de parallélisme est presque
deux fois plus rapide que les algorithmes paralléles dassi. Par ailleurs, le table®u6 montre
I'effet numérique des deux niveaux de parallélisme pouragiggications d’'imagerie séismique. On
remarque qu'au lieu d’augmenter le nombre de sous-dom&nsgu’on augmente le nombre de
processeurs, il est préférable d’allouer plusieurs pEas par sous-domaine en limitant le nombre
de sous-domaines.
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Figure 6.13: Performance paralléle de la méthode de degauivde parallélisme.

| Frequency equal to Az |

Available Algo # Processors/# |lterative One right-
processors subdomainssubdomainiter| loop | hand side
1-level parallel 192 1 235 79.0 85.8
~ 200 |2-level parallel 96 2 119 38.2 45.1
processors2-level parallel 48 4 105 42.9 51.1
2-level parallel 50 4 81| 28.1 35.5
1-level parallel 96 1 119 57.0 61.1
~ 100 |1-level parallel 98 1 148 66.7 66.7
processor2-level parallel 48 2 105 62.1 67.8
2-level parallel 50 2 81| 39.1 45.1

Table 6.6: Performance numérique des deux niveaux de @liisalk @-level parallelmethod) pour
I'application D Overthrust SEG/EAGE.
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Chapter 7

Preliminary investigations on
structural mechanics problems

7.1 Introduction

Large-scale scientific applications and industrial nuoarsimulations are nowadays fully inte-
grated in many engineering areas such as aeronautical imgdsiructural mechanics, electrical
simulation and so on. Those simulations often involve tiserditization of linear or nonlinear PDE
on very large meshes leading to systems of equations witforslof unknowns. The use of large
high performance computers is mandatory to solve thesdegirah

In this chapter, we focus on a specific engineering area,ttbetsral mechanics, where large
problems have to be solved. Our purpose it to evaluate thestobss and possibly the performance
of our preconditioner on the solution of the challengingeéin systems that are often solved using
direct solvers. In that respect we consider two differeassés of problems.

The first one, is related to the solution of the linear elégtiequations with constraints such
as rigid bodies and cyclic conditions. These constraintshandled using Lagrange multipliers,
that give rise to symmetric indefinite augmented systemesh 8near systems are preferably solved
using the MINREST8] Krylov subspace method, that can be implemented usingafey vectors
thanks to the symmetry property that enables the use of gbmrtrences. In our study, because we
intend to perform comparisons in term of computing perfaroeand also in term of accuracy, we
preferred using GMRES that is proved backward stable.

The second class of problems, is still related to lineartieias equations. The linear systems
involved in such simulations are symmetric positive dediihear systems and solved using the
conjugate gradient.

All the problems presented in this chapter have been gesteuaing the Samcef V12.1-02 finite
element software for nonlinear analysis, Mecano develbyesiamtecthttp://www.samcef.com/.

7.2 Experimental framework

7.2.1 Model problems

In this chapter we consider a few real life problems fromctrtal mechanics applications. Those
examples are generated using the Samcef tool called Savtezsfno V12.1-02.

Samcef-Mecano is a general purpose finite element softvratesblves nonlinear structural
and mechanical problems. It minimizes the potential eneifg the displacement (translations
and/or rotations) as unknowns. For each kinematic comstfimear constraint or kinematic joint),
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a Lagrange multiplier is automatically generated. In otddnave a good numerical behaviour, an
augmented Lagrangian method is used. The modified problesists in finding the minimum of

the potentialF* :

PoTo

2

where q is the degrees of freedom vector (translations and/orionts), k is the kinematic con-
straint scaling factor,p is the kinematic constraint penalty factap, is the kinematic constraint
vector andA is the Lagrange multiplier vector.

The equations of motion of the structure discretized bydielements take the general form

F*(a) = F(a) +kAo+

Mq+ fint — feXt

where the notation is simplified by including in the interfaices ™" the contribution of the
kinematic constraints and that of the elastic, plastic, piam friction, ... forces. Three types of
analysis can be performed:

1. Static analysis;
2. Kinematic or quasi-static analysis;
3. Dynamic analysis.

At each time step, a set of nonlinear equations has to bedsahvda Newton-Raphson scheme is
used in order to solve this nonlinear problem. These equsggpress the equilibrium of the system
at a given time. In a static analysis, these equations t#keests effects (linear or not) into account.
In a kinematic analysis, the effects due to the kinematioaigés are added to the effects taken into
account by the static analysis. Finally, the dynamic analgkes all the effects of the kinematic
analysis into account including also inertia effects, thmhot appear in the static and the kinematic
analysis.

For the numerical examples considered here, a static catipuis performed. The materials
are elastic: the relation between the stress and the strains He where H is the Hooks matrix.
For each test case we run our solver on the matrix generatawjdhe first iteration of the first time
step.

The geometry of the examples are displayed in FiguteThe first corresponds to a simple cube
(Figure7.1(a)) where no constraints are imposed. There are three wmigyper nodes that are the
translations. Fixations are added in the plares0,y =0 and z= 0 on displacement coordinates
X,y and z respectively. A uniform displacement is appliedi@ntop of the cube. This test example
is referred to as PAMC. The associated linear systems armsynic positive definite.

A more realistic problem is displayed in Figurel (b), that is an impeller. This case represents
a 90 degrees sector of an impeller. It is composed of 3D volelmments. Cyclic conditions are
added using elements that link displacements of the slaa@sson one side of the sector, to master
facets on the other side of the sector. These conditionskimegtinto account using elements with
3 Lagrange multipliers. Angular velocities are introducadthe complete structure and centrifugal
loads are computed on the basis of the angular velocitiesoaitile mass representation. This
example is called Rouet in the sequel, the associated lgystem is symmetric indefinite.

Lastly, a parameterized barrel (section of a fuselage)psctkd in Figurer.1(c). Itis composed
of its skin, stringers (longitudinal) and frames (circunefigtial, in light blue on Figur&.1 (c)).
Midlinn shell elements are used: each node has 6 unknowrrarf8lations and 3 rotations). On
one extremity of the fuselage all the degrees of freedom =eel.fiOn the other extremity a rigid
body element is added: all the degrees of freedom of the ren@édsked to the displacement of the
master node of the element. In order to represent this depeyd.agrange multipliers are added. A
force perpendicular to the axis of the fuselage is appliethermaster node. This last test example
is referred to as Fuselage and the associated linear syswymimetric indefinite.
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although defined in 3D is more 2.5@rrétln full 3D as the complete

The Fuselage example

volume is not meshed.



110 Preliminary investigations on structural mechanics poblems

In Table7.1we display for the different mesh geometries the variousssof the problems we
have experimented. For each problem, we give the number itd Bfements and the number of
degrees of freedom.

PAMC example
# elements # degrees of freedoms # of Lagrange equations
PAMC50 125,000 0.810° 0
PAMC80 512,000 3.210° 0
Rouet example
# elements # degrees of freedoms # of Lagrange equations
337,000 1.310° 13,383
Fuselage example
# elements # degrees of freedoms # of Lagrange equations
500,000 3.310° 2,160
750,000 4.810° 2,592
1,000,000 6.510° 3,024

Table 7.1: Characteristics of the various structural meidsgproblems.

7.2.2 Parallel platforms

Our target parallel machine is an IBM JS21 supercomputéalies at CERFACS to address diverse
applications in science and engineering. It works curyenith a peak computing performance of
2.2 TeraFlops. This is a 4-core blade server for applicatiequiring 64-bit computation. It is ideal
for computer-intensive applications and transactiontrimet servers.

This paragraph provides more detailed information abcaiiBM PowerPC 970MP micropro-
cessor, that is the processor of the BladeCenter JS21.

e The BladeCenter JS21 leverages the high-performanceytover 64-bit IBM PowerPC 970MP
microprocessor.

e The 4-core configuration comprises two dual-core PowerP@V¥ processors running at
2.5 GHz.

e Each processor core includes 32/64 KB L1 (data/instruziod 1 MB (non-shared) L2 cache.
e Each node is equipped with 8 GBytes of main memory.

e The AltiVec is an extension to the IBM PowerPC Architectutedefines additional registers
and instructions to support single-instruction multigkgta (SIMD) operations that accelerate
data-intensive tasks.

The BladeCenter JS21 is supported by the AIX 5L, Red Hat rise&r Linux, and SUSE Linux
Enterprise Server (SLES) operating systems. This latténstalled on our experimental JS21.
Distributed memory parallel applications might require thstallation of a high-performance, low-
latency interconnection network between BladeCenter 9SPis requirement is supported through
the use of Myrinet2000 network offering a bandwidth of 838 y#%/sec between nodes and a la-
tency of 3.2us. This platform is equipped by different software and stifieribraries such as:

e IBM compilers: XL Fortran and XL C/C++.
e IBM Engineering and Scientific Subroutine Libraries (ESS)4
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e MPI library (MPICH2 V0.971), LAM V7.1.1-3, and OpenMp V112,
e Mathematical Acceleration Subsystem (MASS) libraries.

e GNU Tool-chain (glibc, gcc, binutils, gdb).

e Java Runtime JRE 1.4.1.

e |IBM LoadLeveler.

¢ IBM General Parallel File System (GPFS).

e FFTW 3.1.

e HDF5.

e NETCDF 3.6.1.

7.3 Partitioning strategies

When dealing with large sparse linear systems arising fl@dtscretization of PDE’s on large 3D
meshes, most of the parallel numerical techniques rely oariitipn of the underlying mesh. For
finite element approaches, the partitioning is performetherset of elements. In that respect, the
dual graph of the mesh is split. In this graph, the verticggagent the elements and there is a
edge between two vertices if the elements associated vatethertices share an node of the mesh.
When the work per element is independent of the element, d gaxitioning should aim at splitting
the graph into subgraphs having comparable numbers otesrtvhile minimizing the size of the
interfaces between the subgraphs. This latter constsaoftén seen as a way to reduce the amount
of communication between the subgraphs/subdomains; ircasg it mainly means reducing the
size of the Schur complement system to be solved. In thatenaork, a good partitioning should
attempt to balance and minimize the sizes of the completefatte associated with each subdomain;
i.e., balance the size of the local Schur complement matrecethe preconditioner cost (setup and
application) and parallel efficiency mainly depend on a goaldnce of them.

For linear systems involving Lagrange multipliers an addél constraint should be taken into
account. If the mesh is decomposed without considering #ygdnge multipliers we might end-up
with a splitting of the mesh for which Lagrange multipliemupled unknowns that are on the inter-
face while the Lagrange multiplier is considered as an fima& unknown. In such a situation, the
matrix associated with the internal unknowns has a zerocamwhn and is consequently structurally
singular. The Schur complement does not exist and the hidzithique breaks down. A simple and
systematic way to fix this weakness it to enforce the Lagrangtipliers to be moved into the
interface. If the partitioner has produced balanced syffgravith minimal interfaces, moving the
Lagrange multipliers into the interfaces significantlyat&irates the quality of the partition. A good
partitioning strategy should then, balance the size of tigsaphs while minimizing and balancing
the interface sizes but also balance the distribution of #ggange multipliers among the subgraphs.
In that respect, when the Lagrange multipliers are movealtim¢ interfaces, the interfaces remain
balanced.

In order to achieve this, we do not apply a graph partitiomethe dual graph of the mesh but add
some weights to the vertices. The mesh partitioner we useisb2] routine metis_partgraphVKway
that enables us to consider two weights per vertex, one iassdevith the workloadyeight vertex)
and the other with the amount of communicatiamgjght comm). In order to balance the Lagrange
multipliers among the subgraphs, for the elements with &age multipliers we relax the weight
associated with the communication (i.e. communicatiorghveset to zero) and penalize their work-
load by setting their work weight to a large value. For theeotblements, the work weights are
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set proportional to the number of degrees of freedom agsalcieith them (idof), while the com-
munication weight is set to the number of adjacent elemetggrée of the vertices associated with
the element in the dual graptad j). Among the numerous weighted variants that we have experi-
mented with, this following was the best we found:

weight comnielemen; =0 if elementcontains Lagrange multipliers
weight comnielemenj =nadj otherwise
weight verteXelemen} = large value ifelementcontains Lagrange multipliers
weight verteXelemen} = ndof otherwise

Thus, the objective is to try to fit the maximum of unknownagsted with Lagrange equations
into the interface and to minimize the number of these eqoatbelonging to one subdomain. With
this strategy, we first attempt to have as much Lagrange wmksi@s possible in the interface.
Secondly, we try to have the remaining ones equitably 8isteid among the subdomains. This latter
feature enables us to preserve a good balance of the irgexf@n after these Lagrange unknowns
are moved into the subdomain interfaces as treatment ofassilde singularity.

Maximal Init Preconditi- | # Iterative | Total

interface size| time | onersetup | iter loop time

PAMCS50 0.8 Mdof |  Poor 21187 86 631 55 479 1196
16 subdomains Better 14751 91 200 40 70 361
PAMC50 0.8 Mdof | Poor 12559 23 135 69 106 264
32 subdomains Better 11119 22 83 50 53 158
ROUET 1.3 Mdof Poor 13492 141 255 76 77 473
16 subdomains Better 10953 67 137 79 61 264
ROUET 1.3 Mdof Poor 11176 21 141 108 80 242
32 subdomains Better 7404 23 44 106 45 111
Fuselage 6.5 Mdof |  Poor 11739 35 168 162 144 347
32 subdomains Better 6420 36 30 176 58 124
Fuselage 6.5 Mdof |  Poor 10446 15 120 217 170 305
64 subdomains Better 4950 13 15 226 54 82

Table 7.2: Partitioning effect for various structuredimnstured problems when decomposed differ-
ently.

The effect of the partitioning quality on the efficiency oétparallel hybrid solver is illustrated
in Table7.2 In that table “poor partitioning” corresponds to un-wegghgraph partitioning for the
problems with Lagrange multipliers; “better partitionimgfers to weighted graph partition using
Metis and its communication volume minimization option.r Hee PAMC example, where there
are no Lagrange multipliers, “poor partitioning" corresgs to a splitting of the mesh using the
Metis option based on the edges-cut minimization heurigfitile “better partitioning" corresponds
to Metis splitting based on the volume communication mizetion heuristic. This latter approach
often generates partition with smaller interface sizes.shawn in Table7.2, poor load balance
causes inadequate performance of the algorithm. The maivba@rck is that the number of elements
assigned to each processor as well as the local interfaegsry uncommonly. Thus the local Schur
complement sizes highly vary causing unbalanced predonditsetup where the fastest processors
should wait the slowest one before starting the iteratigp.skt also induces large idle time at each
global synchronization points implemented for the caltofaof the dot-product (global reduction)
in the iterative process. Moreover, the computing and mgroost of the preconditioner is related
to the interface size, thus large subdomain interfacesyinm@fficiency in both computing time
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and memory required to store the preconditioner. The inapa# of this latter is clearly exposed in
Table7.2 On the first hand, we can see that for large subdomain sieepréconditioner setup time,
which cost increases as function (n?) , becomes very expensive. On the other hand, the iterative
loop time depends closely on the matrix-vector product anthfthe preconditioner application
costs. For large interfaces (large local Schur complengmbsh the matrix-vector calculation and
the preconditioner application become expensive (becanisalanced), thus increasing the overall
computing time and requiring a large amount of data storage.

As consequence, it is imperative to strive for a very baldnoad. We have resorted these
problems by the use of multiple constraints graphs paniitig. In our numerical experiments, the
partitioning is applied with weighted vertices based onmlsimation of the characteristics described
above.

7.4 Indefinite symmetric linear systems in structural mechaics

7.4.1 Numerical behaviour of the sparsification

While the primary purpose of this section is to focus on thg e numerical performance of the
sparse preconditioner can be stated, it also gives us tipdefecribing both computational bene-
fits and data storage of the sparse algorithm. In this seet®first investigate the advantages in
term of setup cost and memory storage associated with thefulse sparsification strategy for the
preconditioner. Then we focus on the numerical behaviotl@fesulting preconditioners.

We report results for an unstructured mesh with 1 milliont&dlements (6.5 million dofs) for
the Fuselage test case, and on a unstructured mesh of 34bjig®@lements (1.3 million dofs) for
the Rouet test case. We display in TalBl8 the memory space and the computing time required
by the preconditioner on each processor for different \sati¢he sparsification dropping parameter
& . The results presented in this table are for both test cagbsl& subdomains. The maximal
local subdomain interface size for the Fuselage problenmisrdecomposition has 9444 unknowns
whereas for the Rouet problem it has of 10953 unknowns. Ibesseen that a lot of storage can be
saved. This also gives rise to a great time saving in the piditioner setup phase.

| € | o | 5107 | 10° [ 510° [ 10° | 510° |
Rouet problem with 1.3 Mdof
Memory 96Qvs 384y 297vB 153uB 105uB 48vp
Kept percentage 100% 40% 31% 16% 11% 5%
Preconditioner setup|| 137 145 96 37 26 11
Fuselage problem with 6.5 Mdof

Memory 710us 122us 92.7vB 46.3uB 35.6vB 17.8us
Kept percentage 100% 17% 13% 7% 5% 2.5%
Preconditioner setup|| 89 26 19.5 10.8 8.8 5.8

Table 7.3: Preconditioner computing timeec) and amount of memoryNIB) in Msp_64 V.S.
Mg_e4 for various choices of the dropping parameter, when thelpnod are mapped onto 16 pro-
cessors.

The cost of the preconditioner is not the only component tesicter for assessing its interest.
We should analyze its numerical performance. For that mepwee report in Figuré.2, the conver-
gence history for various choices &f depicted in Tabl&’.3, for both the Fuselage and the Rouet
problem. For both test cases, we depict on the left-handdittee Figure the convergence history
as a function of the iterations, and on the right-hand site convergence history as a function of
the computing time. For the sake of completeness, we alswtrep the performance of a parallel
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sparse direct solution, that can be considered for thess sizproblems. Itis clear that the sparsified

variant outperforms its dense counterpart. However, fesdireal engineering problems, the sparse

preconditioner has to retain more information about theusclomplement than for the academic

cases. For these problems, in order to preserve the numeguabty we need to keep more than
10% of the Schur entries whereas 2% in the academic case uwfGogesit.
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Figure 7.2: Convergence history of ful-GMRES for Fuselagel Rouet problems mapped onto

16 processors, of the direct, the Hybrid-den#&y(e4) and the Hybrid-sparseMsp-64) solvers

for various sparsification dropping thresholds (Left: edalesidual versus iterations, Right: scaled
residual versus time).

One can observe that the attainablg accuracies are different for the various choiceg ofThe
largest effect can be seen on the Fuselage test case (batipimsy The explanation is as follows

The normwise backward stability of GMRES is established riag »(y) |t

_ S (Y) = pawfiyty that can
become of the order of the level of machine precision. Comsetly, if this quantity was plotted it

would be the same for all the preconditioners. They wouldlgkh plateau at the same level. In
our experiments, becausgM|| was expensive to compute, we only display(y) . Consequently,
the attainable accuracy (i.e., the level of the plateaupddp on||AM|| that varies withg. To
conclude on this accuracy aspect, we mention that the naenbéckward erronp(x) for the
solution computed with the direct solver is comparable &odhe obtain with the hybrid techniques.
We point out that the componentwise backward error is muchllem(of order 539-10%) as
expected for Gaussian elimination with partial pivoting.

In term of computing time, we can see that the sparse pretionei setup is more than 3 times
faster than the dense one. For example if we look at Taldér the Fuselage example, we can see
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that for & = 1076 it is 4 times faster than the dense one (19.5 v.s. 89 secohu&®rm of global
computing time it can be seen that the sparse algorithm iatatadice faster. The very few extra
iterations introduced by the sparse variant are compeahésta faster iteration due to the reduced
floating-point operations associated with it.

For the Rouet test case the sparse variants behave compasdbi the Fuselage problem. For
very small values of (for example& =5.10" "), the sparse preconditioner retains a large amount of
entries, more than 30% of the elements. The sparse commahtiost to setup the preconditioner
becomes expensive, even more expensive than the denseasrexample, see Tablg1], the cost
of the sparse preconditioner f@r=5.10"" on 8 or 16 subdomains is respectively 283 seconds and
145 seconds whereas it is respectively 235 seconds and t8idsefor the dense preconditioner.
Furthermore, we can point that the gap in the number of iteratbetween very small choices of
& (for example& = 5.10"7 on the Rouet Tabl€.11) and a reasonable choice &f (for example
& =5.10 % on the same Rouet example) is already small. A good tuning ¢for example& =
5.10°% on the same Rouet problem), can lead to the best ratio beta@aputational cost and
numerical solution performance. On the Rouet example ifeTalh 1, for the decomposition into 16
subdomains, the number of iterations k= 5.10"7 is 80 and it is 87 foré = 5.10 6, while the
global computational cost is respectively 262 seconds &ids&conds. Finally, we should mention
that the componentwise backward error associated withautien computed by the direct method
for this example is about.97- 1011,

7.4.2 Parallel performance

In this section we report on parallel experiments. For indfisystems we choose ful-GMRES as
Krylov solver and consider the ICGS (lterative Classicadi@fSchmidt) orthogonalization variant
The initial guess is always the zero vector and convergembetected when the normwise backward
error becomes less than 10 or when 300 steps have been unsuccessfully performed.

7.4.2.1 Numerical scalability on parallel platforms

In this subsection we describe how both preconditiondfg 4 and Msp_e4) affect the conver-
gence rate of the iterative hybrid solver and what numepeaformance is achieved. Hence, we
report test cases for different sizes of the Fuselage pmgldely one Rouet problem size is consid-
ered.

In Table7.4we display the number of iterations obtained for differenattppem sizes of the Fuse-
lage test case. Each original problem is split into 4, 8, 16,ahd 64 subdomains expect for the
problem with about 1 million elements that does not fit inte themory available on 4 processors.
First we test the quality of the sparse preconditiohkp_e4 generated by varying the sparsification
threshold¢ and compare the results to the dense preconditidigrs,. We also indicate in Ta-
ble 7.4 the percentage of kept entries in the sparse preconditioneach value of¢ and for the
different decompositions, and for different Fuselage fmoibsizes. The results show that the sparse
preconditioner convergence is similar to the one obsersagdjuhe dense preconditioner. The Fuse-
lage is a relatively difficult problem; when increasing thenber of subdomains, the reduced system
(global interface system) becomes larger with high hetenedy. The values of the entries varies by
more than 15 order of magnitude. It is much more difficult topaite the solution, thus the small
increase in the number of iterations when increasing thebmuraf subdomains is not surprising.
The attractive feature is that both preconditioners stifiave the same backward error level even
for large number of subdomains.
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| # processors | 4 8 16 32 | 64

My_64 38 92 124 169 224
50010%lement$Msp 64 (§ = 5.1077) || 39 (17%)| 92 (18%)|124 (22%) 169 (29%) 224 (38%
3.310°dof | Msp s (= 107°) || 40 (13%) 92 (14%)|124 (17%) 169 23%() 224 (31%
Msp-64 (§ =5.107°) || 51 (6%)| 99 (7%) | 130 (9%)| 173 (13%) 228 (18%

Md_64 20 94 122 168 232
80010%lement$Msp 64 (§ =5.1077) || 24 (17%)| 94 (15%)| 117 (20%) 168 (25%) 232 (33%
4.810°dof | Msp s (= 107°) || 25 (12%) 94 (11%)| 123 (15%) 168 (20%) 232 (26%
Msp-64 (§ =5.107°) || 41 (6%)| 104 ( 6%)| 134 (8%)| 177 (11%) 242 (15%

Md_64 - 98 147 176 226
10Pelements |Msp 64 (§ =5.1077) - 99 (13%)| 147 (17%) 176 (22%) 226 (30%
6.5-10°dof | Msp6a (§ = 107°) - 101 (10%) 148 (13%) 177 (18%) 226 (24%
Msp-64 (§ = 5.107°) - 121 (5%)| 166 ( 7%)| 194 ( 9%)| 252 (13%

Table 7.4: Number of preconditioned GMRES iterations andg@&age of kept entries for the dif-
ferent Fuselage problems. The number of processors isMari¢he various variants of the precon-

ditioner and for various choice & .

means that the result is not available.

| # processors 8 | 16 32 | 64
My_64 59 79 106 156
Msp-s4 (E =5.10"7) || 59 (31%) | 80 (40%) | 107 (45%) | 156 (56%)
337.1C%elements| Mg, 64 (E= 1075) || 59 (24%) | 83 (31%) | 108 (39%) | 157 (47%)
1.310°dof | Mspgs (E=5.10°) | 60 (11%) | 87 (16%) | 114 (21%)| 162 (27%)
Mspsa (E= 1075) || 63 (7%) | 89 (11%)| 116 (15%) | 166 (20%)
Msp_64 (£ =5.107%) || 70 (3%) | 103 (5%) | 131(7%) | 191 (9%)

Table 7.5: Number of preconditioned GMRES iterations ardgrgage of kept entries for the Rouet

problem with about 500,000 elements and 1.3 Mdof. The numberocessors is varied for the

various variants of the preconditioner and for various cesiof € .

available.

means that the result is not
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Moreover, we study the effect of increasing the size of thelmthat leads to increasing the sub-
domain size for a fixed number of processors (vertical repifirthe Table7.4). The growth in the
subdomain size keeping fixed the number of processors oslgvary slight effect on the conver-
gence rate. For example, we can observe that when increhsisize of the Fuselage problem from
500,000 elements to one million elements for a fixed numbsubtiomains let say 32 subdomains,
the numbers of iterations remain around 170 iterations &b breconditioners.

A similar analysis was performed for the Rouet test casegstigating the effect of domain
decomposition. We report in Tablg5, results when varying the number of subdomains from 8
to 64 for a fixed mesh size of 337,000 elements. As expectedsghrse preconditioner performs
as well as the dense preconditionigly_g4, for the different decomposition considered here. In
Table7.5 we display the percentage of kept entries in the sparsepd&oner for each value of
and for each decomposition. We can observe that for pergesitzetween 10% to 20%, the sparse
preconditioner behaves closely to the dense one for allmdpositions. The gap in the number of
iterations is between 1 and 5 for the most difficult cases,redmethe sparse variants save a lot
of computing resources as described in the next subsecRagarding the number of iterations
when increasing the number of processors, we can still ebsas in the Fuselage test case, a slight
growth in the iteration numbers. For example when we in&#as number of subdomains 8 times,
the iteration number is multiplied by 2.8.

To conclude on this aspect, we would like to underline thé tlaat either the dense precondi-
tioner Mq_s4, Or the sparse variaritlsp_4 are able to ensure fast convergence of the Krylov solvers
on our test cases of structural mechanical applicatiortseaen when increasing the number of sub-
domains. More precisely some tests on the Fuselage with difiemelements were performed
on more than 64 processors. The results show that the pritioored still guarantee reasonable
numerical performance (for example 275 iterations on 9@esso0rs).

7.4.2.2 Parallel performance scalability

This subsection is devoted to the presentation and analfytie parallel performance of both pre-
conditioners. A brief comparison with a direct method sSolutis also given. It is believed that
parallel performance is the most important means of reduttim around time and computational
cost of real applications. In this context, we consider expents where we increase the number of
processors while the size of the initial linear system,(ngesh size) is kept constant. Such experi-
ments mainly emphasize the interest of parallel computaticeducing the elapsed time to solve a
problem of a prescribed size.

For the sake of completeness, we report in Tabh82to Table7.11a detailed description of the
computing time for all problems described above, for bo#ttpnditioners, and for different choices
of the dropping parametdy. We also report the solution time using the parallel spairgetsolver,
where neither the associated distribution or redistrdsutif the matrix entries, nor the time for the
symbolic analysis are taken into account in our time measents. The main aim of this detailed
presentation is to evaluate the performance of the threesyiases of the hybrid solver in a very
comprehensive way. We recall the main three phases of theoahet

e Phasel:the initialization phase that is the same for all the vaganftthe preconditioners. It
consists into the factorization of the local internal peyhland the computation of the Schur
complement. It depends only on the size of the local subdasreid on the size of the local
Schur complements;

e Phase2the preconditioner setup phase that differs between thgedmmd the sparse variants.
It depends also on the size of the local Schur complemendspathe dropping parameteér
for the sparse variants;

e Phase3the iterative loop which is related to the convergence natkta the time per iteration.
This latter depends on the efficiency of the matrix-vectodpict kernel (explicit v.s. implicit),
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and on the preconditioner application, that is the forwaadkward substitutions (dense v.s.
sparse).

Initialization phasel

The results of the parallel efficiency of the initializatiphase Phase] of all test cases when in-
creasing the number of processors are given in TAl@® Table7.11 It consists in the factorization
time of the local internal problem associated with each sufmin, and on the computing time of the
local Schur complement using theuviPs package. Because the problem (mesh) size is fixed, when
we increase the number of processors, the subproblems kesroailer and the initialization times
decrease in a superlinear manner. We can observe thisiswaedpeedup especially for very large
problems as Fuselage with 1 million elements. For this tase¢he initialization time decreases
from 223 seconds on 8 processors down to 13 seconds on 64spooseAlthough less important,
the same trend was observed on the other test cases.

We note that to compute our preconditioner we need an ekphdculation of the local Schur
complement. Among the few available parallel distributééat solvers, MuMPS offers a unique
feature, which is the possibility to compute the Schur canmnts defined in equatiof.() using
efficient sparse calculation techniques:

Si=Arr — Ar A, LA (7.1)

There are several advantages of this approach. It enabteaenstruct our preconditioner that is
based on the explicit form of the Schur complement. It is ey to build either mixed precision or
sparsified preconditioner. In addition, in the expliciteahe matrix-vector product needed at each
iteration step of the Krylov solver is performed by a callle high performance B\s-2 DGEMV
routine whereas it needs two sparse triangular solves imtpkcit case. On the other hand, there
are also some drawbacks for this method. First, the facttioiz step takes more time as we have
more floating-point operations to perform in order to coneghe Schur complement. This method
also requires some additional storage to hold the local ISsmplement as a dense matrix.

In order to compare the two approaches, we report in Talflehe computing time to factorize
the 4, matrix with or without Schur computation. Those resultsrespond to the Fuselage test
cases, for the different decompositions.

| # processors I 8 | 16 | 32 | 64 |

Interface size 11004 10212 8022 4338
Interior size 595914 | 278850 | 133122 | 73056

Fuselage4.8-10°dof | explicit (2, + Schur) 131 51 22 9
implicit (4, 1,) 53 19 9 4
Interface size 12420 9444 6420 4950
Interior size 806712 | 381804 | 201336 | 99060

Fuselages.5-10°dof | explicit (2, + Schur) 218 48 35 12
implicit (4, ,) 95 30 13 6

Table 7.6: Parallel elapsed time (sec) for the factoriratib 4,,;, with or without Schur comple-
ment.

If we compare the factorization aft; ; , with or without Schur, it is easy to see that, even if
the factorization step takes more time, only a small numbé&mrglov iterations is usually enough
to make the explicit method more efficient than the implicieas illustrated in the next paragraph
related to the time per iteration.

Preconditioner setupphase2

In order to study the preconditioner costs of our algorithwesreport in Tablg.8to Table7.11
the required time to build the preconditioner. This coshides the time to assemble the local Schur



7.4 Indefinite symmetric linear systems in structural mechaics 119

complement, and to factorize the assembled dense Schuvifog,, or to sparsify and then to
factorize the resulting sparse assembled SchuMey ¢4. To assemble the preconditioner, neigh-
bour to neighbour communication is performed to exchanfgimations with processors owning
neighbouring regions. The key is that this communicatiost @®relatively small compared to the
factorization of the preconditioner. The assembling pathe preconditioner setup has little effect
even when increasing the number of processors.

Regarding the factorization time, we can again see the aagaiof the sparse variants of the pre-
conditioner. This is especially noticeable for small nunstzd subdomains where the preconditioner
size is large. In this case, it is interesting to note thasiierse variant can build the preconditioner
more than 3 times faster than the deridg ¢4 counterpart. For example in Tabfe8, the sparse
preconditioner setup witl§ = 5.10°% , is five times faster as the dense algorithm on 8 or 16 proces-
sors. However, the performance is related to the percewnfdgpt entries in the preconditioner. So
for very small values of the dropping parameter lot of entries are kept, the sparse factorization
of the preconditioner becomes expensive, sometimes mpensie than the denddy g4. This
can be observed for example in TaBlé 1 where, with 8 processors, the setup costs 283 seconds for
£ =5.107 about 220 seconds fdf = 10 8, whereas its cost is 235 seconds for the de¥ges. .

For the same case, it costs 43 secondsfer 10~°, the resulting sparse preconditioner converges
with only 4 extra iterations compared to the dense precmmdit. From a speedup point of view, it
can be seen that as more and more processors are addedetbétbiz preconditioner components
becomes smaller and thus the cost of the computation bedastes BecauseApPAcCK algorithms
are used to factorize the dense preconditiokigr 4, it is not surprising that the computing cost
of the preconditioner has a superlinear speedup when isiagthe number of subdomains. It is
well known that the number of floating-point operations ofease LU factorization is in order of
0O(n?), thus decreasing the size ofleads to a superlinear speedup. For similar reasons, sugzar|
speedups are also observed for the sparse preconditioners.

Iterative loop phase3

We study now the performance of the iterative loop. We refltetaverage of the time per
iteration required by each of the problem described abowtwerge when increasing the num-
ber of processors. The iterative kernel is divided into ¢hsteps: the matrix-vector product, the
preconditioner application, and the dot-product caléoatFor the matrix-vector product, each pro-
cessor computes the matrix-vector product and updatessiéts of only the interface in its region.
So, communication here is performed each step only betwerregsors sharing an interface. The
matrix-vector productsx(rk) is a common step to all variants. It can be performed expliéitocal
Schur complement matrices are explicitly built and storeshémory; an implicit calculation can be
implemented otherwise. The Schur complement is defined by

AT (7.2)

Si = ﬂriri - ﬂriziﬂ
In the implicit approach, the factors ¢f;; are used to perform the local matrix-vector products for
the local Schur complement defined by equati@g)( This is done via a sequence of sparse linear al-
gebra computations, namely a sparse matrix-vector prdnuet;r; , then sparse forward/backward
substitutions using the computed factors @f,;, , and finally a sparse matrix-vector product by
Arir -

In the explicit case, it consists in a single call taBmv, the dense level 2 Bas subroutine
that implements a dense matrix-vector product. In this,dagenumber of floating-point operations
might be smaller and the access to the memory is more reg@aidense versus sparse calculation),
this explains the large decrease of computing time obsemeh using the explicit matrix-vector
product. In all our experiments we consider the use of théi@xkppproach.

In order to compare the two approaches, we report in Tablethe time spent in the matrix-
vector product for both explicit and implicit cases, for @dperiments. For the Fuselage example
(that is 2.5D rather than full 3D), it is clear that the usetwf explicit approach is the fastest. In the
implicit case, the core of the matrix-vector product neegasgparse triangular solves on the internal
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unknowns of each subdomain. So it is related first, to the ta¢itween the number of unknowns
belonging to the interior and the number of unknowns belog g the interface of the subdomains.
For example on the Fuselage 05610°dof, the ratio J19 is around 65 on 8 subdomains and
20 on 64 subdomains; that is, the number of interior unknasmery large compared to those on the
interfaces. Similar ratio can be observed on the other Bgedkst cases. As results, the growth in
the matrix-vector product time, when the size of the localdamain increases, is rather pronounced
for the implicit case, whereas it is rather moderate for tt@ieit case. On those examples, the ex-
plicit calculation clearly outperforms the implicit on@rfthe Fuselage test with 1 million elements,
on 8 processors, the explicit variant is 5 times faster thanrnplicit one. For the overall iterative
loop it enables us to reduce the time from 270 seconds foligihpélculation down to 94,1 seconds
for the explicit one.

For the Rouet problem, the local subdomain sizes are snwlapared with the Fuselage test
problems. The ratio between the interior and the interfadaawns is smaller. Itis around 10 on 8
subdomains and around 3.7 on 32 and 64 subdomains. In tieistbasnumber of interior unknowns
is comparable with the number on the interfaces. Conselyubetbackward/forward substitutions
perform comparably to a dense matrix-vector product keonethe interface. As a result the gap
between explicit and implicit is reduced, but the expligipeoach still outperforms the implicit one.

Regarding the preconditioning step, it is still clear the sparsified variant is of great interest
as it reduces considerably the time to apply the precomditiavhich leads to a significant reduction
of the time per iteration compared to the dense counterpart.

At each iteration, the third step also performs global réidac It was observed that, the relative
cost of this reduction is negligible compared to the othepstof the algorithm, it increases by less
than 2103 seconds when increasing the number of processors from & to 64

Thus, by looking at the time per iteration, we might concltiti the extra number of iterations
cost introduced when increasing the number of subdomaisngst (in most cases) compensated
by the cheaper cost of the resulting time per iteration. Régg the sparse variants, we notice a
significant gain in computing time for suited dropping thvelsls. We should mention that dropping
too many entries often lead to a significant increase of thiatitve loop time as the number of
iterations grows notably. For example in TaBl8for & =5.10-%. On the other side, only dropping
a very few entries (very smafl ) also leads to higher time per iteration than a dense apprdax
example in Table7.11for & = 5.107. A good trade-off between numerical robustness and fast
calculation should be found to ensure the best performahttesparsified approach.

Finally, we compare in Figur@.3 and Figure7.4, the two variants of the preconditioners and

| # processors [ 4 | 8 | 16 | 32 | 64 |
e T S S I
Fuselaga3aCdor | TR | 00 | 200 | oas | oar | oar
Fuselagersadaot | RS | T | D3 | 0% | 0% | o;
Fuselage s1cfdof | PR (| [ O [ 080 | 0a8 | 008

Table 7.7: Parallel elapsed time (sec) for one matrix-wvgmtoduct step. “-" means that the result is

not available.
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Total solution time
| # processors | 8 | 16 | 32 | 64
Direct 655.5 330.0 201.4 146.3
Mg 64 525.1 217.2 124.1 82.2
Msp_64 (£ =5.107) 338.0 129.0 94.2 70.2
Msp-64 (= 107°) 322.8 120.1 87.9 65.1
Msp-64 (§ = 5.107°) 309.8 110.9 82.8 63.2
Time in the iterative loop
# processors 8 | 16 | 32 | 64
Mg 64 94.1 77.9 58.1 54.2
Msp-64 (§ =5.1077) 59.4 52.6 422 429
Msp-64 (= 107°) 57.6 50.3 38.9 40.7
Msp-64 (§ = 5.107°) 60.5 49.8 40.7 45.4
# iteration
# processors 8 | 16 | 32 | 64
Md-64 98 147 176 226
Msp-64 (§ =5.1077) 99 147 176 226
Msp-64 (= 1079) 101 148 177 226
Msp-64 (§ = 5.107°) 121 166 194 252
Time per iteration
# processors 8 | 16 | 32 | 64
Mq-64 0.96 0.53 0.33 0.24
Msp-64 (§ =5.1077) 0.60 0.36 0.24 0.19
Msp-64 (= 107°) 0.57 0.34 0.22 0.18
Msp-64 (§ = 5.107°) 0.50 0.30 0.21 0.18
Preconditioner setup time
# processors 8 | 16 | 32 | 64
Mg 64 208.0 89.0 30.0 15.0
Msp-64 (§ =5.1077) 55.6 26.1 16.0 14.3
Msp-64 (= 107°) 42.2 19.5 13.0 11.4
Msp-64 (§ = 5.107°) 26.3 10.8 6.1 4.8
Max of the local Schur size
| # processors 8 | 16 | 32 | 64
| All preconditioners 12420 | 9444 | 6420 | 4950
Initialization time
| # processors 8 | 16 | 32 | 64
| All preconditioners I 223.0 | 50.3 | 36.0 | 13.0

Table 7.8: Detailed performance for the Fuselage probletim about one million elements and 6.5
Mdof when the number of processors is varied for the vari@uguats of the preconditioner and for
various choices of, . We also report the “factorization+solve" time using thegtlal sparse direct
solver.
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Total solution time
| # processors | 8 | 16 | 32 | 64
Direct 376.0 283.9 171.3 98.8
My_64 344.4 232.5 151.6 62.1
Msp 64 (€ =5.107) 214.9 143.7 84.6 55.1
Msp 64 (§ = 1079) 203.4 129.2 80.6 51.6
Msp-64 (& = 5.10’6) 189.2 115.6 78.1 44.5
Msp 64 (§ = 1079) 190.7 120.9 79.7 no cvg
Time in the iterative loop
| # processors 8 | 16 | 32 | 64
My_64 65.9 69.8 72.7 42.0
Msp 64 (€ =5.107) 41.2 61.5 47.4 34.6
Msp 64 (§ = 1079) 39.5 58.7 46.4 33.6
Msp 64 (€ = 5.1076) 38.7 52.8 47.6 30.5
Msp 64 (= 107°) 43.8 58.5 50.7 no cvg
# iteration
| # processors 8 | 16 | 32 | 64
My_64 94 122 168 232
Msp 64 (€ =5.107) 94 122 168 232
Msp 64 (§ = 1079) 94 123 168 232
Msp-64 (& = 5.10’6) 104 134 177 242
Msp 64 (= 107°) 123 158 201 no cvg
Time per iteration
| # processors 8 | 16 | 32 | 64
My_64 0.70 0.57 0.43 0.18
Msp 64 (€ =5.107) 0.44 0.50 0.28 0.15
Msp 64 (§ = 1079) 0.42 0.48 0.28 0.14
Msp 64 (€ = 5.1079) 0.37 0.39 0.27 0.13
Msp 64 (= 107°) 0.36 0.37 0.25 no cvg
Preconditioner setup time
| # processors 8 | 16 | 32 | 64
Mq o4 142.8 110.0 55.9 10.4
Msp 64 (€ =5.107) 38.0 29.5 14.3 10.8
Msp 64 (€ = 1079) 28.2 17.8 11.3 8.3
Msp 64 (€ = 5.1079) 14.8 10.1 7.5 4.2
Msp 64 (§ = 1079 11.2 9.7 6.1 3.2
Max of the local Schur size
| # processors 8 | 16 | 32 | 64
| All preconditioners 11004 | 10212 | 8022 | 4338
Initialization time
| # processors 8 | 16 | 32 | 64
| All preconditioners I 135.7 | 52.7 | 23.0 | 9.7

Table 7.9: Detailed performance for the Fuselage probletim about 0.8 million elements and 4.8
Mdof when the number of processors is varied for the vari@ugmats of the preconditioner and for
various choices o€ . We also report the “factorization+solve" time using thegtlel sparse direct
solver.
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Total solution time
| # processors | 4 | 8 | 16 | 32 | 64
Direct - 314.4 162.5 83.0 78.5
My-64 411.1 199.4 107.7 59.3 38.2
Msp-64 (§ =5.1077) 334.2 133.0 79.4 51.0 37.3
Msp-64 (§ = 107) 311.6 125.1 72.9 46.0 35.6
Msp-64 (§ = 5.107°) 282.8 114.3 65.0 40.7 30.6
Msp-64 (§ = 107°) 282.3 114.1 67.3 39.5 29.7
Time in the iterative loop
# processors 4 | 8 | 16 | 32 | 64
My-64 325 46.2 37.2 32.3 26.7
Msp-64 (§ =5.1077) 23.2 31.6 275 24.3 23.3
Msp-64 (§ = 107°) 225 30.3 25.9 23.3 23.1
Msp-64 (§ = 5.107°) 25.1 29.5 24.8 225 21.0
Msp-64 (§ = 107°) 29.5 31.9 28.8 22.7 20.8
# iteration
# processors 4 | 8 | 16 | 32 | 64
My-64 38 92 124 169 224
Msp-64 (§ =5.1077) 39 92 124 169 224
Msp_64 (§ = 107°) 40 92 124 169 224
Msp_64 (§ = 5.107°) 51 99 130 173 228
Msp-64 (§ = 107°) 64 114 155 191 248
Time per iteration
| # processors 4 | 8 | 16 | 32 | 64
Md-64 0.85 0.50 0.30 0.19 0.12
Msp64 (§ =5.1077) 0.60 0.34 0.22 0.14 0.10
Msp_64 (§ = 107°) 0.56 0.33 0.21 0.14 0.10
Msp-64 (§ = 5.107°) 0.49 0.30 0.19 0.13 0.09
Msp64 (§ = 107°) 0.46 0.28 0.19 0.12 0.08
Preconditioner setup time
| # processors 4 | 8 | 16 | 32 | 64
Md_64 182.0 79.1 37.9 13.8 5.3
Msp64 (§ =5.1077) 114.3 27.4 19.2 134 7.8
Msp-64 (§ = 107°) 92.5 20.8 14.4 9.4 6.3
Msp-64 (§ = 5.107°) 61.0 10.8 7.5 4.9 34
Msp64 (§ = 107°) 56.2 8.2 5.8 35 2.7
Iterative system unknowns
| # processors 4 | 8 | 16 | 32 | 64
| All preconditioners 17568 | 28644 | 43914 | 62928 | 88863
Max of the local Schur size
| # processors 4 | 8 | 16 | 32 | 64
| All preconditioners 11766 | 8886 | 7032 | 4908 | 3468
Initialization time
| # processors 4 | 8 | 16 | 32 | 64
| Al preconditioners || 196.7 | 740 | 327 | 13.2 | 6.2

Table 7.10: Detailed performance for the Fuselage problématout 0.5 million elements and 3.3
Mdof when the number of processors is varied for the vari@uiuats of the preconditioner and for
various choices of, . We also report the “factorization+solve" time using thegtlal sparse direct

solver. “-" means that the result is not available becauskeomemory requirement.
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Total solution time
| # processors | 8 | 16 | 32 | 64
Direct 435.1 350.0 210.7 182.5
Md-64 453.7 264.6 110.9 70.1
Msp-64 (§ =5.1077) 499.4 262.2 143.6 64.4
Msp-64 (= 1079) 433.4 212.6 124.6 59.7
Msp 64 (§ =5.10°) 277.5 151.7 86.5 51.4
Msp-64 (= 107°) 246.7 134.6 70.5 47.2
Msp-64 (§ = 5.107°) 214.0 122.1 63.4 46.2
Time in the iterative loop
# processors 8 | 16 | 32 | 64
Md-64 57.2 60.8 445 42.1
Msp-64 (§ =5.1077) 54.9 50.4 39.6 37.4
Msp-64 (= 1079) 51.9 49.8 36.7 37.7
Msp-64 (§ = 5.107°) 42.0 47.9 37.6 35.6
Msp-64 (= 107°) 42.2 41.8 30.2 33.2
Msp-64 (§ = 5.107°) 38.5 44.3 34.1 34.4
# iteration
# processors 8 | 16 | 32 | 64
Md—_64 59 79 106 156
Msp-64 (§ =5.1077) 59 80 107 156
Msp64 (§ = 107°) 59 83 108 157
Msp_64 (§ = 5.107%) 60 87 114 162
Msp-64 (= 107°) 63 89 116 166
Msp-64 (§ = 5.107°) 70 103 131 191
Time per iteration
| # processors 8 | 16 | 32 | 64
My_64 0.97 0.77 0.42 0.27
Msp-64 (& = 5.1077) 0.93 0.63 0.37 0.24
Msp-64 (& = 10*6) 0.88 0.60 0.34 0.24
Msp-64 (& = 5.10*6) 0.70 0.55 0.33 0.22
Msp-64 (& = 1079) 0.67 0.47 0.26 0.20
Msp 64 (§ = 5.107°) 0.55 0.43 0.26 0.18
Preconditioner setup time
| # processors 8 | 16 | 32 | 64
My_64 235.0 137.0 435 19.0
Msp-64 (& = 5.1077) 283.0 145.0 81.2 18.0
Msp-64 (& = 10*6) 220.0 96.0 65.0 13.0
Msp-64 (& = 5.10*6) 74.0 37.0 26.0 6.8
Msp-64 (& = 1079) 43.0 26.0 17.5 5.0
Msp 64 (§ = 5.107°) 14.0 11.0 6.5 2.8
Max of the local Schur size
| # processors 8 | 16 | 32 | 64
| All preconditioners 13296 | 10953 | 7404 | 5544
Initialization time
| # processors 8 | 16 | 32 | 64
| All preconditioners I 161.5 | 66.8 | 22.9 | 9.0

Table 7.11: Detailed performance for the Rouet problem waiibut 0.33 million elements and 1.3
Mdof when the number of processors is varied for the vari@uguats of the preconditioner and for
various choices o€ . We also report the “factorization+solve" time using thegtlel sparse direct
solver.
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a direct solver. The direct solver is used in the context ofegal symmetric matrices, where with
the default parameters automatically set by them#s package. In term of permutation, we have
performed some experiments to compare between the nessection Metis routine of ordering
and the Approximate Minimum Degree (AMD) ordering. The hmstformance was observed when
we used the Metis routine. We performed runs using assenabiédlistributed matrix entries. We
mention that neither the associated distribution or redigion of the matrix entries, nor the time
for the symbolic analysis are taken into account in our tineasurements. For the direct method,
we only report the minimum elapsed time for the factorizatod for the backward/forward substi-
tutions. We illustrate the corresponding computing timeewincreasing the number of processors,
for all the tests cases. Figure3presents the three Fuselage test cases, whereas Figaescribes
the Rouet one. The graphs on the left of these figures give uh®bar of iterations required by
each variant, whereas the right graphs summarize the ¢waraputing time and compare them
with the time required by the direct solver. Compared with direct method, our hybrid approach
gives always the fastest scheme. Over the course of a londagion, where each step requires the
solution of a linear system, our approach represents afisigni saving in computing resources; this
observation is especially valid for the attractive spawsgawnt.

We now investigate the analysis in term of memory requirdm&e depict in Table7.12the
maximal peak of memory required on the subdomains to contpetéactorization and either the
dense preconditioner for thieybrid — Mq_g4 method or the sparse preconditioner wh= 5.10°
for the hybrid— Msp_s4 method. We report also the average memory required by thetdirethod.

For each test case, we report in each row of Tabl2the amount of memory storage required
(in MB) for the different decomposition described in this sulisect This amount is huge for
small number of subdomains. This is due to the fact that the af the local Schur complements
is extremely large. Furthermore the large number of unkrsomgsociated with the interior of each
subdomain leads to local factorizations that are memorguwaing. A feature of the sparse variants
is that they reduce the preconditioner memory usage.

| # processors | 4 | 8 | 16 | 32 | 64 |
Direct - 5368 2978 1841 980
Rouet 1.3-10°dof Hybrid — My_g4 - 5255 3206 1414 739
Hybrid — Msp_64 - 3996 2400 1068 560
Direct 5024 3567 2167 990 669

Fuselage3.3-10°dof Hybrid — My_g4 6210 3142 1714 846 399
Hybrid — Msp_64 5167 2556 1355 678 320

Direct 9450 6757 3222 1707 1030
Fuselaget.8-10°dof Hybrid — My_64 8886 4914 2994 1672 623
Hybrid — Mgp_64 7470 4002 2224 1212 495

Direct - 8379 | 5327 | 2148 | 1503
Fuselages.5-10°do f Hybrid — My_s4 - 6605 | 3289 | 1652 831
Hybrid — Msp 64 - 5432 | 2625 | 1352 660

Table 7.12: Comparison of the maximal local peak of the datieage (MB ) needed by the hybrid
and the direct method. “-" means that the result is not aviElaecause of the memory requirement.
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Figure 7.3: Parallel performance for the Fuselage tesscageen increasing the number of proces-
sors. Left graphs display the numerical behaviour (numbéerations), whereas the right graphs
display a comparison of the computing time between the dydwiver and the direct solver. More-
over, the results for both preconditioners and for différeiues of§ are reported.
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Figure 7.4: Parallel performance for the Rouet (1.3 Mddf) tase, when increasing the number of

processors. Left graphs display the numerical behavioumper of iterations), whereas the right

graphs display a comparison of the computing time betweeihyhrid solver and the direct solver.

Moreover, the results for both preconditioners and foredéht values of are reported.

7.5 Symmetric positive definite linear systems in structurbme-
chanics

7.5.1 Numerical behaviour

As discussed in the previous chapters, we study in thissette numerical behaviour of the precon-
ditioners. For that purpose, we compare the numerical peeoce of the sparsified preconditioner
Msp-s4 and compare it to the classicéy_e4 . We also perform a comparison with the mixed arith-
metic preconditioneMqy_nmix . To be exhaustive, we also consider a direct solver. We hatefor
these problems, the discretization gives rise to lineatesys that are symmetric positive definete.
Therefore we use the conjugate gradient Krylov solver intérative phase. The performance and
robustness of the preconditioners are evaluated for the@®3Mest problem.

7.5.1.1 Influence of the sparsification threshold

In order to study the effect of the sparse preconditioneihencbnvergence rate we display in Fig-
ure 7.5 the convergence history for various choices of the droppiagmeter involved in the
definition of Msp_64 in Equation 8.6). We also compare them to the convergence history of the
denseMy_g4 and to a direct solution method. On the left-hand side welaljsfhe convergence
history as a function of the iterations. On the right-hamigsthe convergence is given as a function
of the computing time. The results presented here are forshméh 125,000 finite elements (0.8
million dof) on the PAMCS50 test case mapped onto 32 processor

These results show again the attractive features of thesespariant. They illustrate the main
advantage of the sparse preconditioners that is, theirlgergosts both in memory and in comput-
ing time compared to the dense preconditioner or to the dinethod. Again, the preconditioning
quality is not significantly degraded, the sparse approattates very closely to the dense one for
suited choices of (for example 10° or 10°4). We report in Tabl&’.13 the memory space and
the computing time required to build the preconditioner anheprocessor. The maximal subdo-
main interface in this test case is 11119 unknowns. The tedeimonstrate the effectiveness of
the sparsified preconditioners. When considering both mgrmod computational aspects of the
sparse approach we believe that it exhibits many advantagparticular when dealing with large
subdomain interfaces.



128 Preliminary investigations on structural mechanics poblems

T T T
Direct calculation 10
Dense calculation
- = = Sparse with £=1075(] 102}
= = = Sparse with {:10’A

Sparse with £=107{ 107
= = = Sparse with E:lO’2

Direct calculation
Dense calculation
= = = Sparse with £=10"°

- - - Sparse with §=107*
Sparse with E:ll)’3
= = = Sparse with {:10’2

[Ir V11l
[Ir V11l

. . . . . . . . . . . . . . . . . .
0 20 40 60 80 100 120 140 160 180 200 0 40 80 120 160 200 240 280 320 360
# iter Time(sec)
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Figure 7.5: Convergence history for PAMC50 problem mapp#d 82 processors, of the direct, the
Hybrid-dense Mq_s4) and the Hybrid-sparseMsp_64) solvers for various sparsification dropping
thresholds (Left: scaled residual versus iterations, Rigtaled residual versus time).

| B | o | 10° | 10* | 10° [ 10°% |
PAMCS50 problem with 0.8 Mdof
Memory 943uB 16QuB 38us 11vs 3vB
Kept percentage 100% 17.0% 4.1% 1.1% 0.3%
Preconditioner setup 83.3 17.7 9.5 5.9 5.0

Table 7.13: Preconditioner computing tinseC) and amount of memorniB) in Mgy 64 V.S.
Mg_e4 for various choices of the dropping parameter.

7.5.1.2 Influence of the mixed arithmetic

We focus in this subsection on the numerical behaviour ofitheed arithmetic approactb{)] and
compare it with the full 64-bit and with a direct solution rhetl. In this respect, we consider the
same example as in the previous subsection. We plot the envee history for the PAMC50
test problem when it is decomposed into 32 subdomains. Asqusgly, the performance and the
robustness of the mixed arithmetic preconditioner areuatatl. On the left graph of Figure6, the
convergence history is a function of the iterations and @nritpht one the convergence history is a
function of time. Again, it can be observed that for this tyfe3D problems, the mixed precision
algorithm behaves very closely to the 64-bit algorithm. ded not delay the convergence. As
expected the two preconditioners reach the same accurdlg direct method. That is, at the level
of 64-bit arithmetic. When looking at the right graph, onsetves that the saving in computing time
is not as significative as it was in Sectiér3.2 We should mention that the computing platform
that we use here does not allow higher 32-bit processingdspempared with 64-bit. The main
advantage of this approach is that it gives rise to simil&ab@ur as the 64-bit algorithm with low
cost in both memory and marginately less computing time.

7.5.2 Parallel performance experiments

For the sake of completeness, we would like to illustratepirormance of these implementations
for both the numerical and the computing time point of vieve iMguire that the normwise backward
error becomes smaller than 1. We perform experiments for a fixed mesh size, when decondpose
into different number of subdomains. In the first subseckielow, we analyze the numerical per-
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Figure 7.6: Convergence history for PAMC50 problem mappett 82 processors, of the direct,
the Hybrid-64 bit My_s4) and the Hybrid-32 bit My_mix ) solvers (Left: scaled residual versus
iterations, Right: scaled residual versus time).

formance of the three preconditioners, whereas the nexestibn is devoted to the study of their
parallel features and efficiency.

7.5.2.1 Numerical scalability

We now illustrate the numerical behaviour of the conjugaselgent Krylov solver, when the number
of subdomains increases. The preconditioner tested armdetige 64-bit additive Schwarz precon-
ditioner My_e4, the sparse alternativilsp,_s4 and the mixed arithmetic variarly_mix . These
preconditioners were presented in Sectdo® Section3.3and Sectior8.4. The numerical experi-
ments are performed on the PAMC50 (0.8 Mdof) test problenemdiecomposed into 16, 32, 64
and 96 subdomains. Another comparison is presented on thkBA (3.2 Mdof) mapped onto 192
processors. We note that this latter simulation cannot begeed using a direct method neither on
96 nor on 192 processors. The main drawback is that it tylpicadjuires more than 400 GBytes on
96 processors and 507 GBytes on 192 processors. This aminenoory is not available on our
test platform that has only 384 GBytes on 192 processors.

Table 7.14 presents the number of iterations. The results obtaineld aifferent choices of
the dropping parametef of Mg, g4 are also given. In addition, we report in Tablel4 the
percentage of kept entries for the sparsification strasedile see that, exceptin one case, the choice
of the preconditioner does not really influence the conwecgef the iterative scheme. The only
degradation is observed with the sparse preconditidfgr 64 for the very small value = 102.
When multiplying the number of subdomains by 6, the numbédtesétions is multiplied by less
than 2 for all variants. This trend is similar to the one olsedron academic examples in Chagger

On a larger problem, we present in Talgld5the number of iterations required on the PAMC80
problem mapped onto 96 and 192 processors. The precorgtiffenforms as well as in the previous
simulations for this bigger test example. Using 96 processsbe convergence is reached in 76 iter-
ations for My_g4 , While 73 iterations were required by PAMC50 on the same rermbprocessors.
Also PAMCS80 requires 89 iterations withsp g4 using & = 104, while PAMCS50 needs 76. This
is a promising behaviour, that shows that when increasiag@terall size of the problem four times
(from 0.8 -10° dofs to 32 -10° dofs), for the same decomposition (96 subdomains) only ext
iterations are needed byly_g4 , and 13 extra iterations are required B, g4 USING & = 1074,
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7.5.2.2 Parallel performance scalability

We devote this subsection to the discussion of the paraiébpmance and analysis of the precondi-
tioners. We also report a comparison of all the preconditismwith a direct method. Similarly to the
indefinite case, we report in Tabfel8 the detailed computing time for the PAMC50 test problem.

For a fixed mesh size, we vary the number of subdomains frorB2,64 up to 96. For each of
this partition, we report the maximal size of the local subdin interface, and the computing time
needed by each of the three main phases of our hybrid methadtition to the required time per
iteration. We would like to underline the fact that, whatetye preconditioner is, a very significant
decrease in the computing time can be observed when we s&tha number of processors. We
may remark that the behaviour of the preconditioners islaimo what was described above as well
as in Chapteb and Chapte6. The sparse preconditioners perform more than twice falster
Mg_e4 Whereas the mixed precision preconditiofg_mix is still reducing the overall computing
time even on this platform where 32 and 64-bit calculation @erformed at the same speed. For
the sparse techniques, we can remark that, here the choige-af0~* gives us the best parallel
performance and thus by looking in TalMel4 we can conclude that for this type of problem, it is
sufficient to retain between 3% to 10% of the local Schur cemgnt entries.

In order to be exhaustive, we also report in TahlEGthe elapsed time to factorize the;,;, ma-
trix with or without Schur computation. Finally in Tabfel7we display the elapsed time to perform
the matrix-vector product using both explicit or implicigroaches described in Subsectiof.2.2
The results of Tabl&.16indicate that when the size of the interface (Schur compiejie compa-
rable to the number of interior unknowns, the partial faiztation that builds the Schur complement
(explicit method) becomes much more expensive than theriaation of the local problem. By
looking in Table7.17, it can be seen that, in that context the implicit approaightly outperforms
the explicit one. This behaviour is clearly observed on tAMB50 where the ratio; ol js
2.7 on 16 subdomains and 0.8 on 96 subdomains. That is, thearwhinterior unknowns is very
closed to the number of unknowns on the interface. This iatadearly much smaller than for the
Fuselage problem considered in Sectiof

In order to summarize and compare with the direct method |letérpFigure?.7the performance

| # processors I 16 | 32 | 64 | 96 |
Mg—_64 40 50 69 73
Md—mix 40 50 66 74

12510%lements| Msp 64 (E=104) || 47 ( 3%) | 55( 4%) | 70( 6%) | 76 ( 8%)
0.8-10fdof Msp 64 (E=1073) || 58(0.7%) | 65 (1.0%) | 83(1.6%) | 87 (2.0%)
Msp_64 (§ =1072) || 73(0.2%) | 86 (0.3%) | 103 (0.5%) | 113 (0.6%)

Table 7.14: Number of preconditioned conjugate gradienattons and percentage of kept entries in
the sparse preconditioner for the PAMC50 problem with ali@8;000 elements and 0.8 Mdof The
number of processors is varied for the various variants ®@fptfeconditioner using various choices
of €.

3.2.10°dof £=10"* £=103 £=10?2
96 processors 76 - 89 - -
192 processors 96 103 106 126 158

Table 7.15: Number of preconditioned conjugate gradienattons for the PAMCB80 problem with
about 512,000 elements and 3.2 Mdof when the number of psoress varied for the various
variants of the preconditioner and for various choiceg of-" means that the run is not available.
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| # processors | 16 | 32 | 64 | 9 |
Interface size 14751 11119 8084 6239
Interior size 40012 19009 8666 5365
PAMGC50 08-10°dof explicit (2, + Schur) 90.1 21.5 7.1 4.0
implicit (2, 5) 15.0 4.1 15 0.8

Table 7.16: Parallel elapsed time (sec) for the factowradif 4, with or without Schur comple-
ment.

| # processors I 16 | 32 | 64 | 9% |

explicit 0.65 0.32 0.18 0.10
implicit 0.52 0.29 0.13 0.09

PAMGC50 0.8-10°dof

Table 7.17: Parallel elapsed time (sec) for one matrixergmtoduct step.
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Figure 7.7: Parallel performance for the PAMC50 (0.8 Mde#fticase, when increasing the number
of processors.
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Total solution time
# processors | 16 | 32 | 64 | 96
Direct 451.0 222.5 161.1 139.4
Md—_64 361.0 158.0 90.4 48.3
Mg mix 334.2 153.7 74.8 427
Msp64 (£ =104 146.0 62.9 37.2 22.9
Msp-64 (§ = 1073) 142.2 60.9 37.9 22.2
Msp-64 (§ = 1072) 152.2 70.5 43.1 26.3
Time in the iterative loop
| # processors 16 | 32 | 64 | 96
Md—_64 70.0 52.7 49.6 26.2
Md—mix 43.2 48.4 34.0 20.6
Msp-64 (§ =104 38.7 315 26.7 16.3
Msp-64 (§ = 1073) 43.0 33.0 28.4 16.7
Msp-64 (§ = 1072) 54.5 43.5 34.0 20.9
# iteration
| # processors 16 | 32 | 64 | 96
Md—_64 40 50 69 73
Md—mix 40 50 66 74
Msp64 (§ =104 47 55 70 76
Msp-64 ( = 1073) 58 65 83 87
Msp-64 (§ = 1072) 73 86 103 113
Time per iteration
| # processors 16 | 32 | 64 | 96
Mg_6a 1.75 1.05 0.72 0.36
M- mix 1.08 0.97 0.52 0.28
Msp-64 (£ =104 0.82 0.57 0.38 0.21
Msp_64 (§ = 1079) 0.74 0.51 0.34 0.19
Msp-64 (§ = 1072) 0.75 0.51 0.33 0.18
Preconditioner setup time
| # processors 16 | 32 | 64 | 96
My-64 200.0 83.3 33.6 18.0
M- mix 171.0 64.3 30.0 14.6
Msp-64 (£ =104 16.3 9.4 3.3 25
Msp-64 (§ = 1073) 8.2 5.9 2.3 1.4
Msp-64 (§ = 1072) 6.7 5.0 1.9 1.2
Max of the local Schur size
| # processors 16 | 32 | 64 | 96
| All preconditioners 14751 | 11119 | 8084 | 6239
Initialization time
| # processors 16 | 32 | 64 | 96
| All preconditioners || 91.0 | 22.0 | 7.2 | 4.1

Table 7.18: Detailed performance for the PAMC50 problenhwibout 125,000 elements and 0.8
Mdof when the number of processors is varied for the vari@ugnats of the preconditioner and for
various choices of, . We also report the “factorization+solve" time using thegtlal sparse direct
solver.
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of the solution techniques on the PAMC50 test case. On theplet, we display the number of
iterations when the number of subdomains is varied. On gi,nive depict the overall solution time.
In that latter plot, we also report on the parallel perforoeaf a sparse direct solution (again we do
not take into account the symbolic analysis time and theildigton time of the matrix entries). On
that example, we can see that the hybrid approaches outpettie sparse direct solution technique.

We now look at the memory requirement, for that, we depictabl@&7.19the maximal peak
of memory required on one processor for the hybrid method wither the dense preconditioner
(hybrid — My_g4), the mixed preconditionerhybrid — My_mix ), and the sparse preconditioner
(hybrid — Mgp_g4) with & = 10-3. We report also the average of the memory required by the
direct method. We report the size in megabytes of the mentorage required for the different
decompositions described in this subsection. This amawiy large for small number of subdo-
mains, especially due to the fact that the size of the locauScomplements is large. A feature of
the sparse variants is that they reduce the preconditiorerary usage, which has also a consid-
erable effect in the execution time as it reduces the numitfewating-point operations required by
the factorization.

| # processors | 16 [ 32 | 64 | 96 |
Direct 4175 2265 1507 1027
Hybrid — My_g4 5318 2688 1282 802
PAM f08-1 f .
C50 of 08-10°do Hybrid — Mg_mix 4280 | 2114 | 986 623
Hybrid — Msp-64 3422 1630 733 474

Table 7.19: Comparison of the maximal local peak of the dataage needed by the direct and the
hybrid method for the different studied preconditioners.

7.6 Exploiting 2-levels of parallelism

7.6.1 Motivations

Classical parallel implementations of domain decompmsitechniques assign one subdomain per
processor. Such an approach has two main drawbacks:

1. For many applications, increasing the number of subdasnaiten leads to increasing the
number of iterations to converge. If no efficient numericalamanism, such as coarse space
correction for elliptic problems, is available the solutiaf very large problems might become
ineffective.

2. It implies that the memory required to handle each subdwoisaavailable on each proces-
sor. On SMP (Symmetric Multi-Processors) node this comgttan be relaxed as we might
only use a subset of the available processors to allow eaaepsor to access more memory.
Although such a solution enables an optimal use of the meswne processors are “wasted".

One possible alternative to cure those weaknesses is taleopsrallel implementations that exploit
2-levelsof parallelism #9]. Those implementations consist in using parallel nunatlicear algebra
kernels to handle each subdomain.

In the next sections we study the numerical benefits andlpgpalformance advantages of the
level parallelapproach in the context of structural mechanical simutati®Ve draw the attention of
the reader on the fact that in those sections the number oépsors and the number of subdomains
are most of the time different. 2-level parallelimplementation will be effective for hybrid solver if
the three main phases of these numerical techniques cafidierafy performed in parallel. Due to
some features of the version of the parallel sparse dirdatismlumpsthe first phase that consists in



134 Preliminary investigations on structural mechanics poblems

factorizing the local internal problems and computing theal Schur complement was still perform
sequential. This limitation should disappear in the nelease of the solver that would enable us to
better assess the advantages and weaknesses®fdahel parallelscheme.

7.6.2 Numerical benefits

The numerical attractive feature of televel parallelapproach is that increasing the number of
processors to speedup the solution of large linear systees bt imply increasing the number of
iterations to converge as it is often the case withltHevel parallelapproach.

We report in Table’.20both the number of iterations and the parallel computingtgpent in
the iterative loop, for the problems depicted in Secffoh For each problem, we choose a fixed
number of processors and vary the number of subdomainsrénallacated to different number of
processors.

In this table it can be seen that decreasing the number ofosaditis reduces the number of
iterations. The parallel implementations of the numerieahels involved in the iterative loop is
efficient enough to speedup the solution time. On the largastlage example, when we have
32 processors, standart-level parallel) implementation partitions the mesh into 32 subdomains
requiring 176 iterations to convergence and consuming S8cbnds. With th@-level parallel
implementation, either 16 or 8 subdomains can be used. Theilddomain partition requires 147
iterations performed in 44.8 seconds and the 8 subdomainletibn needs 98 iterations performed
in 32.5 seconds. This example illustrates the advantadee@fkevel paralleimplementation from a
numerical viewpoint. We should mention that using 2hkevelsof parallelism leads also to decrease
the computing time needed to setup the preconditioners.Witlibe explained in details in the next
section. Whereas the performance of the initializatiorsphia momently omitted due to the version
of the direct solver we used.

7.6.3 Parallel performance benefits

When running large simulations that need all the memorylavia on the nodes of an SMP-machine,
standard parallel coded-{evel parallel) are enforced to use only one processor per node, thus
leaving the remaining processors idle. In this context,gbal of the2-level parallelmethod, is
to exploit the computing facilities of the remaining proses and allows them to contribute to the
computation.

We report in Tabl&.21, the performance results of tRelevel parallelmethod for the Fuselage
with 6.5 million degrees of freedom. This is the analogou$able 7.8 of Subsectiorv.4.2.2 We
use the2-level parallelalgorithm only for the simulations that left idle processaten the standard
(1-level parallel) algorithm was run due to memory constraints. In that cdee8tor 16 subdomain
decompositions require respectively 7 GBytes and 5 GByfteseonory; so that thé-level parallel
implementation can only exploits one of the four SMP prooessThat means that the 8 subdomain
simulation using thel-level parallelapproach requires the use of 8 SMP nodes, where only one
processor per node is used; its leaves 24 idle processoes. \Eyrse, the 16 subdomain simulation
requires 16 SMP nodes where still only one processors perisagsed. It leaves 48 idle processors.
In such a context the benefit of tAdevel parallelapproach is clear. The parallel performance of the
Md-64 and Msp_g4 are reported in this table and similar results are givenHemther test problems
(Table7.22for the Fuselage with 3.3 millions degrees of freedom andeTal23for the Rouet with
1.3 million degrees of freedom)

To study the parallel behaviour of tf2elevel parallelimplementation we discuss the efficiency
of the three main steps of the algorithm.

e We recall, that these preliminary experiments were peréafwith a version of the sparse
direct solver that does not enable us to perform efficiehtyfactorization of the local problem
and the calculation of the local Schur complement efficieimtlparallel. Consequently we
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# total Algo # # processors/| # iterative
processors subdomains subdomain iter loop time
| Fuselage 1 million elements with®10° dof
1-level parallel 16 1 147 77.9
1
6 processors 2-level parallel 8 2 98 51.4
1-level parallel 32 1 176 58.1
32 processors| 2-level parallel 16 2 147 44.8
2-level parallel 8 4 98 32.5
1-level parallel 64 1 226 54.2
2-level parallel 32 2 176 40.1
64 processors| | cvel parallel 16 4 147 313
2-level parallel 8 8 98 27.4
| Fuselage B million elements with 3 1° dof
1-level parallel 8 1 92 46.2
8 processors | - |evel parallel 4 2 38 18.6
1-level parallel 16 1 124 37.2
16 processors| 2-level parallel 8 2 92 25.9
2-level parallel 4 4 38 10.1
1-level parallel 32 1 169 32.3
2-level parallel 16 2 124 22.1
32 processors 2-level parallel 8 4 92 14.3
2-level parallel 4 8 38 11.8
| Rouet 033 million elements with B 1 dof
1-level parallel 16 1 79 60.8
16 processors 2-level parallel 8 2 59 34.1
1-level parallel 32 1 106 44.5
32 processors| 2-level parallel 16 2 79 38.6
2-level parallel 8 4 59 21.1
1-level parallel 64 1 156 42.1
2-level parallel 32 2 106 22.4
64 processors 2-level parallel 16 4 79 26.2
2-level parallel 8 8 59 25.5

Table 7.20: Numerical performance and advantage oPtleyel parallelmethod compared to the
standardL-level parallelmethod for the Fuselage and Rouet problems and for diffelecamposi-
tion proposed.
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preferred to keep this calculation sequential and do notdig2-level paralleimplementation
of this step.

e Preconditioner setuphase2 This phase includes two steps, the assembling the localrSch
complement, and the factorization of eithbty_e4 or Msp_s4 depending on the selected
variant. The factorization oMy_e4 is performed using Scalapack, whiMsy_g4 is factorize
using a parallel instance of WMps.

The results reported in Tabl&s21- 7.23highlight the advantage of thzlevel parallelalgo-
rithm. For the dense preconditionkty_g4 , we can observe that even if we not take advantage
of all the working nodes and use only 2 of the 4 available pssees to perform the precondi-
tioner setup phase, the benefit is considerable. The congptitne is divided by around 1.8
for all test cases. For the sparse preconditioner, the gaiso important, it varies between
1.5t02.

The objective of th@-level parallelmethod is to take advantage of all the available resources
to complete the simulation. That is, take advantage of alpttocessors of the nodes. We em-
phasize that the discussion in this section should penddhretuse of the 4 processors available
on each node, which constitutes the main objective ofblavel parallelinvestigation. The
first observation highlights the success of takevel parallelalgorithm on the achieved per-
formance. For the denskly_g4 preconditioner, the calculation is performed around 3 $me
faster thanks to the efficiency of the parallel dense lin&getaa kernels of ScalPAck. For
the sparse preconditioner, the speedups vary between B.5This speedup is pronounced
for small values off (& =5.10"7 for the Fuselage tests arfg=5.10"° for the Rouet test)
and for large interface sizes, whereas it is rather modévateery large values of,, and for
small interface sizes.

Finally, it can be noticed that, the best execution timesétained using th2-level parallel
method for all test problems. Ttilevel parallelmethod is needed to attain the best parallel
performance.

e Thephase3of the method is the iterative loop, that mainly involves 3nauical kernels that
are: the matrix-vector product implemented using PBLAStir@s; the preconditioner ap-
plication that relies either onGLAPACK kernels forMg_gs or MuMPS for Mg, 64 and a
global reduction for the dot-product calculation. The fessteported in these tables, show
similar speedups as the ones observegfasepreconditioner setup). For the dense pre-
conditioner the execution of the iterative loop is 2 to 3 tinfeester than for thé-level parallel
algorithm. Also, for the sparse preconditioner, the cogeace is achieved 1.7 to 3 times
faster.

To visualize the time saving enabled by tevel parallelimplementation we display in Fig-
ure7.8the global computing time for the different decompositioRer the sake of readability, we
only display the results for the dense preconditioner. €lmosves illustrate the benefit of tRdevel
parallel implementation that enables us to get much better compthirgighput out of the SMP
nodes.

7.7 Concluding remarks

In this chapter, we have investigated the numerical belawd our preconditioner for the solu-
tion of linear systems arising in three dimensional strtadtmechanics problems representative of
difficulties encountered in this application area. In ortdeavoid the possible singularities related
to the splitting of the Lagrange multiplier equations wepmse a first solution that can surely be
improved. In particular, other partitioning strategiesulebdeserved to be studied and investigated.
Some work in that direction would deserve to be undertaken fine possible integration of this
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# subdomains 8 16 32
or SMP-nodes
4 1-level 2-levels 1-level 2-levels 1-level 2-levels
processor§ parallel parallel parallel parallel parallel parallel
per subdomain 1 5 | 7 1 5 7 1 5 | 7
Total solution time
My-64 525.1 | 399.1| 3264 217.2 | 147.8| 112.0 1241 | 97.2 | 71.7
§=510" 338.0 | 291.4 | 265.5 129.0 | 103.8| 90.7 94.2 83.8 | 65.3
£= 106 322.8 | 279.4 | 260.3 120.1 95.3 84.0 87.9 79.7 | 62.1
£=510° 309.8 | 270.4 | 251.1 110.9 87.8 79.7 82.8 71.6 | 56.0
Time in the iterative loop
Md—_64 94.1 51.5 32.5 77.9 44.8 31.3 58.1 40.8 | 22.7
£=510" 59.4 36.8 20.6 52.6 32.9 24.8 42.2 32.0| 18.8
§E= 106 57.6 34.3 19.9 50.3 29.6 21.6 38.9 31.2 | 18.2
§=510° 60.5 35.8 20.1 49.8 29.5 23.2 40.7 28.7 | 16.1
# iterations
My-64 98 147 176
£=510" 99 147 176
£= 106 101 148 177
£=510° 121 166 194
Time per iteration
My-64 0.96 0.53 0.33 0.53 0.30 0.21 0.33 0.23 | 0.13
§=510" 0.60 0.37 0.21 0.36 0.22 0.17 0.24 0.18 | 0.11
£= 10 0.57 0.34 0.20 0.34 0.20 0.15 0.22 0.18 | 0.10
£=510° 0.50 0.30 0.17 0.30 0.18 0.14 0.21 0.15| 0.08
Preconditioner setup time
Md—_64 208.0 | 1246| 70.8 89.0 52.7 304 30.0 20.4 | 13.0
£=510" 55.6 316 | 21.9 26.1 20.6 15.5 16.0 15.7 | 10.5
§E= 106 42.2 221 | 174 19.5 154 12.1 13.0 126 | 7.9
§=510° 26.3 11.6 8.0 10.8 8.0 6.1 6.1 6.9 3.9
Iterative system unknowns
| All preconditioners 40200 I 61251 I 87294
Max of the local Schur size
| All preconditioners 12420 I 9444 I 6420
Initialization time
| All preconditioners || 223.0 I 50.3 I 36.0

Table 7.21: Detailed parallel performance of 2¥evel parallelmethod for the Fuselage problem
with about one million elements and 6.5 Mdof when the numbiesubdomains is varied, for the
various variants of the preconditioner and for various casiof ¢ .
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# subdomains 4 8 16
or SMP-nodes
1-level 2-levels 1-level 2-levels 1-level 2-levels
# progzssor; parallel parallel parallel parallel parallel parallel
per subdomain 1 5 | 7 1 5 7 1 5 | 7
Total solution time
My_64 411.1 | 315.3 | 262.7 199.4 | 146.0| 114.7 107.7 | 79.0 | 61.1
£=510" 334.2 | 262.5| 2435 133.0 | 111.3 | 100.0 79.4 63.2 | 55.9
£= 106 311.6 | 247.5| 235.0 125.1 | 105.5| 95.0 72.9 59.0 | 53.0
£=510° 282.8 | 225.3| 214.1 114.3 98.1 88.6 65.0 62.9 | 52.9
£= 10° 282.3 | 223.5| 212.9 114.1 98.4 88.1 67.3 53.6 | 46.2
Time in the iterative loop
My 64 325 18.6 10.1 46.2 25.9 14.3 37.2 221 | 134
£=510" 23.2 15.2 9.0 31.6 18.9 11.9 27.5 17.9 | 13.0
£= 106 22.5 14.0 9.4 30.3 18.1 10.7 25.9 16.2 | 12.2
£=510° 25.1 14.4 8.1 29.5 16.7 9.2 24.8 24.7 | 16.2
£= 10° 29.5 16.5 9.3 31.9 18.5 10.0 28.8 16.6 | 10.4
# iterations
My 64 38 92 124
£=510"7 39 92 124
£= 106 40 92 124
£=510°6 51 99 130
£= 10° 64 114 155
Time per iteration
My 64 0.85 0.49 0.27 0.50 0.28 0.15 0.30 0.18 | 0.11
£=510" 0.60 0.39 0.23 0.34 0.20 0.13 0.22 0.14 | 0.10
£= 106 0.56 0.35 0.23 0.33 0.20 0.12 0.21 0.13 | 0.10
£=510° 0.49 0.28 0.16 0.30 0.17 0.09 0.19 0.19 | 0.12
£= 105 0.46 0.26 0.15 0.28 0.16 0.09 0.19 0.11 | 0.07
Preconditioner setup time
My 64 182.0 | 100.0| 55.8 79.1 46.0 26.4 37.9 24.3 | 15.0
£=510" 114.3 50.6 | 37.8 27.4 18.4 14.1 19.2 12.7 | 10.3
£= 106 92.5 36.9 | 28.9 20.8 13.3 10.3 14.4 10.1| 8.2
£=510° 61.0 14.2 9.4 10.8 7.4 5.3 7.5 5.6 4.0
£= 105 56.2 10.3 6.9 8.2 5.8 4.0 5.8 4.4 3.1
Iterative system unknowns
| All preconditioners 17568 I 28644 I 43914
Max of the local Schur size
| All preconditioners 11766 I 8886 I 7032
Initialization time
| All preconditioners || 196.7 I 74.0 I 32.7

Table 7.22: Detailed parallel performance of théevel parallelmethod for the Fuselage problem
with about 0.5 million elements and 3.3 Mdof when the numbfesutbdomains is varied, for the
various variants of the preconditioner and for various cesiof & .
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# subdomains 8 16 32
or SMP-nodes
4 1-level 2-levels 1-level 2-levels 1-level 2-levels
processor§ parallel parallel parallel parallel parallel parallel
per subdomain 1 5 7 1 5 | 7 1 5 7
Total solution time
My-64 453.7 | 322.9| 257.6 264.6 | 180.3| 136.9 110.9 729 | 65.1
§=510" 499.4 | 488.8| 435.1 262.2 | 202.3 | 166.1 143.6 | 109.1| 92.4
£= 10 433.4 | 397.8| 332.0 212.6 | 184.3| 165.3 1246 | 103.4| 85.2
£=510°6 2775 | 238.8| 2155 151.7 | 130.4 | 111.7 86.5 73.5 | 65.9
£= 10° 246.7 | 215.6 | 200.1 134.6 | 122.6 | 101.6 70.5 - 54.5
§=510"° 214.0 | 193.8 | 185.2 122.1 | 106.2 | 91.2 63.4 - 45.9
Time in the iterative loop
My-64 57.2 343 | 211 60.8 38.7 26.2 44.5 224 | 25.1
§=510" 54.9 56.7 | 33.7 50.4 45.2 25.1 39.6 27.0 | 29.4
£= 10 51.9 36.4 | 30.3 49.8 41.0 | 28.4 36.7 29.4 | 29.9
£=510°6 42.0 26.8 | 18.8 47.9 28.8 | 20.3 37.6 274 | 26.1
£= 10° 42.2 238 | 17.9 41.8 28.0 18.0 30.2 - 21.3
§=510"° 38.5 21.2 15.5 44.3 29.7 17.1 34.1 - 18.9
# iterations
My-64 59 79 106
§£=510" 59 80 107
£= 10 59 83 108
§=510°6 60 87 114
£= 10° 63 89 116
£=510° 70 103 131
Time per iteration
My-64 0.97 0.58 | 0.36 0.77 0.49 | 0.33 0.42 0.21 | 0.24
§=510" 0.93 0.96 | 0.57 0.63 0.56 | 0.31 0.37 0.25 | 0.28
£= 10 0.88 0.62 | 0.51 0.60 0.49 | 0.34 0.34 0.27 | 0.28
£=510°6 0.70 0.45 | 0.31 0.55 0.33 | 0.23 0.33 0.24 | 0.23
£= 10° 0.67 0.38 | 0.28 0.47 0.32 | 0.20 0.26 - 0.18
§=510"° 0.55 0.30 | 0.22 0.43 0.29 | 0.17 0.26 - 0.14
Preconditioner setup time
My-64 235.0 | 127.1| 75.0 137.0 74.8 | 43.9 435 277 | 17.2
§=510" 283.0 | 270.6 | 239.9 145.0 90.3 | 74.2 81.2 59.3 | 40.1
£= 10 220.0 | 199.9 | 140.2 96.0 76.5 | 70.1 65.0 51.2 | 325
£=510°6 74.0 50.5 | 35.2 37.0 348 | 24.6 26.0 23.3 | 16.9
£= 10° 43.0 30.3 | 20.7 26.0 27.8 16.9 17.5 - 10.3
§=510"° 14.0 11.1 8.3 11.0 9.8 7.3 6.5 - 4.2
Iterative system unknowns
| All preconditioners 31535 I 49572 I 73146
Max of the local Schur size
| All preconditioners 13296 I 10953 I 7404
Initialization time
| All preconditioners || 161.5 I 66.8 I 22.9

Table 7.23: Detailed parallel performance of faevel paralleimethod for the Rouet problem with
about 0.33 million elements and 1.3 Mdof when the number bflemains is varied, for the various
variants of the preconditioner and for various choiceg of-" means run not available.
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Figure 7.8: Parallel performance of tRdevel parallelmethod for the Fuselage and the Rouet test
cases, when consuming the same resource ds el parallelmethod.
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solution technique within the complete simulation chairthe&d investigations should also be de-
veloped to study the effect of the stopping criterion thoddlon the overall solution time when the
linear solver would be embedded in the nonlinear Newtonesolthough a loose accuracy would
certainly delay the nonlinear convergence some savingrmpeing time could be expected thanks
to cheaper linear solves. In that context, we might alsoa#us preconditioner from one nonlinear
iteration to the next, specially close to the nonlinear egence. Another possible source of gain
for the sparse variant is a more sophisticated droppintegtyaMore work on this aspect would also
deserve to be invested as well as on the automatic tuningdahtleshold parameter.

In the context of parallel SMP platforms, we have illustcatee benefit of &-level parallel
implementation when the memory storage is the main bottlenkn this case, th@-level parallel
algorithm can be of great interest. Such an implementaéonatso be attractive in situation where
the increase of the number of iterations is significant whenrtumber of domains is increased.
Finally, because the iterative part (phase 3 in contrasthmse 1 and 2) performs efficiently in
parallel, the possibility of reusing the preconditionetvieen various consecutive Newton steps
could make this variant even more attractive in practice.
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Chapter 8

Preliminary investigations in seismic
modelling

8.1 Introduction

Important applications of the acoustic wave equation cafobed in many fields, for instance, in
geophysics, marine, aeronautics and acoustics. The wanatien can be solved either in the time-
domain or in the frequency-domain. In this chapter, we itigate the parallel performance of an
hybrid solver in the frequency-domain, for problems reddie the seismic wave propagatia8]
100. The study presented in this chapter has been developmediaboration with the members of
the SEiIscopPeconsortium fittp://seiscope.unice.jt/

Frequency-domain full-waveform tomography has been skitely developed during last decade
to build high-resolution velocity model42, 80, 96]. One advantage of the frequency-domain is that
inversion of a few frequencies are enough to build velocibdels from wide-aperture acquisitions.
Multisource frequency-domain wave modeling requires tiietion of a large sparse system of lin-
ear equations with multiple right-hand sides (RHS). D ,2he traditional method of choice for
solving these systems relies on sparse direct solvers ecaultiple right-hand side solutions can
be efficiently computed once the LU factorization of the rixatvas computed. However, in(8
or for very large ® problems, the matrix size becomes very large and thus theomyeraquire-
ments of the sparse direct solvers preclude applicatior@vimg hundred millions of unknowns.
To overcome this limitation, the development of efficienbtigg methods for large 3 problems
remains a subject of active research. Recently, we inwastitpe hybrid approach in the context of
the domain decomposition method based on the Schur comptdore2D /3D frequency-domain
acoustic wave modelin@®p).

A possible drawback of the hybrid approach is that the timapmexity of the iterative part
linearly increases with the number of right-hand sides, mtnaditional Krylov subspace method
is simply used on the sequence of right-hand sides. For aegsequof right-hand sides that do
not vary much, a straightforward idea is to use the formeutgmi as an initial guess for the next
solve. More sophisticated changes in the Krylov solver carefvisaged ranging from the seed
approach92], where the initial guess vector is chosen so that it corsphigh an optimum norm
or an orthogonality criterion over the Krylov space asseciavith the previous right-hand sides, to
the more elaborated approaches as GCRO-DR recently prpi8iehat further exploits deflating
ideas presentin GMRES-EJ or GMRES-DR [/4]. The underlying idea in these latter techniques
is to recycle Krylov vectors to build the space where the madiresidual norm solution will be
searched for the subsequent systems. Other possibly caoraptary alternatives would consist in
improving a selected preconditionelf]. In most of the situations, the linear systems are solved
using an application dependent preconditioner whose effigi and cost are controlled by a few



144 Preliminary investigations in seismic modelling

parameters. Because the preconditioner is used for allghemand sides some extra effort can be
dedicated to improve it because the extra work involveddrcdnstruction can be amortized along
the solution of the right-hand sides. Even though such amoagp is certainly beneficial, other
complementary techniques can be envisaged such as the 2deva parallelalgorithm that aims
at reducing the number of iterations by decreasing the nuofleibdomains. This latter technique
can be also combined with more sophisticated algorithmisetkaloit the multiple right-hand side
feature.

We omit the description of such approaches in this thesigpauges only on the traditional Krylov
solver method. Our goal is the study of the numerical behavémd the parallel performance of
the hybrid method. However, we analyze thdevel parallelalgorithm that can be used in both
traditional or sophisticated Krylov solvers. The outlinktlbis chapter is as follow. We briefly
describe the Helmholtz equation, then in Sec8d we present our experimental environment with
the description of the test problems. In Sect®8 we analyze the accuracy of the hybrid approach
by comparing to the results obtained from an analyticaltsmiufor a homogeneous media and with
a direct method solution for alB heterogeneous media. In Sect®d, and Sectior8.5, a parallel
performance study for respectively larg® 2nd P models arising in geophysical applications are
reported. A performance comparison with a direct approsetisio presented. Finally, we evaluate
the parallel performance of tielevel parallelalgorithm, and report a set of numerical results.

Helmholtz equation The visco-acoustic wave equation is written in the freqyesh@main as

o’ 1
mp(x,m) +0 (mDp(x,w)) = —s(X,w) (8.1)

where p(x) is the densityk (x) is the bulk modulus is angular frequencyp (x, w) and s(x, w)
denote the pressure and source respectively. Equaitincan be recast in matrix form as

ap=s,

where the complex-valued impedance matrx depends ornw, K and p. The vectorp and s
are of dimension equal to the product of the dimensions otcHireesian computational grid. We
discretized Equation8(1) with the mixed-grid finite-difference stencif§] which has an accuracy
similar to that of & -order accurate stencils while minimizing the numericaidaidth of 2 . This

is a key point to mitigate the fill-in during LU factorization

8.2 Experimental framework

We start with a brief description of the proposed implemeaaframework for these applications.
The direct method used in the local subdomains is based ontdronial approach implemented
by the sparse direct solverdbiPs. The iterative method used to solve the interface probletmes
right preconditioned GMRES method. We choose the ICGSdtiter Classical Gram-Schmidt or-
thogonalization) strategy which is suitable for paralieplementation. The iterations began with a
zero initial guess and were stopped when the normwise badkeveor becomes smaller than 10

or when 500 steps are taken. We use a variant of our preconéitbased on the introduction of
a complex perturbation to the Laplace operatf[ resulting in a shifted additive Schwarz pre-
conditioner. The experiments were carried out in singleigien arithmetic using the IBM JS21
supercomputer described in Sectiog.2

To investigate the parallel performance of the hybrid appho we consider a few real life prob-
lems from the geophysics applications. These test caseeaceibed below.
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8.2.1 The 2D Marmousi Il model: synthetic data in a structurally complex

environment

The 2D Marmousill modelis available on the University of Houstoehsite bttp://www.agl.uh.edy/
the velocity and the density are shown in Fig8ré We test several frequencies starting from H30
up to 200Hz. This model, covering an area of ¥B.5kn?, was modeled by 4 grid points per min-
imum wavelength, and with 20 layers of PML (Perfectly-Madt.ayer [L5]) in each direction. We
report in TableB.1, the global mesh size and the total number of unknowns, foh eéthe tested
frequencies.

| | 100Hz | 12Hz | 140Hz | 160Hz | 18Hz | 200Hz |
grid 1441x 6841[ 1721x 8201] 2001 x 9521] 2281x 10921 2561x 12281 2841x 13641
unknowns| 9.8-10° 14.10° 19.10° 25.10° 31.4.10° 38.7-10°

Table 8.1: Grid size and number of unknowns for each of thedesequencies.

Distance (km)

1000

1500 2000 2500 3000 3500 4000 4500

m/s
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1000 1200 1400 1600 1800 2000 2200 2400 2600

kg/m3

Figure 8.1: Velocity (top) and density (bottom) model of Marmousi Il data set.
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8.2.2 The3D Overthrust model: SEG/EAGE

The D SEG/EAGE Overthrust model is a constant-density acoustidahcovering an area of
20x 20 x 4.65kn? (Figure8.2). We performed simulations for theHz frequency. The model

was resampled with a grid interval of 75 m corresponding toid goints per minimum wavelength
at 7 Hz. This led to a velocity grid of 277277 x 73 nodes including PML (Perfectly-Matched
Layer [15]) layers (5.6 millions of unknowns).

6000 m/s

B 2178 mis

V (m/s)

Depth (k)
W= O

Figure 8.2: (top) B SEG/EAGE Overthrust model (a)D3SEG/EAGE Overthrust model (b)Hz
monochromatic wavefield computed solution.

8.3 Numerical accuracy analysis

This section is devoted to analyze the accuracy of the comdpsmlution for the hybrid method.
Contrarily to the direct solvers that usually compute sohsg that are accurate to machine precision
level, the iterative solvers can be monitored to deliveaoh with a prescribed accuracy controlled
by the stopping criterion threshold. Since an iterativehndtcomputes successive approximations
of the solution of a linear system, we performed an heuratiglysis of the stopping criteriony
required by our application. Because of the uncertaintynefdata, the simulation does not need
very high level of accuracy, we can stop the iterative pregasch before attaining the machine
precision level. On those problems, all the simulationsperéormed in 32-bit arithmetic for both
the direct and the iterative methods.

We first compare the analytical, direct and hybrid solveusoh of a D Green function in a
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homogeneous media (see Fig8:8).

(@np=10"1. (b) np=10"2. (©) Np=103.

Figure 8.3: Comparison of the solution of & 3Green function in a homogeneous media for dif-
ferent values of the stopping criteriam, . Note that a value ofj, = 102 provides a meaningful
solution compared to both the analytical and the directtsmis.

Secondly, we compare numerical solutions iD Peterogeneous media provided by a finite-
difference frequency-domain method based on a direct abddgolvers respectively. The velocity
model is a corner-edge model composed of two homogeneoaisldglineated by a horizontal and
vertical interfaces forming a corner. The grid is 80801 with a grid step size of 40 m. Velocities
are «m/s and &m/s in the upper-left and bottom-right layers respectivelye Bource wavelet
is a Ricker with a dominant frequency of 5 Hz. The snapshatspeded with the hybrid solver for
different values ofnp, (101, 1072, and 10°2), are shown in Figur8.4for a decomposition of
2 x 2 subdomains (top, a, b and c¢) and for a decompositionw#4subdomains (bottom, d, e and
f). A value of n, = 10! clearly provides unacceptable solutions as illustratethiydiffraction
from the intersection between the subdomains in Figudd€a and d) while the solution computed
with n, =102 provides an accurate solution.

Time-domain seismograms computed with both the direct ardhiybrid solvers for several
values ofny are shown in Figur8.5. Two hundred receivers have been used. Comparison with the
direct solver at, = 102 showed quite similar results. Implementing the hybrid solato a finite
difference Frequency domain Full Waveform Tomography (HF\WWbde is the next step to assess
precisely which convergence tolerance is needed for ingeggdplications. Preliminary results using
the inverse crimel?), i.e., the same solver is used to generate the data and frarmpenversion,
seems to confirm thay, = 103 is an appropriated value.

8.4 Parallel performance investigations on2D problems

In this section, we strive to study the numerical behaviowu analyze the parallel efficiency of the
proposed hybrid method. We intend to present and evaluatpdtallel performance of the hybrid
approach and compare its computational cost with a dirguoioaeh.

In that respect, we investigate experiments of the Marmibusodel, when we vary the tested
frequency from 100Hz to 200 Hz, that is, when we increase the overall size of the problemm fro
9.8 -10° up to 38.7-10° unknowns. The global mesh size and the total number of unkapfer
each of the tested frequencies are reported in T&ldleFor each of these frequencies (fixed mesh
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(@ np=10""*. - (d)np
hybrid solver for 2x

00 800
o

(d)np=10". (€) Np=10"2. (f) nb=10"3.
hybrid solver for 4x 4 subdomains.

Figure 8.4: Snapshots computed in the corner-edge modeldifierent values of the stopping
criterion np . Note the diffraction at the intersection between the sofmlos forn, =101,

(a) direct. (b) np=10"1. (c) np=1072. (d) np=10"3.

Figure 8.5: Seismograms computed in the corner-edge mathadiirect solver (a) and with different
value of n, for the hybrid solver.n, is 1071 (b), 102 (c) and 102 (d).
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size), we also expose in Tab®3 a detailed result of the parallel performance, when irgingp
the number of subdomains. We note that the submesh of theibsutidomain, is increased by 40
points in each direction to include the PML layers.

To get an idea of the effect of the size and the number of subdanon the convergence of the
hybrid method, we report in Tab&3, the number of iterations required to attain the desiredi@ay
of 1073, Itis easy to see the pronounced increases in the numberafiiins, when increasing the
number of subdomains. This behaviour is typically expefbeduch problems. For example, for
a fixed mesh size at 9.8 40unknowns (frequency equal to 108z), the number of iterations
increases from 82 up to 313 iterations when increasing thebeun of subdomains from 16 up to 64
subdomains. That is, it increases linearly with the numibestubdomains. This increase is rather
moderate when increasing the overall size of the probleatjshwhen increasing the frequency, for
a fixed number of subdomains. For example, we see that for@maesition into 16 subdomains,
the number of iterations grows up from 82 to 110 when increpsie size of the problem from 9.8
10° unknowns up to 38.7 founknowns. A first conclusion regarding the numerical behavof
the method is, that we should strive to keep as small as geskibnumber of subdomains.

When looking at the parallel efficiency of the hybrid metha, should analyze the computa-
tional cost of the main three phases of our algorithm, as @eéndihe previous chapters. A compar-
ison of the timing results of each of these three phasesstidited in Tabl®.3 We would like to
underline the fact that, even with the growth in the itenathmmbers, a significant decrease in the
computing time can be observed when increasing the numb@poéssors.

This speedup is highlighted for the first two phases of ounrdtigm. Let us evaluate thghasel
which consists in the factorization of the local problem a@he computation of the local Schur
complement. When we increase the number of processorsubitmmains size becomes smaller
and thus the factorization becomes faster decreasingttheelcomputing time by a great ratio.
Likewise, the setup of the preconditiongh@se? gives rise to an effective speedup. For the same
reason, when we increase the number of subdomains, théairgesize of a subdomain becomes
smaller; this decreases the computational cost requirbditd the preconditioner. Contrary to the
first two phases, the cost of tipaase3which is the iterative loop phase, increases with the number
of subdomains. This is due to the significant growth of the benof iterations, when increasing the
number of subdomains. For the solution of one right-hanel stk overall computing time decreases
linearly when the number of processors increases. It capdrethat, the global computational cost
is about 3.3 times faster when increasing the number of geaee from 16 up to 64.

We now compare the performance of the hybrid method with dfia direct method which
is popular in this application area. First of all, we depittTiable8.2 the required memory to
perform the simulation with both the hybrid and the direqir@aches. For the hybrid approach, this
corresponds to the sum of the memory allocated to perforrodheurrent factorizations, the storage
of both the Schur complement and the dense preconditiondrfiaally the sum of the required
workspace for the ful-GMRES solver. For the direct appipdicconsists into the memory required
to perform the factorization. In TabR.2 we report the required memory for all the frequencies
(except for 180 and 20@Hz for the direct solver due to the unaffordable memory regquésts)
for the different decompositions illustrated. As shown &blE 8.2, the memory needed by the
direct solver increases with the number of processors. Gétigviour comes from the fact that the
factorization needs a set of communication buffers to mariag parallel load balancing between
computational cost and communication cost. Contrarilyttie hybrid approach, it can be seen that
the amount of required memory slightly decreases or remainghly constant when increasing the
number of processors. We should highlight the fact thateimtof memory storage, the hybrid
approach is more scalable and about 3 times less expenamdtth direct approach. For theD?2
simulations, the memory complexity of the direct approacifiordable, while for the B problems
it might no longer be true.
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| # processors I 16 | 32 | 36 | 64 | 72
100Hz Direct 24.8 31.6 34.9 48.6 52.4
Hybrid 15.7 16.0 15.8 15.7 15.3
120Hz Direct 35.7 46.7 49.1 69.4 76.3
Hybrid 23.7 23.3 23.3 22.8 22.8
140Hz Direct 50.1 64.3 68.9 94.2 103.1
Hybrid 325 33.4 31.8 32.2 32.1
160Hz Direct 67.2 88.7 88.6 122.6 133.3
Hybrid 43.2 43.0 42.5 42.3 42.3
Direct - - - - -
180Hz Hybrid 54.9 54.0 55.7 54.3 54.8
Direct - - - - -
200Hz Hybrid 69.3 69.3 69.8 69.2 69.6

Table 8.2: Comparison of the data storage needed by thechgibd the direct methods. Total
memory of all processors is reported here in GBytes. “-" rs¢an large memory requirement.

From the computational point of view, we report in TaBld, the cost of the main step of a
direct approach. This consists into the analysis step,abifization step, and finally the solution
step. The direct solver used here imIMPS, it was called in the context of unsymmetric complex
matrices. In term of permutation, we have performed expemisiusing the Metis nested dissection
routine. We have performed runs using the assembled matrixdt, that allows the solver to make
a full analysis and then distributes the matrix among thegssors. We exclude the time of the
assembling and the distribution of the matrices entried,va@ report the minimum time required
after several runs. Experiments are reported for the frecjge 100Hz up to 160 Hz, where we
omit both the last two frequencies (180 and 26@) and the 72 processor runs, due to memory
requirements that induce swap effects. If we compare or@yfdlstorization time (excluding the
analysis, the distribution and the solve time) of the dimethod with the overall computing time of
the hybrid approach, we can clearly observe that the hylppdaach remains faster than the direct
one. Itis around twice as fast as the direct method for a smuatiber of subdomains (for example
on 16 subdomains), whereas it is around 3 times faster oarlatgnber of subdomains (for example
on 64 subdomains).

Multisource frequency-domain simulation, requires thiiton for multiple right-hand sides.
On this respect, we should mention the required time for thetisn of one right-hand side with
the two approaches. For that we report in Tadl& the elapsed time to solve one right-hand side
using the hybrid approach, that is the cost of the iteratiep] and the cost of the forward/backward
substitutions. We report also in Tat8e4, the required time for one solve with the direct approach.
On the hybrid method, it is clear that when increasing the lmemof processors, the computational
cost of one right-hand becomes more expensive. This belrawias expected because of the in-
crease on the number of iterations, which leads to an inerefathe time spent in the iterative loop.
However, for the direct approach, we can observe that theinex|time for one right-hand side
slightly decreases when increasing the number of procesdesr example, for a decomposition
with 16 subdomains, we can observe that the cost for theigplutith one right-hand side of the
hybrid approach is similar to the direct one, while it penfierl.5 times slower than the direct solver
on 64 subdomains. Consequently for a moderate number obsudids the hybrid and the direct
solvers behave comparably for multiple right-hand sidest &large number of subdomains, the
hybrid approach is around 3 times faster than the direct otetor one right-hand side. Due to
the lack of numerical scalability of the preconditioner @hd efficiency of the forward/backward
substitutions of the sparse direct solver, the hybrid sddeeomes slower if more than 15 right-hand
sides have to be considered. We notice that only the faetiiwiz time of the direct method is taken
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Total solution time
| # processors | 16 | 32 | 36 | 64 | 72
100Hz 55.8 33.2 28.6 17.9 18.1
120Hz 94.2 53.6 46.4 26.6 27.8
140Hz 145.1 84.3 68.7 45.4 41.9
160Hz 204.9 121.7 107.3 62.5 66.0
180Hz 288.2 175.4 144.4 86.6 78.5
200Hz 392.0 238.7 199.0 116.8 109.4
Time for one RHS
| #processors 16 | 32 | 36 | 64 | 72
100Hz 4.7 6.4 6.6 7.2 9.4
120Hz 7.6 10.2 8.7 10.5 13.2
140Hz 10.3 14.4 13.8 18.5 19.8
160Hz 13.0 16.7 21.0 25.3 32.3
180Hz 20.3 26.1 29.2 34.9 32.0
200Hz 21.6 29.9 34.0 47.3 44.4
Time in the iterative loop
| #processors 16 | 32 | 36 | 64 | 72
100Hz 3.0 55 5.8 6.7 9.0
120Hz 51 8.9 7.6 9.8 12.6
140Hz 6.9 12.6 12.2 17.5 18.9
160Hz 8.5 14.4 18.9 24.0 31.1
180Hz 14.6 23.0 26.5 33.2 30.5
200Hz 14.5 25.9 30.6 45.3 42.2
# iterations
| #processors 16 | 32 | 36 | 64 | 72
100Hz 82 121 158 313 318
120Hz 102 137 152 295 346
140Hz 102 138 183 292 384
160Hz 97 127 213 305 485
180Hz 125 162 241 380 385
200Hz 110 148 223 472 451
Preconditioner setup time
| #processors 16 | 32 | 36 | 64 | 72
100Hz 4.9 5.8 3.8 1.7 1.4
120Hz 8.2 9.8 6.3 2.8 2.3
140Hz 12.9 15.7 10.1 4.3 3.9
160Hz 19.0 23.1 14.7 6.4 5.7
180Hz 26.8 32.8 20.8 9.0 8.0
200Hz 35.7 52.3 28.5 12.3 10.7
Initialization time
| #processors 16 | 32 | 36 | 64 | 72
100Hz 46.2 20.9 18.2 9.0 7.3
120Hz 78.5 33.6 31.4 13.3 12.2
140Hz 121.9 54.2 44.8 22.6 18.3
160Hz 172.9 81.9 71.6 30.8 28.0
180Hz 241.1 116.5 94.4 42.8 38.5
200Hz 334.6 156.5 136.4 57.2 54.4

Table 8.3: Detailed performance for thdarmousi |l test case when varying the frequency, that
is varying the global size of the problem from 9.B0° unknowns up to 38.710° unknowns, and
also when the number of processors is varied from 16 to 72.
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Time for analysis
| # processors 16 | 32 | 36 | 64
100Hz 295.5 290.4 342.3 292.6
120Hz 459.0 444.0 537.7 452.6
140Hz 705.3 695.5 824.6 704.0
160Hz 1061.3 1058.0 1184.0 1043.2
Time for factorization
| # processors 16 | 32 | 36 | 64
100Hz 97.2 63.9 57.1 48.5
120Hz 167.1 108.4 107.7 79.0
140Hz 283.5 181.1 182.6 122.1
160Hz 517.4 318.4 268.4 247.3
Time for one RHS
| # processors 16 | 32 | 36 | 64
100Hz 53 4.8 4.8 4.6
120Hz 8.0 7.1 7.0 6.9
140Hz 11.0 10.0 9.5 11.3
160Hz 18.2 20.5 12.8 18.9
Total solution time
| # processors | 16 | 32 | 36 | 64
100Hz 398.0 359.0 404.2 345.7
120Hz 634.1 559.5 652.4 538.6
140Hz 999.8 886.7 1016.7 837.4
160Hz 1596.9 1396.9 1465.2 1309.5

Table 8.4: Detailed computing time needed by the directesdtw the Marmousi |l test case when
varying the frequency from 108z to 160Hz, that is varying the global size of the problem from
9.8 -10° unknowns up to 2510° unknowns, and also when the number of processors is varied
from 16 to 64.
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into account here. If we take into account the analysis tifrd® direct method, then the hybrid
method is still faster up to a number of right-hand sides addl20.

8.5 Parallel performance investigations on3D problems

In this section, we present a preliminary work on a more stali3D case that is the Overthrust
SEG/EAGE problem. We first illustrate comparison of the catafional cost of both approaches
(direct and hybrid), and then we evaluate the parallel perémce of the hybrid method.

Due to the memory requirement of the direct solver, the satirhs based on the direct solver
can only be performed on 75% of the model corresponding t6 4.8 unknowns using 192 pro-
cessors of our target machine. Whereas the hybrid apprdiaeisais to perform a simulation on
the complete model only using 48 processors=48x 4 x 2 subdomains.

Algorithm || All memory | Max memo Init or Precond- # Time per| Total
GBytes per proc | factorization| itioner | iterations| RHS | time

Direct 234.9 15 2876 - - 9.1 2885
Hybrid 101.3 0.5 36 40 231 52.2 128

Table 8.5: Comparison between direct and hybrid methodslte she Overthrust SEG/EAGE prob-
lem mapped onto 192 processors. Timings and storage of bettioals are reported. Total memory
of all processors in GBytes is also reported.

subdomains Memory (GB) | Initial- | Precondy #of | Time per| Total
# ] size  |interface]| All [Max/proc|ization| itioner |iterationss RHS | time
48| 67x44x 31| 11570 ||191.8] 3.71 638 573.1 105 96.4 |1307.5
50|54x54x 31| 11056 ||191.6/ 3.57 614 497.1 81 67.8 |1178.9

72|45x45%x 31| 8833 ||179.3] 2.01 334 273.5 103 73.9 681.4
81|30x30x63| 8760 | 182.1 1.87 224 256.3 109 77.4 | 557.7
96|45x33x 31| 7405 ||167.8] 1.53 184 153.8 119 61.1 398.9
98|38x38x31| 7216 ||169.7] 1.52 189 141.5 148 66.7 397.2
128|33x33x 31| 6121 (|161.2] 1.08 116 88.5 134 53.7 258.2
162|30x 30x 31| 5281 ||151.6f 0.80 79 58.4 153 53.0 190.4
192|33x33x 21| 5578 ||147.4] 0.74 90 78.2 235 85.8 254.0

Table 8.6: Parallel performance of the whole Overthrust #AGE problem (5.6 Mdof) when
varying the number of subdomains. Timings and storage ohitieid method are reported. Total
memory of all processors in GBytes is also reported.

For the sake of comparison between the two approaches,imgreal results are reported for
calculation performed on 75% of the model mapped onto 192gs%0rs. The results of these
simulations are summarized in Tal85. The hybrid solver requires 2.3 less memory than the
direct one. Moreover, the hybrid approach can perform susimalation on a smaller number of
processors. From a computational viewpoint, it is cleat tha hybrid method is 22 times faster
than the direct one. This is true for one right-hand side @fidrse for a number of right-hand sides
smaller than 64. Beyond this number, the high cost of theofation is amortized and the direct
method starts to be faster. We note that we evaluate hereettagiie algorithm using a sequence
of solutions computed simply using ful-GMRES; block or déifbn strategies could be considered
that would improve the efficiency of the hybrid technique.
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We now evaluate the parallel performance of the hybrid netiAdl simulations were performed
at 7 Hz on the whole model corresponding to 5.6 millions of unknowe display in Table3.6
results where we vary the number of subdomains from 48 up 20 Y& report the computational
cost and the required memory to perform the simulation fohed# the decompositions. Increasing
the number of subdomains reduces the memory requirementtf®d down to 147 GBytes, and the
computational cost from 1307.5 seconds to 190.4 secondstelvark that, the required memory
storage decreases with the number of processors, contréing direct method where we observe
an increase of memory due to some buffer overheads. We carebat the best computing per-
formance of the three kernels of the algorithm is achievedmthe subdomain shape is closed to a
cube (perfect aspect ratio). In other term, when the sizkeiterface is minimized that is because,
the three phases of the hybrid method are related to the sithee docal interface. For example,
we can observe that, the computing time for the decompasitim 162 subdomains, each of size
30x 30x 31 (size interface equal to 5281) is better than the decoitiosnto 192 subdomains,
each of size 3% 33x 21 (size interface equal to 5578). The solution time is fts &xample 53.0
seconds on 162 subdomains versus 96.4 seconds on 192 subslonteereas this latter is roughly
similar for 128 and 162 subdomains where the local size adsutains is respectively 3333x 31
and 30x 30x 31.

8.6 Parallel efficiency of the2-level parallel implementation

Initially this work was motivated by the fact that, most astici simulations require multiple right-
hand side solution to build a good model of the continuum. \&kebe that exploiting2-levels

of parallelism B9] can be very suitable for these simulations. Because ofdbk of numerical
scalability, such an implementation might enable us toe@hhigher efficiency and performance
of the hybrid solver. The goal of this section is to demoristeand evaluate the performance of the
2-level parallelalgorithm. The first subsection describes the efficiencyefalgorithm when used
to improve the numerical behaviour of the hybrid method, i#hse the second subsection illustrates
the ability of the2-level parallelalgorithm to run at higher performance of the available cotimg
resources.

8.6.1 Numerical benefits

In the SectiorB.4and Sectior8.5, the discussion was closed to the fact that, for these stionka
an efficient algorithm has to perform the iterative loop a&t & possible. The goal is to keep very
small its computational cost especially when dealing withtiple right-hand side simulations. We
should mention that, as analyzed above, the convergente dgterative solver depends highly on
the number of subdomains. Thus, keeping small or fixed thebeuwf iterations is critical to make
reachable our goal. In other term, we should strive to impitbe numerical behaviour of the hybrid
method by, instead of increasing the number of subdomainseasing the number of processors
per subdomain.

We report in Table8.7 the number of iterations, the computing time of the itematoop, and
the required time for the solution of one right-hand sidetfee 2D Marmousi Il problem. We
consider three frequencies 19, 120Hz, and 14®1z. For each frequency, we fix the number of
processors, and compare the computational cost of thet diethod, thel-level parallelalgorithm
and the different possible decompositions for 2hlevel parallelalgorithm.

We mention that, by decreasing the number of subdomainssizieeof the local problem in-
creases giving rise to larger Schur complements. In thdédestait can be seen that even with this
latter constraint, the time of the iterative loop is redubgé great factor. This is due to the fact that
each subdomain is handled in parallel and the required nuofiliterations is reduced. Itis clear that
for a fixed number of processors, when reducing the numbarlmf@mains by a factor of 4, while
running each subdomain in parallel over a grid of 4 processbe iterative loop becomes more than
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Frequency equal to 108z |
Available Algo # Processors| # Iterative | One right-
processors subdomains| subdomain| iter loop hand side
Direct - - - - 4.8
1-level parallel 32 1 121 5.5 6.4
32 processors 5 level Barallel 16 2 82 | 22 3.6
2-level parallel 8 4 17 0.6 2.9
Direct - - - - 4.7
36 processorg 1-level parallel 36 1 158 5.8 6.6
2-level parallel 18 2 59 15 2.7
Direct - - - - 4.6
1-level parallel 64 1 313 6.7 7.2
64 processors - |evel Barallel 32 2 21| 41 4.9
2-level parallel 16 4 82 1.6 2.7
Direct - - - - 4.6
1-level parallel 72 1 318 9.0 9.4
72 processors - |evel Earallel 36 2 58 | 43 4.9
2-level parallel 18 4 59 1.2 2.2
Frequency equal to 128z |
Direct - - - - 7.1
1-level parallel 32 1 137 8.9 10.2
32 processors 5 jevel Earallel 16 2 102| 38 5.8
2-level parallel 8 4 14 0.6 4.0
Direct - - - - 7.1
36 processorg 1-level parallel 36 1 152 7.6 8.7
2-level parallel 18 2 107 3.8 5.5
Direct - - - - 6.9
1-level parallel 64 1 295 9.8 10.5
64 processors - |evel Barallel 32 2 137| 6.4 7.4
2-level parallel 16 4 102 2.6 4.0
Direct - - - - 6.7
1-level parallel 72 1 346 12.6 13.2
72 processors - |cvel Barallel 36 2 152| 5.6 6.5
2-level parallel 18 4 107 3.0 4.4
Frequency equal to 149z |
Direct - - - - 111
1-level parallel 32 1 138 12.6 14.4
32 processorg 2-level Earallel 16 2 102 5.1 7.8
2-level parallel 8 4 16 0.9 5.5
Direct - - - - 111
36 processorg 1-level parallel 36 1 183 12.2 13.8
2-level parallel 18 2 117 5.5 7.9
Direct - - - - 11.3
1-level parallel 64 1 292 17.5 18.5
64 processors  1cvel Earallel 32 2 138| 84 9.8
2-level parallel 16 4 102 3.4 5.7
Direct - - - - 11.2
1-level parallel 72 1 384 18.9 19.8
72 processors - |cvel Barallel 36 2 183| 88 10.1
2-level parallel 18 4 117 4.2 6.2

Table 8.7: Numerical performance and advantage oPthevel parallelmethod compared to the
standardL-level parallelmethod for the Marmousi Il test cases and for different dgoasitions.
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four times faster. This is explained by a better numericalzeogence and good efficiency of the par-
allel kernels involved in the iterative loop when severalqassors are dedicated to each subdomain.
For example in Tabl8.7, if we compare the cost of the iterative loop for a fixed nundferoces-
sors, let say 64, it is easy to see that the standard impleti@mion 64 subdomains requires 313
iterations to converge in 6.7 seconds whereagtheyel parallelimplementation on 16 subdomains
only requires 82 iterations to converge in 1.6 seconds.ntiEaseen that th2-level parallelalgo-
rithm performs faster than both thelevel parallelalgorithm and the direct method. For example,
on Table8.7, for 64 processors, the direct method requires 4.6 secanstste for one right-hand
side, thel-level paralleimethod requires 7.2 seconds, whereatheyvel parallelmethod converges
in only 2.7 seconds. This is not the only example, the T&bfallustrates a detailed comparison
where we quantify the performance of tBdevel parallelapproach. We mention that, in term of
memory space, for the same number of subdomain®-ikeel parallelalgorithm requires slightly
more memory space than thdevel parallelalgorithm; this accounts for the communication buffers
of the local factorization phase.

| Frequency equal to Az |

Available Algo # Processors{ # | Iterative | One right-
processors subdomaing subdomain| iter loop hand side
1-level parallel 192 1 235| 79.0 85.8
N | 2-level parallel 96 2 119 38.2 45.1
% 200 processors ;| el parallel 48 4 105| 42.9 51.1
2-level parallel 50 4 81 28.1 35.5
1-level parallel 96 1 119| 57.0 61.1
1-level parallel 98 1 148 | 66.7 66.7
~1 5
% 100 processors 5 | el parallel 48 2 105| 62.1 67.8
2-level parallel 50 2 81 39.1 451

Table 8.8: Numerical performance of tBdevel parallelmethod compared to the standdrdevel
parallel method for the B Overthrust SEG/EAGE test case and for different decomiposit

We report in Table8.8 the number of iterations, the computing time of the itematoop, and
the required time for the solution of one right-hand sidetfier 3 Overthrust SEG/EAGE problem
introduced in SectioB.5. For two different numbers of processors, we compare thepatational
cost of thel-level parallelalgorithm and the different possible configurations for 2hkevel par-
allel algorithm. It can be seen that handling in parallel each sotain enables us to significantly
reduce the solution time for a fixed number of processors.iistance on around 200 processors,
running thel-level parallelmethod on 192 subdomains (192 processors) needs 85,9 semond
solve for one right-hand side. Tilevel parallelalgorithm on 50 subdomains with 4 processors
per subdomain (200 processors) needs only 35.5 secondef@athe calculation. For a set of 100
processors, running thielevel parallelalgorithm on 96 subdomains (96 processors) requires 61.1
seconds. The-level parallelalgorithm on 48 subdomains using 2 processors per subdg@®@in
processors) needs 67.8 seconds. In this latter case théypemaes from the poor numerical be-
haviour on 48 subdomains. This might be due to the bad aspéetof the subdomains for that 48
subdomain decomposition. However, if we consider a 50 suiadtodecomposition using 2 proces-
sors per subdomains (100 processors), we can see the impgavef the2-level parallelmethod.

In this latter situation the solution time is around 45.1csets for the2-level parallelalgorithm and
61.1 seconds for the-level parallelalgorithm.

Therefore, we conclude, that ttelevel parallelapproach is a promising candidate for the
2D/3D multisource acoustic simulations. The idea is that whemtimaber of iterations signifi-
cantly increases, th2-level parallelalgorithm should be preferred. It can be the method of choice
for a wide range of R/3D simulations; it enables a better usage of both the memoryttaad
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computing capabilities. We should mention, that usingZHevel parallelmethod leads also to de-
crease the computational cost of both the initializatioimase ) and the setup of the preconditioner
(phase?, this will be studied in the next subsection.

8.6.2 Parallel performance benefits

Motivated by the idea of exploiting as much as possible thitopmance of the computing machine
used to run large simulations, we consider the implementatith 2-levelsof parallelism. When
running large simulations that need all the memory avadlaii a node of an parallel machine,
standard parallel codes are forced to use only one procpssarode, thus leaving the remaining
processors of the node in an “idle" state. Théevel parallelmethod allows us to take advantage
of the idle processors and to compute the solution fasteedio the per node performance. For the
parallel machine we use, each node comprises two dualgsoreand is equipped with 8 GBytes
of main memory.

We report in Table8.9, the performance results of tRRelevel parallelapproach and compare it
with the standard-level parallelapproach. We report experiments for th® Marmousi Il test
case, for the different frequencies reported in Subse@&idnand for the various decompositions
where the2-level parallelalgorithm is applied. We structure the discussion by a etainalysis of
the performance on the three phases of our method.

Let us start withphase1(the initialization phase) that consists in building thedbfactorization
and computing the local Schur complement. The benefit oRtteel parallelalgorithm is consid-
erable for all the considered frequencies, the computing ts divided by about 1.3 when using two
processors per subdomain and by more than 2 when using 4ssmeger subdomain.

When looking aphase2the preconditioner setup phase, we highlight the sucdabe @-level
parallel algorithm on achieving high performance compared to thedstad1-level parallelalgo-
rithm. The2-level parallelalgorithm is about twice faster than tthidevel parallelalgorithm when
only two processors are used per subdomain and it is moreSttiares faster when 4 processors are
used per subdomain.

A crucial part of the method when dealing with multiple rigtegnd side solution is the third
phase. Thus, the goal is to be as efficient as possible to irapghe parallel performance of this
step. It can be seen that tRelevel parallelimplementation performs the iterative loop 1.3 time
faster than thé-level parallelimplementation when using two processors per subdomaimenmel
than twice faster than thikelevel parallelmethod when using 4 processors per subdomain.

The 2-level parallelalgorithm demonstrates again better performance that-tbeel parallel
method and the direct method for the overall computing tirker example, for a frequency of
100 Hz, the global solution time, on a decomposition of 16 subdosaeeds 55.7 seconds using
the 1-level parallelmethod and 295.5 seconds using a direct solver whereasdsrady 27.0
seconds using th&-level parallelalgorithm. Similar trend can be observed for other decoiitipos
and other frequencies.

We report in Table.10the performance of the-level parallelalgorithm for the ® Overthrust
SEG/EAGE problem presented in Sect&B. The results shown in this table highlight the efficiency
of the2-level parallelmethod. It is clear that th2-level parallelmethod decreases the time required
for the setup of the preconditioner by a factor of 1.6 when@& processors per subdomain and by
a factor around 3.6 when using 4 processors per subdomaireaver, the time for one right-hand
side solution is also decreased by a factor of 1.5 when 2 psocs are used to handle a subdomain,
and by around 2 when 4 processors are used per subdomairxarople, on a decomposition of 50
subdomains, thé-level parallelmethod requires 1178.9 seconds to perform the simulaticare#s
the2-level parallelmethod needs only 419.8 to perform the same calculation.

We can conclude, that thelevel parallelmethod is very suitable for the parallel solution of a
wide range of real applications. The results in Téh®and Table3.1Q illustrate the parallel perfor-
mance achieved by th&level parallelmethod. It allows us to exploit large number of processors
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# subdomains 16 32 36
or SMP-nodes
# 1-level 2-levels 1-level 2-levels 1-level 2-levels
processor; parallel parallel parallel parallel parallel parallel
per subdomain 1 5 | 7 1 5 1 5
Total solution time
100Hz 55.8 39.7 27.0 33.2 23.9 28.6 22.0
120Hz 94.2 70.5 44.6 53.6 39.8 46.4 35.6
140Hz 145.1 107.3 68.0 84.3 62.2 68.7 52.2
160Hz 204.9 149.8 91.9 121.7 88.2 107.3 74.8
180Hz 288.2 212.2 129.6 175.4 123.3 144.4 101.8
200Hz 392.0 265.1 172.7 238.7 165.0 199.0 146.1
Time for one RHS
100Hz 4.7 3.6 2.7 6.4 4.9 6.6 4.9
120Hz 7.6 5.8 4.0 10.2 7.4 8.7 6.5
140Hz 10.3 7.8 5.7 14.4 9.8 13.8 10.1
160Hz 13.0 9.6 7.1 16.7 11.7 21.0 14.3
180Hz 20.3 14.4 9.9 26.1 17.9 29.2 19.3
200Hz 21.6 15.8 11.5 29.9 20.4 34.0 24.0
Time in the iterative loop
100Hz 3.0 2.2 1.6 55 4.1 5.8 4.3
120Hz 51 3.8 2.6 8.9 6.4 7.6 5.6
140Hz 6.9 5.1 3.4 12.6 8.4 12.2 8.8
160Hz 8.5 6.0 4.1 14.4 9.8 18.9 12.4
180Hz 14.6 9.9 6.6 23.0 15.6 26.5 16.9
200Hz 14.5 10.3 6.8 25.9 17.3 30.6 21.4
# iteration
100Hz 82 121 158
120Hz 102 137 152
140Hz 102 138 183
160Hz 97 127 213
180Hz 125 162 241
200Hz 125 162 241
Preconditioner setup time
100Hz 4.9 2.8 1.6 5.8 3.2 3.8 2.1
120Hz 8.2 4.5 2.5 9.8 5.3 6.3 35
140Hz 12.9 7.1 3.9 15.7 8.4 10.1 55
160Hz 19.0 10.4 5.8 23.1 12.1 14.7 7.9
180Hz 26.8 14.5 7.9 32.8 16.9 20.8 11.1
200Hz 35.7 19.2 10.5 52.3 23.0 28.5 14.9
Initialization time
100Hz 46.2 33.4 22.7 20.9 15.9 18.2 14.9
120Hz 78.5 60.2 38.1 33.6 27.1 314 25.6
140Hz 121.9 92.4 58.4 54.2 441 44.8 36.7
160Hz 172.9 129.8 79.1 81.9 64.5 71.6 52.5
180Hz 241.1 183.3 111.7 116.5 88.4 94.4 71.4
200Hz 334.6 230.0 | 150.8 156.5 121.7 136.4 107.1

Table 8.9: Detailed parallel performance of ®wevel parallelmethod for the B Marmousi Il
problem when varying the frequency from 1id@ to 200Hz, that is varying the global size of

the problem from 9.8:10° unknowns up to 38.710° unknowns, and also when the number of
subdomains is varied from 16 to 36.
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with higher efficiency, and to drive down the execution tinyalsignificant factor. For the test cases
reported here, the-level parallelmethod performs much better as both fhkevel parallelmethod
and the direct method.

8.7 Concluding remarks

This chapter describes the results of preliminary invesitigns of a shifted variant of our precondi-
tioner for the solution of the Helmholtz equation in two ahtee dimensional domains.

A very poor humerical scalability of the preconditioner lv@en observed on theD2examples
where the use of a-level parallelimplementation is an efficient remedy to reduce the elapsssl t
when the number of processors is increased. For Depblem, the scalability is not as worse as
in 2D and the2-level parallelimplementation enables some improvement. More experisnamt
larger problems and larger computing platforms are neeae@termine whether the performance
of the 2-level parallelmethod would live up to expectations. Analysis and expenisishow that
when exploiting the2-levelsof parallelism the algorithm runs closed to the aggregattopaance
of the available computing resources.

For those applications the parallel sparse direct solvéttaeR-level parallelmethod remain the
methods of choice for @ multisource acoustic simulations considering that the orgmequire-
ment is tractable with currently available computers. Bogé I problems, the hybrid approach
(1-level parallelor 2-level parallel) are a possible alternative to the direct solvers that éixhib
unaffordable increase of computing time and memory requérg. In the context of multisource
simulations (i.e., multiple right-hand sides) some exffareshould be devoted to take advantage of
this feature such as block-Krylov solvers or numerical téghe to recycle some spectral informa-
tion between the solution of the various right-hand sides.

# subdomains 50 81 96
# processors 1-Ie\;|eII 2-Iev|(|aIT 1-Ie\|/|elI 2-Iev|<|3IT 1-Ie\|/|elI 2-Iev|<|3IT
per subdomain pari e , parzr e . pari e parg e pari e parg e
Total solution time
| 7Hz 1178.9 | 854.5 | 419.8 || 557.7 | 431.4 || 398.9 | 299.3
Time for one RHS
| 7Hz 67.8 | 45.1 | 355 || 77.4 | 57.2 || 61.1 | 45.1
Time in the iterative loop
| 7Hz 64.4 | 39.1 | 28.1 || 73.6 | 53.7 || 57.0 | 38.2
# iteration
[ 7Hz 81 I 109 I 119
Preconditioner setup time
| 7Hz 497.1 | 262.4 | 135.3 || 256.3 | 169.2 || 153.8 | 81.2
Initialization time
| 7Hz || 614 | 547 | 249 || 224 | 205 || 184 | 173 |

Table 8.10: Detailed parallel performance of twevel parallelmethod for the B Overthrust
SEG/EAGE test case when the number of subdomains is vaded30 to 96.
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Part IV

Further performance study and
applications






Chapter 9

Conclusion and future work

The main topic of this research work was the study of a nuraktechnique that had attractive

features for an efficient solution of large scale lineareyst on large massively parallel platforms.
In this respect we have investigated several algebraicopdittoning techniques, discussed their
numerical behaviours, their parallel implementations scalabilities. Finally, we have compared

their performances on a set oD3grand challenge problems. The algebraic additive Schwaz p

conditioner defined by2p for 2D problems was the starting point for our study in the contéxt o
non-overlapping domain decomposition techniques.

We have defined different variants based either on mixedragtics or on sparse approxima-
tions. We have investigated and analyzed their numeridaieurs. We have evaluated their effi-
ciency and accuracy compared to the dense 64-bit variam.rd$ults show that the sparse variant
enables us to get reasonable numerical behaviour and gefhmaisaving of a significant amount of
memory. On all our experiments this variant is the most effitend reduces the solution time and
the memory space. The mixed precision approach appearpx@mising in the context of multi-
core heterogeneous massively parallel computers, whene sievices (such a the graphic cards)
only operate in 32-bit arithmetic. Several questions ateagien, and some works deserve to be
undertaken to validate the approach in this computing ebvatewell as theoretical developments to
assess their numerical validity.

In Chapter5 and Chapte6, our analysis was focused on the numerical and the paratélsil-
ity of the preconditioners on a set of academid 8ymmetric and unsymmetric model problems.
We have studied the numerical behaviour of the proposedptitioners for the solution of het-
erogeneous anisotropic diffusion problems with and witteoaonvection term. We have observed
reasonably good parallel performance and numerical stifain massively parallel platforms. All
the preconditioner variants were able to exploit a large Imemof processors with an acceptable
efficiency. For the B problems the convergence of all the local preconditionepedds slightly
on the number of subdomains. For up-to a thousand of pros#sabdomains the use of a coarse
space component for 3D elliptic problems appeared lessatradthough still beneficial, than for
2D problems.

We have also applied these hybrid iterative/direct mettiodsolving unsymmetric and indefi-
nite problems such as those arising in some structural méhand seismic modelling applications.
For that purpose, we have investigated in Chaptand Chapte8, the use of our parallel approaches
in the context of these real life applications. Our purpoas te evaluate the robustness and the per-
formance of our preconditioners for the solution of the Eading linear systems that are often
solved using direct solvers in these simulations.

Chapter7 was devoted to the engineering area of structural mechammugdations where very
large problems have to be solved. For those simulationantehes involved in the discretization
are composed by a large number of finite elements. The effipemallel solution requires a good
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balanced partitioning of the unstructured meshes to erisarefficiency of the solution technique as
well as its parallel performance. We have illustrated thesiiwity of our preconditioner to the par-
titioning of the mesh. Other partitioning strategies woddserve to be studied and investigated. We
have presented several results, that show that the premorats can achieve high performance. The
attractive feature is that both sparse and mixed precamdits are a source of gain even for these
difficult problems. More work would deserve to be investecaaophisticated dropping strategies,
as well as on the automatic tuning of the dropping paramé&terther developments are required,
such as the integration of the hybrid method in the nonliheavton solver in structural analysis. We
should study the effect of the linear solver accuracy whehezided within the nonlinear scheme.
In order to improve the performance for large-scale sinmutetand to run close to the aggregate
resources peak floating-point operation rate, we have derei the introduction of 2-levelsparal-
lelism strategy. Numerical tests confirm the good propguigthe hybrid2-levelsparallel method;

a comparison with the direct method shows that, from the tpofirview of both numerical and
computational costs, thHzlevelsparallel method can be of interest for a wide range of apfidina.

In Chapter8, we have further considered the parallel performance ohtfieid method in the
context of a B /3D seismic application. In this framework, the traditionalthra® for solving
these systems relies on sparse direct solvers becausplmtrifiht-hand sides have to be considered.
However for large B problems the memory requirement and the computational Exityybecome
unaffordable. We have discussed how the algebraic add@titevarz preconditioner can be applied
in this context. We have used a variant of the preconditibased on the introduction of a complex
perturbation to the Laplace operatdf], resulting in a shifted additive Schwarz preconditiorer
2D problems, we have observed that the numerical scalabflityegpreconditioner can significantly
deteriorate when the number of subdomains increases. dicdise, th@-levelsparallel algorithm
can be of great interest. We have thus investigated the itlesirgy a small number of subdomains
while increasing the number of processors per subdomainpassible remedy to this weakness.
The significant benefit in 2D does not translate as clearly3@mproblems where only moderate
improvements have been observed. In the context of multiegoseismic simulations (i.e., multiple
right-hand sides) some extra effort should be devoted ®aakantage of this feature such as block-
Krylov solvers or numerical techniques to recycle some spkeinformation between the solution
of the various right-hand sides.

The development of efficient and reliable parallel algebhgibrid solvers is a key for successful
applications of scientific simulations for the solution ofny challenging large-scale problems. We
have attempted to highlight some of the studies and devedasithat have taken place in the course
of the three years of the thesis. There are numerous furgseriant problems and ideas that we
have not been addressed. This research area is very actiyer@tuctive; there is still room for
the development of new general-purpose parallel blackHytxid methods based on algebraic ap-
proaches. This class of algebraic preconditioners is wérgative for parallel computing. We intend
to extend the work presented here for the solution of getieedr systems, where the techniques
has some natural counterparts. It mainly consists in exteritle ideas and apply them to the graphs
of general sparse matrices in order to identify the blockstar interface between the blocks. The
basic idea is to split the matrix entries into different id®@s shown in Figur@.1

A preliminary Matlab prototype has been developed to védidiae basic concepts. For the sake
of preliminary comparisons a block-Jacobi preconditidres also been implemented. The numeri-
cal experiments have been conduced on sets of general spafisees from Matrix Market reposi-
tory (http://math.nist.gov/MatrixMarket/ and Tim Davis collection
(http://www.cise.ufl.edu/research/sparse/matrjcedle present in Tabl®.1 the number of itera-
tions required by right preconditioned GMRES. For each ixatve consider decompositions into
8, 16, 32, 64 and 96 blocks. Those preliminary experimemsacouraging and confirm that the
additive Schwarz preconditioner for the Schur complemeitiaily introduced for the solution of
linear systems arisen from PDE discretization can be egtalsolve general sparse linear systems.
For those matrices, it can be seen that the number of itesaiincreases moderately when the num-
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Figure 9.1: Partitioning a general matrix on 8 blocks.
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ber of blocks is varied. We intend to continue these invesitgs with the goal of designing and
implementing an efficient black-box parallel solver paakagited for large massively computing

platforms.
# blocks

] Né?ztreix e Preconditioner || 8 | 16 | 32 | 64 | 96
besstk18 | 11,048 | 149,000 | , BOCKJCOD! || 88 ) 135 1 171 192 | 208
besstka7 | 25,503 | 1,140,977| , BOCKJCOD! || 190 | 208 1 325 | 5171 500
nasa4704| 4,704 104,756 A d?jli('zif/lé\]sac%?/\t/);rz 12255 1483? 3;174 48187 ﬁz
nasasrb | 54,870 | 1,366,007 , 2OCKICOD || 72 189 690 | 885 ) -
el | 16614 ] 1096948) it SGIR | 7 | 17 | s | a3 | s7

Table 9.1: Number of preconditioned GMRES iterations whenrtumber of blocks is varied. “-
means that no convergence was observed after 1000 itesation

Finally, hybrid techniques include other ways to combing @ uix iterative and direct approaches.
We start another study of hybrid solver in the context &f 8lectromagnetic simulations in collab-
oration with the INRIA NACHOS project. Of particular intesteis the study of the interaction of
electromagnetic waves with humans or, more preciselyditissues 33]. Both the heterogeneity
and the complex geometrical features of the underlying ensttitivate the use of the hybrid meth-
ods working on non-uniform meshes. The objective of ouroution is to improve the numerical
behaviour of the hybrid method by developping new algelpegconditioners.
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Résumé

La résolution de trés grands systémes linéaires creux estomposante de base algorithmique
fondamentale dans de nombreuses applications scientfigjuealcul intensif. La résolution per-
formante de ces systemes passe par la conception, le dpeeiept et I'utilisation d’algorithmes
paralleles performants. Dans nos travaux, nous nous gs@ne au développement et I'évaluation
d'une méthode hybride (directe/itérative) basée sur ddmtques de décomposition de domaine
sans recouvrement. La stratégie de développement est axdatdisation des machines mas-
sivement paralléles a plusieurs milliers de processeuitude systématique de I'extensibilité et
I'efficacité parallele de différents préconditionneurgédriques est réalisée aussi bien d’'un point
de vue informatique que numérique. Nous avons compareé feufermances sur des systemes de
plusieurs millions ou dizaines de millions d’'inconnues poes problémes réelsD3

Mots-clés: Décomposition de domaines, Méthodes itératives, Méthditestes, Méthodes hy-
brides, Complément de Schur, Systémes linéaires densesuet d1éthodes de Krylov, GMRES,
Flexible GMRES, CG, Calcul haute performace, Deux niveagppdrallélisme, Calcul paralléle
distribué, Calcul sientifiqgue, Simulation numériques dangle taille, Techniques de précondition-
nement, Préconditionneur de type Schwarz additive.

Abstract

Large-scale scientific applications and industrial sirtiofes are nowadays fully integrated in many
engineering areas. They involve the solution of large sphingar systems. The use of large high
performance computers is mandatory to solve these problEngsmain topic of this research work
was the study of a numerical technique that had attractaifes for an efficient solution of large
scale linear systems on large massively parallel platforiiiee goal is to develop a high perfor-
mance hybrid direct/iterative approach for solving lardg® (goblems. We focus specifically on
the associated domain decomposition techniques for thal@lasolution of large linear systems.
We have investigated several algebraic preconditioningriigues, discussed their numerical be-
haviours, their parallel implementations and scalab#itiWe have compared their performances on
a set of 3D grand challenge problems.

Keywords: Domain decomposition, Iterative methods, Direct methétidyrid methods, Schur
complements Linear systems, Krylov methods, GMRES, fleXt®MRES, CG, High performance
computing, Two levels of parallelism, Distributed compgti Scientific computing, Large scale nu-
merical simulations, Preconditioning techniques, Adeitschwarz preconditioner.
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