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Résumé

Résumé

La thèse a pour objectif le développement de méthodes performantes pour la résolution
de problèmes non-linéaires en mécanique des solides. Il est coutume d’utiliser une méth-
ode de type Newton qui conduit à la résolution d’une séquence de systèmes linéaires.
De plus, la prise en compte des relations linéaires imposées à l’aide de multiplicateurs
de Lagrange confère aux matrices une structure de point-selle.
Dans un cadre plus général, nous proposons, étudions et illustrons deux classes d’enrichis-
sement de préconditioneurs (limited memory preconditioners) pour la résolution de
séquences de systèmes linéaires par une méthode de Krylov. La première est une exten-
sion au cas symétrique indéfini d’une méthode existante, développée initialement dans
le cadre symétrique défini positif. La seconde est plus générale dans le sens où elle
s’applique aux systèmes non symétriques. Ces deux familles peuvent être interprétées
comme des variantes par blocs de formules de mise à jour utilisées dans différentes méth-
odes d’optimisation. Ces techniques ont été développées dans le logiciel de mécanique
des solides Code_Aster (dans un environnement parallèle distribué via la bibliothèque
PETSc) et sont illustrées sur plusieurs études industrielles. Les gains obtenus en terme
de coût de calcul sont significatifs (jusqu’à 50%), pour un surcoût mémoire négligeable.

Mots-clefs

Mécanique des solides, Itérations de Newton, Systèmes point selle, Préconditionneurs à
mémoire limitée, Vecteurs de Ritz (harmonique)





Abstract

Abstract

The thesis aims at developing efficient numerical methods to solve nonlinear problems
arising in solid mechanics. In this field, Newton methods are currently used, requiring
the solution of a sequence of linear systems. Furthermore, the imposed linear relations
are dualized with the Lagrange multiplier method, leading to matrices with a saddle
point structure.
In a more general framework, we propose two classes of preconditioners (named limited
memory preconditioners) to solve sequences of linear systems with a Krylov subspace
method. The first class is based on an extension of a method initially developed for
symmetric positive definite matrices to the symmetric indefinite case. The second class
handles the more general case related to nonsymmetric matrices. Both families can be
interpreted as block variants of updating formulas used in numerical optimization. They
have been implemented into the Code_Aster solid mechanics software (in a parallel
distributed environment using the PETSc library). These new preconditioning strate-
gies are illustrated on several industrial applications. We obtain significant gains in
computational cost (up to 50%) at a marginal overcost in memory.

Keywords

Solid mechanics, Newton iterations, Saddle point systems, Limited memory precondi-
tioners, (Harmonic) Ritz vectors
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Introduction

The numerical solution of large-scale industrial scientific problems generally requires
large computational times and large memory needs. For many years, many efforts have
concerned both computer architecture aspects and the design of efficient algorithms, in
order to provide effective simulation tools. In this thesis, we are rather interested in the
second aspect, whose choice can be justified by the following quote from Philippe Toint:
“I would rather have today’s algorithms on yesterday’s computers than vice versa”. Even
so, we want to propose new techniques well adapted to current computer science tools,
such as multiprocessing and parallel computing.

Among several domains of application, the PhD thesis focuses on the solution of
problems issued from solid mechanics. More specifically, the main goal is to provide
efficient methods to speedup the solution of nonlinear problems discretized within the
framework of the open-source software Code_Aster [1], which is a general purpose fi-
nite element code developed at EDF (Electricité de France). For more than 20 years,
Code_Aster serves as the simulation tool used by the engineering departments of EDF
to analyze the various components of the electricity generation facilities and to produce
safety analysis. As we will see in Chapter 1, this industrial software mostly relies on
Newton’s method to solve nonlinear problems, leading to a sequence of linear systems
of the form

Aixi = bi, for i = 1, · · · , I, (1)

where xi, bi ∈ RN and Ai ∈ RN×N are sparse and are assumed to slowly vary all along
the sequence. Furthermore, these matrices have a saddle point structure (due to the
dualization of different types of conditions) and are symmetric indefinite.

Two main families can be used to solve such linear systems: sparse direct factoriza-
tion [27] and iterative methods [90]. The first approach consists in factorizing the given
matrix as a product of triangular matrices (e.g. with a sparse LU factorization), then in
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computing a solution thanks to successive forward and backward substitutions. In solid
mechanics, as in other applications, these methods have proved to be efficient in the
two-dimensional case, but a significant fill-in phenomenon usually occurs when factor-
izing large-scale three-dimensional problems [11, 99]. Hence, the memory requirement
generally compromises their use, even more when each left-hand side in (1) needs to be
factorized (i.e. when the matrices change all along the sequence). On the other hand,
iterative methods provide a sequence of (improving) approximations of the solution of
the linear system. Contrary to the direct solvers, these methods only require the knowl-
edge of the action of the matrix on a vector. Furthermore, they are particularly well
adapted to parallel computing (see, e.g., Chapter 11 in [90]). Among all these methods
available in the literature, it is known that Krylov subspace methods are the method
of choice for large-scale problems, especially when solving sequences as (1) in the case
where left-hand sides are changing [90]. However, Krylov subspace methods are gener-
ally efficient when they are are combined with preconditioning [11]. This concept, whose
design remains an active domain of research, consists conceptually in multiplying the
matrix of the original system by another matrix called preconditioner, while maintaining
the same solution. The aim is to obtain a new operator with better properties (detailed
later); the preconditioner generally corresponds either to an approximation of the inverse
of the original matrix or to the inverse of an approximation of the original matrix. It
is worth mentioning that the computation of a preconditioner can be rather expensive,
and in the context of the solution of (1) with slowly varying matrices, a preconditioner
is often reused for several successive linear systems.

Beyond solid mechanics, the numerical solution of sequences of linear systems is
frequently required in many applications in computational science and engineering. Us-
ing the fact that the operators in subsequent linear systems have most often similar
spectral properties, a first possible approach to design efficient numerical methods is to
extract information generated during the solution of a given linear system to improve
the convergence rate of the Krylov subspace method during the subsequent solutions.
Deflated and augmented Krylov subspaces [25, 29, 77, 92] or Krylov subspace methods
with recycling [60, 83, 101, 112] have been proposed in this setting. We refer the reader
to [38, 39, 51, 99] for a comprehensive theoretical overview on these methods and to
references therein for a summary of applications, where the relevance of these methods
has been shown. An alternative consists in exploiting information generated during the
solution of a given linear system to improve a preconditioner when solving the next lin-
ear system in the sequence. This is the main subject that we want to address in this
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thesis. Several contributions already exist in the literature in different domains of appli-
cation, such as [12, 46, 34] for symmetric positive definite systems, or [10, 106] when the
successive left-hand sides are nonsymmetric. In this dissertation, we propose two pre-
conditioning improvement methods issued from the numerical optimization literature,
which allow us to improve the effect of an existing first-level preconditioner. The defini-
tion of these new preconditioners involves only a small number k of vectors (that may
satisfy some assumption), and usually requires the product of a matrix Ai with these
vectors. In particular, we study preconditioners based on the selection of approximate
eigenvectors obtained during the solution of a given linear system, with application on
real-life numerical experiments.

This thesis is organized as follows: Chapter 1 introduces fundamental information
that will be used later in the other chapters. We start by explaining how a nonlinear solid
mechanics problem, handled within Code_Aster, leads to the solution of a sequence of
symmetric linear systems with saddle point structure. Then, we give relevant informa-
tion related to Krylov subspace methods (and particularly preconditioned GMRES). We
explain the notion of (harmonic) Ritz pairs corresponding to approximations of eigen-
vectors as well. Finally, we give a brief overview of existing methods for the solution of
linear systems with saddle point structure, where we notably introduce two block pre-
conditioners which are used as first-level preconditioners later. We intend to make use
of this opportunity to present the methods that are currently available in Code_Aster
to solve nonlinear problems. This chapter does not provide any new results but simply
aims at explaining the purpose of this thesis.

Chapter 2 details the first class of new preconditioners introduced in this thesis, de-
noted LMP±, well adapted to the solution of sequences of symmetric indefinite linear
systems as (1). This technique can be seen as an extension of limited memory precon-
ditioners initially proposed in the symmetric positive definite case in [46]. This chapter
is composed of two main parts. First, we analyse theoretically and characterize the
spectral effect of the preconditioners on symmetric indefinite systems. More precisely,
several results are given, related to different choices of the k vectors defining the LMP±.
The second part describes numerical experiments obtained within Code_Aster on large-
scale applications in solid mechanics. In particular, we use the LMP± in addition to a
symmetric positive definite first-level block diagonal preconditioner, taking into account
the saddle point structure of the systems in (1). We will notice that the LMP± requires
a symmetric definite positiveness property for the first-level preconditioner, a condition
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that can be quite restrictive.

Hence, as a cure, we develop another class of limited memory preconditioners called
LMPns, well suited to the solution of nonsymmetric linear systems. Although the saddle
point matrices in (1) are assumed to be symmetric indefinite in this manuscript, this
new class does not require any assumption on the first-level preconditioner. Chapter
3 first explores some properties of the LMPns. We characterize the spectrum of the
preconditioned matrix, and we further carry out a comparison of the LMPns with both
deflation [39] and the abstract balancing preconditioner [33]. More precisely, we compare
the respective spectra and GMRES iterates (including also the LMP± in a more gen-
eral framework). Then, we illustrate the numerical efficiency of the LMPns on possibly
large-scale applications in solid mechanics, using as a first-level preconditioner either a
block upper triangular preconditioner or the default preconditioning method available
in Code_Aster.

Then, we draw both final remarks and future research plans in Section "Conclusions
& Perspectives".

In Appendix, we finally provide brief information about the implementation of the
proposed preconditioning methods. In fact, the nonlinear process for the solution of
various solid mechanics problems is handled by Code_Aster, but we rely on the PETSc
library [3] to solve the successive linear systems in (1). Thus, part of the code has been
developed in PETSc and an interface with this library has been implemented in the solid
mechanics Code_Aster software.



Chapter 1

Framework and mathematical
background

This chapter gathers useful information of interest in the next chapters. Section 1.1
aims at introducing the solid mechanics problems that we want to solve in this thesis.
First, we present a linear elastic problem and we show how to obtain the associated
discretized linear problem from the finite element method, when some imposed conditions
are dualized. Then, after discussing the different types of nonlinearities arising in solid
mechanics, we present how the related mechanical problems can lead to a sequence of
linear systems of saddle point structure, due to Newton’s method.

In the case where both the left-hand sides and right-hand sides of the linear systems
given in sequence are changing, it is known that preconditioned Krylov subspace methods
are the method of choice, especially for large-scale problems. The presentation of these
iterative techniques is the main purpose of Section 1.2, where the GMRES method is
more specifically detailed. This latter method will be used in the following chapters
and some fundamental information is given in relation with the future preconditioning
approaches proposed in this manuscript.

The chapter ends with a brief survey of solution methods for saddle point linear
systems. In particular, we present different block preconditioners to be used later.

1.1 Solid mechanics framework

1.1.1 Linear model problem and boundary conditions

As a first step, we focus on the equilibrium of an elastic body in solid mechanics, under
the small displacement hypothesis. The following presentation is notably based on [21].
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Let Ω ⊂ Rd, d = 2, 3, represent the reference configuration of an elastic body and
∂Ω = ΓD ∪ ΓN be the boundary of this domain, where ΓD ∩ ΓN = ∅. If the body
is subject to volume loads r ∈ (L2(Ω))d in Ω, surface loads h ∈ (L2(ΓN ))d on ΓN ,
and a Dirichlet condition on ΓD, the problem consists in finding the displacement field
u : Ω→ R3 satisfying the governing equations:

−div(σ(u)) = r in Ω, (1.1a)

σ(u)n = h on ΓN , (1.1b)

u = ud on ΓD, (1.1c)

σ(u) = Hε(u), (1.1d)

ε(u) = (∇u+∇Tu)/2. (1.1e)

The equalities (1.1a), (1.1b) and (1.1c) correspond to the equilibrium equation, the
natural and the essential boundary conditions respectively, where σ is the stress tensor
field and n is the outward unit normal to Ω on ∂Ω. Furthermore, the constitutive law
(1.1d) connects σ to the strain tensor field ε. In the elastic case, this latter relation is
linear, and H is the fourth elastic coefficient tensor which satisfies both symmetry and
ellipticity conditions and whose components are in L∞(Ω) (the Hooke’s tensor). Finally,
(1.1e) is known as the compatibility equation, linearized under the small displacement
hypothesis.

1.1.1.1 The weak formulation with eliminated boundary conditions

A common weak formulation of this elastic problem is given by finding u ∈ C(ud) such
that ∫

Ω
Hε(u) : ε(v) dΩ =

∫
Ω
rv dΩ +

∫
ΓN

hv dΓ ∀v ∈ C(0), (1.2)

where
C(ud) = {v | v ∈ (H1(Ω))d and v = ud on ΓD}

and
C(0) = {v | v ∈ (H1(Ω))d and v = 0 on ΓD}.

C(ud) and C(0) are the sets of admissible displacements with imposed and zero displace-
ment, respectively. We refer the reader to [21] for details about how to obtain equality
(1.2). Mechanically, it represents the principle of virtual work, illustrating the equality
between the virtual work of the elastic forces (the left-hand side) and the external loads



1.1. Solid mechanics framework 27

(the right-hand side). A finite element method is commonly used to approximate the so-
lution of the problem (1.2), but the description of the related process is out of the scope
of this presentation (see e.g. [21, 35]). The important result comes from the associated
linear system to solve, of the form

G̃ũ = f̃ . (1.3)

The matrix G̃ ∈ Rñ×ñ is the stiffness matrix, where ñ is the total number of unknowns
(i.e. the dimension of the discretized subspace of C(ud)). ũ and f̃ ∈ Rñ consist of
discretized fields of displacement and nodal forces, respectively. By construction, the
matrix G̃ is sparse and symmetric positive definite.

Remark 1. The equation (1.2) can also be obtained with a variational formulation,
minimizing the potential energy [21]:

u = argmin
w∈C(ud)

(1
2

∫
Ω
Hε(w) : ε(w) dΩ−

∫
Ω
rw dΩ−

∫
ΓN

hw dΓ
)
.

1.1.1.2 The weak formulation with dualized boundary conditions

However, in several industrial software like Code_Aster, the preferred formulation is
written in a slightly different way. According to [21], we can use a different weak for-
mulation, where the boundary conditions are dualized. This requires introducing the
subsets

C = {v | v ∈ (H1(Ω))d}

and
C′(ΓD) = {µ |

∫
ΓD

vµ dΓ is defined ∀v ∈ C}.

The associated weak formulation is then given by finding (u, λ) ∈ C × C′(ΓD) such that∫
Ω
Hε(u) : ε(v) dΩ +

∫
ΓD

λv dΓ =
∫

Ω
rv dΩ +

∫
ΓN

hv dΓ ∀v ∈ C∫
ΓD

uµ dΓ =
∫

ΓD

udµ dΓ ∀µ ∈ C′(ΓD). (1.4)

A finite element discretization finally leads to solve a linear system of the form

Kx = b⇐⇒
(
G BT

B 0

)(
u

λ

)
=
(
f

g

)
, (1.5)

where u and λ correspond now to both vectors of size n and m, respectively. n and
m are the dimensions of the discretized subspaces for the displacement and the con-
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straints, respectively. In this case, the matrix G ∈ Rn×n is sparse and symmetric positive
semidefinite. Indeed, the essential boundary conditions are not taken into account and
the dimension of the kernel N (G) corresponds to the number of rigid body motions of
the studied body [76]. For d = 3, this number is equal to 6, allowing 3 translations and
3 rotations. Here, the constraint matrix B ∈ Rm×n has only one nonzero coefficient per
row, since the essential boundary conditions are of the form uj = gj where uj is one
component of u. They are also known as single-freedom constraints (SFCs).
Remark 2. In this case, the equations (1.4) can be obtained with the variational formu-
lation:

(u, λ) = argmin
w∈C

argmax
µ∈C′(ΓD)

(1
2

∫
Ω
Hε(w) : ε(w) dΩ−

∫
Ω
rw dΩ−

∫
ΓN

hw dΓ +
∫

ΓD

µ(w − ud) dΓ
)
.

1.1.1.3 Other type of imposed conditions

The choice of the weak formulation with dualized boundary conditions in software like
Code_Aster is justified by the need to impose other relations between degrees of freedom
for some mechanical problems. As usually done in these industrial solvers, we introduce
these relations directly into the discretized problem. They can model for instance a
nondeformable part of the structure [84] or connecting conditions between modelings
[70]. An example of this latter case will be introduced in Sections 2.4.3 and 3.5.3. These
relations, known as multifreedom constraints (MFCs), generally connect two or more
displacement components, written as

∑
i∈I

βiui = α, where I ⊂ {1, ..., n}.

They can not be easily “eliminated” in the matrix G, contrary to the essential boundary
conditions with the weak formulation (1.2), and are also dualized to obtain a linear
system of saddle point structure like (1.5). Now, the matrix B ∈ Rm×n represents m
linear relations coming from both single and multifreedom constraints. B is supposed
to be of full rank m, which states that the constraint conditions are non-redundant.
Moreover, the matrix G is supposed to be positive definite on N (B), which ensures that
the constraints forbid the rigid body motions of the structure.

Remark 3. The nonsingularity of the linear system (1.5) will be proved in Section 1.3.
Remark 4. In Code_Aster, the SFCs can be either directly “eliminated” or dualized.
Remark 5. Solving the saddle point system provides u and λ, and −BTλ can be inter-
preted as constraint forces arising from the essential boundary conditions and MFCs.
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Remark 6. We emphasize the fact that the MFCs are added to the discretized problem
in Code_Aster, as in many industrial software. This approach is known not to be opti-
mal, contrary to the mortar approach whose use has also been extended to the contact
problems [9]. Nevertheless, the imposition of MFCs directly on the discretized unknowns
is much easier to implement and much more versatile (it easily mixes displacement and
rotation) so that it is real common and powerfull modelization tool for the engineers.

1.1.2 Nonlinearities in solid mechanics

The linear case described above was particularly instructive to show how the different
constraint conditions are treated. However, linear problems constitute just a part of the
solid mechanics problems. Indeed, there are many different sources of nonlinearities in
the response of structures under loading [20, 21, 5]. They can be grouped into three
classes: material, geometric and contact nonlinearities.

As an illustration, we present an industrial study performed within Code_Aster,
which is a good example of a nuclear safety analysis carried out at EDF. It deals with
the insertion of a plug in a steam generator tube. In fact, in a Pressurized Water Reac-
tor (PWR) nuclear power plant, a steam generator is a heat exchanger using the energy
from the water of the primary circuit (heated by the nuclear reactor core) to transform
the water of the secondary circuit into steam, in order to drive the turbine. Figure 1.1
presents a simplified drawing of a steam generator working. This component contains
several thousand tubes, where the hot water of the primary circuit flows. These tubes
are generally subject to variations of temperature and significant pressure, which can
lead to the formation of cracks. This kind of defect is very critical, since the water of
the secondary circuit could be contaminated by the fluid of the primary one. To remedy
this problem, a plug can be inserted into the tube to take it out of service and insure
the sealing (see Figure 1.2). Moreover, Figures 1.3 and 1.4 correspond to the meshes of
the bottom of a steam generator and of a plug in a tube. More precisely, in Figure 1.4,
the green part pictures the plug and the yellow one pictures the nut, used to fix the plug
and removed at the end of the operation. Finally, Figure 1.5 presents the constraint field
after the plug insertion, obtained within Code_Aster.
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Figure 1.1: Steam generator working - Source: http://www.allthingsnuclear.org

Figure 1.2: Picture of a plug and a cut of a tube - Source: http://www.asn.fr

http://www.allthingsnuclear.org
http://www.asn.fr
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Figure 1.3: Mesh of the bottom of a
steam generator.

Figure 1.4: Model of a plug insertion
in a tube.

Figure 1.5: Constraint field after the
plug insertion.

This mechanical problem involves the three different sources of nonlinearities, which
are briefly described next.

Material: we recall that the mechanical behaviour of a material is formulated by a
constitutive law relating stress to strain (cf. (1.1d) in the elastic case). There are a
lot of possible behaviours and models to describe them. For metallic materials, the
constitutive law includes a linear domain, corresponding to a reversible deformation,
which is sufficient for a large number of studies. Otherwise, it is necessary to model
other behaviours, such as mechanical damage, elastoplasticity or viscoplasticity, which
induce irreversible deformations. In such cases, the relation between stress and strain
is nonlinear and generally defined by a set of differential equations. In the numerical
example introduced above, the tube, the plug and the nut have elastoplastic constitutive
laws. More precisely, the nut is considered as perfectly plastic while the tube and the
plug obey a strain isotropic hardening rule.
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Geometric: some solid mechanics problems are based on a geometric linear approxi-
mation considering that displacements and strains are small. Thus, the initial and final
positions of a given body are practically the same and the linearized expression of the
strain tensor (1.1e) is used.
When the small displacement hypothesis is not satisfied, the compatibility equation is
not valid and the Green-Lagrange tensor strain, nonlinear in ∇u, is introduced:

e(u) = 1
2(∇u+∇Tu+∇Tu∇u).

Furthermore, the solution of the problem needs to take into account the evolution of the
geometry. This is the case in the numerical illustration of this section.
When the small strain hypothesis is not satisfied, the framework of large strains must be
used, with the introduction of particular stress and strain measures. In the illustration,
a logarithmic strain tensor is used within the framework defined in [6].

Contact: the contact phenomenon is due to the principle of non-penetration of matter:
when two bodies are in contact, a force appears on the interaction surface, preventing
their penetration, and vanishes when they do not touch anymore. The solution of such
a problem leads to the addition of a condition, expressed as an inequation, and the
problem turns to be highly nonlinear. Concerning the steam generator tube, contact
phenomena occur between the nut and the plug and between the plug and the tube.
It is important to note that this source of nonlinearity is not studied in this present
thesis.

1.1.3 Integration within the Newton’s method

We aim at presenting the Newton’s method applied to nonlinear problems in solid me-
chanics. More precisely, we just focus here on the example of a nonlinear elastic problem,
under the small displacement and strain hypothesis and without any contact condition.
Indeed, each type of nonlinearity has to be treated differently, but they all lead to similar
sequences of linear systems [21, 35].

Contrary to the linear case introduced in Section 1.1.1, the stress tensor σ does not
depend linearly on the strain tensor ε any longer. Adapting (1.4) to this case, we search
(u, λ) ∈ C × C′(ΓD) such that

R(u, λ, v, µ) =
(
R1(u, λ, v, µ)
R2(u, λ, v, µ)

)
= 0 ∀(v, µ) ∈ C × C′(ΓD),
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where {
R1(u, λ, v, µ) =

∫
Ω σ(u) : ε(v) dΩ +

∫
ΓD

λv dΓ−
∫

Ω rv dΩ−
∫

ΓN
hv dΓ

R2(u, λ, v, µ) =
∫

ΓD
(u− ud)µ dΓ

.

The Newton’s method aims at building a sequence (ui, λi) of approximations of the
solution (choosing an initial approximation (u0, λ0)). At the i-th iteration, the method
is based on the first order linearization of R against ui and λi:

R(ui, λi, v, µ) ≈ R(ui−1, λi−1, v, µ) +∇u,λR(ui−1, λi−1, v, µ)
(
ui − ui−1

λi − λi−1

)
,

with

∇u,λR(ui−1, λi−1, v, µ) =
(
∂R1(ui−1,λi−1,v,µ)

∂u
∂R1(ui−1,λi−1,v,µ)

∂λ
∂R2(ui−1,λi−1,v,µ)

∂u
∂R2(ui−1,λi−1,v,µ)

∂λ

)
.

Aiming at vanishing R(ui, λi, v, µ), we search (ui, λi) such that
∇u,λR(ui−1, λi−1, v, µ)

(
δui

δλi

)
= −R(ui−1, λi−1, v, µ)

ui = ui−1 + δui

λi = λi−1 + δλi

. (1.6)

After using a finite element discretization, and noting that the essential boundary
conditions are constant during the linearization process, the Newton’s method leads to
solve the following sequence of saddle point linear systems:

Kixi = bi ⇐⇒
(
Gi BT

B 0

)(
ui

λi

)
=
(
fi

gi

)
, (1.7)

where ui and λi now correspond to vectors of size n and m, respectively. Here, the (1,1)
blocks Gi are generally symmetric positive semidefinite, as explained in Section 1.1.1,
and are supposed to slowly change all along the sequence. In some cases, follower forces
occur making these matrices nonsymmetric [5], but the symmetric case is essentially
treated in this manuscript (though the nonsymmetric case is covered by the theoretical
results in Chapter 3). The saddle point matrices Ki are then assumed to be symmetric
indefinite. As introduced in Section 1.1.1.3, we further note that other linear relations
can be added to the discretized problem. We suppose that they involve the same degrees
of freedom during the sequence, and that the fixed matrix B can correspond to both
single or multifreedom constraints. Finally, we suppose that B is of full rank m and that



34 Chapter 1. Framework and mathematical background

the matrices Gi are positive definite on N (B). Under these assumptions, we show in
Section 1.5 the existence and uniqueness of the solution for each system of the sequence
(1.7).

Remark 7. The issues related to the convergence of the Newton’s method are not dis-
cussed here and we refer the reader to [78] for details. Actually, we essentially aimed in
this section at introducing the sequence of large-scale saddle point systems that we need
to solve.

Remark 8. When contact nonlinearities occur, the matrix B can change during the
sequence (1.7), but this case is not treated in this manuscript.

The final purpose of this thesis is to develop efficient methods to solve sequences
like (1.7) arising in solid mechanics, especially of large size. With this in mind and
considering that the matrices slowly change all along the sequence, we want to use
preconditioned Krylov subspace methods [90]. They are detailed in the next section,
where we particularly focus on the GMRES method, well suited for the solution of
general nonsingular systems, and whose choice will be justified later.

1.2 Krylov subspace methods

1.2.1 Presentation

Let us focus on the solution of the linear system

Ax = b, (1.8)

where x, b ∈ RN and A ∈ RN×N is a nonsingular sparse matrix. We aim at presenting
here the Krylov subspace methods, and particularly the GMRES method which will be
used later in this manuscript. The development of these techniques which appeared in
the 70’s remains an active research domain and we later refer to numerous review papers
such as [90], [99] or [110] for more detailed presentations and analysis.

Krylov subspace methods are iterative solvers in the sense that, giving an initial
vector x0, a sequence (xl) of successive approximations of x? = A−1b is built. First,
we note that (1.8) is equivalent to the system involving as a right-hand side the initial
residual r0 = b−Ax0 rather than b:

Ax = b⇐⇒ A(x− x0) = r0.
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The Cayley-Hamilton theorem proves that the inverse of a matrix can be expressed as
a linear combination of its powers. As described in [90], the starting idea of the Krylov
subspace methods, at the l-th iteration, is based on the approximation of A−1 with a
polynomial ql−1 of degree at most l − 1 such that

xl − x0 = ql−1(A)r0.

Finally, we want to find out xl − x0 into the subspace spanned by the product of the
powers of A and the initial residual.

Definition 1.2.1. Let A ∈ RN×N a nonsingular matrix, x0 ∈ RN and r0 = b − Ax0.
The subspace of dimension at most l

Kl(A, r0) = span{r0, Ar0, ..., A
l−1r0}

is called the Krylov subspace associated to A and r0. It is denoted Kl when there is no
ambiguity.

Krylov subspace methods differ particularly from the way we choose xl into the affine
space x0 + Kl. In its general form, the so called Petrov-Galerkin condition involves the
current residual rl = b−Axl and can be written as

Find xl ∈ x0 +Kl such as rl ⊥ Ll, (1.9)

where Ll is some subspace of dimension l and the orthogonality is considered with re-
spect to the canonical inner product.

Before dealing with this condition of orthogonality, we first need to construct a
basis of Kl. The natural basis (r0, Ar0, ..., A

l−1r0) seems to be the simplest choice but
is not interesting from a numerical point of view. Indeed, let us assume that A is
diagonalizable with N eigenpairs denoted {(u1, λ1), ..., (uN , λN )}. The vector Ajr0 can
be expressed under the form Ajr0 =

∑N
i=1 αiλ

j
iuj and tends to behave, when j increases,

as αmaxλjmaxumax where λmax is the largest eigenvalue in modulus. This choice can lead
to a linearly dependence of the basis vectors, that can be troublesome in presence of
rounding errors. An orthonormalization process is generally used to avoid this numerical
degeneration; several variants can be performed. We present here the Arnoldi method
based on the modified Gram-Schmidt process, known to be more stable than the classical
variant [43]. This method is detailed in Algorithm 1.
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Algorithm 1 Arnoldi method to compute an orthonormal basis of Kl(A, r0)
choose x0 ∈ RN and define r0 = b−Ax0
Define β = ‖r0‖2 and v1 = r0/β
for j = 1, ..., l do
wj = Avj
for i = 1, ..., j do
hi,j = wTj vi
wj = wj − hi,jvj

end for
hj+1,j = ‖wj‖2
vj+1 = wj/hj+1,j

end for

Let Vl be defined as Vl = [v1, ..., vl] where the column vectors, called Arnoldi vectors,
form an orthonormal basis of Kl. The columns of Vl are then orthogonal, as for Vl+1 =
[Vl, vl+1]. Furthermore, let us store the orthonormalization coefficients hi,j and define
the associated matrix

Hl+1,l =



h1,1 h1,2 . . . h1,l−1 h1,l

h2,1 h2,2 . . . h2,l−1 h2,l

0 h3,2
. . . ...

...
... . . . . . . hl−1,l−1 hl−1,l
... . . . hl,l−1 hl,l

0 . . . . . . 0 hl+1,l


∈ Rl+1,l.

From Algorithm 1 we directly deduce the Arnoldi relation

AVl = Vl+1Hl+1,l, (1.10)

which can be expressed differently, splitting Hl+1,l such that

Hl+1,l =
(

Hl

hl+1,le
T
l

)
.

Here, Hl ∈ Rl×l is a square upper Hessenberg matrix and el is the l-th column of the
identity matrix Il of order l. Thus

AVl = VlHl + hl+1,lvl+1e
T
l (1.11)
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and
V T
l AVl = Hl. (1.12)

Note that when A is symmetric, Hl is a tridiagonal symmetric matrix and the Arnoldi
procedure can be simplified to generate the Lanczos algorithm. The main benefit in this
case comes from the basis construction which can be done with a short-term recurrence,
just needing vi−1 and vi to compute vi+1. We refer to [99] for details or [65, 66] the
historical references. In this manuscript, we use the Lanczos denomination when sym-
metric matrices are involved, and Hl+1,l and hl+1,l are then denoted Tl+1,l and tl+1,l,
respectively.

From now on, we focus on one specific Krylov subspace method, called GMRES
[91], which can be applied to general nonsingular linear systems and will be used in this
manuscript.

1.2.2 The GMRES method

1.2.2.1 Presentation

The GMRES method is adapted to solve general linear systems as (1.8), respecting the
Petrov-Galerkin condition (1.9) with Ll = AKl. Thanks to the Arnoldi method described
above, we search an approximation of the solution xl into x0 +Kl in the form of

xl = x0 + Vlyl,

where yl ∈ Rl. We know that the column vectors of AVk form a basis of Ll = AKl and
the Petrov-Galerkin condition can be written as

V T
l A

T rl = 0.

From the Arnoldi relation (1.10) and the fact that v1 = r0/‖r0‖2, we obtain

V T
l A

T rl = V T
l A

T (b−Axl),

= V T
l A

T r0 − V T
l A

TAVlyl,

= ‖r0‖2HT
l+1,lV

T
l+1v1 −HT

l+1,lHl+1,lyl,

= HT
l+1,l

(
βe1 −Hl+1,lyl

)
,
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where β = ‖r0‖2 and e1 = [1, 0, ..., 0]T ∈ Rl. Finally, we need to solve the equation

HT
l+1,l

(
βe1 −Hl+1,lyl

)
= 0

which corresponds to the normal equation of the minimization problem

yl = argmin
y∈Rl

‖βe1 −Hl+1,ly‖2. (1.13)

To summarize, computing yl is equivalent to solve a least-squares problem of size (l+1)×l
and the approximate solution xl during the l-th iteration of GMRES is given by xl =
x0 + Vlyl (see Algorithm 2).

Algorithm 2 Main steps of GMRES to solve Ax = b

choose x0 ∈ RN and define r0 = b−Ax0
Define β = ‖r0‖2 and v1 = r0/β
# Arnoldi process
Compute Vl+1 and Hl+1,l such that AVl = Vl+1Hl+1,l
# Least-squares problem
yl = argmin

y∈Rl

‖βe1 −Hl+1,ly‖2

# Approximation of the solution
xl = x0 + Vlyl

Before discussing how to solve the minimization problem (1.13), we prove in Propo-
sition 1.2.1 that GMRES can be presented as a minimum residual problem hence its
name, standing for "General Minimum RESidual".

Proposition 1.2.1. To satisfy the Petrov-Galerkin condition (1.9) with Ll = AKl
amounts to solve the minimization problem

‖rl‖2 = min
y∈Rl
‖βe1 −Hl+1,ly‖2 = min

x∈x0+Kl

‖Ax− b‖2.

Proof. Let yl be the solution of (1.13) and xl = x0 + Vlyl which satisfies the Petrov-
Galerkin condition. Since V T

l+1Vl+1 = Il+1,

‖rl‖2 = ‖r0 −AVlyl‖2,

= ‖Vl+1
(
βe1 −Hl+1,lyl

)
‖2,

= ‖βe1 −Hl+1,lyl‖2.
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The fact that yl is the solution of (1.13) completes the proof.

1.2.2.2 Least-squares problem

To complete the presentation of the GMRES method, we need to detail how to solve
(1.13). In practice, a QR factorization of Hl+1,l is usually performed, using Givens
rotation matrices of the form

Gi =


Ii−1 0 0

0
(
ci si

−si ci

)
0

0 0 Il−i

 ∈ R(l+1)×(l+1),

where ci = cos(θi) and si = sin(θi) are chosen in order to eliminate the subdiagonal ele-
ment hi+1,i of Hl+1,l. Computing these matrices recursively and denoting their product
by Ql = Gl+1Gl...G1, we obtain

QlHl+1,l =
(
Rl

0

)
,

where Rl ∈ Rl×l is an upper triangular matrix. Ql is obviously orthogonal and the
minimization problem (1.13) can be replaced by

yl = argmin
y∈Rl

‖βQle1 −
(
Rl

0

)
y‖2.

Denoting βQle1 = [u1, ..., ul, ul+1]T , the expected solution is then yl = R−1
l [u1, ...ul]T

which can easily be performed by backward substitution. We further note that Propo-
sition 1.2.1 leads to the fact that the current residual verifies ‖rl‖2 = |ul+1|. This
relation is particularly useful to check if the norm of the residual is small enough to
stop the GMRES process and obtain the expected solution of the linear system Ax = b.
More specifically, the stopping criterion is often evaluated using the relative residual
‖rl‖2/‖r0‖2, as one can see in the implementation of GMRES described in Algorithm 3.
It is interesting to note that this iterative process can be implemented such that each
iteration requires only one matrix-vector product of the form Ay.
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Algorithm 3 GMRES algorithm to solve Ax = b

Choose a convergence threshold ε
Choose x0 ∈ RN and define r0 = b−Ax0
Define β = ‖r0‖2, v1 = r0/β and u1 = βe1.
for i = 1, ... do
# Arnoldi process
wi = Avi
for j = 1, ..., i do
hj,i = wTi vj
wi = wi − hj,ivi

end for
hi+1,i = ‖wi‖2
vi+1 = wi/hi+1,i
# Least-squares problem
for j = 2, ..., i do
rj−1,i = cj−1hj−1,i + sj−1hj,i

end for
γ =

√
h2
i,i + h2

i+1,i
ci = hi,i/γ, hi+1,i/γ, ri,i = cihi,i + sihi+1,i
ui+1 = −siui, ui = ciui
if |ui+1| ≤ εβ then
I = i
end for i

end if
end for
yI = R−1

I [u1, ..., uI ]T
# Approximation of the solution
x = x0 + VIyI
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1.2.2.3 Convergence analysis

We start this convergence analysis of GMRES with the fact that the norm of the residual
decreases along the convergence. In fact, we note that the successive Krylov subspaces
are embedded and Proposition 1.2.1 leads to

‖rl−1‖2 ≥ ‖rl‖2.

If l < N exists such that Kl(A, r0) = Kl+1(A, r0), the equality between xl and the
solution x? = A−1b, in exact real arithmetic, for A nonsingular can be proved (see, e.g.,
[50]). Finally, the process is stopped. If such a case does not happen, we have finally
KN (A, r0) = RN and xN is obviously the expected solution.

Moreover, we have seen at the beginning of this current section that the approximate
solution xl is searched as xl = x0 + ql−1(A)r0, where ql−1 is a polynomial of degree at
most l − 1. The associated residual can be written as

‖rl‖2 = ‖b−Axl‖2,

= ‖(IN −Aql−1(A))r0‖2.

Then we obtain a bound for the residual of the l-th iteration given by

‖rl‖2 ≤ ‖r0‖2 min
p∈Pl

‖p(A)‖2

where
Pl = {p | p is a polynomial of degree at most l with p(0) = 1}.

To conclude, we present a more accurate result in the case of A being diagonalizable,
proved for instance in [91].

Theorem 1.2.2. Let A ∈ RN×N be nonsingular and diagonalizable with the spectral
decomposition A = UΛU−1. The GMRES method produces at the l-th iteration a residual
which satisfies the inequality

‖rl‖2 ≤ ‖r0‖2κ(U) min
p∈Pl

max
i=1,...,N

|p(λi)|

where κ(U) = ‖U‖2‖U−1‖2 is the condition number of U and Λ = diag(λ1, ..., λN ).

This bound on the relative residual is instructive in the sense that the convergence
of GMRES is influenced by the minimization of a polynomial over the set of eigenvalues
of A. More precisely, if U is not too ill-conditioned, this bound mainly depends on the
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spectrum of the matrix. When A is symmetric, the similarity transformation matrix U
is orthogonal, i.e. κ(U) = 1. It is more complicated in the nonsymmetric case, and the
spectrum alone is not sufficient to describe the convergence behavior of GMRES [47].
Nevertheless, the existence of clustered eigenvalues can speedup the solution (see e.g.
[24, 97, 14]). We also refer the reader to the recent review paper [69] detailing the role
of the spectrum in forming GMRES residual norms.

1.2.2.4 Restarted variant

A large number of iterations may be necessary to obtain an acceptable solution with
GMRES, particularly when solving large-scale linear systems. This can be problematic
in terms of memory requirement, since one additional vector of size N has to be stored
at each iteration (a basis vector of the Krylov subspace). Moreover, the dimension of
the least-squares problem to solve after the Arnoldi orthogonalization increases with the
number of iterations. To remedy this situation, GMRES is usually restarted after each
m steps defining the variant called GMRES(m) [91]. This method performs cycles of
m iterations, restarting with a vector x0 equal to the last computed iterate xm. The
dimension of the Krylov subspace Km is then controlled and the memory requirements
are limited. The value of this restart parameter will be fixed at 30 in the different
numerical experiments of this thesis.

1.2.3 Ritz and harmonic Ritz pairs

As mentioned before, the convergence rate of the Krylov subspace methods can be
related to the spectrum of the matrix A. In this sense, we detail two ways to deduce
approximated eigenpairs of A, from the Arnoldi method, thanks to Ritz or harmonic
Ritz pairs. This presentation is based on different review papers (see, e.g., [100], [82],
[73] or Section 4.3 in [7]). Both approximating strategies can be introduced as solution
of the problem {

w ∈ Kl
Aw − θw ⊥ Ll

, (1.14)

where Kl is the currently available Krylov subspace, Ll is a given subspace of dimension
l and the orthogonality is considered with respect to the canonical inner product.

1.2.3.1 Ritz pairs

First, we consider the case where Ll = Kl: using the notation coming from the Arnoldi
method described in Section 1.2.1, the conditions (1.14) lead to the solution of the
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equation
V T
l (AVly − θVly) = 0 where w = Vly.

Using (1.12) and the orthogonality of the columns of Vl, we need to solve Hly − θy = 0,
i.e. to find the eigenpairs of the matrix Hl of order l. Besides, we recall that in a
GMRES(m) context, l is less than m and this eigenproblem can be solved cheaply.

Definition 1.2.2. Let A be a nonsingular matrix and assume that l iterations of the
Arnoldi method have been performed so that the Arnoldi relation (1.12) holds. A Ritz
pair is defined as a pair (w = Vly, θ) ∈ CN × C where (y, θ) ∈ Cl × C is an eigenpair of
Hl. w is called the Ritz vector associated to the Ritz value θ.

A Ritz vector is built from an eigenvector of Hl which represents the compression
of A onto the Krylov subspace Kl. We emphasize that if A is symmetric, Hl is also
symmetric and the Ritz pairs are real-valued. In the more general case of A being real-
valued and nonsingular, these pairs can be complex-valued. To conclude, we can easily
express the error coming from this spectral approximation using the Arnoldi relation
(1.11):

Aw = AVly,

Aw = VlHly + hl+1,lvl+1e
T
l y,

Aw = θw + (eTl y)hl+1,lvl+1.

Since ‖vl+1‖2 = 1, this error can finally be written as

‖Aw − θw‖2 = |(eTl y)hl+1,l|. (1.15)

1.2.3.2 Harmonic Ritz pairs

Another interesting case arises when Ll = AKl. Taking AVl as a basis of Ll, the orthog-
onality relation (1.14) becomes

V T
l A

T (AVly − θVly) = 0 where w = Vly.
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The equality (1.10) leads to

V T
l A

TAVly = HT
l+1,lHl+1,ly,

=
(

Hl

hl+1,le
T
l

)T (
Hl

hl+1,le
T
l

)
y,

= HT
l Hly + |hl+1,l|2eleTl y,

and

V T
l A

TVly = HT
l+1,lV

T
l+1Vl+1

(
y

0

)
,

= HT
l+1,l

(
y

0

)
,

= HT
l y.

Eventually, we need to solve the eigenproblem

(Hl + |hl+1,l|2H−Tl ele
T
l )y = θy.

Definition 1.2.3. Let A be a nonsingular matrix and assume that l iterations of the
Arnoldi method have been performed so that the Arnoldi relation (1.12) holds. An har-
monic Ritz pair is defined as a pair (w = Vly, θ) ∈ CN × C where (y, θ) ∈ Cl × C is an
eigenpair of Hl+ |hl+1,l|2H−Tl ele

T
l . We call w the harmonic Ritz vector associated to the

harmonic Ritz value θ.

As remarked before, the dimension of the eigenproblem is moderate when using
GMRES(m); these spectral approximations are thus easily available. However, contrary
to the Ritz case, no simple characterization of the approximation error is known. The
Harmonic Ritz pairs seem to be naturally associated to GMRES given that the same
projection subspace Ll = AKl is used. Besides, it can be shown that the Harmonic Ritz
values are the zeros of the residual polynomial pl ∈ Pl which satisfies rl = pl(A)r0 [44].
Nevertheless, it is common in practice to use Ritz or harmonic Ritz pairs as approximate
eigenpairs with this Krylov subspace method. Both pairs are related, since the harmonic
Ritz values can be seen as inverses of Ritz values for A−1, although with respect to a
subspace that is generated for A [100]. Lastly, the Ritz ones often tend to provide better
approximations for extremal eigenvalues, and the harmonic Ritz values can be expected
to be a better choice to approximate interior eigenvalues [72, 73, 57].
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1.2.4 Preconditioning

As mentioned in [90], Krylov subspace methods are only feasible in combination with
the concept of preconditioning when considering large-scale problems. This notion is
central in this thesis and refers to transforming the original system Ax = b in a new
one, maintaining the same solution but getting more favorable properties for the con-
vergence of iterative methods. The rate of convergence is a complex issue, especially
when nonsymmetric matrices are involved, but it is known that the behaviour is notably
linked to the spectral distribution (see the discussion in Section 1.2.2.3). Precisely, a
fast convergence can be obtained when clusters of eigenvalues away from 0 appear [24].
From this perspective, we can transform the original system in different ways, using a
nonsingular matrix M :

• MAx = Mb (left preconditioning)

•
{
AMx̂ = b

x = Mx̂
(right preconditioning)

•
{
M1AM2x̂ = M1b

x = M2x̂
with M = M1M2 (split preconditioning)

The choice of M is subject to some compromises: the application of M or M1 and
M2 on a vector must not be expensive and the preconditioned matrix MA (respectively
AM or M1AM2) is expected to have favorable properties to decrease the number of it-
erations of the Krylov subspace method. In fact, the preconditioner is either the inverse
of an approximation of A (forward type) or an approximation of the inverse of A (in-
verse type). It is worth mentioning that the number of iterations of the Krylov subspace
method is generally different if M is used as a left, right or split preconditioner, even
though the spectra of the associated preconditioned matrices are identical. In partic-
ular, the stopping criterion is evaluated using the norm of the relative preconditioned
residual which is different for the three strategies. Besides, right preconditioning can be
attractive, since the preconditioned residual is equal to the original one.

Designing preconditioners is an active domain of research (see e.g. [11, 110]) and
there are generally two approaches to construct such techniques. The first one is a
physics-based approach, which requires a complete knowledge of the underlying problem.
We can cite the geometric multigrid preconditioners, whose typical application is in the
numerical solution of elliptic partial differential equations on structured grids. We refer
the reader to [108] for more details. The second approach is related to algebraic methods
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which only use information contained in the coefficients of the matrix A. We succinctly
describe three popular algebraic preconditioning techniques:

• Incomplete LU factorization (Chapter 10 in [90]): this technique is based on the
Gaussian elimination that provides the factorization A = LU where L and U are
respectively lower and upper triangular matrices. The limit of this method, which
can be used as a direct method to solve Ax = b, concerns the fill-in character of
this factorization: even if A is sparse, the factors L and U can be much more dense
than A. In solid mechanics, this phenomena usually occurs when a 3D problem is
studied. To remedy this situation, renumbering can be performed. The main idea
of the relied preconditioning techniques is to control the fill-in phenomena defining
P as a set of couples (i, j) ∈ {1, ..., N}2 and computing the L̃Ũ factorization under
the conditions

L̃i,j = 0 for (i, j) ∈ P and i > j

Ũi,j = 0 for (i, j) ∈ P and i ≤ j.

The particular case where P corresponds to the location of the zeros of A is re-
ferred as ILU(0). It is possible to generalize this procedure calling ILU(k) the
incomplete LU factorization when P defines the sparsity pattern of the matrix
Ak+1. The associated preconditioner M = (L̃Ũ)−1 is finally applied thanks to
successive forward and backward substitutions. We remark that for A symmetric
positive definite, this technique can be adapted to perform an incomplete Cholesky
factorization (denoted ICC(k)).

• Sparse approximate inverses [16]: the idea is to define a sparse matrix M

which approximates A−1 under the condition

M = argmin
M∈S

‖IN −AM‖F ,

where S is a sparsity pattern to impose and ‖.‖F is the Frobenius norm. One
can show that the minimization of this norm can be split in N independent least-
squares problems to compute each column ofM . Several choices exist for S but we
refer to [49] for the most successful method, called SPAI, which uses an adaptive
strategy for the selection of the sparsity pattern. This preconditioning technique
can be very powerful but often very expensive in terms of computational time,
even in a parallel computing framework.
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• Algebraic Multigrid (AMG) [103]: contrary to the physics-based multigrid ap-
proach, no geometrical background on the problem is necessary and this technique
can be applied to discretizations on unstructured grids.

Note that the preconditioners used and developed in this thesis all belong to the
algebraic approach. To conclude, we detail the preconditioned GMRES(m) method in
Algorithm 4. For a generic description, we use a split preconditioner, the left case being
obtained for M2 = IN and the right one for M1 = IN . In a few words, we search
the approximation of the solution xl into x0 +M2Kl(M1r0,M1AM2r0), minimizing the
norm of the residual ‖rl‖2 = ‖M1(b−Axl)‖2 on this affine subspace. We note that each
iteration of GMRES requires one application of A, M1 and M2.

Remark 9. In this manuscript, we refer toM1(b−Axl) and b−Axl as the preconditioned
and actual residuals, respectively.

Algorithm 4 GMRES(m) algorithm with a split preconditioner
Choose a convergence threshold ε
Choose x0 ∈ RN and define r0 = M1(b−Ax0)
Define β = ‖r0‖2, v1 = r0/β and u1 = βe1.
for l = 1, ... do
for i = 1, ...,m do
wi = M1AM2vi
for j = 1, ..., i do
hj,i = wTi vj
wi = wi − hj,ivi

end for
hi+1,i = ‖wi‖2
vi+1 = wi/hi+1,i

end for
ym = argmin

y∈Rm
‖βe1 −Hm+1,my‖2

if |um+1| ≤ ε× β (where um+1 is defined in Section 1.2.2.2) then
x = x0 +M2Vmym

end if
x0 = x0 +M2Vmym
r0 = M1(b−Ax0)

end for

We have detail how to solve a linear system using the Krylov subspace method called
GMRES. It is now important to take into account the saddle point structure of the linear
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systems of (1.7). That is the main purpose of Section 1.3 which notably reviews existing
preconditioning techniques for such systems.

1.3 Linear systems of saddle point structure

The saddle point structure arises in many applications in science and engineering, in-
cluding for instance constrained optimization [30], finite element discretization in fluid
dynamics [32] or in electromagnetism [86]. Hence, there has been in recent years a
growth of interest in saddle point problems, and many solution techniques have been
developed. We refer the reader to [14] for a large survey. Throughout the remainder of
the manuscript, and according to Section 1.1, we consider the linear system

Kx = b⇐⇒
(
G BT

B 0

)(
u

λ

)
=
(
f

g

)
, (1.16)

where G ∈ Rn×n is symmetric positive semidefinite, B ∈ Rm×n, f ∈ Rn, g ∈ Rm and
m ≤ n. This symmetric indefinite problem of dimension N = n+m is assumed to belong
to the class of large and sparse saddle point problems. The saddle point system (1.16)
can also be written as {

Gu+BTλ = f

Bu = g
. (1.17)

Before presenting solution methods for (1.16), we state a theorem related to the
nonsingularity of K which makes sure the existence and uniqueness of the solution.
Theorem 1.3.1 is adapted from Lemma 1.1 in [13], and the related assumptions will be
supposed to be satisfied from now on. This result can be particularly applied on each
linear system of (1.7).

Theorem 1.3.1. Let K ∈ RN×N be the coefficient matrix in (1.16). Assume that G is
symmetric positive semidefinite, B has full rank m and N (G) ∩ N (B) = {0}. Then K
is nonsingular.

Proof. We focus here on the null space of K solving the equation Kx = 0, or equivalently{
Gu+BTλ = 0
Bu = 0

, (1.18)

which implies directly that u ∈ N (B). Using this statement and premultiplying the first
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equality in (1.18) by uT , we obtain

uTGu+ uTBTλ = 0

and finally
uTGu = 0.

The symmetric semidefinite positiveness of G implies that u ∈ N (G) and, from the
assumption N (G)∩N (B) = {0}, we conclude that u = 0. Then, replacing u by 0 in the
first equality of (1.18), the full rank property of B leads to the nullity of λ. The solution
of Kx = 0 is thus trivial and K is nonsingular.

In this manuscript, we focus on the case where the (1,1) block G is symmetric positive
semidefinite. As we will see later in this section, this property can imply some restrictions
about the choice of the method used to solve the saddle point system (1.16). Theory
has been developed in this sense, called the augmented-Lagrangian approach (see e.g.
[41, 42, 81]), which is based on the transformation of the original system (1.16) into the
equivalent one (

G+BTWB BT

B 0

)(
u

λ

)
=
(
f +BTWg

g

)
. (1.19)

The matrix W ∈ Rm×m has to be suitably determined. Choosing W as a symmetric
positive definite matrix seems to be advantageous since this property added to the fact
that N (G) ∩ N (B) = {0} implies the symmetric positive definiteness of G + BTWB.
In particular, this block is nonsingular. Hence, we can consider that the (1,1) block
is nonsingular, without loss of generality. We aim at exposing in this part different
methods to solve (1.17), which can be split into two families: the “segregated” and the
“coupled” methods.

1.3.1 Segregated solvers

This family consists in computing successively u and λ in (1.16). We present here the
Schur complement reduction and the null space methods.

1.3.1.1 Schur complement reduction

Let us consider that G is nonsingular, which can be made possible with the augmented-
Lagrangian approach introduced above. The idea is to multiply the first equation in
(1.17) by BG−1 and to subtract the second relation to deduce the equation satisfied by
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λ:
BG−1BTλ = BG−1f − g. (1.20)

The matrix S = −BG−1BT is known as the Schur complement of the saddle point
system. Once the solution λ? of (1.20) has been computed, u finally satisfies the equation

Gu = f −BTλ?.

The efficiency of this method is particularly related to the properties of the matrices
G and B. Indeed, the Schur complement matrix is generally dense, especially when B
contains one or more dense rows which leads to a fill-in phenomena (see e.g. Chapter 13.2
in [90]). Thus, the situation is favorable when the linear system of the form Gy = z is
easy to solve, for instance when a factorization of this matrix can be cheaply computed.
In this case, S may not be formed explicitly and it is possible to use an iterative method
to solve (1.20), which only needs matrix-vector products of the form Sy.

1.3.1.2 Null space methods

On the other hand, the null space method involves the knowledge of a basis of N (B) [14,
26]. Hence, denoting Z a matrix such that BZ = 0, the procedure can be summarized
as follows:

• Knowing û as a particular solution of Bu = g, we can search u in the form of
u = û+ Zw. If we substitute this expression in the first equality of (1.17) and we
premultiply the result by ZT , w is the solution of

ZTGZw = ZT (f −Gû).

The matrix on the left-hand side is of order n −m and the assumption N (G) ∩
N (B) = {0} ensures its nonsingularity. We denote the solution by w? and u? =
û+ Zw?.

• Using the second equation of (1.17), λ is finally the solution of the overdetermined
system

BTλ = f −Gu?. (1.21)

Several issues need to be handled, especially for the computation of the matrix Z, the
vector û and the solution of (1.21). An overview about these issues is described in [14].
We emphasize that this method does not involve the matrix G−1 and is adapted when
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G is singular, as long as the assumption N (G) ∩N (B) = {0} is satisfied. Furthermore,
it can be attractive when a sequence of saddle point linear systems needs to be solved
with a fixed matrix B and a large number of constraints m, since the associated matrix
Z can be computed only once. We remark that this approach is currently investigated
in Code_Aster and we refer the reader to [26] for more details. However, the numerical
results are not totally satisfactory, particularly in terms of performance and robustness
issues. Hence, the methods developed in this manuscript related to the improvement of
preconditioning techniques are relevant for the problems studied at EDF. They belong
to the class of coupled solvers described next.

1.3.2 Coupled solvers

The coupled methods are different from the segregated ones, in the sense that they
compute u and λ simultaneously, using the whole system (1.16).

1.3.2.1 Global solvers (with description of the available solvers in Code_Aster)

Obviously, it is possible to treat the global matrix of (1.16) without taking into account
the saddle point structure. On the one hand, the direct solvers can be used, based on
sparse Gaussian factorization of the matrix K. We present here two methods available
in Code_Aster [19]:

• MULT_FRONT is an inhouse multifrontal method, parallelized in shared mem-
ory (OpenMP). This method does not use any pivoting, and a breakdown can occur
due to zeros on the diagonal of the (2, 2) block in (1.16). To overcome this situ-
ation, the original system is transformed into an equivalent one, using the notion
of “double Lagrange” multipliers [85]:

G αBT αBT

αB −αIm αIm

αB αIm −αIm



u

λ1

λ2

 =


f

αg

αg

 , with
{
λ1 = λ2

λ = α(λ1 + λ2)
. (1.22)

We note that Bu = g is multiplied by an arbitrary coefficient α > 0, chosen in
order to obtain coefficients in the matrix αB of similar magnitude with the ones of
G. In practice, as described in [85], α is equal to the average of the extremal values
of the diagonal terms of G. This coefficient will be used later in this manuscript.

• Since a few years, it is possible to factorize the matrix of (1.16) using the MUMPS
library [2]. The methods from this software allow the treatment of symmetric
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indefinite matrices (LDLT factorizations) in a distributed memory environment.

On the other hand, (1.16) can be solved with preconditioned Krylov subspace meth-
ods. Different techniques are accessible in Code_Aster, such as:

• An inhouse preconditioned conjugate gradient method (PCG), used for both sym-
metric positive definite and indefinite linear systems. Two types of precondition-
ers can be used, including an incomplete LU factorization (LDLT_INC), or a
complete direct factorization performed in single precision arithmetics using the
MUMPS library (LDLT_SP ).

• Several Krylov subspace methods such as GMRES, performed with the PETSc
library [3]. Both preconditioning factorizations LDLT_INC and LDLT_SP can
be computed, as well as different algebraic multigrid preconditioners (see [19] for
more details).

In practice, the relevance of MUMPS, either used as a direct solver or as a precon-
ditioner via LDLT_SP , has been shown in Code_Aster. In general, the direct solver
variant is used to solve one or several linear systems with a fixed left-hand side. Actually,
the factorization of this matrix is computed once and reused to solve the possible other
linear systems. When a sequence with slowly varying matrices is treated, the precon-
ditioning technique LDLT_SP combined with a Krylov subspace method is often the
method of choice: the factorization in single precision arithmetics of the first matrix can
also been used as a preconditioner for the subsequent ones. Precisely, when the effect of
this preconditioner declines during the sequence, a new factorization can be performed.
Using single precision arithmetics for the preconditioner is interesting in the sense that
we can roughly divide by two the memory consumption and simultaneously decrease the
computational time of the factorization. Finally, we note that even for the solution of
one linear system, a preconditioned Krylov subspace method can be more efficient than
a direct solver. In fact, a fill-in phenomenon, already described in Section 1.2.4, can
occur during the factorization, and the LDLT_SP preconditioner combined with an
iterative method can be more attractive, especially in terms of memory requirements.

In this thesis, we propose preconditioners update formulas to improve the convergence
rate of Krylov subspace methods applied to (1.16). In particular, we will see in Chapter
3 that one of these techniques can improve the effect of the LDLT_SP preconditioner.
Alternatively, we provide next an overview of block preconditioners for saddle point
systems existing in the literature, which can give other attractive candidates.
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1.3.2.2 Block preconditioners for saddle point systems

This issue is widely studied in the literature, with specific applications. For instance, we
refer the reader to [14] for a large overview, to [96] for generalized saddle point systems
with application to Navier-Stokes problems, or to the PhD thesis [61]. We first recall
the type of saddle point matrix of interest:

K =
(
G BT

B 0

)
,

whereG is real-valued and symmetric positive semidefinite. The case whereG is symmet-
ric positive definite in the whole space RN has been largely analysed by many authors
[15, 17, 98, 79], and we can possibly use the augmented-Lagrangian technique to be
compatible with this framework. We aim at presenting here some popular block precon-
ditioners, split into several classes, without being exhaustive. Note that they involve the
effect of nonsingular matrices G0 and S0 which approximate G and the Schur comple-
ment S = −BG−1BT respectively. In the following, matricesM are approximations of
K and we useM−1 as a preconditioner for Krylov subspace methods.

• Block diagonal preconditioners
The matrix

M =
(
G0 0
0 −S0

)

is a block diagonal preconditioner. In [74], the authors prove that for G0 = G

and S0 = S, the spectrum of M−1K is reduced to the 3 eigenvalues {1, 1
2 ±

√
5

2 }.
This result is theoretically attractive, since the associated preconditioned Krylov
subspace method will terminate in at most 3 iterations. Nevertheless, this exact
preconditioner can not be used in practice, since its use is approximately as expen-
sive as computing the inverse of the saddle point matrix K [14]. In this sense, an
analysis of the eigenvalue distribution is made in [96], particularly when G0 ' G

and S0 = −BG−1
0 BT .

• Block triangular preconditioners
Let us introduce the upper triangular preconditioner

M =
(
G0 BT

0 S0

)
.
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The application ofM−1 as a preconditioner can be based on the factorization

M =
(
G0 0
0 S0

)(
In G−1

0 BT

0 Im

)
.

For G0 = G and S0 = S, a direct calculation leads to

KM−1 =
(

In 0
BG−1 Im

)
,

then Λ(M−1K) = {1}. As mentioned before, approximations of G and S have to
be used in practice and we especially refer to [62] for a spectral characterization.
The following block lower triangular preconditioner can also be used with similar
properties:

M =
(
G0 0
B S0

)
.

• Constraint preconditioners
The matrix

M =
(
G0 BT

B 0

)

is known as a constraint preconditioner. In [58] and [28], a precise spectral analysis
is produced. We also refer to the study about inexact constraint preconditioners in
an interior point framework, in [17]. The idea is to use an approximation B0 ' B
and to characterize the spectrum of the preconditioned matrix.
The application ofM−1 as a preconditioner can be based on the decomposition

M =
(

In 0
BG−1

0 Im

)(
G0 0
0 S0

)(
In G−1

0 BT

0 Im

)
,

where S0 = −BG−1
0 BT .

• Saddle point and nonstandard inner products
One can note that most of the block preconditioners introduced above are either
nonsymmetric or symmetric indefinite and the GMRES method described in Sec-
tion 1.2 can be used as the Krylov subspace method. However, some authors have
considered finding a nonstandard inner product, defined by a block diagonal ma-
trix, in which the preconditioned saddle point matrix is self-adjoint [22, 102, 87, 64].
Hence, e.g. the MINRES and Conjugate Gradient methods, which are adapted to
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solve respectively symmetric indefinite and symmetric positive definite systems,
can be used with this nonstandard inner product.

All these preconditioning techniques seem to be attractive but the choice of G0 ' G
and especially the choice of S0 ' S are two important issues. A related discussion is
available in [14]. In fact, these approximations are strongly problem-dependent. For
instance, the pressure mass matrix in Stokes problems is a natural approximation of
the Schur complement and is cheaply available (see e.g. Chapter 6 in [32]), but this
convenient situation does not happen in general.

Finally, we recall that the original system (1.16) involves a symmetric positive
semidefinite (1,1) block G. Some block preconditioning strategies using the augmented-
Lagrangian approach have been proposed. We can cite the contributions of Rees and
Grief in [89] and Huang et al. in [56]. We focus here on two preconditioners issued from
these references:

Md =
(
G+BTWB 0

0 W−1

)
andMt =

(
G+BTWB 2BT

0 −W−1

)
, (1.23)

whereW is anm×m symmetric positive definite weighting matrix. As mentioned before,
the matrixG+BTWB is also symmetric positive definite, as well asMd. Spectral studies
of the preconditioned operatorsM−1

d K andM−1
t K have been performed in [89] and [56]

respectively, and we recall the main properties in Theorem 1.3.2.

Theorem 1.3.2. Let K be the saddle point matrix defined in (1.16), and Md and Mt

be defined in (1.23) with W symmetric positive definite of order m.

(a) The matrix M−1
d K has two distinct eigenvalues which are given by λ1 = 1 and

λ2 = −1 with multiplicity n and dim(N (G)), respectively. The remaining eigenvalues
lie in the interval (−1, 0).

(b) The matrix M−1
t K has the eigenvalues 1 with multiplicity n + dim(N (G)). The

remaining eigenvalues lie in the interval (0, 1).

Both preconditioners are important in this thesis, since approximations of Md and
Mt will be used in the numerical experiments of Chapter 2 and 3, respectively. The
goal is now to define W . The choice W = γIm with γ = ‖G‖2

‖B‖2
2
(or an approximation

thereof) has been found to perform well in practice [42]. Indeed, γ can be interpreted
as a coefficient to obtain an augmenting term BTWB of norm of similar magnitude in
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comparison with G. This scaling strategy can be related to the choice of the coefficient
α in (1.22) for the “double Lagrange” method used in Code_Aster. Actually, we will
choose γ = α in our numerical tests, since this coefficient is immediately available. We
also note that B is a very sparse matrix in our setting. As explained in Section 1.1.1, B
is related to the dualization of single or multifreedom constraints. These relations are
local in the sense that they involve either one node or adjacent nodes of the mesh. If B
contains only essential boundary conditions, B admits one nonzero coefficient per row
and BTB is a diagonal matrix. Thus, the matrix γBTB does not degrade significantly
the sparsity pattern of G+ γBTB.

1.4 Conclusions

In this chapter, we have carried out a presentation of the mathematical formulation com-
ing from solid mechanics problems, and have provided a short introduction of Krylov
subspace methods. Particularly, we have focused on the solution of saddle point systems
and some attractive preconditioners have been detailed. Since the framework of this
thesis is related to the solution of sequences of saddle point systems, the following chap-
ters focus more generally on improvement of preconditioning techniques for symmetric
indefinite and nonsymmetric systems, respectively.



Chapter 2

Limited memory preconditioners
for symmetric indefinite systems

This chapter states our main contribution in proposing and studying a class of limited
memory preconditioners (named LMP±), adapted to solve a sequence of linear algebraic
symmetric indefinite systems with a Krylov subspace method. We first analyse this
LMP± class theoretically and then we illustrate its efficiency on systems of saddle point
structure arising in solid mechanics, as described in Section 1.1.

When the coefficient matrices in a sequence are symmetric positive definite, Morales
and Nocedal [71] have proposed a preconditioner which has the form of a limited memory
quasi-Newton matrix. This automatic preconditioner generated using information from
the conjugate gradient method [65, 66] does not require explicit knowledge of the coef-
ficient matrix and is therefore suitable for problems where only products of the matrix
times a vector can be computed, as in data assimilation. The contribution [71] extends
earlier attempts in this direction; see, e.g., [75, 80]. More recently, Gratton, Sartenaer
and Tshimanga [46] have defined a class of limited memory preconditioners (LMP) based
on limited memory quasi-Newton formulas that ensures good spectral properties of the
preconditioned matrix. These preconditioners require a small number k of linearly in-
dependent vectors and may also be used to improve an existing (possibly application
dependent) first-level preconditioner. This family can be seen as a block variant of the
BFGS updating formula for quadratic problems [78, 93]. A spectral analysis of the pre-
conditioned matrix has shown that the LMP class is able to cluster at least k eigenvalues
at 1 and that the eigenvalues of the preconditioned matrix enjoy interlacing properties
with respect to the eigenvalues of the original matrix. The efficiency of the precondi-
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tioner has been shown on a real-life application in data assimilation [46, 109].

Our main objective here is to propose an extension of the limited memory precondi-
tioners to be used when the coefficient matrices are symmetric indefinite. To the best
of our knowledge, we are unaware of any proposition in this direction. The chapter is
organized as follows. In Section 2.1, we first present the class of LMPs developed in the
symmetric positive definite case studied in [46] and [109]. We extend their definition to
the symmetric negative definite case. In Section 2.2, the main theoretical section of the
chapter, we extend the class of LMPs to the symmetric indefinite case (called LMP±)
and expose our three main contributions. First, we derive a formula to characterize the
spectrum of the preconditioned operator. Secondly, we show that the eigenvalues of the
preconditioned matrix enjoy interlacing properties with respect to the eigenvalues of the
original matrix provided that the k vectors have been prior projected onto the invariant
subspaces associated with the eigenvalues of the original matrix in the open right and
left half-plane, respectively. Third, we focus on theoretical properties of the Ritz-LMP±
variant, where Ritz information is used to determine the k vectors. After discussing some
implementation issues, we explore in Section 2.4 the numerical performance of the limited
memory preconditioner used to improve an existing first-level preconditioner on possibly
large-scale applications in solid mechanics, as introduced before in this manuscript.

2.1 Limited memory preconditioners for symmetric defi-
nite matrices

In this section, we briefly review the main properties of the limited memory precondi-
tioners for linear systems involving symmetric (positive or negative) definite matrices
[46].

2.1.1 Limited memory preconditioners for symmetric positive definite
matrices

Many problems in computational science and engineering require the solution of a se-
quence of linear systems of type Axi = bi, i = 1, . . . , I with A ∈ RN×N being symmetric
positive definite, xi ∈ RN and bi ∈ RN . For large-scale problems the conjugate gradient
method [54] is generally the method of choice for solving such a sequence, where A could
represent either the original or an already preconditioned operator. The convergence be-
haviour of the conjugate gradient method can be potentially improved with the notion
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of limited memory preconditioner defined next [46, Definition 2.1].

Definition 2.1.1. Let A be a symmetric positive definite matrix of order N and assume
that S ∈ RN×k is of full column rank, with k ≤ N . The symmetric matrix H of order
N defined as

H = (IN − S(STAS)−1STA)(IN −AS(STAS)−1ST ) + S(STAS)−1ST (2.1)

is called the limited memory preconditioner (LMP).

This family can be seen as a block variant of the BFGS updating formula for quadratic
problems [78, 93]. Actually, let define the strictly convex function

q(x) = xTAx− xT b,

where A ∈ RN×N is symmetric positive definite, x and b ∈ RN . During the BFGS
process at iterate k, an approximation of the inverse of the Hessian of q (i.e. A−1) is
obtained as

Hk = (IN −
sky

T
k

yTk sk
)Hk−1(IN −

yks
T
k

yTk sk
) + sks

T
k

yTk sk
. (2.2)

In this expression, sk = xk−xk−1 is obtained from a line search along the descent direc-
tion and yk = ∇q(xk) − ∇q(xk−1) = Ask. The block generalization yielding Definition
2.1 is detailed in [46]. This relation is important here, since the different preconditioning
update techniques developed in this manuscript are based on optimization methods (see
Section 3.1 for the nonsymmetric case).

H defined by (2.1) is a symmetric positive definite preconditioner [46, Lemma 3.3]
satisfying HAS = S, i.e. the limited memory preconditioner is able to cluster at least
k eigenvalues of HA at 1. In addition, the eigenvalues of the preconditioned matrix
HA enjoy interlacing properties with respect to the eigenvalues of the original matrix
A. This central result on the clustering of the spectrum of the preconditioned matrix
HA is stated in Theorem 2.1.1 given next [46, Theorem 3.4].

Theorem 2.1.1. Let the positive real numbers σ1, · · · , σN denote the eigenvalues of A
sorted in non decreasing order. Then the set of eigenvalues µ1, · · · , µN of HA can be
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split in two subsets

σj ≤ µj ≤ σj+k for j ∈ {1, · · · , N − k},
µj = 1 for j ∈ {N − k + 1, · · · , N}.

In addition, the condition number of HA can be bounded as follows

maxj=1,··· ,N µj
minj=1,··· ,N µj

≤ max{1, σN}
min{1, σ1}

. (2.3)

Figures 2.1 and 2.2 give two illustrations of this theorem, for random symmetric
positive definite matrices A ∈ R30×30 and a random matrix S ∈ R30×5. Figure 2.1
shows a case where 1 lies in [σ1, σN ], while Figure 2.2 is related to the situation where
the eigenvalues of A are larger than 1. The corresponding spectral property in the
symmetric indefinite case is further discussed in Section 2.2.4.
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Figure 2.1: Eigendistribution of A and AH: case of 1 ∈ [σ1, σN ].
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Figure 2.2: Eigendistribution of A and AH: case of eigenvalues of A larger than 1.

2.1.2 Limited memory preconditioners for symmetric negative definite
matrices

As required later in Section 2.2, we consider the extension of limited memory precondi-
tioners to the case of symmetric negative definite matrices. A straightforward adaptation
of Theorem 2.1.1 is given next as a corollary.

Corollary 2.1.2. Let A be a symmetric negative definite matrix of order N and assume
that S ∈ RN×k is of full column rank, with k ≤ N . Let H denote a symmetric matrix
of order N given by (2.1) in Definition 2.1.1. Let the negative real numbers σ1, · · · , σN
denote the eigenvalues of A, sorted in non decreasing order. Then the set of eigenvalues
µ1, · · · , µN of HA can be split in two subsets

σj ≤ µj ≤ σj+k for j ∈ {1, · · · , N − k},
µj = 1 for j ∈ {N − k + 1, · · · , N}.

In addition, the condition number of HA can be bounded as follows

maxj=1,··· ,N |µj |
minj=1,··· ,N |µj |

≤ max{1, |σ1|}
min{1, |σN |}

. (2.4)
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2.2 Limited memory preconditioners for symmetric indef-
inite matrices

In this section, we expose the main theoretical properties of the proposed limited memory
preconditioners applied to the solution of symmetric indefinite linear systems.

2.2.1 Definition

We address the solution of sequence of linear systems of type

Axi = bi i = 1, . . . , I (2.5)

with A ∈ RN×N being symmetric indefinite, xi ∈ RN and bi ∈ RN . We emphasize that
the matrix is considered to be fixed in the forthcoming analysis. Nevertheless, we will
also use the proposed preconditioning technique, defined next, for sequences with slowly
varying matrices (see Sections 2.4.4 and 2.4.5 ).

Definition 2.2.1. Let A be a symmetric indefinite matrix of order N . Assume that
S ∈ RN×k, with k ≤ N , is such that STAS is nonsingular. The symmetric matrix H
defined as

H = (IN − S(STAS)−1STA)(IN −AS(STAS)−1ST ) + S(STAS)−1ST (2.6)

is called the limited memory preconditioner in the indefinite case (LMP±).

This definition is quite close to Definition 2.1.1. The difference is related to the
assumption about S. When A is symmetric indefinite, the linear independence of the
columns of S is not sufficient to insure the nonsingularity of STAS. Even the simple
case k = 1 can be problematic: if A = diag(1,−1) and S = [1, 1]T , we obtain STAS = 0.

Before studying the spectrum of the preconditioned operator AH, we give a first
useful property of the LMP± as a straightforward adaptation of Theorem 3.1 in [46].
Proposition 2.2.1 shows the invariance of H defined by (2.6) under a change of basis of
S = R(S).

Proposition 2.2.1. Let S ∈ RN×k such that STAS is nonsingular. If Z = SX, where
X is a k × k invertible matrix, replacing S by Z in (2.6) does not change H.
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2.2.2 Spectrum of AH

Now, we aim at characterizing the spectrum of the preconditioned operator AH in the
indefinite case. This first contribution is stated in Theorem 2.2.2.

Theorem 2.2.2. Let A be a symmetric indefinite matrix of order N and H be given by
(2.6) in Definition 2.2.1. Assume that the columns of Z ∈ RN×k form an orthonormal
basis for S and that the columns of Z⊥ ∈ RN×(N−k) form an orthonormal basis for S⊥.
The spectrum of the preconditioned operator AH is then given by

Λ(AH) = {1} ∪ Λ((ZT⊥A−1Z⊥)−1).

Proof. A direct calculation leads to

AH = PS⊥,ASAPS⊥,AS + IN − PS⊥,AS ,

with PS⊥,AS = IN − AS(STAS)−1ST the oblique projection onto S⊥ along AS. To
determine the spectrum of AH we consider the matrix [Z,Z⊥]T AH [Z,Z⊥] which is
congruent to AH

[Z,Z⊥]T AH [Z,Z⊥] =
(
ZTAHZ ZTAHZ⊥

ZT⊥AHZ ZT⊥AHZ⊥

)
.

Since R(PS⊥,AS) = S⊥, N (IN − PS⊥,AS) = S⊥ and the fact that Z has orthonormal
columns, we obtain

[Z,Z⊥]T AH [Z,Z⊥] =
(

Ik 0k,N−k
ZT⊥AHZ ZT⊥PS⊥,ASAZ⊥

)
. (2.7)

Hence we deduce that 1 is an eigenvalue of AH at least of multiplicity k. Moreover, the
spectrum of PS⊥,ASA can be characterized via the inverse of A as recently shown in [38,
Corollary 3.25]

Λ(PS⊥,ASA) = {0} ∪ Λ((ZT⊥A−1Z⊥)−1).

Since N (PS⊥,ASA) = S, we obtain

Λ(ZT⊥PS⊥,ASAZ⊥) = Λ((ZT⊥A−1Z⊥)−1).

Finally, [Z,Z⊥] being orthonormal, we have Λ(AH) = Λ([Z,Z⊥]T AH [Z,Z⊥]) and the
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proof is complete.

Theorem 2.2.2 is valid for any set of k linearly independent vectors such that STAS
is nonsingular. We further note that the characterization of the spectrum of AH given
in Theorem 2.2.2 holds for any invertible operator A, see [38, Theorem 3.24]. As shown
in Theorem 2.2.2, the eigenvalues of AH are located on the real axis. The question of
the sign of the eigenvalues of AH is addressed more precisely next.

2.2.3 Sign of the eigenvalues of AH and inertia of H

In light of (2.7), the spectrum of AH is made of at least k eigenvalues equal to 1 and
of eigenvalues of ZT⊥PS⊥,ASAZ⊥. Hence, to characterize the sign of the eigenvalues of
AH, we need to determine the inertia of ZT⊥PS⊥,ASAZ⊥ as stated next in Theorem 2.2.3.
We recall that the inertia of a symmetric matrix B is a triplet of nonnegative integers
(denoted as In(B) = (m, z, p)), where m, z and p are the number of negative, zero, and
positive elements of Λ(B) [43].

Theorem 2.2.3. Let A be a symmetric indefinite matrix of order N and H be given by
(2.6) in Definition 2.2.1. The inertia of ZT⊥PS⊥,ASAZ⊥ is then given by

In(ZT⊥PS⊥,ASAZ⊥) = In(A)− In(STAS).

Proof. We consider the symmetric matrix B defined as

B = [Z,Z⊥]T A [Z,Z⊥],

or equivalently

B =
(
ZTAZ ZTAZ⊥

ZT⊥AZ ZT⊥AZ⊥

)
.

We remark that B and A have the same inertia due to Sylvester’s law of inertia [43].
Since ZTAZ is nonsingular due to Definition 2.2.1, we can apply the Haynsworth inertia
additivity formula [52] to obtain

In(B) = In(ZTAZ) + In(ZT⊥AZ⊥ − ZT⊥AZ(ZTAZ)−1ZTAZ⊥),

that also reads
In(B) = In(ZTAZ) + In(ZT⊥PZ⊥,AZAZ⊥).
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Since ZTAZ and STAS have the same inertia and PZ⊥,AZA = PS⊥,ASA, we obtain the
final result.

Theorem 2.2.3 is helpful if the symmetric and indefinite operator A admits l negative
eigenvalues where l ≤ k << N . In such a case, if S ∈ RN×k is known such that STAS
admits l negative eigenvalues, Theorem 2.2.3 states that AH admits only real positive
eigenvalues. We conclude this section by characterizing the inertia of H.

Theorem 2.2.4. Let A be a symmetric indefinite matrix of order N and H be given by
(2.6) in Definition 2.2.1. Assume that the columns of W ∈ RN×k form an orthonormal
basis for AS and that the columns of W⊥ ∈ RN×(N−k) form an orthonormal basis for
(AS)⊥. The inertia of H is then given by

In(H) = In(STAS) + In(W T
⊥P

T
S⊥,ASPS⊥,ASW⊥).

Proof. Similarly as in Theorem 2.2.3, we consider the symmetric matrix C defined as

C = [W,W⊥]T H [W,W⊥].

C and H have the same inertia due to Sylvester’s law of inertia. Furthermore, since
the columns of W form an orthonormal basis for AS, it exists a nonsingular matrix
X ∈ Rk×k such that W = ASX. We obtain after calculation

C =
(
XTSTASX XTSTW⊥

W T
⊥SX W T

⊥HW⊥

)
.

By applying the Haynsworth inertia additivity formula on C and the Sylvester’s law of
inertia on XTSTASX, we have

In(H) = In(STAS) + In(W T
⊥HW⊥ −W T

⊥SX(XTSTASX)−1XTSTW⊥)

= In(STAS) + In(W T
⊥ (H − S(STAS)−1ST )W⊥)

Since
H = P TS⊥,ASPS⊥,AS + S(STAS)−1ST ,

the proof is complete.

An important consequence of Theorem 2.2.4 is that the number of negative eigenval-
ues ofH is equal to the number of negative eigenvalues of STAS, sinceW T

⊥P
T
S⊥,ASPS⊥,ASW⊥
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is symmetric positive definite.

2.2.4 Nonexpansion of the spectrum of AH

In this section, we investigate the question related to the nonexpansion of the spectrum
of AH. In general, this property does not hold any longer in the indefinite case as
illustrated by this simple example

A =
(

2 0
0 −1

)
, S =

(
1
1

)
, H =

(
3 5
5 9

)
, Λ(AH) = {−4} ∪ {1}.

The second contribution of this chapter is to show that a nonexpansion property of
the spectrum of AH holds provided that the k linearly independent vectors defining S
have been prior projected onto the invariant subspaces associated with the eigenvalues
of A in the open right and left half-plane, respectively. These projection operators in-
volving the matrix sign function of A are defined next [55].

Definition 2.2.2. Let A ∈ RN×N be a symmetric indefinite matrix of order N and let
sign(A) ∈ RN×N denote the matrix sign function 1 of A defined as sign(A) = (A2)−

1
2A.

Let I+(A) and I−(A) denote the invariant subspaces associated with the eigenvalues in
the right and left half-plane, respectively. We define P+(A) = (IN + sign(A))/2 as the
projection operator onto I+(A) and P−(A) = (IN−sign(A))/2 as the projection operator
onto I−(A), respectively.

We denote by Q+ ∈ RN×N+ (Q− ∈ RN×N−) an orthonormal basis of I+(A) (I−(A),
respectively) and by Q ∈ RN×N the orthonormal matrix defined as Q = [Q+, Q−] with
N = N+ + N−. Given S̃ ∈ RN×k, S = [S+, S−] (S+ ∈ RN×k+ , S− ∈ RN×k− with
k = k+ + k−, k ≤ N) consists of k projected vectors obtained as

S+ = Q+Q
T
+[s̃i1 , ..., s̃ik+

], (2.8)

S− = Q−Q
T
−[s̃j1 , ..., s̃jk− ], (2.9)

where [s̃i1 , ..., s̃ik+
] ([s̃j1 , ..., s̃jk− ]) corresponds to k+ (k−, respectively) distinct columns

1. A (being symmetric indefinite) has no eigenvalues on the imaginary axis, so that the matrix sign
function of A is defined.



2.2. Limited memory preconditioners for symmetric indefinite matrices 67

of S̃. Equivalently, we can write:

S+ = Q+ S̃+, S̃+ ∈ RN+×k+ , (2.10)

S− = Q− S̃−, S̃− ∈ RN−×k− . (2.11)

The main goal of the next developments is to show that a property of nonexpansion
of the spectrum of HA can be obtained by solving two tractable subproblems related
to either I+(A) or I−(A). We first prove that I+(A) and I−(A) are H-invariant, by
showing Lemma 2.2.5 and Lemma 2.2.6 successively.

Lemma 2.2.5. Define T ∈ RN×N as T = S(STAS)−1ST , T+ ∈ RN×N as T+ =
S+(ST+AS+)−1ST+ and T− ∈ RN×N as T− = S−(ST−AS−)−1ST−, respectively. T can be
decomposed as

T = T+ + T−.

Proof. Since I+(A) and I−(A) are A-invariant and orthogonal subspaces, the relation
ST−AS+ = 0k−,k+ holds. Hence STAS can be written as

STAS = [S+, S−]TA[S+, S−] =
(
ST+AS+ 0k+,k−

0k−,k+ ST−AS−

)
.

Since STAS is assumed to be nonsingular, ST+AS+ and ST−AS− are also nonsingular and
we deduce

S(STAS)−1ST = [S+, S−]
(

(ST+AS+)−1 0k+,k−

0k−,k+ (ST−AS−)−1

)
[S+, S−]T ,

= S+(ST+AS+)−1ST+ + S−(ST−AS−)−1ST−,

which completes the proof.

Lemma 2.2.6. I+(A) is H-invariant

∀v ∈ I+(A) Hv ∈ I+(A). (2.12)

Proof. Due to Lemma 2.2.5 and orthogonality of I+(A) and I−(A), we obtain

∀v ∈ I+(A) Tv = T+v,

meaning that Tv ∈ I+(A). We also deduce that ATv ∈ I+(A) since I+(A) is A-invariant.
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Furthermore Hv can be simply written as

Hv = (IN − TA)(IN −AT )v + Tv.

Hence we deduce relation (2.12) i.e. I+(A) is H-invariant. We also note that a similar
proof leads to the H-invariance of I−(A).

Lemma 2.2.7 states a similarity property that is central in the analysis of Λ(HA).

Lemma 2.2.7. Let A+ = QT+AQ+ ∈ RN+×N+ (A− = QT−AQ− ∈ RN−×N−) denote the
orthogonally projected restriction of A with respect to the basis Q+ (Q−, respectively).
Let H+ = QT+HQ+ ∈ RN+×N+ (H− = QT−HQ− ∈ RN−×N−) denote the orthogonally
projected restriction of H with respect to the basis Q+ (Q−, respectively). Then QTHAQ
admits the following decomposition

QTHAQ =
(
H+A+ 0N+,N−

0N−,N+ H−A−

)
.

As a consequence, Λ(HA) = Λ(H+A+) ∪ Λ(H−A−).

Proof. Since I+(A) and I−(A) are A-invariant and orthogonal subspaces, the relation
QT−AQ+ = 0N−,N+ holds. QTAQ can then be written as

QTAQ =
(

A+ 0N+,N−

0N−,N+ A−

)
.

Furthermore due to the H-invariance of I+(A) (Lemma 2.2.6) and the orthogonality
of Q, we deduce that QT−HQ+ = 0N−,N+ . Thus we obtain

QTHQ =
(

H+ 0N+,N−

0N−,N+ H−

)
,

which leads to:

QTHAQ =
(
H+A+ 0N+,N−

0N−,N+ H−A−

)
.

This similarity relation immediately implies that Λ(HA) = Λ(H+A+) ∪ Λ(H−A−).

Consequently, we must now focus on the analysis of H+A+ and H−A−, respectively.
In Lemma 2.2.8, we show that H+ and H− are both of limited memory preconditioner
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type.

Lemma 2.2.8. Define T̃+ ∈ RN+×N+ as T̃+ = S̃+(S̃T+A+S̃+)−1S̃T+ and T̃− ∈ RN−×N−

as T̃− = S̃−(S̃T−A−S̃−)−1S̃T−, respectively. H+ and H− can be written as

H+ = (IN+ − T̃+A+)(IN+ −A+T̃+) + T̃+, (2.13)

H− = (IN− − T̃−A−)(IN− −A−T̃−) + T̃−. (2.14)

As a consequence, H+ and H− are both limited memory preconditioners.

Proof. Using successively Lemma 2.2.5, the definition of T̃+ and A+, and the orthogo-
nality of Q, we obtain

H+ = (QT+ −QT+T+A)(Q+ −AT+Q+) +QT+T+Q+,

H+ = (QT+ − T̃+Q
T
+A)(Q+ −AQ+T̃+) + T̃+,

H+ = (QT+ − T̃+Q
T
+A)QQT (Q+ −AQ+T̃+) + T̃+,

H+ = (IN+ − T̃+A+)(IN+ −A+T̃+) + T̃+.

Relation (2.14) can be obtained by a similar proof. Since A+ is symmetric positive
definite, relation (2.13) reveals that H+ is a limited memory preconditioner related to
the symmetric positive definite case (see Definition 2.1.1). Similarly, A− being symmetric
positive negative, H− defines a limited memory preconditioner related to the symmetric
negative definite case (see Corollary 2.1.2).

Based on the previous developments, we finally state the main result related to the
nonexpansion of the spectrum of HA.

Theorem 2.2.9. Let A be a symmetric indefinite matrix of order N , H be given by (2.6)
in Definition 2.2.1 based on S = [S+, S−] consisting of k+ (k−) vectors projected onto
the positive (negative, respectively) invariant subspace of A, I+(A) (I−(A), respectively).
Then the following properties hold

(a) Let the positive real numbers σ+
1 , · · · , σ

+
N+

denote the eigenvalues of A+ sorted in
nondecreasing order. Then the set of eigenvalues µ+

1 , · · · , µ
+
N+

of H+A+ can be split in
two subsets

σ+
j ≤ µ

+
j ≤ σ

+
j+k+

for j ∈ {1, · · · , N+ − k+},
µ+
j = 1 for j ∈ {N+ − k+ + 1, · · · , N+}.

(2.15)
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(b) Let the negative real numbers σ−1 , · · · , σ
−
N−

denote the eigenvalues of A− sorted in
nondecreasing order. Then the set of eigenvalues µ−1 , · · · , µ

−
N−

of H−A− can be split in
two subsets

σ−j ≤ µ
−
j ≤ σ

−
j+k− for j ∈ {1, · · · , N− − k−},

µ−j = 1 for j ∈ {N− − k− + 1, · · · , N−}.
(2.16)

Proof. Since H+ and H− are limited memory preconditioners (see Lemma 2.2.8), Prop-
erties (a) and (b) are direct consequences of Theorem 2.1.1 and Corollary 2.1.2, respec-
tively.

We illustrate Theorem 2.2.9 on two examples with random symmetric indefinite
matrices A ∈ R30×30 and a random matrix S ∈ R30×5, where the columns of S are
prior projected onto I+(A) or I−(A). In Figure 2.3, the positive eigenvalues of A satisfy
σ+

1 ≤ 1 ≤ σ+
N+

, contrary to the case illustrated in Figure 2.4. Both reveal for Λ(AH) a
cluster at 1 and a contraction of the remaining eigenvalues relatively to Λ(A) on each
side of the plane.
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Figure 2.3: Eigendistribution of A and AH: case of 1 ∈ [σ+
1 , σ

+
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].
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Figure 2.4: Eigendistribution of A and AH: case of positive eigenvalues of A larger than
1.

2.2.5 Ritz limited memory preconditioner

As shown in Theorem 2.2.9, the use of projected vectors in the limited memory precondi-
tioner insures a nonexpansion property of the spectrum of the preconditioned operator,
which is an attractive feature. Nevertheless, using the exact sign function of A can be
computationally too expensive for large-scale problems. In the literature, some methods
exist to approximate sign(A)f where f ∈ RN . A standard approach consists in comput-
ing a Lanczos method applied to the matrix A with initial vector f (see e.g. [36] and
the references therein). According to Section 1.2.1, we obtain a Lanczos relation of the
form

AV̂l = V̂lT̂l + v̂l+1(t̂l+1,le
T
l ).

The Lanczos approximation of sign(A)f from this Lanczos relation is then defined by

f̄l = V̂lsign(T̂l)V̂ T
l f. (2.17)

The idea behind this approximation is that T̂l represents the compression of the matrix
A onto Kl(A, f) with respect to the basis V̂l. Moreover, since f is the initial vector of
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the Lanczos process, we have f = βV̂le1 with β = f/‖f‖2 and

f̄l = βV̂lsign(T̂l)e1.

Different variants of this method have been studied. For instance, the authors in [18]
use a nested Krylov subspace method to improve the approximation of sign(T̂l). In [37],
the method is adapted when the sign function t→ sign(t) is approximated by a rational
function, the Zolotarev approximation.

In order to avoid an overcost related to the treatment of the column vectors of S in
(2.6) as introduced above, we have chosen a different approach in this study. Indeed, we
know from Section 1.2.3 that it is possible to cheaply recover approximate spectral infor-
mation during the solution of the first linear system of (2.5), thanks to Ritz or harmonic
Ritz vectors. Being approximations of eigenvectors of A, they are “close” to belong to
the invariant subspaces I+(A) or I−(A) (depending on the sign of the associated Ritz
or harmonic Ritz values). Between the two possibilities, we will see in Section 2.3 that
the use of Ritz vectors is more interesting in terms of computational cost and memory
requirements. Moreover, in terms of iteration count of GMRES, the gains are very sim-
ilar in our numerical experiments, as illustrated in Section 2.4.2. We analyse next the
variant of the limited memory preconditioner called Ritz limited memory preconditioner
(Ritz-LMP±).

2.2.5.1 Characterization of the Ritz vectors

We consider here the solution of the first linear system Ax1 = b1 of the sequence (2.5)
with a Krylov subspace method. The application of the Lanczos method described in
Section 1.2.1 leads to the Lanczos relation

AVl = VlTl + vl+1(tl+1,le
T
l ), (2.18)

where Vl = [v1, · · · , vl] has orthonormal columns and Tl ∈ Rl×l is a symmetric tridiagonal
matrix. As mentioned in Section 1.2.3, determining the Ritz pairs of A with respect to
R(Vl) requires the solution of the standard eigenvalue problem

TlY = YΘ (2.19)
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with Y TY = Il since Tl is symmetric, Y = [y1, · · · , yl] and Θk = diag(θ1, · · · , θl). Given
1 ≤ k ≤ l, we select k Ritz pairs and define S ∈ RN×k as

S = VlYl,k (2.20)

with Yl,k ∈ Rl×k as Yl,k = [y1, · · · , yk]. We note that S has orthonormal columns, i.e.
STS = Ik. Moreover, denoting Θk = diag(θ1, · · · , θk), a direct calculation leads to
STAS = Θk.

Before analyzing the Ritz limited memory preconditioner, we show two results concerning
the spectral error associated to the Ritz vectors. First, Proposition 2.2.10 illustrates that
these vectors are already approximations of their projection onto I±(A) (depending on
the sign of the associated Ritz value), using the Lanczos approximation of sign(A) (2.17)
from the Lanczos relation (2.18). We emphasize that this approach is slightly different
from the one described in Section 2.2.5: we use here the Lanczos approximation obtained
from the solution of Ax1 = b1 (i.e. with initial vector b1/‖b1‖), instead of choosing as
initial vector the vector f for which we want to compute sign(A)f . In other words,
we apply a general Lanczos approximation of sign(A) instead of an approximation of
the matrix-vector product sign(A)f . Secondly, Lemma 2.2.11 proves that R(S) is an
invariant subspace of a matrix different from A.

Proposition 2.2.10. Assume that l iterations of the Lanczos method have been per-
formed so that the Lanczos relation (2.18) holds. Let s be a column of S in (2.20), and
θ the associated Ritz value. Using the Lanczos approximation of sign(A) (2.17) from the
Lanczos relation (2.18), we obtain

s̄l = sign(θ)s.

If θ > 0, the associated approximate projection onto I+(A) gives

s+ s̄l
2 = s.

If θ < 0, the associated approximate projection onto I−(A) gives

s− s̄l
2 = s.

Proof. s being of column of S in (2.20), s = Vly where (y,θ) is an eigenpair of Tl. The
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Lanczos approximation of sign(A)s from the Lanczos relation (2.18) leads to

s̄l = Vlsign(Tl)V T
l s

= Vlsign(Tl)V T
l Vly

= Vl(T 2
l )−

1
2Tly

= Vl
θ

|θ|
y

= sign(θ)s.

We recall that the exact projection of s onto I±(A) is given by

P±(A)s = (s± sign(A)s)
2 .

Replacing sign(A)s by s̄l = sign(θ)s in this relation completes the proof.

Lemma 2.2.11. Assume that l iterations of the Lanczos method have been performed
so that the Lanczos relation (2.18) holds. Let define the symmetric matrix ∆A ∈ RN×N

as
∆A = −vl+1(tl+1,le

T
l )V T

l − Vl(tl+1,lel)vTl+1. (2.21)

Assume that S ∈ RN×k has been defined as in relation (2.20). Then R(S) is an invariant
subspace of (A+ ∆A) and

(A+ ∆A)S = SΘk.

Proof. A simple calculation gives

(A+ ∆A)Vl = VlTl.

Postmultiplying by Yl,k leads to

(A+ ∆A)S = SΘk,

with Θk = diag(θ1, · · · , θk).

2.2.5.2 Characterization of the Ritz limited memory preconditioner

According to relation (2.7) of Theorem 2.2.2, we need to analyze (PS⊥,ASA)|S⊥ to char-
acterize the Ritz-LMP±. This is detailed next in Theorem 2.2.12.
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Theorem 2.2.12. Let A be a symmetric indefinite matrix of order N and ∆A be given
by (2.21) in Lemma 2.2.11. Assume that S ∈ RN×k has been defined as in relation
(2.20). Then

‖(PS⊥,(A+∆A)SA− PS⊥,ASA)|S⊥‖2 = t2l+1,l |
k∑
i=1

y2
l,i

θi
|,

with yl,i = eTl yi.

Proof. We consider the oblique projection PS⊥,(A+∆A)S onto S⊥ along (A+∆A)S defined
as

PS⊥,(A+∆A)S = IN − (A+ ∆A)S(ST (A+ ∆A)S)−1ST .

First, since (ST (A+ ∆A)S)−1 = Θ−1
k , we note that

PS⊥,(A+∆A)S = IN − SST = PS⊥ .

Furthermore, we have also (STAS)−1 = Θ−1
k and PS⊥,(A+∆A)SA can be written as

PS⊥,(A+∆A)SA = (IN − (A+ ∆A)SΘ−1
k ST )A,

= PS⊥,ASA−∆ASΘ−1
k STA,

= PS⊥,ASA−∆AS(ST −Θ−1
k ST∆A).

We note that ST∆AS = 0k since [Vl, vl+1] is an orthonormal basis. Hence, PS⊥(∆AS) =
∆AS which leads to

(PS⊥,(A+∆A)SA− PS⊥,ASA)|S⊥ = ∆ASΘ−1
k ST∆A. (2.22)

Relation (2.21) yields

∆ASΘ−1
k ST∆A = t2l+1,l(eTl Yl,kΘ−1

k Y T
l,kel)vl+1v

T
l+1.

Using the relations ‖uvT ‖2 = ‖u‖2‖v‖2 and ‖vl+1‖2 = 1 yields

‖∆ASΘ−1
k ST∆A‖2 = t2l+1,l |

k∑
i=1

y2
l,i

θi
|,

which completes the proof.
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Relation (2.22) reveals that

(PS⊥,ASA)|S⊥ = (PS⊥,(A+∆A)SA)|S⊥ − τvl+1v
T
l+1, (2.23)

with the scalar quantity τ defined by τ = t2l+1,le
T
l Yl,kΘ

−1
k Y T

l,kel. This shows that (PS⊥,ASA)|S⊥
is equal to (PS⊥A)|S⊥ perturbed by a rank-one matrix. Hence, the application of The-
orem 8.1.8 [43] shows the existence of nonnegative scalar quantities mi such that

λi((PS⊥,ASA)|S⊥) = λi((PS⊥A)|S⊥)) +miτ, i = 1, · · · , N − k, (2.24)

with m1 + · · ·+mN−k = 1. If the columns of Z⊥ ∈ RN×(N−k) form an orthonormal basis
for S⊥, the spectrum of PS⊥A|S⊥ is then given by

Λ(PS⊥A|S⊥) = Λ(ZT⊥AZ⊥). (2.25)

Relations (2.24) and (2.25) yield a simple characterization of the Ritz-LMP precondi-
tioner which reveals that the scalar τ is an important quantity to monitor numerically.
Indeed, when |τ | is small, (PS⊥,ASA)|S⊥ is spectrally close to (PS⊥A)|S⊥ .

2.3 Implementation considerations

In this section, we present possible implementations of the LMP±, either in the general
case or with Ritz vectors as columns of S in Definition 2.2.1. A discussion about the
use of harmonic Ritz vectors is also proposed. We detail here the related computational
cost and specify the memory requirements.

2.3.1 Computational cost and memory requirements for a general ma-
trix S

First, we consider a matrix S in (2.6) such that STAS is nonsingular. We need to
consider (STAS)−1, but according to Proposition 2.2.1, we can replace S by Z with
columns of Z spanning the same subspace S. In [46], a Gram-Schmidt process is used
to compute Z such that ZTAZ = Ik when A is symmetric positive definite. In the
indefinite case, A does not define any longer an inner product and we propose a slightly
different method, building Z which satisfies (ZTAZ)−1 = Σ = diag(σ1, ..., σk). Then,
denoting Y = AZΣ, the LMP± can be written as

H = (IN − ZY T )(IN − Y ZT ) + ZΣZT . (2.26)
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This orthogonalization is detailed in Algorithm 5, setting Zi = [z1, ..., zi] and Yi =
[y1, ..., yi], for i = 1, ..., k. In terms of computational cost, this process requires k matrix-
vector products by A and 3N +

∑k−1
i=1 (4iN + 4N) = (2k2 + 2k− 1)N additional floating

point operations. We further note that the aim is not to compute H but just to compute
and store Z, Y and Σ. The additional storage is then approximatively of 2k vectors of
length N . Finally, it is possible to apply H on a vector in 8kN +k ∼ 8kN floating point
operations (see Algorithm 6).

Algorithm 5 Compute Z, Y and Σ such that H = (IN − ZY T )(IN − Y ZT ) + ZΣZT

1: z1 = s1, y1 = As1 (one product by A)
2: σ1 = 1

zT
1 y1

(2N flops)
3: y1 = y1σ1 (N flops)
4: for i = 1 to k − 1 do
5: f = Y T

i si+1 (2iN flops)
6: zi+1 = si+1 − Zif (2iN +N flops)
7: yi+1 = Azi+1 (one product by A)
8: σi+1 = 1

zT
i+1yi+1

(2N flops)
9: yi+1 = yi+1σi+1 (N flops)

10: end for

Algorithm 6 Application of the limited memory preconditioner: r = Hx

1: f = ZTx (2kN flops)
2: f̄ = Σf (k flops)
3: r̄ = (x− Y f) (2kN flops)
4: r = r̄ − Z(Y T r̄ − f̄) (4kN flops)

2.3.2 Computational cost and memory requirements of the Ritz-LMP±

We consider here the Ritz-LMP±, i.e. the k columns of S in (2.6) are selected as
Ritz vectors. By exploiting the Lanczos relation (2.18), a significant reduction of the
complexity and the memory requirements can be obtained. Indeed, Theorem 4.3 in [46]
shows that the Ritz-LMP± H reads as

H = IN + S(Θ−1
k − Ik)S

T − SωvTl+1 − vl+1ω
TST + SωωTST , (2.27)

where the components of ω = (ω1, · · · , ωk)T are defined as

ωi = tl+1,lyl,i
θi

, (i = 1, · · · , k). (2.28)
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Later we define the vector sω ∈ RN as sω = Sω. Hence, the application of the precondi-
tioner H on a vector of length N costs (4k + 9)N floating point operations as detailed
in Algorithm 7. In addition, the storage requirements related to the Ritz-LMP± variant
consist of k + 2 vectors of length N (vl+1, sω and S ∈ RN×k) together with k scalars
(corresponding to the Ritz values).

Algorithm 7 Application of the Ritz limited memory preconditioner: r = Hx

1: α1 = sTωx (costs 2N flops)
2: α2 = −α1 + vTl+1x (costs 2N flops)
3: z = S(Θ−1

k − Ik)STx (costs 4kN flops)
4: r = x+ z − α2sω − α1vl+1. (costs 5N flops)

This technique is interesting compared to the general case. Indeed, we do not need
to perform the orthogonalization process in Algorithm 5, and each application of H on
a vector is cheaper in terms of floating point operations as soon as k > 2. Furthermore,
the number of vectors to store is lower, also for k > 2. This technique for the Ritz-LMP±
is essentially based on the A-orthogonality and the orthonormality of S, i.e.

STAS = Θk and STS = Ik. (2.29)

2.3.3 Case of harmonic Ritz vectors as columns of S

The harmonic Ritz vectors do not satisfy the relations (2.29) and we cannot adapt
Algorithm 7 to this case. Moreover, contrary to the Ritz vectors which are defined from
eigenvectors of the symmetric matrix Tl in (2.18), the harmonic Ritz vectors can be
complex-valued. Indeed, as introduced in 1.2.3, they are of the form s = Vly, where y is
a solution of the real nonsymmetric eigenproblem

(Tl + |tl+1,l|2T−Tl ele
T
l )y = θy.

Nevertheless, if (y, θ) satisfies this equation, the conjugate pair (ȳ, θ̄) is also a solution.
Since span{Re(y), Im(y)} = span{y, ȳ}, it is possible to define two columns of S ∈ RN×k

selecting both vectors VlRe(y) and VlIm(y). This strategy adds a condition on the choice
of S in this case: for an imposed value k, we may allow the method to select k+1 columns
in S to ensure the inclusion of both vectors associated to conjugate harmonic Ritz values.
Finally, we can use Algorithms 5 and 6 to apply the LMP±. The cost per application of
H is then more important than using Ritz vectors.



2.4. Applications to solid mechanics 79

2.4 Applications to solid mechanics

Now, we illustrate the numerical behaviour of limited memory preconditioners on appli-
cations in solid mechanics that require the solution of symmetric saddle point linear sys-
tems, as described in Section 1.1. This preconditioning technique has been implemented
in Code_Aster using the PETSc library (version 3.4.5). Some information about the
implementation is given in Appendix A.

2.4.1 Sequence of preconditioned saddle point systems

As introduced in Section 1.1.3, we consider a sequence of linear systems of saddle point
type

Ki yi = ci ⇐⇒
(
Gi BT

B 0

)(
ui

λi

)
=
(
fi

gi

)
, i = 1, · · · , I, (2.30)

where m < n, B ∈ Rm×n, fi ∈ Rn, gi ∈ Rm and Gi ∈ Rn×n are symmetric positive
semidefinite stiffness matrices. We further assume that B is of full row rank (rank(B) =
m) and that N (Gi) ∩ N (B) = {0}, ∀i ∈ {1, · · · , I}, which make sure the existence and
uniqueness of the solution of each linear system in the sequence (see Theorem 1.3.1).

In general, Krylov subspace methods are only feasible in combination with a pre-
conditioner when considering large-scale problems [90]. Before involving the LMP±, we
consider the action of a first-level preconditioner: we use here the specific block diagonal
symmetric positive definite preconditioner based on the augmented Lagrangian method
and introduced in (1.23). It is computed from the first saddle point matrix K1 in the
sequence 2.30 and we recall here its definition:

Md =

G1 + γBTB 0

0 1
γ
Im

 , γ > 0. (2.31)

Since inverting exactly G1 + γBTB is too demanding in terms of both computational
operations and memory requirements for large-scale problems, we consider a factorized
approximate preconditioner of the form Md ≈ LLT based on the incomplete Cholesky
factorization of G1 + γBTB written as G1 + γBTB ≈ LLT [90]. We deduce the final
formulation of the symmetric preconditioned linear system Ai xi = bi denoted as

Ai xi = bi ⇐⇒
(
L−1 0

0 √
γIm

)(
Gi BT

B 0

)(
L−T 0

0 √
γIm

)(
wi

zi

)
=
(
L−1 0

0 √
γIm

)(
fi

gi

)
.

(2.32)
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We emphasize that the property of symmetric definite positiveness of the first-level
preconditioner is necessary to keep the symmetry of Ai.

Limited memory preconditioners combined with Krylov subspace methods will be
used to solve the sequence of linear systems (2.32) approximately. As mentioned in
Section 2.2.5, we extract k approximations of eigenvectors known as Ritz vectors (unless
otherwise stated) when solving the first linear system in this sequence to deduce S ∈
RN×k. We note that S is used in the whole sequence, even in the case of changing
matrices (as in Sections 2.4.4 and 2.4.5). Hence, with this choice, the limited memory
preconditioner H is then defined once for all as

H = (In+m−S(STA1S)−1STA1)(In+m−A1S(STA1S)−1ST )+S(STA1S)−1ST . (2.33)

In all the applications considered, we always select the Ritz vectors corresponding to
the smallest in modulus Ritz values. Since positive or negative Ritz values can occur in
practice, H is a symmetric indefinite preconditioner due to Theorem 2.2.4. In particular,
we cannot use MINRES, a method of choice to solve symmetric systems, which necessits
a symmetric positive definite preconditioner [99]. Hence we use the symmetric indefinite
matrix H as a right preconditioner of GMRES(30) for the approximate solution of the
remaining linear systems in the sequence (2.32). To summarize, this Krylov subspace
method is used to solve

A1x1 = b1 and
{
AiHx̃i = bi

xi = Hx̃i
i = 2, · · · , I.

We note that the Ritz vectors are computed using the Lanczos relation obtained from
the last complete cycle of GMRES(30), when solving A1x1 = b1. Furthermore, a zero
initial guess is always chosen and the iterative method is stopped when the Euclidean
norm of the residual normalized by the Euclidean norm of the right-hand side satisfies
the following relation

||bi −Aixki ||2
||bi||2

≤ 10−8. (2.34)

We remark that the stopping criterion is fixed for all linear systems of the sequence (2.32),
which means that we do not use an inexact Newton method (see, e.g., [111, 105]).

The numerical results have been obtained on the Aster5 cluster, a IBM IDATAPLEX
computer located at EDF R&D Data Center (each node of Aster5 is equipped with 2
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Intel Xeon E5− 2600, each running 12 cores at 2.7 Ghz). Physical memory available on
a given node (24 cores) of Aster5 ranges from 64 GB to 1 TB. This code was compiled
by the Intel compiler suite with the best optimization options and linked with the Intel
MKL BLAS and LAPACK subroutines. Both iteration counts and computational times
will be reported. Our main interest is to analyze the efficiency of the limited memory
preconditioner for the solution of the sequence of saddle point systems where both the
matrices and the right-hand sides may change. A small-scale problem is considered first,
while two large-scale real-life industrial configurations will be analyzed later in Sections
2.4.3 and 2.4.5. Problems with multiple right-hand sides only are considered in Sections
2.4.2 and 2.4.3, while sequences of linear systems with changing matrices are addressed
in Sections 2.4.4 and 2.4.5.

2.4.2 Mechanical bearing (linear case)

We first focus on a linear problem in solid mechanics related to the computation of the
displacement of a mechanical bearing. In this experiment, the bearing is subject to an
external pressure on its left part, while embedded on the right part. The computational
mesh is shown in Figure 2.5.

Figure 2.5: Mesh of the mechanical bearing.

The matrix B in (2.32) corresponds to the dualization of the single freedom con-
straints from the clamping of the structure. As described in Section 1.3.2.2, the co-
efficient γ in the augmented Lagrangian preconditioner is chosen equal to the scaling
coefficient α immediately available in Code_Aster. Here, γ = 2.9027× 108. The moder-
ate dimension of the problem (n = 7305, m = 228, N = 7533) allows us to compute the
spectrum of A (using the SLEPc library [4, 53], version 3.5.2), as illustrated in Figure
2.6. It exhibits clusters at −1 and 1 (in agreement with the theory, see Theorem 1.3.2)
and eigenvalues close to 0.
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Figure 2.6: Mechanical bearing: spectrum of A.

In this linear case, the sequence (2.32) is reduced to one linear system denoted
Ax = b. We have solved it once, without LMP±, and we have recovered some information
to define H. Then we have solved the system a second time with different LMP±.
This small-case model example give us attractive information. First, we investigate the
behaviour of the limited memory preconditioner with S based either on Ritz vectors
(Ritz-LMP±) or harmonic Ritz vectors, both related to smallest in modulus (harmonic)
Ritz values. Figure 2.7 shows the convergence history of GMRES(30) for both variants
of LMP± with increasing of values of k (k = 5, 20, 30, respectively). We note that the use
of the limited memory preconditioner leads to a significant decrease in terms of numbers
of iterations. The combination of the augmented Lagrangian preconditioner with the
limited memory preconditioner is thus successful on this application. In addition we
note that the use of Ritz and harmonic Ritz vectors in S leads to similar convergence
histories. This strengthens our belief in selecting Ritz vectors to define S, knowing that
the related computational cost is lower than selecting harmonic Ritz vectors (see Section
7). Although not illustrated, this type of behaviour arises in all numerical experiments
in this chapter.
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Figure 2.7: Mechanical bearing (linear case): convergence history of GMRES(30). Three
preconditioning methods are compared: no second level preconditioning, limited mem-
ory preconditioners based on k = 5, 20 or 30 Ritz vectors and harmonic Ritz vectors,
respectively.

Besides the spectrum of A, we have been able to compute the matrix sign function
of A using the eigenpairs obtained with SLEPc (see [55]). Thus we can analyse the
effect of the limited memory preconditioner with S based either on exact eigenvectors
(spectral-LMP±), Ritz vectors (Ritz-LMP±) or projected Ritz vectors as introduced in
Section 2.2.4. They are all related to smallest in modulus eigenvalues or Ritz values.
We note in Figure 2.8 that using eigenvectors of A for S leads to the minimal number of
iterations in all situations. More interestingly, we also note that using Ritz or projected
Ritz vectors for S leads to a very similar convergence behaviour on this model example.
This fact is in agreement with the theory presented in Section 2.2.5 and suggests that in
practice it is sufficient to consider Ritz vectors only. We further note that the value of |τ |
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given in relation (2.23) is equal to 0.0335, 0.075 and 0.079 for k = 5, 20, 30, respectively.
We will thus consider only the Ritz-LMP± variant, based on Ritz vectors related to Ritz
values of smallest modulus in the next sections of this chapter.
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Figure 2.8: Mechanical bearing (linear case): convergence history of GMRES(30). Four
preconditioning methods are compared: no second level preconditioning, limited memory
preconditioners based on k = 5, 20 or 30 Ritz vectors, projected Ritz vectors and exact
eigenvectors, respectively.

2.4.3 Containment building of a nuclear reactor

In this section, we investigate the mechanical properties of the containment building of
a nuclear reactor of a Pressurized Water Reactor power plant. This building protects
both the reactor from external aggressions and the environment if an internal accident
occurs. Robust and accurate numerical simulations are thus required for both design and
safety analysis. We consider an advanced mechanical modeling that takes into account
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numerous prestressing tendons, whose role is to improve the global resistivity of the
structure (see Figure 2.9). The containment building is subject to gravity and to an
internal pressure. The whole loading is gradually applied into 4 successive steps. Each
pitch of loading then corresponds to a specific linear system in the sequence, where only
the right-hand side has changed (i.e. A1 = ... = A4). The introduction of Lagrange
multipliers stems from the imposition of kinematic relations modeling perfect adhesion
between the prestressing tendons and the concrete [70] and to the dualization of the
essential boundary conditions. In this setting, B admits either five or one nonzero
entries per row, respectively. This study is known to be complex for different reasons.
First, from a mechanical point of view, the modeling is rather advanced with a mixing
of three-dimensional elements for the concrete, two-dimensional elements for the metal
shell placed on the intern wall of the building (to insure the sealing if an accidental
leak occurs), and of one-dimensional elements for the tendons. Moreover, since the
prestressing tendons are attached to the concrete thanks to dualized linear relations,
the number of Lagrange multipliers is really important (m = 158928 for a global size
of N = 442725). The number of nonzero entries of G1 and G1 + γBTB is 7079238
and 8343685, respectively. Secondly, the occurrence of a large number of prestressing
tendons (more than 600 here) induces a nullspace of large dimension for the stiffness
matrix. Actually, it is known that this dimension is related to the number of rigid body
motions of the subbodies of materials contained within the finite element mesh [76]. This
numerical study is thus challenging and serves as a relevant realistic test case in solid
mechanics to investigate the efficiency of preconditioners for Krylov subspace methods.

Figure 2.9: Containment building: three-dimensional mesh (left part) and location of
the prestressing tendons on the surface (right part).

In this experiment, we set γ to 2, 4684× 1011 and consider a level of fill equal to 8 in
the incomplete Cholesky factorization of the (1, 1) block ofMd. Actually, with a lower
level of fill the preconditioned Krylov subspace method can hardly converge. However,
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even with this value of fill, the required memory is around 7 Go, while state-of-the-art
sparse direct solvers require at least 10 Go for the complete factorization of the (1, 1)
block ofMd.
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Figure 2.10: Containment building: convergence history of preconditioned GMRES(30)
for the last three linear systems in the sequence. Case of limited memory preconditioners
with k = 5, 20 or 30 Ritz vectors.

Figure 2.10 shows the evolution of the Euclidean norm of the relative residual for the
last three linear systems in the sequence (i = 2, 3, 4). In this experiment, we consider
limited memory preconditioners with a varying number of Ritz vectors (k = 5, 20,
30, respectively). Whatever the linear system considered in the sequence, the smallest
number of iterations is obtained when selecting a large value of Ritz vectors (k = 30). In
addition, we show in Table 2.1 the cumulative iteration count over the last three linear
systems, the CPU time and the memory requirements provided by PETSc, respectively.
We note that selecting S based on k = 30 Ritz vectors leads to a decrease of 47% in
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terms of cumulated iterations and to a decrease of 41% in terms of CPU time. This
satisfactory result comes at a price of a very moderate increase in memory requirements
(3%), since the limited memory preconditioner only needs the storage of (k+ 2) vectors
of size N as detailed in Section 2.3.2.

No LMP± LMP±, k = 5 LMP±, k = 20 LMP±, k = 30
Total iteration count 509 389 343 272
Iteration count decrease (%) × 24 33 47
CPU time (sec) 315 254 224 186
CPU time decrease (%) × 19 29 41
Memory (Mo) 6686 6722 6823 6891
Memory increase (%) × 0.5 2 3

Table 2.1: Containment building: cumulative iteration count for the last three linear sys-
tems in the sequence, CPU time and memory requirements for different limited memory
preconditioners. Case of k = 5, 20 or 30 Ritz vectors.

The Ritz-LMP± has proved to be efficient in these first numerical experiments in
terms of both preconditioner applications and computations time. In both cases, the
matrix is fixed and the next numerical experiments aim at illustrating the behaviour of
GMRES for a sequence of linear systems with slowly varying left-hand sides.

2.4.4 Mechanical bearing (nonlinear case)

Before considering a large-scale nonlinear test case, we study once again the mechanical
bearing problem described in Section 2.4.2. Here we consider a nonlinear constitutive
law of the material (elastoplastic law of Von Mises with isotropic hardening), and we
obtain from the Newton’s method a sequence of four linear systems of the form (2.32)
with multiple right and left-hand sides. In this small-scale case, we have been able to
compute the difference between the successive original matrices Ki and preconditioned
matrices Ai, respectively. They are defined, for i = 1, 2, 3, as

diK = ‖Ki+1 −Ki‖F
‖Ki‖F

= ‖Gi+1 −Gi‖F
‖Gi‖F

and
diA = ‖Ai+1 −Ai‖F

‖Ai‖F
= ‖L

−1(Gi+1 −Gi)L−T ‖F
‖L−1GiL−T ‖F

,

where ‖.‖F corresponds to the Frobenius norm. Here d1
K = 4.758× 10−2, d2

K = 8.755×
10−3 and d3

K = 2.216 × 10−4. The differences concerning the preconditioned matrices
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are similar, with d1
A = 1.508× 10−2, d2

A = 5.935× 10−3 and d3
A = 2.774× 10−4.

As in the linear case, the use of the Ritz-LMP± leads to a significant decrease of
GMRES(30) iteration count for the last three linear systems of the sequence (see Figure
2.11). In Table 2.2, we remark that this gain can reach up to 70% for k = 30, while
a decrease in terms of CPU time of 66% is obtained (always with a negligible memory
overcost).
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Figure 2.11: Mechanical bearing (nonlinear case): convergence history of preconditioned
GMRES(30) for the last three linear systems in the sequence. Case of limited memory
preconditioners with k = 5, 20 or 30 Ritz vectors.
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No LMP± LMP±, k = 5 LMP±, k = 20 LMP±, k = 30
Total iteration count 575 206 182 174
Iteration count decrease (%) × 64 68 70
CPU time (sec) 1.96 0.66 0.69 0.69
CPU time decrease (%) × 65 65 66
Memory (Mo) 411 412 414 416
Memory increase (%) × 0.2 0.7 1.2

Table 2.2: Mechanical bearing (nonlinear case): cumulative iteration count for the last
three linear systems in the sequence, CPU time and memory requirements for different
limited memory preconditioners. Case of k = 5, 20 or 30 Ritz vectors.

2.4.5 Polycrystalline aggregate

The polycrystalline aggregate problem is especially used as an homogenization method
to obtain macroscopic constitutive laws of a material from microscopic considerations
only. In this framework, numerical simulations are performed at a mesoscopic scale in a
simple geometry (a cube named representative elementary volume). One thousand points
are randomly distributed in this cube and Voronoi cells are created using perpendicular
bisector planes. Each cell then represents a grain which has its own constitutive law.
The cells are finally discretized with tetrahedra leading to a global three-dimensional
unstructured mesh (see Figure 2.12 for an illustration).

Figure 2.12: Polycrystalline aggregate: unstructured mesh of the representative elemen-
tary volume (left part) and detailed view of some grains of the polycrystalline aggregate
(right part).

We impose a traction loading on a given face of the cube and specify zero displacement
boundary conditions on the other faces as shown in Figure 2.13.
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Figure 2.13: Polycrystalline aggregate: sketch of the boundary conditions.

All these boundary conditions are dualized, leading to a sequence of saddle point
systems of the form (2.30), with slowly varying left-hand sides. To evaluate the numer-
ical performance of the limited memory preconditioners, we aim at performing these
simulations on different meshes. Thus a coarse mesh (N = 56561 with n = 54567 and
m = 1994), an intermediate mesh (N = 425222 with n = 417525 and m = 7697) and a
fine mesh (N = 3298601 with n = 3268359 and m = 30242) are considered in this study.
We note that the proportion of Lagrange multipliers is always less than 1% and that the
simulation on the finest mesh is considered as a real computational challenge in prac-
tice. Newton’s method is employed because of the nonlinearity of the constitutive law
of the structure. As expected, it is found that the total number of Newton’s iterations
is mesh-dependent (7, 9, 14 iterations are required on the coarse, intermediate and fine
mesh, respectively). Finally, we set γ to 1.052× 105, 7.6101× 104 and 7.3267× 104 on
the coarse, intermediate and fine mesh, respectively. Similarly, we set the level of fill for
the incomplete Cholesky factorization of the (1, 1) block ofM1 to 4 in the three cases.

Table 2.3 collects the results for the three different simulations. Whatever the level
of mesh refinement, we observe that the use of the limited memory preconditioner leads
to a significant decrease both in terms of cumulative number of iterations over the whole
Newton’s sequence and of computational operations. A decrease of 17.2% in terms of
computational time at a price of a low memory increase (only 0.2%) is indeed obtained on
the fine mesh calculation which is a rather satisfactory result. Larger gains are obtained
for the simulations on the coarse and intermediate meshes. On this application, choosing
5 Ritz vectors leads to the best strategy in terms of floating point operation reduction.
Considering a larger number of Ritz vectors reduces the cumulative number of iterations
as shown in Figure 2.14. Nevertheless, this choice leads to a larger cost in terms of
computational operations.
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No LMP± LMP±, k = 5 LMP±, k = 20 LMP±, k = 30

C
oa

rs
e
m
es
h Total iteration count 354 235 227 222

Iteration count decrease (%) × 33.5 36 37.5
CPU time (sec) 24.8 16.6 17.3 17.6
CPU time decrease (%) × 33.1 30.2 29.1
Memory (Mo) 1137 1140 1146 1151
Memory increase (%) × 0.2 0.8 1.2

In
te
rm

.
m
es
h Total iteration count 1316 1033 1027 1019

Iteration count decrease (%) × 21.5 22 22.5
CPU time (sec) 528 434 447 455
CPU time decrease (%) × 17.9 15.3 13.8
Memory (Mo) 8286 8305 8358 8387
Memory increase (%) × 0.2 0.8 1.2

Fi
ne

m
es
h

Total iteration count 6002 4835 4651 4614
Iteration count decrease (%) × 20 22.5 23
CPU time (sec) 19920 16683 16498 16682
CPU time decrease (%) × 17.2 16.3 16.3
Memory (Mo) 65613 65787 66165 66416
Memory increase (%) × 0.2 0.8 1.2

Table 2.3: Polycrystalline aggregate: cumulative iteration count over the complete New-
ton’s sequence, CPU time and memory requirements for different preconditioners. Re-
sults are given for three different levels of mesh refinement (coarse, intermediate and
fine, respectively).
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Figure 2.14: Polycrystalline aggregate (fine mesh calculation): GMRES(30) convergence
history for different preconditioners at 2 different iterations of the Newton’s method (2nd
and 14th iterations).
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2.5 Conclusions

We have proposed in this chapter a class of limited memory preconditioners for the
solution of linear systems with symmetric indefinite matrices and multiple right-hand
sides. This preconditioner based on limited memory quasi-Newton formulas can notably
be used to improve an existing first-level symmetric definite positive preconditioner (ap-
plied symmetrically as a split preconditioner). In addition, this method is especially
worth considering when the solution of a sequence of linear systems with slowly varying
left-hand sides is considered.

We have derived a formula to characterize the spectrum of the preconditioned oper-
ator. We have shown that the eigenvalues of the preconditioned operator are real-valued
(with at least k eigenvalues equal to 1). Furthermore, we have shown that the eigenvalues
of the preconditioned matrix enjoy interlacing properties with respect to the eigenval-
ues of the original matrix provided that the k linearly independent vectors have been
prior projected onto invariant subspaces associated with the eigenvalues of the original
matrix. Then, we have studied the Ritz-LMP± variant, where Ritz information is used
to determine the k vectors.

In practice, we have tested the Ritz-LMP± variant on solid mechanics problems,
as introduced in Chapter 1, and this variant has proved to be efficient in terms of
both preconditioner applications and computational operations. Numerical experiments
have highlighted the relevance of the proposed preconditioner that leads to a significant
decrease in terms of computational operations. A saving of up to 41% in terms of
computational time is obtained with respect to the original method on one of the large-
scale applications.

Although not reported in this chapter, the proposed limited memory precondi-
tioner formula has been also implemented in a parallel distributed memory environment
through both the Code_Aster and PETSc libraries. In practice, this straightforward ex-
tension allows us to consider selected large-scale industrial problems in a limited amount
of computational time on a moderate number of cores. The scalability properties will
be illustrated in Chapter 3, where the main focus is on the derivation of preconditioner
update formulas in the case where the original preconditioned matrix is not symmet-
ric. In addition, when the original matrix is symmetric, this extension also allows us
to consider a broader class of first-level preconditioners (without the symmetric definite
positiveness restriction). We further emphasize that a comparison with existing methods
is performed in Chapter 3, where we also consider the LMP±.



Chapter 3

Limited memory preconditioners
for nonsymmetric systems

Motivated by the encouraging results obtained with the limited memory preconditioners
proposed for symmetric indefinite systems in Chapter 2, we have also studied the non-
symmetric case. Although the solid mechanics problems treated in this manuscript lead
to sequences of symmetric linear systems (with saddle point structure), the purpose of
such an approach is to overcome the constraint related to the symmetric definite pos-
itiveness property of the first level preconditioner required in Chapter 2. Besides this
situation, the algebraic method developed in this chapter can obviously be applied on
any nonsingular linear system.

As in the symmetric indefinite case, we have considered update formulas issued from
the numerical optimization literature to define efficient improvement preconditioning
techniques. In this sense, Section 3.1 details how the proposed class of limited memory
preconditioners for nonsymmetric linear systems (named LMPns) has been obtained,
from both Broyden method and EN method (Eirola and Nevanlinna). This family is
analysed in Section 3.2, where the main contribution concerns the spectral characteriza-
tion of the preconditioned operator. Even if this class of limited memory preconditioners
is new, to the best of our knowledge, the involved operators have already been used ei-
ther in an abstract balancing preconditioner [33], or in deflated Krylov subspace methods
[25, 39, 33]. Section 3.3.1 finally aims at positioning and comparing the LMPns with
these existing techniques, where we expose our two main contributions. We emphasize
this in a more general framework and include in this comparison the class of limited
memory preconditioners proposed in Chapter 2. First, we show that the spectra of the
respective associated operators are equal or at least very close in some sense. Secondly,
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we compare the behaviour of GMRES combined with these methods and we particularly
show that the abstract balancing preconditioners, equivalent to the limited memory pre-
conditioners in the symmetric indefinite case, provide the same GMRES iterates than
deflation under some assumptions. After discussing some implementation issues in Sec-
tion 3.4, we illustrate in Section 3.5 the numerical efficiency of the limited memory
preconditioner on possibly large-scale applications in solid mechanics, as introduced ear-
lier in this manuscript. This preconditioning technique is also numerically compared
with the deflated GMRES method.

3.1 Motivations and definition

This study is based on quasi-Newton methods intended to determine a zero of a function
F , using approximations either of the Jacobian of F or of its inverse. Actually, when
this function is of the form F (x) = Ax − b where A ∈ RN×N , x and b ∈ RN , these
methods provide an approximation of A or A−1 which can be good candidates to design
preconditioners for Krylov subspace methods. Particularly, we take a closer look at
variants of two techniques issued from the numerical optimization literature, known
as Broyden and EN methods (see, e.g., [23, 48] and [31], respectively). The following
presentation is based on the review paper [113] where both families are adapted to solve
the possibly nonsymmetric linear system

Ax = b. (3.1)

They are introduced in their general form in Algorithms 8 and 9, respectively, and involve
a matrix Hk ∈ RN×N approximating the inverse of the Jacobian A−1 at iteration k.

Algorithm 8 Class of Broyden methods to solve Ax = b, using an approximation of
A−1 [113]
1: Define x0 ∈ RN , H0 ∈ RN×N and r0 = b−Ax0
2: for k = 1, ... do
3: sk−1 = Hk−1rk−1
4: yk−1 = Ask−1
5: Define αk−1 ∈ R
6: xk = xk−1 + αk−1sk−1
7: rk = rk−1 − αk−1yk−1
8: Define fk−1 ∈ RN

9: Hk = Hk−1 + (sk−1−Hk−1yk−1)fT
k−1

fT
k−1yk−1

10: end for
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Algorithm 9 EN-like methods to solve Ax = b, using an approximation of A−1 [113]
1: Define x0 ∈ RN , H0 ∈ RN×N and r0 = b−Ax0
2: for k = 1, ... do
3: sk−1 = Hk−1rk−1
4: yk−1 = Ask−1
5: Define fk−1 ∈ RN

6: Hk = Hk−1 + (sk−1−Hk−1yk−1)fT
k−1

fT
k−1yk−1

7: s̃k−1 = Hkrk−1
8: ỹk−1 = As̃k−1
9: xk = xk−1 + s̃k−1

10: rk = rk−1 − ỹk−1
11: end for

Different variants of Broyden and EN-like methods are possible, they depend on the
definition of the vector fk−1 at iteration k, under the assumption that fTk−1yk−1 6= 0. The
choice of the coefficient αk−1 in Algorithm 8 is not addressed here, since we essentially
focus on the expression of Hk as an approximation of A−1. We actually aim at designing
a preconditioning technique based on this matrix. We note that the expressions of Hk

are identical in both methods, although the descent directions sk−1 are not similar.
Finally, among the different propositions in [113], we choose fk−1 = yk−1 = Ask−1 for
two different reasons. First, even if the corresponding Broyden method is known as the
“bad” Broyden variant in the literature with lower computational gains in practice, the
performance of the related EN-like method in [113, 114] are attractive. In particular,
this latter method gives better results than the “good” Broyden variant. Secondly, this
choice will allow us to define a class of preconditioners from Hk, without restricting the
choice of the vectors sk−1 to the descent directions computed during the optimization
process. This is the purpose of Propositions 3.1.1, 3.1.2 respectively and Definition 3.1.1
detailed next. Before, let us write Hk differently, introducing the choice fk−1 = Ask−1:

Hk = Hk−1 +
(sk−1 −Hk−1Ask−1)sTk−1A

T

sTk−1A
TAsk−1

,

Hk = Hk−1
(
IN −

Ask−1s
T
k−1A

T

sTk−1A
TAsk−1

)
+

sk−1s
T
k−1A

T

sTk−1A
TAsk−1

. (3.2)

As a first step, we want to extend the formula (3.2) to the case where the vectors si
are assumed to satisfy sTi ATAsj = 0 for i, j ∈ {0, ...k − 1} and i 6= j. We present in the
next proposition an expression of this generalization.

Proposition 3.1.1. Let S = [s0, ..., sk−1] ∈ RN×k of rank k with column vectors sat-
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isfying sTi ATAsj = 0 for i, j ∈ {0, ...k − 1} and i 6= j. Let us denote HS,k the matrix
defined in relation (3.2). HS,k can be written as

HS,k = H0(IN −AS(STATAS)−1STAT ) + S(STATAS)−1STAT . (3.3)

Proof. For the sake of clarity, we denote in this proof yi = Asi for i ∈ {0, ...k−1}. First,
we prove by induction the following property

(Pk) : Hk = H0
(
IN −

k−1∑
i=0

yiy
T
i

yTi yi

)
+
k−1∑
i=0

siy
T
i

yTi yi
,

where k ∈ N? and Hk is defined by relation (3.2).

• For k = 1, the result directly comes from the definition of H1.

• Assume that (Pk−1) is satisfied for k ≥ 2.

Hk = Hk−1(IN −
yk−1y

T
k−1

yTk−1yk−1
) +

sk−1y
T
k−1

yTk−1yk−1
,

=
[
H0
(
IN −

k−2∑
i=0

yiy
T
i

yTi yi

)
+
k−2∑
i=0

siy
T
i

yTi yi

][
IN −

yk−1y
T
k−1

yTk−1yk−1

]
+
sk−1y

T
k−1

yTk−1yk−1
.

Since yTi yk−1 = 0 for i ∈ {0, ..., k − 2}, Hk can be written as

Hk = H0
(
IN −

k−2∑
i=0

yiy
T
i

yTi yi

)
−H0

yk−1y
T
k−1

yTk−1yk−1
+
k−2∑
i=0

siy
T
i

yTi yi
+
sk−1y

T
k−1

yTk−1yk−1
,

= H0
(
IN −

k−1∑
i=0

yiy
T
i

yTi yi

)
+
k−1∑
i=0

siy
T
i

yTi yi
.

Hence (Pk) is verified for all k ∈ N?. Moreover, under the assumption sTi ATAsj = 0
for i 6= j, we note that

(STATAS)−1 = diag((yTi yi)−1),

which leads to

k−1∑
i=0

yiy
T
i

yTi yi
= AS(STATAS)−1STAT and

k−1∑
i=0

siy
T
i

yTi yi
= S(STATAS)−1STAT .
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The assumption of ATA-conjugacy of the vectors si in Proposition 3.1.1 is still restric-
tive. However, Proposition 3.1.2 shows an invariance property of HS,k under a change
of basis of S = R(S). In other words, one can replace S in (3.3) by a matrix whose
column vectors span the same subspace S, and the ATA-conjugacy assumption can be
finally relaxed.

Proposition 3.1.2. Let S = [s0, ..., sk−1] ∈ RN×k of rank k and Z = SX where X ∈
Rk×k is a nonsingular matrix. Then HZ,k = HS,k.

Proof. Replacing Z = SX, we obtain

AZ(ZTATAZ)−1ZTAT = ASX(XTSTATASX)−1XTSTAT

= ASXX−1(STATAS)−1X−TXTSTAT

= AS(STATAS)−1STAT .

Similarly,
Z(ZTATAZ)−1ZTAT = S(STATAS)−1STAT .

Then, since ATA is symmetric positive definite, we just need to be sure that the
k column vectors of S are linearly independent. Setting H0 = IN , we propose from
this generalization of variants of Broyden and EN-like methods a definition of a class of
preconditioners adapted to nonsymmetric linear systems.

Definition 3.1.1. Let A ∈ RN×N be a general nonsingular matrix and S ∈ RN×k of
full rank k, with k ≤ N . The matrix H ∈ RN×N defined by

H = (IN −AS(STATAS)−1STAT ) + S(STATAS)−1STAT (3.4)

is called the limited memory preconditioner in the nonsymmetric case (LMPns).

To conclude this section, we analyse the particular case of k = N . Obviously, it
is of no practical use, since it would necessitate to deal with the inverse of the matrix
STATAS ∈ RN×N . Nevertheless, the following proposition shows that H corresponds
to A−1 in such a case and strengthens the idea to use this class as a preconditioner to
improve the convergence rate of the GMRES method.

Proposition 3.1.3. Let suppose S ∈ RN×N nonsingular. Then H = A−1.
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Proof. Under this assumption, S−1 exists and

H = (IN −AS(STATAS)−1STAT ) + S(STATAS)−1STAT ,

H = (IN −ASS−1A−1A−TS−TSTAT ) + SS−1A−1A−TS−TSTAT ,

H = A−1.

3.2 Spectral characterization of the preconditioned matrix

The main contribution of this section concerns the characterization of the spectrum
of AH, where H is defined by relation (3.4). This spectral analysis begins with the
following relation, obtained by a direct calculation:

AH = AP(AS)⊥ − IN − P(AS)⊥ , (3.5)

where P(AS)⊥ = IN−AS(STATAS)STAT corresponds to the orthogonal projection onto
(AS)⊥. From now on, we assume that the columns of W ∈ RN×k and W⊥ ∈ RN×(N−k)

form an orthonormal basis for AS and (AS)⊥, respectively. We characterize P(AS)⊥ and
the spectrum of AH in Proposition 3.2.1 and Theorem 3.2.2, respectively.

Proposition 3.2.1. The operator P(AS)⊥ satisfies the following properties:

• P(AS)⊥W = 0N,k,

• P(AS)⊥W⊥ = W⊥.

Proof. The fact that R(P(AS)⊥) = N (IN − P(AS)⊥) = (AS)⊥ and N (P(AS)⊥) = R(IN −
P(AS)⊥) = AS yields the results.

Theorem 3.2.2. Let A ∈ RN×N be a general nonsingular matrix and H defined by
relation (3.4). The spectrum of AH is then given by

Λ(AH) = {1} ∪ Λ(W T
⊥AW⊥).

Proof. Since the columns of [W,W⊥] form an orthonormal basis of RN , Λ(AH) =
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Λ([W,W⊥]TAH[W,W⊥]) and

[W,W⊥]TAH[W,W⊥] =
(
W TAHW W TAHW⊥

W T
⊥AHW W T

⊥AHW⊥

)
.

The relation (3.5) and the properties of Proposition 3.2.1 lead to

[W,W⊥]TAH[W,W⊥] =
(

Ik W TAW⊥

0N−k,k W T
⊥AW⊥

)
.

We deduce from this theorem that 1 is an eigenvalue of AH of multiplicity at least
k. The remaining ones are characterized by the spectrum of W T

⊥AW⊥, revealing the
theoretical interest of choosing S as an A-invariant subspace. The following corollary
gives a result in this sense.

Corollary 3.2.3. Assume that A ∈ RN×N is nonsingular with Λ(A) = {λ1, ..., λN} ∈
CN . Let us set S ∈ RN×k where S = R(S) spans the eigenspace associated to {λ1, ..., λk}
which contains some eigenvalues and their conjugate. Then

Λ(AH) = {1, ...1, λk+1, ..., λN}.

Proof. Under these assumptions, AS and (AS)⊥ are A-invariant. Finally, the spectral
characterization of Theorem 3.2.2 leads to

Λ(AH) = {1} ∪ Λ(W T
⊥AW⊥),

Λ(AH) = {1} ∪ Λ(A|(AS)⊥),

Λ(AH) = {1} ∪ {λk+1, ..., λN}.

Remark 10. As mentioned in Section 2.3.3, A has real entries so the conjugate of a
complex eigenvalue λ also belongs to Λ(A). In Corollary 3.2.3, if {λ, λ̄} ⊂ {λ1, ..., λk},
the associated conjugate eigenvectors s and s̄ can be selected. Finally, from Proposition
3.1.2 and the fact that

span{Re(s), Im(s)} = span{s, s̄},

we can consider that S ∈ RN×k.
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Unlike the situation of Corollary 3.2.3, only approximations to invariant subspaces
can be usually used in practice, as illustrated in Chapter 2. The strategy to select S
in the numerical experiments will be based either on Ritz or harmonic Ritz vectors (see
Section 3.4). This is also used in some existing methods based for instance on deflation,
which are introduced next.

3.3 Theoretical comparison with existing methods

In this section, we aim at positioning and comparing the class of LMPns with respect to
existing methods in the literature. Using a more general approach, we can also include
the class of LMP±, studied in Chapter 2 in the symmetric indefinite case. They are
actually interrelated in the sense that they involve similar operators, summarized below.

1. The LMP± for symmetric indefinite linear systems:

H± = (IN − S(STAS)−1STA)(IN −AS(STAS)−1ST ) + S(STAS)−1ST , (3.6)

where A ∈ RN×N is symmetric indefinite and S ∈ RN×k such that STAS is
nonsingular. H± involves the action of:

• the oblique projector PS⊥,AS = IN −AS(STAS)−1ST and P TS⊥,AS ,

• the “shift” term S(STAS)−1ST .

2. The LMPns for nonsingular linear systems:

Hns = (IN −AS(STATAS)−1STAT ) + S(STATAS)−1STAT , (3.7)

where A ∈ RN×N is nonsingular and S ∈ RN×k is of full rank k. Hns involves the
action of:

• the orthogonal projector P(AS)⊥ = IN −AS(STATAS)−1STAT ,

• the “shift” term S(STATAS)−1STAT .

These preconditioning techniques are based on a generalization of methods proposed
in the numerical optimization literature as described in Sections 2.1.1 and 3.1, but the
operators given above also appear in different references in the literature. Two of them
are introduced next and their action on the convergence of GMRES is investigated.
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3.3.1 Deflation

The projectors PS⊥,AS and P(AS)⊥ are particularly related to deflation in the literature.
We refer the reader to [38, 39, 51, 99] for a comprehensive theoretical overview on these
methods and to references therein for a summary of applications, where the relevance of
these methods has been shown. Several authors have proposed deflated Krylov subspace
methods with applications in different fields of numerical analysis. We can cite [29] or
[92] for symmetric positive definite problems using the Conjugate Gradient method, or
[33] with GMRES for nonsingular systems. This section is based on the general approach
used in this latter review paper which allows to take into account both LMP± and LMPns
within the context of GMRES. For the sake of clarity, we consider in Section 3.3 that
the initial guess x0 is always zero.

For S and Y ∈ RN×k such that Y TAS is nonsingular, let us denote

PD = IN −AS(Y TAS)−1Y T ,

QD = IN − S(Y TAS)−1Y TA, (3.8)

RD = S(Y TAS)−1Y T .

We easily note the relation between these operators and both LMPs:

1. In case of Y = S and A symmetric indefinite, the LMP± defined in relation (2.6)
satisfies

H± = QDPD +RD.

2. In case of Y = AS, the LMPns defined in relation (3.4) satisfies

Hns = PD +RD.

The main steps of the deflation methods are now introduced, but we prior expose some
useful properties of the operators defined in (3.8), obtained from direct calculations.

Proposition 3.3.1. Let PD, QD and RD defined in (3.8).

• P 2
D = PD, (3.9)

• Q2
D = QD, (3.10)

• AQD = PDA, (3.11)
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• RDA = IN −QD, (3.12)

• ARD = IN − PD, (3.13)

• RDPD = 0N×N . (3.14)

The deflation is based on the decomposition of the solution x of (3.1) into

x = (IN −QD)x+QDx,

= RDAx+QDx,

= RDb+QDx.

The first term RDb is then easily obtained and it remains to compute QDx. The original
linear system (3.1) can be multiplied by the projector PD and, using the equalities (3.9)
and (3.11) in Proposition 3.3.1, we obtain:

PDAx = PDb⇔ P 2
DAx = PDb

⇔ PDAQDx = PDb.

Finally, the key is to solve the deflated system{
PDAx̃ = PDb using GMRES with x̃0 = 0,
x = QDx̃+RDb.

. (3.15)

The matrix PD being a projector, PDA is singular but equation (3.15) is consistent in the
sense that PDb ∈ R(PDA). Hence, it can be solved with a Krylov subspace method such
as GMRES (see, e.g., [40]). In other words, the solution of PDAx̃ = PDb is not necessarily
a solution of Ax = b but the addition of the correction term (IN − QD)x = RDb to
QDx = QDx̃ yields the unique solution of the original system.

3.3.2 Abstract balancing preconditioner

In [33], the authors compare the deflated GMRES method with an abstract balancing
preconditioner for nonsymmetric linear systems. This latter is an extension of the ab-
stract form of the coarse grid correction preconditioner used in domain decomposition
methods, initially proposed in the symmetric positive definite case [107, 67, 68, 104].
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Keeping the assumptions and notation of the previous section, this preconditioner is
simply defined in [33] as

PB = QDPD +RD. (3.16)

We immediately note the equivalence of PB with H± when Y = S and A is symmetric
indefinite. Concerning Hns when Y = AS, the expression is slightly different, since they
both involve the action of the projector PD and the “shift” term RD.

3.3.3 Spectral comparison

Considering the relations exhibited from the definition of LMP± and of LMPns with
the deflation operator PD and the abstract balancing preconditioner PB, it is interesting
to compare the convergence behaviour of GMRES using these different convergence
acceleration techniques. As a first step, we analyse the spectra of the associated deflated
or preconditioned operators, for A symmetric indefinite with Y = S, and A nonsingular
with Y = AS.

3.3.3.1 Symmetric indefinite case with Y = S

In this case, H± = PB and we note that an analysis has already been proposed in [33].
However, if we include the spectral characterization shown in Theorem 2.2.2, we obtain
the following theorem.

Theorem 3.3.2. Let A ∈ RN×N be a symmetric indefinite matrix and Y = S ∈ RN×k

such that Y TAS is nonsingular. Let us consider H±, PD and PB given by relations
(3.6), (3.8) and (3.16), respectively. Moreover, assume that the columns of Z ∈ RN×k

form an orthonormal basis for S = R(S) and that the columns of Z⊥ ∈ RN×(N−k) form
an orthonormal basis for S⊥. The spectra of the operators AH±, PDA and APB are
then given by

Λ(AH±) = Λ(APB) = {1} ∪ Λ((ZT⊥A−1Z⊥)−1),

Λ(PDA) = {0} ∪ Λ((ZT⊥A−1Z⊥)−1).

Proof. Theorem 2.2.2 and the equality H± = PB lead to the spectral characterization
of the associated preconditioned matrices. Theorem 2.8 in [33] completes the proof.

Thus the action of H± = PB and PD on A generates almost identical spectra. They
differ from the value of the k clustered eigenvalues, equal to 1 with the preconditioning
technique and 0 with the deflation.



104 Chapter 3. Limited memory preconditioners for nonsymmetric systems

3.3.3.2 Nonsymmetric case with Y = AS

Here, the LMPns is no more equal to the associated abstract balancing preconditioner.
Nevertheless, Theorem 3.3.3 shows that the preconditioned spectra are similar as in the
symmetric indefinite case.

Theorem 3.3.3. Let A ∈ RN×N be a nonsingular matrix, S ∈ RN×k of full rank k and
Y = AS. Let us consider Hns, PD and PB given by relations (3.7), (3.8) and (3.16),
respectively. Moreover, assume that the columns of W ∈ RN×k form an orthonormal
basis for AS = R(AS) and that the columns of W⊥ ∈ RN×(N−k) form an orthonormal
basis for AS⊥. The spectra of the operators AHns, PDA and APB are then given by

Λ(AHns) = Λ(APB) = {1} ∪ Λ(W T
⊥AW⊥),

Λ(PDA) = {0} ∪ Λ(W T
⊥AW⊥).

Proof. The spectrum AHns has already been exhibited in Theorem 3.2.2. Using Theorem
2.8 in [33], we just need to characterize Λ(PDA) to finalize the proof. Since the columns
of [W,W⊥] form an orthonormal basis of RN , Λ(PDA) = Λ([W,W⊥]TPDA[W,W⊥]) and

[W,W⊥]TPDA[W,W⊥] =
(
W TPDAW W TPDAW⊥

W T
⊥PDAW W T

⊥PDAW⊥

)
.

Here, Y = AS and PD = P(AS)⊥ is the orthogonal projection onto (AS)⊥ and the
properties of Proposition 3.2.1 remain valid. So

[W,W⊥]TPDA[W,W⊥] =
(

0k,k 0k,N−k
W T
⊥AW W T

⊥AW⊥

)
.

3.3.4 Comparison of GMRES iterates

The goal is now to compare the successive iterates obtained within GMRES either on the
deflated system or when using the preconditioners PB, H± or Hns on the original linear
system. We first focus on the difference between the use of the balancing preconditioner
(notably equivalent to the LMP± under appropriate assumptions) and the deflation.

In [33], the authors show that the 2-norms of the successive actual residuals of
GMRES combined with deflation are never larger than those obtained using PB as a
left preconditioner, under different conditions related to the choice of the initial vectors
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or Z and Y (see Theorems 3.4 and 3.6). We contribute in this section in analysing
what happens when PB is applied as a right preconditioner. In this sense, we need in-
termediate results which permit subsequently to draw comparisons between the Krylov
subspaces involved in the GMRES process.

Lemma 3.3.4. Let A ∈ RN×N be a nonsingular matrix and S, Y ∈ RN×k such that
Y TAZ is nonsingular. If we consider the matrices PD and PB defined by relations (3.8)
and (3.16), we obtain

1. PBPD = QDPD,

2. For m ∈ N, (APB)mPD = (PDA)mPD.

Proof. 1. By relation (3.16), PB = QDPD + RD. The properties (3.9) and (3.14) in
Proposition 3.3.1 ensure the first result.

2. The proof can be done by induction.

• For m = 0, the result is trivial.

• For m = 1, the first result of this theorem and the equality (3.11) lead to

APBPD = AQDPD

= PDAPD.

• Suppose that (APB)m−1PD = (PDA)m−1PD for m − 1 ≥ 1. Then, using the
same arguments as in the case of m = 1, we obtain

(APB)mPD = APB(APB)m−1PD

= APB(PDA)m−1PD

= APBPDA(PDA)m−2PD

= PDAPDA(PDA)m−2PD

= (PDA)mPD.

From now on, we denote by xD,k and xB,k the successive iterates at iteration k

obtained within GMRES, using the deflation and the balancing preconditioner, respec-
tively. From relation (3.15) and Section 1.2, we know that the iterates of the deflated
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GMRES belong to the affine subspaces

xD,k ∈ RDb+QD span{PDb, (PDA)PDb, ..., (PDA)k−1PDb}.

On the other hand, using GMRES with PB as a right preconditioner leads to

xB,k ∈ xB,0 + PB span{b, (APB)b, ..., (APB)k−1b}.

In order to obtain similar iterates, the choice xB,0 = RDb seems to be natural. In this
case, using the relation (3.13), we can transform the original linear system into

Ax = b⇐⇒ A(x−RDb) = b−ARDb,

⇐⇒ A(x−RDb) = PDb,

⇐⇒
{
APBx̃ = PDb

x = PBx̃+RDb.
(3.17)

Adapting the notation to the case of the balancing preconditioner, we assume that
x̃B,0 = 0 in relation (3.17). So, the related GMRES iterates belong to

xB,k ∈ RDb+ PB span{PDb, (APB)PDb, ..., (APB)k−1PDb}.

Both results in Lemma 3.3.4 finally lead to the same affine subspace involved when using
GMRES on the deflated system:

xB,k ∈ RDb+QD span{PDb, (PDA)PDb, ..., (PDA)k−1PDb}.

In this context, the following theorem summarizes the equivalence between the deflation
and balancing preconditioners.

Theorem 3.3.5. Let A ∈ RN×N be a nonsingular matrix and S, Y ∈ RN×k such
that Y TAS is also nonsingular. GMRES combined with deflation in relation (3.15) for
x̃D,0 = 0 and with the balancing preconditioner in relation (3.17) for x̃B,0 = 0 produces
the same iterates in exact arithmetics, i.e. xD,k = xB,k for all k.

Proof. Under these assumptions and according to the previous analysis, the GMRES
iterates related to the linear systems (3.15) and (3.17) can respectively be written as

xD,k = RDb+QDx̃D,k,

xB,k = RDb+ PBx̃B,k,
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where x̃D,k, x̃B,k ∈ K(PDA,PDb) = span{PDb, (PDA)PDb, ..., (PDA)k−1PDb}. Accord-
ing to Algorithm 2, the first step in GMRES aims at computing an orthonormal basis
of this Krylov subspace using the Arnoldi method. Since x̃B,k = x̃B,k = 0, the associ-
ated initial residuals are both equal to PDb. The Arnoldi process applied to (3.15) and
(3.17) generates the same Arnoldi matrices Vk and Hessenberg matrices Hk+1,k in exact
arithmetics. Therefore it follows that the respective least-squares problems to be solved
are identical, leading to

y? = argmin
y∈Rk

‖ PDb

‖PDb‖2
e1 −Hk+1,ky‖2.

Finally, the approximated solutions of the original system (3.1) are obtained by

xD,k = RDb+QDVky
?,

xB,k = RDb+ PBVky
?.

Here, the column vectors of Vk form an orthonormal basis of K(PDA,PDb). Since PD is
a projector, each vector x in this subspace satisfies PDx = x. In particular, Vk = PDVk

and the first result in Lemma 3.3.4 gives

xB,k = RDb+ PBVky
?

= RDb+ PBPDVky
?

= RDb+QDPDVky
?

= RDb+QDVky
?

= xD,k.

Theorem 3.3.5 states an equivalence between the deflation and the balancing precon-
ditioner used as a right preconditioner for GMRES. The associated methods are detailed
in Algorithms 10 and 11, respectively. In both algorithms, we use a slightly more general
framework, introducing the restart variant and possible nonzero initial approximations
of the solution. However, the equivalence property remains obviously valid.

The relation with the LMP± is immediate since H± = PB when Y = S and A is
symmetric. Concerning the LMPns, there is no equivalence statement to the best of
our knowledge. However, Theorem 3.3.3 reveals the spectral closeness of the respective
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deflated or preconditioned operators. Since the spectrum alone cannot describe the
convergence rate of GMRES for general nonsingular systems, it is interesting to compare
numerically the action of these techniques. This is performed in Section 3.5. Before,
we discuss some implementation issues, focusing on the computational cost and on the
choice of the matrix S.

Algorithm 10 Deflated GMRES(m) to solve AxD = b

1: Choose a convergence threshold ε
2: Choose xD,0 ∈ RN , S and Y ∈ RN×k
3: Define PD ∈ RN×N as PD = IN −AS(Y TAS)−1Y T

4: Define QD ∈ RN×N as QD = IN − S(Y TAS)−1Y TA
5: Define RD ∈ RN×N as RD = S(Y TAS)−1Y T

6: Define x(1)
D,0 = xD,0 and r(1)

D,0 = b−Ax(1)
D,0

7: for l = 1, ... do
8: # Solution phase of the deflated linear system PDAx̃D = PDr

(l)
D,0 with x̃D,0 = 0

9: Set β = ‖PDr(l)
D,0‖2 and v1 = PDr

(l)
D,0/β

10: Applym steps of Arnoldi to obtain Vm+1 = [Vm, vm+1] ∈ RN×(m+1) andHm+1,m ∈
R(m+1)×m such that:

PDAVm = Vm+1Hm+1,m

11: Solve the least-squares minimization problem

y? = argmin
y∈Rm

‖βe1 −Hm+1,my‖2

12: Define x̃D = Vmy
? ∈ RN and r̃D = Vm+1(βe1 −Hm+1,my

?) ∈ RN
13: if ‖βe1 −Hm+1,my

?‖2 ≤ ε× β then
14: stop
15: end if
16: # Correction phase
17: x

(l+1)
D,0 = x

(l)
D,0 +QDx̃D +RDr

(l)
D,0

18: r
(l+1)
D,0 = r̃D

19: end for
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Algorithm 11 GMRES(m) with a right balancing preconditioner to solve AxB = b as
described in (3.17)
1: Choose a convergence threshold ε
2: Chose xB,0 ∈ RN , S and Y ∈ RN×k
3: Define PD ∈ RN×N as PD = IN −AS(Y TAS)−1Y T

4: Define PD ∈ RN×N as QD = IN − S(Y TAS)−1Y TA
5: Define RD ∈ RN×N as RD = S(Y TAS)−1Y T

6: Define x(1)
B,0 = xB,0 and r(1)

0 = b−Ax(1)
B,0

7: # Definition of the balancing preconditioner
8: # (equivalent to the LMP± for Y = S and A symmetric)
9: PB = QDPD +RD

10: for l = 1, ... do
11: # Solution phase of the linear system APBx̃B = PDr

(l)
B,0 using PB as a right

preconditioner and x̃B,0 = 0.
12: Set β = ‖PDr(l)

B,0‖2 and v1 = PDr
(l)
B,0/β

13: Applym steps of Arnoldi to obtain Vm+1 = [Vm, vm+1] ∈ RN×(m+1) andHm+1,m ∈
R(m+1)×m such that:

APBVm = Vm+1Hm+1,m

14: Solve the least-squares minimization problem

y? = argmin
y∈Rm

‖βe1 −Hm+1,my‖2

15: Define x̃B = PBVmy
? ∈ RN and r̃B = Vm+1(βe1 −Hm+1,my

?) ∈ RN
16: if ‖βe1 −Hm+1,my

?‖2 ≤ ε× β then
17: stop
18: end if
19: # Correction phase
20: x

(l+1)
B,0 = x

(l)
B,0 + x̃B +RDr

(l)
B,0

21: r
(l+1)
B,0 = r̃B

22: end for
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3.4 Implementation considerations

3.4.1 Choice of the matrix S

As mentioned in the previous sections of this chapter, the definition of Hns in (3.4) (or
PD in (3.8) and PB in (3.16)) is related to the choice of the matrix S. Here, we consider
using GMRES(30) for the solution of a sequence of the form

Aixi = bi,

where the nonsymmetric matrices are supposed to slowly change. Similarly to Chapter
2, the strategy to select column vectors of S is based either on Ritz or harmonic Ritz
vectors, recovered during the solution of the first linear system A1x1 = b1. In practice,
these vectors are computed from the Hessenberg matrix (see Section 1.2.3), which is
obtained during the last complete cycle of GMRES(30) (or during the first cycle if only
one is required). In the nonsymmetric case, this matrix is also nonsymmetric, and both
Ritz and harmonic Ritz vectors can be complex-valued. Nevertheless, since Hns (as well
as PB and PD) is invariant under a change of basis of S, we use the trick presented in
Section 2.3.3 to obtain a real-valued matrix S. In other words, if we want to select a
vector associated to a complex Ritz or harmonic Ritz value, we impose to select both
real and imaginary parts of this vector as columns of S. Hence, for a given integer k, we
may allow the method to define S ∈ RN×(k+1).

Remark 11. From now on, we use the term Ritz or harmonic Ritz vectors, even if the
vector corresponds to the real or the imaginary part of a given vector.

3.4.2 Computational cost and memory requirements of the LMPns

We consider now that S ∈ RN×k is defined. We propose a possible implementation of the
LMPns matrix Hns given in (3.4). Here, in order to “eliminate” the term (STATAS)−1,
we use the invariance property of Hns under a change of basis of S and the fact that
ATA is symmetric positive definite. Actually, an orthonormalization process based on
Gram-Schmidt can be performed, defining a matrix Z ∈ RN×k such that R(Z) = R(S)
and ZTATAZ = IN . Denoting X = AZ, Hns can then be written as

Hns = IN −XXT + ZXT .
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We further note that this expression can be written as

Hns = IN + Y XT , (3.18)

where Y = Z − X. Algorithm 12 details this process, where Zi = [z1, ..., zi] and Xi =
[x1, ..., xi]. This algorithm requires, in terms of computational cost, k matrix-vector
products by A and 4N +

∑k−1
i=1 (6iN + 6N) + kN = (3k2 + 4k − 2)N additional floating

point operations, as well as 2k vectors of length N to store. Each application of Hns on
a vector can be directly performed in (4k+ 1)N floating point operations, using relation
(3.18).

Remark 12. To the best of our knowledge, the use of Ritz or harmonic Ritz vectors does
not allow to decrease the computational cost and memory requirements proposed here.

Algorithm 12 Compute Y , X ∈ RN×k such that Hns = IN + Y XT

1: z1 = s1
2: x1 = Az1 (one product by A)
3: σ = ‖x1‖2 (2N flops)
4: x1 = x1/σ (N flops)
5: z1 = z1/σ (N flops)
6: for i = 1 to k − 1 do
7: zi+1 = si+1
8: xi+1 = Azi+1 (one product by A)
9: f = XT

i xi+1 (2iN flops)
10: zi = zi+1 − Zif (2iN +N flops)
11: xi = xi+1 −Xif (2iN +N flops)
12: σ = ‖xi+1‖2 (2N flops)
13: xi+1 = xi+1/σ (N flops)
14: zi+1 = zi+1/σ (N flops)
15: end for
16: Y = X − Z (kN flops)

3.4.3 Computational cost and memory requirements of the deflation

In the numerical experiments illustrated in Section 3.5, we will particularly compare the
effect of the LMPns with the deflation method. To apply the deflation operator PD, as
well as QD and RD, we can use the same matrices X and Z computed in Algorithm 12.
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Hence, we obtain 
PD = IN −XXT ,

QD = IN − ZXTA,

RD = ZXT .

Here, we do not need to compute the matrix Y in Algorithm 12 and the orthonormal-
ization process requires k matrix-vector products by A and (3k2 + 3k − 2)N additional
floating point operations. In terms of memory requirements, the deflation method also
needs to store 2k vectors of length N . Each application of PD on a vector can also be
performed in (4k+ 1)N floating point operations. We also note that, at the end of each
cycle of GMRES(30), we need to compute the approximation of the solution of the linear
system using QD and RD (see Algorithm 10). This step costs 1 matrix-vector product
by A and (8k + 1)N floating point operations.

Remark 13. Concerning the abstract balancing preconditioner PB defined by relation
(3.16), we will just analyse its action on a small-scale case (see Section 3.5.2), where only
the convergence histories of GMRES(30) are compared. More precisely, we illustrate on
this problem the equivalence stated in Theorem 3.3.5. Hence, we do not detail the
computational cost and the memory requirements in this case.

3.5 Applications to solid mechanics

The purpose of this section is to illustrate the efficiency of the class of LMPns on systems
of saddle point structure in solid mechanics introduced in Section 1.1. The method
has been implemented in Code_Aster via the PETSc library (version 3.4.5), and a
description of the routines is available in Appendix A.

3.5.1 Sequence of preconditioned saddle point systems

We consider, in the next numerical experiments, mechanical problems leading to se-
quences of symmetric indefinite linear systems, already defined before in this manuscript.
The sequences are of the form

Ki yi = ci ⇐⇒
(
Gi BT

B 0

)(
ui

λi

)
=
(
fi

gi

)
, i = 1, · · · , I. (3.19)

Contrary to the study led in Chapter 2, the class of LMPns is adapted to solve nonsym-
metric problems and we can solve (3.19) using any first level preconditioner. Two such
techniques are used next:
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• A block upper triangular preconditioner
In Sections 3.5.2 and 3.5.3, we consider the specific block upper triangular pre-
conditioner based on the augmented Lagrangian method and defined by relation
(1.23):

Mt =

G1 + γBTB 2BT

0 −1
γ
Im

 , γ > 0. (3.20)

Mt is computed from the first matrix K1 in (3.19) and is fixed all along the
sequence. As justified in Section 2.4.1, we consider an approximation ofMt based
on the incomplete Cholesky factorization of G1 + γBTB written as G1 + γBTB ≈
LLT . Finally, the associated matrix is used as a left preconditioner 1 and we obtain
the preconditioned linear systems Aixi = bi, denoted as

Ai xi = bi ⇐⇒
(
LLT 2BT

0 − 1
γ Im

)−1(
Gi BT

B 0

)(
ui

λi

)
=
(
LLT 2BT

0 − 1
γ Im

)−1(
fi

gi

)
i = 1, · · · , I.

(3.21)
In practice, the preconditioner is applied using the relation

(
LLT 2BT

0 − 1
γ Im

)−1

=
(
L−TL−1 0

0 −γIm

)(
In 2γBT

0 Im

)
.

As a remark, the computational cost related to the application of this precondi-
tioner is approximately the same that for the block diagonal variant used in Section
2.4 (the matrix B being very sparse). In practice, we will see later that the block
triangular variant is more efficient.

• Factorization in single precision arithmetics
In Sections 3.5.4 and 3.5.5, we consider another first level preconditioner. In these
experiments, we use the default preconditioning technique in Code_Aster, named
LDLT_SP and already introduced in Section 1.3.2.1. This method consists in
computing a complete factorization of the saddle point matrix K1 in single precision
arithmetics using the MUMPS library. We use the computed matrix, denoted
Msp, as a left preconditioner 2 which leads to the sequence of preconditioned linear
systems

Ai xi = bi ⇐⇒M−1
sp Kixi =M−1

sp bi i = 1, · · · , I. (3.22)

1. To be in agreement with all preconditioning strategies in Code_Aster.
2. See 1.
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M−1
sp is applied by successive back and forward substitutions and, unless otherwise

stated,Msp is fixed all along the sequence (3.22).

GMRES(30) combined with LMPns as a right preconditioner will be used to solve
the sequence of nonsymmetric linear systems (3.21) or (3.22). To select S ∈ RN×k, we
extract k (harmonic) Ritz vectors corresponding to the smallest in modulus (harmonic)
Ritz values, when solving the first linear system of the sequence. The limited memory
preconditioner Hns is then defined for all the remaining linear systems as

Hns = In+m −A1S(STAT1A1S)−1STAT1 + S(STAT1A1S)−1STAT1 . (3.23)

To summarize, we use GMRES(30) to solve:

A1x1 = b1 and
{
AiHnsx̃i = bi

xi = Hnsx̃i
i = 2, · · · , I.

In addition, we will compare this preconditioning technique with the deflation method
involving the same matrix S. Contrary to the LMPns which is a preconditioner, the
operators PD, QD and RD given by relation (3.8) require to be defined from the current
matrix (see the presentation in Section 3.3.1). In other words, although S is fixed all
along the sequence, we need to define new operators for each linear system if the matrices
Ai vary. Denoting these matrices P iD, QiD and RiD, we obtain

P iD = In+m −AiS(STATi AiS)−1STATi ,
QiD = In+m − S(STATi AiS)−1STATi Ai,
RiD = S(STATi AiS)−1STATi .

(3.24)

Finally, with changing matrices Ai, the deflation method requires to perform the orthog-
onalization process described in Section 3.4 before solving the current deflated linear
system. The sequence to solve using GMRES(30) is then:

A1x1 = b1 and
{
P iDAix̃i = P iDbi

xi = QiDx̃i +RiDbi
for i = 2, · · · , I.

We choose a fixed stopping criterion for each linear system, which is defined as

||bi −Aixki ||2
||bi||2

≤ 10−8, (3.25)
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and a zero initial guess x0
i is always chosen. We further note that the numerical results

have been obtained on the Aster5 cluster, described in Section 2.4.

3.5.2 Mechanical bearing (linear case)

We first deal with the linear problem related to the displacement of a mechanical bearing,
already introduced in Section 2.4.2. The solution method is different, notably due to
the choice of the first level preconditioner: here, we use an approximation of the block
upper triangular (3.20) which leads to solve one nonsymmetric system Ax = b in (3.21).
However, the parameter γ and the incomplete Cholesky factorization of the matrix G1 +
γBTB are similar to Section 2.4.2.

Figure 3.1 shows the spectrum of the matrix A (computed within the SLEPc library).
This illustration differs from Figure 2.6, since the information about the respective first
level preconditioners are taken into account. Here, we note that the real part of the
spectrum is strictly positive and that a cluster around 1 appears. This eigendistribu-
tion can be related to the spectral characterization of Theorem 1.3.2, where the exact
augmented matrix G1 + γBTB is used.
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Figure 3.1: Mechanical bearing: spectrum of A.

First, we investigate the behaviour of the class of LMPns combined with the block
triangular augmented Lagrangian preconditioner. Each panel in Figure 3.2 gathers the
convergence history of GMRES(30) without LMPns, or with LMPns based on Ritz,
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harmonic Ritz and exact eigenvectors for a same number k of columns in S (k = 5, 20 or
30). These selected vectors are all associated to the smallest in modulus Ritz, harmonic
Ritz or eigenvalues. The first remark concerns the effect of the first level preconditioner
alone: using the block triangular variant instead of the block diagonal one, as done
in Section 2.4.2, decreases significantly the number of iterations of GMRES(30) (134
against 315). Then, this example justifies the study led in this chapter to define a class of
limited memory preconditioners for nonsymmetric matrices, although the original saddle
point matrices in the sequence (3.19) are symmetric. The three variants of LMPns still
perform better than using no second level preconditioner: even with k = 5, the number
of iteration count is roughly divided by 4. We also note that using eigenvectors leads to
the minimal number of iterations in all situations. To conclude this analysis, using Ritz
or harmonic Ritz for S leads to a very similar convergence behaviour on this example.
In practice, we have not obtained significant differences between both variants in all
numerical experiments, and from now on, we present only the results given by the
selection of Ritz vectors associated to the smallest in modulus Ritz values.
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Figure 3.2: Mechanical bearing: convergence history of GMRES(30). Four precondi-
tioning methods are compared: no second level preconditioner, limited memory pre-
conditioners based on k = 5, 20 or 30 Ritz vectors, harmonic Ritz vectors and exact
eigenvectors.

Secondly, we have compared the action of the LMPns, the deflation and the balancing
preconditioner in this nonsymmetric case for the same matrices S. More precisely, we
have applied the deflation and the balancing preconditioner as described in (3.15) and
(3.17) respectively, and Figure 3.3 shows in particular the equivalence of the convergence
histories with both methods (in agreement with Theorem 3.3.5). Moreover, the action
of the limited memory preconditioner leads to similar behaviours.
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Figure 3.3: Mechanical bearing: convergence history of GMRES(30). Three methods
are compared, all based on k = 5, 20 or 30 Ritz vectors: limited memory preconditioner,
balancing preconditioner and deflation.

3.5.3 Containment building of a nuclear reactor

Now, we investigate the problem concerning the mechanical properties of the contain-
ment building of a nuclear reactor introduced in Section 2.4.3. The only change is
related to the use of the block triangular augmented Lagrangian first level precondi-
tioner, but with the same γ parameter and the same incomplete Cholesky factorization
of G1 + γBTB. This mechanical problem leads to a sequence of 4 nonsymmetric linear
systems of the form (3.21), where the matrix is fixed.

Figure 3.4 illustrates the convergence history of GMRES(30) for the last three linear
systems in the sequence (i = 2, 3, 4), with or without LMPns. As remarked in the
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mechanical bearing test, the use of the block triangular first level preconditioner based
on augmented Lagrangian method is more efficient than the block diagonal one. In this
experiment, we consider also LMPns with a varying number of Ritz vectors (k = 5,
20, 30). In addition, we show in Table 3.1 the cumulative iteration count over the last
three linear systems, the CPU time and the memory requirements provided by PETSc,
respectively. We note that the smallest number of iterations is always obtained when
selecting a large value of Ritz vectors (k = 30). More precisely, in this case, the iteration
count decrease is equal to 53%, associated to a gain in terms of CPU time of 51%. This
satisfactory result comes at a price of a low increase in memory requirements (4%).

No LMPns LMPns, k = 5 LMPns, k = 20 LMPns, k = 30
Total iteration count 135 74 66 64
Iteration count decrease (%) × 45 51 53
CPU time (sec) 75.6 42.9 40.2 36.9
CPU time decrease (%) × 43 47 51
Memory (Mo) 6895 6950 7071 7172
Memory increase (%) × 0.8 2.6 4

Table 3.1: Containment building: cumulative iteration count for the last three linear sys-
tems in the sequence, CPU time and memory requirements for different limited memory
preconditioners. Case of k = 5, 20 or 30 Ritz vectors.

On the other hand, Table 3.2 summarizes the results obtained with the deflated
GMRES(30) method. The gains are slightly better than those obtained with the LMPns,
whether looking at iteration count or CPU time. In terms of memory requirements, we
obtain approximately the same as the LMPns.

No def. def., k = 5 def., k = 20 def., k = 30
Total iteration count 135 74 64 59
Iteration count decrease (%) × 45 53 56
CPU time (sec) 75.6 42.6 38 33.6
CPU time decrease (%) × 43 50 55.6
Memory (Mo) 6895 6946 7068 7169
Memory increase (%) × 0.7 2.5 3.9

Table 3.2: Containment building: cumulative iteration count for the last three linear
systems in the sequence, CPU time and memory requirements for different deflation
methods. Case of k = 5, 20 or 30 Ritz vectors.
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Figure 3.4: Containment building: convergence history of preconditioned GMRES(30)
for the last three linear systems in the sequence. Case of limited memory preconditioners
with k = 5, 20 or 30 Ritz vectors.

The matrix being fixed in the last two numerical experiments, we next show the
action of the LMPns on sequences arising from Newton’s method with slowly varying
matrices. From now on, we combine the second level improving techniques with the
LDLT_SP preconditioner, which is the default method in Code_Aster.

3.5.4 Shut down nuclear reactor cooling loop

This problem models the thermal fatigue of a shut down nuclear reactor cooling loop.
The heat from the nuclear core is extracted by circulation of pressurized water in the
primary circuit. When the reactor is shut down, the studied cooling loop allows to
evacuate the heat of the primary circuit and the residual power of the nuclear fuel, using



3.5. Applications to solid mechanics 121

cold water. Some oscillations of the temperature can occur where both cold and hot
water are in contact and it is necessary to model the resistivity of the component to the
thermal fatigue. The mesh of the studied material is illustrated in Figure 3.5.

Figure 3.5: Mesh of the shut down nuclear reactor cooling loop.

The discretized problem involves N = 571281 unknowns, with less than 1% of La-
grangian multipliers, corresponding to the essential dualized boundary conditions. New-
ton’s method is employed because of the nonlinearity of the constitutive law of the
structure (Chaboche elasto-visco-plastic law [88]) and leads to the sequence (3.22) of
67 linear systems. This solution is challenging, not only from its dimension, but also
from the condition number of the saddle point matrices Ki which is of order of 1010 3.
Indeed, it is known that this value can be notably related to the properties of the mesh;
in particular, when there are strong spatial variations of the size of the mesh elements,
or when some of them are flattened, the condition number increases [95]. The former
case arises in this problem, at the intersection of both pipes (see Figure 3.5). Generally,
when the condition number is moderate, the GMRES(30) method, preconditioned by the
LDLT_SP technique, requires very few iterations to converge. With a large condition
number, this iteration count is often larger (about 20 in this case), and we expect that
a second level preconditioning technique, such as the LMPns, decreases this count.

We want to compare here the statistics related to the solution of the complete New-
ton’s sequence, also including the LDLT_SP factorization step. Table 3.3 collects the
results obtained with three different solution methods: without any second level improv-
ing technique, using the LMPns or the deflation for only k = 5. Indeed, in practice, the
value k = 5 seems to be the better choice, since the number of GMRES(30) iterations
with the first level preconditioner remains usually relatively low (i.e. less than 30) and a

3. This estimate has been obtained using MUMPS in double precision arithmetics as a direct solver
on the first linear system.
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larger k does not imply a significant additional gain. We first note that the use of either
the limited memory preconditioner or the deflation method is very efficient in terms of
iteration count with a gain of 53.3% and 58.3%, respectively. Concerning the CPU time,
the decrease is largely in favour of the improvement preconditioning technique with a
gain of 39.9%, against 9.2% for the deflation. This phenomena can be explained by the
fact that the deflation operator P iD defined by (3.24) (as well as QiD and RiD), needs to
be updated at each new linear system, using the new matrix Ai. However, according to
Section 3.4, the orthonormalization process requires in particular 5 matrix-vector prod-
ucts by Ai, which is roughly the computational cost of 5 iterations of GMRES(30) to
solve Aixi = bi. In addition, the value 410 in Table 3.3 corresponds to the cumulative
iteration count of the deflated GMRES(30) to solve the 67 linear systems, which means
that each system requires in average about 6 iterations. Hence, the computational cost
related to the update of P iD, QiD and RiD is not negligible.

No LMPns LMPns, k = 5 Deflation, k = 5
Total iteration count 983 460 410

Iteration count decrease (%) × 53.3 58.3
CPU time (sec) 961 578 873

CPU time decrease (%) × 39.9 9.2
Memory (Mo) 14074 14117 14095

Memory increase (%) × 0.03 0.014

Table 3.3: Shut down nuclear reactor cooling loop: cumulative iteration count over the
complete Newton’s sequence, CPU time and memory requirements for limited memory
preconditioner and deflation with k = 5 Ritz vectors.

We take the opportunity in this section to illustrate the scalability of the limited
memory preconditioners developed in this manuscript. The solution of this nonlinear
problem has been computed with different numbers of processors and Figure 3.6 presents
the speedup curves obtained with or without LMPns. The speedup factor is defined as

S(p) = T (1)
T (p) ,

where T (p) corresponds to the CPU time of the method executed on p processors. Then,
Figure 3.6 illustrates the ratio of the sequential CPU time to the parallel CPU time,
in function of the number of processors. We note that both curves are relatively far
from the ideal situation S(p) = p, but they are close to each other and we conclude
that the implementation of the limited memory preconditioner does not deteriorate the
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degree of scalability of the first level preconditioner (LDLT_SP here). We note that
the parallelism of the LMP± is not illustrated in the manuscript but the associated
operations are similar to the LMPns.
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Figure 3.6: Shut down nuclear reactor cooling loop: speedup curve

3.5.5 Snap hook

The last problem is a reference performance test of Code_Aster [94]. The structure is a
hollow snap hook, subject to an internal pressure. We consider a nonlinear constitutive
law of the material (elastoplastic law of Von Mises with isotropic hardening), and we
obtain from the Newton’s method a sequence of 34 linear systems of the form (3.22)
with multiple right and left-hand sides. The number of unknowns is N = 504012 with
about 1% of Lagrange multipliers corresponding to essential boundary conditions. The
condition number 4 of the saddle point matrices is large, about 1011, and we will see
that the action of the LDLT_SP can be improved using in particular the LMPns.
The condition number can also been explained by the quality of the mesh: we guess
in Figure 3.7 that the mesh elements on the curvatures of the snap hook have very
different shapes from the others. Another important parameter has to be taken into
account: in Code_Aster, the LDLT_SP preconditioner is computed from the matrix
A1 in (3.22) and used for the successive linear systems. However, if the Krylov subspace
method requires more than 30 iterations to converge for a certain system Aixi = bi

5,
a new LDLT_SP factorization is performed for the following matrix Ki+1. Indeed, we
consider that the effect of the preconditioner is degraded and we prefer to recompute it.

4. See 3.
5. 30 is the default value in Code_Aster.
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In such a case, when a LMPns is used, Hns is discarded after the solution of the i-th
linear system, and a new one is defined at the end of the solution of Ai+1xi+1 = bi+1 with
new Ritz vectors. This strategy is also adapted in the deflation method. We emphasize
that this situation did not happen in the previous numerical experiment.

Figure 3.7: Mesh of the snap hook.

Table 3.4 collects the statistics of three solution methods over the complete New-
ton’s sequence, where the CPU time includes the LDLT_SP factorization steps. Three
methods are presented: no second level improvement technique, with LMPns or using
the deflation for k = 5. We note that using a second level strategy is very efficient in
terms of iteration count, with a gain of 39.5% and 40.3% for the preconditioning and
deflating techniques, respectively. Concerning the number of LDLT_SP factorizations,
both improvement methods are interesting, since they are able to decrease this number
from 10 to 6. Finally, cumulating the different gains, the LMPns is more efficient in
terms of CPU time, with a decrease of 34.3%. The same arguments as in Section 3.5.4
justify the fact that the deflation method is less efficient in terms of CPU time. Never-
theless, the cost involved to update the deflation operators represents a smaller part of
the total cost in this case. Table 3.4 finally shows that the memory overcost in negligible
with both methods.
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No LMPns LMPns, k = 5 Deflation, k = 5
Total iteration count 1058 641 632

Iteration count decrease (%) × 39.5 40.3
LDLT_SP factorizations 10 6 6

CPU time (sec) 534 340 384
CPU time decrease (%) × 34.3 28.1

Memory (Mo) 3984 4015 3999
Memory increase (%) × 0.8 0.4

Table 3.4: Snap hook: cumulative iteration count over the complete Newton’s sequence,
number of required LDLT_SP factorizations, CPU time and memory requirements for
limited memory preconditioner and deflation with k = 5 Ritz vectors.

3.6 Conclusions

In this chapter, we have proposed a class of limited memory preconditioners adapted to
the solution of nonsymmetric linear systems. This preconditioner can be interpreted as a
block generalization of update formulas proposed in both EN and Broyden optimization
methods.

First, we have shown that the spectrum of the preconditioned operator contains the
eigenvalue 1 (with multiplicity at least k) and the remaining part of the spectrum has
been characterized. Then, this new class of preconditioners has been compared with ex-
isting methods: the deflation and the abstract balancing preconditioning technique. The
three associated spectra are similar (except k possibly different eigenvalues). Moreover,
we have proved that the use of GMRES on the deflated system, or right preconditioned
by the abstract balancing preconditioner give identical iterates, provided that appropri-
ate initial guesses and right-hand sides are chosen.

The numerical part of this chapter deals with solid mechanics problems leading to se-
quences of symmetric saddle point linear systems, as tested in Chapter 2. Here, any first
level preconditioner can be used here, making the successive preconditioned operators
nonsymmetric. Numerical experiments emphasize the efficiency of the class of LMPns.
On the one hand, using a block upper triangular first level preconditioner, a saving of
up to 51% in terms of computational time is obtained on a large-scale application. On
the other hand, if we define the first level preconditioner as a complete factorization
in single precision arithmetics with MUMPS, we obtain a gain of 39.9% on a nuclear
safety analysis corresponding to the study of a shut down reactor cooling loop. Simul-
taneously, we have compared the action of the LMPns with the action of the deflated
GMRES method. In terms of iteration count, the gains are close, even if the deflation
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method gives slightly better results on the large-scale systems illustrated here. However,
when the left-hand sides change during the sequence, the deflation operators need to be
updated, which makes it less competitive in terms of computational time. Lastly, the
scalability of the limited memory preconditioners has been illustrated on one large-scale
example in this chapter.
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Conclusions

The main goal of this thesis is to provide efficient methods to improve the convergence
rate of Krylov subspace methods for the solution of sequences of linear systems, arising
in solid mechanics. Simultaneously, we aim at implementing these methods in the open
source Code_Aster software, a finite element code developed at EDF, which is used as
a simulation tool by the engineering departments to produce notably safety analysis.

Chapter 1 has introduced and detailed the context of this research. First, we have
presented the treatment of nonlinearities in solid mechanics, as well as different types of
imposed conditions. In several industrial software like Code_Aster, these problems lead
to sequences of linear systems with saddle point structure, considered to be symmetric
in this manuscript. With this in mind, we have introduced the necessary mathematical
background related to the Krylov subspace methods, which are the methods of choice for
such a purpose, as well as state-of-art solution methods for saddle point linear systems.

In this framework, the thesis has contributed to the research area related to algebraic
preconditioning strategies for the GMRES Krylov subspace method, especially for the
solution of sequences of linear systems with fixed or slowly varying left-hand sides. Two
methods have been proposed and studied, both based on updating formulas issued from
the numerical optimization literature. They respectively address the following challenges:

(i) Extending to the symmetric indefinite case the class of limited memory precon-
ditioners [46], initially developed for the solution of symmetric positive definite
linear systems.

(ii) Proposing another class of limited memory preconditioners, able to handle non-
symmetric systems.
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The challenge (i) has been addressed in Chapter 2, where the definition proposed
for the new class of preconditioners (called LMP±) is similar to the one given in [46].
More precisely, both are defined by the same formula, which can be seen as a block gen-
eralization of the BFGS updating formula for quadratic problems, and involve k linear
independent vectors, composing the columns of a matrix S. However, the matrix STAS
has to be nonsingular, when the matrix A of the linear system is symmetric indefinite.
Given this definition, several contributions have been proposed. First, the spectrum
of the preconditioned operator has been analysed for any matrix S satisfying the as-
sumptions given above. This characterization has revealed that the eigenvalues are all
real-valued, with at least k equal to 1. Then, a discussion has been led to obtain the
sign of these eigenvalues and the inertia of the LMP±. The second contribution has
concerned the nonexpansion of the spectrum of the preconditioned matrix relatively to
the original one. Contrary to the symmetric positive definite case, this property is not
naturally inherited for any LMP±, but a similar result is obtained when the columns
of S are prior projected onto the invariant subspaces associated with the eigenvalues of
the original matrix in the open right and left-half plane, respectively. This latter case is
generally computationally too expensive in practice, but reveals that selecting columns
of S spanning an approximate invariant subspace is relevant. In this sense, we have con-
tributed in studying the Ritz-LMP variant, where Ritz information is used to determine
the matrix S.
The LMP± has been developed into Code_Aster, via the PETSc library, in combination
with the GMRES method. Thanks to this code, the efficiency of this preconditioning
technique has been illustrated on several problems in solid mechanics, leading to se-
quences of linear systems with saddle point structure. In fact, the LMP± is particularly
well suited to improve the effect of an existing first-level preconditioner. In this case,
this latter has to be symmetric positive definite, in order to apply the LMP± on a sym-
metric operator. In this chapter, a block diagonal first-level preconditioner has been
considered. A first small-scale problem has revealed a huge gain in terms of GMRES
iteration count and has strengthened our belief in selecting Ritz vectors to define the
LMP±. Then, two large-scale real-life problems have been studied, leading to significant
gains in terms of computational time, i.e., up to 41% and 17.2%, whether the matrix is
fixed or slowly varying, respectively. Finally, all these results have been obtained at a
negligible memory requirement overcost.

The challenge (ii) has been addressed in Chapter 3, where nonsymmetric linear sys-
tems are considered. Beyond the larger scope of possible applications, this approach
has allowed us to consider any first-level preconditioner for the sequences of symmetric
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saddle point linear systems studied in this thesis. We note that this new preconditioning
technique (called LMPns) can also be seen as a block generalization of updating formu-
las issued from the optimization literature (from variants of Broyden and EN methods,
precisely), involving a matrix S whose k columns are simply assumed to be linearly
independent. The theoretical part of this chapter has offered three main contributions.
The first one has concerned the spectral characterization of the application of a LMPns
to a matrix A, clustering notably at least k eigenvalues at 1. Then, the study aimed at
positioning and comparing the LMPns, as well as the LMP± in the symmetric case, with
two existing methods: the deflation and the abstract balancing preconditioner. The sec-
ond contribution in this analysis has concerned the spectral comparison, showing that
all these methods lead to similar spectra of the associated deflated or preconditioned
operators. The third theoretical contribution has dealt with the comparison of the GM-
RES iterates provided by the different methods. More precisely, we have shown that
the convergence histories are similar using either the deflation method or the abstract
balancing preconditioner as a right preconditioner on an adapted linear system with
an appropriate initial guess. This result, illustrated on a numerical experiment, also
concerns the LMP± in the symmetric indefinite case, since it is equal to the abstract
balancing preconditioner in this context.
After presenting a possible implementation of the LMPns, as well as the associated defla-
tion method, Chapter 3 has illustrated the efficiency of these improvement techniques on
sequences of saddle point linear systems combined with two different first-level precondi-
tioners. These numerical tests have been obtained with a code developed in Code_Aster
and PETSc. As in the symmetric indefinite case, the strategy to define the LMPns or
the deflated operators, based on Ritz information associated to smallest in modulus
Ritz values, gives attractive results. Globally, we have obtained significant gains, both
in terms of GMRES iteration count and of computational time, using the LMPns on
large-scale problems. In particular, we have tested this method on linear systems with
large condition numbers, using a single precision arithmetic factorization as a first-level
preconditioner. In these cases, the gain in CPU time can reach up to 39.9%, which is
very significant from an industrial point of view. Moreover, the associated increase in
terms of memory requirements remains negligible. Beyond the efficiency of the LMPns,
we have also obtained good results using the deflation. However, due to the fact that the
deflated operators need to be recomputed before the solution of each linear system (if the
matrix changes), the decrease is found to be less impressive in terms of computational
time. Finally, an important point has been illustrated in the numerical section of Chap-
ter 3, concerning the scalability of the class of limited memory preconditioners proposed
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in this thesis. Indeed, we have shown, on a large-scale problem, that this improvement
technique allows us to preserve the degree of scalability of the first-level preconditioner.

Perspectives

Several extensions to the present research can be mentioned. We split these directions
in two parts, dealing first with the both LMP± and LMPns and then with the precon-
ditioning strategies in Code_Aster.

LMP
We give three future directions related to the application of both LMP± and LMPns.
First, we have emphasized in this thesis the role of the selected information as columns
of the matrix S in (2.6) and (3.4). In practice, the Ritz vectors corresponding to the
smallest in modulus Ritz values have performed best in all the numerical experiments.
In fact, although not illustrated in the numerical sections of the manuscript, we have also
tested other strategies based for instance on the smallest approximation errors of the
Ritz pairs (defined in (1.15)), but the results were less attractive in terms of computa-
tional time. It is worth mentioning that other authors have observed a similar behaviour
in a different context: we can cite for instance the paper review [38], dedicated to re-
cycling Krylov subspace methods to solve sequences of linear systems, with application
on nonlinear Schrödinger equations. As an example of an alternative, we can refer the
reader to [45], where the authors propose a selective reuse of Krylov subspaces for the
solution of sequences of symmetric positive definite systems in solid mechanics.
Another point would merit further discussion: the update of the LMP± and the LMPns
during the solution of the sequence of linear systems. More precisely, we have considered
in the numerical experiments that the preconditioner is defined at the end of the solu-
tion of the first linear system and is kept fixed. Besides, this strategy has shown to be
more efficient than deflation on real-life numerical tests. Nevertheless, when the effect
of the LMP deteriorates during the sequence, it would be interesting to consider a new
improvement technique. A first analysis has been conducted during this thesis, based
for instance on the accumulation of several LMPns, or on the choice of new columns in S
at the end of each linear system. These studies are not enough achieved to be presented
in this manuscript. Concerning the update of the columns of S, we can refer the reader
to [38, 83].
Thirdly, the LMPns can obviously be used as a second-level preconditioner for nonsym-
metric problems in solid mechanics, as well as in other fields of application.
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Preconditioning
This thesis has provided prospects about preconditioning strategies in Code_Aster. In-
deed, as mentioned earlier, the current preconditioners available in this software do not
take into account the saddle point structure of the systems. During this thesis, we have
developed an interface with the PETSc library to take into account this block structure.
In particular, we have illustrated the effect of two block preconditioners on large-scale
numerical experiments, where the (1,1) block is handled by an incomplete Cholesky
factorization computed by PETSc. An interesting approach would be to use MUMPS,
known to be an efficient library for sparse direct solvers, to factorize this block. First
tests have been performed, providing attractive results. Furthermore, since this factor-
ization is related to preconditioning, using MUMPS in single arithmetic precision could
be more efficient in terms of memory requirements and computational time. This lat-
ter approach would necessitate to develop in PETSc the possibility to handle different
arithmetics, a feature which is not currently available.
Finally, we have focused on the solution of linear systems issued from Newton’s method.
Another interesting point to explore within Code_Aster would be related to the nonlin-
ear aspect. Currently, an alternative to the Newton’s method is available in Code_Aster,
based on the adaptation of the stopping criterion of the solution of each linear system
[105, 59]. Furthermore, the Jacobian-Free Newton-Krylov [63] approach seems attrac-
tive. The main idea behind this method is that the Krylov subspace methods do not
require the knowledge of the matrix but just its action on a vector. We could obtain
significant additional gains, since all the left-hand sides would not need to be built
(just those from which a preconditioner would be computed). We further note that the
classes of limited memory preconditioners proposed in this dissertation could be used in
combination with this nonlinear solver as well.





Appendix A

Description of the code

In this appendix, we succinctly describe the routines developed in both the Code_Aster
software and the PETSc library, related to the different preconditioning techniques stud-
ied in this manuscript. More precisely, we focus on the methods introduced in Chapter
3, which provide significant gains in terms of computational time and do not require any
restriction about the choice of the first-level preconditioner. We emphasize that the im-
plementation has been done in a parallel framework, as illustrated in Figure 3.6. Finally,
we notify the reader that this appendix refers to several routines specific to PETSc [8].

Remark 14. The implementation of the methods analysed in Chapter 2 is very similar
to what follows.

The main idea is to use the PETSc library as an iterative solver for the solution
of each linear system in the sequence, and more specifically the GMRES method, as
justified in Chapters 2 and 3. This approach is already available in Code_Aster, thanks
to an interface developed in Fortran 90. It is worth mentioning that the nonlinear process
is handled by Code_Aster and that PETSc just handles the solution of the successive
linear systems. The appendix is split in two main parts. The first one gives information
on how the saddle point structure of the systems is taken into account in the code; this
has been particularly developed in order to define the block upper triangular first-level
preconditioner in Sections 3.5.2 and 3.5.3. The second part illustrates the developments
carried out both in Code_Aster and PETSc to implement the LMPns method.

A.1 Block preconditioners for saddle point systems

Currently, the different preconditioning techniques available in Code_Aster treat the
global problem and unfortunately do not take into account the saddle point structure of
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the systems. Hence, we have developed an interface with PETSc to recover the different
blocks of the matrices. Let us focus on the linear system

Kx = b⇐⇒
(
G BT

B 0

)(
u

λ

)
=
(
f

g

)
. (A.1)

As mentioned in Section 1.3.2.1, this system is automatically modified, thanks to the
“double Lagrange” method, into

G BT BT

B −Im Im

B Im −Im



u

λ1

λ2

 =


f

g

g

 , with
{
λ1 = λ2

λ = λ1 + λ2
. (A.2)

Remark 15. For the sake of clarity in this presentation, we consider that the α coefficient
used to scale the different blocks in (1.22) is equal to 1.

If the PETSc library is chosen by the user to solve this linear system, both the
left and right-hand sides are duplicated in the PETSc format. From the numbering
corresponding to the problem unknowns, specific to Code_Aster, we then define some
Index Set (PETSc objects) to recover:

• the vectors f and g associated to the physical unknowns and the Lagrange multi-
pliers, respectively. To do so, we call the VecScatterBegin and VecScatterEnd
routines, which recover the required vectors from the different processors. We fur-
ther note that the initial guess used in the Krylov subspace methods in Code_Aster
is always zero. Hence, it is not necessary to apply this step on this vector.

• the G and B blocks corresponding to the stiffness and the constraint matrices,
respectively. They are recovered with the PETSc routine called MatGetSubMatrix.

Since all the necessary data are now retrieved, we can solve the linear system in the form
(A.1), i.e. without involving the “double Lagrange” approach. This can be done using
the MATSHELL notion in PETSc, which allows the user to define his/her own matrix-
vector product. Now, it is also possible to define the following block upper triangular
preconditioner (used as a first-level preconditioner in Section 3.5):

M̃t =
(
LLT 2BT

0 −Im

)
, (A.3)

where LLT ≈ G + BTB. In practice, this incomplete Cholesky decomposition is com-
puted by the inhouse PETSc method called PCICC and used in combination with a RCM
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reordering technique. Once this factorization has been obtained, we can define a routine
to apply the preconditioner M̃t, using a PCSHELL, which is based on the same idea as the
MATSHELL notion. Finally, the linear system (A.1) is solved through the PETSc routine
called KSPSolve. When the solution is computed, it is copied using the initial numbering
of Code_Aster, thanks to the Index Set previously defined.

Remark 16. When a sequence of linear systems has to be solved, we need to recover
and substitute the blocks of the left and right-hand sides for each system. However, the
first-level preconditioner M̃t is computed from the first saddle point matrix and remains
fixed all along the sequence.

A.2 Limited memory preconditioners

We focus in this section on the implementation of the LMPns class, suited to solve
nonsingular problems (see Chapter 3). It has been decided that this nonsymmetric
formulation would be delivered in a future version of Code_Aster. Generally speaking,
we want to use GMRES(restart) to solve the following sequence:

MA1x1 =Mb1 and
{
MAiHnsx̃i = bi

xi = Hnsx̃i
i = 2, · · · , I, (A.4)

where M is the first-level preconditioner and Hns is the LMPns. We next present the
routines developed in PETSc and Code_Aster, successively.

A.2.1 Development in PETSc

It is worth mentioning that the definition of Hns is closely related to the selection of
the columns of the matrix S in (3.4). In this manuscript, the strategy is based on Ritz
vectors (or harmonic Ritz vectors), recovered after the solution of the first linear system
of the sequence (A.4). However, no PETSc routine allows to obtain such information.
Thus, we have developed this feature. All our contributions in PETSc (developed in C)
are summarized below.

A.2.1.1 Approximations of eigenpairs based on (harmonic) Ritz pairs

This functionality has been developed in two steps, each step being related to a specific
routine. We emphasize that these routines are more generic. Actually, they allow the
user to obtain spectral approximations and can be used for other purposes than the
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definition of a LMPns.

First, let us recall that our strategy is based on the computation of (harmonic)
Ritz vectors from the Hessenberg matrix obtained during the last complete cycle of
GMRES(restart). Then, the KSPSetComputeRitz routine allows us to save (or not) this
matrix. The routine is called in Fortran as

KSPSetComputeRitz(ksp,flag,ierr), where

• ksp is an input PETSc object of KSP type, which manages the parameters of the
iterative solver;

• flag is an input boolean equal to 1 if the user wants to save the last complete
Hessenberg matrix. Otherwise, the value is set to 0;

• ierr is a PETSc datatype used for return error code.

We further note that if no complete cycle has been performed, we save the Hessenberg
matrix obtained at the end of the solution. Moreover, this routine needs to be called
before the KSPSetUp routine, setting up the internal data structures for the use of the
Krylov subspace method.

Secondly, the KSPComputeRitz routine computes the required (harmonic) Ritz vec-
tors, after the solution phase has been handled in GMRES(restart). We next detail all
the parameters of this routine called in Fortran, where I and O correspond to input and
output parameters, respectively.

KSPComputeRitz(ksp,ritz,small,S,tetar,tetai,nbrit,ierr), where

• ksp (I) is a PETSc object of KSP type, which manages the parameters of the
iterative solver;

• ritz (I) is a boolean equal to 1 to recover the Ritz pairs and 0 for the harmonic
ones;

• small (I) is a boolean equal to 1 to recover the Ritz pairs corresponding to the
smallest values in modulus, and 0 for the largest ones;

• S (O) is a multidimensional PETSc vector object containing the selected vectors;
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• tetar (O) is an array containing the real part of the selected (harmonic) Ritz
values;

• tetai (O) is an array containing the imaginary part of the selected (harmonic)
Ritz values;

• nbrit (I/O) is an integer, whose input and output values are equal to the number
of required and recovered pairs, respectively;

• ierr (O) is a PETSc datatype used for return error code.

We emphasize that nbrit can have different input and output values, since the (har-
monic) Ritz pairs are possibly complex-valued (see the discussion in Section 3.4.1). Ac-
tually, in such a case, the routine selects the complex (harmonic) Ritz value and its
conjugate, and two of the columns of S are equal to the real and the imaginary parts of
the associated vectors. Finally, we stress that this functionality is only available in the
GMRES context.

A.2.1.2 Preconditioning

Using the routines introduced above, we can define a LMPns from Ritz or harmonic Ritz
vectors. However, we use both left and right preconditioners when solving the sequence
(A.4). It is not possible in PETSc to apply both left and right preconditioners using the
PCSHELL notion (i.e. when the user defines his/her own application routines for these
preconditioners). Thus, we have developed this new feature, which is available by calling
in Fortran the new following functions:

KSPSetShellSetApplyLeft(pc,pcapl,ierr) and KSPSetShellSetApplyRight(pc,pcapr,ierr),
where

• pc (I) is a PETSc object of PC type, which manages the parameters of the precon-
ditioner;

• pcapl or pcapr (I) is the name of the routine where, the application of the pre-
conditioner on a vector is defined;

• ierr (O) is a PETSc datatype used for return error code.
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A.2.2 Development in Code_Aster

Now, we have detailed almost all the necessary information to solve the sequence (A.4)
in Code_Aster. The development performed in this software is based on several PETSc
routines (including the new ones presented before). However, another central step re-
mains to be detailed. Indeed, the KSPSetComputeRitz routine allows the user to recover
the matrix S whose columns are defined from the Ritz or harmonic Ritz vectors (at least
the real and imaginary parts). In order to apply the LMPns, as proposed in Section
3.4.2, we need to implement the orthonormalization process detailed in Algorithm 12.
We have decided to do it inside Code_Aster, in order to let the contribution related to
PETSc as general as possible. This routine is not detailed in this appendix, but follows
the successive steps of Algorithm 12. To conclude, the following code aims at presenting
the main steps of a simplified version of the code developed in Code_Aster (in Fortran
90), related to the use of the LMP method to solve a sequence of linear systems. We
note that this program does not illustrate the development done to take into account
the saddle point structure of the systems.

! PROGRAM TO SOLVE A SEQUENCE USING THE LMP METHOD

! inclusion of routines
#include " f l p . h " ! routine to apply the first-level preconditioner
#include " lmp . h " ! routine to apply the LMP

! declaration of variables
KSP : : ksp ! variable for the iterative solver
PC : : pc ! variable for the preconditioner
integer : : i , nb r i t
Vec : : x , b ! solution and right-hand side
Vec : : S ( k ) ,X(k ) ,Y(k ) ! multidimensional vectors for the LMP
PetscReal : : t r ( k ) , t i ( k ) ! multidimensional arrays for the real and

! imaginary parts of the Ritz values
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! select GMRES as the Krylov subpace method
call KSPSetType ( ksp , KSPGMRES, i e r r )
! set several parameters of GMRES (stopping criterion, restart ...)
. . .
! loop on the linear systems
if ( i . eq . 1 ) then
! define the left and right-hand sides...

. . .
! define the left preconditioner using a PCSHELL

call KSPSetPCSide ( pc ,PC_LEFT, i e r r )
call KSPShellSetApply ( pc , f l p , i e r r )

! save the last complete Hessenberg matrix
call KSPSetComputeRitz ( ksp , 1 , i e r r )

! solution of the linear system
call KSPSolve ( ksp , x , b , i e r r )

! computation of approximate spectral information
call KSPComputeRitz ( ksp , 1 , 1 , S , t e ta r , t e t a i , nbr i t , i e r r )

! orthonormalization process to obtain H = I + Y XT

call o r t h o r i t z (S ,X,Y)
else
! define the left and right-hand sides...

. . .
! define the left and right preconditioners using PCSHELL

call KSPSetPCSide ( pc ,PC_SYMMETRIC, i e r r )
call KSPShellSetApplyLeft ( pc , f l p , i e r r )
call KSPShellSetApplyRight ( pc , lmp , i e r r )
call KSPSetComputeRitz ( ksp , 0 , i e r r )

! solution of the linear system
call KSPSolve ( ksp , x , b , i e r r )

end
end
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