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Résumé

Cette thèse étudie le raffinement local de maillage à la fois en espace et en temps pour
l’équation de l’elastodynamique du second ordre pour le calcul haute performance. L’objectif
est de mettre en place des méthodes numériques pour traiter des hétérogénéités de pe-
tite taille ayant un impact important sur la propagation des ondes. Nous utilisons une
approche par éléments finis de Galerkin discontinus avec pénalisation pour leur flexibilité
et facilité de parallélisation. La formulation éléments finis que nous proposons a pour
particularité d’être élasto-acoustique, pour pouvoir prendre en compte des hétérogénéités
acoustiques de petite taille. Par ailleurs, nous proposons un terme de pénalisation opti-
misé qui est mieux adapté à l’équation de l’élastodynamique, conduisant en particulier à
une meilleure condition CFL. Nous avons aussi amélioré une formulation PML du second
ordre pour laquelle nous avons proposé une nouvelle discrétisation temporelle qui rend la
formulation plus stable. En tirant parti de la p-adaptivité et des maillages non-conformes
des méthodes de Galerkin discontinues combiné à une méthode de pas de temps local,
nous avons grandement réduit le coût du raffinement local. Ces méthodes ont été implé-
mentées en C++, en utilisant des techniques de template metaprogramming, au sein d’un
code parallèle à mémoire distribuée (MPI) et partagée (OpenMP). Enfin, nous montrons
le potentiel de notre approche sur des cas tests de validation et sur des cas plus réalistes
avec des milieux présentant des hydrofractures.

Mots clefs: élastodynamique, Galerkin discontinu, raffinement spatio-temporel, mail-
lage cartésien, non-conforme, pas de temps local, couplage élasto-acoustique, hydrofrac-
ture, hpc, OpenMP, MPI, PML, IPDG, stabilité, schéma hp

Abstract

This thesis studies local mesh refinement both in time and space for the second order elas-
todynamic equation in a high performance computing context. The objective is to develop
numerical methods to treat small heterogeneities that have global impact on wave propa-
gation. We use an internal penalty discontinuous Galerkin finite element approach for its
flexibity and parallelization capabilities. The elasto-acoustic finite element formulation we
discuss is elasto-acoustic in order to handle local acoustic heterogeneities. We also pro-
pose an optimized penalty term more suited to the elastodynamic equation that results in
better CFL condition. We improve a second order PML formulation with an original time
discretization that results in a more stable formulation. Using the p-adaptivity and non-
conforming mesh capabilities of discontinuous Galerkin methods combined with a local
time stepping method, we greatly reduce the high computational cost of local refinements.
These methods have been implemented in C++, using template metaprogramming, in a
distributed memory (MPI) and shared memory (OpenMP) parallel code. Finally, we show
the potential of our methods on validation test cases and on more realistic test cases with
medium including hydrofractures.

Keywords: elastodynamic, discontinuous Galerkin, spatio-temporal refinement, Carte-
sian mesh, non-conforming, local time step, elasto-acoustic coupling, hydrofracture, hpc,
OpendMP, MPI, PML, IPDG, stability, hp scheme
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Introduction

Presentation of the context
Oil exploration began with a mixture of luck and superstition. Prospectors were content

with drilling near seeps or in favorable locations, or just randomly. But the days when
prospectors were throwing their hats in the air and were drilling where their hat fell is
long gone. If we had continued in this way, our reserves would be far to suffice us.

We can decompose the oil exploitation process in three main parts, exploration, drilling
and exploitation. The exploration consist in seeking places where the topography of the
ground can "trap" the black gold. Drilling is the key to oil exploration. This step is the
main and most of the total cost of an oil installation. This is why exploration is crucial,
making a useless drilling is an economical disaster. The final step is the extraction, this
last step can be divided in two repeating sub-steps: estimation and recovery. Once an oil
field is actually detected by a drilling, a step of evaluation by several tests is performed
to determine the amount of oil (volume and porosity of the reservoir) and ease to extract
it (permeability of the rock) and to determine the composition of what is extracted. This
evaluation process is performed to estimate at the end the profitability to exploit the well.
When exploitation is decided comes the step of oil recovery. According to the different
phases in the life of the oil field the techniques to dig out the oil varies. Each step in the
oil exploitation process requires its own scientific methods. However, It is only relatively
late in the history of oil extraction that scientific methods have been used, but modelling
methods are nowadays at the heart of any geophysical interpretation approach. Our work
fall within the exploration phase.

Exploration is a step involving multiple knowledge, geologists, geophysicists, mathe-
maticians, numerical analysts. All bringing their share of knowledge to determine the
constitution of the ground with the limited information available. With the intensive
exploitation of oil fields, it has become increasingly difficult to find new untapped fields.
The vast majority of "easy" to find fields have already been found.

Without obeying to specific physical laws, the existence of oil is based on two basic
criteria:

• Hydrocarbons (oil) must have formed in favourable grounds called bedrock; these
lands necessarily correspond to certain stages of marine sedimentation with deposi-
tion of organic materials whose physico-chemical evolution leads to the formation of
hydrocarbons.

• In order to create an oilfield, oil must have been, after their formation, collected,
and then "trapped" in "reservoirs". The term "reservoir" stands for a sealed space
at the top, bounded by clay or by an impermeable rock, wherein there is a porous
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rock, comparable to a sponge. This porous rock is impregnated with gas and / or
oil and / or salt water.

Reservoir quality is characterized by its porosity (the more the rock is porous, the greater
the volume of oil content is) and permeability (the ability to extract oil). Exploration
consists of recovering a lot of data to end up with a more or less sophisticated model
of the ground. These data are mainly composed of seismic data, coring and geological
knowledge. On land, the wave generation is done either with explosives or with vibrator
trucks. At sea, a boat towing a device for generating waves compressed air and a network
of pressure sensors divided into lines (streamers) up to 10 km long. Numerical methods
can be useful before the data acquisition to help predicting the quality of the acquisition.
Numerical methods are also the key to accurate ground modeling.

Interpreting geophysical data in complex geological terrains requires solutions of the
partial differential equations (PDE) governing the physics. Since ground modeling is
performed through simulations that seek to match the acquired field data, this problem
is what we call an inverse problem. What we call the direct problem is the simulation of a
wave propagation in a defined ground model. The inverse problem is the opposite problem:
seeking the ground model such that we get the known wave propagation corresponding
to the field acquired data. When solving the inverse problem most approaches require to
solve many direct problems to approximate iteratively the ground model solution.

Our work is focused on the direct problem, among all the numerical methods available,
the most common are: the spectral method [? ? ? ], very efficient and accurate but
generally restricted to simple earth structures, often layered earth; the pseudo-spectral
[? ? ? ], finite difference [? ? ? ] and finite volume methods [? ? ? ] based
on the strong formulation of the partial differential equations, easy to implement and
usually representing a good compromise between accuracy, efficiency, and flexibility; and
the continuous [? ? ] or discontinuous Galerkin finite-element methods [? ? ] based on
the weak formulation, leading to more accurate earth representations and therefore more
accurate solutions but with a higher computational cost and a more complex usage. The
choice between these different approaches is still difficult and depends on the applications.
Spectral methods are often called with the more general term analytical or semi-analytical
methods, whereas all other methods are numerical methods.

On top of the different numerical methods, different physics models are used according
to the desired cost/accuracy from the simplest to the more realistic we have: the acoustic
model, the isotropic elastodynamic model, the anisotropic elastodynamic model, and we
can even add some porosity physics to these models. The diversity in solving geophysical
modelling may, however, reflect the different challenges in geophysics, and these challenges
may require different practical solutions. One shall not think that the simplest methods
and models are the old ones, a large portion of geophysics codes still use finite differ-
ences and/or acoustic model. For instance, to be economically valuable, the migration of
hundreds of thousand shots of a marine data set to obtain a structural image from com-
pressional waves demands a different implementation of the wave propagation problem
that the precise modelling of surface waves generated by a superficial earthquake. The
methodological effort for years has conducted to sophisticated tools well tuned for specific
purposes.

The increasing difficulty to find reservoirs has bring the need to always render the physic
more accurately. In particular, being capable to render small details that have a consider-
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able impact on the wave propagation is becoming mandatory. In the presence of complex
geometry and complex geological models, adaptivity and mesh refinement are key features
for efficient numerical solution of the elastodynamic equation. Refined meshes impose se-
vere stability constraints on explicit time-stepping schemes to respect the CFL condition
to insure the stability of the method. When mesh refinement is restricted to a small area,
the time step defined by the spatially smallest element has to be used. Overcoming this
limitation is crucial for achieving high performance and high numerical accuracy. Decreas-
ing the interpolation order if refinement ratio is low is a practical approach [? ? ] since
the CFL condition is larger for lower interpolation orders. However, when the spatial
refinement becomes to steep local time-stepping schemes with local stability conditions
will be the method of choice.

Collino et al. [? ? ] proposed a second-order local time-stepping method for the wave
equation and for Maxwell’s equations. The approach remains explicit inside the coarse
and fine meshes but requires at every time step the solution of a linear system at the
interface between the two grids. Piperno [? ] proposed an explicit local time-stepping
scheme conserving a discrete energy and second-order accurate in time by combining a
symplectic integrator for the Maxwell’s equation while Dumbser et al. [? ] combine
both p-adaptivity and local time stepping using the ADER integration scheme which is a
dissipative scheme. Alternatively, Diaz and Grote [? ] have proposed a fully explicit local
time-stepping approach with the conservation of a discrete energy with arbitrarily high
accuracy for the scalar wave equation while Dolean et al. [? ] have proposed an hybrid
implicit-explicit (or locally implicit) method.

Local time stepping methods bring two main problems. Firstly, their accuracy and
stability cannot always be guarantee. Secondly, they introduce more or less sophisticated
algorithms that lead to difficult parallelization.

Objectives and contributions of the thesis

The objective of this thesis is to develop a numerical method with local mesh refine-
ment both in space and time on Cartesian grids adapted to a high-performance environ-
ment for the elastodynamic equation in isotropic medium.

The targeted average rate of refinement being around 20, which is substantial, the
refinement method must guarantee a priori the stability of such refinements. In addition,
such refinements lead to refined areas with high computational costs. This imbalance
involves having a viable strategy in a high performance environment. Indeed, as we
mentioned earlier, temporal local mesh refinement methods induce a particular treatment
making difficult the load balance. One of the reason to achieve local mesh refinement
is to simulate hydrofractures, this implies to be capable to handle multiphysics media,
typically elastodynamic and acoustic media. The interest is usually not on simulating a
single hydrofracture, but a network of hydrofractures for the cumulated physical effects
they produce, e.g. wave scattering. Besides, the lack of precise information on the ground
and also the tools used on the side, promote a Cartesian grid approach. This means
that space refinements should be non-conforming, see Figure 1 for an illustration of a
non-conforming mesh. These non-conforming meshes induce stability problems on most
numerical methods, or at least require complicated numerical schemes.
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Figure 1: A non-conforming mesh, elements are non-conforming on the red interface.

In the first chapter we introduce the numerical method to discretize our EDP: the in-
terior penalty discontinuous Galerkin methods, with an emphasis on its symmetric version.
Standard approach on Cartesian grids would use finite difference or finite volume meth-
ods for their reduced cost, but all the requirements mentioned in the objectives seemed
unreachable with such methods. Because discontinuous Galerkin methods are local, they
are particularly well-suited for the development of explicit local time-stepping schemes.
Additionally, non-conforming mesh refinements are naturally handled by these methods.
These methods are not commonly used in seismic simulation due to their relative high
cost and difficult implementation compared to finite difference and finite volume methods,
a first preliminary attempt of this method for seismic imaging has been performed by De
la Puente [? ] only in 2010. For this reason, we decided to dedicate the first chapter to
a detailed introduction to discontinuous Galerkin method for the second order elastody-
namic equation in the time domain. This introduction presents how this method is built
and recall some properties of it. In particular, we performed a dispersion error analysis
and a study of the stability condition that arise in explicit schemes, also called the CFL
condition.

We also propose a new formulation for the penalty term which is more suited for
the elastodynamic equation due to its vector components. This new formulation leads
to a better stability condition and dispersion error, and paves the way for multiphysics
simulations.

In the second chapter we introduce absorbing layers, called perfectly matched layers
(PML). Indeed, in our context, the simulations are never made on the whole earth, so
there must be absorbing conditions to simulate an unbounded medium. We decided to
choose PML over other absorbing methods for its flexibility and reliability. We based our
PML scheme on Imbo’s formulation [? ] due to its second order PDE form contrary to
most other formulations that lead to a system of first order PDE. We proposed an orig-
inal discontinuous Galerkin approximation of this PML formulation. Even though PML
schemes often lead to weakened CFL conditions [? ], we found through extensive numerical
experimentations that the choices we made for our discontinuous Galerkin approximation
and for the temporal discretization do not weaken the CFL condition.

In the third chapter we introduce our local time stepping approach, based on Diaz-
Grote’s local time stepping method [? ]. Diaz and Grote’s local time stepping method
appears in a high performance computing context as the best suited method for two main
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reasons. Firstly, The stability of the local time-stepping method can be proven through
the conservation of a discrete energy. Secondly, the computational complexity is more
homogeneous for Diaz-Grote’s method than for other methods since the scheme is fully
explicit.

The third chapter can be subdivided in four parts. The first part is dedicated to the
construction of a scheme, which we call the z̃-exact scheme. The aim of this scheme is to
give a better insight to Diaz-Grote’s scheme, since this last one is an approximation of the
z̃-exact scheme. Contrary to Diaz-Grote’s scheme, the z̃-exact scheme does not use a local
time step. Nevertheless, most of the numerical properties of both schemes are the same,
especially the stability condition. Indeed, the stability condition is not impacted by the
area receiving a special treatment which is precisely what is desired from such schemes.

In the second part we introduce Diaz-Grote’s local time stepping algorithm. Diaz-
Grote’s algorithm uses the global stiffness matrix which is usually not assembled. More-
over, writing the local time stepping algorithm in this manner hides the locality of the
algorithm. Using the locality of the operators of the discontinuous Galerkin methods, we
proposed specific local algorithms for elements at either fine or coarse time step.

In the third part we propose an analysis of the optimal computational cost we can
expect for an ideal local time stepping method. To overcome the quick growth in compu-
tational cost of local spatio-temporal mesh refinement we propose some strategies based
on discontinuous Galerkin methods flexibility. The first idea is to use use lower polynomial
orders in refined elements, this uses what is called p-adaptivity, i.e. the ability to change
polynomial orders between elements.

In the fourth part we propose to analyze the numerical behavior of the local time
stepping method and of the non-conforming mesh refinement. In particular, we seek to
observe spurious effects created by these special treatments.

In the fourth chapter we attempt to validate our choices of methods. In a first time,
we introduce our approach to achieve multiphysics, i.e. elasto-acoustic media. This multi-
physics formulation is highly helped by the flexibility of discontinuous Galerkin methods.
Secondly, we validate the different aspects of our methods on canonical test cases. In
particular, we simulate an hydrofracture and we compare our results to reference results.
Finally, we illustrate the capabilities of our methods on illustrative experiments showing
the impact of small heterogeneities.

In the fifth chapter we introduce our implementation and our approach to paral-
lelization. In our implementation we attempt to exploit the industrial constraints to gain
efficiency compared to standard implementation approaches. Our approach is based on
the decomposition of the computational domain into subdomains. These subdomains are
the entities that are distributed to achieve distributed memory parallelism. However, the
size of these subdomains and the polynomial order of approximation of the elements has
an significant impact on the sequential performances. Therefore, we study the sequential
performances according to the size and polynomial orders of the subdomains. Considering
our parallel approach we introduce our shared and distributed strategies. We propose an
asynchronous non-blocking MPI implementation, that shows consistent scalability. The
distributed memory parallel approach showed much better performances than our shared
memory parallel approach.
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Brief introduction to elastodynamic

The linear isotropic elastic model

Mechanical properties of materials have a very complex behavior. Most materials have
a nonlinear elastoplastic behavior, heterogeneity and anisotropy. This means that mechan-
ical properties may vary due to many different aspects, especially deformation and load
history. Depending on the type of targeted applications these behaviors and properties
can be simplified.
In the case of small strain it is reasonable to assume the elastoplastic behavior to be
purely elastic. In the context of seismic wave propagation, materials are often assumed to
be isotropic and locally homogeneous.

Wave types

Seismic waves can be sorted in two categories, body waves and surface waves. As their
name suggests body waves spread over the volume, forming spherical wave-fronts around
the source point. This implies a faster decay of the energy, and hence the displacement
amplitude, for body waves with distance from the source than for surface waves.

Body waves: They propagate inside the earth. Their propagation speed depends on
the medium, which typically, increases with depth.

• P-waves or primary waves, also called compressional waves and longitudinal waves.
They are the fastest waves and therefore the first to be recorded on seismograms.
The particle motion is pure dilatation or pressure. These ground motions are parallel
to the direction of the wave propagation. The P-waves correspond to the acoustic
waves in a fluid, e.g. in air or water. They are responsible for the low rumble that
can be heard at the beginning of an earthquake.

Particle motion

Propagation direction

Figure 2: P-wave

• S-waves or secondary waves, also called shear waves and transversal waves, they
arrive after P-waves. The ground motion is perpendicular to the direction of the
wave propagation. These waves do not propagate in fluid media.
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Figure 3: S-wave

When a wave encounters a free surface, or an interface between two media, a partial
conversion from P-waves to S-waves and vice versa may occur.

Surface waves: They propagate along a free surface, e.g. earth surface, or along an
interface between two media especially fluid-solid interface. Their velocity is lower than
body waves, but their amplitude is often the highest and for this reason they are the most
destructive waves. We introduce here two commonly referred surface waves, but more
types of surface waves exist.

• Rayleigh waves typically run on the Earth surface, but also on fluid-solid interface.
These waves are somewhat slower than S-waves, and contain both pressure and shear
components in the displacement field.

Propagation direction

Fluid-solid interface
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Figure 4: Rayleigh wave

• Love waves may arise due to multiple reflections of S-waves between two interfaces,
they consist of trapped S-waves because reflection on interfaces are total, these shear
waves are polarized normally to the interfaces.
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Chapter 1

Discontinuous Galerkin for
elastodynamic

1.1 Introduction

DG methods were first introduced in 1973 by Reed and Hill [? ], and have gain slowly
popularity until twenty years ago when a keen interest began. A large number of variants
and results have slowly emerged since the first formulation [? ? ? ? ? ]. DG methods can
be viewed as finite element methods allowing for discontinuities between elements. These
discontinuities require to introduce numerical fluxes between elements at interfaces as for
finite volume methods. Working with discontinuous discrete spaces offers a substantial
amount of flexibility, e.g. hp-adaptivity, non-conforming meshes, truly explicit schemes,
and also the possibility to achieve multi-physics simulations as shown in Chapter 4.

First of all, we shall recall the various features desired for our software. We want a
method that handle Cartesian non-conforming meshes, local time stepping and elasto-
acoustic media. Without going too much into details, especially on local time-stepping
since it is the subject of Chapter 3, we have to choose a method that can handle non-
conforming meshes and elasto-acoustic interfaces. Both of these features are achievable
with DG finite element methods, non-conforming meshes are naturally handled by DG
methods whereas a small change in the formulation of the DG methods is used to manage
elasto-acoustic interfaces seamlessly to the user.

Geo-science has been widely and mainly using finite difference methods for its ease
of implementation and efficiency on simple simulations. With the increasing complexity
of problems, finite difference had to become more and more complex, making them less
attractive. However, comparing the performances of DG methods and finite difference
methods is not simple, as one can easily build test cases where one method is better
suited than the other. What should be noticed is that DG methods and finite difference
methods should not be used the same way, especially if we consider accuracy and dispersion
aspects.

In this chapter, we mainly focus on the application of the InteriorPenaltyDiscontinuous
Galerkin (IPDG) finite element methods to time-dependent elastic wave propagation,
with an emphasis on the Symmetric Interior Penalty Discontinuous Galerkin method
(SIPDG). In Section 1.2 we introduce the mathematical formulation of our problem, called
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the model problem. Our approach is relatively standard in the sense that we use DG meth-
ods for the discretization in space, and finite difference for the discretization in time. For
this reason, in Section 1.3 we introduce the principal ideas of the construction of the
IPDG approximation for the stationary elasticity operator and why it is built that way.
We also introduce in this section a new penalty better suited for the elastodynamic equa-
tion. In Section 1.4 we briefly give the IPDG formulation of the model problem, that
is the elastodynamic equation in the time domain, and then we discretize in time the
semi-discrete problem with the well known leap-frog finite difference scheme. In Section
1.5 we study through a plane wave analysis the dispersion and stability properties in ho-
mogeneous infinite medium of our DG approximation. In Section 1.6 we study our DG
approximation through an energy analysis the stability properties with heterogeneities,
hp non-conforming mesh, and boundary conditions. This second study is less accurate
than the plane wave analysis, but gives valuable information about the impact of hetero-
geneities, hp-adaptivity, and boundary conditions on the stability.

1.2 Model problem

Let Ω be a polygonal domain of Rd, d = 1, 2 or 3. The sides of the boundary ∂Ω
are grouped into two disjoints sets ΓD and ΓN . Let n be the unit normal vector to
the boundary exterior to Ω. We consider the following hyperbolic linear elastodynamic
problem:

Find u : Ω× [0, T ]→ Rd such that

ρ
∂2u
∂t2
− div(σ(u)) = f, in Ω,

u = 0, on ΓD,
σ(u) · n = 0, on ΓN ,
u(x, 0) = u0(x), ∀x ∈ Ω,
∂u
∂t

(x, 0) = v0(x), ∀x ∈ Ω,

(1.1)

where σ(·) is the Cauchy stress tensor, u(x, t) is the displacement field, ρ is the mass
density, the vector x is the position in space and t is the time. In homogeneous and
isotropic materials, the Cauchy stress tensor can be written as:

σ(u) := 2µe(u) + λtr(e(u))I,

where e(u) = 1
2(∇u +∇uT ) is the strain tensor, λ and µ are the Lamé parameters, I the

identity matrix and tr(.) the trace function.
We recall that the Lamé parameters are linked to P- and S- waves velocities by the

relations
λ+ 2µ = ρv2

p, µ = ρv2
s .

Existence and uniqueness of the solution for the elastodynamic equation: We
state now a classical result of existence and uniqueness obtained by semigroup theory [?
]. We define the elasticity operator by Au := −div(σ(u)). The domain of this operator is

D(A) := {v ∈ H1(Ω) , Av ∈ L2(Ω) and σ(v)n = 0 on ΓN}.

With the theorem of Hille-Yosida [? ] we obtain the following classical result:
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Theorem 1.1
Under the hypothesis:

• λ, µ, ρ ∈ L∞(Ω), and ∃λ0, µ0, ρ0 > 0, such that ∀x ∈ Ω, λ(x) > λ0 and µ(x) >
µ0 and ρ(x) > ρ0;

• (u0 , v0) ∈ D(A)× H̃1
0 (Ω), where H̃1

0 (Ω) =
{
v ∈ H1(Ω) : v = 0 on ∂Ω ∩ ΓD

}
;

• f ∈ C1(R+ ; L2(Ω));

our problem has a unique solution:

u ∈ C2(R+ ; L2(Ω)) ∩ C1(R+ ; H̃1
0 (Ω)) ∩ C0(R+ ; D(A)). (1.2)

1.3 Discontinuous Galerkin approximations of the
elasticity operator

Building the interior penalty discontinuous Galerkin methods requires two main steps.
The first step is to derive an equivalent formulation called variational formulation. The
second step is to use finite dimension approximation spaces to discretize in space the
variational formulation.

In short, the principle of the variational approach for solving partial differential equa-
tions is to replace the original equation by an equivalent formulation obtained by integrat-
ing the equation multiplied by any function, called test function. The main idea of the
variational approach is to show the existence and uniqueness of the solution of the varia-
tional formulation, leading to the same result for the model problem. However, this theory
does not work unless the space in which we seek the solution and wherein the test functions
are is a Hilbert space. This is not the case for C1

0 (Ω) with its usual scalar product. This
is why we seek our solution in the Sobolev spaces, in particular H1

0 (Ω) which is a Hilbert
space. A brief introduction to Sobolev spaces can be found in Appendix A. However, what
must be remembered is that we use functional spaces of sufficient regularity.

To introduce the discontinuous Galerkin approximation of the elasticity operator A :=
−divσ(u), we consider the following stationary problem:

Find u : Ω→ Rd solution of
−divσ(u) = f in Ω,

u = 0 on ΓD,

σ(u)n = 0 on ΓN .
(1.3)

This problem can be written as follows:
Find u ∈ H̃1

0 (Ω) such that

∀v ∈ H̃1
0 (Ω), a(u,v) = `(v), (1.4)

where a(u,v) :=
∫

Ω
σ(u) : ∇v dx and `(v) :=

∫
Ω
f · v dx.

In particular, under the hypothesis:

• the measure of ΓD is non-null,
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• f ∈ L2(Ω),

• λ, µ ∈ L∞(Ω), and ∃λ0, µ0 > 0, such that ∀x ∈ Ω, λ(x) > λ0 and µ(x) > µ0,

the Lax-Milgram theorem ensures the well-posedness of the problem (1.4).
We shall now present the construction of a discontinuous Galerkin approximation of

the weak solution of (1.4). In this kind of approach, the discrete solution is sought in
a finite dimension space, Vh, defined by piece on a subdivision of Ω. In particular, no
continuity is assumed between the elements of the subdivision and thus Vh is not included
in H̃1

0 (Ω).

1.3.1 Properties of a "good" discontinuous Galerkin approximation

Before explaining the construction of the formulations, we shall clarify what is meant
by "good" discontinuous Galerkin approximation (or other). For this, we consider the
following abstract formulation:

Find uh ∈ Vh such that

∀vh ∈ Vh, ah(uh,vh) = l(vh),

where ah is the bilinear form underlying the selected scheme.
Suppose that:

• ah verifies a uniform inf-sup condition, i.e,
∃β > 0 such that

inf
uh∈Vh

sup
vh∈Vh

ah(uh,vh)
‖uh‖h‖vh‖h

≥ β > 0, (1.5)

• There exists a norm ‖ · ‖V (h) on the space V (h) := H̃1
0 (Ω) + Vh (we have to define

V (h) since Vh might not included in H̃1
0 (Ω) and is never included for DG methods),

such that the injections are continuous for the norms ||.||H1(Ω) and ||.||h,

• We can extend ah in a continuous bilinear form of V (h)× Vh (still noted ah), i.e.,
∃C > 0 such that ∀v ∈ V (h) and ∀vh ∈ Vh,

ah(v,vh) ≤ C‖v‖V (h)‖vh‖h. (1.6)

We thus get (we refer to [? ] for a proof of these results)

• the stability of the discrete solution according to the data of the problem:

‖uh‖h ≤ C

β
‖f‖0, (1.7)

• the a priori error estimate:

‖u− uh‖V (h) ≤
(

1 + C

β

)
inf

vh∈Vh
‖u− vh‖V (h). (1.8)

In particular, this estimate is used to show the convergence of the scheme and
determine its order (under some hypothesis on the regularity of the exact solution).

In practice, we seek to provide formulations verifying the hypothesis (1.5) and (1.6)
in order to obtain a "good" discontinuous Galerkin approximation, i.e, a stable and con-
verging approximation.
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1.3.2 Construction of interior penalty discontinuous Galerkin
approximations

We will introduce now the formal construction of several standard discontinuous Galerkin
formulations called interior penalty discontinuous Galerkin. We refer to [? ] for a deeper
insight into these methods.

Let Ω be subdivided into square elements in 2D and cubes in 3D (they can have more
complex shapes in the general case), we denote this partition by Th. In order to achieve
spatial local mesh refinement, we allow non-conforming elements. We denote by Fh the
set of all faces. A face shared by two elements is called an interior face, we denote by FIh
the set of all interior faces. Likewise, a boundary face of K ∈ Th is ∂K ∩ ∂Ω, we denote
by FBh the set of all boundary faces. We also denote by FK the set of faces of an element
K.

For any piecewise smooth function v, we define the following trace operators. Let
F ∈ FIh be an interior face shared by two neighboring elements K1 and K2. We assume
that the normal vector nF to the face F is oriented from K1 to K2, we define the average
and jump of v on F by

{{v}} := 1
2(v|K1 + v|K2), [[v]] := v|K1 − v|K2 ,

respectively.
Let F ∈ FBh ∩ ΓD, we define {{v}} := v and [[v]] := v.
Let F ∈ FBh ∩ ΓN , we define {{σ(v)n}} := 0 and [[σ(v)n]] := 0.
We note |.| the measure of an element or a face, and we note hK or hF the length of the
edges of an element or a face, respectively. Hence, with a Cartesian grid ∀K ∈ Th, |K| =
hdK and for a side F of an element K ∈ Th, |F | = hd−1

K .

The basic idea of the finite element method is to replace the Sobolev spaces on which
the variational formulation is posed by a subspace Vh of finite dimension. The better
approximation the space Vh is, the better the solution uh will approximate the exact
solution u. For DG finite element methods, this subspace is always composed of functions
whose support is only on one element, which is why we call these methods discontinuous.
We usually approximate the space Hs(Th) with usual functional spaces.

For a given partition Th of Ω, we wish to approximate u in the finite element space

Vh := {v ∈ L2(Ω)d : ∀K ∈ Th v|K ∈ Vh(K)},

where Vh(K) is a finite dimension space approximating Hs(K).

We begin with the second order form of the elastic wave equation

−div(σ(u)) = f. (1.9)

Multiplying (1.9) by a test function vh ∈ Vh, we obtain

−div(σ(u)) · vh = f · vh.
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We integrate (1.3.2) on Ω, which gives

−
∫

Ω
div(σ(u)) · vh dx =

∫
Ω
f · vh dx.

As Ω =
⋃

K∈Th

K, we have

−
∑
K∈Th

∫
K
div(σ(u)) · vh dx =

∑
K∈Th

∫
K
f · vh dx.

If we use the Theorem A.2 on one element K, we have∫
K
div(σ(u)) · vh dx = −

∫
K
σ(u) · ∇vh dx+

∫
∂K

(σ(u)n) · vh ds.

This is now that all the differences between standard finite element and discontinuous
Galerkin finite element methods arise. Standard, or continuous, finite element methods
choose carefully the basis of Vh(K) inside each element in such a way that the boundary
terms vanishes by imposing the continuity of the basis functions between elements (two
neighboring elements share mutual degrees of freedom that impose the continuity between
the two elements). DG methods, in contrast, leave these boundary terms, and let the
scheme finds the continuities by itself. Hence, for DG methods the continuity between
elements is only approximated, whereas it is enforced for standard finite element methods.
Enforcing the continuity for standard finite element methods makes it tedious to have
high order polynomial basis functions and even more difficult to have p-adaptivity or
non-conforming meshes, which are needed in our problem.

Let F = ∂K+ ∩ ∂K−, where K+ and K− denotes two neighboring elements, thus, we
have ∑

K∈Th

∫
∂K

(σ(u)n) · vh ds =
∑
F∈Fh

∫
F

(σ(u+)n+) · v+
h + (σ(u−)n−) · v−h ds.

Using the relation ab+ cd = 1
2(a+ c)(b+ d) + 1

2(a− c)(b− d), we have∫
F

(σ(u+)n+) · v+
h + (σ(u−)n−) · v−h ds =

∫
F

1
2(σ(u+)n+ + σ(u−)n−) · (v+

h + v−h )

+ 1
2(σ(u+)n+ − σ(u−)n−) · (v+

h − v−h ) ds.
(1.10)

The solution u ∈ {H̃1
0 (Ω)d : div(σ(u)) ∈ L2(Ω)} implies that [[u]] = 0 and div(σ(u)) ∈

L2(Ω)d implies that [[σ(u)n]] = 0. Injecting these relations in (1.10) yields
∀vh ∈ Vh,∫
F

(σ(u+)n+) · v+
h + (σ(u−)n−) · v−h ds =

∫
F

1
2(σ(u+)n+ − σ(u−)n−) · (v+

h − v−h ) ds

=
∫
F
{{σ(u)n}} · [[vh]] ds.

At this point we have the following variational formulation:
Find uh ∈ Vh approximation of the exact solution u such that

∀vh ∈ Vh, ah(uh,vh) = l(vh),
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where
ah(uh,vh) :=

∑
K∈Th

∫
K
σ(uh) · ∇vh dx−

∑
F∈Fh

∫
F
{{σ(uh)n}} · [[vh]] ds.

Unfortunately, this problem is not equivalent to the model problem since the boundary
conditions are not included in this formulation. Moreover, this equation does not verify
the inf-sup condition (1.5) because of the unsigned boundary term

∫
F {{σ(uh)n}} · [[vh]] ds.

A sufficient condition to have the inf-sup condition is the coercivity of the bilinear form
ah(., .).

In order to obtain the coercivity of ah(., .), a penalty term is added. Adding the penalty
term (1.11) appears natural when looking at the coercivity proof (see [? ] or Section 1.3.4).
Furthermore, the penalty term imposes weakly the Dirichlet boundary condition. We note
that this penalty term is consistent with the model problem since it is null for the exact
solution.

∑
F∈Fh

∫
F
αF [[uh]] · [[vh]] ds, (1.11)

where αF ≥ 0.

Remark 1.1. The penalty term (1.11) insures the coercivity by enforcing the continuity
of the displacement. There exists a second kind of penalty term (we refer to [? ]) that
penalizes the jumps of derivatives of the displacement

α̃F

∫
F

[[σ(uh) · n]] · [[σ(vh) · n]],

where α̃F ≥ 0.

Another term can be added to obtain the class of interior penalty discontinuous
Galerkin (IPDG) methods, which writes as

ε
∑
F∈Fh

∫
F

[[uh]] · {{σ(vh)n}} ds,

where ε ∈ {−1, 0, 1}. As we shall see this last term has a great impact on the properties
of the method, e.g. stability, convergence rate.

Finally, the IPDG approximation is
Find uh ∈ Vh such that ∀vh ∈ Vh,

∑
K∈Th

∫
K
σ(uh) · ∇vh dx−

∑
F∈Fh

∫
F
{{σ(uh)n}} · [[vh]] ds+ ε

∑
F∈Fh

∫
F

[[uh]] · {{σ(vh)n}} ds

+
∑
F∈Fh

∫
F
αF [[uh]] · [[vh]] ds =

∑
K∈Th

∫
K
f · vh dx.

Remark 1.2. The penalty term has been a really cumbersome parameter all along our
work since it has an important impact on the CFL condition.
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1.3.3 Properties of interior penalty discontinuous Galerkin
approximations

In this section we first briefly introduce the approximating spaces that are the most com-
monly used in discontinuous Galerkin methods: the polynomial spaces. However, we could
use any other functional spaces, but the convergence of the DG methods would completely
change. Then we recall some classical results of IPDG methods with polynomial approx-
imating spaces.

The two most commonly polynomial spaces used in elastodynamic are the following:

Pk polynomial spaces: Pk(K) the space of polynomial of total degree less or equal to
k on the element K,

Pk(K) := span{xi11 x
i2
2 ...x

id
d , such that

d∑
j=1

ij ≤ k}.

Qk polynomial spaces: Qk(K) the space of polynomial of degree at most k in each
variable on the element K,

Qk(K) := span{xi11 x
i2
2 ...x

id
d , such that ∀j ∈ 1, .., d, ij ≤ k}.

Remark 1.3. It is possible to use Pk polynomial bases on any shape of element for DG
methods contrary to standard finite element methods. It is especially interesting in our
Cartesian grid case since standard finite element methods need to use Qk basis, and if the
polynomial order k is larger than 4 (k ≥ 4), Pk DG methods have less degrees of freedom
than standard finite element methods on the same mesh.

Once we selected the approximate space, we have to select a basis. The choice of the
basis does not influence the properties of the method, but can influence the numerical
behavior, in particular the condition number or the sparsity of the stiffness matrix, but
these are concerns of implicit methods. Furthermore, we recall that orthogonal basis
functions result in a diagonal mass matrix, leading to truly explicit methods.

Remark 1.4. This freedom in the choice of the basis, because of the lack of continuity
constraint, can be exploited to get many interesting properties, e.g. hierarchical bases,
orthogonal bases, etc...

We display in Figure 1.1 and 1.2 a representation of two common bases of Q3, where
the points represent the degrees of freedom of Lagrange polynomial bases. These points
mean that the value of the solution is equal to the value of the degree of freedom, this is

a special case where we do not need to use uh(x) =
NK∑
i=1

uKi ϕ
K
i (x).
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-0.3399

0.3399

-0.8611

0.8611

Figure 1.1: Degrees of freedom for Q3 Legendre-Gauss basis functions.

-1

1

-0.4472

0.4472

Figure 1.2: Degrees of freedom for Q3 Legendre-Gauss-Lobatto basis functions.

We now recall the converge results for polynomial approximating spaces. But first we
have to define the norms that appear in these results.

We define the discontinuous Galerkin energy norm as

||u||h =

 ∑
K∈Th

∫
K
σ(u) · ∇u+

∑
F∈Fh

αF

∫
F

[[u]] · [[u]]

 1
2

,

and the broken Sobolev norm as

|||v|||Hs(Th) =

 ∑
K∈Th

||v||Hs(K)

1/2

.

We recall the nomenclature of the IPDG methods according to the values of ε and αF :

• If ε = −1, and αF is bounded below by a large enough constant, the resulting method
is called symmetric interior penalty discontinuous Galerkin (SIPDG) method, intro-
duced in the late 1970s by Wheeler [? ] and Arnold [? ].

• If ε = 1, the resulting method is called non-symmetric interior penalty discontinuous
Galerkin (NIPDG) method, introduced in 1999 by Rivière, Wheeler and Girault [?
]. The particular case with αF = 0 was introduced in 1998 by Oden, Babuska, and
Baumann [? ].

• If ε = 0, and αF is bounded below by a large enough constant, the resulting method
is called incomplete interior penalty discontinuous Galerkin (IIPDG) method, intro-
duced in 2004 by Dawson, Sun and Wheeler [? ].
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Theorem 1.2 - Error estimates in the energy norm.
Assume that the exact solution belongs to Hs(Th) for s > 3/2. Assume also that the
penalty parameter α is large enough for the SIPDG and IIPDG methods and that k ≥ 2
for the NIPDG method with zero penalty. Then, there is a constant C independent of h
such that the following optimal a priori error estimate holds:

||u− uh||h ≤ Chmin(k+1,s)−1|||u|||Hs(Th).

Theorem 1.3 - Error estimates in the L2 norm.
Assume that Theorem 1.2 holds. There is a constant C independent of h such that

||u− uh||L2(Ω) ≤ Chmin(k+1,s)|||u|||Hs(Th).

This estimate is valid for the SIPDG method unconditionally. The numerical error for
both the NIPDG and IIPDG methods satisfies the following sub-optimal error estimate:

||u− uh||L2(Ω) ≤ Chmin(k+1,s)−1|||u|||Hs(Th).

We refer to [? ] for a proof of these theorems.

1.3.4 New optimized penalty term and coercivity

In this section, we want to introduce a new penalty and study its impact on the discontin-
uous Galerkin approximation of the stationary elasticity operator. The idea is to penalize
differently normal and tangential parts of displacement in order to avoid an over penaliza-
tion. In fact, in a homogeneous isotropic medium we can easily see that the normal part
is associated with P-waves (that controls the divergence) and the tangential part with the
S-waves (that controls the rotational). But the penalization used in the IPDG methods is
usually only a function of the P-wave velocity vP , which is always superior to the velocity
of S-waves vS . Therefore, this causes an "over-penalization" of the tangential part of the
displacement. We propose to restore the dependence in vS for the control of S-waves. This
allows us in particular to significantly improve the temporal stability condition, i.e. the
CFL condition, of the explicit scheme that we will present later in this chapter.

Let the subscripts N and T denote the normal and tangential component of a vector,
respectively. We denote Fbh := FBh ∩ ΓD.

First, we state the following lemma, which will help us to reveal the polynomial order
dependency in the coercivity constant, and thus the polynomial dependency of the penalty.

Lemma 1.1 - Inverse estimation.
We have the following inverse estimation:

Let K ∈ Th and Γ ⊂ ∂K.

∀uh ∈ Vh, ||uh||L2(Γ) ≤ Cinv(p)||uh||L2(K),

where p is the polynomial order of the space Vh(K) and Cinv(p) = (p + 1)2 for square
elements.

10



Our new discontinuous Galerkin approximation is:

anew,ε
h (uh,vh) :=

∫
Ω
σh(uh) : ∇hvh dx−

∫
Fh
{{σh(uh)n}} · [[vh]] dγ

− ε
∫
FI
h
∪Fb

h

[[uh]] · {{σh(vh)n}} dγ

+
∫
FI
h
∪Fb

h

αN [[uh]]N [[vh]]N dγ +
∫
FI
h
∪Fb

h

αT [[uh]]T [[vh]]T dγ,

(1.12)

where

αN : FIh ∪ Fbh → R

Γ 7→ αN (Γ) = δN
{{Cinv(p)2(λ+ 2µ)}}

hΓ
,

αT : FIh ∪ Fbh → R

Γ 7→ αT (Γ) = δT
{{Cinv(p)2µ}}

hΓ
,

(1.13)

with δN , δT ≥ 0 two real numbers, hΓ the measure of the face Γ.

Theorem 1.4 states that under the chosen penalty the bilinear form anew,ε
h is coercive.

As we mention earlier, there is a close link between the coercivity constant Ccoer and the
inf-sup constant β of the relation (1.5). Indeed, we have the relation:

∀uh ∈ Vh, sup
vh∈Vh

anew,ε
h (uh,vh)
||vh||h

≥
anew,ε
h (uh,uh)
||uh||h

.

Using the coercivity result we get

∀uh ∈ Vh, sup
vh∈Vh

anew,ε
h (uh,vh)
||vh||h

≥ Ccoer||uh||h.

Taking the infinimum we get

inf
uh∈Vh

sup
vh∈Vh

anew,ε
h (uh,vh)
||uh||h||vh||h

≥ Ccoer.

Thus, with (1.5)
β ≥ Ccoer.

Moreover, if ∃uh ∈ Vh such that anew,ε
h (uh,uh) = Ccoer||uh||2h then β = Ccoer.

This means that the larger the coercivity constant is, the more the method is stable
in the sense of the relation (1.7) and the closer the solution is to the optimal solution in
Vh according to the relation (1.8).

Theorem 1.4
Given Ccoer ∈]0, 1[. If ε = 0 or 1 and if we choose the penalty coefficients δN and δT as

11



follows:
•∀F ∈ FIh , δN , δT ≥ δ∗N = δ∗T := (1 + ε)2

2(1− Ccoer)2 ,

•∀F ∈ Fbh, δN , δT ≥ δ∗N = δ∗T := (1 + ε)2

(1− Ccoer)2 .

•∀F ∈ Fh ∩ ΓN , δN , δT ≥ δ∗N = δ∗T := 0.

(1.14)

Thus,
∀vh ∈ Vh, anew,ε

h (vh,vh) ≥ Ccoer‖vh‖2h, (1.15)

where

‖vh‖2h :=
∫

Ω
σh(vh) : ∇hvh dx +

∫
FI
h
∪Fb

h

αN [[vh]]N [[vh]]N dγ +
∫
FI
h
∪Fb

h

αT [[vh]]T [[vh]]T dγ.

Moreover, if ε = −1 then ∀δN , δT ≥ 0,

anew,ε
h (vh,vh) = ‖vh‖2h, ∀vh ∈ Vh. (1.16)

Proof. In order to prove this result, it suffices to estimate the unsigned term
∫

Γ
{{σh(vh)n}}·

[[vh]] dγ for Γ ∈ Fh.

• First case: Γ = K∩T ∈ FIh . We begin with a decomposition in normal and tangential
part of this term:

∫
Γ
{{σh(vh)n}} · [[vh]] dγ =

∫
Γ
{{(σh(vh)n) · n}}[[vh]]N dγ

+
∫

Γ
{{(σh(vh)n) · τ}}[[vh]]T dγ.

(1.17)

Now, using the Cauchy-Schwarz inequality in L2(Γ):

∫
Γ
{{σh(vh)n}} · [[vh]] dγ ≤ 1

2‖(σh(vK)n) · n‖L2(Γ) ‖[[vh]]N ‖L2(Γ)

+1
2‖(σh(vT )n) · n‖L2(Γ) ‖[[vh]]N ‖L2(Γ) + 1

2‖(σh(vK)n) · τ‖L2(Γ) ‖[[vh]]T ‖L2(Γ)

+1
2‖(σh(vT )n) · τ‖L2(Γ) ‖[[vh]]T ‖L2(Γ).

(1.18)
Since we work with Cartesian grids (with optional refined areas), we immediately
get:

(σ(v)n) · n = λdivv + 2µ∂zvz with z = x if n = (±1, 0)T and z = y otherwise,

(σ(v)n) · τ = µ(∂2v1 + ∂1v2).
(1.19)

12



Introducing (1.19) in (1.18), we get:

∫
Γ
{{σh(vh)n}} · [[vh]] dγ ≤1

2

(
‖λKdivvK + 2µK∂zΓvK,zΓ‖L2(Γ)

+ ‖λTdivvT + 2µT∂zΓvT,zΓ‖L2(Γ)

)
‖[[vh]]N ‖L2(Γ)

+ 1
2

(
‖µK(∂2vK,1 + ∂1vK,2)‖L2(Γ)

+ ‖µT (∂2vT,1 + ∂1vT,2)‖L2(Γ)

)
‖[[vh]]T ‖L2(Γ).

(1.20)

Using the inverse estimation (Lemma 1.1), (1.20) becomes:

∫
Γ
{{σh(vh)n}} · [[vh]] dγ ≤1

2

(
Cinv(pK)
h

1/2
Γ

‖λKdivvK + 2µK∂zΓvK,zΓ‖L2(K)

+ Cinv(pT )
h

1/2
Γ

‖λTdivvT + 2µT∂zΓvT,zΓ‖L2(K)

)
‖[[vh]]N ‖L2(Γ)

+ 1
2

(
Cinv(pK)
h

1/2
Γ

‖µK(∂2vK,1 + ∂1vK,2)‖L2(K)

+ Cinv(pT )
h

1/2
Γ

‖µT (∂2vT,1 + ∂1vT,2)‖L2(K)

)
‖[[vh]]T ‖L2(Γ).

(1.21)

Applying a triangular inequality to (1.21) yields:

∫
Γ
{{σh(vh)n}} · [[vh]] dγ ≤1

2

(
Cinv(pK)
h

1/2
Γ

λ
1/2
K ‖λ

1/2
K divvK‖L2(K)

+ Cinv(pK)
h

1/2
Γ

(2µK)1/2‖(2µK)1/2∂zΓvK,zΓ‖L2(K)

+ Cinv(pT )
h

1/2
Γ

λ
1/2
T ‖λ

1/2
T divvT ‖L2(T )

+ Cinv(pT )
h

1/2
Γ

(2µT )1/2‖(2µT )1/2∂zΓvT,zΓ‖L2(K)

)
‖[[vh]]N ‖L2(Γ)

+ 1
2

(
Cinv(pK)
h

1/2
Γ

µ
1/2
K ‖µ

1/2
K (∂2vK,1 + ∂1vK,2)‖L2(K)

+ Cinv(pT )
h

1/2
Γ

µ
1/2
T ‖(µT )1/2(∂2vT,1 + ∂1vT,2)‖L2(K)

)
‖[[vh]]T ‖L2(Γ).

(1.22)
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If we sum on all faces of FIh and use Cauchy-Schwarz inequality in RN we get:

∑
Γ ∈ FI

h
Γ = K ∩ T

∫
Γ
{{σh(vh)n}} · [[vh]] dγ ≤

1
2

( ∑
Γ ∈ FI

h
Γ = K ∩ T

‖λ1/2
K divvK‖2L2(K)

)1/2( ∑
Γ ∈ FI

h
Γ = K ∩ T

Cinv(pK)2

hΓ
λK‖[[vh]]N ‖2L2(Γ)

)1/2

+ 1
2

( ∑
Γ ∈ FI

h
Γ = K ∩ T

‖λ1/2
T divvT ‖2L2(T )

)1/2( ∑
Γ ∈ FI

h
Γ = K ∩ T

Cinv(pT )2

hΓ
λT ‖[[vh]]N ‖2L2(Γ)

)1/2

+ 1
2

( ∑
Γ ∈ FI

h
Γ = K ∩ T

‖(2µK)1/2∂zΓvK,zΓ‖
2
L2(K)

)1/2( ∑
Γ ∈ FI

h
Γ = K ∩ T

Cinv(pK)2

hΓ
(2µK)‖[[vh]]N ‖2L2(Γ)

)1/2

+ 1
2

( ∑
Γ ∈ FI

h
Γ = K ∩ T

‖(2µT )1/2∂zΓvT,zΓ‖
2
L2(T )

)1/2( ∑
Γ ∈ FI

h
Γ = K ∩ T

Cinv(pT )2

hΓ
(2µT )‖[[vh]]N ‖2L2(Γ)

)1/2

+ 1
2

( ∑
Γ ∈ FI

h
Γ = K ∩ T

‖µ1/2
K (∂2vK,1 + ∂1vK,2)‖2L2(K)

)1/2( ∑
Γ ∈ FI

h
Γ = K ∩ T

Cinv(pK)2

hΓ
µK‖[[vh]]T ‖2L2(Γ)

)1/2

+ 1
2

( ∑
Γ ∈ FI

h
Γ = K ∩ T

‖µ1/2
T (∂2vT,1 + ∂1vT,2)‖2L2(T )

)1/2( ∑
Γ ∈ FI

h
Γ = K ∩ T

Cinv(pT )2

hΓ
µT ‖[[vh]]T ‖2L2(Γ)

)1/2

.

(1.23)

Finally, using Young’s inequality ab ≤ ξ2a2 + 1
4ξ2 b

2 we get:

∑
Γ ∈ FI

h
Γ = K ∩ T

∫
Γ
{{σh(vh)n}} · [[vh]] dγ ≤ξ

2

2
∑
K∈Th

C(K)(‖λ1/2
K divvK‖2L2(K)

+ ‖µ1/2
K (∂2vK,1 + ∂1vK,2)‖2L2(K))

+ ξ2

2
∑
K∈Th

C̃(K)‖(2µK)1/2∂1vK,1‖2L2(K)

+ ξ2

2
∑
K∈Th

C̃ ′(K)‖(2µK)1/2∂2vK,2‖2L2(K)

+ 1
4ξ2

∑
Γ ∈ FI

h
Γ = K ∩ T

1
hΓ
{{Cinv(p)2(λ+ 2µ)}}‖[[vh]]N ‖2L2(Γ)

+ 1
4ξ2

∑
Γ ∈ FI

h
Γ = K ∩ T

1
hΓ
{{Cinv(p)2µ}}‖[[vh]]T ‖2L2(Γ),

(1.24)
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where C(K) ≤ 4 is the cardinal number of ∂K ∩ FIh , C̃(K) ≤ 2 is the cardinal
number of the set of vertical faces of ∂K∩FIh and C̃ ′(K) ≤ 2 is the cardinal number
of the set of horizontal faces of ∂K ∩ FIh .

• Second case: Γ ∈ Fbh such that Γ ⊂ ∂K. Proceeding as in the first case, we immedi-
ately get:

∑
Γ ∈ Fb

h
Γ ⊂ ∂K

∫
Γ
{{σh(vh)n}} · [[vh]] dγ ≤ξ2

b

∑
K∈Th

Cb(K)(‖λ1/2
K divvK‖2L2(K)

+ ‖µ1/2
K (∂2vK,1 + ∂1vK,2)‖2L2(K))

+ ξ2
b

∑
K∈Th

C̃b(K)‖(2µK)1/2∂1vK,1‖2L2(K)

+ ξ2
b

∑
K∈Th

C̃ ′b(K)‖(2µK)1/2∂2vK,2‖2L2(K)

+ 1
4ξ2
b

∑
Γ ∈ Fb

h
Γ ⊂ ∂K

1
hΓ
{{Cinv(p)2(λ+ 2µ)}}‖[[vh]]N ‖2L2(Γ)

+ 1
4ξ2
b

∑
Γ ∈ Fb

h
Γ ⊂ ∂K

1
hΓ
{{Cinv(p)2µ}}‖[[vh]]T ‖2L2(Γ),

(1.25)

where Cb(K) ≤ 4 is the cardinal number of ∂K ∩ Fbh, C̃b(K) ≤ 2 is the cardinal
number of the set of vertical faces of ∂K∩Fbh and C̃ ′b(K) ≤ 2 is the cardinal number
of the set of horizontal faces of ∂K ∩ Fbh.

• Using the definition of the isotropic stress tensor, we get:

∫
Ω
σh(vh) : ∇hvh dx =

∑
K∈Th

(‖λ1/2
K divvK‖2L2(K)

+ ‖(2µK)1/2∂1vK,1‖2L2(K) + ‖(2µK)1/2∂2vK,2‖2L2(K)

+ ‖µ1/2
K (∂2vK,1 + ∂1vK,2)‖2L2(K)).

(1.26)

If we look now the coercivity of the form anew,ε
h :
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Using (1.24), (1.25) et (1.26), we have

anew,ε
h (vh,vh) =

∫
Ω
σh(vh) : ∇hvh dx− (1 + ε)

∫
Fh
{{σh(vh)n}} · [[vh]] dγ

+
∑

Γ∈FI
h
∪Fh

δN
{{Cinv(p)2(λ+ 2µ)}}

hΓ
‖[[vh]]N ‖2L2(Γ)

+
∑

Γ∈FI
h
∪Fh

δT
{{Cinv(p)2µ}}

hΓ
‖[[vh]]T ‖2L2(Γ)

≥
∑
K∈Th

(
(1− (1 + ε)(ξ2

bCb(K) + ξ2

2 C(K)))‖λ1/2
K divvK‖2L2(K)

+ (1− (1 + ε)(ξ2
b C̃b(K) + ξ2

2 C̃(K)))‖(2µK)1/2∂1vK,1‖2L2(K)

+ (1− (1 + ε)(ξ2
b C̃
′
b(K) + ξ2

2 C̃
′(K)))‖(2µK)1/2∂2vK,2‖2L2(K)

+ (1− (1 + ε)(ξ2
bCb(K) + ξ2

2 C(K)))‖µ1/2
K (∂2vK,1 + ∂1vK,2)‖2L2(K)

)
+
∑

Γ∈FI
h

(1− (1 + ε)
4ξ2δN

)δN
{{Cinv(p)2(λ+ 2µ)}}

hΓ
‖[[vh]]N ‖2L2(Γ)

+
∑

Γ∈FI
h

(1− (1 + ε)
4ξ2δT

)δT
{{Cinv(p)2µ}}

hΓ
‖[[vh]]T ‖2L2(Γ)

+
∑

Γ∈Fb
h

(1− (1 + ε)
4ξ2
b δN

)δN
{{Cinv(p)2(λ+ 2µ)}}

hΓ
‖[[vh]]N ‖2L2(Γ)

+
∑

Γ∈Fb
h

(1− (1 + ε)
4ξ2
b δT

)δT
{{Cinv(p)2µ}}

hΓ
‖[[vh]]T ‖2L2(Γ).

(1.27)

Choosing ξ2
b = ξ2/2, we get

(1− (1 + ε)(ξ2
bCb(K) + ξ2

2 C(K))) = 1− 4(1 + ε)ξ2/2,

(1− (1 + ε)(ξ2
b C̃b(K) + ξ2

2 C̃(K))) = 1− 2(1 + ε)ξ2/2,

and
(1− (1 + ε)(ξ2

b C̃
′
b(K) + ξ2

2 C̃
′(K))) = 1− 2(1 + ε)ξ2/2.

To get a coercivity constant Ccoer ∈]0, 1[ when ε 6= −1, we have to choose

•∀Γ ∈ FIh , δN , δT ≥ δ∗N = δ∗T := (1 + ε)2

2(1− Ccoer)2 ,

•∀Γ ∈ Fbh, δN , δT ≥ δ∗N = δ∗T := (1 + ε)2

(1− Ccoer)2 .

(1.28)
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Remark 1.5. • Dirichlet boundary condition implies a penalty two times larger on
the faces of Fbh than on the faces of FIh (See [? ] or the coercivity proof of Theorem
1.4),

• If ε = 0 or −1, getting a better coercivity constant implies rising the penalty. More-
over, we have the limit case: Ccoer → 1− ⇒ δN , δT → +∞,

• If ε = 1, Ccoer = 1 for all δN , δT ≥ 0.

Remark 1.6. A priori error results from Section 1.3.3 can easily be extended to this
approximation with the new penalty.

1.4 The interior penalty discontinuous Galerkin methods
for the elastodynamic equation in the time domain

In this section, we introduce the IPDG approximation for the model problem (1.1), that
is the elastodynamic equation in the time domain. Thus we briefly give the semi-discrete
IPDG approximation in space for the elastodynamic equation in the time domain from
the previous section. Then, we discretize in time the equation with a standard leap-frog
finite difference scheme.

1.4.1 Semi-discrete IPDG approximation

The general semi-discrete IPDG approximation of the model problem (1.1) is

Find ∀t ∈ [0, T ],uh(., t) ∈ Vh such that
(∂ttuh,vh) + ah(uh,vh) = (f,vh), ∀vh ∈ Vh,∀t ∈ [0, T ],
uh|t=0 = Πhu0,
∂tuh|t=0 = Πhv0,

(1.29)

where Πh denotes the L2-projection onto Vh and the discrete bilinear form ah on Vh×Vh →
R is given by

ah(u,v) =
∑
K∈Th

∫
K
σh(u) : ∇v dx−

∑
F∈Fh

∫
F
{{σh(u)n}} · [[v]] dγ + ε

∑
F∈Fh

∫
F

[[u]] · {{σh(v)n}} dγ

+
∑
F∈Fh

∫
F
αN [[u]]N · [[v]]N dγ +

∑
F∈Fh

∫
F
αT [[u]]T · [[v]]T dγ.

Let K ∈ Th, we dneote by {φKi } a basis of Vh(K). Let NK = |{φKi }| be the number
of degrees of freedom on element K and N =

∑
K∈Th

NK is the total number of degrees of

freedom.
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The semi-discrete solution can be expanded in the global basis functions by

∀t ∈ [0, T ], ∀x ∈ Ω, uh(t,x) =
∑
K∈Th

NK∑
i=1

UKi (t)φKi (x). (1.30)

We note U := (Ui)1≤i≤N . The semi-discrete IPDG formulation (1.29) is equivalent to the
second-order system of ordinary differential equations

M
d2U
dt2

+KU = F,

U(0) = U0,
dU
dt

(0) = V0,

where M = (Mij)ij is the N × N mass matrix, and K = (Kij)ij is the N × N stiffness
matrix, and they are defined by

∀i, j ∈ [[1, N ]] Mij = (φj , φi)Ω, Kij = ah(φj , φi).

Remark 1.7. Because of the lack of continuity constraints between mesh elements for the
test functions, the basis functions have a support contained in one element. Therefore, the
mass matrix is always block diagonal, and diagonal if we choose orthogonal basis functions.
In contrast, for standard finite element methods the mass matrix has an arbitrary structure
depending on the element indexing in the mesh, preventing these methods to be directly
implemented in a truly explicit way since the mass matrix has to be inverted. This problem
can be circumvented for low polynomial orders by sophisticated techniques of mass lumping.
In our case of quadrilateral meshes mass lumping techniques are well understood for an
arbitrary order, and lead to so-called spectral element methods.

1.4.1.1 Local DG formulation

Here, we introduce a local formulation of the DG approximation. This local formulation
shows why the mass matrix is always block diagonal, and why parallelizing DG methods is
straightforward, this formulation is also useful for some theoretical studies of DG schemes.

We denote by VF (K) the neighboring element of the element K on a face F . We
introduce the local bilinear form aKh :

aKh (u,v) :=
∫
K
σKh (u) : ∇v|K dx−

∑
F∈FK

∫
F
{{σh(u)n}} · v|K dγ + ε

∑
F∈FK

∫
F
β[[u]] · σKh (v)nF dγ

+
∑
F∈FK

∫
F
αN [[u]]N · v|K dγ +

∑
F∈FK

∫
F
αT [[u]]T · v|K dγ,

(1.31)

where σKh := σh|K , and we have the following relations for β

β =



1
2 on FIh ,

1 on Fh ∩ ΓD,

0 on Fh ∩ ΓN .

Thus, we have ah(u,v) =
∑
K∈Th

aKh (u,v).
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Semi-discrete local DG approximation: We can rewrite the semi-discrete DG ap-
proximation in a local way

∀K ∈ Th, MK∂ttuK +KKuK +
∑
F∈FK

F VF (K)uVF (K) = `K ,

where

uKh (t,x) :=
NK∑
i=1

uKi (t)ϕKi (x), and uK :=
(
uKi

)
1≤i≤NK

,

and

MK
ij := ρK(ϕKj , ϕKi )K , KK

ij := aKh (ϕKj , ϕKi ), F
VF (K)
ij := aKh (ϕVF (K)

j , ϕKi ),

and
`Kj := `(ϕKj ).

1.4.2 Full discretization of the discontinuous Galerkin approximation

After discretizing the equation in space with a discontinuous Galerkin method, we finish
the discretization of the problem using a finite difference method in time. This form
is called the fully discretized IPDG formulation. We note by Un the approximation of
U(tn) using the well-known finite difference second-order leap frog scheme for temporal
derivatives. Hence, we get

M
Un+1 − 2Un + Un−1

∆t +KUn = Fn. (1.32)

Full discrete local DG approximation: In the same way, we can rewrite the full
discrete DG approximation

∀K ∈ Th, MK uKn+1 − 2uKn + uKn−1
∆t2 +KKuKn +

∑
F∈FK

F VF (K)uVF (K)
n = lK ,

where

uKh (tn,x) :=
NK∑
i=1

uKn,iϕ
K
i (x), and uKn :=

(
uKn,i

)
1≤i≤NK

.

1.5 Plane wave analysis
The plane wave analysis [? ], although based on simplified problems, i.e. infinite ho-
mogeneous medium, provides accurate information about the properties of a numerical
method. This information is precise enough to be used in real simulations. It helps to
apprehend two majors properties: dispersion and stability. The dispersion is a numerical
phenomenon that creates a phase difference between the physical wave and the numerical
wave, i.e. the numerical velocity only approximates the physical velocity. The dispersion
is used to determine the spatial discretization according to the desired precision, i.e. the
number of elements per wavelength that must be used to achieve the desired accuracy.
Stability is given by a CFL condition which is a relation between the time step ∆t and
the space step h of the form ∆t

h
≤ C, where C is a constant that depends on physical and

numerical parameters (dimension, polynomial approximation order, velocities).
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The principle of a plane wave analysis is to seek the conditions, in the form of a discrete
dispersion relation, for which a numerical plane wave is a solution of the scheme. Plane
waves provide an accurate analysis because they constitute a basis of solution to the
infinite homogeneous elastodynamic problem.

1.5.1 Dispersion relation formulation

In geoscience, having the correct propagation velocity is a major aspect. Since direct
propagations (the forward problem) are often used in the iterations of an inverse problem
to know the structure of the ground, errors in propagation velocities result in bad ground
imaging. Therefore, having a good control on the dispersion error is critical.

In order to get the dispersion relation, we begin with the local semi-discrete DG ap-
proximation in which we inject plane waves. By doing so, we get simple relations between
all degrees of freedom. After some algebraic manipulations, we get a generalized eigen-
value problem that reveals which modes our numerical method propagates. Since a plane
wave is monotonic our method should propagate only one mode, however the eigenvalue
analysis reveals that more than one mode is propagated.

K

KN

KS

KEKW

Figure 1.3: Neighboring elements of the element K.

We formulate the dispersion relation in an arbitrary dimension since the process is
identical for any dimension.

The local DG approximation (see Section 1.4.1.1) is

M∂ttuK +KuK +
∑
f∈FK

F fuVf (K) = 0, (1.33)

where

uKh (t,x) =
NK∑
i=1

uKi (t)ϕKi (x), with uK =
(
uKi

)
1≤i≤NK

,

and
Mij = ρK(ϕKj , ϕKi )K , Kij = aKh (ϕKj , ϕKi ), F fij = aKh (ϕVf (K)

j , ϕKi ).
Since the displacement is a plane wave, then

uKj = Aje
−i(k·x−ωht),
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where k is the wavenumber, ωh the pulsation and Aj the amplitude.
The plane wave assumption implies that

uVf (K) = eik·xfuK , (1.34)

where

xE = hex, xW = −hex, xN = hey, xS = −hey, xT = −hez, xB = hez.

Injecting (1.34) in (1.33) yields the following generalized eigenvalue problem:

ω2
hMuK +

K +
∑
f∈FK

eik·xfF f

uK = 0.

We choose a space step such that h = λ

N
, where λ is the wavelength and N ∈ N∗. Let

k = kd, where d is a unit vector representing the direction of the wave. We introduce
κ := 1

(p+ 1)N , which corresponds to the inverse of points per wavelength, where p is the
order of the polynomial space.

We get the relation
kh = 2π(p+ 1)κ.

The eigenvalue problem becomes:

−h2ω2
hM̂uK +

(
K̂ +

∑
f∈FK

eikh(d·ef )F̂ f
)

uK = 0,

where M̂ := 1
hd
M , K̂ := 1

h2−dK and F̂ f := 1
h2−dF

f .
We rewrite this problem as a function of κ:

−(2π)2(p+ 1)2κ2ω
2
h

k2 M̂uK +
(
K̂ +

∑
f∈FK

ei(2π)(p+1)κ(d·ef )F̂ f
)

uK = 0.

We note that ω
2
h

k2 is an eigenvalue of the generalized eigenvalue problem:

ω2
h

k2 M̂V = AV,

where

A = 1
(2π)2(p+ 1)2κ2

(
K̂ +

∑
f∈FK

ei(2π)(p+1)κ(d·ef )F̂ f
)
.

At this point we need to identify which modes correspond to the P-waves and S-waves,
since the number of eigenvalues exceeds the number of physical modes

vh = ωh
k
.
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We define the dispersion error as follow:

ep =
∣∣∣∣∣vhvp − 1

∣∣∣∣∣ , es =
∣∣∣∣vhvs − 1

∣∣∣∣ ,

where vh is the numerical velocity of the mode given by the eigenvalue, and vp and vs are
the expected velocities associated to P- and S-waves.

The physical modes are (most of time) the two values for which ep and es are the
closest to zero. Sometimes, a non-physical mode is closer to the physical mode than the
approximated mode, but this happens only for some angles of incidence as we shall see in
the next section.

The dispersions ep and es depend on the parameters p the polynomial order of the
approximating space, κ the number of points per wavelength and d the direction of the
waves.

1.5.2 Dispersion analysis

In this section, we apply a dispersion analysis to show the numerical properties of the
dispersion. We used vp = 2600m.s−1, vs = 1300m.s−1 and ρ = 2300kg.m−3 and a penalty
parameter δN = δT = 2.

On Figure 1.4 and 1.5 we display the convergence of the maximal angular dispersion
error (max

u
|ep| and max

u
|es|) according to the number of points per wavelength 1

κ for
different polynomial spaces. We observe that the convergence rates of the dispersion
errors are |ep| = O(h2k) and |es| = O(h2k), where k is the polynomial order of the space
Qk.

Remark 1.8. For NIPDG and IIPDG methods the dispersion errors convergence rates
are k + 1 for odd orders and k for even orders [? ].
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Figure 1.4: Dispersion convergence for P-waves for different polynomial bases according
to the number of points per wavelength 1

κ
.
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Figure 1.5: Dispersion convergence for S-waves for different polynomial basis according to
the number of points per wavelength 1

κ
.

On Figure 1.6 to 1.10 we display the dispersion for Gauss-Legendre bases with opti-
mized penalty and roughly the same maximal angular dispersion (es ' 1× 10−2) deduced
from Figure 1.4 and 1.5. As we can see, we need 30 points per wavelength in Q1, 9 points
per wavelength in Q2, 6 points per wavelength in Q3, 5 points per wavelength in Q4 and
5 points per wavelength in Q5 to achieve a dispersion error of 10−2. Discontinuities that
we can see in Figure 1.9 and 1.10 are due to a non-physical mode being closer to the real
physical mode than the approximated mode in a specific direction. For this reason, these
discontinuities should not be interpreted as a discontinuity in the shape of the dispersion.
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Figure 1.6: Dispersion anisotropy for Q1 elements with 30 points per wavelength.

Figure 1.7: Dispersion anisotropy for Q2 elements with 9 points per wavelength.
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Figure 1.8: Dispersion anisotropy for Q3 elements with 6 points per wavelength.

Figure 1.9: Dispersion anisotropy for Q4 elements with 5 points per wavelength.
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Figure 1.10: Dispersion anisotropy for Q5 elements with 5 points per wavelength.

On Figure 1.11 we compare the dispersion error for Q3 elements with 10 points per
wavelength with standard and optimized penalty. As we can see the results are almost
the same for the P-waves dispersion and slightly better for the optimized penalty for the
S-waves dispersion.

Figure 1.11: Comparison of the dispersion error with standard (in blue) and optimized
penalty (in red) for Q3 elements with 10 points per wavelength.

1.5.3 Stability condition formulation

We can use the previous analysis to derive the stability condition associated with our fully-
discrete scheme. For that, we have to introduce the time discretization in the definition of
the numerical plane wave. We thus have to inject the plane waves into the fully discretized
DG approximation. By doing so, we get a relation between ∆t and h.
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The fully discrete local DG approximation is

M
uKn+1 − 2uKn + uKn−1

∆t2 +KuKn +
∑
f∈FK

F fuKfn = 0.

Since the displacement is a plane wave we have

uKn,j = Aje
−i(k·xKj −ωhn∆t).

Injecting this relation in the DG approximation yields

M
e−iωh∆t − 2 + eiωh∆t

∆t2 uKn +

K +
∑
f∈FK

eik·xfF f

uKn = 0.

We reformulate the temporal term with some trigonometric relations

e−iωh∆t − 2 + eiωh∆t

∆t2 = 2(cos(ωh∆t)− 1)
∆t2 = −

4 sin2(ωh∆t
2 )

∆t2 .

Hence, we get the following generalized eigenvalue problem

−
4h2 sin2(ωh∆t

2 )
∆t2 M̂uKn +

K̂ +
∑
f∈FK

eik·xf F̂ f

uKn = 0, (1.35)

where M̂ = 1
hd
M , K̂ = 1

h2−dK and F̂ f = 1
h2−dF

f . We note that λ =
4h2 sin2(ωh∆t

2 )
∆t2 is an

eigenvalue of our generalized eigenvalue problem. In order to have stability 4h2 sin2(ωh∆t
2 )

∆t2
has to be below all eigenvalues, yielding the following stability relation

∆t
h
≤ min

1≤j≤NK
min

0≤θ≤2π

2√
Λj(θ)

, (1.36)

where {Λj}1≤j≤NK are the eigenvalues of (1.35) according to the angle of incidence θ. We
recall that NK is the number of degrees of freedom per element.

Remark 1.9. This study is done on an infinite medium and therefore do not take into
account the impact on the CFL condition of Dirichlet or Neumann boundary conditions.
It is noteworthy that boundary conditions weaken slightly the CFL condition as we will see
with the energy analysis in Section 1.6.

1.5.4 CFL conditions

The CFL stability condition is a relation of the form

vp
∆t
h
< Ccfl(k), (1.37)

where Ccfl(k) is the CFL constant depending on the polynomial order k of the polynomial
spaces Qk.

From the relation (1.36) we immediatly get the value of the CFL constant:

Ccfl(k) = 1
vp

min
1≤j≤NK

min
0≤θ≤2π

2√
Λj(θ)

.
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1.5.4.1 Comparing optimized and standard penalties

In this section, we compare the impact on the CFL condition of the optimized penalty
introduced in Section 1.3.4 with the standard penalty. We note on Table 1.1 that the
optimized penalty grants a gain for any polynomial degree of 33% in the CFL condition.
These CFL constants have been calculated with the same velocities and penalty as the
dispersion.

Space Standard Optimized gain
Q1 0.150 0.199 33%
Q2 0.0953 0.121 27%
Q3 0.0420 0.0561 34%
Q4 0.0319 0.0417 31%
Q5 0.0194 0.0259 34%
Q6 0.0158 0.0207 31%
Q7 0.0111 0.0148 33%
Q8 0.00941 0.0123 31%
Q9 0.00724 0.00962 33%
Q10 0.00622 0.00821 32%

Table 1.1: CFL conditions for different polynomial spaces Qk for Gauss-Legendre basis
functions with optimized and standard penalties.

1.5.4.2 Dependency of the CFL condition with the penalty parameter

In this section we want to show the impact of the penalty parameter on the CFL condition;
this result is known for the acoustic equation [? ]. We remark on Figure 1.12 that the
dependency of the CFL condition is O(α−

1
2 ). It is therefore quite interesting to get the

optimal penalty parameter. However, one has to be really careful when trying to find
the optimal value, contrary to a CFL condition unstability which is quick and explosive,
we observed that too low penalty can take a long time before the unstability is revealed,
especially for smooth solutions.
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Figure 1.12: Evolution of the CFL condition according to the penalty parameter α and of
the polynomial order.

1.5.5 Considerations on the computational and memory costs of DG
methods

In this section, we propose to illustrate the effect on the computational and memory costs
of different polynomial order basis functions based on the previous dispersion error and
stability analysis. Indeed, different polynomial orders result in different computational
and memory costs for the same accuracy. The computational cost Ccomp and memory
cost Cmem can be considered as unitary since they do not depend of the size of the
domain, we propose to evaluate these costs by the following formulas

Ccomp(k) = nb3elts(k)
Ccfl(k) nb

2
dof (k),

and
Cmem(k) = nb2elts(k)nbdof (k),

where nbdof is the number of degrees of freedom for one element, Ccfl the CFL constant ,

nbpts the number of points per wavelength and nbelts(k) = nbpts(k)
k + 1 the number of elements

per wavelength.

We chose these formulas since the computation cost is proportional to the inverse of
the time step ( 1

∆t ∝
nbelts
Ccfl

) which is proportional to the number of iterations needed per
unit of time, multiplied by the number of points per wavelength power the dimension
which reflects the number of elements needed per unit of space ( 1

h ∝ nbelts), multiplied
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by the size of the elementary matrices nbdof × nbdof . The memory cost is proportional to
the number of degrees of freedom per element multiplied by the number of elements per
wavelength power the dimension. We have

Ccomp(k) ∝ 1
∆t

1
h2nb

2
dof ,

and
Cmem(k) ∝ nbdof

h2 .

We report in Table 1.2 for different polynomial spaces Qk the different constants to
calculate the computational and memory costs to achieve a dispersion error of 10−2 and
of 10−4.

Dispersion error = 10−2 Dispersion error = 10−4

Space nbdof Ccfl nbpts nbelts nbpts nbelts
Q1 8 0.199 30 15 250 125
Q2 18 0.121 9 3 28 9.3
Q3 32 0.0561 6 1.5 15 3.75
Q4 50 0.0417 5 1 10 2
Q5 72 0.0259 5 0.85 8 1.3

Table 1.2: Constants to calculate computation and memory costs.

We report in Table 1.3 the different costs for polynomial orders going from 1 to 5. As
we can note, the memory cost decrease substantially with the order, Q1 and Q2 being way
behind. The optimal computational cost for a dispersion error of 10−2 is obtained with
Q4 elements and for a dispersion error of 10−4 the optimum is obtained with Q5 elements.
We also note that Q1 elements cost a lot more than other elements. There is a factor 18
in computational cost between Q1 and Q4 elements for a dispersion error of 10−2, and a
factor 1400 between Q1 and Q5 elements for a dispersion error of 10−4. Regarding the
memory cost there is a factor 34 between Q1 and Q4 elements for a dispersion error of
10−2, and a factor 1000 between Q1 and Q5 elements for a dispersion error of 10−4.

Therefore, both on computational and memory costs Q4 elements is the best choice to
achieve a dispersion error of 10−2 and Q5 for a dispersion error of 10−4.

Dispersion error = 10−2 Dispersion error = 10−4

Space Computational cost Memory cost Computational cost Memory cost
Q1 1085400 1800 628140000 125000
Q2 72298 162 2153800 1557
Q3 61604 72 962570 450
Q4 59952 50 479620 200
Q5 122920 52 439740 122

Table 1.3: Comparison of the computational and memory costs for different polynomial
order basis for the same dispersion error.

The lesson from this is that we should not think that high order means high com-
putational and memory costs, quite the contrary. However, this remark stands only for
smooth solution and smooth medium. But where there are singularities and strong local
heterogeneities we should use space-time local mesh refinement.
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1.6 Stability results for non-conforming heterogeneous
media

In this section we use an energetic approach to establish a general CFL stability condition,
i.e. isotropic hp non-conforming heterogeneous cases, for the SIPDG method. Since
this study makes a great use of upper bounds, it is less accurate than the previous one.
However, its locality gives precious information about the dependencies of the stability in
heterogeneous and hp non-conforming cases.

We remind that for an explicit scheme of the form

mρ

(un+1
h − 2unh + un−1

h

∆t2 , vh
)

+ ah(unh , vh) = l(vh), vh ∈ Vh,

with ah a symmetric positive definite bilinear form, we have the conservation of the discrete
energy

En+1/2
h := mρ(

un+1
h − unh

∆t ,
un+1
h − unh

∆t ) + ah(un+1
h , unh).

Using the identity of the parallelogram on ah, the study of stability boils down to finding
a CFL condition on ∆t to ensure the positivity of the form on Vh × Vh:

bh(vh , vh) := mρ(vh , vh)− ∆t2

4 ah(vh , vh)

First, we shall give some inverse estimation results:

Lemma 1.2
∀vh ∈ Vh, ∀K ∈ Th

‖div (vh|K)‖L2(K) ≤
Cdiv(pK)
|K|1/2

‖vh|K‖L2(K),

‖∂ivh,i|K‖L2(K) ≤
C∂(pK)
|K|1/2

‖vh|K‖L2(K),

‖∂1vh,2|K + ∂2vh,1|K‖L2(K) ≤
C12(pK)
|K|1/2

‖vh|K‖L2(K),

(1.38)

where
Cdiv(pK)2 := λmax

(
M̂−1/2R̂divM̂

−1/2
)
,

C∂(pK)2 := λmax

(
M̂−1/2R̂∂M̂

−1/2
)

and
C12(pK)2 := λmax

(
M̂−1/2R̂12M̂

−1/2
)

with

R̂div :=
(∫

K̂
d̂iv(ϕ̂l) · d̂iv(ϕ̂m) dx̂

)
l, ,m=1,··· ,2(pK+1)2

,
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R̂∂ :=
(∫

K̂
∂̂1(ϕ̂l,1) · ∂̂1(ϕ̂m,1) dx̂

)
l, ,m=1,··· ,2(pK+1)2

,

R̂12 :=
(∫

K̂
(∂̂1(ϕ̂l,2) + ∂̂2(ϕ̂l,1)) · (∂̂1(ϕ̂m,2) + ∂̂2(ϕ̂m,1)) dx̂

)
l, ,m=1,··· ,2(pK+1)2

,

and

M̂ :=
(∫

K̂
ϕ̂l · ϕ̂m dx̂

)
l, ,m=1,··· ,2(pK+1)2

.

Proof. Straightforward since the space is of finite dimension.

We following theorem state sufficient local stability conditions obtained through the
energy analysis:

Theorem 1.5
If ∆t verifies the local CFL conditions:
∀K ∈ Th,

∆t
|K|1/2

≤ 2√
CK

(1.39)

with

CK :=3λK
ρK

Cdiv(pK)2 + 4(2µK)
ρK

C2
∂(pK) + 3µK

ρK
C12(pK)2

+
∑

Γ∈Fh(K)
(δ + 2) max(1,

ρVΓ(K)
ρK

){{Cinv(p)2[v2
p + v2

s ]}}ΓCinv(pK)2 |K|
h2

Γ

(1.40)

then the explicit scheme (1.32) is L2-stable.

Even though the CFL estimation stated in the following theorem is more pessimistic
than the one obtained with the plane wave analysis, the fact that it takes into account het-
erogeneities, boundary conditions and hp non-conformities gives us valuable information.
This theorem provides all these information because of the locality of the CFL condition
stated in the theorem. Indeed, instead of having a global CFL condition as in the plane
wave analysis, the following theorem state a local CFL condition for each element.

The first remark we can make concerns how we defined the CFL constant Ccfl(k) in
(1.37). The dependency of the CFL condition is not linear with vp, and looks to be more
of the form

√
v2
p + v2

s . However, since the ratio vp
vs

usually lies in the interval [
√

2, 2], and

we calculated our CFL constants Ccfl in the worst case where vp
vs

= 2, these constants are
still legitimate but relatively pessimistic.

We see that the dependency of the CFL condition with the penalty in O(α−1/2) ob-
served in Section 1.5.4.2 is confirmed by the following theorem since CK has a linear
dependency with the penalty constant δ. We remind that this result was already observed
by Agut and Diaz in [? ] for the acoustic equation.

Concerning heterogeneities, in most cases the global CFL condition is the one dictated
by the most restrictive medium. However, in cases of high contrast, we see that the
local CFL conditions might deteriorate the global CFL condition, e.g. same velocities in

33



two neighboring elements (we might expect the same local CFL conditions) but different
densities ρ, then the term

max(1,
ρVΓ(K)
ρK

){{Cinv(p)2[v2
p + v2

s ]}}Γ = ρmax
ρmin

(v2
p + v2

s)

is obviously greater than (v2
p + v2

s).

In the case of h-adaptivity we see that the CFL condition deteriorates since |K|
h2

Γ
≥ 1

for non conforming faces. In our Cartesian case, |K|
h2

Γ
= h

( hps )2 = p2
s, where ps is the spatial

refinement ratio. Thus, the CFL condition deteriorates linearly with the space refinement
ps, this is not a real problem since the refined elements impose the same kind of restriction
on the CFL condition. However, in the case of a local time stepping scheme, the coarse
element right next to the non-conformity should be included in the local time stepping
scheme since its local CFL condition is of the same kind as the small elements.

In the case of p-adaptivity wee see that the CFL condition deteriorates for the elements
next to the non-conformity with the lower degree. Indeed, the dependency in polynomial

degree is {{Cinv(p)2}}ΓCinv(pK)2 = Cinv(pmin)2 + Cinv(pmax)2

2 p2
min ≥ p4

min. Since, in the
Cartesian case Cinv(p)2 = (p+ 1)2 the CFL condition can be substantially weaken on the
element with Qpmin right next to the element with Qpmax . This is relatively troublesome
since that means that with local time stepping we most likely will not be able to take the
CFL constant Ccfl(pmin) in the local time stepping area.

Proof. To show the stability result, we begin with the estimations used in the proof of the
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Theorem 1.4:

ah(vh,vh) =
∫

Ω
σh(vh) : ∇hvh dx− 2

∫
Fh
{{σh(vh)n}} · [[vh]] dγ

+
∑

Γ∈FI
h
∪Fh

δN
{{Cinv(p)2(λ+ 2µ)}}

hΓ
‖[[vh]]N ‖2L2(Γ)

+
∑

Γ∈FI
h
∪Fh

δT
{{Cinv(p)2µ}}

hΓ
‖[[vh]]T ‖2L2(Γ)

≤
∑
K∈Th

(
(1 + 4ξ2)‖λ1/2

K divvK‖2L2(K)

+ (1 + 2ξ2)‖(2µK)1/2∂1vK,1‖2L2(K)

+ (1 + 2ξ2)‖(2µK)1/2∂2vK,2‖2L2(K)

+ (1 + 4ξ2)‖µ1/2
K (∂2vK,1 + ∂1vK,2)‖2L2(K)

)
+
∑

Γ∈FI
h

(1 + 1
2ξ2δN

)δN
{{Cinv(p)2(λ+ 2µ)}}

hΓ
‖[[vh]]N ‖2L2(Γ)

+
∑

Γ∈FI
h

(1 + 1
2ξ2δT

)δT
{{Cinv(p)2µ}}

hΓ
‖[[vh]]T ‖2L2(Γ)

+
∑

Γ∈Fb
h

(1 + 1
ξ2δN

)δN
{{Cinv(p)2(λ+ 2µ)}}

hΓ
‖[[vh]]N ‖2L2(Γ)

+
∑

Γ∈Fb
h

(1 + 1
ξ2δT

)δT
{{Cinv(p)2µ}}

hΓ
‖[[vh]]T ‖2L2(Γ).

(1.41)

Using the inverse estimations of Lemma 1.2, we get∑
K∈Th

(
(1 + 4ξ2)‖λ1/2

K divvK‖2L2(K) + (1 + 2ξ2)‖(2µK)1/2∂1vK,1‖2L2(K)

+ (1 + 2ξ2)‖(2µK)1/2∂2vK,2‖2L2(K) + (1 + 4ξ2)‖µ1/2
K (∂2vK,1 + ∂1vK,2)‖2L2(K)

)
≤
∑
K∈Th

(
(1 + 4ξ2)λK

ρK
Cdiv(pK)2 + 2(1 + 2ξ2)(2µK)

ρK
C2
∂(pK)

+ (1 + 4ξ2)µK
ρK

C12(pK)2
)
ρK
‖vK‖2L2(K)
|K|

.

(1.42)

Moreover, using a triangular inequality and an inverse estimation, we get∑
Γ∈FI

h

(1 + 1
2ξ2δN

)δN
{{Cinv(p)2(λ+ 2µ)}}

hΓ
‖[[vh]]N ‖2L2(Γ)

+
∑

Γ∈Fb
h

(1 + 1
ξ2δN

)δN
{{Cinv(p)2(λ+ 2µ)}}

hΓ
‖[[vh]]N ‖2L2(Γ)

≤
∑
K∈Th

( ∑
Γ∈Fh(K)

a(1 + 1
ξ2δN

)δN{{Cinv(p)2 (λ+ 2µ)
ρK

}}ΓCinv(pK)2 |K|
h2

Γ

)
ρK
‖vK‖2L2(K)
|K|

,

(1.43)

35



and

∑
Γ∈FI

h

(1 + 1
2ξ2δN

)δT
{{Cinv(p)2µ}}

hΓ
‖[[vh]]N ‖2L2(Γ)

+
∑

Γ∈Fb
h

(1 + 1
ξ2δN

)δT
{{Cinv(p)2µ}}

hΓ
‖[[vh]]N ‖2L2(Γ)

≤
∑
K∈Th

( ∑
Γ∈Fh(K)

(1 + 1
ξ2δN

)δT {{Cinv(p)2 µ

ρK
}}ΓCinv(pK)2 |K|

h2
Γ

)
ρK
‖vK‖2L2(K)
|K|

.

(1.44)

Using (1.42), (1.43) and (1.44), (1.41) becomes:

ah(vh,vh) ≤
∑
K∈Th

(
(1 + 4ξ2)λK

ρK
Cdiv(pK)2 + 2(1 + 2ξ2)(2µK)

ρK
C2
∂(pK)

+ (1 + 4ξ2)µK
ρK

C12(pK)2

+
∑

Γ∈Fh(K)
(1 + 1

ξ2δ
)δ{{Cinv(p)2[ µ

ρK
+ (λ+ 2µ)

ρK
]}}ΓCinv(pK)2 |K|

h2
Γ

)
ρK
‖vK‖2L2(K)
|K|

.

(1.45)

Let ξ = 1/
√

2.

ah(vh,vh) ≤
∑
K∈Th

(
3λK
ρK

Cdiv(pK)2 + 4(2µK)
ρK

C2
∂(pK) + 3µK

ρK
C12(pK)2

+
∑

Γ∈Fh(K)
(δ + 2)δ{{Cinv(p)2[ µ

ρK
+ (λ+ 2µ)

ρK
]}}ΓCinv(pK)2 |K|

h2
Γ

)
ρK
‖vK‖2L2(K)
|K|

.

(1.46)

Finally, we get the following lower bound:

bh(vh , vh) ≥
∑
K∈Th

[
1− ∆t2

4|K|

(
3λK
ρK

Cdiv(pK)2 + 4(2µK)
ρK

C2
∂(pK) + 3µK

ρK
C12(pK)2

+
∑

Γ∈Fh(K)
(δ + 2){{Cinv(p)2[ µ

ρK
+ (λ+ 2µ)

ρK
]}}ΓCinv(pK)2 |K|

h2
Γ

)]
ρK‖vK‖2L2(K).

(1.47)

where
bh(vh , vh) = mρ(vh , vh)− ∆t2

4 ah(vh , vh). (1.48)

1.7 Conclusion
We introduced the standard IPDG methods for the second order elastodynamic equation.
We proposed a penalty term more suited for this equation than the standard penalty
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term. This penalty term grants a gain of roughly 30% in the CFL condition and a slightly
improved dispersion. Our comparative study showed that SIPDG is the most suited IPDG
method for elastodynamic, the main two reasons are, the convergence rate of the error
which is optimal, and the convergence of the dispersion which is two times larger for
SIPDG than for other IPDG methods. The dispersion error is particularly important in
an oil exploration context, since an error on the velocity result in an error in the imaging
process. Moreover, the symmetry of the SIPDG method offers many accurate possibilities
to study the scheme which are not possible with other IPDG schemes. In particular,
we can have a CFL condition in heterogeneous medium, with boundary conditions, non-
conforming meshes and with hp-adaptivity.
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Chapter 2

Perfectly matched layers (PML)
for the second order
elastodynamic equation

2.1 Introduction

Many problems in the simulation of elastic wave propagation have a medium which
is either unbounded or much larger than the area of interest. For reasons of problem
tractability we have to bound the medium in these cases. This raises the question to
know how to artificially bound our medium to simulate an infinite medium. This is a
longstanding problem, many researches have been developed in the past and this still is
an active area. There mainly exists two classes of methods to achieve this: absorbing
conditions [? ? ? ? ? ? ] and absorbing layers [? ? ? ? ? ? ? ? ]. The
main objective of these methods is to have boundaries as transparent as possible, as if
the medium was unbounded. Absorbing conditions are also referred to as non-reflecting
boundary conditions; as their name suggests they are conditions on the boundaries of
the medium. The main absorbing layers suitable for unbounded medium simulation are
referred to as Perfectly Matched Layers (PML), which are additional non-physical media
surrounding the area of interest. The essential property of a PML which distinguishes it
from an ordinary absorbent material is that it is designed in such a way that the outgoing
waves from the area of interest reaching the PML are not reflected at the interface. This
property allows PML to strongly absorb all the outgoing waves of a computational domain
without changing the propagation in this area. Propagation problems require more and
more precise methods to get accurate simulations, and thus the absorbing methods must
be as perfect as possible; for this reason PML have become more and more popular during
the last decade, and are the method we have chosen.

PML were first introduced by J.P. Bérenger [? ] for Maxwell’s equations, this for-
mulation referred to as split PML formulation was proved only weakly well-posed and
unstable [? ]. Later, an unsplit formulation was proposed by L. Zhao and C. Cangellaris
in [? ] and proven strongly well-posed and stable. Most recent formulations of the PML
are based on the unsplit formulation. Although PML were first proposed for Maxwell’s
equations, they have been extended to many wave propagation problems, especially the
acoustic and elastodynamic equations [? ? ? ].
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PMLs have been developed initially for first order systems and then successfully devel-
oped for second order equations [? ? ? ? ? ]. Recently, in the elastodynamic community,
most of the effort has been put on developing PML for more complex formulation of
the elastodynamic problem, anisotropic or poroelastic media for instance, that leads to
instabilities in the PML.

As a general problem, defining the best PML formulation and discretization in the time
domain is still an open question. Although, in our isotropic second order case, we can
say that a formulation that does not impact the CFL condition, keeps the second order
form, and introduces as few new unknowns as possible would be the best. Many PML
formulations of the second order elastodynamic equation reformulate it as a first order
system and thereby introduce many additional unknowns. Recent studies [? ] show that
the temporal discretization as a major impact on the stability of the PML, therefore we
emphasize our choices that do not impact the CFL condition of our method.

In this chapter, we focus on the application of a second order PML formulation to our
interior penalty discontinuous Galerkin approximation of the second order elastodynamic
equation. In the Section 2.2, we introduce the main ideas of PML and the PML formulation
for the second order elastodynamic equation through the PML coordinate transformation,
after writing the equation in the frequency domain. In the Section 2.3, we first introduce
the discontinuous Galerkin approximation of the PML formulation we have chosen; then
we detail and argue the discretization techniques we have selected. In the Section 2.4, we
conclude with numerical results to show the good behavior of the method.
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2.2 Perfectly Matched Layers Model

2.2.1 General ideas

First, we need to identify the bounded area of interest Ωφ and the rest of the space is called
ΩPML where the absorption takes place. Using PML around an area hides any physical
phenomenon that would have taken place in ΩPML. Therefore, the area of interest must
be chosen carefully, according to surrounding heterogeneities, especially for comparison
with real data.

Ωφ

ΩPML

Figure 2.1: Ω = Ωφ ∪ ΩPML.

The PML method can be interpreted as a complex coordinate transformation in the
frequency domain:

∀j = 1, 2, xj 7→ x̃j = xj + 1
iω

∫ xj

0
ζj(ξ)dξ,

where i is the imaginary unit, ω is the pulsation, ζj are functions, positive on ΩPML

and null on Ωφ, called dumping functions. More technically, it actually is an analytic
continuation of the elastodynamic equation in a complex manifold.

To understand why this coordinate transformation creates an absorbing layer, it is inter-
esting to consider plane waves solutions to the elastodynamic equation on an unbounded
homogeneous domain:

u(t,x) = u0e
i(k·x−ωt),

where the pulsation ω and the wave vector k verify the dispersion relation (B.7). Then if
we introduce: v(t,x) = u(t, x̃), we have:

v(t,x) = u0e
i(k·x−ωt)e

−
∑d

j=1 kj ·
∫ xj

0 ζj(s) ds.

Thus, we have ∀t ∈ [0, T ] ∀x ∈ Ωφ, v(t,x) = u(t,x) and therefore no reflections, and v
decreases exponentially in ΩPML which characterizes the absorption.
In order to get the PML formulation, we will proceed as follows:
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1. As the PML coordinate transformation is defined in the frequency domain, we first
apply a Fourier-Laplace transform to the elastodynamic equation to obtain an equa-
tion in the frequency domain.

2. We can then apply the PML coordinate transformation. As we will show, it intro-
duces some difficulties that will be overcome by performing a few algebraic manip-
ulations and introducing new unknowns.

3. Apply an inverse Fourier-Laplace transform to get a system of equations in the time
domain.

2.2.2 PML formulation

In this section we introduce the continuous PML formulation we used.

We consider the linear elastodynamic propagation problem in an unbounded domain.
We assume for the sake of simplicity of exposure and without loss of generality, no sources
and no initial conditions. We further assume the propagation velocities vs and vp to be
constant in the direction of absorption in ΩPML. Hence, in Ω the displacement u satisfies

ρ
∂2

∂t2

(
u1
u2

)
=

(λ+ 2µ)∂2u1
∂x2 + µ∂

2u1
∂y2 + (λ+ µ) ∂2u2

∂x∂y

µ∂
2u2
∂x2 + (λ+ 2µ)∂2u2

∂y2 + (λ+ µ) ∂2u1
∂x∂y

 . (2.1)

Step 1: Fourier-Laplace transform in the time domain.
Applying the Fourier-Laplace transform in time to Equation (2.1) yields the following
equation in the frequency domain

ρs2
(
û1
û2

)
=

(λ+ 2µ)∂2û1
∂x2 + µ∂

2û1
∂y2 + (λ+ µ) ∂2û2

∂x∂y

µ∂
2û2
∂x2 + (λ+ 2µ)∂2û2

∂y2 + (λ+ µ) ∂2û1
∂x∂y

 , (2.2)

where s = iω, and û is the Fourier-Laplace transform of u.

Step 2: PML Equation (2.3) seen as a perturbation of the initial problem (2.2).
We extend Equation (2.2) in the PML coordinate system

ρs2
(
v̂1
v̂2

)
=

(λ+ 2µ)∂2v̂1
∂x̃2 + µ∂

2v̂1
∂ỹ2 + (λ+ µ) ∂2v̂2

∂x̃∂ỹ

µ∂
2v̂2
∂x̃2 + (λ+ 2µ)∂2v̂2

∂ỹ2 + (λ+ µ) ∂2v̂1
∂x̃∂ỹ

 , (2.3)

where v̂ is the solution of this new equation, and one can prove

∀t ∈ [0, T ], ∀x ∈ Ωφ, v̂(t, x) = û(t, x)

and
∀t ∈ [0, T ], ∀x ∈ ΩPML, v̂(t, x) 6= û(t, x).

By abusing the notation, we will write û instead of v̂ thereafter.
Then, we interpret ∂

∂x̃i
based on ∂

∂xi
, we have

∀i = 1, 2, ∂

∂x̃i
= s

s+ ζi

∂

∂xi
= 1
νi

∂

∂xi
. (2.4)
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Applying the relation defined by Equation (2.4) to Equation (2.3) yields

ρs2
(
û1
û2

)
=

(λ+ 2µ) 1
ν1

∂
∂x

(
1
ν1
∂û1
∂x

)
+ µ 1

ν2
∂
∂y

(
1
ν2
∂û1
∂y

)
+ (λ+ µ) 1

ν1
∂
∂x

(
1
ν2
∂û2
∂y

)
µ 1
ν1

∂
∂x

(
1
ν1
∂û2
∂x

)
+ (λ+ 2µ) 1

ν2
∂
∂y

(
1
ν2
∂û2
∂y

)
+ (λ+ µ) 1

ν1
∂
∂x

(
1
ν2
∂û1
∂y

) .
Hence, by multiplying by ν1ν2 we get

ρs2ν1ν2

(
û1
û2

)
=

(λ+ 2µ) ∂
∂x

(
ν2
ν1
∂û1
∂x

)
+ µ ∂

∂y

(
ν1
ν2
∂û1
∂y

)
+ (λ+ µ) ∂2û2

∂x∂y

µ ∂
∂x

(
ν2
ν1
∂û2
∂x

)
+ (λ+ 2µ) ∂∂y

(
ν1
ν2
∂û2
∂y

)
+ (λ+ µ) ∂2û1

∂x∂y

 .
In addition we have, {

ν1
ν2

= s+ζ1
s+ζ2 = s+ζ2−ζ2+ζ1

s+ζ2 = 1 + ζ1−ζ2
s+ζ2 ,

ν2
ν1

= 1 + ζ2−ζ1
s+ζ1 .

So that, we obtain

ρs2ν1ν2

(
û1
û2

)
=(λ+ 2µ)∂2û1

∂x2 + µ∂
2û1
∂y2 + (λ+ µ) ∂2û2

∂x∂y + (λ+ 2µ) ∂
∂x

(
ζ2−ζ1
s+ζ1

∂û1
∂x

)
+ µ ∂

∂y

(
ζ1−ζ2
s+ζ2

∂û1
∂y

)
µ∂

2û2
∂x2 + (λ+ 2µ)∂2û2

∂y2 + (λ+ µ) ∂2û1
∂x∂y + µ ∂

∂x

(
ζ2−ζ1
s+ζ1

∂û2
∂x

)
+ (λ+ 2µ) ∂∂y

(
ζ1−ζ2
s+ζ2

∂û2
∂y

) .
Finally, we end-up with the following modified equation

ρ(s2 + s(ζ1 + ζ2) + ζ1ζ2)
(
û1
û2

)
=(λ+ 2µ)∂2û1

∂x2 + µ∂
2û1
∂y2 + (λ+ µ) ∂2û2

∂x∂y

µ∂
2û2
∂x2 + (λ+ 2µ)∂2û2

∂y2 + (λ+ µ) ∂2û1
∂x∂y

+

(λ+ 2µ) ∂
∂x

(
ζ2−ζ1
s+ζ1

∂û1
∂x

)
+ µ ∂

∂y

(
ζ1−ζ2
s+ζ2

∂û1
∂y

)
µ ∂
∂x

(
ζ2−ζ1
s+ζ1

∂û2
∂x

)
+ (λ+ 2µ) ∂∂y

(
ζ1−ζ2
s+ζ2

∂û2
∂y

) .
This PML equation appears now as a modification of the elastodynamic equation. Unfor-
tunately, we cannot apply the inverse Fourier-Laplace transform directly on this equation
to go back to the time domain because of the algebraic fraction of s.

Step 3: Writing the PML system in its final form.
The coordinate transformation leads to powers of iω, positive and negative powers cor-
responding in the time domain to time derivatives and time integrations, respectively. If
the time derivatives are not too troublesome in practice, we seek to get rid of the time
integrations by introducing new unknowns. We will try to minimize the number of these
new unknowns to limit the computational and memory cost they introduce. It is also
worth noting that the PML formulation is second order as our original equation. For
these reasons we decided to use Sim’s formulation introduced in [? ] over other formula-
tions that are not second order in time or introduce more unknowns.

At this point we define auxiliary variables in order to get rid of the negative powers
of s:

φ̃11 = ζ2−ζ1
s+ζ1

∂û1
∂x , φ̃12 = ζ1−ζ2

s+ζ2
∂û1
∂y ,

φ̃21 = ζ2−ζ1
s+ζ1

∂û2
∂x , φ̃22 = ζ1−ζ2

s+ζ2
∂û2
∂y .
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We can rewrite the previous equations as the following equations

(s+ ζ1)φ̃11 = (ζ2 − ζ1)∂û1
∂x , (s+ ζ2)φ̃12 = (ζ1 − ζ2)∂û1

∂y ,

(s+ ζ1)φ̃21 = (ζ2 − ζ1)∂û2
∂x , (s+ ζ2)φ̃22 = (ζ1 − ζ2)∂û2

∂y .

Thus, we get the following system with only positive powers of s, but with four new
unknowns:



ρ(s2 + s(ζ1 + ζ2) + ζ1ζ2))
(
û1
û2

)
=

(λ+ 2µ)∂2û1
∂x2 + µ∂

2û1
∂y2 + (λ+ µ) ∂2û2

∂x∂y

µ∂
2û2
∂x2 + (λ+ 2µ)∂2û2

∂y2 + (λ+ µ) ∂2û1
∂x∂y


+
(

(λ+ 2µ)∂φ11
∂x + µ∂φ12

∂y

µ∂φ21
∂x + (λ+ 2µ)∂φ22

∂y

)
,

(s+ ζ1)φ̃11 = (ζ2 − ζ1)∂û1
∂x ,

(s+ ζ2)φ̃12 = (ζ1 − ζ2)∂û1
∂y ,

(s+ ζ1)φ̃21 = (ζ2 − ζ1)∂û2
∂x ,

(s+ ζ2)φ̃22 = (ζ1 − ζ2)∂û2
∂y .

Step 4: Inverse Fourier-Laplace transform.
Finally, we apply the inverse Fourier-Laplace transform and obtain the PML system of
equations for the second order linear elastodynamic problem


ρ
∂2u
∂t2

+ ρ(ζ1 + ζ2)∂u
∂t

+ ρζ1ζ2u = div(σ(u)) + div(Φ : φ),

∂φ

∂t
= Ψ1 : φ+ Ψ2 : ∇u,

(2.5)

where φ =
(
φ11 φ12
φ21 φ22

)
is a second order tensor, . : . is a component wise product and

Φ =
(
λ+ 2µ µ
µ λ+ 2µ

)
, Ψ1 =

(
−ζ1 −ζ2
−ζ1 −ζ2

)
, Ψ2 =

(
ζ2 − ζ1 ζ1 − ζ2
ζ2 − ζ1 ζ1 − ζ2

)
.

Remark 2.1. The tensor φ introduces four new unknowns, with the two unknowns of
the displacement this leads to a memory cost three times higher in the PML domain.
Fortunately, these unknowns only exist in the PML domain.

Property 2.1
The PML formulation is stable and strongly well-posed. We refer to [? ? ] for the proof
of these properties.
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2.2.3 Truncation of the PML domain

Ωφ ΩPMLΓ

Figure 2.2: Ω = Ωφ ∪ ΩPML.

It is important to keep in mind that PML are perfectly matched only for the continuous
problem in an unbounded domain or with dumping functions that tend to infinity in a
finite distance. The purpose of PML is to have a simulated unbounded domain within a
bounded domain, thus ΩPML needs to be truncated. Truncating at a finite thickness the
PML makes them no longer perfectly absorbing, and reflected waves appear. However,
PML are nevertheless very attractive as these reflections can be controlled easily to achieve
the desired accuracy through appropriate dumping functions. Moreover, the quality of the
absorption is not very dependent on the angle of incidence of waves contrary to absorbing
boundary conditions [? ].

Truncating the PML consists in adding Dirichlet boundary conditions to bound our
PML domain. The thickness of the PML and the dumping functions must be chosen
together to get the desired absorption. However, as we shall see in the numerical exper-
iments the thickness and the dumping functions should be chosen carefully according to
the discretization in order to avoid a poor absorption. For this reason we discarded the
option of using dumping functions that tend to infinity in a finite distance.

δ

PML

0

Ũp
= Up

ŨpŨ
r
s

Ũ rp

Figure 2.3: Reflection of a plane wave P in a finite PML.

As we mentioned earlier, waves decrease exponentially in the PML, thus the reflection
coefficient becomes quickly very small. Through a plane wave analysis F.Collino and
C. Tsogka showed in [? ] that the reflection coefficients rδpp, rδps, rδss, rδsp for plane waves
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solutions, which is the ratio between the amplitude of a P- or S-wave entering the PML
(denoted by the first letter p or s in subscript) and the amplitude of the corresponding P-
or S-wave outgoing the PML (denoted by the second letter p or s in subscript) in x = 0
(see Figure 2.3) after reflecting on the Dirichlet boundaries, are

rδpp = rppe
−2 cos θ

vp

∫ δ
0 ζ(s) ds, (2.6)

rδps = rpse
−2 cos θ

vp

∫ δ
0 ζ(s) ds, (2.7)

rδss = rsse
−2 cos θ

vs

∫ δ
0 ζ(s) ds, (2.8)

rδsp = rspe
−2 cos θ

vs

∫ δ
0 ζ(s) ds, (2.9)

where rpp, rps, rss, rsp are the reflection coefficients on a Dirichlet boundary condition, θ
is the angle of incidence and δ the thickness of the PML.

The truncated PML system for the second order can be written as follows
Find (u, φ) such that

ρ
∂2u
∂t2

+ ρ(ζ1 + ζ2)∂u
∂t

+ ρζ1ζ2u = div(σ(u)) + div(Φ : φ) + f, in Ω,

∂φ

∂t
= Ψ1 : φ+ Ψ2 : ∇u, in Ω,

u = 0, on Γ,

u(0,x) = u0(x), in Ωφ,

u(0,x) = 0, in ΩPML,

∂u
∂t

(0,x) = v0(x), ∀x ∈ Ωφ,

∂u
∂t

(0,x) = 0, ∀x ∈ ΩPML,

φ(0,x) = 0, in ΩPML,

∂φ

∂t
(0,x) = 0, ∀x ∈ ΩPML,

(2.10)

where φ is a second order tensor and

Φ =
(
λ+ 2µ µ
µ λ+ 2µ

)
, Ψ1 =

(
−ζ1 −ζ2
−ζ1 −ζ2

)
, Ψ2 =

(
ζ2 − ζ1 ζ1 − ζ2
ζ2 − ζ1 ζ1 − ζ2

)
.

2.3 Numerical schemes for the PML model

2.3.1 Discontinuous Galerkin approximation

We now introduce the Discontinuous Galerkin approximation of the PML system that
we have considered. We use the same approach as previously, an interior penalty discon-
tinuous Galerkin, to build this approximation.
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Theorem 2.1
The PML system (2.10) is equivalent to the following discontinuous Galerkin system
Find ∀t ∈ [0, T ], (u(t, .), φ(t, .)) ∈ H1+s(Th)2 ×Hs(Th)4, s > 1

2 , such that{
∀v ∈ Hs(Th)2, (ρ∂ttu,v)Ω + (ρ(ζ1 + ζ2)∂tu,v)Ω + (ρζ1ζ2u,v)Ω = a(u,v) + b(φ,v),
∀ϕ ∈ Hs(Th)4, (∂tφ, ϕ)Ω = c(φ, ϕ) + d(u, ϕ),

where
a(u,v) =−

∑
K∈Th

∫
K
σ(u) · ∇v dx+

∑
F∈Fh

∫
F
{{σ(u)n}} · [[v]] ds

+
∑
F∈Fh

∫
F

[[u]] · {{σ(v)n}} ds−
∑
F∈Fh

∫
F
αF [[u]] · [[v]] ds,

b(φ,v) =
∑
K∈Th

∫
K
div(Φ : φ) · v dx+

∑
F∈Fh

∫
F

[[(Φ : φ)n]] · {{v}} ds,

c(φ, ϕ) =
∑
K∈Th

∫
K

(Ψ1 : φ) · ϕ dx,

d(u, ϕ) =
∑
K∈Th

∫
K

(Ψ2 : ∇u) · ϕ dx+
∑
F∈Fh

∫
F

[[u]] · {{(Ψ2 : ϕ)n}} ds.

and

Φ =
(
λ+ 2µ µ
µ λ+ 2µ

)
, Ψ1 =

(
−ζ1 −ζ2
−ζ1 −ζ2

)
, Ψ2 =

(
ζ2 − ζ1 ζ1 − ζ2
ζ2 − ζ1 ζ1 − ζ2

)
.

Proof. The steps to follow in order to get the discontinuous Galerkin approximation are
standard:

1. Multiply each equation by a suited test function,

2. Integrate each equation on Ω,

3. Use Green’s formula in order to obtain the flux terms and relax constraints on
derivatives to obtain the so called weak formulation.

Step 1: Multiply all equations by test functions.
We multiply the first equation of the system (2.5) by a sufficiently smooth test function v
and the second equation by a sufficiently smooth test function ϕ. We obtain the system

ρ
∂2u

∂t2
· v + ρ(ζ1 + ζ2)∂u

∂t
· v + ρζ1ζ2u · v =

div(σ(u)) · v + div(Φ : φ) · v,
∂φ

∂t
· ϕ = (Ψ1 : φ) · ϕ+ (Ψ2 : ∇u) · ϕ.

Step 2: Integration on the domain Ω.

∫
Ω
ρ
∂2u

∂t2
· v dx+

∫
Ω
ρ(ζ1 + ζ2)∂u

∂t
· v dx+

∫
Ω
ρζ1ζ2u · v dx =∫

Ω
div(σ(u)) · v dx+

∫
Ω
div(Φ : φ) · v dx,∫

Ω

∂φ

∂t
· ϕ dx =

∫
Ω

(Ψ1 : φ) · ϕ dx+
∫

Ω
(Ψ2 : ∇u) · ϕ dx.
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As Ω =
⋃

K∈Th

K, we write previous integrals on Ω as a sum of integrals on each element



∑
K∈Th

(∫
K
ρ
∂2u

∂t2
· v dx+

∫
K
ρ(ζ1 + ζ2)∂u

∂t
· v dx+

∫
K
ρζ1ζ2u · v dx

)
=

∑
K∈Th

(∫
K
div(σ(u)) · v dx+

∫
K
div(Φ : φ) · v dx

)
,

∑
K∈Th

∫
K

∂φ

∂t
· ϕ dx =

∑
K∈Th

(∫
K

(Ψ1 : φ) · ϕ dx+
∫
K

(Ψ2 : ∇u) · ϕ dx
)
.

Step 3: Application of Green’s formula.
We first recall Green’s formula for our problem:∫

K
div(σ(u)) · v dx = −

∫
K
σ(u) · ∇v dx+

∫
∂K

(σ(u)n) · v ds.

As for classical IPDG formulation we have∑
K∈Th

∫
∂K

(σ(u)n) · v ds =
∑
F∈Fh

∫
F
{{σ(u)n}} · [[v]] ds.

Thus, we obtain

∑
K∈Th

(∫
K
ρ
∂2u

∂t2
· v dx+

∫
K
ρ(ζ1 + ζ2)∂u

∂t
· v dx+

∫
K
ρζ1ζ2u · v dx

)
=

−
∑
K∈Th

∫
K
σ(u) · ∇v dx+

∑
F∈Fh

∫
F
{{σ(u)n}} · [[v]] ds

+
∑
K∈Th

∫
K
div(Φ : φ) · v dx+

∑
F∈Fh

∫
F

[[(Φ : φ)n]] · {{v}} ds,

∑
K∈Th

∫
K

∂φ

∂t
· ϕ dx =

∑
K∈Th

∫
K

(Ψ1 : φ) · ϕ dx+
∑
K∈Th

∫
K

(Ψ2 : ∇u) · ϕ dx

+
∑
F∈Fh

∫
F

[[u]] · {{(Ψ2 : ϕ)n}} ds.

We add the classical SIPDG symmetric term
∫
F

[[u]] · {{σ(v)n}} ds and the penalty term

−
∫
F
αF [[u]] · [[v]] ds, thus, we finally obtain the weak PML formulation

∑
K∈Th

(∫
K
ρ
∂2u

∂t2
· v dx+

∫
K
ρ(ζ1 + ζ2)∂u

∂t
· v dx+

∫
K
ρζ1ζ2u · v dx

)
=

−
∑
K∈Th

∫
K
σ(u) · ∇v dx+

∑
F∈Fh

∫
F
{{σ(u)n}} · [[v]] ds+

∑
F∈Fh

∫
F

[[u]] · {{σ(v)n}} ds

−
∑
F∈Fh

∫
F
αF [[u]] · [[v]] ds+

∑
K∈Th

∫
K
div(Φ : φ) · v dx+

∑
F∈Fh

∫
F

[[(Φ : φ)n]] · {{v}} ds,

∑
K∈Th

∫
K

∂φ

∂t
· ϕ dx =

∑
K∈Th

∫
K

(Ψ1 : φ) · ϕ dx+
∑
K∈Th

∫
K

(Ψ2 : ∇u) · ϕ dx

+
∑
F∈Fh

∫
F

[[u]] · {{(Ψ2 : ϕ)n}} ds.
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where

Φ =
(
λ+ 2µ µ
µ λ+ 2µ

)
Ψ1 =

(
−ζ1 −ζ2
−ζ1 −ζ2

)
Ψ2 =

(
ζ2 − ζ1 ζ1 − ζ2
ζ2 − ζ1 ζ1 − ζ2

)

2.3.2 Spatial semi-discrete formulation

In order to get the spatial discretization we need to choose approximating subspaces of
Hs(Th)2 and Hs(Th)4 called finite element spaces. We still take polynomial approximating
spaces.

For a given partition Th of Ω and an approximation order k ≥ 1, we wish to approximate
u(t, .) in the finite element space

Vh := {v ∈ L2(Ω)2 : ∀K ∈ Th v|K ∈ Qk(K)2},

and φ(t, .) in the finite element space

Wh := {ϕ ∈ L2(Ω)4 : ∀K ∈ Th ϕ|K ∈ Qk(K)4},

where Qk(K) are spaces of polynomials of degree at most k in each variable on K.

Remark 2.2. Here again we could use any approximating subspace of Hs(Ω)2, s > 3
2

instead.

Let K ∈ Th, we denote by {ϕKi } and {ψKi } a basis of Vh(K) and Wh(K), respectively.
Let NK = |Â {ϕi}| and NK

φ = {ψi}| denote the number of degrees of freedom associated
with the displacement u and the PML unknowns on the element K, respectively.

We shall now express the approximated solutions uh(t,x) and φ
h
(t,x) in these spaces.

2.3.2.1 Global formulation of the spatial discretization

The semi-discrete solution can be expanded in the local basis functions by

∀t ∈ [0, T ], ∀x ∈ Ω, uh(t,x) =
∑
K∈Th

NK∑
i=1

UindK(i)(t)ϕKi (x),

and

∀t ∈ [0, T ], ∀x ∈ Ω, φ
h
(t,x) =

∑
K∈Th

NK
φ∑

i=1
Φindφ,K(i)(t)ψKi (x),

where indK(i) and indφ,K(i) are global indexing functions on [[1, N ]] and [[1, Nφ]] respec-
tively.
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The global space discretization of the PML is
M
∂2U

∂t2
+Mζ1+ζ2

∂U

∂t
+Mζ1ζ2U = KσU +KΦΦ,

MΦ
∂Φ
∂t

= KΨ1Φ +KΨ2U.

(2.11)

where

∀i, j ∈ [[1, N ]] Mij = (ρϕj , ϕi)Ω, Mζ1+ζ2,ij = (ρ(ζ1 + ζ2)ϕj , ϕi)Ω,

∀i, j ∈ [[1, N ]] Mζ1ζ2,ij = (ρζ1ζ2ϕj , ϕi)Ω, Kσ,ij = ah(ϕj , ϕi),

∀i ∈ [[1, N ]] ∀j ∈ [[1, Nφ]] KΦ,ij = bh(ψj , ϕi),

∀i, j ∈ [[1, Nφ]] MΦ,ij = (ψj , ψi)Ω, KΨ1,ij = ch(ψj , ψi),

∀i ∈ [[1, Nφ]] ∀j ∈ [[1, N ]] KΨ2,ij = dh(φj , ψi).

2.3.2.2 Local formulation of the spatial discretization

The global formulation is simple to read, but has a major drawback, it hides all the lo-
cality of the discontinuous Galerkin and consequently all the attractiveness and difficulties
of the method. For this reason, we prefer to rewrite these equations in a local form.

The semidiscrete solution can also be expanded in the local basis functions by

∀t ∈ [0, T ], ∀x ∈ Ω, uh(t,x) =
∑
K∈Th

NK∑
i=1

uKi (t)ϕKi (x),

and

∀t ∈ [0, T ], ∀x ∈ Ω, φ
h
(t,x) =

∑
K∈Th

NK
φ∑

i=1
φKi (t)ψKi (x).

First, we define local operators as follow

aK(u,v) :=−
∫
K
σ(u) · ∇v dx+

∑
F∈FK

∫
F
{{σ(u)n}} · v|K ds

+
∑
F∈FK

∫
F

[[u]] · σK(v|K)nK ds−
∑
F∈FK

∫
F
αF [[u]] · v|K ds,

bK(φ,v) :=
∫
K
div(Φ : φ) · v dx+

∑
F∈FK

∫
F

[[(Φ : φ)n]] · v|K ds,

cK(φ, ϕ) :=
∫
K

(Ψ1 : φ) · ϕ dx,

dK(u, ϕ) :=
∫
K

(Ψ2 : ∇u) · ϕ dx+
∑
F∈FK

∫
F

[[u]] · (Ψ2 : ϕ|K)nK ds.

To obtain the local formulation of the variational formulation we have to consider test
functions which are not null only on the considered elementK, thus we obtain the following
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local variational formulation

ρKM
K ∂

2uK

∂t2
+ ρKM

K
ζ1+ζ2

∂uK

∂t
+ ρKM

K
ζ1ζ2u

K = KK
σ u

K +
∑
F∈FK

F VF (K)
σ uVF (K)

+KK
Φ φ

K +
∑
F∈FK

F
VF (K)
Φ φVF (K),

MK ∂φ
K

∂t
= KK

Ψ1φ
K +KK

Ψ2u
K +

∑
F∈FK

F
VF (K)
Ψ2

uVF (K),

(2.12)

where
∀i, j ∈ [[1, NK ]]

MK
ij = (ρKϕKj , ϕKi )K ,

MK
ζ1+ζ2,ij = (ρK(ζ1 + ζ2)ϕKj , ϕKi )K ,

MK
ζ1ζ2,ij = (ρKζ1ζ2ϕ

K
j , ϕ

K
i )K ,

KK
σ,ij = aKh (ϕKj , ϕKi ),

∀i ∈ [[1, NK ]] ∀j ∈ [[1, NVF (K)]]

F
VF (K)
σ,ij = a

VF (K)
h (ϕVF (K)

j , ϕKi ),

∀i ∈ [[1, NK ]] ∀j ∈ [[1, NK
φ ]]

KK
Φ,ij = bKh (ψKj , ϕKi ),

∀i ∈ [[1, NK ]] ∀j ∈ [[1, NVF (K)
φ ]]

F
VF (K)
Φ,ij = b

VF (K)
h (ψVF (K)

j , ϕKi ),

∀i, j ∈ [[1, NK
φ ]]

KK
Ψ1,ij = cKh (ψKj , ψKi ),

∀i ∈ [[1, NK
φ ]] ∀j ∈ [[1, NK ]]

KK
Ψ2,ij = dKh (ψKj , ϕKi ),

∀i ∈ [[1, NK
φ ]] ∀j ∈ [[1, NVF (K)]]

F
VF (K)
Ψ2,ij

= d
VF (K)
h (ψVF (K)

j , ϕKi ),

2.3.3 Full discretization

There are plenty of ways to achieve the temporal discretization in order to get the full
discretization. Different discretizations result in different stabilities and sensibilities to the
PML parameters. Especially, the CFL condition might be weakened by the absorption
strength [? ]. We decided to take inspiration from a temporal discretization described in
[? ] for first order hyperbolic systems in order to have a CFL condition as little affected
as possible. As we mention later in the numerical results (see Section 2.4.1.2), we use
exactly the same CFL as without PML.
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For the second order derivative we take a standard second order centered scheme

d2u
dt2

(tn) ' un+1 − 2un + un−1
∆t2 .

For the first order derivative we take centered scheme:
du
dt

(tn) ' un+1 − un−1
2∆t ,

this choice is led by the desire to have a discrete scheme symmetric in time. Since there is a
second order time derivative, this first order centered scheme does not lead to an unstable
scheme as we shall see in the numerical result section short after. Finally, inspired by [?
], and to continue having a symmetric scheme in time, we used

u(tn) ' un+1 + 2un + un−1
4 .

Moreover, we center the first equation of the system (2.12) in time n and the second in
time n+ 1

2 .

These temporal discretizations lead to

ρKM
K u

K
n+1 − 2uKn + uKn−1

∆t2 + ρKM
K
ζ1+ζ2

uKn+1 − uKn−1
2∆t

+ ρKM
K
ζ1ζ2

uKn+1 + 2uKn + uKn−1
4 = Θ1(un, φn),

MK φ
K
n+1 − φKn

∆t = Θ2(un+1 + un
2 ,

φn+1 + φn
2 ),

where Θ1 and Θ2 represent the "spatial" parts of the PML system.
Hence, if we write the recurrence induced by this temporal discretization, we get

ρK(MK + 2∆tMK
ζ1+ζ2 + ∆t2

4 MK
ζ1ζ2)uKn+1 =

ρK(2MK − ∆t2

2 MK
ζ1ζ2)uKn

+ ρK(−MK + ∆tMK
ζ1+ζ2 −

∆t2

4 MK
ζ1ζ2)uKn−1

+ ∆t2Θ1(un, φn),

MKφKn+1 = MKφKn + ∆tΘ2(un+1 + un
2 ,

φn+1 + φn
2 ).

2.4 Numerical results
In this section, we investigate the main numerical features of the PML scheme we have

defined. We will present several examples of elastic wave propagation simulations.
When adding PML around a physical domain to simulate an unbounded domain, we

need to choose the dumping functions. For the continuous truncated PML it has been
shown in [? ] that the theoretical reflection coefficient r = rδpp (see relation (2.6) for θ = 0)
for plane wave solutions, which is the ratio between the amplitude of an incident wave
and the amplitude of the corresponding reflected wave, is

r = e−
2
v

∫ δ
0 ζ(s) ds,
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where v is the velocity of the considered plane wave and δ the thickness of the PML.
Thus, for quadratic dumping functions, we have

r = e−
2
v

∫ δ
0 s

2 ds = e−
2δ3
3v .

We now consider standard "normalized" quadratic dumping functions ζi defined in [? ? ]
as follows:

ζi(x) =



3c
2δ3 log(1

r )(xmini − xi)2 ,∀xi ≤ xmini ,

0 ,∀xmini ≤ xi ≤ xmaxi ,

3c
2δ3 log(1

r )(xmaxi − xi)2 ,∀xi ≥ xmaxi ,

where c is the largest velocity in ΩPML and r the theoretical reflection coefficient becomes
the desired absorption.

The profile of the dumping functions ζi must not be too steep, otherwise it results in
a bad discretization of the PML causing spurious effects and even unstabilities. Thus,
the thickness of the PML δ and the desired absorption r have to be chosen carefully as
they rule the slope of the dumping functions. δ has to be chosen according to the desired
absorption that depends on the largest velocity, and of the smallest wave length in order
to have a good discretization of the PML. For a chosen absorption r, if δ is too large then
we have unnecessary memory and computation cost, if δ is too small then the PML will
not be efficient and can even be unstable.

For our numerical experiments we use an explosive source located at the point xS ,
that is

f(x, t) = h(t)g(|x− xS |)
−−−−→x− xS
|x− xS |

where h(t) is a second order Ricker, with central frequency f0 = 40Hz,

h(t) = (2π2(f0t− 1)2 − 1)e−π2(f0t−1)2
,

and g(|x−xS |) is a regularization of a Dirac by a Gaussian centered in xS = (300m, 300m)
and distributed over a disk of radius r0 = 8m,

g(|x− xS |) = e
−7 |x−xS |

2

r20

r2
0

.

2.4.1 Homogeneous medium test case

In this first experiment we want to show that PML have the expected behavior in an
homogeneous medium under some constraints.
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Source

λ = 7.774× 109

µ = 3.887× 109

ρ = 2300 kg.m−3

vp = 2600m.s−1

vs = 1300m.s−1

28 m 400 m 28 m

Figure 2.4: Homogeneous medium characteristics.

We consider an homogeneous medium with ρ = 2300 kg.m−3, λ = 7.774 × 109 and
µ = 3.887 × 109 (vs = 1300 m.s−1 and vp = 2600 m.s−1). The physical domain is of size
400m× 400m. The initial conditions are null. We used Q3 elements of size 4m for these
simulations, with Legendre-Gauss function basis (see figure 1.3.3). We add PML around
our physical computation domain, as the longest wavelength is λmax = c

2.5f0
= 26m, we

take PML of thickness δ = 28m = 7cells ' λmax and r = 10−4 as often suggested [? ? ].
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Figure 2.5: Magnitude and amplitude of the displacement at different times, for an ho-
mogeneous medium with ρ = 2300kg.m−3, λ = 7.774× 109 and µ = 3.887× 109.

(a) r = 10−4

Figure 2.6: Magnitude of the displacement for a color scale divided by a factor of 1/r = 104

at T = 0.3s, for an homogeneous medium with ρ = 2300kg.m−3, λ = 7.774 × 109 and
µ = 3.887× 109.
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We first present some snapshots of the solution on the normal scale in Figure 2.5. We
can remark in the snapshots presented in 2.5 that we cannot see any reflection on the
normal scale. To see some reflections we have to magnify the results. We present in
Figure 2.6 the results magnified by the invert of the desired absorption, that is 1/r = 104,
and we remark that the reflections are of the expected amplitude. We can also see that
the PML are well discretized has no other spurious effects than the expected reflected
waves are noticeable.
This first result on an homogeneous medium is interesting. Nothing in the study of
reflection coefficient achieved for plane waves suggested that the theoretical reflection
coefficients would be correct for other kinds of waves.

2.4.1.1 Impact of the absorption coefficient and of the thickness of the PML

Here we want to show what can be the impact of both the absorption coefficient r and the
thickness δ. To show the effects we take a constant thickness for the PML of δ = 7cells =
28m.

(a) r = 10−4 (b) r = 10−6

Figure 2.7: Magnitude of the displacement for a color scale divided by a factor of 104 for
different absorption coefficients r = 10−4 and r = 10−6 at T = 0.3s, for an homogeneous
medium with ρ = 2300kg.m−3, λ = 7.774× 109 and µ = 3.887× 109.

As we can see in Figure 2.7(b) with an absorption coefficient of r = 10−6 the reflected
waves amplitude is now below the dispersion amplitude, and thus the PML become nu-
merically perfectly matched and perfectly absorbing.

We show now in Figure 2.8 what happens if we push too hard these parameters, either
with too thin PML or too large absorption.
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(a) δ = 8m, r = 10−8 (b) δ = 28m, r = 10−20

Figure 2.8: Magnitude of the displacement amplified by a factor of 1000 for different PML
thickness at T = 0.30s, for an homogeneous medium with ρ = 2300kg.m−3, λ = 7.774×109

and µ = 3.887× 109.

These last parameters taken for Figure 2.8 might seem exaggerated, but when PML
are used in heterogeneous materials, we must keep in mind that the number of point per
wavelength to be taken depends on the shortest wavelength, whereas the thickness of the
PML depends on the highest velocity. Thus one might quickly end up with one of the
cases introduced here.
However, we remark in Figure 2.8 that having too short PML thickness δ has a much
more serious effect on spurious reflection than having a too high absorption coefficient r.
It is easy to see why, as the dependency of our dumping functions ζ on δ is cubic whereas
the dependency on r is logarithmic, shortening the PML has much more impact on the
slope of our dumping functions than increasing the desired reflection r.
We also remark on Figure 2.8(b) that spurious S-waves are the first to appear, this can be
explained by the fact that they are the one with the shortest wavelength and consequently
suffer the most of a bad discretization.

2.4.1.2 Stability and impact on the CFL condition

In this section, we study the behavior of our PML scheme on the time step and on the
stability on long time simulations.
E. Bécache and A. Prieto in [? ] emphasized the impact of the choice of the time
discretization on the maximum time step allowed for a chosen absorption. We compare the
optimal time step allowed with PML to the optimal time step on the same computational
domain with Dirichlet conditions called ∆tCFL. Through all the numerical experiments
we performed, the optimal time step was never impacted by the PML.

Remark 2.3. We saw that PML become unstable for the smallest penalty values. However,
we recommend not using the smallest values of the penalty as it has an important impact
on the stability of the error, even if the penalty has an impact on the CFL condition.
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Figure 2.9: Sismos on long time simulations for different PML thickness δ.

As shown on Figure 2.9 the PML might become unstable for too violent absorption
requirements, however these cases correspond to cases where PML are not well discretized
and thus do not absorb correctly.

2.4.2 Simple heterogeneous medium test case

In this second experiment we want to show that the PML behave well in a simple hetero-
geneous medium.

Source

λ = 7.774× 109

µ = 3.887× 109

ρ = 2300 kg.m−3

vp = 2600m.s−1

vs = 1300m.s−1

λ = 4.2× 109

µ = 2.1× 109

ρ = 2100 kg.m−3

vp = 2000m.s−1

vs = 1000m.s−1

28 m 400 m 28 m

Figure 2.10: Heterogeneous medium characteristics.
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We consider an heterogeneous medium with ρ = 2300 kg.m−3, λ = 7.774 × 109 and
µ = 3.887 × 109 (vs = 1300 m.s−1 and vp = 2600 m.s−1) in the bottom half space,
and with ρ = 2100 kg.m−3, λ = 4.2 × 109 and µ = 2.1 × 109 (vs = 1000 m.s−1 and
vp = 2000m.s−1) in the top half space. The physical domain is of size 400m× 400m. The
initial conditions are null. We used Q3 elements of size 4m for these simulations, with
Legendre-Gauss function basis (see Figure 1.3.3).

(a) T=0.05s (b) T=0.1s (c) T=0.15s

(d) T=0.3s (e) T=0.5s

Figure 2.11: Magnitude of the displacement at different times, for an heterogeneous
medium (see Figure 2.10).

(a) r = 10−4

Figure 2.12: Magnitude of the displacement for a color scale divided by a factor of 1/r =
104 at T = 0.5s, for an heterogeneous medium (see figure 2.10).
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We can remark in the snapshots presented on Figure 2.11 that we cannot see any
reflections. To see some reflection, we again have to magnify the scale by a factor equal
to the invert of the absorption 1/r = 104. As we can see on Figure 2.12, the reflected
waves are of the expected amplitudes, and thus the PML behave well for an heterogeneous
medium too.

2.5 Conclusion
We have presented a second order PML formulation and his discontinuous Galerkin ap-
proximation for the second order elastodynamic equation. We introduced a time dis-
cretization that overcome the problem of having a CFL condition weakened by the PML
absorption, therefore the CFL condition in the PML is identical to the CFL condition of
the discrete scheme in the physical domain.
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Chapter 3

Using local time stepping with
non-conforming Cartesian space
refinement

3.1 Introduction

Coarse Grid

Fine Grid

Geophysic Medium

Area of Interest

In some parts of the physical domain, if we want to
take into account the geometrical details or capture
a singularity of the solution, it is tempting to use
techniques of spatial local mesh refinement. Since
the time step is conditioned by the smallest spatial
element, it results in a substantial increase in com-
putation cost. It is therefore natural to want to use
a local time-stepping method in such configurations.

At this point, we shall remind the constraint that
meshes are Cartesian grids as well as each refined
area. This leads to the need to be able to deal
with non-conforming meshes. Since our meshes were
only Cartesian grids we focused first on finite differ-
ence refinement methods. Most methods to achieve
space-time local mesh refinement were interpolation
techniques [? ? ? ? ], but they encountered stabil-

ity problems. Then came the conservative methods [? ? ] that first seek to ensure the
stability of the scheme through the conservation of a discrete energy. The first approaches
that used this idea were coupling two problems, the coarse and the fine, through transmis-
sion conditions imposed by a Lagrange multiplier. This approach has several drawbacks,
first the Lagrange multiplier requires the solution of a linear system, whereas we wanted
to stay fully explicit (we did not want to solve any linear system), and some local high
frequency spurious effects can appear [? ]. The need to have non-conforming Cartesian
grids is one of the main reasons why we decided to use discontinuous Galerkin methods
since they can naturally handle these configurations and yield really low spurious effects
on the non-conforming interfaces as we shall see. This important requirement also made
us discard the interesting so called ADER local time-stepping method [? ], since this last
method is more suited for highly heterogeneous elements as each element can have its
own time step. Our approach is different, we see the local time-stepping and the local
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mesh refinement as two independent problems. For this reason, we decided to use the
conservative local time-stepping scheme introduced by J. Diaz and M. Grote in [? ], and a
conservative non-conforming local space refinement through discontinuous Galerkin finite
elements methods.

In Section 3.2 we introduce J. Diaz and M. Grote’s strategy to overcome the stability
constraint imposed by the smallest element. This results in a first scheme which we
call the "z̃-exact" scheme. We found interesting to study this z̃-exact scheme because
of the numerical properties it shares with J. Diaz and M. Grote’s local time stepping
scheme. Then, we introduce J. Diaz and M. Grote’s local time stepping algorithm as an
approximation of the z̃-exact scheme. In Section 3.3, we investigate and discuss the cost of
local space-time refinement. We emphasize our non-conforming and p-adaptive approach
that enables a number of optimizations to control the rapid growth of the computational
cost. In Section 3.4 we perform experiments to illustrate the appealing numerical features
of the proposed schemes and its flexibility.

3.2 Local time stepping method: Diaz-Grote’s formulation

The usual way to achieve local mesh refinement is to discretize independently in time the
coarse and fine parts, and then find coupling transmission conditions. Those transmission
conditions have been either interpolation (which is unstable), or the introduction of a
Lagrange multiplier (that leads to a linear system). On the contrary, in Diaz-Grote’s
scheme, the time discretization is applied regardless of the fine part. The main idea of J.
Diaz and M. Grote is to get a "better" approximation of the second order time derivative
in such a way that the global stability of the scheme is unchanged. Then, the remaining
problem is how to calculate this improved approximation of the time derivative. In that
respect, a new problem is introduced to get a better approximation of the fine part time
derivative. At this point there still is no local fine time step, and we can solve this new
problem analytically as we will see. Unfortunately the analytical solution is unrealistic in
practice. This new problem is thus discretized to be solved numerically. Using a similar
time discretization as for the original problem, a leap-frog scheme, at a smaller time step.
Put in another way, we have a first problem that we temporally discretize regardless of
the fine area, and a second problem concerning only the fine area which is solved at a
smaller time step.

3.2.1 Construction of Diaz-Grote’s z̃-exact scheme

The classic way to approximate the second order derivative is to take an order 0 approx-
imation that is u′′(t + ∆t) ' u′′(t). Since J. Diaz and M. Grote’s idea is to propose a
better approximation of this term, we will first introduce the improved approximation of
the second order time derivative. This choice leads to a new scheme which we call the
"z̃-exact" formulation, we emphasize that this scheme will not contain any local time step.
Diaz-Grote’s algorithm is based on a discrete approximation of this scheme. Then, we
study the numerical behavior of this approximation and deduct some numerical proper-
ties. This preliminary study reveals that most of the numerical properties of the "z̃-exact"
scheme will be similar to those of Diaz-Grote’s local time stepping scheme.

First of all, we want to give the intuition why improving the second order derivative
allows a larger time step ∆t than the one dictated by the smallest element.

62



We shall begin with the time discretization we use, the leap-frog scheme, with the
integral form of the remainder:

u(tn+1)− 2u(tn) + u(tn−1) = ∆t2
∫ 1

−1
(1− |θ|)u′′(tn + θ∆t)dθ. (3.1)

Using u′′(t) +Au(t) = 0, we get

u(tn+1)− 2u(tn) + u(tn−1) = −∆t2
∫ 1

−1
(1− |θ|)Au(tn + θ∆t)dθ,

where A = M−1K in our case.
The construction of the leap-frog scheme is done considering the second order derivative

constant on the interval [tn−1, tn+1], i.e. ∀θ ∈ [−1, 1], Au(tn + θ∆t) ' Au(tn). In this
case, if we denote by un the approximation of u(tn) we get the following standard leap-frog
scheme:

un+1 − 2un + un−1 = −∆t2Aun. (3.2)

Unfortunately, the stability condition of this scheme, ∆t ≤ 2/
√
λmax(A), is linked to

the largest eigenvalue of the matrix A, λmax(A), which is proportional to 1/h2
f with hf

the space step of the fine part. In other words, ∆t is globally penalized by the fine part,
which is very binding and unrealistic.

The principle of the construction of Diaz-Grote’s scheme is to improve the previous
scheme by considering the following approximation:

Au(tn + θ∆t) = Au[coarse](tn + θ∆t) +Au[fine](tn + θ∆t)
' A(I − P )u(tn) +APu(tn + θ∆t),

(3.3)

where P is the canonical restriction to the fine part, we also note Q = (I − P ).
We assume that the degrees of freedom are sorted in the following form

u =
(
u[coarse]

u[fine]

)
. (3.4)

We have not done much yet since we cannot do anything of the approximation (3.3),
we now have to define an approximation of APu(tn + θ∆t).

A classic way to do this is to add unknowns un+m/p (for m = −p+ 1, ..., p− 1) approx-
imation of u(tn +m/p∆t) in the fine part. We then calculate the unknowns in the coarse
and fine parts using a leap-frog scheme and a specific treatment must be done to link the
two parts, while ensuring the stability and order of consistency of the overall scheme. This
task is difficult to achieve optimally.

To avoid this difficulty, J. Diaz and M. Grote use a different approach. Their idea is
to construct directly a global approximation of APu(tn + θ∆t) and not to make a global
connection afterwards. To do this, they introduced the following second order ordinary
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differential equation:
Find z̃ : [−∆t,∆t]→ Rd solution of

z̃′′(τ) = −A(I − P )u(tn)−APz̃(τ),

z̃(0) = u(tn),

z̃′(0) = ν,

(3.5)

where ν ∈ Rn is a free constant vector parameter to be precised later on.

Remark 3.1. It is important to remember for later that z̃ is only intended to provide
z̃′′(τ) = u′′(tn + τ) and not to give an approximation of u! It should be noted that z̃(τ) is
generally not a "good" approximation of u(tn+τ). This is usually an order 1 approximation
because of the first initial condition. We can nevertheless improve things by taking ν =
u′(tn) but we see later that this choice is not the most appropriate.

3.2.1.1 The z̃-exact formulation

Let us recall that the purpose of z̃ defined by the differential problem (3.5) is to give a bet-
ter approximation of u′′. We expect that the stability condition would be less constrained
by the area with a specific treatment, or even unconstrained. We shall note that there is
not any sort of local time stepping scheme at this moment. We only have a scheme with
two different approximations of u′′.

First, we give some properties on the differential problem (3.5), which will help us
defining what we call the z̃-exact formulation, and finally we give some properties about
this z̃-exact formulation.

We have the following results:

Property 3.1 • The expression of z̃ in the fine part is:
∀τ ∈ [−∆t,∆t]

P z̃(τ) = cos((PAP )1/2τ)Pu(tn) + sin((PAP )1/2τ)(PAP )−1/2Pν

+(cos((PAP )1/2τ)− 1)(PAP )−1PA(I − P )u(tn).
(3.6)

• z̃′′(τ) is an approximation of u′′(tn):
∀τ ∈ [−∆t,∆t]

z̃′′(τ) = u′′(tn)−
+∞∑
n=1

(−1)n

(2n) A(PAP )nPu(tn)τ2n

−
+∞∑
n=0

(−1)n

(2n+ 1)!A(PAP )nPντ2n+1

+
+∞∑
n=1

(−1)n

(2n) A(PAP )n−1PA(I − P )Pu(tn)τ2n.

(3.7)

• The expression of Θn := ∆t2
∫ 1

−1
(1− |θ|)z̃′′(θ∆t)dθ is:

Θn =2A(PAP )−1(cos((PAP )1/2∆t)− I)Pu(tn)
+ 2A(PAP )−1(cos((PAP )1/2∆t)− I)(PAP )−1PAQu(tn)
−∆t2AQu(tn) + ∆t2A(PAP )−1PAQu(tn).

(3.8)
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Remark 3.2. (PAP )−1 is the Moore-Penrose pseudoinverse since a large part of this
matrix is null, but the non null block is invertible, this is why we kept this notation.

Proof. To obtain the expression of P z̃, we have to solve the ordinary differential equation
with constant coefficient (3.5) projected on the fine part by applying P .
First, we define the solution of the homogeneous problem:

P z̃′′0 (τ) = −PAP z̃0(τ). (3.9)

Hence, we immediately get:

z̃0(τ) = cos((PAP )1/2τ)β + sin((PAP )1/2τ)α, (3.10)

where α, β ∈ RN .
The matrices cos((PAP )1/2τ) and sin((PAP )1/2τ) are defined as follows. We diag-

onalize the symmetric positive definite matrix PAP i.e. PAP = V DV T where D =
diag(λi, i = 1, ..., N) and λi are the eigenvalues of PAP . We thus have cos((PAP )1/2τ) =
V diag(cos(

√
λiτ))V T (idem for sin).

Then, we can easily verify that z̃1 := −(PAP )−1PAQu(tn) is a particular solution
of (3.5) (without the initial conditions). Finally, we seek P z̃ in the form z̃0 + z̃1 and the
initial conditions determine the two values (α, β) such that

z̃0(0) + z̃1(0) = β − (PAP )−1PAQu(tn) = Pu(tn),

which implies
β = Pu(tn) + (PAP )−1PAQu(tn).

Besides,

z̃′o(τ) = −(PAP )1/2 sin((PAP )1/2τ)β + (PAP )1/2 cos((PAP )1/2τ)α,

thus
z̃′0(0) = (PAP )1/2α = Pν,

which implies
α = (PAP )−1/2Pν.

Finally,

P z̃(τ) = cos((PAP )1/2τ)Pu(tn) + sin((PAP )−1/2τ)(PAP )−1/2Pν

+ (cos((PAP )1/2τ)− 1)(PAP )−1PAQu(tn).
(3.11)

To prove (3.7), we simply use z̃′′(τ) = −A(I − P )u(tn)− APz̃(τ) and the power series
of cos and sin:

cos((PAP )1/2τ) =
+∞∑
n=0

(−1)n τ2n

(2n)! (PAP )n

sin((PAP )1/2τ) =
+∞∑
n=0

(−1)n τ2n+1

(2n+ 1)!(PAP )n+1/2
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Finally, to prove (3.8), we use again z̃′′(τ) = −A(I −P )u(tn)−APz̃(τ), the expression
(3.11) and the following integrals:∫ 1

−1
(1− |θ|) cos((PAP )1/2θ∆t)dθ = − 2

∆t2 (PAP )−1(cos((PAP )1/2∆t)− 1),∫ 1

−1
(1− |θ|) sin((PAP )1/2θ∆t)dθ = 0.

We define a first temporal scheme (Diaz-Grote’s scheme will be an approximation of
this one) using the previous approximation z̃′′(θ∆t) of u′′(tn + θ∆t). We have:

un+1 − 2un + un−1 = ∆t2
∫ 1

−1
(1− |θ|)z̃′′(θ∆t)dθ. (3.12)

Using (3.8), the scheme (3.12) takes the form of the following leap-frog scheme:

un+1 − 2un + un−1 = −∆t2Bun, (3.13)

where the matrix B is

B =
[
B11 B12
B21 B22

]
where

B11 = − 2
∆t2 (cos((PAP )1/2∆t)− I)P,

B12 = BT
21 = − 2

∆t2 (cos((PAP )1/2∆t)− I)(PAP )−1PAQ,

B22 = − 2
∆t2QA(PAP )−1(cos((PAP )1/2∆t)−I)(PAP )−1PAQ+(QAQ)−QA(PAP )−1PAQ.

Remark 3.3. There is an abuse of notation in the matrices B11, B12, B21 and B22, they
are the restriction to the corresponding non null matrix block since the size of B is the
same as the size of A. Moreover, to write B in this form we used the assumption that the
degrees of freedom of u are sorted as defined in (3.4).

Remark 3.4. We note that the matrix B does not depend of the initial condition ν of the
differential equation (3.5).

Remark 3.5. It is noteworthy that the matrix B is symmetric.

Property 3.2
The scheme (3.13) is consistent at the order 2 in time.

Proof. Using the power series of the cosine function, we immediately get:

− 2
∆t2 (cos((PAP )1/2∆t)− I)Pu(tn)

= (PAP )u(tn)− 2
∆t2

+∞∑
n=2

(−1)n∆t2n

(2n)! (PAP )nu(tn),
(3.14)
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− 2
∆t2 (cos((PAP )1/2∆t)− I)(PAP )−1PAQu(tn)

= (PAQ)u(tn)− 2
∆t2

+∞∑
n=2

(−1)n∆t2n

(2n)! (PAP )n−1PAQu(tn),
(3.15)

− 2
∆t2QA(PAP )−1(cos((PAP )1/2∆t)− I)P

= (QAP )u(tn)− 2
∆t2

+∞∑
n=2

(−1)n∆t2n

(2n)! QA(PAP )n−1Pu(tn),
(3.16)

− 2
∆t2QA(PAP )−1(cos((PAP )1/2∆t)− I)(PAP )−1PAQ

= (QA)(PAP )−1(PAQ)u(tn)− 2
∆t2

+∞∑
n=2

(−1)n∆t2n

(2n)! QA(PAP )n−2AQu(tn).
(3.17)

By grouping (3.14), (3.15), (3.16) and (3.17), we get:

Bu(tn) =

 PAP PAQ

QAP QAQ

u(tn) +O(∆t2),

= Au(tn) +O(∆t2) = −u′′(tn) +O(∆t2).

(3.18)

We define the consistency error of the scheme by:

Λn := u(tn+1)− 2u(tn) + u(tn−1)
∆t2 +Bu(tn). (3.19)

Using the consistency result of the leap-frog scheme and (3.18), we get Λn = O(∆t2) and
the scheme (3.13) is consistent at the order 2 in time.

3.2.1.2 Stability analysis

We shall now investigate the main question of this method: the stability of the scheme (3.13).
Since the scheme (3.13) can be written as a leap-frog scheme, we have the following

discrete energy:

En+1/2 = 1
2

(〈(
I − ∆t2

4 B

)
un+1 − un

∆t ,
un+1 − un

∆t

〉
+
〈
B
un+1 + un

2 ,
un+1 + un

2

〉)
.

(3.20)
A sufficient condition of stability is the positiveness of the energy.

Let (λBi )i=1,··· ,N denote the eigenvalues of B. The stability condition is:

Find ∆topt > 0 such that ∀∆t ≤ ∆topt, ∀i = 1, · · · , N, 0 ≤ ∆t2

4 λBi ≤ 1. (3.21)

One of the difficulties to do this analysis comes from the fact that the λBi have a non-
linear dependency with ∆t. In order to give some answer, we perform a numerical analysis
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of the 1D problem:
Find u :]0, L[→ R solution of



ρ
∂2u

∂t2
− div(µ∇u) = f,

u(0, t) = u(L, t) = 0,

u(x, 0) = u0(x),

∂u

∂t
(x, 0) = v0(x).

(3.22)

This problem has been discretized using the SIPDG method described in Chapter 1. The
mesh used is described on Figure 3.1. On this figure, the intermediate area corresponds to
coarse cells that will possibly be included in the fine area through the projection matrix
P . We will see that adding this area will improve the spectral behavior of B and thus
the stability leading to a larger time step ∆tmax. For this study, we denote by ∆tmin :=
2/
√
λmax(A) the time step that corresponds to the CFL condition when the standard

leap-frog scheme is used. Finally, we define ∆tmax := 2/
√
λmax(QAQ).

Spatially refined elements

Temporally refined elements

Figure 3.1: Description of the 1D mesh.

We display on Figure 3.2 the largest eigenvalues of ∆t2
4 B with a fine part spatially

refined by ps = 2. We note that the maximum time step is roughly at 60% of the desired
time step. However, the Theorem 1.5 suggested that the coarse element right next to a
fine element has a local CFL condition of the same kind as the small elements. Therefore,
it is natural to include coarse elements right next to fine elements in the refined area. We
call halo-n the set of coarse elements at a distance lower than or equal to n elements of a
fine element which we include in the refined area.

Remark 3.6. We study non exhaustively the stability of the scheme by an energy method.
If we study the stability of the scheme (3.13) from an energetic point of view, the condition
to be verified is
∀U ∈ RN , 〈

(I − ∆t2

4 B)U,U
〉
≥ 0 and 〈BU,U〉 ≥ 0.

We observe that if QU = 0 then this condition becomes:

‖U‖2 − 1
2
〈

(I − cos((PAP )1/2∆t))U,U
〉
≥ 0.

This condition is then verified for any time step ∆t.
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Now, if we take PU = 0 then the condition becomes:

‖U‖2 − ∆t2

4 〈QAQU,U〉+ ∆t2

4
〈

(PAP )−1PAQU,PAQU
〉

−1
2
〈

(I − cos((PAP )1/2∆t))(PAP )−1PAQU, (PAP )−1PAQU
〉
≥ 0.

Using the power series of cos, we can show that:
∀∆t ≥ 0

∆t2

4
〈

(PAP )−1PAQU,PAQU
〉

−1
2
〈

(I − cos((PAP )1/2∆t))(PAP )−1PAQU, (PAP )−1PAQU
〉
≥ 0.

Hence, we have ∀∆t ≤ ∆tmax := 2√
λmax(QAQ)

is verified for U ∈ RN such that PU = 0.

This quick investigation revealed that the fine part is always stable, the stability condition
in the coarse part is exactly the same, thus if we observe any stability difference it will be
coming from the transition between the coarse and the fine part.

∆tmin ∆tmax∆topt

Figure 3.2: Evolution of the largest eigenvalue of ∆t2
4 B according to ∆t for a spatial

refinement ps = 2.

We display on Figure 3.3 and 3.4 the largest eigenvalues (and a zoom around 1) of
∆t2

4 B with a fine part spatially refined by ps = 2 with different size of halo. We note that
as soon as the halo is superior or equal to 1 (halo-1 and halo-2) the scheme is stable at the
optimal time step. Nevertheless, we note on Figure 3.4 that there are few intervals below
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the optimal value for which the scheme is unstable, and rising the size of the halo from 1
to 2 does improve greatly the situation with only really small intervals of unstability left.

We display on Figure 3.5 the smallest eigenvalues of ∆t2
4 B with a fine part spatially

refined by ps = 2. We note that the smallest eigenvalues behave well in all situations, and
have no impact on the stability of the method.

We display on Figure 3.6 and 3.7 the largest eigenvalues (and a zoom around 1) of
∆t2

4 B with a fine part spatially refined by ps = 8 this time. We note that this time without
halo (halo-0) the maximum time step allowed is only about 20% of the optimal time step
desired. However, once again using a halo size superior to 1 greatly improves the situation,
and we recover an optimal time step. We also note on Figure 3.7 that with a halo size of
1, the number of unstable intervals is greater than with ps = 2, however, with a halo size
of 2, there only are few unstable intervals.

We display on Figure 3.8 the smallest eigenvalues of ∆t2
4 B with ps = 8. We note

that the size of the halo slightly impacts the smallest eigenvalues, however the smallest
eigenvalue never leads to an unstable scheme in any case.

Figure 3.3: Evolution with or without halo of the largest eigenvalue of ∆t2
4 B according to

∆t for a spatial refinement ps = 2.
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Figure 3.4: Zoom on Figure 3.3.

Figure 3.5: Evolution with or without halo of the smallest eigenvalue of ∆t2
4 B according

to ∆t for a spatial refinement ps = 2.

71



Figure 3.6: Evolution with or without halo of the largest eigenvalue of ∆t2
4 B according to

∆t for a spatial refinement ps = 8 (the legend is the same as for Figure 3.3).

Figure 3.7: Zoom on Figure 3.6.
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Figure 3.8: Evolution with or without halo of the smallest eigenvalue of ∆t2
4 B according

to ∆t for a spatial refinement ps = 8.

This study of the z̃-exact scheme revealed the necessity to have a halo of coarse ele-
ments, otherwise the stability condition is almost as bad as without the z̃-exact scheme.
However, as soon as the depth of the halo is superior to 1 we have ∆topt ' ∆tmax. We
observed that the depth of halo needed to have the optimal time step is not dependent of
spatial refinement.

3.2.2 Diaz-Grote’s local time stepping algorithm

J. Diaz and M. Grote observed the same behavior on the scheme they proposed, introduced
short-after, which is one of the reason why we wanted to introduce this intermediary
scheme. This shows that this behavior is due to the choice of the approximation of
u′′(t), and in no cases of the discretization of the solution of (3.5) involved in the their
formulation.

The scheme (3.13) using the z̃-exact operator B is mathematically appealing, however
in most situation computing B would be really expensive since it arises from the exact
solution of (3.5). The strategy proposed by J. Diaz and M. Grote is to approximate B in
a leap-frog manner. Solving (3.5) with a leap frog scheme leads to the local time stepping
algorithm proposed in [? ]. We shall emphasize again, that it is only when approximating
the scheme (3.13) that a local time stepping appears, and until now there was no notion
of local time step.
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3.2.2.1 From the z̃-exact to Diaz-Grote’s scheme: the local time stepping
algorithm

In order to get a local time-stepping algorithm, we have to use a relation between u and
z̃ since we will not use the exact solution described previously. By construction z̃ verifies

z̃(∆t)− 2z̃(0) + z̃(−∆t) = ∆t2
∫ 1

−1
(1− |θ|)z̃′′(θ∆t)dθ,

and since u verifies (3.12) we have

un+1 − 2un + un−1 = z̃(∆t)− 2z̃(0) + z̃(−∆t).

The first step is thus to approximate z̃(∆t) and z̃(−∆t) where, we recall, z̃ solves the
following differential problem:


d2z̃
dτ2 (τ) = −A(I − P )u(t)−APz̃(τ),

z̃(0) = u(t), dz̃
dτ (0) = ν.

(3.23)

It is important to note that we need to solve the equation forward and backward in time
to get z̃(∆t) and z̃(−∆t).

Contrary to the z̃-exact scheme (3.13) where the parameter ν was of absolutely no
use, for the Diaz-Grote’s scheme we need to choose a value for the initial condition ν
since we are going to use this value to initialize the algorithm. It is tempting to choose
ν = du

dt (t) since z̃(τ) becomes a second order approximate of u(t + τ). However, for the
approximations of du

dt (t) (we have tried un+1−un−1
2∆t or un+1−un

∆t ) the local-time stepping
scheme had bad numerical properties (dissipation, bad CFL condition), moreover having
z̃(τ) = u(t+ τ) is only interesting for clarity reasons.

On the other hand, taking ν = 0 leads to a very convenient algorithm since we then have
z̃(τ) = z̃(−τ), thus we do not need any more to solve (3.23) both forward and backward.
Noting that z̃(0) = u(t), the temporal scheme becomes

u(t+ ∆t) + u(t−∆t) ' 2z̃(∆t). (3.24)

The previous relation leads to the discrete relation

un+1 + un−1 ' 2z̃p/p,

where z̃m/p is an approximation of z̃(mp ∆t) achieved by solving (3.23) with a leap-frog

scheme at the fine time step ∆t
p
.

Hence, we get the following algorithm
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Algorithm 3.1 Diaz-Grote’s local time stepping algorithm.
1: Set w = A(I − P )un and z̃0 = un

2: z̃1/p = z̃0 −
1
2

(∆t
p

)2
(AP z̃0 + w)

3: For m = 1, .., p− 1, compute

z̃(m+1)/p = 2z̃m/p + z̃(m−1)/p −
(∆t
p

)2 (
AP z̃m/p + w

)

4: Compute un+1 = −un−1 + 2z̃p/p

Solving the differential problem (3.23) in order to get z̃(∆t) corresponds to the steps
1–3 in the Algorithm 3.1. As we can see on step 3, the differential equation (3.23) is solved
with a leap-frog scheme and a time step ∆τ = ∆t

p . The step 2 is also a leap-frog scheme,
slightly hidden. The standard way to write the step 2 in a leap-frog manner is

z̃1/p = 2z̃0 − z̃−1/p −
(∆t
p

)2
(AP z̃0 + w) ,

but we know that z̃−1/p = z̃1/p. Hence, we get

z̃1/p = z̃0 −
1
2

(∆t
p

)2
(AP z̃0 + w) .

We can also see this first step as a second order Taylor decomposition with z̃′0 = 0.
Finally, we just have to apply the formula (3.24) to finish the coarse time step which
corresponds to the step 4.

3.2.2.2 Properties of the local time stepping algorithm

So far, we have introduced an algorithm that evolves locally with a smaller time step.
However, the whole point of a local time-stepping method is that the numerical properties
outside the refined area are unchanged, and the numerical properties within the refined
area are as close as possible to those of a global small time step. The properties we want are
that this algorithm be second order accurate in time, and that the CFL conditions inside
and outside the refined area behave as if the two parts were numerically independent.

We refer to [? ] for a proof of the following properties.

Property 3.3
The local time-stepping Algorithm 3.1 is equivalent to

un+1 = 2un − un−1 −∆t2Apun,

where Ap is defined by

Ap = A− 2
p2

p−1∑
j=1

(∆t
p

)2j
αpj (AP )jA,
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where the constants αmj are given by



α2
1 = 1

2 , α3
1 = 3, α3

2 = −1
2 ,

αm+1
1 = m2

2 + 2αm1 − αm−1
1 ,

αm+1
j = 2αmj − αm−1

j − αmj−1, j = 2, ..,m− 2,

αm+1
m−1 = 2αmm−1 − αmm−2,

αm+1
m = −αmm−1.

(3.25)

This scheme is second order accurate in time. Furthermore, the matrix Ap is symmetric
if A is symmetric, consequently Ap has real eigenvalues.

From the previous property, we can directly deduce that the local time-stepping algo-
rithm conserves the same discrete energy as the leap-frog scheme as stated by the following
property.

Property 3.4
The second-order local time-stepping scheme conserves the discrete energy

En+ 1
2 = 1

2

(〈(
I − ∆t2

4 Ap

)
un+1 − un

∆t ,
un+1 − un

∆t

〉
+
〈
Ap
un+1 + un

2 ,
un+1 + un

2

〉)
.

Hence, if λmin and λmax denote the smallest and largest eigenvalues of Ap, the numerical
scheme will be stable if and only if

0 ≤ ∆t2

4 λmin ≤
∆t2

4 λmax ≤ 1.

Remark 3.7. When we tried to write a local time stepping with the initial condition
ν = du

dt (t) for the problem (3.23), we did not manage to write the global scheme in a
leap-frog manner as previously with a matrix Ap, this might explain why we had such bad
properties and why Diaz-Grote’s scheme has interesting properties, especially the conser-
vation of a discrete energy.

3.2.2.3 Comparing the z̃-exact and Diaz-Grote’s formulation

In this section, we want to compare the spectral behavior of the z̃-exact operator B and
its approximation Ap.

Property 3.5
Ap converges to B when p tends to infinity.

We illustrate this property on Figure 3.9 where we see how the maximum eigenvalue
of Ap converges to the one of B.
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Figure 3.9: Convergence of the maximum eigenvalue of Ap to the one of B.

Proof. I would like to thank Anne Cassier for her help on this proof. We want to show
that lim

p→∞
Ap = B. Since we know the power series of Ap and B, this is equivalent to show

that

∀j ∈ N, lim
p→∞

αpj
p2(j+1) = (−1)j+1

(2(j + 1))! , (3.26)

where the αpj are the constants defined in (3.25).
We proceed by recurrence on j ∈ N.

Case j = 1: We begin by summing the relation αk+1
1 = k2

2 +2αk1−αk−1
1 for k = 2, ..,m−1

m−1∑
k=2

αk+1
1 =

m−1∑
k=2

k2

2 + 2
m−1∑
k=2

αk1 −
m−1∑
k=2

αk−1
1

=⇒
m∑
k=3

αk1 =
m−1∑
k=2

k2

2 + 2
m−1∑
k=2

αk1 −
m−2∑
k=1

αk1

=⇒ αm1 =
m−1∑
k=2

k2

2 + α2
1 + αm−1

1 + α1
1

=⇒
p∑

m=2
αm1 =

p∑
m=2

m−1∑
k=2

k2

2 + (p− 1)(α2
1 − α1

1) +
p−1∑
m=1

αm1
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=⇒ αp1 =
p∑

m=2

m−1∑
k=2

k2

2 + (p− 1)(α2
1 − α1

1) + α1
1

=
p∑

m=2

1
2((m− 1)m(2m− 1)

6 − 1)− 7
2(p− 1) + 3

=
p∑

m=2

1
2

2m3 − 3m2 +m− 6
6 − 7

2(p− 1) + 3.

For simplicity, we take an equivalent of αp1

αp1 ∼
p∑

m=2

m3

6

∼ p4

24 .

Finally, we get

lim
p→∞

αp1
p4 = 1

24 .

Thus, the result (3.26) is true for the rank 1.

Case j > 1: Let j ∈ N. We assume that the result (3.26) is true for the rank j, and we
want to prove it for the rank j + 1.
∀m ∈ N, we define, {

vmj = αmj − α
m−1
j ,

wmj = vmj − v
m−1
j .

Then,
αm+1
j+1 = 2αmj+1 − αm−1

j+1 − α
m
j ,

=⇒ αm+1
j+1 − α

m
j+1 = αmj+1 − αm−1

j+1 − α
m
j ,

=⇒ vm+1
j+1 = vmj+1 − αmj ,

=⇒ vm+1
j+1 − v

m
j+1 = −αmj ,

=⇒ wm+1
j+1 = −αmj ,

=⇒ wm+1
j+1 =

m→∞
(−1)j+2

(2(j + 1))!m
2(j+1) + o(m2(j+1)).

Furthermore,

vmj+1 =
m∑
k=1

wkj+1 + v0
j+1,

=
m→∞

(−1)j+2

2(j + 1)!

m∑
k=1

m2(j+1) + v0
j+1 +

m∑
k=1

o(m2(j+1)),

=
m→∞

(−1)j+2

2(j + 1)!
m2(j+1)+1

2(j + 1) + 1 + v0
j+1 + o(m2(j+1)+1), since



m∑
k=1

mp = mp+1

p+ 1 + o(mp+1),

and

m∑
k=0

o(mp) = o(mp+1).

=
m→∞

(−1)j+2

(2j + 3)!m
2j+3 + o(m2j+3).
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Finally, we get

αmj+1 =
m→∞

m∑
k=0

vmj + α0
j+1,

=
m→∞

α0
j+1 + (−1)j+2

(2j + 3)!

m∑
k=1

k2j+3 +
m∑
k=1

o(k2j+3),

=
m→∞

α0
j+1 + (−1)j+2

(2j + 3)!
m2j+3

2j + 4 + o(m2j+4),

αmj+1 =
m→∞

(−1)j+2

(2(j + 2))!m
2(j+2) + o(m2(j+2)).

From the previous property, we can define another approximation of B based on its
Taylor representation. We define the matrices Bp as follows

∀p > 2, Bp = A+
p−1∑
j=1

βj∆t2j(AP )jA,

where
∀j > 2, βj = 2 (−1)2j

(2(j + 1))! .

The idea behind this last scheme is to show that it is not straightforward to have a good
approximation of the z̃-exact scheme as Diaz-Grote’s scheme achieves. We still have a
leap-frog relation of the form

un+1 = 2un − un−1 −∆t2Bpun,

however we do not have a local time stepping relation in the fine domain as for Diaz-
Grote’s scheme, which is one of the main advantage of Diaz-Grote’s method since we do
not have to compute explicitly the matrix Ap.

As we can see on Figures 3.10 and 3.11, the spectral behavior of the matrices Bp for
a space refinement ps of 2 are not as good as for the matrices Ap. Indeed, the minimal
eigenvalue of B2 becomes negative before the optimal time step ∆tmax is reached contrary
to A2. The spectral behavior is not better for B3 since it is now the maximum eigenvalue
that becomes superior to 1 before the optimal time step. We have to go up to B4 to get
a approximate that has the desired spectral behavior.

Besides, we shall note that the instability of Bp comes from the maximal eigenvalue for
odd p and from the minimal eigenvalue for even p. This is a really troublesome property
since we saw that the maximum eigenvalues of B are already just below 1. Moreover, there
is no correlation between the value of p and the value of ps for Bp contrary to Ap. This
shows one of the major advantage of Diaz-Grote’s approximation, which we unfortunately
cannot prove but only observe, the approximation Ap really acts as if the relation between
p and ps is of the same nature as a CFL condition. In particular, it means that if we refine
in space by ps it is sufficient to refine in time with p = ps.
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Figure 3.10: Maximum eigenvalues of Bp for p = 2, 3, 4, 5 compared to those of B.

Figure 3.11: Minimum eigenvalues of Bp for p = 2, 3, 4, 5 compared to those of B.
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3.2.2.4 Introduction to the halo

Another important aspect of this scheme, already mentioned for the z̃-exact scheme, is
the idea to overlap spatially coarse cells and temporally fines cells. This means that not
only spatially fine cells are at fine time steps, but also a certain amount of the surrounding
spatially coarse cells. The number of coarse elements overlapped within the fine time step
is an important parameter, since it has a significant impact on the stability of the method
and thus the global CFL condition. Not overlapping has a major impact on the coarse
CFL condition, which is precisely what we do not want of a local time stepping algorithm.
On the contrary, the more coarse elements are overlapped with the fine time step, the
more stable the method is. However, it is not necessary to have too many coarse elements
at fine time step to stabilize the method.
In particular, an overlap by one element for 2D cases (as shown on Figure 3.12) is enough
to recover normal CFL conditions.
In [? ] J. Diaz and M. Grote performed a detailed study of this parameter on their local
time stepping scheme. However, as we saw this stability condition already arises with the
z̃-exact scheme.

Coarse elements at
coarse time step

Halo-Coarse
Coarse elements at
coarse time step

Halo-Fine
Coarse elements at

fine time step

Fine elements at
fine time step

Figure 3.12: Representation of different types of elements.

We call halo of a refined area, the set of spatially coarse elements which are affected
by AP . We call halo-coarse the set of coarse elements affected by AP not included in
the fine part through P , and halo-fine the set of coarse elements included in the fine part
through P . (See Figure 3.12 for a graphical illustration).

Remark 3.8. This distinction between halo-coarse and halo-fine is really important to
understand how the fluxes between these elements are exchanged as we shall see in the
local formulation of local time stepping scheme.

3.2.2.5 Local formulation of the local time stepping algorithm

Using the global formulation with the matrix A and the projection matrix P describes well
the local time-stepping algorithm but hides the locality of the fine time step, also making
it impossible to use the local time-stepping algorithm as it is in an effective computer
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implementation. Thus, we rewrite here a local version of this algorithm for discontinuous
Galerkin methods.

We denote by FfK and FcK the sets of faces of the element K shared with an element at
fine and coarse time step respectively. We also denote by VF (K) the neighbor element of
K on a face F .

K VF (K)F

To have a local description of the algorithm we need to introduce three different algo-
rithms, each corresponding to a specific area, i.e. halo, coarse and fine areas (as shown
on Figure 3.12). We begin with the algorithm for the elements inside the halo as it is the
closest to the Algorithm 3.1.

Algorithm 3.2 Halo element algorithm.
1: Set wK =

∑
F∈FcK

FFuVF (K)
n and z̃K0 = uKn

2: z̃K1/p = z̃K0 −
1
2

(∆t
p

)2
KK z̃K0 + wK +

∑
F∈FfK

FF z̃VF (K)
0


3: For m = 1, .., p− 1, compute

z̃K(m+1)/p = 2z̃Km/p + z̃K(m−1)/p −
(∆t
p

)2
KK z̃Km/p + wK +

∑
F∈FfK

FF z̃VF (K)
m/p


4: Compute uKn+1 = −uKn−1 + 2z̃Kp/p

Remark 3.9. One might think that halo elements at fine and coarse time steps are per-
forming exactly the same algorithm, whereas fluxes between halo-coarse elements update
the vector wK and thus are computed at every coarse time step while fluxes between halo-
fine elements are computed at every fine time step (see Figure 3.12).

From this halo element algorithm, it is easy to deduce the algorithm for elements both
fine in space and time since wK = 0:
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Algorithm 3.3 Fine element algorithm.
1: Set z̃K0 = uKn

2: z̃K1/p = z̃K0 −
1
2

(∆t
p

)2
KK z̃K0 +

∑
F∈FK

FF z̃VF (K)
0


3: For m = 1, .., p− 1, compute

z̃K(m+1)/p = 2z̃Km/p + z̃K(m−1)/p −
(∆t
p

)2
KK z̃Km/p +

∑
F∈FK

FF z̃VF (K)
m/p


4: Compute uKn+1 = −uKn−1 + 2z̃Kp/p

As we mention earlier, the algorithm for elements both coarse in space and time is a
leap-frog algorithm:

Algorithm 3.4 Coarse element algorithm.

Compute uKn+1 = 2uKn − uKn−1 −∆t2
KKuKn +

∑
F∈FK

FFuVF (K)
n



Remark 3.10. Having all these different algorithms working at different time steps, send-
ing their fluxes to different vectors (wK or uK) reveals some of the difficulties to implement
the local time-stepping method without projection matrix.

3.3 Considerations on the cost of local space-time mesh
refinement

Using local space-time refinements where needed is a really appealing feature, however we
still have to be careful on the fast increase of the overall computation cost of the refined
areas. In two dimensions, any cell refined by a factor p has at least its cost multiplied by
a factor of p3, and in three dimensions by p4. We propose here an analysis to show how
quickly the computation cost grows, even for fairly small refined area.
Let pt denotes the level of temporal refinement with ∆tf = ∆tc

pt
, where ∆tc and ∆tf are

the coarse and fine time steps, respectively. Let ps denotes the level of spatial refinement
with hf = hc

ps
, where hc and hf are the coarse and fine space steps, respectively. We talk

about a refinement by p when pt = ps = p.

Mesh refinement is usually used to describe complex heterogeneities and singularities
of the solution. Therefore, the number of point per wavelength is no longer a relevant
criterion to mesh the medium. What matters is the number of elements to represent
the heterogeneity or the singularity due to the loss of regularity. For this reason, we
can use another interesting feature of discontinuous Galerkin methods, called p-adaptivity
and reduce the order of our polynomial basis inside the refined area, significantly saving
computation and memory without reducing the global accuracy significantly. Further-
more, the CFL condition is different for each polynomial approximation. This can be
exploited to use a smaller temporal refinement than the spatial refinement according to
the CFL conditions, i.e pt < ps. Note that this is only possible because we both have
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non-conforming refinement and p-adaptivity. Due to the CFL condition, which is slightly
weakened by the non-conforming interface, we cannot strictly use pt = Ccfl(kc)

Ccfl(kf )ps where

kc and kf are the polynomial order of the basis in the coarse and fine parts respectively.

We display in Figures 3.13, 3.14, 3.15 and 3.16 the "normalized" computational cost we
expect from using these different options for different situations. We mean by "normalized
cost" that a cost of 1 is the total cost of a simulation without local refinement. We consider
four different refining scenarios that are:

• dashed blue line: a mesh purely refined in space with a global time step limited by
the smallest element, thus ps times smaller,

• continuous blue line: a mesh using local time stepping we the ratio dictated by the
spatial refinement (pt = ps),

• dashed red line: a mesh using a lower polynomial order in the refined area, but not
taking account of the larger CFL condition to relax the time refinement,

• continuous red line: a mesh using a lower order in the refined area and using a time
refinement according to the CFL condition in this area.

We begin first with some general remarks. If we consider that the interesting window to
use local time-stepping is when the continuous blue line is significantly below the dashed
blue line. Then, we note that without p-adaptivity the interesting window to use local time
stepping is only for really small refined areas. We note that it is really important to lower
the polynomial degree in the refined area so that the computational cost does not increase
too quickly. We also note that if the same polynomial order is used in the coarse and the
fine parts, then the local-time stepping is only interesting (in term of computational cost)
for really small areas. This is due to the fine part that quickly caries all the computation
cost.

We note on Figure 3.13 and 3.14, when using a polynomial basis Qf = Q1 instead of
Qf = Q5 in the refined area, that the computation cost is reduced by factor of roughly
100 when the refined area reaches at least 1% of the total domain. When using the correct
CFL condition inside the refined area, the computation cost is again reduced by a factor of
10. Those two optimizations lead to an overall cost reduction of 103 which is significant.
When using a polynomial basis Qf = Q1 instead of Qf = Q10, the gain is even more
considerable, as can be seen on Figure 3.16, with an overall cost reduced by a factor of
roughly 104.5.

We note on Figures 3.14, 3.15 and 3.16, refining by a factor ps = 100 is really demanding.
If we compare Figures 3.14 and 3.15, we note that using Qf = Q1 and Qf = Q2 already
makes a huge difference in terms of computation cost. We note on Figure 3.16 that if we are
using the coarse grid in a "spectral" discontinuous Galerkin manner (since Qc = Q10), then
it becomes really interesting, if not mandatory, to use all computation cost optimizations,
otherwise the cost becomes quickly prohibitive.
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Figure 3.13: Computation cost of a Qc = Q5 and Qf = Q1 mesh refined by p = 20
according to the percentage of the volume refined.

Figure 3.14: Computation cost of a Qc = Q5 and Qf = Q1 mesh refined by p = 100
according to the percentage of the volume refined.
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Figure 3.15: Computation cost of a Qc = Q5 and Qf = Q2 mesh refined by p = 100
according to the percentage of the volume refined.

Figure 3.16: Computation cost of a Qc = Q10 and Qf = Q1 mesh refined by p = 100
according to the percentage of the volume refined.
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3.4 Numerical experiments

In this section we want to see if the local time-stepping algorithm introduces any local
artifact effect. Indeed, we know that this local-time stepping algorithm is second-order
accurate in time, but this global information does not give much information about any
local spurious effect that might be created by this algorithm. Having a method that
converges does not tell us if the local time stepping method introduces spurious effects
that could be misinterpreted, or even spoil any interpretation, at the desired accuracy.
When using a local-time stepping algorithm, we want to release the constraints imposed
by the small cells to the coarse cells. In other words, we want to keep the same mesh, we
do not want to have to refine our mesh to reduce the amplitude of any spurious effect. We
also do not want to reduce the global time step, as it is precisely the role of a local time
stepping method.

In order to study the above mentioned possible effects we compare seismograms of re-
fined simulations with seismograms of a reference solution. We decided to use a numerical
solution without refinement as reference solution instead of an exact solution. In this
manner we only look at the effect introduced by the local time-stepping algorithm and/or
the local space refinement.

For these experiments, we consider an homogeneous medium with ρ = 2100 kg.m−3,
λ = 4.2 × 109 and µ = 2.1 × 109 (vs = 1000 m.s−1 and vp = 2000 m.s−1). The physical
domain is of size 100m× 200m. We use an explosive source located at the point xS , that
is

f(x, t) = h(t)g(|x− xS |)
−−−−→x− xS
|x− xS |

where h(t) is a second order Ricker, with central frequency f0 = 40Hz,

h(t) = (2π2(f0t− 1)2 − 1)e−π2(f0t−1)2
,

and g(|x−xS |) is a regularization of a Dirac by a Gaussian centered in xS = (50m, 150m)
and distributed over a disk of radius r0 = 8m,

g(|x− xS |) = e
−7 |x−xS |

2

r20

r2
0

.

The initial conditions are null. We used Q3 elements of size 4m for these simulations,
with Legendre-Gauss function bases (see Figure 1.3.3). We add PML around our physical
computational domain.
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Source

Line of receptors5m

λ = 4.2× 109

µ = 2.1× 109

ρ = 2100 kg.m−3

vp = 2000m.s−1

vs = 1000m.s−1

Refined area

100m

20
0m

12
0m

Figure 3.17: Homogeneous medium characteristics.

Our experimental protocol is to first analyze each refinement (spatial and temporal)
separately to see what artifact effects they introduce, and then to analyze how they couple
together.
Instead of comparing directly our refined seismograms with the reference solution uref (see
Figure 3.18), we calculate the difference with the reference solution uref to highlight only
the spurious effects. It is therefore very important to pay attention to the amplitudes, the
absolute amplitude is indicated in each figure by Amp = ||uh||∞, and we also give a relative
amplitude called Amp error = ||uref−uh||∞

||uref ||∞ which is the ratio of the maximum amplitude
of our refined solution uh divided by the maximum amplitude of our reference solution
uref . We also referred the offset to give an idea of the localization of each receptor.
For each experiment the refinement, whether spatial, temporal or both, is applied in the
box [16m, 16m]× [80m, 20m] in the bottom of the domain, as shown on Figure 3.17.
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3.4.1 Analysis of time refinement

In this first experiment, we want to illustrate if the local time stepping algorithm intro-
duces spurious effects on a purely temporally refined mesh, thus we have a coarse grid
everywhere. We take a set of temporal refinement pt = 5, 10, 20, 100 to see if this intro-
duces any differences.
We note on Figure 3.19 that the spurious effects are of really small amplitude. Moreover,
the amplitude of this effect does not seem to depend on the level of time refinement,
which is unexpected, the spurious reflections might be only due to the change of temporal
scheme. We also note that these effects are of the same amplitude, if not lower, as the
amplitude of dispersion in this case.

3.4.2 Analysis of space refinement

In this experiment, we want to investigate the effect of non-conforming spatial refinement
without local time-stepping. We take a set of spatial refinement ps = 5, 10, 20, we decided
to take a time step adapted to each simulation, thus if ∆t0 is the time step of the reference
solution, for each refined simulation we took ∆tps = ∆t0

ps
.

We note on Figure 3.20 that the spurious effects are of small amplitude, though larger
than those produced by local time-stepping. We also note that the amplitude and the
shape of these spurious effects do not depend much on the level of refinement.

3.4.3 Analysis of coupled space and time refinement

In this experiment, we want to investigate how coupled space and time refinement behave.
In that respect, we consider a set of spatio-temporal refinements p = 2, 5, 10, 20.
We note on Figure 3.21 that refining both in space and time reduces the spurious effects.
The spurious effects are now of the amplitude of the temporal refinement and no more
of the amplitude of the spatial refinement. We observe the same behavior as for purely
temporal and spatial refinement, the spurious effects depending weakly on the level of
refinement.
We note on Figure 3.22 that the behavior is different if we use different polynomial orders
for the spatially coarse and fine elements, however the differences are marginal for Q2 or
Q3 fine elements, and are still small for Q1 fine elements. On Figure 3.23, we have Q5
coarse elements, we note that Q1 fine elements produce much higher artifact effects. We
observe on Figure 3.24 that the differences for Q2 to Q4 fine elements are marginal.
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Figure 3.18: Reference solution uref for tests on Q3 coarse elements.
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Figure 3.19: Spurious effects (uref − uh) for different time refinements pt = 5, 10, 20, 100.
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Figure 3.20: Spurious effects (uref − uh) for different space refinements ps = 5, 10, 20.
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Figure 3.21: Spurious effects (uref − uh) for different space and time refinements p =
5, 10, 20.
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Figure 3.22: Spurious effects (uref − uh) for Q3 coarse elements and Q3, Q2, Q1 fine ele-
ments and with temporal refinement pt = 20 and spatial refinement ps = 20.
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Figure 3.23: Spurious effects (uref − uh) for Q5 coarse elements and Q4, Q3, Q2, Q1 fine
elements and with temporal refinement pt = 20 and spatial refinement ps = 20.

95



Figure 3.24: Spurious effects (uref − uh) for Q5 coarse elements and Q4, Q3, Q2 fine ele-
ments and with temporal refinement pt = 20 and spatial refinement ps = 20.
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3.5 Conclusion
We have presented our strategy to implement local space-time mesh refinements based on
J. Diaz and M. Grote’s local time stepping scheme. We emphasize the way we introduce
the method through the z̃-exact scheme, that helps having a better insight on how the
method is built. We found the z̃-exact scheme especially enlightening due to all the prop-
erties both schemes share. In particular, the stability and the impact of the halo on the
stability is shared, even though the z̃-exact scheme does not use local time step. We also
showed the really good behavior of the combination of the local time-stepping algorithm
and of the non-conforming mesh refinement. Even for severe levels of refinement, artifact
effects remain of really low amplitude. We also introduced several strategies to signifi-
cantly reduce the computational cost. These strategies are really exploiting the strengths
of discontinuous Galerkin finite element methods, thus providing a way to monitor the
relatively high cost of these methods.
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Chapter 4

Numerical results

4.1 Introduction
In this chapter we want to show that our method is able to treat unbounded isotropic
highly heterogeneous media, especially highly heterogeneous local areas. This implies to
be able to take into account multi-scale phenomena. We want to show that our local space-
time mesh refinement catches as well as globally fine meshes the small scale phenomena
created by local heterogeneities. In most cases where local mesh refinement is needed,
using a globally fine mesh would be impossible, because of the cost it would induce.

Our methodology to show the good behavior is as follows. First, compare with an
analytical solution when possible. For more complex experiments we compare the locally
refined simulation with a solution globally refined both in space and time. We also compare
our results with existing results, or we observe if we have the expected phenomena from
theory, i.e. ray-theory.

For our numerical experiments we use an explosive source located at the point xS ,
that is

f(x, t) = h(t)g(|x− xS |)
−−−−→x− xS
|x− xS |

where h(t) is a second order Ricker, with central frequency f0,

h(t) = (2π2(f0t− 1)2 − 1)e−π2(f0t−1)2
,

and g(|x−xS |) is a regularization of a Dirac by a Gaussian centered in xS and distributed
over a disk of radius r0,

g(|x− xS |) = e
−7 |x−xS |

2

r20

r2
0

.

The outline of this chapter is the following. We first show some purely elastic exper-
iments to validate both our discontinuous Galerkin approach and our unstructured local
mesh refinement approach. In the second section we focus on elasto-acoustic experiments.
And we finish with some realistic experiments approaching industrial problems.

4.2 Few words about the rendering method
In this chapter, we sometimes use a snapshot graphical representation to analyze the
results obtained by the GD method presented above. Unfortunately, there is currently no
tool able to directly exploit numerical solutions from a high-order code. Indeed, the current
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visualization tools (Paraview, Tecplot, gmsh) are based on a representation using P1
Lagrange finite elements on simplices with the input data: they use a linear interpolation
of the data. If we are not careful, we can lose a lot of information in the graphical
representation of our numerical solutions and lose the whole point of using a high precision
method. To overcome this problem, ONERA has developed an adaptive method guided
by an indicator of subsequent display error allowing the construction of optimized P1
approximation (i.e. limiting the amount of data generated) a solution to a given [?
] accuracy. This approximation allows us an accurate representation of the numerical
solution to within an error fixed by a software standard viewing. In this thesis, we used a
software provided by ONERA and based on this method to generate our snapshots. For
example, in Figure 4.1, one can see an example of the use of this approach to a solution
Q7. The Cartesian grid (pink) that is used for calculating the GD and the triangular
mesh of the mesh is obtained by representation of the adaptive method P1 and defining
approximation. It is noted that the approach allows a very good rendering of the wealth
of information contained in the Q7 digital solution.

Figure 4.1: Snapshot of a simulation with the computation grid and representation ele-
ments highlighted.
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4.3 Elastodynamic experiments

4.3.1 Two-layered medium

In this experiment we want to show the ability of the discontinuous Galerkin method
without refinement to treat an heterogeneous case compared to the exact solution. In
order to do so, we simply compare our solution to the analytical solution on a two-layered
medium given by J. Diaz’s code Gar6more [? ].

We propose a simple test case made of a two layered medium. The top layer has
the following characteristics: λ = 1.9 × 1010, µ = 5.5 × 109, ρ = 3200 kg.m−3, vp =
3061 m.s−1 and vs = 1311 m.s−1 and the bottom layer has the following characteristics:
λ = 7.7612×1010, µ = 5.994×109, ρ = 1850kg.m−3, vp = 4000m.s−1 and vs = 1800m.s−1.
We positioned a pressure regularized Ricker source of central frequency 20Hz in the center
of the medium, 50m above the the two layers interface. We positioned a line of 100 receivers
150m above the interface from the abscissa −200m up to 200m.

The two different simulations displayed on Figure 4.2 and Figure 4.3, which are the
analytical solution obtained from Gar6more and our solution made of Q7 elements, these
elements are of size 25m. In order to compare these two simulations, we compare the line
of seismograms for the displacement X and Y. We note that we obtained similar solutions
with both methods, i.e. arrival times and amplitudes are the same.

Figure 4.2: Analytical solution.

Figure 4.3: Discontinuous Galerkin solution.
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4.3.2 Academic test case for local space-time refinement

In this experiment we want to show the good behavior of our method with local space-
time mesh refinement in the case of an heterogeneous medium. In order to do so we will
compare the locally refined simulation to a fully fine simulation. An heterogeneous differs
from the homogeneous test case since the solution might lose regularity in the refined area.
Thus, we wonder if the method is able to restore the singular behavior of the solution.
We also wonder if the refined area is large enough to catch all this singular phenomenon.
However, we will not attempt to characterize how a mesh should be to describe well a
singularity, but simply note that all seems to behave well with a refined area of a limited
size.

We propose a simple test case made of an homogeneous medium with Dirichlet bound-
ary conditions with a thin layer included in the medium and perturbing the propaga-
tion. The homogeneous part of size 200m × 200m has the following characteristics:
λ = 7.774×109, µ = 3.887×109, ρ = 2300kg.m−3, vp = 2600m.s−1 and vs = 1300m.s−1.
The thin layer of size 112m × 0.4m has the following characteristics: λ = 5.76 × 108,
µ = 4.032× 109, ρ = 1600kg.m−3, vp = 1800m.s−1 and vs = 600m.s−1. The thin layer is
horizontal and positioned at 45m. We positioned a pressure regularized Ricker source of
central frequency 20Hz in the center of the medium.

The two different simulations, which we called the locally fine and and fully fine sim-
ulations, are both made of Q3 elements, these elements are of size 0.4m for the fully fine
simulation and for the refined area of the locally fine simulation, the rest of the locally
fine simulation is made of elements of size 4m. In order to compare these two simulations,
we compare seismograms in three different points positioned position above the thin layer
A = (50m, 55m), B = (100m, 55m) and C = (150m, 55m). For the locally fine simulation,
the refined area is of size 120m× 4m.

Source
λ = 7.774× 109

µ = 3.887× 109

ρ = 2300 kg.m−3

vp = 2600m.s−1

vs = 1300m.s−1

200 m

Point A Point B Point C

Thin layer
λ = 4.032× 109

µ = 5.76× 108

ρ = 1600kg.m−3

vp = 1800m.s−1

vs = 600m.s−1

Figure 4.4: Academic test case medium characteristics.

We display on Figure 4.5, 4.6 and 4.7 the seismograms of X and Y displacements
for the locally fine and fully fine simulations. We can note that we do not observe any
differences between the two simulations. We conclude that the refined area introduces
no spurious effect and catches all the effects created by the small heterogeneity as if the
whole mesh was fine.

102



Figure 4.5: Comparison of locally and fully refined mesh sismos at point A.

Figure 4.6: Comparison of locally and fully refined mesh sismos at point B.
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Figure 4.7: Comparison of locally and fully refined mesh sismos at point C.

4.4 Elasto-acoustic experiments

In geophysics, problems that require local mesh refinement are rarely purely elastic prob-
lems, some acoustic phenomena are of great importance. The small heterogeneities that
lead to the biggest impact on the wave propagation are often made of fluid, i.e. cracks.
For this reason we though interesting to have a method that can both handle elastic
and acoustic media. As we shall see it is not completely trivial to handle both elasticity
and acoustic in the same formulation since the continuities are not the same. Usually,
the approach is to have two different methods for elasticity and acoustic and to couple
by enforcing the transmission condition. This possibility is certainly the best when the
acoustic area is something large, e.g. the ocean or a lake. However, in our case it would
be really cumbersome to have to couple all erratic small acoustic parts in the refined area,
for this reason we preferred to develop a method that naturally handle both elasticity and
acoustic without having to couple anything. This comes at the cost that both elastic and
acoustic media are using displacement unknowns, whereas the standard way would use
pressure unknowns in the acoustic parts and displacement unknowns in the elastic parts.
Moreover, having a unified formulation for elasto-acoustic media allows us to keep the
same methodology for the implementation.

In this section we first introduce our DG formulation to handle such configurations,
then we validate our method and finally we give illustrative examples to show the impact
of such heterogeneities.
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4.4.1 Split formulation for elasto-acoustic simulations

The main difficulty when one attempts to have an unified method for elasticity and acoustic
is that the two equations do not impose the same continuity on the displacement and its
derivatives, i.e. setting µ = 0 in the discontinuous Galerkin elastic formulation would not
be correct because flux terms would impose too much continuities.

Since all continuities in DG methods are implicit, we shall first recall which continuities
are induced by our model problem. The standard DG approximation for elastodynamic im-
pose continuities which have no place in the case of an acoustic-acoustic or elastic-acoustic
interface. We will consider the three cases, elastic-elastic interface, elastic-acoustic and
acoustic-acoustic interface in order to understand which continuities should be imposed
according to the case.

Since u ∈ L2(Ω) and div(σ(u)) ∈ L2(Ω), which implies that [[u·n]] = 0 and [[σ(u)n]] = 0,
we get the following transmission conditions

Ωa

Γ
Ωe

Figure 4.8: Elasto-acoustic interface.

We denote by the subscript N and P the normal and tangential component of a vector
relatively to a face.

Elastic - Elastic On Γ we have the following transmission condition{
uK = uK′ ,

σ(uK) = σ(uK′).

We can rewrite this condition as follow
uK = uK′ ,

(σ(uK)nK)N = (σ(uK′)nK′)N ,
(σ(uK)nK)T = (σ(uK′)nK′)T .

Elastic - Acoustic On Γ we have the following transmission condition{
uE · nE = −uA · nA,
σ(uE)nE = λAdiv(uA)nA.

We can rewrite this condition as follow
(uE)N = (uA)N ,
(σ(uE)nE)N = λAdiv(uA),
(σ(uE)nE)T = 0.

Acoustic - Acoustic On Γ we have the following transmission condition{
(uK)N = (uK′)N ,
(λKdiv(uK)nK)N = (λK′div(uK′)nK′)N .
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In the case of an acoustic-acoustic or elasto-acoustic interface there is no continuity
constraint on the tangential component of the displacement, thus there must not be any
tangential jumps on those interfaces since they would impose the tangential continuity of
the displacement. In the case of an acoustic-acoustic interface the tangential component of
the term

∫
F
{{σ(u)n}}·vdγ is zero by construction. However in the case of an elasto-acoustic

interface this term has to be set to zero to strongly impose the tangential continuity of
σ(u) ·n. We cannot use the standard flux term and let the scheme find by itself the good
continuity since we would need to penalize this flux term. We do not want to penalize
the tangential component since it would also impose the continuity of the tangential
component of the displacement which has no reason to be. Indeed, since this term comes
from the integration by part, forcing it to zero imposes the method to find null tangential
components for the derivatives of the displacement without having to had any penalty.
All this results in the following modified local DG bilinear form

aKh (u,v) =
∫
K
σKh (u) : ∇v dx−

∑
F∈FK

h

∫
F
{{σh(u)n}}N · vN dγ −

∑
F∈FK

h

∫
F

ΘF {{σh(u)n}}T · vT dγ

−
∑

F∈FK
h

∫
F

[[u]]N
1
2(σKh (v)n)N dγ −

∑
F∈FK

h

∫
F

ΘF [[u]]T
1
2(σKh (v)n)T dγ

+
∑

F∈FK
h

∫
F
αF [[u]]N · vN dγ +

∑
F∈FK

h

∫
F

ΘFαF [[u]]T · vT dγ,

where

ΘF =
{

1 if Elastic-Elastic face,
0 otherwise,

and where the subscript N and T denote the normal and tangential component respec-
tively.

4.4.2 Validation: scattering by a hydrofracture

The model geometry used to generate the seismograms is shown in Figure 4.9. The
source, the receivers and hydrofracture are situated in an elastic medium (vp = 3500m.s−1,
vs = 2023m.s−1 and ρ = 2300kg.m−3). We used a pressure regularized Ricker source of
central frequency 100Hz situated at the origin. The seismograms are realized with 80
receivers disposed between −200m and 200m. The center line of the fracture lies between
(100m,−100m) and (100m, 100m, and is 1m wide. The hydrofracture is modelled as a
single crack represented by a relatively thin rectangle filled with water (vp = 1500m.s−1

and ρ = 1020kg.m−3).
We used Q5 elements, with a space step of 4m. The refined area is spatially refined by

a factor ps = 4 with Q5 elements, and temporally refined by a factor pt = 4. We added
24m of PML around our domain.
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Source
λ = 9.3494× 109

µ = 9.4128× 109

ρ = 2300 kg.m−3

vp = 3500m.s−1

vs = 2023m.s−1

24 m 500m 24 m

×
×
×
×
×
×
×
×
×
×
×
×
×
×

100m 100m

200m1m400m

hydrofracture

receivers

Figure 4.9: Medium with large hydrofracture characteristics.

We display on Figure 4.12 the seismograms we obtained, they can be compared with the
ray-theoretical traveltimes on Figure 4.10 or they can also be compared to the seismograms
displayed on Figure 4.11 obtained by indirect boundary element method. Since the source
is a pressure source, we expect only one P -wave incoming on the fracture. This P -wave
is then transmitted inside the fracture into another P -wave, since there is no S-waves in
acoustic media. Finally this P -wave is transmitted into a P -wave and an S-wave, this
corresponds to the PPP - and PPS-waves front we have on Figure 4.10. There should also
be some multiples due to the multiple reflections inside the hydrofracture, however they
must be of small amplitude since the angle of incidence is almost normal on the whole
fracture. The tips of the fractures also generates some waves, called diffracted waves. Both
P - and S-waves are diffracted from the incoming P -wave, this corresponds to PPd- and
PSd-waves on Figure 4.10. We shall have the PPP -wave arriving first at the receivers,
then the two PPd-waves, then PPS-wave and finally the two PSd-waves. Both Figure
4.10 and Figure 4.11 were extracted from [? ]. We note that the seismograms (Figure
4.12) obtained with our method are similar to those obtained with the indirect boundary
element method (Figure 4.11) and that we obtain all the reflected and diffracted waves
predicted by ray-theory (Figure 4.10). These results validate our local elasto-acoustic
approach since boundary element methods and ray-theory give robust reference solutions.
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Figure 4.10: Ray-theoretical traveltimes extracted from [? ].

Figure 4.11: Reference seismograms extracted from [? ].
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Figure 4.12: Seismograms.

4.5 Illustrative experiments

In this section we want to show illustrative experiments close to industrial problems.
We mainly focus on small heterogeneities that resemble to hydrofractures, but real hy-
drofractures would be much thinner in reality. The impact on wave propagations of those
hydrofractures is also highly dependent on several parameters, i.e. length, orientation,
density, distribution. The impact of those parameters is studied in [? ] for instance.
Here, we simply show the ability of our method to simulate such heterogeneities, without
giving to much qualitative analysis on the phenomenon.

4.5.1 Thin fluid-filled crack

In this first illustrative elasto-acoustic experiment we want to show how a tiny crack filled
with water can have a great impact on the simulation. However, even if this crack is
relatively fine for our experiment compared to the size an element, this crack is still really
thick compared to real cracks.

This test case is an homogeneous medium of size 400m × 400m with the following
characteristics: λ = 1.7612×1010, µ = 5.994×109, ρ = 1850kg.m−3, vp = 4000m.s−1 and
vs = 1800m.s−1. The dimension of the crack is O.4m×20m and the characteristics of the
water are: λ = 2.25 × 109, µ = 0, ρ = 1000 kg.m−3, vp = 1500 m.s−1 and vs = 0 m.s−1.
We used a pressure regularized Ricker of central frequency 40Hz positioned in center of
the medium.

We used Q3 elements, with a space step of 4m. The refined area is spatially refined
by a factor ps = 10 with Q1 elements, and temporally refined by a factor of pt = 5. We
added 20m of PML around our domain.
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Source

λ = 1.7612× 1010

µ = 5.994× 109

ρ = 1850 kg.m−3

vp = 4000m.s−1

vs = 1800m.s−1

20 m 400 m 20 m

20m

0.4m

water

Figure 4.13: Fluid-filled crack medium characteristics.

We display on Figure 4.14 snapshots at different times of X and Y displacements. We
note that the impact of only one small crack is undetectable on the primary front wave,
however the crack stores some energy and emit its own wave soon after at roughly 10%
of the primary front wave (beware of the change of color scale between 0.01s and 0.02s).
This resonance effect is most likely similar to the one of a guitar string for instance.
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Time X displacement Y displacement

0.005s

0.01s

0.015s

0.02s

Figure 4.14: Snapshots at different times of X and Y displacements for a medium with a
fluid-filled crack.
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4.5.2 Diffracting points

In this second illustrative experiment we want to show how tiny diffracting points filled
with water can have a great impact on the simulation. However, the density of diffracting
points (around 20%) is superior to what would be relevant for realistic simulations, this
was intended in order to have visual snapshots.

We take the same homogeneous medium as in the previous test case with the char-
acteristics: λ = 1.7612 × 1010, µ = 5.994 × 109, ρ = 1850 kg.m−3, vp = 4000 m.s−1 and
vs = 1800m.s−1. We randomly inserted the diffracted points in a spatially refined area of
dimension 20m× 20m, these points are squares of size 0.16m with water inside. We used
a pressure regularized Ricker of central frequency 40Hz positioned in (150m, 150m).

We used Q3 elements, with a space step of 4m. The refined area is spatially refined by
a factor ps = 25 with Q1 elements, and temporally refined by a factor pt = 10. We added
20m of PML around our domain.

Source

λ = 1.7612× 1010

µ = 5.994× 109

ρ = 1850 kg.m−3

vp = 4000m.s−1

vs = 1800m.s−1

20 m 200 m 20 m

20m

Diffracting points, density= 20%

Figure 4.15: Diffracting points medium characteristics.

We display on Figure 4.16, 4.17 and 4.18 snapshots of X and Y displacements. We
note a similar reflection as in the previous experiment, the amplitude is similar (around
10% of the primary front), however we do not have the resonance effect we had in the
previous experiment.
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Time X displacement Y displacement

0.025s

0.03125s

0.0375s

0.04375s

Figure 4.16: Snapshots at different times of X and Y displacement for a medium with
diffracting points.
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Time X displacement Y displacement

0.05s

0.05625s

0.0625s

0.06875s

Figure 4.17: Snapshots at different times of X and Y displacement for a medium with
diffracting points.
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Time X displacement Y displacement

0.075s

0.08125s

0.0875s

0.09375s

Figure 4.18: Snapshots at different times of X and Y displacement for a medium with
diffracting points.
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4.5.3 Corridor of hydrofractures

In this third illustrative experiment we want to show how a corridor of hydrofractures can
have a great impact on the simulation. In realistic cases, the orientation of the corridor,
the distance between the hydrofractures has a great impact on the resulting phenomenon.
Our purpose here is to show the kind of details our method can handle.

We take the same homogeneous medium as in the previous test case with the char-
acteristics: λ = 1.7612 × 1010, µ = 5.994 × 109, ρ = 1850 kg.m−3, vp = 4000 m.s−1

and vs = 1800 m.s−1. The hydrofractures are 0.16m wide and 20m long and spaced of
0.48m. The source is a pressure regularized Ricker of central frequency 40Hz positioned
in (150m, 150m).

We used Q3 elements, with a space step of 4m. The refined area is spatially refined by
a factor ps = 25 with Q1 elements, and temporally refined by a factor pt = 10. We added
20m of PML around our domain.

Source

λ = 1.7612× 1010

µ = 5.994× 109

ρ = 1850 kg.m−3

vp = 4000m.s−1

vs = 1800m.s−1

20 m 200 m 20 m

20m

hydrofracture

120m0.48m0.16m

Figure 4.19: Corridor of hydrofractures medium characteristics.

We display on Figure 4.20 and 4.21 snapshots of this simulation for X and Y displace-
ments.
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Time X displacement Y displacement

0.025s

0.025s

0.025s

0.025s

Figure 4.20: Snapshots at different times of X and Y displacement for a medium with a
network of fluid-filled cracks.

117



Time X displacement Y displacement

0.025s

0.025s

0.025s

0.025s

Figure 4.21: Snapshots at different times of X and Y displacement for a medium with a
network of fluid-filled cracks.
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4.6 Conclusion
In this chapter, we validated our approach to treat local elasto-acoustic heterogeneities of
different size. We also gave illustrative examples to give an idea of the phenomena that
can be observed with our method.
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Chapter 5

Implementation and
parallelization

In this chapter we describe our implementation of the methods introduced in the previous
chapters, and emphasize on the specificities related to the non-conforming block Cartesian
meshes. We also introduce our approach for parallelizing such methods.

To implement these algorithms we made an extensive use of the template oriented
linear algebra library Eigen [? ]. The fact that this library uses extensively template
metaprogramming [? ] makes the code especially readable and maintainable. The ex-
pression templates used grants effortless compilation time optimized code competing with
the best linear algebra libraries. Our code is also highly based on template metaprogram-
ming allowing relatively extensible programming, we especially used policies and traits
metaprogramming concepts [? ].

One of our earliest concern when implementing our methods was to exploit computa-
tionally the prerequisite of our context, i.e. the Cartesian grid, and also to exploit the
most of the different features offered by DG methods. This led us to keep structured
meshes and to write algorithms that attempt to exploit matrix-matrix operations (also
called BLAS-3 operations) to get high computing rates.

Our sequential approach also drove our parallel design. We needed to keep structured
partition to be consistent with the sequential approach. This led us to consider rectangular
subdomains as granularity for parallelism. We decided to have a strategy where we create
much more subdomains than we have computational resources, this allows flexibility for
the load balancing. Indeed, load balancing can be cumbersome due to coarse and fine
subdomains having inherently highly different computational costs. Thus, having many
subdomains allows smaller granularity for load balancing.

The outline of this chapter is the following. In the Section 5.1, we introduce the way
to compute the local DG matrices in our Cartesian grid case both for conforming and non-
conforming meshes. Then, we introduce the data structures and the sequential algorithms
we used. In the Section 5.2, we introduce in a first time our parallelization models and
strategies. Finally, we give some performances and scalability results for distributed,
shared and hybrid memory parallel architectures.
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5.1 Implementing the discontinuous Galerkin methods

5.1.1 Local matrices

When implementing the DG methods, one has to compute integrals over volumes and
faces. It would be too costly to compute the integrals over each physical element in the
mesh. A more economical and effective approach is to use a change of variables to obtain
an integral on a fixed element, called the reference element. As is done in the classical
finite element methods, each mesh element K (also called physical element) is mapped
to a reference element K̂, and all computations are performed on the reference element.
The aim of the reference element is to achieve all computation regardless of the shape of
the physical element. However, with DG methods we potentially have several reference
elements and "reference faces" due to the hp-adaptivity.

Let x̂ ∈ K̂ and x ∈ K, we have a mapping of the form

FK(x̂) = x.

In our Cartesian case, we can rewrite this relation as

x = BK x̂ + bK =


hK 0

. . .

0 hK

 x̂ + bK ,

where bK is a vector mapping the origin of the element.
Let {ϕ̂i}i1≤i≤NK̂ be a basis of Vh(K̂). Then, we have the following relations between

the basis of K and K̂
ϕKi = ϕ̂i ◦ F−1

K .

Hence, we have

∀u ∈ Vh,
∫
K

u =
∫
K̂

det(BK)u ◦ FK = |K|
∫
K̂

u ◦ FK ,

where |K| = hdK and |F | = hd−1
K .

We also have the following relation for partial derivatives

∂ϕKi
∂xj

= 1
h

∂ϕ̂i
∂x̂j

.

We shall now use these relations to compute the local matrices. In order to do so, we
decompose the local spatial operator aKh define in Equation (1.31) in two operators aK,λh

and aK,µh such that
aKh = λKa

K,λ
h + µKa

K,µ
h .

Hence, we get the relation to calculate KK

KK
ij =aKh (ϕj , ϕi)

=hd−2
(
λKa

K̂,λ
h (ϕ̂j , ϕ̂i) + µKa

K̂,µ
h (ϕ̂j , ϕ̂i)

)
.

We define
K̂λ,ij = aK̂,λh (ϕ̂j , ϕ̂i), K̂µ,ij = aK̂,µh (ϕ̂j , ϕ̂i).
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Thus, we obtain
KK = hd−2(λKK̂λ + µKK̂µ).

Similarly, we get the following relations for the flux matrices

F Vf (K) = hd−2(λVf (K)F̂
f
λ + µVf (K)F̂

f
µ ),

where
F̂ fλ,ij = aK,λh (ϕ̂fj , ϕ̂i), F̂ fµ,ij = aK,µh (ϕ̂fj , ϕ̂i),

and
MK = ρKh

dM̂,

where
M̂ij = 〈ϕ̂j , ϕ̂i〉.

5.1.1.1 Non-conforming local matrices

Computing integrals over non-conforming faces is more tricky. Fortunately, only flux
matrices F Vf (K) change, except for elasto-acoustic interfaces (Section 4.4). In the case of
elasto-acoustic interfaces, volume and face integrals have to be separated and cannot be
assembled in the same reference matrices K̂λ and K̂µ.

K−

K+Γ

Figure 5.1: Two non-conforming elements.

The three different kinds of term that appear in flux integrals are

∫
Γ
ϕ+
j · σ(ϕ−i ) · n−Γ dσ =

∫
Γ̂
|Γ|ϕ+

j ◦ F+ · σ(ϕ−i ) ◦ F+ · n−Γ̂ dσ

=
∫

Γ̂
|Γ|ϕ̂+

j · σ(ϕ−i ) ◦ F− ◦ (F−1
− ◦ F+) · n−Γ̂ dσ

=
∫

Γ̂
|Γ|ϕ̂+

j ·
1

hK−
σ̂(ϕ̂−i ) ◦ (F−1

− ◦ F+) · n−Γ̂ dσ

= |Γ|
hK−

∫
Γ̂
ϕ̂+
j · σ̂(ϕ̂−i ) ◦ (F−1

− ◦ F+) · n−Γ̂ dσ,
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and ∫
Γ
ϕ−j · σ(ϕ+

i ) · n+
Γ dσ =

∫
Γ̂
|Γ|ϕ−j ◦ F+ · σ(ϕ+

i ) ◦ F+ · n+
Γ̂ dσ

=
∫

Γ̂
|Γ|ϕ̂−j ◦ F− ◦ (F−1

− ◦ F+) · σ(ϕ+
i ) · n+

Γ̂ dσ

=
∫

Γ̂
|Γ|ϕ̂−j ◦ (F−1

− ◦ F+) · 1
hK+

σ̂(ϕ̂+
i ) · n+

Γ̂ dσ

= |Γ|
hK+

∫
Γ̂
ϕ̂−j ◦ (F−1

− ◦ F+) · σ̂(ϕ̂+
i ) · n+

Γ̂ dσ,

and ∫
Γ
ϕ−j · ϕ

+
i dσ =

∫
Γ̂
|Γ|ϕ−j ◦ F+ · ϕ+

i ◦ F+ dσ

=
∫

Γ̂
|Γ|ϕ̂−j ◦ F− ◦ (F−1

− ◦ F+) · ϕ+
i dσ

=
∫

Γ̂
|Γ|ϕ̂−j ◦ (F−1

− ◦ F+) · ϕ̂+
i dσ

=|Γ|
∫

Γ̂
ϕ̂−j ◦ (F−1

− ◦ F+) · ϕ̂+
i dσ.

In the two dimensional case, with hK+ = hK−

ps
and |Γ| = hK+ , for k ∈ [0, ps − 1] we

have the following relations (Figure 5.1 corresponds to ps = 2 and k = 0) to calculate the
integral over a face as shown on Figure 5.1

∫
Γ

ϕ+
j · σ(ϕ−i ) · nΓ dσ = 1

ps

1∫
0

σ̂
(
ϕ̂−i (1, k + θ

p
)
)
· nΓ · ϕ̂+

j (0, θ) dθ,

and ∫
Γ

ϕ−j · σ(ϕ+
i ) · nΓ dσ =

1∫
0

σ̂
(
ϕ̂+
i (0, θ)

)
· nΓ · ϕ̂−j (1, k + θ

p
) dθ,

and

∫
Γ
ϕ−j · ϕ

+
i dσ =hK+

1∫
0

ϕ̂−i (1, k + θ

p
) · ϕ̂+

j (0, θ) dθ

=hK−

ps

1∫
0

ϕ̂−i (1, k + θ

p
) · ϕ̂+

j (0, θ) dθ.

Remark 5.1. For each k ∈ [0, ps− 1] the above integrals are unfortunately different, thus
the number of local matrices is multiplied by ps in two dimensions, and by p2

s in three
dimensions. If the memory becomes an issue, considering nested refinements, e.g. two
refinements by ps = 10 instead of one by ps = 100, can be a solution.

In the three dimensional case, with hK+ = hK−

ps
and |Γ| = h2

K+ , for k1, k2 ∈ [0, ps − 1]
we have the following relations

124



∫
Γ

ϕ+
j · σ(ϕ−i ) · nΓ dσ = hK+

ps

1∫
0

1∫
0

σ̂
(
ϕ̂−i (1, k1 + θ1

ps
,
k2 + θ2
ps

)
)
· nΓ · ϕ̂+

j (0, θ1, θ2) dθ1dθ2

= hK−

p2
s

1∫
0

1∫
0

σ̂
(
ϕ̂−i (1, k1 + θ1

ps
,
k2 + θ2
ps

)
)
· nΓ · ϕ̂+

j (0, θ1, θ2) dθ1dθ2,

and∫
Γ

ϕ−j · σ(ϕ+
i ) · nΓ dσ = hK+

1∫
0

1∫
0

σ̂
(
ϕ̂+
i (0, θ1, θ2)

)
· nΓ · ϕ̂−j (1, k1 + θ1

ps
,
k2 + θ2
ps

) dθ1dθ2

= hK−

ps

1∫
0

1∫
0

σ̂
(
ϕ̂+
i (0, θ1, θ2)

)
· nΓ · ϕ̂−j (1, k1 + θ1

ps
,
k2 + θ2
ps

) dθ1dθ2,

and ∫
Γ
ϕ−j · ϕ

+
i dσ =h2

K+

1∫
0

1∫
0

ϕ̂−i (1, k1 + θ1
ps

,
k2 + θ2
ps

) · ϕ̂+
j (0, θ1, θ2) dθ1dθ2

=
h2
K−

p2
s

1∫
0

1∫
0

ϕ̂−i (1, k1 + θ1
ps

,
k2 + θ2
ps

) · ϕ̂+
j (0, θ1, θ2) dθ1dθ2.

5.1.2 Data structure

Since we are using Cartesian grids we wanted to keep structured meshes. Unfortunately,
the refined areas disrupt this structured aspect. The solution we chose to overcome this
issue was to have local unstructured meshes between coarse and fine grids leading to hybrid
meshes. To preserve the regular data structure, we decided to keep the unnecessary coarse
elements in the refined area in order to preserve the structured indexing of the coarse
grid. We call these elements ghost elements (see Figure 5.3). Therefore, unnecessary
computation is performed on these ghost elements. Since the locally refined areas should
be of limited size, the extra cost of the ghost elements is relatively small. Moreover, having
a completely unstructured mesh would cost more both in computation and memory.

The data structure for the coarse and the fine grids are thus matrices of size nbdof×nbelts,
where nbdof is the number of degrees of freedom per element of the corresponding grid and
nbelts the number of elements of the corresponding grid. If there is NX and NY elements
in the direction X and Y respectively (nbelts = NX ×NY ), and if we denote by ind(i, j)
the index of an element at the position (i, j) on the Cartesian grid. Then, we have the
standard structured relations

ind(i+ 1, j) =ind(i, j) + 1,
ind(i− 1, j) =ind(i, j)− 1,
ind(i, j + 1) =ind(i, j) +NX ,

ind(i, j − 1) =ind(i, j)−NX .
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The data structure for the halo is a standard unstructured data structure. Each
element stores the indices of its neighboring elements. Besides, each element has a tag to
specify if it is coarse, fine, halo-coarse or halo-fine element (see Section 3.2.2.4). Thus we
have matrices containing all degrees of freedom of size nbdof × nbelts, where nbelts is the
number of elements in the halo, and a matrix of size nbdof ×nbhf to store the vectors wK
described in Algorithm 3.2, where nbhf is the number of halo-fine elements.

Unstructured elements

Figure 5.2: Representation of a refined mesh.

This data structure choice brings many implementation difficulties. In particular,
the unstructured mesh linking the coarse and the fine grids is what we call the halo in
Section 3.2.2.4. Thus all the algorithmic complexity of the local time stepping method
happens in this unstructured part. Finally, we obtain a data structure, composed of three
substructures, that corresponds to the three algorithms we described in Section 3.2.2.5.

Unstructured elements
Ghost elements

Figure 5.3: Representation of the different structures.

Implementing the algorithm for the coarse grid and the fine grids is straightforward.
However, the unstructured halo concentrates all the difficulties:

• For the purpose of the local time stepping algorithm, each element of the halo has
to be tagged as halo-coarse or halo-fine as described in Section 3.2.2.4;

• Halo-fine element data structure needs to be duplicated in order to store fluxes
coming from halo-coarse elements (vector wK in Algorithm 3.2);
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• We need two indirection tables for the exchange of fluxes between the halo and the
coarse grid, and between the halo and the fine grid;

• The fluxes between the halo and the fine grid are fluxes on non-conforming elements.

5.1.3 Computing the spatial DG approximation

Since we have structured data, we wanted to exploit this property to perform matrix-
matrix multiplications (also called BLAS-3 operations) which are really computationally
efficient. This led us to rearrange the order in which the calculations are generally per-
formed. Usually, for each element we assemble the local matrices from the reference ma-
trices and we compute the different contributions of this element, leading to the following
pseudo-algorithm:

Algorithm 5.1 Standard DG algorithm.
for each element K ∈ Th do
Compute local volume matrix KK

Compute local face matrices ∀f ∈ FK , F Vf (K)

Compute ũK = KKuKn +
∑
f∈FK

F Vf (K)uVf (K)
n

Update uK : uKn+1 = 2uKn − uKn−1 + ∆t2

ρKh2
K

M̂−1ũ

end for

Now we introduce another algorithm, using as much as possible matrix-matrix prod-
ucts. We assume that the degrees of freedom are arranged in a matrix such that Un :=(
uK1
n · · ·uKNn

)
.

Algorithm 5.2 Matrix-matrix oriented DG algorithm.
Ũ = 0
for all local reference matrices A ∈ {K̂λ, K̂µ, F̂

f
λ , F̂

f
µ ...} do

Compute Utmp = M̂−1AUn

Multiply each column of Utmp by the intended scalar (e.g. λK
ρKh2

K

,
µK
ρKh2

K

, ...)

if A is a volume matrix (e.g. K̂λ, K̂µ) then
Ũ = Ũ + Utmp

else
Ũ = Ũ + shift(f, Utmp)

end if
end for
Update U : Un+1 = 2Un − Un−1 + ∆t2Ũ

The function shift in the Algorithm 5.2 shift all the columns of Utmp of 1,−1, NX ,−NX

according to the considered face f used to compute the flux.
Concerning the halo, we use an algorithm of the kind of the standard Algorithm 5.1

respecting the halo local time stepping Algorithm 3.2 due to the unstructured data struc-
ture. The fine element algorithm (Algorithm 3.3) can easily be adapted in the form of the
Algorithm 5.2.
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5.2 Parallelization

There are two main approaches to parallelize a code: shared and distributed memory
parallelization. Shared memory parallelization works with thread using the same mem-
ory space, but concurrency between the threads appears since the shared data cannot
be modified in the same time. This concurrency must be minimized so as not to re-
duce performances. Distributed memory parallelization works with processes exchanging
messages, each process working with its own private memory. There are two important
aspects to consider, the load balance and the amount of communications. The load bal-
ance is the way work is distributed between the processes, the more it is balanced the less
processes wait for each other. The amount of communications is also important since the
network has a limited bandwidth and possibly large latency. Ideally, processes overlap the
communications with the computations.

5.2.1 Parallelization general ideas

The parallelization of the coarse and fine grids is straightforward, we partition the domains
into rectangles (usually squares except for the PML). By doing so we can easily obtain
subdomains that have the same computational load. The main issue was: how do we
partition the halo. The strategy we decided to keep is to partition the halo in the continuity
of the partitions of the fine grid, as shown on Figure 5.4 and 5.5. This choice makes the
indirections between the coarse grid and the halo even more tedious to implement, since
a refined area can overlap the coarse grid arbitrarily.

Figure 5.4: Representation of partitioning cutting lines.
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Unstructured elements
Ghost elements

Figure 5.5: Representation of the different subdomains for parallelization.

The algorithm to apply for any of these subdomains, i.e. coarse, fine or halo, is exactly
the same:

1. Compute all

2. Send boundary fluxes intended for other subdomains,

3. Receive boundary fluxes from surrounding subdomains,

as described in Figure 5.6.

1.

Compute

2.

Send Fluxes

3.

Receive Fluxes
Apply the time step algorithm

Figure 5.6: Execution diagram of a subdomain.

Computing, sending fluxes and updating subdomains can be performed asynchronously,
however receiving fluxes is blocking the progress. Inspired by the model-view-controller
software architectural pattern, we decided to use a controller that handles the fluxes be-
tween subdomains. As soon as a subdomain is waiting to receive fluxes, it goes in a set
of unready subdomains waiting that the controller has received its fluxes. When the con-
troller has received all fluxes for a subdomain, the controller moves this subdomain in a
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set of ready subdomains. These ideas allow a completely asynchronous execution. The
Figure 5.7 sum up these ideas in a diagram.

Compute

ready subdomains set not ready subdomains set

Controller

Send fluxes

Received fluxes

Figure 5.7: Subdomains live cycle.

Instead of having one subdomain per core, we preferred to have many smaller subdo-
mains per process. By doing so, shared and distributed memory parallelism almost work
the same. Moreover, the set of subdomains per process can contain subdomains of rela-
tively different computational weights, what counts is the total weight which should be
well balanced between processes. Now, we shall explain how we exploit these ideas in a
shared and a distributed memory parallel context.

5.2.1.1 Shared memory parallelization

We investigated two different strategies to exploit shared memory parallelism. The first
idea is to let each thread pick subdomains in the ready subdomains set. All threads send
their fluxes to a unique controller as described by the diagram in Figure 5.8. We refer
to this strategy as the subdomain based strategy. The second idea is to parallelize the for
loop on the operators in the Algorithm 5.2. We refer to this strategy as the operator based
strategy.
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Core 1

Core n

ready subdomains set not ready subdomains set

Controller

Fluxes

Figure 5.8: Shared memory parallelism diagram.

5.2.1.2 Distributed memory parallelization

The main idea to use distributed memory parallelism is to duplicate the structure described
on Figure 5.7 on each each process. Each subdomain knows if its neighbors are distant
or local, and if they are distant they send the fluxes to the suited distant controller as
represented on Figure 5.9.

Compute

ready subdomains set not ready subdomains set

Local Controller

Local Fluxes

Distant Controllers

Distant Fluxes
Neighboring Distant Fluxes

Figure 5.9: Distributed memory parallelism diagram.

5.2.2 Performances and scalability

Graph partitioning strategy: One of the most important aspect when having dis-
tributed memory parallelism is the load balancing and the minimization of the commu-
nication volume. We use a standard graph partitioning strategy. We associate with each
subdomain a computational cost, which corresponds to the weights of the vertices of the
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graph. We also associate weights with the edges of the graph to represent the volume of
communications between two subdomains since the communication volume between two
subdomains is not always the same due to the local time stepping method. Once we have
defined our graph we need to realize an n-cut, according to the number of MPI process
we want. In graph theory, an n-cut is a partition of the vertices of a graph into n disjoint
subsets. Any n-cut determines a cut-set, the set of edges that have one endpoint in two
different subsets of the partition. In a distributed memory parallel context, this n-cut
must be computed in order to have the same (or approximately) node weights in each
subset of the partition, and a minimal weight the cut-set, or close to the minimum.

Remark 5.2. In finite element methods it is more common to realize the partitioning on
the elements rather than on subdomains since the shape of the subdomain has an important
impact on the quantity of communications. However, in the case of Cartesian grids, square
domains have an optimal cut size for graphs (the proof of this result is straightforward).

Without PML or spatial refinements having vertices weights proportional to the size
of the subdomains gives good load balancing. However, having non-structured, non-
conforming meshes, different polynomial orders, different number of local matrices make
accurate prediction of the computation cost of a subdomain really challenging, especially
for PML and halo subdomains. This imposes to have efficient heuristics to evaluate the
computational cost of each subdomain according to its specificities in order to ensure an
effective partitioning.

The partition defines what we call local and distant communications. We call lo-
cal communication any communication between two subdomains of the same partition.
Similarly, we call distant communication any communication between two subdomains of
different partitions. Typically, distant communications happen between MPI processes,
and local communications happen between OpenMP threads.

To achieve the graph partitioning, we used the software METIS [? ]. We give an
example of the kind of graph we have to partition based on the subdomains displayed on
Figure 5.5.

Warning about local time-space refinement: Choosing the right size for the sub-
domains is of great importance. The smaller the subdomains the higher is the cost of
the communications between subdomains. However, at constant number of partitions,
the volume of distant communication stay approximately the same, only the number of
distant communications increases. If the bandwidth is saturated, tuning the size of the
subdomains can be a solution.

Refined areas can be particularly cumbersome to have a good load balancing. Indeed,
when refining an area the computational cost is at least multiplied by ptp

d
s . This can

quickly creates subdomains that carry most of the computational cost. For instance, if
we assume that the computational cost of the coarse grid is 1. Then the cost of the
refined area is rptpds , where r is the proportion of the space which is refined. Then, we
give in Table 5.1 and Table 5.2 the proportion of the total space such that the fine part
has the same computational cost than the coarse grid. For instance, in two dimensions
for a local refinement per pt = ps = 10 the volume of the refined area should be of 0.1%
of the total volume in order to have approximately the same computation cost in the
coarse and refined areas. This volume has to be reduced to 0.01% of the total volume in
three dimensions. Fortunately, we can partition the refined area in several subdomains
such that managing load balancing is still achievable. Nevertheless, refined subdomains
can quickly have a computational cost way higher than other subdomains making load
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Figure 5.10: Graph representation of the partitioning of Figure 5.5.

balancing difficult or even impossible. Besides, the way we manage the partitioning of the
refined area prevents the creation of subdomains smaller than the size of a coarse element.
Note that this last limitation is due to the implementation choice to attach the halo to
the corresponding fine subdomain (as represented on Figure 5.5).

ps = pt r

2 12.5%
10 0.1%
20 0.0125%

Table 5.1: Proportion of the refined area such that the coarse grid and refined area have
the same computational cost in two dimensions.

ps = pt r

2 6.25%
10 0.01%
20 0.000625%

Table 5.2: Proportion of the refined area such that the coarse grid and refined area have
the same computational cost in three dimensions.

Priority between tasks: The larger the number of subdomains, the easier it is to over-
lap communications with computation since most communications become local. However,
we decided to implement a priority between the subdomains. Our strategy is to grant a
higher priority to subdomains that have distant (MPI) communications to perform. The
more distant communications the subdomains has, the higher is its priority in the ready
subdomains set.
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5.2.2.1 Overview of the computer

We give here a quick overview of the computer on which we ran our performance tests.
Each of the 158 computing nodes has the following characteristics:

• two Intel Sandy Bridge processors (EP E5-2670) (8 cores 2.6 Ghz (8 flops per cycle
per core is 330 GFlops / s peak performance per node)),

• 32 GB of memory per node (DDR3 memory clocked at 1600 MHz),

• L1 caches (instruction and data) 32 KB, 256 KB L2 cache per core,

• L3 cache 20 M0 shared by the 8 cores of each processor.

Infiniband interconnection network offers a bandwidth of 5 GB / s between nodes. The
MPI latency is less than 1 microsecond. The installed operating system on the nodes is
CentOS 6.2 or 6.2 RedhatEnterprise.

A maximum of 8 nodes per run could be taken, corresponding to 128 cores.

5.2.2.2 Impact of the size of the subdomains on performances

From an ideal point of view the size of the subdomains should not impact the sequential
performances. However, many memory effects come into play. In order to show the perfor-
mances according to the subdomain sizes and of the polynomial spaces Qk we measured
the performance in percentage of the peak for a domain composed of four subdomains
achieving 1000 time steps. The results are displayed in Figure 5.11. We note that high
order polynomial basis have better performances regardless of the size of the subdomains.
We also note that the size of the subdomains influence less the performances, except for
a moderate peak for sizes between 10 × 10 to 30 × 30 according to the polynomial basis
order.
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Figure 5.11: Performance in percentage of the peak according to the size of the subdo-
mains.

5.2.2.3 MPI performances

We implemented our MPI communications with asynchronous non-blocking communica-
tions. This allows processes to continue computation right after they send their messages,
thus hiding the communications as much as possible. Actually, we tried blocking commu-
nications and about 30% of the computation time was spent in waiting time to send and
receive messages, whereas it is of less than 1% of the computation time with asynchronous
non-blocking communications.

There are two common notions of performance scalability in the context of high per-
formance computing:

• the weak scalability, which is defined as how the solution time varies with the number
of processors for a fixed problem size per processor,

• the strong scalability, which is defined as how the solution time varies with the
number of processors for a fixed total problem size.

Weak scalability: To perform the weak scalability tests, we give to each MPI process a
set of 4×4 subdomains of size 20 made of Q3 elements and we performed 1000 time steps.
We report in Table 5.3 and display on Figure 5.12 the computing times for 1 to 128 MPI
processes. We note that we have an almost perfect weak scalability since the computation
times are almost constant from 1 to 128 MPI processes.
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Number of MPI processes Time (s) Speed up
1 174 -
2 175 1.99
4 173 4.02
8 175 7.95
16 175 15.91
32 176 31.63
64 178 62.56
128 179 124.42

Table 5.3: Weak scalability.

Figure 5.12: Weak scalability.

Strong scalability: To perform the strong scalability tests, we used a domain made of
32× 32 subdomains of size 20× 20 with Q3 elements and we realized 1000 time steps. We
report on Table 5.4 and on Figure 5.13 the results. We note that the code scales really
well. The performances are slightly less good than in the weak scalability experiments,
this is most likely due to the lower amount of computation that leads to communications
not as well overlapped.
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Number of MPI processes Time (s) Speed up
1 10999 -
2 5558 1.98
4 2801 3.93
8 1418 7.76
16 708 15.54
32 355 30.98
64 178 61.79
128 99 111.10

Table 5.4: Strong scalability.

Figure 5.13: Strong scalability.

5.2.2.4 Hybrid OpenMP-MPI performances

We investigate here the performances of hybrid MPI OpenMP (distributed and shared
memory) parallelization. The performances of pure MPI parallelization being already
really good in the situation we tested, this hybrid parallelization would only be interesting
for more demanding simulations. Such simulations could use a higher number of cores,
or it could be a situation where we would not be able to divide the subdomains with
a good load balancing. Indeed, when the number of MPI processes becomes too large
the amount of communication becomes the bottleneck, thus using OpenMP relaxes the
communications. Subdomains arising from highly refined areas often lead to difficult load
balances, in such situations we can use OpenMP to spend more computing power on these
subdomains thus reducing virtually their weights. For instance, an area refined by 100 in
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2D will cost approximately 106 times the cost of the unrefined coarse area. It is therefore
often impossible to have a correct load balance with purely MPI parallelization. We used
the same test configuration as in the weak scalability study. We report in Table 5.5 and
Table 5.6 the computing times for a node of 16 cores with various distributions for the
subdomain and operator based parallel strategies.

MPI processes OMP threads Time (s)
1 16 347
2 8 227
4 4 184
8 2 180
16 1 177

Table 5.5: Performances on a node of 16 cores of hybrid MPI/OpenMP for different
distributions and the subdomain based OpenMP strategies.

MPI processes OMP threads Time (s)
1 16 532
2 8 251
4 4 208
8 2 187
16 1 177

Table 5.6: Performances on a node of 16 cores of hybrid MPI/OpenMP for different
distributions and the operator based OpenMP strategies.

We note that the results given in Table 5.5 and 5.6 favors the subdomain based strategy
over the operator based strategy. This can be explained by the more restricted data locality
of the operator based strategy over the subdomain based strategy. We emphasize that for
small number of processors OpenMP is a lot less efficient than MPI since there is a factor
two in the performances for the subdomain based strategy and a factor 3 for the operator
based strategy.

5.2.2.5 Realistic case performances

In the previous performance tests we were using only subdomains of same weight, i.e.
without local refinement or PMLs. Thus, accurate estimation of the computational cost
of each subdomain was not an issue. In realistic simulations, due to PML, halo and fine
subdomains the weights become inherently heterogeneous. Accurate estimation of the
computational cost becomes essential to compute an efficient load distribution.

In order to study the performances in realistic conditions we take a coarse domain
of 640 × 640 Q3 elements, which we surround with 5 Q3 elements depth PML and two
refined areas. The first refined area is refined by a factor 10 composed of 100 × 100
Q3 elements corresponding to 10 × 10 coarse elements. The second area is refined by a
factor 3 composed of 63× 63 Q3 elements corresponding to 21× 21 coarse elements. This
corresponds to approximately 15 millions of degrees of freedom. We represent this mesh
on Figure 5.14.
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PML

640 elements5 elements 5 elements

10 elements
p = 10

21 elements

p = 3

Figure 5.14: Representation of the mesh used for the realistic case performance tests.

According to the study on optimal size in Section 5.2.2.2, we decided to take coarse
element subdomains of size 20×20 elements, leading to 32×32 coarse element subdomains.
We report the results of this first attempt in Table 5.7. Computational costs are well
estimated but looking at processors activity shows that partitioning is still unbalanced due
to halo and fine parts having too heavy weights. Finally, to have a better load balancing
we reduced the size of halo and fine element subdomains to 10 × 10 elements. All MPI
processes had roughly the same computational work which leads to better performances.
We give the computation times of this final attempt in Table 5.8. We performed 1000
time steps for each simulation. We note that the gain is substantial comparing the results
in Table 5.7 and Table 5.8. The higher the number of cores the more the load imbalance
has a significant impact on the performances.

MPI processes Time (s)
32 563
64 331
128 216

Table 5.7: Computation times for different numbers of MPI processes. The evaluation of
halo element subdomains weights were well estimated but the subdomains were too large
leading to unbalanced load balancing.
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MPI processes Time (s)
128 121
64 243
32 482

Table 5.8: Computation times for different numbers of MPI processes. The evaluation
of halo element subdomains weights were well estimated and of similar weights as coarse
element subdomains leading to a good load balancing.

5.3 Conclusion
In this chapter we introduced our approach to exploit efficiently the Cartesian structured
grid, we showed good performances, especially on high polynomial orders. This adds
another argument to use high order polynomial when possible.

We showed really good parallel scalability of our MPI implementation due to the use
of asynchronous non-blocking communications. In contrast, our OpenMP implementation
had a limited scalability due to a limited control of data locality. Thus shared memory
parallelism might only be interesting for really high number of cores or to put more
computing power on demanding subdomains, e.g. highly refined subdomains. However,
performing load balancing with PML and refined subdomains was more challenging than
expected. Nevertheless, we obtained an efficient load balancing heuristic after extensive
numerical experiments to tune the weights of the graph to perform the work distribution.
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Conclusion

5.4 General results

In this work, we have proposed an efficient and reliable way to achieve local spatio-
temporal mesh refinement for the second order elastodynamic equation. We have first
presented the discontinuous Galerkin methods, we motivated our choice by the numer-
ous features these methods offer. In particular, the discontinuous Galerkin methods are
some of the rare methods to offer the required h-adaptivity in its standard formulation.
Moreover, the p-adaptivity of these methods offers interesting opportunities in a local
mesh refinement context. We then presented absorbing layers, called perfectly matched
layers (PML), for the second order elastodynamic equation. We used a second order
formulation which is less standard than a first order formulation but this facilitated the
implementation. We proposed a discontinuous Galerkin formulation for the spatial dis-
cretization of the PML and a finite difference time discretization. Both discretizations are
not straightforward since there are many possibles choices. Our choices were driven by
the desire to keep the CFL stability condition unchanged, which we have shown numer-
ically. Then, we presented the local time stepping method we chose. In the first part of
the Chapter 3, we attempted to give a clear insight in the construction of this method.
We have proposed different strategies to exploit the p-adaptivity in order to reduce the
memory and computational costs of local space-time mesh refinements. We showed that
mesh refinement and the local time stepping method introduce spurious effects of really
low amplitude. Following this, we proposed a modification of the discontinuous Galerkin
method to allow elasto-acoustic media. Finally, we validated our choices of methods on
canonical experiments and showed the capabilities on illustrative experiments.

In the last part, we explained our choices for the implementation. In particular, we
attempted to exploit discontinuous Galerkin features to have efficient computation. We
showed that our implementation exhibits efficient use of matrix-matrix operations (BLAS-
3 kernels). We also proposed an asynchronous non-blocking MPI and OpenMP paralleliza-
tion strategies. The code demonstrated a good scalability of the MPI parallelization up
to 128 cores.

5.5 Perspectives

The closest task to realize would be to validate our three dimensions prototype. A rela-
tively simple improvement to our software would be to add multi-level local time stepping
method as introduced in [? ], this would add more flexibility and would also highly reduce
the cost of really high local refinements required in some cases, e.g. a simple hydrofrac-
ture requiring a refinement by 100. For such high refinements, new spatial refinements
strategies should be found to limit the huge increase in computational and memory costs.
Cartesian meshes are convenient but when more accuracy is required they result in model
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error (misrepresentation of the medium) being superior to numerical errors (misrepresen-
tation of the solution), destroying all the appealing features of high order methods, in
particular discontinuous Galerkin methods. Therefore, locally non Cartesian meshes that
follow the medium discontinuities might be necessary to achieve high accuracy.
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Appendix A

Sobolev spaces

Definition A.1 - L2(Ω) space.
The vector space L2(Ω) is the space of square-integrable functions:

L2(Ω) = {v measurable:
∫

Ω
v2 <∞}.

The space L2(Ω) is a Hilbert space with respect to the following inner product and norm:

(u, v)Ω =
∫

Ω
uv, ‖v‖L2(Ω) =

(∫
Ω
v2
) 1

2
.

We extend naturally these definitions to vector functions u = (ui)1≤i≤d and v = (vi)1≤i≤d:

(u,v)Ω =
∫

Ω
u · v, ‖v‖L2(Ω) =

(
d∑
i=1
‖vi‖2L2(Ω)

) 1
2

.

Definition A.2 - L∞(Ω) space.
The space L∞(Ω) is the space of bounded functions:

L∞(Ω) = {v : ‖v‖L∞(Ω) <∞},

with the norm
‖v‖L∞(Ω) = ess sup

x∈Ω
{|v(x)|}.

Since our equations involve partial derivatives, we need to define a differentiation that
is compatible with our functional spaces. This differentiation, called weak differentiation,
is define in L2(Ω). This notion generalizes the usual differentiation and is a special case
of differentiation in the sense of distributions.

Definition A.3 - Weak derivative in L2(Ω).
Let v be a function of L2(Ω). We say that v is weakly differentiable in L2(Ω) if there
exists functions wi ∈ L2(Ω) such that for all function φ ∈ C∞0 (Ω), we have∫

Ω
v(x) ∂φ

∂xi
(x) dx = −

∫
Ω
wi(x)φ(x) dx.

Each wi is called the i-th weak partial derivative of v and noted ∂v
∂xi

.
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This definition can easily be generalized by recurrence to n times weakly differentiable
functions. We say that a function v ∈ L2(Ω) is n times weakly differentiable if all the
weak derivatives of order n − 1 are weakly differentiable. If we define the multi-index
α = (α1, .., αd) ∈ Nd and |α| =

∑d
i=1 αi, we note

∂αv = ∂|α|v

∂xα1
1 ...∂xαdd

.

Remark A.1. Of course, if a function is strongly differentiable it is weakly differentiable,
and the derivatives are equals. The meaning of the notation ∂

∂xi
is unambiguous since the

strong and weak derivatives coincide if they exist.

Definition A.4 - Sobolev space H1(Ω).
The Sobolev space H1(Ω) is defined as

H1(Ω) = {v ∈ L2(Ω) : ∀i ∈ 1, .., d, ∂v
∂xi
∈ L2(Ω)}.

Remark A.2. In physics or mechanics, the Sobolev space is often called energy space in
the sense that it consists of finite energy functions.

Definition A.5 - Sobolev space Hs(Ω).
Similarly, we define Sobolev space Hs(Ω) for integer s:

Hs(Ω) = {v ∈ L2(Ω) : ∀ 0 ≤ |α| ≤ s, ∂αv ∈ L2(Ω)}.

In particular, we have

H2(Ω) = {v ∈ H1(Ω) : ∂2v

∂x2
1
,

∂2v

∂x1∂x2
,
∂2v

∂x2
2
∈ L2(Ω)}.

The Sobolev norm associated with Hs(Ω) is

‖v‖Hs(Ω) =

 ∑
0≤|α|≤s

‖∂αv‖2L2(Ω)

 1
2

.

Definition A.6 - Sobolev space Hs+ 1
2 (Ω).

Given v ∈ Hs(Ω), we define the following splitting:

v = v1 + v2

where v1 ∈ Hs(Ω) and v2 ∈ Hs+1(Ω).Then for a given number t, we define the kernel

K(v, t) =
(

inf
v1+v2=v

(‖v1‖2Hs(Ω) + t2 ‖v2‖Hs+1(Ω))
) 1

2
.

The space Hs+ 1
2 (Ω) is then defined as the completion of all functions in Hs+1(Ω) with

respect to the following norm:

‖v‖
Hs+ 1

2 (Ω)
=
(∫ ∞

0
t−2K2(v, t) dt

) 1
2
.
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Property A.1 - Relation between Sobolev spaces.
We have the following inclusion properties

Hs+1(Ω) ⊂ Hs+ 1
2 (Ω) ⊂ Hs(Ω).

Theorem A.1 - Relation between Sobolev spaces and continuous functions spaces.

Hs(Ω) ⊂ Cr(Ω) if 1
2 <

s− r
d

.

In particular, in two dimensions

Hs(Ω) ⊂ C0(Ω) if


s > 1

2 for d = 1,

s > 2
2 for d = 2,

s > 3
2 for d = 3.

Definition A.7 - Trace operators.
Let Ω be a bounded domain with polygonal boundary ∂Ω and outward normal vector n.
There exist trace operators γ0 : Hs(Ω) → Hs− 1

2 (∂Ω) for s > 1
2 and γ1 : Hs(Ω) →

Hs− 3
2 (∂Ω) for s > 3

2 that are extensions of the boundary values and boundary normal
derivatives, respectively. The operators γj are surjective. Furthermore, if v ∈ C1(Ω̄), then

γ0v = v|∂Ω, γ1v = ∇v · n|∂Ω

Definition A.8 - Subspace Hs
0(Ω).

Hs
0(Ω) = {v ∈ Hs(Ω) : γ0v = 0 on ∂Ω} .

Definition A.9 - Subspace H̃s
0(Ω).

H̃s
0(Ω) = {v ∈ Hs(Ω) : γ0v = 0 on ∂Ω ∩ ΓD} .

A.1 Useful formulas
Theorem A.2 - Green’s formula. ∫

Ω

∂w

∂xi
=
∫
∂Ω
wni∫

Ω
u
∂v

∂xi
= −

∫
Ω
v
∂u

∂xi
+
∫
∂Ω
uvni

−
∫
K
w∆v =

∫
K
∇v · ∇w −

∫
∂K
∇v · nKw

Theorem A.3 - Cauchy-Schwarz’s inequality.

∀f, g ∈ L2(Ω), |(f, g)Ω| ≤ ‖f‖L2(Ω) ‖g‖L2(Ω)

Theorem A.4 - Young’s inequality.

∀ε > 0, ∀a, b ∈ R, ab <
ε

2a
2 + 1

2εb
2
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Appendix B

Elastodynamic Formulas

B.1 Elastodynamic Equations

ρ
∂2u

∂t2
− div(2µe(u) + λtr(e(u))Id) = f,

where e(u) = 1
2(∇u+∇ut).

B.1.1 Two dimensional space case

In a two dimensional space case, we have

∇u =
(
∂u1
∂x

∂u1
∂y

∂u2
∂x

∂u2
∂y

)
, e(u) = 1

2

(
2∂u1
∂x

∂u1
∂y + ∂u2

∂x
∂u1
∂y + ∂u2

∂x 2∂u2
∂y

)
. (B.1)

We have σ(u) = 2µe(u) + λtr(e(u))Id, using (B.1) we have

σ(u) =
(

(λ+ 2µ)∂u1
∂x + λ∂u2

∂y µ∂u1
∂y + µ∂u2

∂x

µ∂u1
∂y + µ∂u2

∂x λ∂u1
∂x + (λ+ 2µ)∂u2

∂y

)

Thus,

div(σ(u)) =

(λ+ 2µ)∂2u1
∂x2 + λ ∂

2u2
∂x∂y + µ∂

2u1
∂y2 + µ ∂

2u2
∂x∂y

µ ∂
2u1
∂x∂y + µ∂

2u2
∂x2 + λ ∂

2u1
∂x∂y + (λ+ 2µ)∂2u2

∂y2


=

(λ+ 2µ)∂2u1
∂x2 + µ∂

2u1
∂y2 + (λ+ µ) ∂2u2

∂x∂y

µ∂
2u2
∂x2 + (λ+ 2µ)∂2u2

∂y2 + (λ+ µ) ∂2u1
∂x∂y

 (B.2)

Hence, we have

σ(u) · ∇v =(λ+ 2µ)∂u1
∂x

∂v1
∂x

+ λ
∂u2
∂y

∂v1
∂x

+ µ
∂u1
∂y

∂v2
∂x

+ µ
∂u2
∂x

∂v2
∂x

+ µ
∂u1
∂y

∂v1
∂y

+ µ
∂u2
∂x

∂v1
∂y

+ λ
∂u1
∂x

∂v2
∂y

+ (λ+ 2µ)∂u2
∂y

∂v2
∂y
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B.1.2 Three dimensional space case

In a three dimensional space case, we have

∇u =


∂u1
∂x

∂u1
∂y

∂u1
∂z

∂u2
∂x

∂u2
∂y

∂u2
∂z

∂u3
∂x

∂u3
∂y

∂u3
∂z

 , e(u) = 1
2

 2∂u1
∂x

∂u1
∂y + ∂u2

∂x
∂u3
∂x + ∂u1

∂z
∂u1
∂y + ∂u2

∂x 2∂u2
∂y

∂u3
∂y + ∂u2

∂z
∂u1
∂z + ∂u3

∂x
∂u2
∂z + ∂u3

∂y 2∂u3
∂z

 . (B.3)

We have σ(u) = 2µe(u) + λtr(e(u))Id, using (B.3) we have

σ(u) =

(λ+ 2µ)∂u1
∂x + λ∂u2

∂y + λ∂u3
∂z µ∂u1

∂y + µ∂u2
∂x µ∂u3

∂x + µ∂u1
∂z

µ∂u1
∂y + µ∂u2

∂x λ∂u1
∂x + (λ+ 2µ)∂u2

∂y + λ∂u3
∂z µ∂u3

∂y + µ∂u2
∂z

µ∂u1
∂z + µ∂u3

∂x µ∂u2
∂z + µ∂u3

∂y λ∂u1
∂x + λ∂u2

∂y + (λ+ 2µ)∂u3
∂z


Thus,

div(σ(u)) =


(λ+ 2µ)∂2u1

∂x2 + λ ∂
2u2
∂x∂y + λ ∂

2u3
∂x∂z + µ∂

2u1
∂y2 + µ ∂

2u2
∂x∂y + µ ∂

2u3
∂x∂z + µ∂

2u1
∂z2

µ ∂
2u1
∂x∂y + µ∂

2u2
∂x2 + λ ∂

2u1
∂x∂y + (λ+ 2µ)∂2u2

∂y2 + λ∂
2u3
∂z2 + µ ∂

2u3
∂y∂z + µ∂

2u2
∂z2

µ ∂
2u1
∂x∂z + µ∂

2u3
∂x2 + µ ∂

2u2
∂y∂z + µ∂

2u3
∂y2 + λ ∂

2u1
∂x∂z + λ ∂

2u2
∂y∂z + (λ+ 2µ)∂2u3

∂z2



=


(λ+ 2µ)∂2u1

∂x2 + µ∂
2u1
∂y2 + µ∂

2u1
∂z2 + (λ+ µ) ∂2u2

∂x∂y + (λ+ µ) ∂2u3
∂x∂z

(λ+ µ) ∂2u1
∂x∂y + µ∂

2u2
∂x2 + (λ+ 2µ)∂2u2

∂y2 + µ∂
2u2
∂z2 + (λ+ µ) ∂2u3

∂y∂z

(λ+ µ) ∂2u1
∂x∂z + (λ+ µ) ∂2u2

∂y∂z + µ∂
2u3
∂x2 + µ∂

2u3
∂y2 + (λ+ 2µ)∂2u3

∂z2


(B.4)

Hence, we have

σ(u) · ∇v =(λ+ 2µ)∂u1
∂x

∂v1
∂x

+ λ
∂u2
∂y

∂v1
∂x

+ λ
∂u3
∂z

∂v1
∂x

+ µ
∂u1
∂y

∂v2
∂x

+ µ
∂u2
∂x

∂v2
∂x

+ µ
∂u3
∂x

∂v3
∂x

+ µ
∂u1
∂z

∂v3
∂x

+ µ
∂u1
∂y

∂v1
∂y

+ µ
∂u2
∂x

∂v1
∂y

+ λ
∂u1
∂x

∂v2
∂y

+ (λ+ 2µ)∂u2
∂y

∂v2
∂y

+ λ
∂u3
∂z

∂v2
∂y

+ µ
∂u3
∂y

∂v3
∂y

+ µ
∂u2
∂z

∂v3
∂y

+ µ
∂u1
∂z

∂v1
∂z

+ µ
∂u3
∂x

∂v1
∂z

+ µ
∂u2
∂z

∂v2
∂z

+ µ
∂u3
∂y

∂v2
∂z

+ λ
∂u1
∂x

∂v3
∂z

+ λ
∂u2
∂y

∂v3
∂z

+ (λ+ 2µ)∂u3
∂z

∂v3
∂z

B.2 Dispersion Relation
utt = A1uxx +A2uyy +A3uxy (B.5)

where A1 =
(
λ+ 2µ 0

0 µ

)
, A2 =

(
µ 0
0 λ+ 2µ

)
, A3 =

(
0 λ+ µ

λ+ µ 0

)
. If we consider

plane wave solutions
u = u0e

ik·x−st. (B.6)
Inserting (B.6) in (B.5) yields to the solvability condition called dispersion relation

det(s2I +A1k
2
x +A2k

2
y +A3kxky) = 0,

which leads

s4 + ((λ+ 3µ)(k2
x + k2

y))s2 + λ(λ+ 2µ)(k4
x + k4

y) + 2µ(λ+ 2µ)k2
xk

2
y = 0. (B.7)
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Appendix C

PML

C.1 Three dimensional space case

C.1.1 PML Formulation

ρ
∂2u

∂t2
− div(2µe(u) + λtr(e(u))Id) = f, (C.1)

where e(u) = 1
2(∇u+∇uT ).

Step 1: Laplace transform in the time domain.
By using B.4 and then applying the Laplace transform in time to C.1, by setting f = 0,
we obtain

ρs2

û1
û2
û3

 =


(λ+ 2µ)∂2û1

∂x̃2 + µ∂
2û1
∂ỹ2 + µ∂

2û1
∂z̃2 + (λ+ µ) ∂2û2

∂x̃∂ỹ + (λ+ µ) ∂2û3
∂x̃∂z̃

(λ+ µ) ∂2û1
∂x̃∂ỹ + µ∂

2û2
∂x̃2 + (λ+ 2µ)∂2û2

∂ỹ2 + µ∂
2û2
∂z̃2 + (λ+ µ) ∂2û3

∂ỹ∂z̃

(λ+ µ) ∂2û1
∂x̃∂z̃ + (λ+ µ) ∂2û2

∂ỹ∂z̃ + µ∂
2û3
∂x̃2 + µ∂

2û3
∂ỹ2 + (λ+ 2µ)∂2û3

∂z̃2

 (C.2)

Step 2: Integration by substitution.
We want to substitute the x̃i to the xi through the coordinate transformation

x̃ : Ω→ ΩPML, xi → x̃(xi) = xi + 1
s

∫ xi

0
ζi(ξ)dξ, i = 1, 2, 3,

Step 3: Relation between ∂
∂xi

and ∂
∂x̃i

.

∀i = 1, 2, ∂

∂x̃i
= s

s+ ζi

∂

∂xi
= 1
νi

∂

∂xi
. (C.3)
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Step 4: Continuation in a complex manifold.
By applying C.3 to C.2 we obtain



ρs2û1 =(λ+ 2µ) 1
ν1

∂

∂x

( 1
ν1

∂û1
∂x

)
+ µ

1
ν2

∂

∂y

( 1
ν2

∂û1
∂y

)
+ µ

1
ν3

∂

∂z

( 1
ν3

∂û1
∂z

)
+ (λ+ µ) 1

ν1

∂

∂x

( 1
ν2

∂û2
∂y

)
+ (λ+ µ) 1

ν1

∂

∂x

( 1
ν3

∂û3
∂z

)
,

ρs2û2 =µ 1
ν1

∂

∂x

( 1
ν1

∂û2
∂x

)
+ (λ+ 2µ) 1

ν2

∂

∂y

( 1
ν2

∂û2
∂y

)
+ µ

1
ν3

∂

∂z

( 1
ν3

∂û2
∂z

)
+ (λ+ µ) 1

ν1

∂

∂x

( 1
ν2

∂û1
∂y

)
+ (λ+ µ) 1

ν2

∂

∂y

( 1
ν3

∂û3
∂z

)
,

ρs2û3 =µ 1
ν1

∂

∂x

( 1
ν1

∂û3
∂x

)
+ µ

1
ν2

∂

∂y

( 1
ν2

∂û3
∂y

)
+ (λ+ 2µ) 1

ν3

∂

∂z

( 1
ν3

∂û3
∂z

)
+ (λ+ µ) 1

ν1

∂

∂x

( 1
ν3

∂û1
∂z

)
+ (λ+ µ) 1

ν2

∂

∂y

( 1
ν3

∂û2
∂z

)
.

Hence, by multiplying by ν1ν2ν3 we obtain



ρs2ν1ν2ν3û1 =(λ+ 2µ) ∂
∂x

(
ν2ν3
ν1

∂û1
∂x

)
+ µ

∂

∂y

(
ν1ν3
ν2

∂û1
∂y

)
+ µ

∂

∂z

(
ν1ν2
ν3

∂û1
∂z

)
+ (λ+ µ) ∂

∂x

(
ν3
∂û2
∂y

)
+ (λ+ µ) ∂

∂x

(
ν2
∂û3
∂z

)
,

ρs2ν1ν2ν3û2 =µ ∂

∂x

(
ν2ν3
ν1

∂û2
∂x

)
+ (λ+ 2µ) ∂

∂y

(
ν1ν3
ν2

∂û2
∂y

)
+ µ

∂

∂z

(
ν1ν2
ν3

∂û2
∂z

)
+ (λ+ µ) ∂

∂x

(
ν3
∂û1
∂y

)
+ (λ+ µ) ∂

∂y

(
ν1
∂û3
∂z

)
,

ρs2ν1ν2ν3û3 =µ ∂

∂x

(
ν2ν3
ν1

∂û3
∂x

)
+ µ

∂

∂y

(
ν1ν3
ν2

∂û3
∂y

)
+ (λ+ 2µ) ∂

∂z

(
ν1ν2
ν3

∂û3
∂z

)
+ (λ+ µ) ∂

∂x

(
ν2
∂û1
∂z

)
+ (λ+ µ) ∂

∂y

(
ν1
∂û2
∂z

)
.

Besides,



∀i = 1, 2, 3, νi = 1 + ζi
s

ν2ν3
ν1

= 1 + (ζ2 + ζ3 − ζ1)s+ ζ2ζ3
(s+ ζ1)s ,

ν1ν3
ν2

= 1 + (ζ1 + ζ3 − ζ2)s+ ζ1ζ3
(s+ ζ2)s ,

ν1ν2
ν3

= 1 + (ζ1 + ζ2 − ζ3)s+ ζ1ζ2
(s+ ζ3)s ,

ν1ν2ν3 = s3 + s2(ζ1 + ζ2 + ζ3) + s(ζ1ζ2 + ζ1ζ3 + ζ2ζ3) + ζ1ζ2ζ3
s3 .
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Thus, we obtain



ρ(s2 + s(ζ1 + ζ2 + ζ3) + (ζ1ζ2 + ζ1ζ3 + ζ2ζ3) + ζ1ζ2ζ3
s

)û1 =

(λ+ 2µ)∂
2û1
∂x2 + µ

∂2û1
∂y2 + µ

∂2û1
∂z2 + (λ+ µ) ∂

2û2
∂x∂y

+ (λ+ µ) ∂
2û3

∂x∂z

+ (λ+ 2µ) ∂
∂x

((ζ2 + ζ3 − ζ1)s+ ζ2ζ3
(s+ ζ1)s

∂û1
∂x

)
+ µ

∂

∂y

((ζ1 + ζ3 − ζ2)s+ ζ1ζ3
(s+ ζ2)s

∂û1
∂y

)
+ µ

∂

∂z

((ζ1 + ζ2 − ζ3)s+ ζ1ζ2
(s+ ζ3)s

∂û1
∂z

)
+ (λ+ µ) ∂

∂x

(
ζ3
s

∂û2
∂y

)
+ (λ+ µ) ∂

∂x

(
ζ2
s

∂û3
∂z

)
,

ρ(s2 + s(ζ1 + ζ2 + ζ3) + (ζ1ζ2 + ζ1ζ3 + ζ2ζ3) + ζ1ζ2ζ3
s

)û2 =

µ
∂2û2
∂x2 + (λ+ 2µ)∂

2û2
∂y2 + µ

∂2û2
∂z2 + (λ+ µ) ∂

2û1
∂x∂y

+ (λ+ µ) ∂
2û3

∂y∂z

+ µ
∂

∂x

((ζ2 + ζ3 − ζ1)s+ ζ2ζ3
(s+ ζ1)s

∂û2
∂x

)
+ (λ+ 2µ) ∂

∂y

((ζ1 + ζ3 − ζ2)s+ ζ1ζ3
(s+ ζ2)s

∂û2
∂y

)
+ µ

∂

∂z

((ζ1 + ζ2 − ζ3)s+ ζ1ζ2
(s+ ζ3)s

∂û2
∂z

)
+ (λ+ µ) ∂

∂x

(
ζ3
s

∂û1
∂y

)
+ (λ+ µ) ∂

∂y

(
ζ1
s

∂û3
∂z

)
,

ρ(s2 + s(ζ1 + ζ2 + ζ3) + (ζ1ζ2 + ζ1ζ3 + ζ2ζ3) + ζ1ζ2ζ3
s

)û3 =

µ
∂2û3
∂x2 + µ

∂2û3
∂y2 + (λ+ 2µ)∂

2û3
∂z2 + (λ+ µ) ∂

2û1
∂x∂z

+ (λ+ µ) ∂
2û2

∂y∂z

+ µ
∂

∂x

((ζ2 + ζ3 − ζ1)s+ ζ2ζ3
(s+ ζ1)s

∂û3
∂x

)
+ µ

∂

∂y

((ζ1 + ζ3 − ζ2)s+ ζ1ζ3
(s+ ζ2)s

∂û3
∂y

)
+ (λ+ 2µ) ∂

∂z

((ζ1 + ζ2 − ζ3)s+ ζ1ζ2
(s+ ζ3)s

∂û3
∂z

)
+ (λ+ µ) ∂

∂x

(
ζ2
s

∂û1
∂z

)
+ (λ+ µ) ∂

∂y

(
ζ1
s

∂û2
∂z

)
.
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Step 5: Defining the auxiliary variables.
By defining the auxiliary variables



ψ̃ = û

s
,

φ̃11 = (ζ2 + ζ3 − ζ1)s+ ζ2ζ3
(s+ ζ1)s

∂û1
∂x

,

φ̃12 = (ζ1 + ζ3 − ζ2)s+ ζ1ζ3
(s+ ζ2)s

∂û1
∂y

,

φ̃13 = (ζ1 + ζ2 − ζ3)s+ ζ1ζ2
(s+ ζ3)s

∂û1
∂z

,

φ̃21 = (ζ2 + ζ3 − ζ1)s+ ζ2ζ3
(s+ ζ1)s

∂û2
∂x

,

φ̃22 = (ζ1 + ζ3 − ζ2)s+ ζ1ζ3
(s+ ζ2)s

∂û2
∂y

,

φ̃23 = (ζ1 + ζ2 − ζ3)s+ ζ1ζ2
(s+ ζ3)s

∂û2
∂z

,

φ̃31 = (ζ2 + ζ3 − ζ1)s+ ζ2ζ3
(s+ ζ1)s

∂û3
∂x

,

φ̃32 = (ζ1 + ζ3 − ζ2)s+ ζ1ζ3
(s+ ζ2)s

∂û3
∂y

,

φ̃33 = (ζ1 + ζ2 − ζ3)s+ ζ1ζ2
(s+ ζ3)s

∂û3
∂z

.
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we obtain the following system of equations



ρ(s2 + s(ζ1 + ζ2 + ζ3) + (ζ1ζ2 + ζ1ζ3 + ζ2ζ3) + ζ1ζ2ζ3
s

)û1 =

(λ+ 2µ)∂
2û1
∂x2 + µ

∂2û1
∂y2 + µ

∂2û1
∂z2 + (λ+ µ) ∂

2û2
∂x∂y

+ (λ+ µ) ∂
2û3

∂x∂z

+ (λ+ 2µ)∂φ̃11
∂x

+ µ
∂φ̃12
∂y

+ µ
∂φ̃13
∂z

+ (λ+ µ) ∂
∂x

(
ζ3
∂ψ̃2
∂y

)
+ (λ+ µ) ∂

∂x

(
ζ2
∂ψ̃3
∂z

)
,

ρ(s2 + s(ζ1 + ζ2 + ζ3) + (ζ1ζ2 + ζ1ζ3 + ζ2ζ3) + ζ1ζ2ζ3
s

)û2 =

µ
∂2û2
∂x2 + (λ+ 2µ)∂

2û2
∂y2 + µ

∂2û2
∂z2 + (λ+ µ) ∂

2û1
∂x∂y

+ (λ+ µ) ∂
2û3

∂y∂z

+ µ
∂φ̃21
∂x

+ (λ+ 2µ)∂φ̃22
∂y

+ µ
∂φ̃23
∂z

+ (λ+ µ) ∂
∂x

(
ζ3
∂ψ̃1
∂y

)
+ (λ+ µ) ∂

∂y

(
ζ1
∂ψ̃3
∂z

)
,

ρ(s2 + s(ζ1 + ζ2 + ζ3) + (ζ1ζ2 + ζ1ζ3 + ζ2ζ3) + ζ1ζ2ζ3
s

)û3 =

µ
∂2û3
∂x2 + µ

∂2û3
∂y2 + (λ+ 2µ)∂

2û3
∂z2 + (λ+ µ) ∂

2û1
∂x∂z

+ (λ+ µ) ∂
2û2

∂y∂z

+ µ
∂φ̃31
∂x

+ µ
∂φ̃32
∂y

+ (λ+ 2µ)∂φ̃33
∂z

+ (λ+ µ) ∂
∂x

(
ζ2
∂ψ̃1
∂z

)
+ (λ+ µ) ∂

∂y

(
ζ1
∂ψ̃2
∂z

)
,

sψ̃ = û,

(s+ ζ1)sφ̃11 = ((ζ2 + ζ3 − ζ1)s+ ζ2ζ3)∂û1
∂x ,

(s+ ζ2)sφ̃12 = ((ζ1 + ζ3 − ζ2)s+ ζ1ζ3)∂û1
∂y ,

(s+ ζ3)sφ̃13 = ((ζ1 + ζ2 − ζ3)s+ ζ1ζ2)∂û1
∂z ,

(s+ ζ1)sφ̃21 = ((ζ2 + ζ3 − ζ1)s+ ζ2ζ3)∂û2
∂x ,

(s+ ζ2)sφ̃22 = ((ζ1 + ζ3 − ζ2)s+ ζ1ζ3)∂û2
∂y ,

(s+ ζ3)sφ̃23 = ((ζ1 + ζ2 − ζ3)s+ ζ1ζ2)∂û2
∂z ,

(s+ ζ1)sφ̃31 = ((ζ2 + ζ3 − ζ1)s+ ζ2ζ3)∂û3
∂x ,

(s+ ζ2)sφ̃32 = ((ζ1 + ζ3 − ζ2)s+ ζ1ζ3)∂û3
∂y ,

(s+ ζ3)sφ̃33 = ((ζ1 + ζ2 − ζ3)s+ ζ1ζ2)∂û3
∂z .

or equivalently



ρ(s2 + s(ζ1 + ζ2 + ζ3) + (ζ1ζ2 + ζ1ζ3 + ζ2ζ3))û+ ζ1ζ2ζ3ψ̃ =
div(σ(û)) + div(Φ1 : φ̃) + div(Φ2 : ∇ψ̃),

sφ̃ = φ̃Ψ1 +∇ûΨ2 +∇ψ̃Ψ3,

sψ̃ = û.
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where

Φ1 =

λ+ 2µ µ µ
µ λ+ 2µ µ
µ µ λ+ 2µ


Φ2 = (λ+ µ)

 0 ζ3 ζ2
ζ3 0 ζ1
ζ2 ζ1 0


Ψ1 =

−ζ1 0 0
0 −ζ2 0
0 0 −ζ3


Ψ2 =

ζ2 + ζ3 − ζ1 0 0
0 ζ1 + ζ3 − ζ2 0
0 0 ζ1 + ζ2 − ζ3


Ψ3 =

ζ2ζ3 0 0
0 ζ1ζ3 0
0 0 ζ1ζ2
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Step 6: Inverse Laplace transformation.
Finally, we apply the inverse Laplace transformation to the time domain and obtain the
PML equations for the elastodynamic equations



ρ
∂2u

∂t2
+ ρ(ζ1 + ζ2 + ζ3)∂u

∂t
+ ρ(ζ1ζ2 + ζ1ζ3 + ζ2ζ3)u =

div(σ(u)) + div(Φ1 : φ) + div(Φ2 : ∇ψ)− ζ1ζ2ζ3ψ,

∂φ

∂t
= φΨ1 +∇uΨ2 +∇ψΨ3,

∂ψ

∂t
= u.

(C.4)

where

Φ1 =

λ+ 2µ µ µ
µ λ+ 2µ µ
µ µ λ+ 2µ


Φ2 = (λ+ µ)

 0 ζ3 ζ2
ζ3 0 ζ1
ζ2 ζ1 0


Ψ1 =

−ζ1 0 0
0 −ζ2 0
0 0 −ζ3


Ψ2 =

ζ2 + ζ3 − ζ1 0 0
0 ζ1 + ζ3 − ζ2 0
0 0 ζ1 + ζ2 − ζ3


Ψ3 =

ζ2ζ3 0 0
0 ζ1ζ3 0
0 0 ζ1ζ2



C.1.2 Variational Formulation

Step 1: Multiply all equations by test functions.
We multiply the first equation of C.4 by a test function v ∈ Hs(Th)d, the second equation
by a test function ϕ ∈ Hs(Th)d2 , and the third equation by v also, we obtain the system



ρ
∂2u

∂t2
· v + ρ(ζ1 + ζ2 + ζ3)∂u

∂t
· v + ρ(ζ1ζ2 + ζ1ζ3 + ζ2ζ3)u · v =

div(σ(u)) · v + div(Φ1 : φ) · v + div(Φ2 : ∇ψ) · v − ζ1ζ2ζ3ψ · v,
∂φ

∂t
· ϕ = (φΨ1) · ϕ+ (∇uΨ2) · ϕ+ (∇ψΨ3) · ϕ,

∂ψ

∂t
· v = u · v.
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Step 2: Integration on domain Ω.

∫
Ω
ρ
∂2u

∂t2
· v dx+

∫
Ω
ρ(ζ1 + ζ2 + ζ3)∂u

∂t
· v dx+

∫
Ω
ρ(ζ1ζ2 + ζ1ζ3 + ζ2ζ3)u · v dx =∫

Ω
div(σ(u)) · v dx+

∫
Ω
div(Φ1 : φ) · v dx+

∫
Ω
div(Φ2 : ∇ψ) · v dx−

∫
Ω
ζ1ζ2ζ3ψ · v dx,∫

Ω

∂φ

∂t
· ϕ dx =

∫
Ω

(φΨ1) · ϕ dx+
∫

Ω
(∇uΨ2) · ϕ dx+

∫
Ω

(∇ψΨ3) · ϕ dx,∫
Ω

∂ψ

∂t
· v dx =

∫
Ω
u · v dx.

As Ω =
⋃

K∈Th

K, we have



∑
K∈Th

(∫
K
ρ
∂2u

∂t2
· v dx+

∫
K
ρ(ζ1 + ζ2 + ζ3)∂u

∂t
· v dx+

∫
K
ρ(ζ1ζ2 + ζ1ζ3 + ζ2ζ3)u · v dx

)
=

∑
K∈Th

(∫
K
div(σ(u)) · v dx+

∫
K
div(Φ1 : φ) · v dx+

∫
K
div(Φ2 : ∇ψ) · v dx−

∫
K
ζ1ζ2ζ3ψ · v dx

)
,

∑
K∈Th

∫
K

∂φ

∂t
· ϕ dx =

∑
K∈Th

(∫
K

(φΨ1) · ϕ dx+
∫
K

(∇uΨ2) · ϕ dx+
∫
K

(∇ψΨ3) · ϕ dx
)
,

∑
K∈Th

∫
K

∂ψ

∂t
· v dx =

∑
K∈Th

∫
K
u · v dx.

Step 3: Green’s Formula.∫
K
div(σ(u)) · v dx = −

∫
K
σ(u) · ∇v dx+

∫
∂K

(σ(u)n) · v ds.

As for classical IPDG formulation we have∑
K∈Th

∫
∂K

(σ(u)n) · v ds =
∑
F∈Fh

∫
F
{{σ(u)n}} · [[v]] ds

Thus, we obtain

∑
K∈Th

(∫
K
ρ
∂2u

∂t2
· v dx+

∫
K
ρ(ζ1 + ζ2 + ζ3)∂u

∂t
· v dx+

∫
K
ρ(ζ1ζ2 + ζ1ζ3 + ζ2ζ3)u · v dx

)
=

−
∑
K∈Th

∫
K
σ(u) · ∇v dx+

∑
F∈Fh

∫
F
{{σ(u)n}} · [[v]] ds

+
∑
K∈Th

∫
K
div(Φ1 : φ) · v dx+

∑
F∈Fh

∫
F

[[(Φ1 : φ)n]] · {{v}} ds

−
∑
K∈Th

∫
K

(Φ2 : ∇ψ) · ∇v dx+
∑
F∈Fh

∫
F
{{(Φ2 : ∇ψ)n}} · [[v]] ds−

∑
K∈Th

∫
K
ζ1ζ2ζ3ψ · v dx,

∑
K∈Th

∫
K

∂φ

∂t
· ϕ dx =

∑
K∈Th

∫
K

(φΨ1) · ϕ dx+
∑
K∈Th

∫
K

(∇uΨ2) · ϕ dx

+
∑
F∈Fh

∫
F

[[u]] · {{(ϕΨ2)n}} ds+
∑
K∈Th

∫
K

(∇ψΨ3) · ϕ dx+
∑
F∈Fh

∫
F

[[ψ]] · {{(ϕΨ3)n}} ds,

∑
K∈Th

∫
K

∂ψ

∂t
· v dx =

∑
K∈Th

∫
K
u · v dx.

156



We add the classical IPDG symmetric term
∫
F [[u]] · {{σ(v)n}} ds and the penalization term

−
∫
F αF [[u]] · [[v]] ds, thus, we obtain

∑
K∈Th

(∫
K
ρ
∂2u

∂t2
· v dx+

∫
K
ρ(ζ1 + ζ2 + ζ3)∂u

∂t
· v dx+

∫
K
ρ(ζ1ζ2 + ζ1ζ3 + ζ2ζ3)u · v dx

)
=

−
∑
K∈Th

∫
K
σ(u) · ∇v dx+

∑
F∈Fh

∫
F
{{σ(u)n}} · [[v]] ds+

∑
F∈Fh

∫
F

[[u]] · {{σ(v)n}} ds

−
∑
F∈Fh

∫
F
αF [[u]] · [[v]] ds+

∑
K∈Th

∫
K
div(Φ1 : φ) · v dx+

∑
F∈Fh

∫
F

[[(Φ1 : φ)n]] · {{v}} ds

−
∑
K∈Th

∫
K

(Φ2 : ∇ψ) · ∇v dx+
∑
F∈Fh

∫
F
{{(Φ2 : ∇ψ)n}} · [[v]] ds−

∑
K∈Th

∫
K
ζ1ζ2ζ3ψ · v dx,

∑
K∈Th

∫
K

∂φ

∂t
· ϕ dx =

∑
K∈Th

∫
K

(φΨ1) · ϕ dx+
∑
K∈Th

∫
K

(∇uΨ2) · ϕ dx

+
∑
F∈Fh

∫
F

[[u]] · {{(ϕΨ2)n}} ds+
∑
K∈Th

∫
K

(∇ψΨ3) · ϕ dx+
∑
F∈Fh

∫
F

[[ψ]] · {{(ϕΨ3)n}} ds,

∑
K∈Th

∫
K

∂ψ

∂t
· v dx =

∑
K∈Th

∫
K
u · v dx.

where

Φ1 =

λ+ 2µ µ µ
µ λ+ 2µ µ
µ µ λ+ 2µ


Φ2 = (λ+ µ)

 0 ζ3 ζ2
ζ3 0 ζ1
ζ2 ζ1 0


Ψ1 =

−ζ1 0 0
0 −ζ2 0
0 0 −ζ3


Ψ2 =

ζ2 + ζ3 − ζ1 0 0
0 ζ1 + ζ3 − ζ2 0
0 0 ζ1 + ζ2 − ζ3


Ψ3 =

ζ2ζ3 0 0
0 ζ1ζ3 0
0 0 ζ1ζ2


C.1.3 Space Discretization

C.1.3.1 Global Formulation of the Space Discretization

The global space discretization of the PML is

M
∂2U

∂t2
+Mζ1+ζ2+ζ3

∂U

∂t
+Mζ1ζ2+ζ1ζ3+ζ2ζ3U = KσU +KΦ1φ+KΦ2ψ,

M
∂φ

∂t
= KΨ1φ+KΨ2U +KΨ3ψ,

∂ψ

∂t
= U.
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This global formulation is really neat, but has a major drawback, it’s hiding all the locality
of the discontinuous Galerkin and consequently all the attractiveness and difficulties of
the method. For this reason, we prefer to rewrite these equations in a local form.

C.1.3.2 Local Formulation of the Space Discretization

To obtain the local formulation of the variational formulation we have to consider a test
function which is not null only on a reference element K, thus we obtain the following
local variational formulation

ρKM
K ∂

2uK

∂t2
+ ρKM

K
ζ1+ζ2+ζ3

∂uK

∂t
+ ρKM

K
ζ1ζ2+ζ1ζ3+ζ2ζ3u

K = −KK
σ u

K +
∑
F∈FK

F VF (K)
σ uVF (K)

+KK
Ψ1φ

K +
∑
F∈FK

F
VF (K)
Ψ1

φVF (K) +KK
Ψ2ψ

K +
∑
F∈FK

F
VF (K)
Ψ2

ψVF (K),

MK ∂φ
K

∂t
= KK

Ψ1φ
K +KK

Ψ2u
K +

∑
F∈FK

F
VF (K)
Ψ2

uVF (K) +KK
Ψ3ψ

K +
∑
F∈FK

F
VF (K)
Ψ3

ψVF (K),

∂ψK

∂t
= uK ,

where

MK
ζ1+ζ2+ζ3 = MK

ζ1 +MK
ζ2 +MK

ζ3

= hNK

(
aKζ1M̃x2 + aKζ2M̃y2 + aKζ3M̃z2 + bKζ1M̃x + bKζ2M̃y + bKζ3M̃z + (cKζ1 + cKζ2 + cKζ3)M̃

)
,

and the matrix MK
ζ1ζ2+ζ1ζ3+ζ2ζ3 can be decomposed the same way. The Stiffness and flux

matrices, K and F , can be decomposed as previously.
Thus we can decompose each element matrices in a linear sum of reference matrices.

MK
ζ1+ζ2 = MK

ζ1 +MK
ζ2

= hNK

(
aKζ1M̃x2 + aKζ2M̃y2 + bKζ1M̃x + bKζ2M̃y + (cKζ1 + cKζ2)M̃

)
,

and the matrix MK
ζ1ζ2

can be decomposed the same way. The Stiffness and flux matrices,
K and F , can be decomposed as previously.
Thus we can decompose each element matrices in a linear sum of reference matrices.

C.1.4 Time Discretization

ρKM
K u

K
n+1 − 2uKn + uKn−1

∆t2 + ρKM
K
ζ1+ζ2+ζ3

uKn+1 − uKn−1
∆t

+ ρKM
K
ζ1ζ2+ζ1ζ3+ζ2ζ3

uKn+1 + 2uKn + uKn−1
4 = Θ1(un,

φn+ 1
2

+ φn− 1
2

2 ,
ψn+ 1

2
+ ψn− 1

2

2 ),

MK
φK
n+ 1

2
− φK

n− 1
2

∆t = Θ2(un,
φn+ 1

2
+ φn− 1

2

2 ,
ψn+ 1

2
+ ψn− 1

2

2 ),

ψK
n+ 1

2
− ψK

n− 1
2

∆t = uKn .
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Hence, if we rewrite these equations in an iterative manner, we obtain

ρK(MK + ∆tMK
ζ1+ζ2+ζ3 + ∆t2

4 MK
ζ1ζ2+ζ1ζ3+ζ2ζ3)uKn+1 =

ρK(2MK − ∆t2

2 MK
ζ1ζ2+ζ1ζ3+ζ2ζ3)uKn

+ ρK(−MK + ∆tMK
ζ1+ζ2+ζ3 −

∆t2

4 MK
ζ1ζ2+ζ1ζ3+ζ2ζ3)uKn−1

+ ∆t2Θ1(un,
φn+ 1

2
+ φn− 1

2

2 ,
ψn+ 1

2
+ ψn− 1

2

2 ),

MKφK
n+ 1

2
= MKφK

n− 1
2

+ ∆tΘ2(un,
φn+ 1

2
+ φn− 1

2

2 ,
ψn+ 1

2
+ ψn− 1

2

2 ),

ψK
n+ 1

2
= ψK

n− 1
2

+ ∆tuKn .

159






	Contents
	Introduction
	Presentation of the context
	Objectives and contributions of the thesis
	Brief introduction to elastodynamic
	The linear isotropic elastic model
	Wave types


	Discontinuous Galerkin for elastodynamic
	Introduction
	Model problem
	Discontinuous Galerkin approximations of the elasticity operator
	Properties of a "good" discontinuous Galerkin approximation
	Construction of interior penalty discontinuous Galerkin approximations
	Properties of interior penalty discontinuous Galerkin approximations
	New optimized penalty term and coercivity

	The IPDG methods for the elastodynamic equation in the time domain
	Semi-discrete IPDG approximation
	Local DG formulation

	Full discretization of the discontinuous Galerkin approximation

	Plane wave analysis
	Dispersion relation formulation
	Dispersion analysis
	Stability condition formulation
	CFL conditions
	Comparing optimized and standard penalties
	Dependency of the CFL condition with the penalty parameter

	Considerations on the computational and memory costs of DG methods

	Stability results for non-conforming heterogeneous media
	Conclusion

	PML for the second order elastodynamic equation
	Introduction
	Perfectly Matched Layers Model
	General ideas
	PML formulation
	Truncation of the PML domain

	Numerical schemes for the PML model
	Discontinuous Galerkin approximation
	Spatial semi-discrete formulation
	Global formulation of the spatial discretization
	Local formulation of the spatial discretization

	Full discretization

	Numerical results
	Homogeneous medium test case
	Impact of the absorption coefficient and of the thickness of the PML
	Stability and impact on the CFL condition

	Simple heterogeneous medium test case

	Conclusion

	Space-time mesh refinement
	Introduction
	Local time stepping method: Diaz-Grote's formulation
	Construction of Diaz-Grote's -exact scheme
	The -exact formulation
	Stability analysis

	Diaz-Grote's local time stepping algorithm
	From the -exact to Diaz-Grote's scheme: the local time stepping algorithm
	Properties of the local time stepping algorithm
	Comparing the -exact and Diaz-Grote's formulation
	Introduction to the halo
	Local formulation of the local time stepping algorithm


	Considerations on the cost of local space-time mesh refinement
	Numerical experiments
	Analysis of time refinement
	Analysis of space refinement
	Analysis of coupled space and time refinement

	Conclusion

	Numerical results
	Introduction
	Few words about the rendering method
	Elastodynamic experiments
	Two-layered medium
	Academic test case for local space-time refinement

	Elasto-acoustic experiments
	Split formulation for elasto-acoustic simulations
	Validation: scattering by a hydrofracture

	Illustrative experiments
	Thin fluid-filled crack
	Diffracting points
	Corridor of hydrofractures

	Conclusion

	Implementation and parallelization
	Implementing the discontinuous Galerkin methods
	Local matrices
	Non-conforming local matrices

	Data structure
	Computing the spatial DG approximation

	Parallelization
	Parallelization general ideas
	Shared memory parallelization
	Distributed memory parallelization

	Performances and scalability
	Overview of the computer
	Impact of the size of the subdomains on performances
	MPI performances
	Hybrid OpenMP-MPI performances
	Realistic case performances


	Conclusion

	Conclusion
	General results
	Perspectives

	Sobolev spaces
	Useful formulas

	Elastodynamic Formulas
	Elastodynamic Equations
	Two dimensional space case
	Three dimensional space case

	Dispersion Relation

	PML
	Three dimensional space case
	PML Formulation
	Variational Formulation
	Space Discretization
	Global Formulation of the Space Discretization
	Local Formulation of the Space Discretization

	Time Discretization



