

Optimizing Aerodynamic Design Problems

A. Troeltzsch

Joint work with

S. Gratton, CERFACS, CNES

Ph. L. Toint, University Namur, Belgium

Thanks to

J. Laurenceau, J.-F. Boussuge, CERFACS

M. Meaux, Airbus

Remembering Gene Golub Around the World 2008

In memory of Gene Golub (February 29, 1932 - November 16, 2007)

Problem description

Bound-constrained direct minimization

Description of the methods

Dumerical Experiments in CUTEr (academic testing env.)

Dumerical Experiments in OPTaliA (industrial optimization env.)

Conclusions

(NLP) minimize f(x)subject to $x \in X \cap \{x \in \mathbb{R}^n : c(x) \le 0\}$

- X is a region where f(x) and c(x) can be evaluated by the underlying CFD simulation
- ▶ f, c are expensive black boxes mins, hours, days, weeks
- nonlinear and nonconvex
- Gradient is available (obtained by Adjoint state system)
- Hessian has to be approximated by the optimizer if necessary

- Application: optimize design of a wing shape (collaboration with Airbus)
- Goal: find the **best strategy** to solve these problems
 - Improve existing strategies
 - Direct minimizer DOT
 - BFGS method, CG method
 - Surrogates approach
 - Kriging and Co-Kriging Model Framework
 - Generalize to constraints
- First step: compare direct solver DOT with a set of well-known optimization codes free for academic use

Problem description

Bound-constrained direct minimization

Description of the methods

Dumerical Experiments in CUTEr (academic testing env.)

Dumerical Experiments in OPTaliA (industrial optimization env.)

Conclusions

- Direct minimization:
 - approach to minimize the objective function by evaluating directly the true problem function and/or gradient values at each step
- Comparison: DOT with a set of well-known optimizers (L-BFGS-B, TN-BC, Lancelot, IPOPT, DONLP2)
- Important points for fair comparison:
 - Use the same stopping criteria
 - Parameter choice: usage of default values
 - Use the same information of the function (funct. value, first derivatives)

- Used stopping criteria:
 - Problem solved successfully
 - Infinity norm of projected gradient <= 10e-5</p>
 - Problem not successfully solved
 - Termination by solver:
 - Found no solution
 - Stuck with projected gradient > demanded accuracy
 - Termination by user:
 - Number of iterations > 100000 / 200
 - CPU-Time > 1800 s / 24 h

Problem description

Bound-constrained direct minimization

Description of the methods

Dumerical Experiments in CUTEr (academic testing env.)

Dumerical Experiments in OPTaliA (industrial optimization env.)

Conclusions

- Selection of the solvers (source code available, no Hessian necessary)
 - DOT BFGS Method, Fletcher Reeves Conjugate Gradient Method (Vanderplaats Research & Development, Inc.)
 - L-BFGS-B Limited Memory BFGS Method (Richard H. Byrd, Peihuang Lu, Jorge Nocedal, Ciyou Zhu)
 - TN-BC Truncated Newton Method (Stephen G. Nash)
 - Lancelot B Trust Region method SR1, BFGS, PSB update (Nicholas I. M. Gould, Andrew Conn, Philippe L. Toint) --- <u>at a price for commercial use</u>
 - IPOPT Interior Point Method (Andreas Waechter)
 - DONLP2 SQP Method (Peter Spellucci)

Description of the methods

• Algorithmic components of the solvers

	Framework		Linear algebra		needs
	Line Search	Trust Region	direct	iterative	Hessian approximation
DOT BFGS	Х		Х		yes
DOT FR	Х			х	no
L-BFGS-B	Х		Х		yes
TN-BC	Х			х	yes
Lancelot B		х		х	yes
IPOPT	Х		Х		yes
DONLP2	х		Х		yes

Problem description

Bound-constrained direct minimization

Description of the methods

Numerical Experiments in CUTEr (academic testing env.)

Dumerical Experiments in OPTaliA (industrial optimization env.)

Conclusions

- CUTEr: (a <u>Constrained and Unconstrained Testing Environment revisited</u>)
 - Testing environment to compare optimization and linear algebra solvers
 - Contains a large collection of test problems in SIF (Standard Input Format)
 - Provides ready-to-use interfaces to existing solvers (algorithms are not included, have to be implemented)
 - Possible to create new interfaces
- Overview of used test problems
 - 76 out of 128 bound constrained problems provided by CUTEr
 - Nbr. of variables: 3 to 15625
 - Type of objective function: quadratic (32), sum of squares (19), other (25)

• Results in terms of function + gradient evaluations

	Nbr. of won test cases		
DOT BFGS	2		
DOT FR	1		
L-BFGS-B	9		
TN-BC	1		
Lancelot B SR1	49		
Lancelot B BFGS	38		
Lancelot B PSB	48		
IPOPT	0		

Numerical Experiments in CUTEr

• Results in terms of function + gradient evaluations

Problem description

Bound-constrained direct minimization

Description of the methods

Dumerical Experiments in CUTEr (academic testing env.)

Dumerical Experiments in OPTaliA (industrial optimization env.)

Conclusions

All steps take place in the same environment (virtually)

• Convergence history (each func evaluation) of true Airbus function (n=6)

Numerical Experiments in OPTaliA

• Function and gradient of a one-dimensional Airbus function

Numerical Experiments in OPTaliA

• Function and gradient of a one-dimensional Airbus function

Problem description

Bound-constrained direct minimization

Description of the methods

Dumerical Experiments in CUTEr (academic testing env.)

Dumerical Experiments in OPTaliA (industrial optimization env.)

Conclusions

- Behaviour of solvers on true aerodynamic functions different from academic test cases
- Many local minima
- Noise detected in function and gradient, due to
 Single precision in CFD simulation
 - Truncation of simulation process
- Gradient can be inexact, depending on objective function and parameters in CFD simulation (angle of attack, mach number, coefficients in the adjoint state system)
- Use of surrogates necessary to solve these kind of problems

Problem description

Bound-constrained direct minimization

Description of the methods

Dumerical Experiments in CUTEr (academic testing env.)

Dumerical Experiments in OPTaliA (industrial optimization env.)

Conclusions

- Idea: replace expensive function by a surrogate / model which is (well enough) representing the function
- Advantages: surrogates much cheaper, continuous, differentiable
- Enables the use of sophisticated optimization routines and possibly of more global optimization techniques
- Two general types: Functional models (generated by fitting into sampled data), Physical models (based on simplification of the particular physical system)

General Surrogate Optimization Framework

- Compare / improve state-of-the-art techniques to handle design optimization with surrogates
 - SMF Surrogate Management Framework

[Booker, Dennis, Frank, Serafini, Torczon, and Trosset, A Rigorous Framework for Optimization of Expensive Functions by Surrogates (1999)]

TR – Trust Region Framework

[Conn, Gould, Toint (2000), NASA AIAA papers Alexandrov, Lewis (2000)]

Optimization Using Surrogates

- Surrogates to consider:
 - Response Surface Model

[R.H. Myers, D.C. Montgomery, Response Surface Methodology, second edition, John Wiley & Sons, Inc., 2002]

Neural network

[Howard Demuth, Mark Beale, Neural Network Toolbox User's Guide, The Mathworks, Inc., 1994]

Kriging

[Lophaven, S.N., Nielsen, H.B., Sondergaard, J., DACE: a Matlab Kriging toolbox, version 2.0, 2002]

Radial Basis Function

[Mark A. Abramson, Matlab Toolbox: RBF version 1.0 User's Guide, 2006]

- Surrogates are necessary and very useful in the context of Aerodynamic Design Optimization
- Better surrogates provide better predictions of the real function value and hence fewer expensive function evaluations are needed
- Task:
 - Find suitable surrogate and suitable inner solver which minimizes the surrogate inside a good outer algorithm which minimizes the real function

Thank you for your attention!

