Optimizing
Aerodynamic Design Problems

A. Troeltzsch

Joint work with

S. Gratton, CERFACS, CNES

Ph. L. Toint, University Namur, Belgium
Thanks to

CEFLCS J. Laurenceau, J.-F. Boussuge, CERFACS
M. Meaux, Airbus




Remembering Gene Golub Around the Worid 2008

B etaga

In memory of Gene Golub
(February 29, 1932 - November 16, 2007)

CERFLCS




Outline

o Problem description

o Bound-constrained direct minimization

o Description of the methods

o Numerical Experiments in CUTEr (academic testing env.)

o Numerical Experiments in OPTaliA (industrial optimization env.)
o Conclusions

o Outlook

CERFLCS




Problem description

minimize f(x)

(NLF) subjectto xOXn {xOR":c(x)<0}

» X IS a region where f(x) and c(x) can be evaluated by the
underlying CFD simulation

» f, c are expensive black boxes — mins, hours, days, weeks
» nonlinear and nonconvex

» Gradient is available (obtained by Adjoint state system)

» Hessian has to be approximated by the optimizer if
necessary
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Problem description

* Application: optimize design of a wing shape (collaboration with Airbus)
* Goal: find the best strategy to solve these problems

» Improve existing strategies

— Direct minimizer DOT
e BFGS method, CG method

— Surrogates approach
* Kriging and Co-Kriging Model Framework

» Generalize to constraints

* First step: compare direct solver DOT with a set of well-known
optimization codes — free for academic use
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Direct minimization

* Direct minimization:

» approach to minimize the objective function by evaluating
directly the true problem function and/or gradient values at each
step

* Comparison: DOT with a set of well-known optimizers
(L-BFGS-B, TN-BC, Lancelot, IPOPT, DONLP2)

* Important points for fair comparison:
» Use the same stopping criteria
» Parameter choice: usage of default values

» Use the same information of the function (funct. value, first

derivatives) CEFLCS




Direct minimization

* Used stopping criteria:

» Problem solved successfully
— Infinity norm of projected gradient <= 10e-5

» Problem not successfully solved

— Termination by solver:

* Found no solution

* Stuck with projected gradient > demanded accuracy
— Termination by user:

* Number of iterations > 100000 / 200

e CPU-Time >1800s/24h
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Description of the methods

* Selection of the solvers (source code available, no Hessian necessary)

» DOT — BFGS Method, Fletcher Reeves Conjugate Gradient Method

(Vanderplaats Research & Development, Inc.)

» L-BFGS-B — Limited Memory BFGS Method
(Richard H. Byrd, Peihuang Lu, Jorge Nocedal, Ciyou Zhu)

» TN-BC — Truncated Newton Method
(Stephen G. Nash)

» Lancelot B — Trust Region method - SR1, BFGS, PSB update

(Nicholas I. M. Gould, Andrew Conn, Philippe L. Toint) --- at a price for commercial use

» IPOPT — Interior Point Method

(Andreas Waechter)

» DONLP2 — SQP Method
(Peter Spellucci) CERFLC)




* Algorithmic components of the solvers

Description of the methods

Framework Linear algebra needs
Line Trust direct iterative Hessian
Search Region approximation
DOT BFGS X X yes
DOT FR X X no
L-BFGS-B X X yes
TN-BC X X yes
Lancelot B X X yes
IPOPT X X yes
DONLP2 X X yes
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Numerical experiments in CUTEr

* CUTEr: (a Constrained and Unconstrained Testing Environment revisited)

» Testing environment to compare optimization and linear algebra
solvers

» Contains a large collection of test problems in SIF (Standard Input
Format)

» Provides ready-to-use interfaces to existing solvers (algorithms are
not included, have to be implemented)

» Possible to create new interfaces

* Overview of used test problems
» 76 out of 128 bound constrained problems provided by CUTEr
» Nbr. of variables: 3 to 15625

» Type of objective function: quadratic (32), sum of squares (19), other
(25)
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Numerical Experiments in CUTEr

* Results in terms of function + gradient evaluations

Nbr. of won test cases

DOT BFGS 2
DOT FR 1
L-BFGS-B 9
TN-BC 1
Lancelot B SR1 49
Lancelot B BFGS 38
Lancelot B PSB 48
IPOPT 0
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Numerical Experiments in CUTEr

* Results in terms of function + gradient evaluations

Performance profile on a subset of CUTEr
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OPTaliA - Numerical shape optimization environment

All steps take place in the same environment (virtually)

Initial shape +

Objective + Shape parameters

\ 4

Optimization

) Algorithm
Parameters to create a 1

new Shape

Mesh generation or
Deformation of the initial Mesh

\ 4

Evaluation of

Objective function (+gradientz!
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Numerical Experiments in OPTaliA
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Numerical Experiments in OPTaliA

* Function and gradient of a one-dimensional Airbus function

Ohjective function value
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Numerical Experiments in OPTaliA

* Function and gradient of a one-dimensional Airbus function

Moise in function over h Fin. differences and Adjoint gradient
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Conclusions

* Behaviour of solvers on true aerodynamic functions different from
academic test cases

* Many local minima

* Noise detected in function and gradient, due to
» Single precision in CFD simulation
» Truncation of simulation process

* Gradient can be inexact, depending on objective function and
parameters in CFD simulation (angle of attack, mach number,
coefficients in the adjoint state system)

* Use of surrogates necessary to solve these kind of problems
CERFLCS
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Optimization Using Surrogates

* |dea: replace expensive function by a surrogate / model which is (well
enough) representing the function

* Advantages: surrogates much cheaper, continuous, differentiable

* Enables the use of sophisticated optimization routines and possibly of
more global optimization techniques

* Two general types: Functional models (generated by fitting into
sampled data), Physical models (based on simplification of the
particular physical system)
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Optimization Using Surrogates

General Surrogate Optimization Framework

A A

Generate Surrogate s;

'

Minimize s; to find x4

l New step
Evaluate f at x4

Recalibrate s;

FOck1) < F(xy) ?

l yes

Convergence of f at x, .4 ?

no

no
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Optimization Using Surrogates

* Compare / improve state-of-the-art techniques to handle
design optimization with surrogates

» SMF — Surrogate Management Framework

[Booker, Dennis, Frank, Serafini, Torczon, and Trosset, A Rigorous
Framework for Optimization of Expensive Functions by Surrogates
(1999)]

» TR — Trust Region Framework

[Conn, Gould, Toint (2000), NASA AIAA papers Alexandrov, Lewis
(2000)]
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Optimization Using Surrogates

* Surrogates to consider:

» Response Surface Model

[R.H. Myers, D.C. Montgomery, Response Surface Methodology, second edition, John
Wiley & Sons, Inc., 2002]

» Neural network

[Howard Demuth, Mark Beale, Neural Network Toolbox User's Guide, The Mathworks, Inc.,
1994]

» Kriging
[Lophaven, S.N., Nielsen, H.B., Sondergaard, J., DACE: a Matlab Kriging toolbox, version
2.0, 2002]

» Radial Basis Function
[Mark A. Abramson, Matlab Toolbox: RBF version 1.0 User’s Guide, 2006]
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Optimization Using Surrogates

* Surrogates are necessary and very useful in the context of
Aerodynamic Design Optimization

* Better surrogates provide better predictions of the real
function value and hence fewer expensive function
evaluations are needed

* Task:

» Find suitable surrogate and suitable inner solver which
minimizes the surrogate inside a good outer algorithm
which minimizes the real function
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Thank you for your attention!
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