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Problem description

� X is a region where f(x) and c(x) can be evaluated by the  
underlying CFD simulation

� f, c are expensive black boxes – mins, hours, days, weeks
� nonlinear and nonconvex

� Gradient is available (obtained by Adjoint state system)
� Hessian has to be approximated by the optimizer if 

necessary

0}c(x):R{xXx   to subject
f(x) minimize

n ≤∈∩∈
(NLP)



Problem description

• Application: optimize design of a wing shape (collaboration with Airbus)

• Goal: find the best strategy to solve these problems

�Improve existing strategies
– Direct minimizer DOT

• BFGS method, CG method

– Surrogates approach
• Kriging and Co-Kriging Model Framework

�Generalize to constraints

• First step: compare direct solver DOT with a set of well-known 
optimization codes – free for academic use
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Direct minimization

• Direct minimization: 
�approach to minimize the objective function by evaluating

directly the true problem function and/or gradient values at each 
step

• Comparison: DOT with a set of well-known optimizers            
(L-BFGS-B, TN-BC, Lancelot, IPOPT, DONLP2)

• Important points for fair comparison:
�Use the same stopping criteria
�Parameter choice: usage of default values
�Use the same information of the function (funct. value, first 

derivatives)



Direct minimization

• Used stopping criteria:

�Problem solved successfully
– Infinity norm of projected gradient <= 10e-5

�Problem not successfully solved
– Termination by solver:

• Found no solution
• Stuck with projected gradient > demanded accuracy

– Termination by user:
• Number of iterations > 100000 / 200
• CPU-Time > 1800 s / 24 h 
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Description of the methods

• Selection of the solvers (source code available, no Hessian necessary)

�DOT – BFGS Method, Fletcher Reeves Conjugate Gradient Method
(Vanderplaats Research & Development, Inc.)

�L-BFGS-B – Limited Memory BFGS Method
(Richard H. Byrd, Peihuang Lu, Jorge Nocedal, Ciyou Zhu)

�TN-BC – Truncated Newton Method
(Stephen G. Nash)

�Lancelot B – Trust Region method - SR1, BFGS, PSB update
(Nicholas I. M. Gould, Andrew Conn, Philippe L. Toint) --- at a price for commercial use

�IPOPT – Interior Point Method
(Andreas Waechter)

�DONLP2 – SQP Method
(Peter Spellucci)



Description of the methods

• Algorithmic components of the solvers
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Numerical experiments in CUTEr

• CUTEr: (a Constrained and Unconstrained Testing Environment revisited)
�Testing environment to compare optimization and linear algebra 

solvers
�Contains a large collection of test problems in SIF (Standard Input 

Format)
�Provides ready-to-use interfaces to existing solvers (algorithms are 

not included, have to be implemented) 
�Possible to create new interfaces 

• Overview of used test problems
�76 out of 128 bound constrained problems provided by CUTEr
�Nbr. of variables: 3 to 15625
�Type of objective function: quadratic (32), sum of squares (19), other 

(25)



Numerical Experiments in CUTEr

• Results in terms of function + gradient evaluations

0IPOPT
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Numerical Experiments in CUTEr

• Results in terms of function + gradient evaluations
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OPTaliA - Numerical shape optimization environment

All steps take place in the same environment (virtually)

Optimization 

Algorithm
Parameters to create a 

new Shape

Mesh generation or 

Deformation of the initial Mesh

Evaluation of                  

Objective function (+gradient)

Optimal shape

Initial shape +

Objective + Shape parameters

Time consuming



Init

MeshDef

Param

Convert

Convert

elsA

PostProcess

OptManager

elsA
Adjoint

OPTaliA – Optimization Scenario 



Numerical Experiments in OPTaliA

• Convergence history (each func evaluation) of true Airbus function (n=6)



Numerical Experiments in OPTaliA

• Function and gradient of a one-dimensional Airbus function



Numerical Experiments in OPTaliA

• Function and gradient of a one-dimensional Airbus function
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Conclusions

• Behaviour of solvers on true aerodynamic functions different from 
academic test cases 

• Many local minima

• Noise detected in function and gradient, due to
�Single precision in CFD simulation
�Truncation of simulation process

• Gradient can be inexact, depending on objective function and 
parameters in CFD simulation (angle of attack, mach number, 
coefficients in the adjoint state system)

• Use of surrogates necessary to solve these kind of problems



Outline

� Problem description

� Bound-constrained direct minimization

� Description of the methods

� Numerical Experiments in CUTEr (academic testing env.)

� Numerical Experiments in OPTaliA (industrial optimization env.)

� Conclusions 

� Outlook



Optimization Using Surrogates

• Idea: replace expensive function by a surrogate / model which is (well 
enough) representing the function

• Advantages: surrogates much cheaper, continuous, differentiable

• Enables the use of sophisticated optimization routines and possibly of 
more global optimization techniques

• Two general types: Functional models (generated by fitting into 
sampled data), Physical models (based on simplification of the 
particular physical system)



Optimization Using Surrogates

Generate Surrogate sf

Minimize sf to find xk+1

Evaluate f at xk+1

Recalibrate sf

f(xk+1) < f(xk) ?
no

yes

Convergence of f at xk+1 ?
no

New step

General Surrogate Optimization Framework



Optimization Using Surrogates

• Compare / improve state-of-the-art techniques to handle 
design optimization with surrogates

�SMF – Surrogate Management Framework
[Booker, Dennis, Frank, Serafini, Torczon, and Trosset,  A Rigorous 

Framework for Optimization of Expensive Functions by Surrogates 
(1999)]

�TR – Trust Region Framework
[Conn, Gould, Toint (2000), NASA AIAA papers Alexandrov, Lewis 

(2000)]



Optimization Using Surrogates

• Surrogates to consider:

�Response Surface Model
[R.H. Myers, D.C. Montgomery, Response Surface Methodology, second edition, John 

Wiley & Sons, Inc., 2002]

�Neural network
[Howard Demuth, Mark Beale, Neural Network Toolbox User's Guide, The Mathworks, Inc., 

1994]

�Kriging
[Lophaven, S.N., Nielsen, H.B., Sondergaard, J., DACE: a Matlab Kriging toolbox, version 

2.0, 2002]

�Radial Basis Function
[Mark A. Abramson, Matlab Toolbox: RBF version 1.0 User’s Guide, 2006]



Optimization Using Surrogates

• Surrogates are necessary and very useful in the context of 
Aerodynamic Design Optimization

• Better surrogates provide better predictions of the real 
function value and hence fewer expensive function 
evaluations are needed

• Task: 
�Find suitable surrogate and suitable inner solver which 

minimizes the surrogate inside a good outer algorithm
which minimizes the real function



Thank you for your attention!


