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Linear system

We wish to solve large sparse systems

Ax = b A ∈ IRN×N

to high accuracyusingmixed precisionarithmetic. For example, we might
want to achieve double precision accuracy while using a single precision
factorization of the matrixA. We will use this lower accuracy factorization
as a preconditioner forFGMRES.
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Mixed precision arithmetic

Very fast 32-bit arithmetic unit
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Very fast 32-bit arithmetic unit

We use 32-bit arithmetic for factorization and triangular solves
M is thefl(LU) of A and||M − A|| ≤ c(N)

√
ε||A||

(ε = 2.2 × 10−16)
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Mixed precision arithmetic

Very fast 32-bit arithmetic unit

We use 32-bit arithmetic for factorization and triangular solves
M is thefl(LU) of A and||M − A|| ≤ c(N)

√
ε||A||

(ε = 2.2 × 10−16)

If κ(A)
√

ε > 1 then Iterative Refinement may not converge.FGMRES
does

FGMRES backward stable

GMRES is not always backward stable
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GMRES and FGMRES

Let r0 = b − Ax0 andKk(A, r0) be the usual Krylov space
GMRES

min
x∈x0+Kk(A,r0)

||r0 − Ax||2 r0 − Axk⊥AKk(A, r0)
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GMRES

min
x∈x0+Kk(A,r0)

||r0 − Ax||2 r0 − Axk⊥AKk(A, r0)

GMRES Right preconditioning

AM−1y = b



















(AM−1, r0) −→ (A, r0)

Kk(AM−1, r0) −→ Kk(A, r0)

xk = M−1yk

AM−1Vk = Vk+1Hk
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(AM−1, r0) −→ (A, r0)

Kk(AM−1, r0) −→ Kk(A, r0)

xk = M−1yk

AM−1Vk = Vk+1Hk

Flexible GMRES Right preconditioning

Zk −→ Kk(A, r0) xk = x0 + Zkyk AZk = Vk+1Hk

Zk = span(r0, AM−1
1 r0, . . . ,





k−1
∏

j=0

AM−1
j



 r0)
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Right preconditioned GMRES and Flexible
GMRES

procedure [x] = right_Prec_GMRES(A,M,b)

x0 = M−1b, r0 = b − Ax0 andβ = ||r0||

v1 = r0/β; k = 0;

while ||rk|| > µ(||b|| + ||A|| ||xk||)

k = k + 1;

zk = M−1vk ; w = Azk ;

for i = 1, . . . , k do

hi,k = vT
i w ;

w = w − hi,kvi ;

end for;

hk+1,k = ||w||;

vk+1 = w/hk+1,k ;

Vk = [v1, . . . , vk];

Hk = {hi,j}1≤i≤j+1;1≤j≤k ;

yk = arg miny ||βe1 − Hky||;

xk = x0 + M−1Vkyk andrk = b − Axk ;

end while ;

end procedure.

procedure [x] =FGMRES(A,Mi,b)

x0 = M
−1
0 b, r0 = b − Ax0 andβ = ||r0||

v1 = r0/β; k = 0;

while ||rk|| > µ(||b|| + ||A|| ||xk||)

k = k + 1;

zk = M
−1
k

vk ; w = Azk ;

for i = 1, . . . , k do

hi,k = vT
i w ;

w = w − hi,kvi ;

end for;

hk+1,k = ||w||;

vk+1 = w/hk+1,k ;

Zk = [z1, . . . , zk ]; Vk = [v1, . . . , vk ];

Hk = {hi,j}1≤i≤j+1;1≤j≤k ;

yk = arg miny ||βe1 − Hky||;

xk = x0 + Zkyk andrk = b − Axk ;

end while ;

end procedure.
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Roundoff error

Theroundoff error analysis of both FGMRES and GMREScan be done in
three stages:
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Roundoff error

Theroundoff error analysis of both FGMRES and GMREScan be done in
three stages:

1. Error analysis of the Arnoldi-Krylov process (Giraud andLangou,
Björck and Paige, and Paige, Rozložník, and Strakoš).
MGS applied to

z1 = M−1
1 r0/||r0||, zj = M−1

j vj

C(k) = (r0, Az1, Az2, . . . , Azk) = Vk+1Rk

Rk =

















||r0|| H1,1 . . . H1,k

0 H2,1 . . . H2,k

0 0 . . . H3,k

...
...

...
...

0 0 0 Hk+1,k
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Roundoff error

Theroundoff error analysis of both FGMRES and GMREScan be done in
three stages:

1. Error analysis of the Arnoldi-Krylov process (Giraud andLangou,
Björck and Paige, and Paige, Rozložník, and Strakoš).

2. Error analysis of theGivens process used on the upper Hessenberg
matrixHk in order to reduce it to upper triangular form.

3. Error analysis of the computation ofxk in FGMRES and GMRES.

The first two stages of the roundoff error analysis are the same for both
FGMRES and GMRES. Thelast stage is specificto each algorithm.
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Roundoff error analysis of
FGMRES

Theorem 1. If we apply FGMRES to solve Ax = b, using finite-precision arithmetic
conforming to IEEE standard with relative precision ε and under the hypotheses:

2.12(n + 1)ε < 0.01 and c0(n)εκ(C(k)) < 0.1 ∀k

where

c0(n) = 18.53n
3

2

and

|s̄k| < 1 − ε, ∀k,

where s̄k are the sines computed during the Givens algorithm applied to H̄k in

order to compute ȳk, then there exists k̂, k̂ ≤ n such that, ∀k ≥ k̂, we have

||b − Ax̄k|| ≤ c1(n, k)ε
(

||b|| + ||A|| ||x̄0||+
||A|| || |Z̄k | |ȳk| || + ||AZ̄k|| ||ȳk||

)

+ O(ε2).
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The symmetric indefinite case

A particular and important case arises in saddle-point problems where the
coefficient matrix is of the form

A =





H B

BT
0
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Why FGMRES for symmetric case?

The computed values of Gaussian factorizationL̂ D̂ are affected by
roundoff:M = L̂D̂L̂T and||E|| = ||M − A|| ≤ c(n)ε||A|| with
E 6= ET
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Why FGMRES for symmetric case?

The computed values of Gaussian factorizationL̂ D̂ are affected by
roundoff:M = L̂D̂L̂T and||E|| = ||M − A|| ≤ c(n)ε||A|| with
E 6= ET

ThusM−1A 6= AM−1 and the preconditioned matrix is non symmetric

FGMRES is then the only way
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Multifrontal approach: HSL_MA57

In order to reduce the fill-in during theLDLT factorization

We scale and reorder the entries ofA
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An ALTERNATIVE is to useStatic Pivoting, by replacing the pivotak

failing the test byak + τ and CONTINUE.
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Multifrontal approach: HSL_MA57

In order to reduce the fill-in during theLDLT factorization

We scale and reorder the entries ofA

We weaken the numerical pivot strategy by using a threshold

However, also this can be unsatisfactory: the numerical pivot strategy is
still disrupting the ordering we have chosen and increases the fill-in

An ALTERNATIVE is to useStatic Pivoting, by replacing the pivotak

failing the test byak + τ and CONTINUE.

We thus have factorizedA + E = LDLT = M where|E| ≤ τI

Several codes use (or have an option for) this device:
SuperLU (Demmel and Li)
PARDISO (Gärtner and Schenk)
MA57 (Duff and Pralet)
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GMRES vs FGMRES

GMRES error bounds depend on|| |L̂| |D̂| |L̂T | ||. (Arioli, Duff, Gratton, and Pralet SISC 2007)
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GMRES vs FGMRES

GMRES error bounds depend on|| |L̂| |D̂| |L̂T | ||. (Arioli, Duff, Gratton, and Pralet SISC 2007)

For sparse matrices|| |L̂| |D̂| |L̂T | || can be much larger than||A||.
For the static pivot the growth can be dramatic.

Theorem 1 shows that FGMRES does not depend on|| |L̂| |D̂| |L̂T | ||.
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Roundoff error right preconditioned
GMRES

Theorem 2
We assume of applying Iterative Refinement for solving M(x̄k − x̄0) = V̄kȳk at
last step.

Under the Hypotheses of Theorem 1 and c(n)ε κ(M) < 1

∃k̂, k̂ ≤ n

such that, ∀k ≥ k̂, we have

||b − Ax̄k|| ≤ c1(n, k)ε
{

||b|| + ||A|| ||x̄0|| + ||A|| ||Z̄k|| ||M(x̄k − x̄0)||+
||AM−1|| ||M || ||x̄k − x̄0||+
||AM−1|| || |L̂| |D̂| |L̂T | || ||M(x̄k − x̄0)||

}

+ O(ε2).
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Test Problems

n nnz Description

CONT_201 80595 239596 KKT matrix Convex QP (M2)

CONT_300 180895 562496 KKT matrix Convex QP (M2)

TUMA_1 22967 76199 Mixed-Hybrid finite-element

Test problems
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|| |L̂| |D̂| |L̂T | || vs1/τ
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Numerical experiments
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Numerical experiments using mixed preci-
sion
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Test Environment

A = QDW with Q andW random orthogonal matricesD = diag{di}

di = 10−c( i−1

n−1)
γ
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Test Environment

A = QDW with Q andW random orthogonal matricesD = diag{di}

di = 10−c( i−1

n−1)
γ

Thesingular valueslie between1 and10−c, thecondition numberis
10c, and the distribution can be skewed by alteringγ.
γ equal to1 gives a log-linear uniform distribution, values ofγ greater
than1 skew towards 1 and values ofγ less than1 towards10−c.
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Test Environment

A = QDW with Q andW random orthogonal matricesD = diag{di}

di = 10−c( i−1

n−1)
γ

SelectedSparseMatrices
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Test Environment

A = QDW with Q andW random orthogonal matricesD = diag{di}

di = 10−c( i−1

n−1)
γ

SelectedSparseMatrices

Forward and backward substitution

Sparse Days,Cerfacs, Toulouse, June 2008 – p.18/21



Test Environment

A = QDW with Q andW random orthogonal matricesD = diag{di}

di = 10−c( i−1

n−1)
γ

SelectedSparseMatrices

Forward and backward substitution
the vector̄zk is computed using the forward and backward
substitution algorithm insingle precisionon the single precision
conversion of vector̄vk ,
the vector̄zk is computed using the forward and backward
substitution algorithm indouble precisionon v̄k after we converted
the factorsL andU to double precision.
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Random dense matrices.
n = 200, c = 8.2, γ = 1

Single Precision Double Precision

Total It Inner it SR ||AZ̄
k̂
|| || |Z̄

k̂
| |ȳ

k̂
| || Total It Inner it SR ||AZ̄

k̂
|| || |Z̄

k̂
| |ȳ

k̂
| ||

26 26 2.5e-16 7.4e+00 1.9e+02 20 20 1.7e-16 8.0e+00 7.3e+01

27 27 6.6e-16 4.2e+00 4.7e+02 20 20 2.0e-16 3.9e+00 5.9e+01

25 25 1.7e-16 3.3e+00 5.9e+01 20 20 2.7e-16 3.5e+00 4.0e+01

52 52 3.9e-15 4.6e+01 3.0e+03 20 20 1.1e-15 4.5e+01 4.7e+02

88 36 1.1e-16 4.6e+01 6.0e-04 25 5 1.5e-16 4.8e+01 1.5e-05

24 24 1.3e-16 2.0e+00 3.8e+01 20 20 2.6e-16 2.2e+00 2.8e+01

31 31 2.5e-16 8.8e+00 1.7e+02 20 20 1.9e-16 1.1e+01 8.4e+01

24 24 2.0e-16 3.5e+00 1.2e+02 20 20 2.0e-16 3.9e+00 6.9e+01

24 24 1.8e-16 2.7e+00 8.8e+01 20 20 6.2e-16 3.0e+00 5.8e+01

26 26 2.7e-16 3.2e+00 1.5e+02 20 20 3.2e-16 3.5e+00 3.6e+01

44 44 5.7e-16 1.9e+01 5.9e+02 20 20 4.0e-16 2.0e+01 1.6e+02

(SR =
||b − Ax

k̂
||

(||A|| ||x
k̂
|| + ||b||) )
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MA57 sparse tests using mixed precision

Matrix Id n Iterative refinement FGMRES

Total It SR Total It Inner it SR ||AZ̄
k̂
|| || |Z̄

k̂
| |ȳ

k̂
| ||

bcsstk20 485 30 2.1e-15 2 2 1.4e-11 1.7e+00 4.6e+02

κ(A) = 5. 109 4 2 3.4e-14 1.6e+00 3.8e-01

6 2 7.2e-17 1.6e+00 5.6e-04

bcsstm27 1224 22 1.6e-15 2 2 5.8e-11 1.7e+00 2.7e+01

κ(A) = 5. 109 4 2 1.8e-11 6.3e-01 1.3e+00

6 2 6.0e-13 2.0e+00 7.6e-02

8 2 1.5e-13 1.7e+00 1.0e-02

10 2 1.2e-14 1.7e+00 1.9e-03

12 2 2.6e-15 1.8e+00 1.7e-04

14 2 1.8e-16 1.6e+00 4.3e-05

s3rmq4m1 5489 16 2.2e-15 2 2 3.5e-11 1.0e+00 8.6e+01

κ(A) = 4. 109 4 2 2.1e-13 1.1e+00 3.2e-01

6 2 4.5e-15 1.7e+00 6.4e-03

8 2 1.1e-16 1.6e+00 1.3e-04

s3dkq4m2 90449 53 1.1e-10 10 10 6.3e-17 1.2e+00 1.2e+03

κ(A) = 7. 1010

Sparse matrices results (SR =
||b − Ax

k̂
||

(||A|| ||x
k̂
|| + ||b||) )
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Summary

IR (PLAN A) does not always work with mixed precision
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