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We wish to solve large sparse systems

to high accuracywsingmixed precisiorarithmetic. For example, we might
want to achieve double precision accuracy while using alsipgecision
factorization of the matripd. We will use this lower accuracy factorization
as a preconditioner faFGMRES
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Mixed precision arithmetic

Very fast 32-bit arithmetic unit

We use 32-bit arithmetic for factorization and triangulaives
M isthe fI(LU) of A and||M — A|| < ¢(N)+/2||Al|
(e = 2.2 x 10719)
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Mixed precision arithmetic

Very fast 32-bit arithmetic unit

We use 32-bit arithmetic for factorization and triangulaives
M isthe fI(LU) of A and||M — A|| < ¢(N)+/2||Al|
(e = 2.2 x 10719)

If k(A)\/e > 1 then lterative Refinement may not conver§g&MRES
does

FGMRES backward stable
GMRES is not always backward stable
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Letrg = b — Axg andi (A, rg) be the usual Krylov space
GMRES

min  |jro — Az|ls 10— Az LAKR(A,10)
$E$0+’Ck(A,T0)
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Letrg = b — Axg andi (A, rg) be the usual Krylov space
GMRES

min ro — Ax ro — Arp LAKL(A,

GMRES Right preconditioning
( (AM_17TO) - (A7T0)
,Ck(AM_17TO) - ]Ck(Aa 740)

xp = Mty
. AM YV, = Vi Hy,

AM ty=b |«
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Letrg = b — Axg andi (A, rg) be the usual Krylov space
GMRES

min  |jro — Az|ls 10— Az LAKR(A,10)
$€$0+’Ck(A,T0)

GMRES Right preconditioning
( (AM_17TO) - (A7T0)
ICk(AM_17TO) - ]Ck(Aa 740)

xp = Mty
. AM YV, = Vi Hy,

AM ty=b |«

Flexible GMRES Right preconditioning
Zy — Krp(A,r0) ok = 20 + Zpyr  AZp = Vi1 Hy,

Zy, = span(ro, AMl_lro, o H AM | 7o)
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procedure [x] = right_ Prec. GMRES(A,M,b) procedure [x] =FGMRES(AV/ ; ,b)
mOZM_]‘b,T‘Ozb—AmOandB:||7"0|| xO:Mo_lme:b—AwOandB:||r0||
v1 :7"0/,8;k=0; V1 :To/ﬁ;kzo;
while [[rg [| > w(lIb]| + [[A[] [zg]]) while [[rg [| > w(l[o]| + [|A[] [zg]])

k=k+ 1; k=k+ 1;
—1 . . —
Zk:M Uk,w:Azk, zk:Mk 1'Uk;w:AZk;
fore = 1,..., kdo fore = 1 k do
e ey
e = vi wi hik =v] w;
w:w_hi,kvi; w:w—hi kUi
end for; end for; ,
higi1,6 = lwll higi1, 6 = lHwll;
Vg1 = w/hp 41 ks Vel = w/h g1k
Vk; :[’U]_,...,’Uk]; Zk: — [zl,...,zk];Vk :[’U]_,...,’Uk];

Hp =1{hijh1<i<j+1;1<5<k;
Y = argming ||Beqy — Hpyl|l[;
T = X + M_]'kak andrk =b — Aick;
end while ;
end procedure.

Hi = 1{hijh1<i<j+1;1<5<k’
Yy = argming ||Be; — Hpyll;
T = XQ + Zkiyk andrk =b — Amk;
end while ;
end procedure.
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Roundoff error

Theroundoff error analysis of both FGMRES and GMRE&ah be done in
three stages
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Roundoff error

Theroundoff error analysis of both FGMRES and GMRE&ah be done in
three stages

1. Error analysis of the Arnoldi-Krylov process (Giraud drahgou,
Bjorck and Paige, and Paige, Rozloznik, and Strakos).
MGS applied to

2= My Yo/ |Iroll, 7 =

C(k) — (T07 Azh AZQ7 O 7AZ]€) — Vk-l—le

_HT()H H1’1 Hl,k
0 Hep ... Hyy
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Theroundoff error analysis of both FGMRES and GMRE&ah be done in

three stages

1. Error analysis of the Arnoldi-Krylov process (Giraud drahgou,
Bjorck and Paige, and Paige, Rozloznik, and Strakos).

2. Error analysis of th&ivens process used on the upper Hessenberg
matrix H;, in order to reduce it to upper triangular form.
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% Rutherford Appleton Laboratory RoundOff error

Theroundoff error analysis of both FGMRES and GMRE&ah be done in

three stages

1. Error analysis of the Arnoldi-Krylov process (Giraud drahgou,
Bjorck and Paige, and Paige, Rozloznik, and Strakos).

2. Error analysis of th&ivens process used on the upper Hessenberg
matrix H;, in order to reduce it to upper triangular form.

3. Error analysis of the computation of in FGMRES and GMRES.

The first two stages of the roundoff error analysis are theestmnboth
FGMRES and GMRES. Thiast stage is specifto each algorithm.

Sparse Days,Cerfacs, Toulouse, June 2008 — p.7/21



i Y Roundoff error analysis of
o Rutherford Appleton Laboratory
FGMRES

Theorem 1. If we apply FGMRES to solve Az = b, using finite-precision arithmetic
conforming to IEEE standard with relative precision € and under the hypotheses:

212(n+1)e < 0.01  and  co(n)er(C™) < 0.1 V&

where

[\ [9§

co(n) = 18.53n

and
’5]{‘ <1—¢, VEk,

where S are the sines computed durlng the Givens algorithm applled to Hk in
order to compute ¥, then there exists k k < n such that, Vk > k. we have

b= Azl| < ex(n, k)e(]16l] + || All 20| [+
A1 2 il 11+ 11AZi 3] ) + O(2).
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A particular and important case arises in saddle-pointlprab where the
coefficient matrix is of the form
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The computed values of Gaussian factorizaiioP are affected by
roundoff: M = LDL' and||E|| = ||[M — Al|| < ¢(n)e||A|| with
E + ET
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-wr Rutherford Appleton Laboratory Why FG M R ES for Sym metTIC Case?

The computed values of Gaussian factorizaiioP are affected by
roundoff: M = LDLT and||E|| = ||[M — A|| < ¢(n)e||Al| with

E + ET

ThusM~'A # AM~! and the preconditioned matrix is non symmetric
FGMRES is then the only way
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In order to reduce the fill-in during theD L' factorization
We scale and reorder the entriesf
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In order to reduce the fill-in during theD L' factorization
We scale and reorder the entries/4hf
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However, also this can be unsatisfactory: the numericalt@trategy is
still disrupting the ordering we have chosen and incredse§lt-in
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In order to reduce the fill-in during theD L' factorization
We scale and reorder the entries/4hf
We weaken the numerical pivot strategy by using a threshold
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We scale and reorder the entries/4hf
We weaken the numerical pivot strategy by using a threshold

However, also this can be unsatisfactory: the numericalt@trategy is
still disrupting the ordering we have chosen and incredse§lt-in

An ALTERNATIVE IS to usestatic Pivoting, by replacing the pivot,,
failing the test by, + 7 and CONTINUE.

We thus have factorized + £ = LDL' = M where|E| < 71
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In order to reduce the fill-in during theD L' factorization
We scale and reorder the entries/4hf
We weaken the numerical pivot strategy by using a threshold

However, also this can be unsatisfactory: the numericalt@trategy is
still disrupting the ordering we have chosen and incredse§lt-in

An ALTERNATIVE IS to usestatic Pivoting, by replacing the pivot,,
failing the test by, + 7 and CONTINUE.

We thus have factorized + £ = LDL' = M where|E| < 71
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In order to reduce the fill-in during theD L' factorization
We scale and reorder the entries/4hf
We weaken the numerical pivot strategy by using a threshold

However, also this can be unsatisfactory: the numericalt@trategy is
still disrupting the ordering we have chosen and incredse§lt-in

An ALTERNATIVE IS to usestatic Pivoting, by replacing the pivot,,
failing the test by, + 7 and CONTINUE.

We thus have factorized + £ = LDL' = M where|E| < 71

Several codes use (or have an option for) this device:
mSuperLU (Demmel and Li)

B PARDISO (Gartner and Schenk)

mMAS57 (Duff and Pralet)
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GMRES errOr bOUﬂdS depend qmj;| |ﬁ| |ET| || (Arioli, Duff, Gratton, and Pralet SISC 2007)

Sparse Days,Cerfacs, Toulouse, June 2008 — p.12/21
S



ccccccccccccccccccccccccccccccccccc

% Rutherford A leton Laborator
" " GMRES vs FGMRES

GMRES errOI‘ bOUﬂdS depend qm_iz| |ﬁ| |lA—JT| || (Arioli, Duff, Gratton, and Pralet SISC 2007)
For sparse matricas|L||D||L”| || can be much larger thapA|].

Sparse Days,Cerfacs, Toulouse, June 2008 — p.12/21
S



ccccccccccccccccccccccccccccccccccc

% Rutherford A leton Laborator
" " GMRES vs FGMRES

GMRES errOr bOUﬂdS depend qm_i/| |ﬁ| |lA—JT| || (Arioli, Duff, Gratton, and Pralet SISC 2007)

For sparse matricas|L||D||L”| || can be much larger thapA|].
For the static pivot the growth can be dramatic.

Sparse Days,Cerfacs, Toulouse, June 2008 — p.12/21
S



ccccccccccccccccccccccccccccccccccc

uwr Rutherford Appleton Laboratory

GMRES vs FGMRES

GMRES errOl’ bOUﬂdS depend qm_i/| |ﬁ| |lA—JT| || (Arioli, Duff, Gratton, and Pralet SISC 2007)

For sparse matricas|L||D||L”| || can be much larger thapA|].
For the static pivot the growth can be dramatic.

Theorem 1 shows that FGMRES does not depend (dn |D| |LT||).

Sparse Days,Cerfacs, Toulouse, June 2008 — p.12/21



M.oran Roundoff error right preconditioned
o Rutherford Appleton Laboratory G M R ES

Theorem 2

We assume of applying Iterative Refinement for solving M(i:k — 5:0) = ngk at
last step.

Under the Hypotheses of Theorem 1 and | ¢(n)e k(M) < 1

A

k. k<n
such that, Vk > /2: we have
b — Azl < a(n, k)ﬁ{ [1o1] + 1Al N1Zol| + I[AIl 1| Zx ]| || M (Z1, — Zo)|| +

_|_
JAM Y| |HLI DL [ M (25, — Zo)] } +O(e?).
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Test Problems

n nnz Description

CONT_201| 80595| 239596| KKT matrix Convex QP (M2)
CONT _300|| 180895| 562496 KKT matrix Convex QP (M2)
TUMA 1 22967 | 76199| Mixed-Hybrid finite-element

Test problems
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CONT201 Test example

N

[ —
© |

—+— FGMRES 1=10"°
—6— FGMRES 1=10"*
—%— FGMRES 1=10"°
—%— FGMRES 1=10"°
—&8— FGMRES 1=10"/
—4— FGMRES 1=10"8
—<— FGMRES1=10"°
| | —>—FGMRES1=10"10
—— FGMRES 1= 101!
| | —&— FGMRES 1= 10712
— % FGMRES 1=10"13
| | —%—FGMRES 1=10"%

|
>
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o

[
o
&

[ —
o
®

|
=
o

[
o

I
=
N

=
o

|
=
N

=
o

=
]

Norm of the residual scaled by || A || |IX]| + [|b]]

[
© |

=
[ee]

[
© 1

0 5 10 15 20 25 30 35
Number of iterations

FGMRES on CONT-201 test example
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CONT201 Test example

10 : : . . : : —
S 2Ry BBty e B RS A P e e XX —+—RGMRES 1=10

TR TR i — o RGMRES 1= 107

10 | o 1 | ——RGMRES1=10"
- —»— RGMRES 1=10"°

—8— RGMRES 1 =10’
—<&— RGMRES 1=10"8
—<+— RGMRES 1=10"°
| | —>—RGMRES =101
—<— RGMRES 1=10 1
—A— RGMRES 1= 1012
1 | —*—RGMRES 1=10713
—— RGMRES 1= 10+

Norm of the residual scaled by || A || ||x]| + [|b]]

10_12 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Number of iterations

GMRES on CONT-201 test example
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Test Environment

A = QDW with Q andW random orthogonal matricés = diag{d;}

1—1

4, — 102
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Test Environment

A = QDW with Q andW random orthogonal matricés = diag{d;}

4 = 10~G=r)

Thesingular valuesie betweenl and10~¢, thecondition numbers
10¢, and the distribution can be skewed by altering
~ equal tol gives a log-linear uniform distribution, valuesofyreater
thanl skew towards 1 and values ofless thanl towards10~°.
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Test Environment

A = QDW with Q andW random orthogonal matricés = diag{d;}

4 = 10~G=r)

SelectedsparseMatrices
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Test Environment

A = QDW with Q andW random orthogonal matricés = diag{d;}

4 = 10~G=r)

SelectedsparseMatrices
Forward and backward substitution
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Test Environment

A = QDW with Q andW random orthogonal matricés = diag{d;}

4 = 10~G=r)

SelectedsparseMatrices

Forward and backward substitution

mthe vectorz;,. is computed using the forward and backward
substitution algorithm isingle precisiormon the single precision
conversion of vector, ,

mthe vectorz;,. is computed using the forward and backward
substitution algorithm imlouble precision v;, after we converted
the factorsL andU to double precision.
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Single Precision Double Precision
Total It Inner it SR ||AZIA€|| |||Z}%||y]2;||| Total It Inner it SR ||AZI§:|| |||ZI§:||§I%|||
26 26 2.5e-16 7.4e+00 1.9e+02 20 20 1.7e-16 8.0e+00 7.3e+01
27 27 6.6e-16 4.2e+00 4.7e+02 20 20 2.0e-16 3.9e+00 5.9e+01
25 25 1.7e-16 3.3e+00 5.9e+01 20 20 2.7e-16 3.5e+00 4.0e+01
52 52 3.9e-15 4.6e+01 3.0e+03 20 20 1.1e-15 4.5e+01 4.7e+02
88 36 1.1e-16 4.6e+01 6.0e-04 25 5 1.5e-16 4.8e+01 1.5e-05
24 24 1.3e-16 2.0e+00 3.8e+01 20 20 2.6e-16 2.2e+00 2.8e+01
31 31 2.5e-16 8.8e+00 1.7e+02 20 20 1.9e-16 1.1e+01 8.4e+01
24 24 2.0e-16 3.5e+00 1.2e+02 20 20 2.0e-16 3.9e+00 6.9e+01
24 24 1.8e-16 2.7e+00 8.8e+01 20 20 6.2e-16 3.0e+00 5.8e+01
26 26 2.7e-16 3.2e+00 1.5e+02 20 20 3.2e-16 3.5e+00 3.6e+01
44 44 5.7e-16 1.9e+01 5.9e+02 20 20 4.0e-16 2.0e+01 1.6e+02

H[)—AfiC
([1A[] 1%},

|
|+ 116]])

(SR =
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Matrix Id n Iterative refinement FGMRES
Total It SR Total It Inner it SR ||AZI%|| || |ch| Al
besstk20 485 30 2.1e-15 2 2 1.4e-11 1.7e+00 4.6e+02
k(A) = 5.109 4 2 3.4e-14 1.6e+00 3.8e-01
6 2 7.2e-17 1.6e+00 5.6e-04
besstm27 1224 22 1.6e-15 2 2 5.8e-11 1.7e+00 2.7e+01
k(A) = 5.109 4 2 1.8e-11 6.3e-01 1.3e+00
6 2 6.0e-13 2.0e+00 7.6e-02
8 2 1.5e-13 1.7e+00 1.0e-02
10 2 1.2e-14 1.7e+00 1.9e-03
12 2 2.6e-15 1.8e+00 1.7e-04
14 2 1.8e-16 1.6e+00 4.3e-05
s3rmgam1 5489 16 2.2e-15 2 2 3.5e-11 1.0e+00 8.6e+01
k(A) = 4.10° 2 2.1e-13 1.1e+00 3.2e-01
2 4.5e-15 1.7e+00 6.4-03
2 1.1e-16 1.6e+00 1.3e-04
s3dkg4m2 90449 53 1.1e-10 10 10 6.3e-17 1.2e+00 1.26+03
k(A) = 7.1010

Hb_Ai]}
([ A[] 1%},

|
|+ 1161])

Sparse matrices resultS g =
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