Using multiple breadth-first search to find separators of a graph

Cleve Ashcraft, Roger Grimes LSTC

cleve@lstc.com, grimes@lstc.com

Sparse Days Meeting 2013 at CERFACS June 17-18, 2013 Toulouse, FRANCE

Goal of the work

- $\bullet \, \mathcal{S} \ \text{separates} \ \mathcal{B} \ \text{from} \ \mathcal{W}$
- $\bullet \ \mathcal{E} \cap (\mathcal{B} \times \mathcal{W}) = \emptyset$
- $|\mathcal{S}|$ small, $|\mathcal{B}| \approx |\mathcal{W}|$ good balance
- cost function, quantify goodness of partition
- recursive algorithm, finds low-fill matrix orderings

- "Cold Start" to find separator
- Improve the partition
- Expand to "wide" separator
- Multiple breadth first search
- MPP Experiments
- Extensions and related work

- "Cold Start" to find separator
 - -Single source level sets, George & Liu, 1981
 - Dual source level sets
- Improve the partition
- Expand to "wide" separator
- Multiple breadth first search
- MPP Experiments
- Extensions and related work

- "Cold Start" to find separator
- Improve the partition
 - -Max Flow solver, A. & Liu, 1998
 - "Trimming", one sided improvement
- Expand to "wide" separator
- Multiple breadth first search
- MPP Experiments
- Extensions and related work

- "Cold Start" to find separator
- Improve the partition
- Expand to "wide" separator
 - -Expand by levels, A. & Liu, 1998
 - "Cutting Corners", selective expansion
- Multiple breadth first search
- MPP Experiments
- Extensions and related work

- "Cold Start" to find separator
- Improve the partition
- Expand to "wide" separator
- Multiple breadth first search
 - Find pseudodiameter pair via sequential MBFS
 - Find many pseudodiameter pairs via independent MBFS
- MPP Experiments
- Extensions and related work

- "Cold Start" to find separator
- Improve the partition
- Expand to "wide" separator
- Multiple breadth first search
- MPP Experiments
- Extensions and related work
 - -Linelets preconditioners from CFD
 - -k-way partitions using MIBFS
 - -Beyond bisection

- "Cold Start" to find separator
 - -Single source level sets, George & Liu, 1981
 - -Dual source level sets
- Improve the partition
- Expand to "wide" separator
- Multiple breadth first search
- MPP Experiments
- Extensions and related work

Single source level sets $\longrightarrow (\mathcal{B}, \mathcal{S}, \mathcal{W})$ partition

- $\bullet \operatorname{level}(u) = \operatorname{dist}(u,s)$
- source node in green
- $\bullet \mathcal{B}$ nodes in blue
- $\bullet \mathcal{W}$ nodes in red
- $\bullet \mathcal{S}$ nodes in black
- nodes connected by level set
- separator minimal

Level weights histogram

CIRC351 :level sets and their weights

$\mathsf{GENAND}(V,E)$

- \bullet Find pseudoperipheral node s
- \bullet create compressed tridiagonal matrix from the level sets of s
- \bullet find best $(\mathcal{B}, \mathcal{S}, \mathcal{W})$ partition
- \bullet order *S* last
- $\bullet \; \mathsf{GENAND}(B, E \cap (B \times B))$
- $\bullet \; \mathsf{GENAND}(W, E \cap (W \times W))$

Regular grid, 9-point operator, corner starting node

Dual source level half-sets $\longrightarrow (\mathcal{B}, \mathcal{S}, \mathcal{W})$ partition

- $\bullet \operatorname{level}(u) = \operatorname{dist}(u,s) \operatorname{dist}(u,t)$
- two source nodes in green
- $\bullet \mathcal{B}$ nodes in blue
- $\bullet \mathcal{W}$ nodes in red
- $\bullet \mathcal{S}$ nodes in black
- adjacent half-sets form a separator
- separator NOT minimal

Level weights histogram

CIRC351 : half level sets and their weights

- "Cold Start" to find separator
- Improve the partition
 - -Max Flow solver, A. & Liu, 1998
 - "Trimming", one sided improvement
- Expand to "wide" separator
- Multiple breadth first search
- MPP Experiments
- Extensions and related work

Improve partition $(\mathcal{B}, \mathcal{S}, \mathcal{W})$, using max flow

CIRC351 : width 2, (B,S,W) = (175,58,118), cost 60.826

- compress \mathcal{B} to the source s
- compress \mathcal{W} to the sink t
- expand S into a network of nodes and arcs
- solve the max flow problem
- A. & Liu, SIMAX 1998

Network max flow partition improvement

Improve partition $(\mathcal{B}, \mathcal{S}, \mathcal{W})$, via trimming

- basic idea, choose one of two moves
- while still improving
 - Partition separator S into four disjoint sets. $S = S^{00} \sqcup S^{01} \sqcup S^{10} \sqcup S^{11}$
 - $$\begin{split} \mathcal{S}^{11} &= \partial \mathcal{B} \cap \partial \mathcal{W} & \text{adjacent to both} & (1) \\ \mathcal{S}^{10} &= \partial \mathcal{B} \setminus \partial \mathcal{W} & \text{adjacent to } \mathcal{B}, \text{ not } \mathcal{W} & (2) \\ \mathcal{S}^{01} &= \partial \mathcal{W} \setminus \partial \mathcal{B} & \text{adjacent to } \mathcal{W}, \text{ not } \mathcal{B} & (3) \\ \mathcal{S}^{00} &= \mathcal{S} \setminus \partial \mathcal{W} \setminus \partial \mathcal{B} & \text{not adjacent to } \mathcal{W} \text{ or } \mathcal{B} & (4) \end{split}$$
 - Return best partition from $(\mathcal{B}, \mathcal{S}, \mathcal{W})$, $(\mathcal{B} \cup \mathcal{S}^{10}, \mathcal{S} \setminus \mathcal{S}^{10}, \mathcal{W})$ and $(\mathcal{B}, \mathcal{S} \setminus \mathcal{S}^{01}, \mathcal{W} \cup \mathcal{S}^{01})$

23

- "Cold Start" to find separator
- Improve the partition
- Expand to "wide" separator
 - -Expand by levels, A. & Liu, 1998
 - "Cutting Corners", selective expansion
- Multiple breadth first search
- MPP Experiments
- Extensions and related work

Expand minimal separator to wide separator add layers on one or both sides, A. & Liu, 1998

"Cutting Corners", selective widening

"Cutting Corners", selective widening (continued)

"Cutting Corners", selective widening (continued)

(1)
$$(\mathcal{B}^0, \mathcal{S}^0, \mathcal{W}^0) = \operatorname{coldstart}(\mathcal{V}, \mathcal{E})$$

(2) $(\mathcal{B}^1, \mathcal{S}^1, \mathcal{W}^1) = \operatorname{trim}(\mathcal{B}, \mathcal{S}, \mathcal{W})$
(3) $(\mathcal{B}, \mathcal{S}, \mathcal{W}) = \operatorname{better} \operatorname{of} (\mathcal{B}^0, \mathcal{S}^0, \mathcal{W}^0) \text{ and} (\mathcal{B}^1, \mathcal{S}^1, \mathcal{W}^1)$
(4) while 1
(5) $(\widehat{\mathcal{B}}, \widehat{\mathcal{S}}, \widehat{\mathcal{W}}) = \operatorname{expand}(\mathcal{B}, \mathcal{S}, \mathcal{W})$
(6) $(\mathcal{B}^*, \mathcal{S}^*, \mathcal{W}^*) = \operatorname{improve}(\widehat{\mathcal{B}}, \widehat{\mathcal{S}}, \widehat{\mathcal{W}})$
(7) if $(\mathcal{B}^*, \mathcal{S}^*, \mathcal{W}^*)$ is no better than $(\mathcal{B}, \mathcal{S}, \mathcal{W})$ then
(8) return $(\mathcal{B}, \mathcal{S}, \mathcal{W})$
(9) end if
(10) $(\mathcal{B}, \mathcal{S}, \mathcal{W}) = (\mathcal{B}^*, \mathcal{S}^*, \mathcal{W}^*)$
(11) end while

- "Cold Start" to find separator
- Improve the partition
- Expand to "wide" separator
- Multiple breadth first search
 - Find pseudodiameter pair via sequential MBFS
 - Find many pseudodiameter pairs via independent MBFS
- MPP Experiments
- Extensions and related work

- s and t are a diameter pair if $d(s,t) = \max_{u,v} d(u,v)$
- s and t are a pseudo-diameter pair $d(s,t) = \max_{u} d(s,u) = \max_{u} d(t,u)$
- s = random vertex ; maxdist = 0while 1

drop BFS from sfind t s.t. $d(s,t) \ge d(s,u)$ for all uif d(s,t) = maxdist break s = t; maxdist = d(s,t)end

• fast convergence, 3 or 4 iterations required

- dual source $(\mathcal{B}, \mathcal{S}, \mathcal{W})$ followed by trimming
- used each of the 2055 nodes as the seed
- 582 unique pseudodiameter pairs
- average of 2.99 BFS used for each run, min 2, max 5
- cost varies by a factor of 1.07

- dual source $(\mathcal{B}, \mathcal{S}, \mathcal{W})$ followed by trimming
- used each of the 1628 nodes as the seed
- 1094 unique pseudodiameter pairs
- average of 3.11 BFS used for each run, min 2, max 5
- cost varies by a factor of 2

Some pseudo-diameter pairs are good, some bad

MIBFS – Multiple Independent Breadth First Searches

- k different root vertices
- compute k different distance vectors
- k(k-1)/2 different dual source pairs
- $\bullet k(k-1)/2$ different trimmed partitions
- In MPP distributed memory
 - All k BFS can be done together, graph is that of $I_k \otimes A$
 - Dual source partitions can be done together
 - Trimming can also be done together

37×44 9-pt grid, MIBFS cost distribution

- "Cold Start" to find separator
- Improve the partition
- Expand to "wide" separator
- Multiple breadth first search
- MPP Experiments
- Extensions and related work

- MIBFS "vectorized" across processors
 - cost for k = 4 almost the same as k = 1.
- trimming "vectorized" across processors
- To Do :
 - "vectorize" expansion to wide separators
 - explore several expansions simultaneously
 - gather one network onto one processor, improve via max flow

- "Cold Start" to find separator
- Improve the partition
- Expand to "wide" separator
- Multiple breadth first search
- MPP Experiments
- Extensions and related work
 - -Linelets
 - -Extension of farthest point clustering
 - -Beyond bisection

Idea for dual source level sets comes from "linelets"

- Goal : edge-based domain decomposition
- Strategy : find set of k maximally dispersed vertices to form centers of the domains
- Key point : given $\{c_1, c_2, \cdots, c_{k-1}\}$, find new center c_k s.t. $\min_i \operatorname{dist}(c_k, c_i)$ is maximized
- Sequential process :
 - -start with random point c_1 , perform BFS from c_1
 - -find c_2 farthest from c_1 , perform BFS from c_2
 - -find c_3 farthest from c_1 and c_2 , perform BFS from c_3 , etc.

Choose random $\{c_1, c_2, \cdots, c_{k-1}\}$ Perform MIBFS from $\{c_1, c_2, \cdots, c_{k-1}\}$ while not satisfied for each *i* independently remove c_i from set find best \hat{c}_i with respect to others evaluate scattering of the centers end for replace one or more centers, perform MIBFS end while

- Instead of $(\mathcal{B}, \mathcal{S}, \mathcal{W})$ bisection, consider trisection, quadrisection, octasection
- Find two or more levels of separators at once
- Replace dist(u, s) dist(u, t)with function of dist (u, s_1) , dist (u, s_2) , dist (u, s_3) , etc
- Multiple component trimming
- Multiple component expansion
- Multiple component max flow solvers

- Three improvements
 - -single source vs dual source level sets
 - -max flow (expensive) vs trimming (cheap)
 - -expansion by levels vs selective expansion
- MIBFS (Multiple independent breadth first search)
 - -cheap in MPP, # of communication steps is bounded above by the diameter of the graph
- Trimming the wide separator
 - cheap in MPP, # of communication steps is bounded above by the maximum width of a wide separator