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Outline of talk

e coupled linear system

—singular stiffness linear system

— full rank constraint linear system
e two approaches for solution

— direct elimination

—null space projection
e types of constraints and spy plots

— Dirichlet conditions
—adaptive conditions
—rigid body conditions
—large door model



Outline of talk (continued)

e various topics

—when not to use direct elimination
—inertial relief

—nice basis problem

—re-use of permutations

— Lagrange multipliers and residual forces

—rank-revealing ()R factorizations

® sumimary



Start with a singular linear system

Ku=f (1)
e stiffness matrix K is n X n sparse and singular,

e displacement vector u is n X 1
3 translations, 3 rotations

e force vector f is n x 1
e solution u is not unique.

e Ku = f comes from a nonlinear iteration and
we expect there to be one equilibrium point

e we expect additional information
to find a unique solution.



Add a linear system of constraints

Cu=g
e constraint matrix C is r X n sparse, r < n

e displacement vector u is n X 1
3 translations, 3 rotations

e right hand size vector ¢ is r x 1
® equation (2) is satisfied exactly.

e impose condition :
u lies in the n X r column space of ct

e now we bifurcate our analysis

— direct elimination

—null space projection
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Direct elimination (step 1)

e Form the KKT system

Kpm Croag [UM] _ [f/\/t] 3)
CR,M 0 UR IR

® K\ A Sparse, semi-positive definite,
frequently its rank deficiency is six or less

o Cr M sparse, full rank, [R| < [ M|
e v;, Lagrange multipliers
e indefinite linear (n+7) X (n+r) system

e with large rigid bodies, very indefinite,
r can be much greater than (n — r)



Null space projection (step 1)

e find n X (n — r) matrix Z such that C Z =0

e For example, full size L() factorization

eLisrxr,Qisnxr, Zisnx (n—r)
o Qlo=1,7217=1,and Q1 Z =0

e write displacements v as u =0 ap+ Z ag



Null space projection (step 2)

e constraint equation
Cu=g = C(Qap+Z ag)=g
—> (C'QQ ap =g since CZ =0
= LQ'Qap=g=ap=L""g (5
e write displacements u as v = Zag + QL g

e insert into stiffness equation
Ku = K(Zar+ QL 1g) = f
e modify right hand side
KZar = f+Af=f—KQL g



Null space projection (step 3)

e impose (Galerkin condition
Z'KZar = 21 (f — KQL™g)
()= () o

o (n—r)x (n—r) matrix Z/ KZ is positive definite
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Direct elimination (step 2)

¢ analyze constraint matrix Cg /4
OR,./\/l UM = IR (7)
e find permutation matrices Pgr and Py y

T
Csnun = (PsROR MPMN) (PM,NuM)

= Psr9r = 9s (8)
e find block structure, C's p nonsingular r X r
ur| _
Csz1 Csp) [?@] = gs (9)

this is the “nice basis problem”
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Direct elimination (step 3)

e compute inverse Cp g, where Cp s Csp = Ipp
e premultiply with Cp g

U
Cp.s |Csz Csp] [ug ] = Ops9s
e simpler constraint system
U
Cpz1 Ip D] [WI)] = 9p (10)
e simpler KKT system
Kzz Kzp Cpr| [ur] [fr
Kpz Kpp Ipp| |up| = | /D (11)
Cpz Ipp 0 | VD] 9D
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Direct elimination (step 4)

e reduced linear system
Krzzur=f1 (12)

e Eliminate trailing block rows and columns

—1
N K I K
KZ,I = KZ,I — {Cg,l KLD} [ DD D,D] [ D1

Ipp 0 Cpz1
-1
~ Kpp I )
_ T g ” DD D,D] [D]
=11 { Dz BID| |1 ) P

e Block 1nverse

~1
[KD,D ID,D] _ [ 0 Ipp ]
Ipp 0 Ipp (—Kpp)
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Direct elimination (step 5)

e should not be a surprise, since
—1
Ipp Kpp| = _ |Ipp —Kpp
0 ID,D 0 ]D,D

and .
[fD,D 0 ] B [ Ipp 0 ]
Kpp Ipp —Kpp Ipp

e reduced linear system [A(I,I U = J?I
0 _[D,D] [KD,Z
—Ipp Kpp| |Cpz

0 oo [0

—Ipp Kpp| 9D

K1z = Krz+ {KZ,D CZT),I}

fr= I+ {KI,D CszI}
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Null space projection (step 4)

e If we start with the simpler constraints

Cpr1 Ipp) [ZZZI)] = 9D (13)
and permuted and blocked stiffness equation
Kz1 K1p uz] _ [fz] (14)
Kpz1 Kpp| |up I
e orthogonal, not orthonormal subspaces
T
QN D= fgi LN T = _]gg,l ,

QK/,DZN,I — 07 Q}(/’)DQN,D 7é ]7 ZK/,IZN,I 7é !
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Null space projection (step 5)

e split solution

uz 07 Ir1 07
= LNz ur+ = | A7 |uz+ 15
UD] NI [919] ~Cpz] 7 |9p (15)

e insert into stiffness equation Ku = f

K171 KZD] ( I1 1 OID Yirs
’ ’ o lug + = 16
Kpz Kpp| \|-Cpz| " |9p /D (16)

Krzr Kzp| | 111 [fz [KID]
) ) 9 Ur = . ) 17
KD,I KD,D —CD,I L fp KD,D 9D ( )
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Null space projection (step 6)

e impose (Galerkin condition, solve

Krzzur=f1 (18)
where
T
Ryq— I11 Kzt Kzp| | 111 (19)
’ Cpz| |Kpz Epp| |-Cpz
and -
n I771 ( JT Kz p )
> — 7T 20
fI _CD,I fD KD)D 9D ( )
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Equivalent reduced linear systems

e from direct elimination

K71 = Krg1+ {KZ,D Cg,z}

0 _]D,D] [KD,Z

—Ipp Kpp| |Cpz
o=t [l B[ doe] [0
= TPL \—Ipp Kpp| |9p
e from null space projection

' - T

Ryp = I7 1 Kzt K1p [ I11 ]

’ —Cpz| |Kpz KEpp| |-Cpz
i oT

7= I11 (fz | Kz 9@)

—Cp 1] fp Kpp
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Dirichlet conditions

o Up = u%, dependent dof given values

® constraint matrix

Cs N =
Cp N =

e reduced system

Cs1 Csp| =051 IsD]

Cpr Ipp|l=|0p71 IpD

Krz1r =K1z

n 0
1 = J1— Kz pup
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Adaptive conditions

® U =k u;j+ 0 *uy
e linear interpolation between two nodes

e constraint matrix
Csn=|Csz Csp|l=|Csz Isp
Cpn = Cp1 IpD]

e idea extends to tied contact,
slave node linear combination of 3-4 nodes
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Adaptive conditions : mesh

(uj + uy)
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Adaptive conditions : KKT system

® magenta —
stiffness matrix
not modified

® green —
stiffness matrix
modified

ered —
stiffness matrix
not modified

e yellow —
"z = 228 constraint matrix
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Adaptive conditions : Reduced system

® magenta —
stiffness matrix
not modified

® green —
stiffness matrix
modified

0 2 4 6 8 10 12 14 16 18 20
nz =109
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Rigid body conditions : mesh

Uj = Ti,cmucm

1000 % %
010=x0 %
T 00T *=%x0
powemo 000100
000010
000001
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Rigid body conditions

: KKT system
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® magenta —
stiffness matrix
not modified

® green —
stiffness matrix
modified

ered —
stiffness matrix
not modified

e yellow —
constraint matrix



Rigid body conditions : Reduced system

® magenta —
stiffness matrix
not modified

® green —
stiffness matrix
modified

0 5 10 15 20 25 30 35 40
nz = 248
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Door model, 1,288,044 dof, 38,478 constraints
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® constraints
distributed across
16 processors

e (' has 38,478 rows
and 53,673 nonzero
columns

e 2,916 tied contact

e 5 interpolation
constraints

e 297 rigid bodies,
35,532 rows



Door model, 1,288,044 dof, 38,478 constraints

x10* x10*
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When is direct elimination a bad idea?

® When Cp 7 is dense, or has one or more dense rows,

then [A(I’I is dense
® Expand CD,Z — prg CS,Z

—we want Cp s to be sparse

—only possible when Cgp has many components,
i.e., diagonal or block diagonal

—(Cp s has a good block triangular form
with small diagonal blocks

—also want (s 7 to be sparse

e Interesting ordering problem,
much different from ordering stiffness matrix K
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Example : Inertial relief, C¢ 7 and C¢ p dense

e rows and columns : eliminate D, keep &

K17 K1p Chr Coz| [ur]  [fs
Kp1 Kpp Ipp Cgp up| _ | fp (25)
CDI ]D,D 0 0 UD 9D
_Cg)z Cg)p 0 0 ] Rz | €
e reduce to then solve for u7 and vg¢.
N - R
[EII CE,I uI] _ yirs (26)
_Cg’z' 0 | ve ge
e recover up and vp
[KD,D ]D,D] [U@] _ [fD] | Epz Cép| [uz (27)
Ipp 0 ] [vp 9D Cpz 0 | |ve
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Nice basis problem CR, MUM = IR

e Given r X n matrix Cp js find

—permutations Pgr and Py

(PS,RCR,MPAT/, M) (Pvmum) = (Psror)  (28)

CsN uN = 3s (29)
—find independent 7 and dependent D dof

Csz1 Cspl

with Cs p square, nonsingular

ur

up| =98 (30)

—inverse (p g = Cg% i1s sparse, well conditioned
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Nice basis problem CR, MUM = IR

e purely structural based permutations
have created singular Cs p matrices.

e use structural and numeric phases
to compute the permutations

] [P 51, Rq

I
Psp = [ S1,R1

PSQ,RQ [52,732]

[INle ] [Pf\ﬂ,/\/h ]
Pary M, LN, M,

no MPP implementation (not needed yet)

Prn o =

e structural phase needs a tolerance to bound max \ijg\
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Re-using the permutations

e The operation
minimize ||f — Kul|y subject to Cu =g
is done inside a nonlinear iteration
e we can reuse the permutations for several steps
e monitor max |Cp s|/ max|Cg p|
e monitor max |Cp 7|/ max |Cg 7]

e as the constraint matrix ' becomes stale,
Cps and Cp 7 can become ill-conditioned
since the ordering may not be suited for the entries
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Lagrange multiplers

More than just a mathematical construct.
e residual forces : r= f — Ku = Cv

e Lagrange multipliers are residual forces
at dependent dof

vp =1p = fp— Kp pup (33)
e residual forces at N :
_CT ] _CT ?JD_
TN = C%,NUD - ]D’I vp=| PL (34)
i D,I_ i UD |

e residual forces at original ordering M :

T
rm=PuUNTN=PunCp D (35)
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Relaxation of full rank constraints

e full rank property — (g p is nonsingular

e rank-revealing ()R factorization of C /4

CrMPuN = Qr RN = Qri |Rep RN
where |K| = |D| < |R|

CRMUM = IR

(CRMPMN) (PN MUM) = 9R
: 1w
Orx |[Bxp Bz UZI) = IR
_ - u T
Rrep Rxr1 u? = gk = QR KIR
u -
Ipp Rp 1] UZI) = gp = Rp kK
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Why RRQR on constraint matrix C?

e Full rank —
no replicated constraint rows across processors

e Useful feature, return information to user
on over-constrained system

— presently return information about dof

— RRQR can return information about
constraint rows

e New feature for engineer —
weighted constraint rows
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Summary

e Basic idea : use constraints to reduce system size,
often indefinite matrix — definite matrix

e Two approaches are equivalent

— direct elimination

—null space projection
e Nice basis problem

—structural methods inadequate by themselves
—numeric methods necessary for a robust solution

— MPP implementation interesting research topic
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