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.. Outline

...1 Discrete Nonlinear ill-posed Problems and Regularizing methods

...2 Levenberg-Marquardt approaches

...3 Trust Region and Adaptive Regularized methods for ill-posed
problems.

...4 Regularizing methods for a class of problems
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.. The problem

We want to solve
F (x) = y

where F : ℜn → ℜn is a given vector-valued continuously
differentiable function. We consider ill-posed problems:

no finite bounds on the norm of the inverse of F ′(x) can be
used in the analysis;

the solution does not depend continuously on the data.
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.. Noisy case

In realistic situation only noisy data y δ are given:

∥y − y δ∥ ≤ δ,

where δ is the noise level.

Assume that for the exact data y a solution x+ exists.

Need for regularization
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.. Regularizing methods

Iterative processes that employ a regularization term and generate
a sequence {xδk}.
For noisy data: the stopping criterion and tolerance proportional to
the noise level δ. Assume that iterations are stopped at index k∗.

...1 xδk∗ is an approximation to x+.

...2 xδk∗ → x+ as δ goes to zero.

...3 Noise-free case: Local convergence to x+.

All the above results must hold without assuming boundness of the
inverse of F ′.
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.. Existing approaches

Landweber iterations (gradient-type methods)[ Hanke, Neubauer,
Scherzer, 1995,Kaltenbacher, Neubauer, Scherzer, 2008 ]

Truncated Newton-CG [Hanke,1997, Rieder, 2005]

Levenberg-Marquardt scheme [Hanke,1997,2010,Kaltenbacher,

Neubauer, Scherzer, 2008]

Iteratively Regularized Gauss-Newton methods [Bakushinsky,

1992, Blaschke, Neubauer, Scherzer, 1997]

The analysis of these approaches is exclusively local (even in the
noise free-case). The definition of global methods is an open task.
We are aware only of [Kaltenbacher, 2006, Wang, Yuan, 2002, 2005]
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.. Levenberg-Marquardt (LM) Approaches

Given xδk , the step pk = p(λk) used to form the new iterate solves:

(F ′(xδk )
TF ′(xδk ) + λk I )p = −F ′(xδk )

T (F (xδk )− y δ)

for a specific λk ≥ 0.
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.. Properties of the LM step

Let ℓk be the rank of F ′(xδk )

Let UkΣkV
T
k be its s.v.d. with singular values:

(ςk)1 ≥ (ςk)2 ≥ . . . ≥(ςk)ℓk > (ςk)ℓk+1 = . . . = (ςk)n = 0.

Let r = UT
k (F (xδk )− y δ). Then,

pk = p(λk) =

ℓk∑
i=1

(
(ςk)i ri

(ςk)
2
i + λk

)(Vk)i ⇒ pk ∈ R(F ′(xδk )
T )

Discrete ill posed nonlinear systems 8/44
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.. Levenberg-Marquardt approaches c.ed

LM approaches include:

Trust-region:

pk solution to:

min
∥p∥≤∆k

mTR
k (p) = ∥F (xk)− yδ + F ′(xk)p∥2.

pk = p(λk). When λk > 0, ∥p(λk)∥ = ∆k .

Adaptive Regularized methods: pk obtained minimizing
quadratic/cubic regularization of the Gauss-Newton model.

Discrete ill posed nonlinear systems 9/44
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.. Adaptive Quadratic Regularized Method (ARQ):

Assume F ′(x) is Lipschitz continuous.

pk is the minimizer of

mQ
k (p) =

√
∥F ′(xk)p + F (xk)− y∥2 + µk∥p∥2 +

1

2
σk∥p∥2

with σk > 0, µk ≥ 0.
pk = p(λk) is a LM step with

λk = µk + 2σk

√
∥F ′(xk)pk + F (xk)− y∥2 + µk∥pk∥2

mQ
k is a model for ∥F (x)− y∥.

[Nesterov, 2007], [B.-Cartis-Gould-Morini-Toint, 2010].
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.. Adaptive Cubic Regularized Method (ARC):

Assume the Hessian of ∥F∥2 is Lipschitz continuous.

pk is the minimizer of

mC
k (p) = ∥F ′(xk)p + F (xk)− y∥2 + 1

3
σk∥p∥3,

with σk > 0.
pk = p(λk) is a LM step with

λk = σk∥p(λk)∥

mC
k is a model for ∥F (x)− y∥2.

[ Griewank, 1981], [Nesterov-Polyak, 2006], [Cartis-Gould-Toint, 2011], [Gould,

Porcelli, Toint, 2012].
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The parameter λk is adaptively chosen and it is the result of
the minimization process.

The trust-region radius ∆k and the regularization term σk are
adaptatively chosen in order to satisfy the classical decrease
condition.

Given a model mk(p) for a merit function fm(x):

ρ =
ared

pred
≥ η1 η1 ∈ (0, 1)

where

ared = fm(x
δ
k )− fm(x

δ
k + pk) pred = fm(x

δ
k )−mk(pk)
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.. Globally convergent Levenberg-Marquardt approaches

Given the model mk (mTR
k , mQ

k , m
C
k ), the corresponding

regularization term βk (1/∆k , σk) and 0 < η1 < η2 < 1, γ1 > 1:

Step 1: Compute pk the minimizer of the model
mk(p)(possibly constrained in case of TR). The
minimizer pk is a LM step.

Step 2: Step acceptance. Set ρk = ared
pred .

If ρk < η1,
set βk = γ1βk
go to Step 1

else set xδk+1 = xδk + pk
Step 3: Parameter update:Set

βk+1 ∈ (0, βk ] if ρk ≥ η2 (very successful),
βk+1 = βk if η1 ≤ ρk < η2 (successful).
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.. TR, ARQ, ARC and ill-posed problems

These methods are extensively studied for well-posed
problems.

Can we prove convergence results for ill-posed problems in
the noise-free case?

Can we see these methods as regularizing methods for noisy
problems?

First step in proving regularity of TR methods: [ Wang, Yuan 2002,
2005].
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..

Standard Assumption for the local analysis of regularizing
methods:

ASS. Given an initial guess x0:

∥F (x)− F (x̃)− F ′(x)(x − x̃)∥ ≤ c∥x − x̃∥∥F (x)− F (x̃)∥

for c > 0 and x , x̃ ∈ Bρ(x0). If F
′(x) is singular this implies:

F constant along the affine subspace x +N (F ′(x)) ∩ Bρ(x0), for
any x ∈ Bρ(x0).

N (F ′(x)) = N (F ′(x̃)) for any x , x̃ s.t. F (x) = F (x̃)

[Kaltenbacher, Neubauer, Scherzer, 2008]
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.. Consequence of Ass. 1

If F (x) = y is solvable in Bρ(x0), then there exists a solution x+

such that

x0 − x+ ∈ N (F ′(x+))⊥ x0-minimum norm solution

 

 

x
0
δ

ρ

x++N(F’(x+))

x+

Figure : The x0-minimum norm solution and the affine space of points x
s.t. F (x) = F (x+) = y
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.. The q-condition [Hanke,1997,2010]

The decrease of the norm of the linear model is checked out.

The LM step must be s.t.

∥F (xδk )− y δ + F ′(xδk )pk∥ = q∥F (xδk )− y δ∥,

where q ∈ (0, 1) is a fixed constant.

This calls for the solution of a secular equation.

Discrepancy principle: the iterations are stopped at index k∗ if

∥y δ − F (xδk∗)∥ ≤ τδ < ∥y δ − F (xδk )∥ 0 ≤ k < k∗,

where τ is an appropriately chosen positive number.
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.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Discrete Nonlinear ill-posed Problems and Regularizing methods
Levenberg-Marquardt approaches

Trust Region and Adaptive Regularized methods for ill-posed problems.
Regularizing methods for a class of problems

.. The q-condition c.ed

A sufficiently small step is needed in order to prevent to
approach the solution of the noisy problem and to leave the
region around x+

The q-condition prevents to take too long steps

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

λ

|
|
p
(

λ)
|
|

0 2 4 6 8 10 12 14 16 18 20
0

2

4

λ

|
|
F
+
F
’
p
(

λ)
|
|

λ
q

||F||

λ
q

q||F||

Figure : ∥p(λ)∥ and ∥F − y + F ′(p(λ))∥ varying λ.
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.. The q-condition c.ed

Imposing the q-condition guarantees:

Local convergence to x+ in the noise-free case (δ = 0)

For xδ0 sufficiently close to x+, the discrepancy principle is
satisfied after a finite number of iterations k∗ and

∥xδk+1 − x+∥ < ∥xδk − x+∥ k = 0, 1, . . . , k∗

∥xδk∗ − x+∥ converges to zero whenever δ goes to zero.

⇒ REGULARIZING METHOD
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.. Regularizing TR and ARC approaches

Given the model mk (mTR
k , mC

k ), the corresponding regularization
term β (1/∆k , σk), 0 < η1 < η2 < 1, γ1 > 1, q ∈ (0, 1):

Step 1: Compute pk the minimizer of the model
mk(p)(possibly constrained in case of TR).

Step 2: Step acceptance. Set ρk = ared
pred and

qk = ∥F (xδk )− y δ + F ′(xδk )pk∥/∥F (xδk )− y δ∥
If ρk < η1 or qk < q

set βk = γ1βk
go to Step 1

else set xδk+1 = xδk + pk
Step 3: Parameter update:Set

βk+1 ∈ (0, βk ] if ρk ≥ η2 (very successful),
βk+1 = βk if η1 ≤ ρk < η2 (successful).
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.. Enforcing the q-condition

The condition

∥F (xδk )− y δ + F ′(xδk )pk∥≥q∥F (xδk )− y δ∥,

is enough to obtain a regularizing method.

Let λq s.t ∥F (xδk )− y δ + F ′(xkδ)pk∥ = q∥F (xδk )− y δ∥, the
q-condition is satisfied for λk ≥ λq.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

λ

||
F+
F’
p(

λ)|
|

||F||

q ||F||

λ
q

After a finite number of increases of βk the q condition is satisfied.
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.. Enforcing the q-condition c.ed

TR: Let ∆q = ∥p(λq)∥, due to the monotonicity of ∥p(λ)∥,
the q-condition is satisfied for ∆k > (1/γ1)∆q.

ARC: Let σq such that pk = p(λq) (we can prove that σq
exists).
Increasing σk , λk increases and therefore for σk < γ1σq the
q-condition is satisfied.
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Levenberg-Marquardt approaches

Trust Region and Adaptive Regularized methods for ill-posed problems.
Regularizing methods for a class of problems

.. Our Assumptions:

Noise-free case:

Global convergence to a stationary point: assume that
limk→∞ ∥F ′(xk)

T (F (xk)− y)∥ = 0.

Assume that there exists an accumulation point x+ s.t.
F (x+) = y . This implies

∥y − F (xk)∥ → 0.

Noisy case:

Assume that the initial guess is enough close to x+.
Otherwise we can only show the monotonic decrease of the
noisy residual ∥y δ − F (xδk )∥ and the satisfaction of the
discrepancy principle.

Discrete ill posed nonlinear systems 23/44



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Discrete Nonlinear ill-posed Problems and Regularizing methods
Levenberg-Marquardt approaches

Trust Region and Adaptive Regularized methods for ill-posed problems.
Regularizing methods for a class of problems

.. Local convergence results

λk must be greater than zero: i.e. the trust-region must be
forced to be active.

λk must be uniformly bounded from above:

We can prove that this is true for TR, ARC

⇒ TR, ARC are regularizing methods for τ > 1
q .
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.. LM methods for a class of problems

Assumptions:

Source condition:

x+ − xδ0 =(F ′(x+)TF ′(x+))νv , ν ∈ (0, 1/2] v ∈ R(F ′(x+)T ),

∥v∥ sufficiently small.

Restriction on the “nonlinearity” of F :

F ′(x) = RxF
′(x+) Rx ∈ IRn×n ∥I − Rx∥ ≤ cR∥x − x+∥

for any x ∈ Bρ(x
+).

[Kaltenbacher, Neubauer, Scherzer, 2008]
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.. LM approach [Kaltenbacher, Neubauer, Scherzer, 2008]

A priori choice of λk :

λk = λ0q
k , for some λ0 > 0, q ∈ (0, 1).

Iterations stopped at index k∗ s.t.

λ∗
k < Cδ C > 0

The decrease of λk is explicitly imposed.

Less expensive
but

the above strong conditions on xδ0 and F are needed to prove its
regularizing properties.
It is also possible to give complexity results:

k∗ = O(1 + ln(δ)).
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.. Comments on the source condition

Observation: the local regularizing behaviour of this LM approach
under the source condition

x+ − xδ0 = (F ′(x+)TF ′(x+))1/2v , v ∈ R(F ′(x+)T ), ∥v∥ small

is equivalent to measure the error x+ − xδk in the weighted norm

∥x+ − xδk∥2+ = ∥(F ′(x+)TF ′(x+))1/2(x+ − xδk )∥22;

———————————————————-
Note that ∥x+ − xδk ∥ ∈ R((F ′(x+)T )) so that ∥x+ − xδk ∥2+ = 0 iff

∥x+ − xδk ∥ = 0.
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.. Comments on the source condition c.ed

In other words, the source condition can be replaced by the
following assumption:

Assume:
∥x+ − xδ0∥2+ and ∥x+ − xδ0∥22

sufficiently small.

Then, the errors

∥x+ − xδk∥2+ ∥x+ − xδk∥22

remain small and decrease until the stopping criterion is met.

Discrete ill posed nonlinear systems 28/44



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Discrete Nonlinear ill-posed Problems and Regularizing methods
Levenberg-Marquardt approaches

Trust Region and Adaptive Regularized methods for ill-posed problems.
Regularizing methods for a class of problems

.. Weaker Assumptions

Analysis carried out assuming:

Let x+ be the x0-minimum norm solution.

N (F ′(x+)) ⊆ N (F ′(x)) for any x ∈ Bρ(x
+).

It is a weaker condition: it is implied by the “restriction on
the nonlinearity of F” (F ′(x) = RxF

′(x+))

Let ς1 ≥ ς2 ≥ . . . ≥ ςℓ > ςℓ+1 = . . . = ςn = 0 be the singular
values of F ′(x). Then:

ςℓ bounded away from zero for any x ∈ Bρ(x
+).
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.. Weaker Assumptions c.ed

Let x+ be the x0-minimum norm solution. As in a LM approach

pk ∈ R(F ′(xδk )
T )

the assumption

N (F ′(x+)) ⊆ N (F ′(x)) for any x ∈ Bρ(x
+).

implies:

• pk ∈ R(F ′(x+)T ) for any xδk ∈ Bρ(x
+).

• xδk − x+ ∈ R(F ′(x+)T ) for any xδk ∈ Bρ(x
+).
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.. Noise Free case

Can we prove local convergence of TR, ARC, ARQ under the
Assumption N (F ′(x+)) ⊆ N (F ′(xk))?

Global convergence to a stationary point: assume that
limk→∞ ∥F ′(xk)

T (F (xk)− y)∥ = 0.

Assume that there exists an accumulation point x+ s.t.
F (x+) = y and

N (F ′(x+)) ⊆ N (F ′(x)) x ∈ Bρ(x
+).

Then, we can prove that x+ is an isolated limit point of {xk}.
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.. Noise Free case c.ed

Note that rk = UT
k (F (xk)− y) → 0.

Then, as ℓk ≤ ℓ+, with ℓ+ = rank(F ′(x+)) it follows:

(ςk)ℓk is bounded away from zero.
∥pk∥ → 0 as

∥pk∥2 = ∥p(λk)∥2 =
ℓk∑
i=1

(
(ςk)i ri

(ςk)2i + λ

)2

≤ (ςk)1
(ςk)ℓk

||rk ||2

⇒ xk → x+ [Moré, Sorensen, 1983]

This proves the convergence to x+ of the sequence generated
by any globally convergent LM approach
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.. Noisy-case

Given C > 0, γ̃ > 0 assume that:

λ0 > Cδ.

∥xδ0 − x+∥ ≤ γ̃λ
1/2
0 . This condition is ensured whenever

∥xδ0 − x+∥ ≤ γ̃
√
Cδ.

Stopping criteria: the iterations are stopped at index k∗ if

λk∗ ≤ Cδ or ∥y δ − F (xδk∗)∥ ≤ Cδ C > 0
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.. Noisy-case: assumptions on λk

The sequence λk must go to zero slowly. A sufficiently large
regularization is needed in order to prevent to approach the
solution of the noisy problem and to leave the region around
x+ :

λk

λk+1
≤ Ω Ω > 0.

∑k∗

k=1 λ
1/2
k ≤ M with M > 0 independent of k∗.

Decrease of λk must be related to the decrease of the
nonlinear residual:

λk > γ∥F (xδk )− y δ∥ γ > 0.
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.. Noisy case: local properties

Under the above assumptions we can prove that :

∥xδk − x+∥ ≤ Λλ
1/2
k−1

whenever λk ≥ Cδ and ∥y δ − F (xδk )∥ ≥ Cδ, with Λ independent
of k.

If δ > 0, the error ∥xδk − x+∥ remains bounded and decreases
with λk until the stopping criterion

λk∗ < Cδ or ∥y δ − F (xδk∗)∥ < Cδ

at iteration k∗ is met.

xδk∗ → x+ as δ goes to zero.

⇒ REGULARIZING METHOD
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.. Regularizing Trust-region and ARQ

Can we design TR and ARQ methods that fits in the above
process?

Can we choose in an appropriate way ∆k (TR) and µk (ARQ)
in order to get regularizing methods?

Assume F ′(x) is Lipschitz continuous and ∥F ′(x)∥ bounded.
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.. Regularizing Trust-region and ARQ c.ed

Further assumption to get
∑k∗

k=1 λ
1/2
k ≤ M:

Let

F (xδk )− y δ = FR + FN with FR ∈ R(F ′(xδk )
T ), FN ∈ N (F ′(xδk ))

Then
∥FR∥

does not have to reduce faster than

∥FN ∥

Reasonable as, if F (x) = y δ admits a solution x+δ ,
∥FN ∥ = o(∥xk − x+δ ∥)2 and ∥FR∥ = o(∥xk − x+δ ∥)
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.. A regularizing TR

The scalar λk is chosen a priori:

λk = τk∥F (xδk )− y δ∥

with an adaptive choice of τk . [Fan, 2003]

The step pk is the solution of a TR subproblem with

∆k = ∥p(λk)∥

the trust region is always active.

Step acceptance: τk = 4τk whenever ρk < η1

Parameter updating:

τk+1 =

{
max(τk/4,m) if ρk ≥ η2 (very successful),
τk if η1 ≤ ρk < η2 (successful),
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.. A regularizing TR c.ed

The method has to be modified in order to be regularizing. It is
not guaranteed that

λk

λk+1
=

τk∥F (xδk )− y δ∥
τk+1∥F (xδk+1)− y δ∥

≤ Ω Ω > 0.

Modification:

τk+1 = τ̄k+1max(1,
1

Ω

∥F (xδk )− y δ∥
∥F (xδk+1)− y δ∥

)

with

τ̄k+1 =

{
max(τk/4,m) if ρk ≥ η2 (very successful),
τk if η1 ≤ ρk < η2 (successful),
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.. A regularizing TR c.ed

In practice, when Fan’s choice of λk+1 is too small we set

λk+1 =
1

4Ω
∥F (xδk )− y δ∥.

The condition λk ≥ γ∥F (xδk )− y δ∥ is satisfied.

The assumptions on λk are fitted and the method is regularizing.
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.. A regularizing ARQ

Properties of λk :

λk = µk + σk∥F (xδk )− y δ + F ′(xδk )
Tp(λk)∥.

λk ≤ µup + σmax∥F (xδk )− y δ∥

λk ≥ µk :

we can control how λk goes to zero choosing µk .

Discrete ill posed nonlinear systems 41/44



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Discrete Nonlinear ill-posed Problems and Regularizing methods
Levenberg-Marquardt approaches

Trust Region and Adaptive Regularized methods for ill-posed problems.
Regularizing methods for a class of problems

.. A regularizing ARQ c.ed

Choice of µk in order to get

λk

λk+1
≤ Ω Ω > 0 and λk ≥ γ∥F (xδk )− y δ∥.

We set

µk = max(∥F (xδk )− y δ∥1/2, qµk−1) q ∈ (0, 1).

This yields

λk

λk+1
≤ 1

q
+ σmax∥F (xδ0 )− y δ∥1/2︸ ︷︷ ︸

Ω

.

and
λk ≥ ∥F (xδk )− y δ∥

The assumptions on λk are fitted and the method is regularizing.
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.. Comments and open issues

• How do they work in practice?

• A step pk statisfying the q-condition

∥F (xδk )− y δ + F ′(xδk )pk∥ = q∥F (xδk )− y δ∥,

is a Inexact Newton step.

Can we prove regularization properties using approximate
minimizers of the model in TR,ARC,ARQ? The previous
analysis does not apply. First step in this direction: [Wang,

Yuan, 2005].

Can we develop a variant of the TR method that gets rid of
the q condition?
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THANK YOU FOR YOUR ATTENTION
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