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@ Discrete Nonlinear ill-posed Problems and Regularizing methods

© Levenberg-Marquardt approaches

e Trust Region and Adaptive Regularized methods for ill-posed
problems.

@ Regularizing methods for a class of problems
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The problem

We want to solve

F(x)=y
where F : R” — R" is a given vector-valued continuously
differentiable function. We consider ill-posed problems:

@ no finite bounds on the norm of the inverse of F’(x) can be
used in the analysis;

@ the solution does not depend continuously on the data.
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Noisy case

In realistic situation only noisy data y? are given:
)
ly =y°ll <6,

where § is the noise level.

Assume that for the exact data y a solution x™ exists.

Need for regularization
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Regularizing methods

Iterative processes that employ a regularization term and generate
a sequence {x{}.

For noisy data: the stopping criterion and tolerance proportional to
the noise level §. Assume that iterations are stopped at index k*.
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Discrete N

Regularizing methods

Iterative processes that employ a regularization term and generate
a sequence {x{}.

For noisy data: the stopping criterion and tolerance proportional to
the noise level §. Assume that iterations are stopped at index k*.
(1] X,f* is an approximation to xT.
Q x). — x' as § goes to zero.

© Noise-free case: Local convergence to x.

All the above results must hold without assuming boundness of the
inverse of F’.
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Existing approaches

e Landweber iterations (gradient-type methods)[ Hanke, Neubauer,
Scherzer, 1995,Kaltenbacher, Neubauer, Scherzer, 2008 |

@ Truncated Newton-CG [Hanke, 1997, Rieder, 2005]

@ Levenberg-Marquardt scheme [Hanke,1997,2010,Kaltenbacher,
Neubauer, Scherzer, 2008]

@ lteratively Regularized Gauss-Newton methods [Bakushinsky,
1992, Blaschke, Neubauer, Scherzer, 1997]
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Existing approaches

Landweber iterations (gradient-type methods)[ Hanke, Neubauer,
Scherzer, 1995,Kaltenbacher, Neubauer, Scherzer, 2008 |

Truncated Newton-CG [Hanke,1997, Rieder, 2005]

Levenberg-Marquardt scheme [Hanke,1997,2010,Kaltenbacher,
Neubauer, Scherzer, 2008]

Iteratively Regularized Gauss-Newton methods [Bakushinsky,
1992, Blaschke, Neubauer, Scherzer, 1997]

The analysis of these approaches is exclusively local (even in the
noise free-case). The definition of global methods is an open task.
We are aware only of [Kaltenbacher, 2006, Wang, Yuan, 2002, 2005]
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Levenberg-Marquardt (LM) Approaches

Given x{, the step px = p()\«) used to form the new iterate solves:
(F'GR)TF'OR) + Mel)p = =F' () T(FOx) — v°)

for a specific Ay > 0.
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Properties of the LM step

o Let /4 be the rank of F/(x{)
o Let UrX, VkT be its s.v.d. with singular values:

(sk)1 > (k)2 > -+ >(sk)e, > (k)41 = = (sk)n = 0.

o Let r = UT(F(x)) — y°). Then,

o = p() = Z(W)(vk); S e R(FIO)T)
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Levenberg-Marquardt approaches c.ed

LM approaches include:
@ Trust-region:
e px solution to:

min m/®(p) = ||F(xx) — y° + F'(x«)p|*.
ol <A

Pk = P(Ak). When Ag >0, |

P = Ak.

@ Adaptive Regularized methods: px obtained minimizing
quadratic/cubic regularization of the Gauss-Newton model.
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Adaptive Quadratic Regularized Method (ARQ):

@ Assume F’(x) is Lipschitz continuous.
@ pi is the minimizer of

1
m&(p) = VIIF'Ca)p + FOxk) = 12 + ullpll® + soklpl?

with o, > 0,
o px = p(Ag) is a LM step with

Me = ik + 206/ || F' () pe + F i) — 12 + el e 2

o m? is a model for ||F(x) — y|.

[Nesterov, 2007], [B.-Cartis-Gould-Morini-Toint, 2010].
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Adaptive Cubic Regularized Method (ARC):

@ Assume the Hessian of ||F||? is Lipschitz continuous.
@ pi is the minimizer of

1
m (p) = |IF'(xi)p + F(xx) — v |1 + 3o,

with o, > 0.
o px = p(Ak) is a LM step with

Ak = Ok”P()\k)H
o m¢ is a model for ||F(x) — y||?
k ylI=.

[ Griewank, 1981], [Nesterov-Polyak, 2006], [Cartis-Gould-Toint, 2011], [Gould,
Porcelli, Toint, 2012].
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@ The parameter )\, is adaptively chosen and it is the result of
the minimization process.

@ The trust-region radius Ay and the regularization term oy are
adaptatively chosen in order to satisfy the classical decrease
condition.

@ Given a model my(p) for a merit function f,(x):

ared

_ > 0.1
P= g 2 m € (0,1)

where

ared = fm(x,f) — fm(x,iS + px) pred = fm(x,f) — my(pk)
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Globally convergent Levenberg-Marquardt approaches

Given the model my (kaR, m,?, m,f) the corresponding
regularization term Sy (1/Ak, o) and 0 <y <mp <1, v > 1L
Step 1: Compute px the minimizer of the model
mg(p)(possibly constrained in case of TR). The
minimizer py is a LM step.

Step 2: Step acceptance. Set py = Z::z.
If pr <1,
set Bk = 718k
go to Step 1
else set x,fH = x,‘f + Pk
Step 3: Parameter update:Set
Br+1 € (0, Bk] if px > m2 (very successful),
Br+1 = Bk if m < pk <m (successful).
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TR, ARQ, ARC and ill-posed problems

@ These methods are extensively studied for well-posed
problems.

@ Can we prove convergence results for ill-posed problems in
the noise-free case?

@ Can we see these methods as regularizing methods for noisy
problems?

First step in proving regularity of TR methods: [ Wang, Yuan 2002,
2005].
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Standard Assumption for the local analysis of regularizing
methods:

ASS. Given an initial guess xg:
IF(x) = F(%) = F'(x)(x = K|l < cllx = K|[IIF (x) = F(2)]|

for ¢ > 0 and x,X € B,(xp). If F'(x) is singular this implies:
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Standard Assumption for the local analysis of regularizing
methods:

ASS. Given an initial guess xg:
IF(x) = F(%) = F'()(x = X)|| < cllx = X[[[F(x) = F(X)]
for ¢ > 0 and x,X € B,(xp). If F'(x) is singular this implies:

F constant along the affine subspace x + N (F'(x)) N B,(xo), for
any x € B,(xp).
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Standard Assumption for the local analysis of regularizing
methods:

ASS. Given an initial guess xg:
IF(x) = F(%) = F'()(x = X)|| < cllx = X[[[F(x) = F(X)]
for ¢ > 0 and x,X € B,(xp). If F'(x) is singular this implies:

F constant along the affine subspace x + N (F'(x)) N B,(xo), for
any x € B,(xp).

(N(F'(x) = N(F'(%)) forany x% st. F(x) = F(%)]
[Kaltenbacher, Neubauer, Scherzer, 2008]
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Consequence of Ass. 1

If F(x) =y is solvable in B,(xp), then there exists a solution x*
such that

xo —xT € N(F'(x*))t  xo-minimum norm solution

X +N(F'(x")

Figure : The xp-minimum norm solution and the affine space of points x
st. F(x)=F(x") =y

Discrete ill posed nonlinear systems 16/44



Discrete Nonlinear ill-posed Problems and Regularizing methods
Levenberg-Marquardt approaches

Trust Region and Adaptive Regularized methods for ill-posed prol
Regularizing methods for a class of problems

The g-condition [Hanke,1997,2010]

The decrease of the norm of the linear model is checked out.

@ The LM step must be s.t.
IFOGR) =y + F()pell = al FOR) = ¥°Il,

where g € (0,1) is a fixed constant.
@ This calls for the solution of a secular equation.
@ Discrepancy principle: the iterations are stopped at index k* if

| <70 < |y’ = F(x)I 0< k<K,

ly? — F(x}-)

where 7 is an appropriately chosen positive number.
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The g-condition c.ed

@ A sufficiently small step is needed in order to prevent to
approach the solution of the noisy problem and to leave the
region around x™

@ The g-condition prevents to take too long steps

[Tp(M ]

|1 F+F p(A) [

Figure : ||p(A)|| and ||[F — y + F'(p(}))]| varying A.
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The g-condition c.ed

Imposing the g-condition guarantees:
@ Local convergence to x™ in the noise-free case (§ = 0)

e For xg sufficiently close to x™, the discrepancy principle is
satisfied after a finite number of iterations k* and

X1 — x| < |Ix —xT|| k=0,1,...,k*

o |Ix). — xT|| converges to zero whenever & goes to zero.

= REGULARIZING METHOD
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Regularizing TR and ARC approaches

Given the model my (kaR, m,f) the corresponding regularization

term B (1/Ak, 0k), 0<m <m <1, v >1 g€ (0,1):
Step 1: Compute px the minimizer of the model
my(p)(possibly constrained in case of TR).

ared

Step 2: Step acceptance. Set px = pred and
ak = IF(x2) = y* + F (el /IIF(x2) = v°)|
If px <mLorqgx<gq
set Bk = 7118k
go to Step 1
else  set x,f+1 = x) + px

Step 3: Parameter update:Set

Br+1 € (0, 8] if px =12 (very successful),
Br+1 = Bk if m < pk <mo (successful).
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Enforcing the g-condition

The condition
IF(<R) = ¥ + F'OR)pell = all F (<) — ¥l
is enough to obtain a regularizing method.

Let Aq st [|F(x) =y + F'(xid)pell = qll F(x7) = ¥°ll, the
g-condition is satisfied for Ay > Aq.

After a finite number of increases of By the g condition is satisfied.
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Enforcing the g-condition c.ed

@ TR: Let Agq = [|p(A\g)]|, due to the monotonicity of ||p(A)]],
the g-condition is satisfied for Ay > (1/71)A,.

o ARC: Let o4 such that px = p(A\q) (we can prove that oq4
exists).
Increasing ok, Ak increases and therefore for oy < y104 the
g-condition is satisfied.

o
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Our Assumptions:

Noise-free case:
@ Global convergence to a stationary point: assume that
limisoo [ ()T (F(x) = y)I| = 0.
@ Assume that there exists an accumulation point x™ s.t.
F(x™) = y. This implies

ly = F(xi)ll = 0.

Noisy case:

@ Assume that the initial guess is enough close to xT.
Otherwise we can only show the monotonic decrease of the
noisy residual ||y’ — F(x{)|| and the satisfaction of the
discrepancy principle.
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Local convergence results

@ )\, must be greater than zero: i.e. the trust-region must be
forced to be active.

@ \x must be uniformly bounded from above:
e We can prove that this is true for TR, ARC

= TR, ARC are regularizing methods for 7 > %.
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LM methods for a class of problems

Assumptions:

@ Source condition:
xT — Xg :(F/(X+)TF/(X+))VV, ve(0,1/2] ve R(F'(X+)T),

||v|| sufficiently small.

@ Restriction on the “nonlinearity” of F:
F'(x) = ReF'(x*) R e R™" ||l — Ry|| < crllx — x|
for any x € B,(xT).

[Kaltenbacher, Neubauer, Scherzer, 2008]
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LM approach [Kaltenbacher, Neubauer, Scherzer, 2008]

A priori choice of \g:
M = Xog”, for some Ao > 0,q € (0,1).
Iterations stopped at index k* s.t.

r<Cé C>0
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LM approach [Kaltenbacher, Neubauer, Scherzer, 2008]

A priori choice of \g:
M = Xog”, for some Ao > 0,q € (0,1).
Iterations stopped at index k* s.t.
r<Cé C>0
The decrease of Ay is explicitly imposed.

Less expensive
but

the above strong conditions on xg and F are needed to prove its
regularizing properties.
It is also possible to give complexity results:

k* = O(1 + In(4)).
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Comments on the source condition

Observation: the local regularizing behaviour of this LM approach
under the source condition

xt—x§ = (FxH)TF()2v, veR(F(xNT), |v| small
is equivalent to measure the error x™ — x,‘f in the weighted norm

I = g1 = I/ () TF )20 = )13

Note that [|x* — x?|| € R((F'(x*)T)) so that ||xT — x?||2 = 0 iff
It = xgll = 0.
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Comments on the source condition c.ed

In other words, the source condition can be replaced by the
following assumption:

Assume:
) 1)
[|x* —XoH%r and [|x* _XOH%

sufficiently small.
Then, the errors
1) 1)
Ixt=xll3 IIxt = x5

remain small and decrease until the stopping criterion is met.
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Weaker Assumptions

Analysis carried out assuming:

Let xT be the xg-minimum norm solution.

N(F'(xT)) CN(F'(x)) forany x € B,(x™).

@ It is a weaker condition: it is implied by the “restriction on
the nonlinearity of F" (F'(x) = R F'(x1))

oletgr >0 >...2¢ > =...=¢, =0 be the singular
values of F’(x). Then:

¢ bounded away from zero for any x € B,(x™).
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Weaker Assumptions c.ed

Let x™ be the xp-minimum norm solution. As in a LM approach
Pk € R(F/(x)T)
the assumption
N(F'(xT)) CN(F'(x)) forany x € B,(x™).

implies:

o px € R(F'(xT)T) for any x{ € B,(x").

o x) — xT € R(F'(x*)T) for any x € B,(x™).
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Noise Free case

Can we prove local convergence of TR, ARC, ARQ under the
Assumption N'(F'(x)) C N (F'(x«))?

@ Global convergence to a stationary point: assume that
limicsoo |F/(xi) T (F(x) = y)Il = 0.

@ Assume that there exists an accumulation point x™ s.t.
F(x™) =y and

N(F'(xT)) CN(F'(x)) x € By(xM).

Then, we can prove that x™ is an isolated limit point of {x}.
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Noise Free case c.ed

o Note that r, = U] (F(xx) — y) — 0.
@ Then, as ¢, < {4, with £ = rank(F'(x™)) it follows:

o (k)¢ is bounded away from zero.
o [[pk|| — 0 as

7 - 2 ) ,
ol = o2 = 3 ((“)) < &1y )

— \ (k)7 + A (SK)e
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Noise Free case c.ed

o Note that r, = U] (F(xx) — y) — 0.
@ Then, as ¢, < {4, with £ = rank(F'(x™)) it follows:

o (k)¢ is bounded away from zero.
o [[pk|| — 0 as

Ly - 2 ) ,
ol = o2 = 3 ((“)) < &1y )

= X — xt [Moré, Sorensen, 1983]

This proves the convergence to x™ of the sequence generated
by any globally convergent LM approach
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Noisy-case

Given C > 0,4 > 0 assume that:
e \g > (0.
o [|x§ — x| < f"y)\(l)/z. This condition is ensured whenever

Ixg = x*Il < 5v/Co.
@ Stopping criteria: the iterations are stopped at index k* if

Aew <C6 or |y —F(x))||<Cs C>0

Discrete ill posed nonlinear systems 33/44



Discrete Nonlinear ill-posed Problems and Regularizing methods
Levenberg-Marquardt approaches

Trust Region and Adaptive Regularized methods for ill-posed prol
Regularizing methods for a class of problems

Noisy-case: assumptions on Ay

@ The sequence A\, must go to zero slowly. A sufficiently large
regularization is needed in order to prevent to approach the
solution of the noisy problem and to leave the region around
xT:

Ak

<Q Q> 0.
Ak+1

° Zle )\1/2 < M with M > 0 independent of k*.
@ Decrease of A\, must be related to the decrease of the
nonlinear residual:

M >IF) =yl v >0
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Noisy case: local properties

Under the above assumptions we can prove that :

5 1/2
I — x| < A2

whenever A\, > Cé and ||y® — F(xQ)|| > Cd, with A independent
of k.

o If § >0, the error ||x) — x*|| remains bounded and decreases
with g until the stopping criterion

M. < C3 or |y’ =F(.)| < Co

at iteration k* is met.

° XE* — xT as § goes to zero.
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Noisy case: local properties

Under the above assumptions we can prove that :

1/2

”le - X+” < AN

whenever A\, > Cé and ||y® — F(xQ)|| > Cd, with A independent
of k.

o If § >0, the error ||x) — x*|| remains bounded and decreases
with g until the stopping criterion

M. < C3 or |y’ =F(.)| < Co

at iteration k* is met.

° XE* — xT as § goes to zero.

= REGULARIZING METHOD
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Regularizing Trust-region and ARQ

Can we design TR and ARQ methods that fits in the above
process?

@ Can we choose in an appropriate way Ax (TR) and ux (ARQ)
in order to get regularizing methods?

@ Assume F’(x) is Lipschitz continuous and ||F’(x)|| bounded.
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Regularizing Trust-region and ARQ c.ed

Further assumption to get Zl,;*:l )\1/2 < M:

Let
F(x))—y® = Fr + Fx with Fr e R(F'(x)7), Fn e N(F'(x)))

Then
| Frl

does not have to reduce faster than
| Farll

Reasonable as, if F(x) = y° admits a solution x;",
IEx]l = o([lxic = x5 [1)? and [|Frl = o(llxk — x571])
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A regularizing TR

The scalar Ay is chosen a priori:
M=kl FO) = ¥l

with an adaptive choice of 7. [Fan, 2003]

The step py is the solution of a TR subproblem with

A = [[p(A)

the trust region is always active.

Discrete ill posed nonlinear systems
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A regularizing TR

The scalar Ay is chosen a priori:
M=kl FO) = ¥l

with an adaptive choice of 7. [Fan, 2003]

The step py is the solution of a TR subproblem with

A = [[p(A)

the trust region is always active.
@ Step acceptance: 7 = 47, whenever p, < m
@ Parameter updating:

S max(7x /4, m) if px > 12 (very successful),
17 if 11 < px <ma (successful),
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A regularizing TR c.ed

The method has to be modified in order to be regularizing. It is
not guaranteed that

F oy _ 0
Mo PV g g
Mt Tl F(xgp) — Y0l
@ Modification:
F(x%) — y9
Th1 = Th41 Max(1 [Plx) = | )

"QF(x),,) - ¥
with

= max(7x /4, m) if px > 2 (very successful),
L I if ;1 < px <m2 (successful),
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A regularizing TR c.ed

In practice, when Fan's choice of A\x11 is too small we set

1
Akt1 = EHF(X;E) —y°|.

o The condition Ay > v||F(x)) — y°| is satisfied.

The assumptions on A are fitted and the method is regularizing.
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A regularizing ARQ

Properties of \j:

© M = ik + oul|F(xg) — y° + F'(x0) T p(A)]l-
° N\ < ptP+ UmaxHF(X/f) _yé”

Ak > ik

we can control how Ay goes to zero choosing pik.
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A regularizing ARQ c.ed

Choice of py in order to get

A
K <Q Q>0 and A >A|IF(x)) = V0.
Ak+1
We set
Mk = maX(HF(XI(j) - y6”1/27 qukfl) qce (07 1)
This yields
Ak 1 5 5)11/2
< — + omax||F(xp) — .
o < o o FOE) )
Q
and

M= ) =y

The assumptions on Ak are fitted and the method.is regularizing.
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Comments and open issues

e How do they work in practice?

o A step pi statisfying the g-condition
IF() = y° + F'O)pill = al FOR) = ¥,

is a Inexact Newton step.

@ Can we prove regularization properties using approximate
minimizers of the model in TR,ARC,ARQ? The previous
analysis does not apply. First step in this direction: [Wang,
Yuan, 2005].

@ Can we develop a variant of the TR method that gets rid of
the g condition?
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THANK YOU FOR YOUR ATTENTION
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