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Complex networks: motivation and background

I Complex networks provide models for physical, biological,
engineered or social systems (e.g., molecular structure, gene
and protein interaction, food webs, transportation networks,
power grids, social networks,...).

I Graph analysis provides quantitative tools for the study of
complex networks.

I Techniques from spectral graph theory, linear and multilinear
algebra, probability, approximation theory, etc. play a major
role.

Network science today is a vast multidisciplinary field. Important
early work was done by social scientists: sociologists,
anthropologists, experimental psychologists, economists and even
bibliometrists. More recently, physicists, computer scientists and
applied mathematicians have made major contributions.
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Complex networks: motivation and background

But what exactly is a complex network?

Unfortunately, no precise definition exists.

It is easier to say which graphs are not complex networks. Regular
lattices are not considered complex networks, and neither are
completely random graphs such as the Gilbert or Erdös–Rényi
models.

Random graphs are, however, considered by many to be useful as
toy models for complex networks.
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Regular lattice: not a complex network!
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Star graph: also not a complex network!
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Erdös–Rényi graph: also not a complex network!
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Complex networks: motivation and background

Some of the attributes typical of many real-world complex
networks are:

I Scale-free (power law degree distribution)

I Small-world (small graph diameter)

I Highly clustered (many triangles, hubs...)

I Hierarchical

I Rich in ‘motifs’

I Self-similar

Caveat: there are important examples of real-world complex
networks lacking one or more of these attributes.
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Example of complex network: B–A model
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Example of complex network: Golub collaboration graph
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Example of complex network: Erdös collaboration graph
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Example of complex network: PPI network of
Saccharomyces cerevisiae (beer yeast)
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Example of complex network: the Internet
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Example of (directed) complex network: a food web

Picture credits: http://www.physicalgeography.net/fundamentals/9o.html

Michele Benzi Sparse Linear Algebra for Complex Networks



Complex networks: motivation and background

Notation:

I G = (V ,E ) is a connected simple graph with N = |V | nodes
and m = |E | edges (i.e., G is unweighted, undirected and has
no loops)

I A ∈ RN×N is the associated adjacency matrix:
I Aij = 1 if nodes i and j are adjacent, Aij = 0 otherwise
I A is symmetric
I Aii = 0, 1 ≤ i ≤ N
I λ1 ≤ λ2 ≤ · · · ≤ λN eigenvalues of A

I For a node i , define its degree di :=
∑N

k=1 Aik (number of
immediate neighbors in G )

I Graph Laplacian: L := D − A where D = diag (d1, . . . , dN)
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Example: PPI network of Saccharomyces cerevisiae
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Example: PPI network of Saccharomyces cerevisiae

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 13218

Same, reordered with Reverse Cuthill–McKee

Michele Benzi Sparse Linear Algebra for Complex Networks



Example: PPI network of Saccharomyces cerevisiae
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Example: PPI network of Saccharomyces cerevisiae
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Example: Intravenous drug users network
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Example: Intravenous drug users network
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Example: Intravenous drug users network
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Example: Intravenous drug users network
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Quantitative analysis of networks

Basic questions about networks include centrality, communicability
and community detection issues:

I Which are the most “important” nodes?
I Network connectivity (vulnerability)
I Lethality in PPI networks
I Author centrality in collaboration networks

I How do “disturbances” spread in a network?
I Spreading of epidemics, rumors, fads,...
I Routing of messages; returnability

I How to identify “community structures” in a network?
I Clustering, transitivity
I Partitioning
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Subgraph centrality

There are dozens of different definitions of centrality for nodes in a
graph. The simplest is degree centrality, which is just the degree di

of node i . This does not take into account the “importance” of
the nodes a given nodes is connected to—only their number.

Subgraph centrality (Estrada & Rodŕıguez-Velásquez, 2005)
measures the centrality of a node by taking into account the
number of subgraphs the node “participates” in.

This is done by counting, for all k = 1, 2, . . . the number of closed
walks in G starting and ending at node i , with longer walks being
penalized (given a smaller weight).
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Subgraph centrality

Recall that

I (Ak)ii = # of closed walks of length k based at node i ,

I (Ak)ij = # of walks of length k that connect nodes i and j .

Using 1/k! as weights leads to the notion of subgraph centrality:

SC (i) =

[
I + A +

1

2!
A2 +

1

3!
A3 + · · ·

]
ii

= [eA]ii

Note: the additional term of order k = 0 does not alter the
ranking of nodes in terms of subgraph centrality.
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Subgraph centrality

Of course different weights can be used, leading to different matrix
functions, such as the resolvent (Katz, 1953):

(I − cA)−1 = I + cA + c2A2 + · · · , 0 < c < 1/λN .

Subgraph centrality has been used successfully in various settings,
especially proteomics and neuroscience.

Also, in the case of a directed network one can use the solution
vectors of the linear systems

(I − cA)x = 1 and (I − cAT )y = 1

to rank hubs and authorities.
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Subgraph centrality

Other matrix functions of interest are cosh(A) and sinh(A), which
correspond to considering only walks of even and odd length,
respectively.

Because in a bipartite graph sinh(A) = 0, the quantity

〈B(G )〉 :=
Tr (cosh(A))

Tr (eA)

provides a measure of how “close” a graph is to being bipartite.

Hyperbolic matrix functions are also used to define the notion of
returnability in digraphs (Estrada & Hatano, 2009).
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Communicability

Communicability measures how “easy” it is to send a message
from node i to node j in a graph. It is defined as (Estrada &
Hatano, 2008):

C (i , j) = [eA]ij

=

[
I + A +

1

2!
A2 +

1

3!
A3 + · · ·

]
ij

≈ weighted sum of walks joining nodes i and j .

As before, other power series expansions (weights) can be used,
leading to different functions of A.

For a large graph, computing all communicabilities C (i , j) (i 6= j)
is prohibitively expensive. Instead, averages are often used—as in
statistical physics.
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Communicability

The average communicability of a node is defined as

〈C (i)〉 :=
1

N − 1

∑
j 6=i

C (i , j) =
1

N − 1

∑
j 6=i

[eA]ij .

Communicability functions can be used to study the spreading of
diseases (or rumors) and to identify bottlenecks in networks.

Recently, community detection algorithms based on various
communicability measures have been developed (Fortunato, 2010;
Ma, Gao & Yong, 2010; Estrada, 2011).
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Algorithms

We saw that many problems in graph analysis lead to the
computation of selected entries of f (A), where A is the adjacency
matrix and f (x) is an analytic function.

Typically, the diagonal entries of f (A) are wanted, and for large
graphs some global averages over subsets of entries of f (A), often
expressed in terms of traces.

High accuracy is not always required. For example, in the case of
centralities it is important to be able to identify just the top-ranked
nodes. For the communicabilities, bounds are often sufficient.
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Algorithms

All of these computations can be formulated as evaluation of
bilinear forms uT f (A) v for suitably chosen vectors u, v ∈ RN

and for suitable functions f (x):

I Subgraph centrality: SC (i) = eT
i exp(A) ei

I Communicability: C (i , j) = eT
i exp(A) ej

I Average communicability:

〈C (i)〉 =
1

N − 1

[
eT exp(A) ei − eT

i exp(A) ei

]
where e is the vector of all ones.

How do we compute these quantities?
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Algorithms
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Algorithms

Consider the spectral decompositions

A = QΛQT , f (A) = Qf (Λ)QT .

For u, v ∈ RN we have

uT f (A)v = uTQf (Λ)QT v = pT f (Λ)q =
N∑

i=1

f (λi )piqi ,

where p = QTu and q = QT v . Rewrite this as a Riemann-Stieltjes
integral:

uT f (A)v =

∫ b

a

f (λ)dµ(λ), µ(λ) =


0 λ < a = λ1∑i

j=1 pjqj λi ≤ λ < λi+1∑N
j=1 pjqj b = λN ≤ λ.
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Algorithms

The general Gauss-type quadrature rule gives in this case:∫ b

a
f (λ)dµ(λ) =

n∑
j=1

wj f (tj) +
M∑

k=1

vk f (zk) + R[f ],

where the nodes {zk} are prescribed.

I Gauss: M = 0,

I Gauss–Radau: M = 1, z1 = a or z2 = b,

I Gauss–Lobatto: M = 2, z1 = a and z2 = b.

The evaluation of these quadrature rules is reduced to

I computation of orthogonal polynomials via three-term
recurrence,

I or, equivalently, computation of entries and spectral
information of the corresponding tridiagonal matrix (Lanczos).
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Algorithms

The tridiagonal matrix Jn corresponds to the three-term recurrence
relationship satisfied by the set of polynomials orthonormal with
respect to dµ.

Jn =


ω1 γ1

γ1 ω2 γ2

. . .
. . .

. . .

γn−2 ωn−1 γn−1

γn−1 ωn


The eigenvalues of Jn are the Gauss nodes, whereas the Gauss
weights are given by the squares of the first entries of the
normalized eigenvectors of Jn.

The quadrature rule is computed with the Golub–Welsch QR
algorithm.
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Algorithms

Consider the case u = v = ei (corresp. to the (i , i) entry of f (A)).

The entries of Jn are computed using the symmetric Lanczos
algorithm:

γjxj = rj = (A − ωj I )xj−1 − γj−1xj−2, j = 1, 2, . . .

ωj = xT
j−1Axj−1,

γj = ‖rj‖

with initial vectors x−1 = 0 and x0 = ei .

Each additional Lanczos step amounts to adding another node to
the Gauss-type quadrature rule, resulting in tighter and tighter
bounds (implementation based on MMQ Matlab toolbox by
G. Meurant).
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Algorithms

For f (A) = eA and f (A) = (I − cA)−1 we obtain:

I bounds on [f (A)]ii from symmetric Lanczos,

I bounds on [f (A)]ii + [f (A)]ij from unsymmetric Lanczos,

I lower bounds from the Gauss and the Gauss-Radau rules,

I upper bounds from the Gauss-Radau and Gauss-Lobatto rules.

In computations we often use the simple (Gerschgorin) estimates

λmin ≈ − max
1≤i≤N

{deg(i)}, λmax ≈ max
1≤i≤N

{deg(i)}.

Using more accurate estimates of the extreme eigenvalues of A
generally leads to improved results, especially in scale-free case.
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Summary of results

Numerical experiments were performed on a number of networks,
both synthetic (generated with the CONTEST Toolbox for Matlab,
Taylor & Higham 2010) and from real-world applications, including
PPI and transportation networks.

I A few (3-5) Lanczos steps per estimate are usually enough

I Independent of N for graphs with bounded max degree

I Almost as good for power-law degree distributions

I Very efficient approach for computing global averages
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Summary of results (cont.)

Example: Range dependent network from CONTEST, N = 100.

I MMQ approximations of the Estrada index EE(G) = 425.0661

# it 1 2 3 4 5
Gauss 348.9706 416.3091 424.4671 425.0413 425.0655

Radau (lower) 378.9460 420.6532 424.8102 425.0570 425.0659
Radau (upper) 652.8555 437.7018 425.6054 425.0828 425.0664

Lobatto 2117.9233 531.1509 430.3970 425.2707 425.0718

I MMQ approximations of [eA]1,5 = 0.396425

# it 1 2 3 4 5
Radau (lower) −2.37728 0.213316 0.388791 0.396141 0.396431
Radau (upper) 4.35461 0.595155 0.404905 0.396626 0.396420
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Summary of results (cont.)

Bounds for the Estrada index of small world matrices of increasing
size. Watts–Strogatz model with parameters (4, 0.1); five Lanczos
iterations.

N Gauss Gauss-Radau (l) Gauss-Radau (u) Gauss-Lobatto
1000 1.64e5 1.63e5 1.64e5 1.66e5
2500 4.09e5 4.10e5 4.11e5 4.12e5
5000 8.18e5 8.18e5 8.20e5 8.33e5
7500 1.23e6 1.22e6 1.22e6 1.25e6
10000 1.63e6 1.63e6 1.64e6 1.66e6

Five iterations suffice to reach a small relative error, independent of N.
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Summary of results (cont.)

Experiments were performed on scale-free networks (Barabási–
Albert model) of increasing size, to see the effect of increasing
maximum degree.

In this case, the Gerschgorin estimate λmax ≈ dmax gives poor
results. Indeed, whereas the max degree increases with N, the
spread of the eigenvalues tend to grow very slowly.

A better strategy is to estimate λmin, λmax using Lanczos.

The number of Lanczos steps per estimate is then approximately
independent of N, for a fixed accuracy. Typically, 9-11 Lanczos
steps suffice to achieve relative errors around 10−6.
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Some challenges

I Relate convergence rates of Gaussian quadrature rules to
network properties

I Can one quickly locate subsets of nodes with the largest
centralities SC (i)?

I For truly massive networks, current approaches are too
expensive

I Fast estimates for Tr (f (A)): randomized algorithms? (Avron
& Toledo)

I Low-rank approximations?
I Exploitation of locality?

I Parallelization is tricky

I Major issue in this area: how to evaluate and compare
measures?
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Basic references (cont.)
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Basic references (cont.)
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