Sparse matrix partitioning, ordering, and visualisation by Mondriaan 3.0

Rob H. Bisseling, Albert-Jan Yzelman, Bas Fagginger Auer

Mathematical Institute, Utrecht University Rob Bisseling: also joint Laboratory CERFACS/INRIA, May–July 2010

Albert-Jan

Sparse Days, Toulouse, June 17, 2010

Universiteit Utrecht

Outlin

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

Partitioning problems

Parallel sparse matrix-vector multiplication Visualisation by MondriaanMovie Hypergraphs 2D matrix partitioning

Ordering problems

Separated Block Diagonal structure

Conclusions and future work

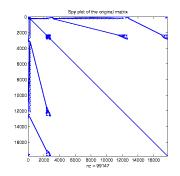
Outline

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

Motivation: sparse matrix memplus



 17758×17758 matrix with 126150 nonzeros. Contributed to MatrixMarket in 1995 by Steve Hamm (Motorola). Represents the design of a memory circuit. Iterative solver multiplies matrix repeatedly with a vector \swarrow

Universiteit Utrecht

Partitioning

Motivation: supercomputer 109/500 (June 2010)

- National supercomputer Huygens named after Christiaan Huygens. Wikipédia: "En 1655, Huygens découvrit Titan, la lune de Saturne. Il examina également les anneaux de Saturne et établit qu'il s'agissait bien d'un anneau entourant la planète"
- Huygens, the machine, has 104 nodes
- Each node has 16 processors
- Each processor has 2 cores and a a shared L3 cache §
- Each core has a local L1 and L2 cache

Outlin

Partitioning

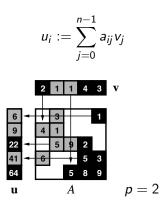
Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

Parallel sparse matrix-vector multiplication $\mathbf{u} := A\mathbf{v}$

A sparse $m \times n$ matrix, **u** dense *m*-vector, **v** dense *n*-vector



Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

4 supersteps: communicate, compute, communicate, compute

Divide evenly over 4 processors

Outline

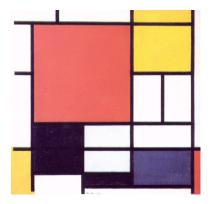
Partitioning

Matrix-vector Movies Hypergraphs

Ordering SBD

Conclusions

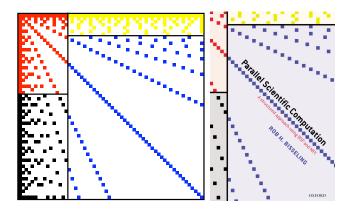
Composition with Red, Yellow, Blue and Black



Partitioning Matrix-vector Movies Hypergraphs 2D Ordering SBD

Piet Mondriaan 1921

Matrix prime60



Outline

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

- Mondriaan block partitioning of 60 × 60 matrix prime60 with 462 nonzeros, for p = 4
- $a_{ij} \neq 0 \iff i |j \text{ or } j| i$ $(1 \le i, j \le 60)$

Avoid communication completely, if you can

Outline

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

All nonzeros in a row or column have the same colour.

Permute the matrix rows/columns

Outline

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

First the green rows/columns, then the blue ones.

Combinatorial problem: sparse matrix partitioning

Problem: Split the set of nonzeros A of the matrix into p subsets, $A_0, A_1, \ldots, A_{p-1}$, minimising the communication volume $V(A_0, A_1, \ldots, A_{p-1})$ under the load imbalance constraint

$$nz(A_i) \leq \frac{nz(A)}{p}(1+\epsilon), \quad 0 \leq i < p.$$

The maximum amount of work should not exceed the average amount by more than a fraction ϵ .

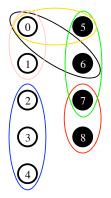
p = 2 problem is already NP-complete (Lengauer 1990, circuit layout)

Outline

Partitioning Matrix-vector Movies Hypergraphs 2D Ordering SBD

Conclusions

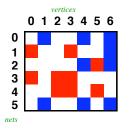
The hypergraph connection

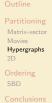


Hypergraph with 9 vertices and 6 hyperedges (nets), partitioned over 2 processors, black and white

Matrix-vector Movies Hypergraphs

1D matrix partitioning using hypergraphs





- ► Hypergraph H = (V, N) ⇒ exact communication volume in sparse matrix-vector multiplication.
- ► Columns ≡ Vertices: 0, 1, 2, 3, 4, 5, 6. Rows ≡ Hyperedges (nets, subsets of V):

$$\begin{array}{ll} n_0 = \{1,4,6\}, & n_1 = \{0,3,6\}, & n_2 = \{4,5,6\}, \\ n_3 = \{0,2,3\}, & n_4 = \{2,3,5\}, & n_5 = \{1,4,6\}. \end{array}$$

• Cut nets n_1 , n_2 cause 1 horizontal communication.

$(\lambda-1)$ -metric for hypergraph partitioning

Outline

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

- ▶ 138×138 symmetric matrix bcsstk22, nz = 696, p = 8
- Reordered to Bordered Block Diagonal (BBD) form
- Split of row *i* over λ_i processors causes

, a communication volume of $\lambda_i - 1$ data words

Cut-net metric for hypergraph partitioning

Outline

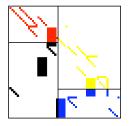
Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

• Row split has unit cost, irrespective of λ_i

Mondriaan 2D matrix partitioning



Partitioning Matrix-vector Movies Hypergraphs 2D Ordering SBD

Conclusions

- Block partitioning (without row/column permutations) of 59 × 59 matrix impcol_b with 312 nonzeros, for p = 4
- Mondriaan package v1.0 (May 2002). Originally developed by Vastenhouw and Bisseling for partitioning term-by-document matrices for a parallel web search machine.

Mondriaan 2D matrix partitioning

Outline

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

• p = 4, $\epsilon = 0.2$, global non-permuted view

Fine-grain 2D matrix partitioning

Outline

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

 Each individual nonzero is a vertex in the hypergraph Çatalyürek and Aykanat, 2001.

Mondriaan 2.0, Released July 14, 2008

- New algorithms for vector partitioning.
- Much faster, by a factor of 10 compared to version 1.0.
- ▶ 10% better quality of the matrix partitioning.
- Inclusion of fine-grain partitioning method
- Inclusion of hybrid between original Mondriaan and fine-grain methods.
- Can also handle $p \neq 2^q$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outlin

Partitioning Matrix-vector Movies Hypergraphs 2D

SBD

Conclusions

19

Matrix 1ns3937 (Navier-Stokes, fluid flow)

Outline

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

Splitting the sparse matrix lns3937 into 5 parts.

Recursive, adaptive bipartitioning algorithm

MatrixPartition (A, p, ϵ) *input:* p = number of processors, $p = 2^q$ ϵ = allowed load imbalance, $\epsilon > 0$. output: p-way partitioning of A with imbalance $\leq \epsilon$. if p > 1 then $q := \log_2 p$ $(A_0^{\rm r}, A_1^{\rm r}) := h(A, \operatorname{row}, \epsilon/q)$; hypergraph splitting $(A_0^{\rm c}, A_1^{\rm c}) := h(A, \operatorname{col}, \epsilon/q);$ $(A_0^{\mathrm{f}}, A_1^{\mathrm{f}}) := h(A, \operatorname{fine}, \epsilon/q);$ $(A_0, A_1) := \text{best of } (A_0^r, A_1^r), (A_0^c, A_1^c), (A_0^f, A_1^f);$ $maxnz := \frac{nz(A)}{n}(1+\epsilon);$ $\epsilon_0 := \frac{maxnz}{pz(A_0)} \cdot \frac{p}{2} - 1$; MatrixPartition($A_0, p/2, \epsilon_0$); $\epsilon_1 := \frac{\max nz}{nz(A_1)} \cdot \frac{p}{2} - 1$; MatrixPartition($A_1, p/2, \epsilon_1$); else output A; **Universiteit Utrecht**

2D

Mondriaan version 1 vs. 3

Name	р	v1.0	v3.0
df1001	4	1484	1406
	16	3713	3640
	64	6224	6022
cre_b	4	1872	1491
	16	4698	4158
	64	9214	9095
tbdmatlab	4	10857	10060
	16	28041	24910
	64	52467	50020
nug30	4	55924	58770
	16	126255	137200
	64	212303	267200
tbdlinux	4	30667	30240
	16	73240	68890
	64	146771	140500

Partitioning Matrix-vector Movies Hypergraphs 2D Ordering SBD Conclusions

Mondriaan, default values (v1 localbest, v3 hybrid), $\epsilon=0.03$

Mondriaan 3.0 coming this month

Ordering to SBD and BBD structure: cut rows are placed in the middle, and at the end, respectively.

- Visualisation through Matlab interface, MondriaanPlot, and MondriaanMovie
- ► Metrics: λ − 1 for parallelism, and cut-net for other applications
- Library-callable, so you can link it to your own program
- Interface to PaToH hypergraph partitioner

ロトメロトメヨトメヨト、ヨーショク

Universiteit Utrecht

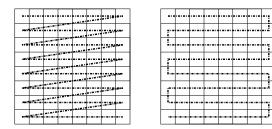
Outlin

Partitioning Matrix-vector Movies Hypergraphs 2D Ordering

SBD

Conclusions

Ordering a sparse matrix to improve cache use



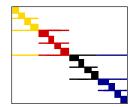
Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

- Compressed Row Storage (CRS, left) and zig-zag CRS (right) orderings.
- Zig-zag CRS avoids unnecessary end-of-row jumps in cache, thus improving access to the input vector in a matrix-vector multiplication.
- Yzelman and Bisseling, SIAM Journal on Scientific Computing 2009.

Separated block-diagonal (SBD) structure



- SBD structure is obtained by recursively partitioning the columns of a sparse matrix, each time moving the cut (mixed) rows to the middle. Columns are permuted accordingly.
- Mondriaan is used in one-dimensional mode, splitting only in the column direction.
- The cut rows are sparse and serve as a gentle transition between accesses to two different vector parts.

Universiteit Utrecht

SBD

Partition the columns till the end, p = n = 59

Outline

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

The recursive, fractal-like nature makes the ordering method work, irrespective of the actual cache characteristics (e.g. sizes of L1, L2, L3 cache).
 The ordering is cache-oblivious.

Try to forget it all

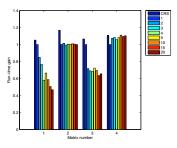
- Ordering the matrix in SBD format makes the matrix-vector multiplication cache-oblivious. Forget about the exact cache hierarchy. It will always work.
- We also like to forget about the cores: core-oblivious. And then processor-oblivious, node-oblivious.
- All that is needed is a good ordering of the rows and columns of the matrix, and subsequently of its nonzeros.

Outline

- Partitioning Matrix-vector Movies Hypergraphs 2D
- Ordering SBD

Conclusions

Wall clock timings of SpMV on Huygens



Splitting into 1-20 parts

- Experiments on 1 core of the dual-core 4.7 GHz Power6+ processor of the Dutch national supercomputer Huygens.
- 64 kB L1 cache, 4 MB L2, 32 MB L3.
- Test matrices: 1. stanford; 2. stanford_berkeley;
 3. wikipedia-20051105; 4. cage14

SBD

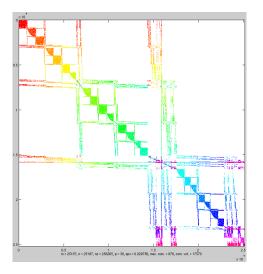
Doubly Separated Block-Diagonal structure



Partitioning Matrix-vector Movies Hypergraphs 2D Ordering SBD

- ▶ 9 × 9 chess-arrowhead matrix, nz = 49, p = 2, $\epsilon = 0.2$.
- DSBD structure is obtained by recursively partitioning the sparse matrix, each time moving the cut rows and columns to the middle.
- The nonzeros must also be reordered by a Z-like ordering.
- Mondriaan is used in two-dimensional mode.

Screenshot of Matlab interface



Outline

Partitioning Matrix-vector Movies Hypergraphs 2D

Ordering SBD

Conclusions

Matrix rhpentium, split over 30 processors

4

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions

- Flop counts become less and less important.
- It's all about restricting movement: moving less data, moving fewer electrons.
- We have presented two combinatorial problems: partitioning and ordering. Solution of these is an enabling technology for high-performance computing.
- Reordering is a promising method for oblivious computing.
 We have shown its utility in enhancing cache performance.
- Mondriaan 3.0, to be released soon, provides new reordering methods, based on hypergraph partitioning.
- Visualisation can help in designing new algorithms!

Partitioning Matrix-vector Movies Hypergraphs 2D Ordering

Conclusions

