Sandia

Exceptional service in the national interest @ National
Laboratories

Scalable Matrix Computations on
Large Scale-Free Graphs using
2D Graph Partitioning

Erik Boman, Karen Devine, Sivasankaran Rajamanickam
Sandia National Laboratories

Sparse Days, CERFACS, June 17, 2013

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.




Overview i) s

= We are interested in matrix computations to analyze large
graphs on distributed-memory supercomputers
= |n particular, eigensolvers
= Qur focusis on SpMV, a kernel in iterative methods

= We present results of various data distribution strategies for
distributed-memory computing on scale-free graphs.
= 1D vs 2D matrix layout
= Use of graph and hypergraph partitioners

= We present a new method combining (hyper)graph partitions
with 2D distributions, and show its benefit for scale-free
graphs.
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Background

" Large graphs are
pervasive
= WWW, social networks

= Often scale-free

= Power-law degree distr.
= Small diameter

= Very different from PDE
discretizations

= Need to adapt scientific

Computmg methOdS and BGP graph (credit: Ross Richardson, Fan Chung)
tools? http://math.ucsd.edu/~fan/graphs/gallery




Matrix Computations: SpMV is key &

= Linear algebra is a useful analysis tool for graphs
= Eigen-analysis using extreme eigenpairs
= SpMV is core kernel in iterative methods
= Sparse matvec (SpMV) is bottleneck for scale-free graphs on
large distributed-memory computers
= High-degree vertices cause lots of communication
= Some processors need to communicate with almost all other!
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Partitioning .

" Graph partitioning generally reduces communication for
SpMV
= Hypergraph model exactly models communication volume (Catalyurek
& Aykanat, 2000)
" Graph partitioners are widely regarded as ineffective on scale-
free graphs

= Software tools (e.g., Metis, Scotch, Zoltan) were designed for meshes
and PDE discretizations

Not optimized for scale-free graphs
= Focus on communication volume
We wish to reduce both #messages and communication volume
" Partitioning strategy depends on type of distribution
= 1D (row-based) distribution is most common
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1D and 2D Matrix Distributions

= 1D matrix distribution:
= Entire rows (or columns) of matrix assigned to a
processor

= Default distribution in Trilinos 1D row-wise matrix :
= 2D matrix distribution: distribution; 6 processes

= Block-based Cartesian layout

= Long used in parallel dense solvers (ScalLapack) I

= Also works for sparse matrices (Hendrickson et al.
‘95, Bisseling ‘04)

= Yoo et al. (SC'11) demonstrated benefit over 1D ]
layouts for eigensolves on scale-free graphs zf?s t’ZZZ’Z; n: 6 processes

= Same mapping used for vectors




Benefit of 2D Matrix Distribution — @.

= During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
= Expand (vertical):
Vector entries Xj sent to

column processors to compute
local product yP = AP x

= Fold (horizontal):
Local products y? summed along

it

FOW Processors; y = 2P

= |n 1D, fold is not needed, but
expand may be all-to-all.




Benefit of 2D Matrix Distribution

= During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
" Expand (vertical):
Vector entries X; sent to

column processors to compute
local product y? = AP x

" Fold (horizontal):
Local products y?» summed along

FOW Processors; y = 2P

= |In 1D, fold is not needed, but
expand may be all-to-all.
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Trilinos Computational
Science Toolkit

= Heroux et al., Sandia

= Trilinos Capabilities:
= Scalable Linear & Eigen Solvers
= Discretizations, Meshes & Load Balancing
= Nonlinear, Transient & Optimization Solvers
= Software Engineering Technologies & Integration

=  Trilinos features:

= Block-based data structures and algorithms
= Block-based linear and eigen solvers use “multivector” data structures.

= Toolkit/package-based design
= Packages can be combined, but not all of Trilinos is needed to get work done.

= |In this project, we use Trilinos’...
= Distributed Matrix/Vector classes Epetra and Epetra64
= Eigensolver package Anasazi
= Linear solver package Belos
= Preconditioning package Ifpack
= Utilities package Teuchos (e.g., communicators, parameters, ref-counted pointers)



Trilinos Maps

= Maps describe the
distribution of global IDs for
rows/columns/vector entries
to processors.

= Four maps needed in most
general case:
= Row map for matrix
= Column map for matrix

= Range map for vector
= Domain map for vector

= Part of Epetra package
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Rank 3 (Blue)

Row Map = {4, 5, 8}
Column Map = {4, 5, 6, 7}
Range/Domain Map = {4, 5}




1D vs 2D Strong Scaling Experiments

= Compare times for matrix-vector multiplication with 1D and 2D distributions
= Hera cluster at LLNL (AMD quad-core, quad-socket Opteron processors

operating at 2.2/2.3 GHz)

= Matrices from the University of Florida matrix collection
= Symmetrized and largest connected component extracted

Name Description

Hollywood-2009 Hollywood movie actor network
(Boldi, Rosa, Santini, Vigna)

Wikipedia-20070206 Links between wikipedia pages

(Gleich)

Ljournal-2008 Livedournal social network
(Boldi, Rosa, Santini, Vigna)

Wb-edu Links between *.edu webpages
(Gleich)

Cit-Patents Citation network among US

patents (Hall, Jaffe, Trajtenberg)

Number of

Rows

1.1M

3.5M

5.6M

8.9M

3.8M
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Number of

Nonzeros

113M

85M

99M

88M

33M

11
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1D vs 2D Strong Scaling experiments

For each matrix:
Blue = Trilinos 1D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)

Red = Trilinos 2D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)
Times are normalized to the 1D 16-processor runtime for each matrix.

0.8 -

0.6 -

0.4 -

0.2 -

MatVec time normalized to 1D 16-processor time

0 —

hollywood wikipedia ljournal wb-edu cit-Patents




Randomization

= Oninput, randomly permute matrix rows/columns
= Eliminates any inherent structure in input file (e.g., high degree nodes first)
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= Gives better balance in number of nonzeros per processor for 1D and 2D

= But can drastically increase communication volume

liveJournal matrix (4M rows; 73M nonzeros) on 1024 processes

Method Imbalance in nonzeros Max # Comm. Vol. 100 SpMV

(Max/Avg per proc) | Messages per SpMV | time (secs)

per SpMV (doubles)

1D-Block 12.8 1023 34.5M 2.14
1D-Random 1.3 1023 55.3M 1.52
2D-Block 11.4 62 43.4M 0.95
2D-Random 1.0 62 64.2M 0.43
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Advanced 2D Partitioning Methods @&

The Cartesian 2D block distributions are simple to compute but
ignore the structure of the graph. Can we do better?

= Coarse-grain hypergraph (Catalyurek & Aykanat ‘01)
= Cartesian product, but expensive to compute
= Requires multiconstraint hypergraph partitioning
= Fine-grain hypergraph (Catalurek & Aykanat ‘01)
= Assign each nonzero separately, not Cartesian
= Much larger hypergraph, impractical for big problems

= Mondriaan (Vastenhouw & Bisseling ‘05)
= Recursive hypergraph partitioning
= Only serial software available

14



New idea: Graph Partitioning + 2D .

= Cartesian 2D block distributions limit #messages but ignore
structure of the graph.

= (Hyper)Graph partitioning (e.g., Zoltan, ParMETIS, Scotch) balances
work (nonzeros per process) while attempting to minimize total
communication volume.

= Thought to be ineffective on scale-free graphs
= Quridea: Apply (hyper)graph partitioning and 2D distribution
together
= Compute vertex-based partition of graph using ParMETIS or Zoltan
= Apply 2D distribution to a logical permutation based on the (hyper)graph
partition 01 2 3 4 5
=  Advantages: 0
= Balance the number of nonzeros per process
= Exploit structure in the graph
to reduce communication volume

= Reduce the number of messages via 2D distribution 3
4

1

2

5




2D-GP: Graph partitioning with 2D
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Distribution
liveJournal matrix (4M rows; 73M nonzeros) on 1024 processes
Method Imbalance in nonzeros Max # Comm. Vol. 100 SpMV
(Max/Avg per proc) | Messages per SpMV | time (secs)
per SpMV (doubles)

1D-Block 12.8 1023 34.5M 2.14
1D-Random 1.3 1023 55.3M 1.52
1D-GP 1.2 1011 18.9M 0.53
2D-Block 11.4 62 43.4M 0.95
2D-Random 1.0 62 64.2M 0.43
2D-GP 1.4 62 22.4M 0.22
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Strong scaling
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Performance comparisons ) .
= 10 matrices: 1.1M -67.5M rows; 36 M-1.6B nonzeros

= 2D-GP/HP best in all but one experiment

= Benefit even greater for large numbers of processes

All experiments: 64-4096 procs Large runs only: 1024-4096 procs
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Weak Scaling ) .

= R-MAT matrices (Chakrabarti et al., 2004) with Graph-500
parameters (a=0.57; b=c=0.19; d=0.05)
= rmat_22 on 256 procs
= 4.2M vertices

100 -
= 38M edges 00 -
= rmat_24 on 1024 procs 20 -
= 16.8M vertices = 70 -
=
= 151M edges S 60 -
2 50 -#-1D-Block
" rmat_26 on 4096 procs | % ~ID-HP
40 -
= 67.1M vertices E =<2D-Block
30 ~-2D-HP
= 604M edges 20 - )
= 2D-HP maintains best 10 ‘
. 0 - . '
weak Scalmg' 256 1024 4096
Number of Processes
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Eigensolver Experiments

rmat 26

= Anasazi Toolkit in Trilinos 100

= Baker, Hetmaniuk,
Lehoucq, Thornquist; ACM
TOMS 2009

= Block-based eigensolvers:
Solve AX = XA or AX = BXA

= Experiment:

= Find 10 largest eigenvalues
of Laplacian using Block
Krylov-Schur (BKS) solver

= rmat_26 matrix: 67.1M 1

rows; 604M nonzeros 64 256 1024 4096
Number of Processes

Solve Time(secs)
=)

= HP =Hypergraph
partitioning in Zoltan —1D-Block -#]D-Random —*1D-HP
—=2D-Block ~“-2D-Random 2D-HP




Conclusions i

= 2D distribution has clear benefit for scale-free graphs,
especially at high process counts.

= Reduces max number of messages per process

= Randomization can be effective to restore load balance.
= But can increase communication volume

= (Hyper)graph partitioning can maintain load balance while
keeping communication volume low.
= More effective for scale-free graphs than thought
= Combining 2D distribution with (hyper)graph partitioning
gives best results.
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= Low number of messages, low communication volume, low imbalance

= Allows reuse of existing partitioning software

21



Extra Slides ) i
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Distributions for Anasazi

=" Matrix-vector multiplication an important kernel

= 55-87% of solve time for hollywood-2009 matrix with block 2D
distribution on 64-4096 processes

= QOther operations contribute to solve time
= Remaining time primarily in orthogonalization
= Balance with respect to vector entries, not matrix entries

= Benefit in balancing BOTH matrix nonzeros and vector entries

= Randomization can achieve this balance, but increases communication
volume drastically.

= Multiconstraint graph partitioning can be used to achieve balance
while keeping communication volume low.

Two weights per vertex: [1, number of nonzeros per row]
Find one partition that balances both weights.
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Example: Eigensolve with

multiconstraint graph partitioning
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Find 10 largest eigenvalues of hollywood-2009 matrix (1.1M rows;
114M nz) using Anasazi’s BKS (0.001 tolerance) on 1024 processes
Method Nonzero Vector Total Comm | SpMV | Total
Imbalance imbalance Volume for | time Solve
(max/avg) (max/avg) one SpMV (secs) |[time
(doubles) (secs)
2D-Block 26.0 1.0 15.7TM 0.93 1.15
2D-Random 1.1 1.0 35.6M 0.44 0.62
2D-GP 1.6 30.3 17.2M 0.33 0.96
2D-GP-MC 1.6 1.1 17.5M 0.27 0.44
Multiconstraint
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Scaling in Anasazi

= Use Anasazi’s Block Krylov Schur method to find ten largest
eigenvalues of the normalized Laplacian matrix (tol=0.001)

hollywood-2009 com-orkut
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